xref: /linux/fs/f2fs/super.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29 
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39 
40 static struct kmem_cache *f2fs_inode_cachep;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 char *f2fs_fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_KVMALLOC]	= "kvmalloc",
47 	[FAULT_PAGE_ALLOC]	= "page alloc",
48 	[FAULT_PAGE_GET]	= "page get",
49 	[FAULT_ALLOC_BIO]	= "alloc bio",
50 	[FAULT_ALLOC_NID]	= "alloc nid",
51 	[FAULT_ORPHAN]		= "orphan",
52 	[FAULT_BLOCK]		= "no more block",
53 	[FAULT_DIR_DEPTH]	= "too big dir depth",
54 	[FAULT_EVICT_INODE]	= "evict_inode fail",
55 	[FAULT_TRUNCATE]	= "truncate fail",
56 	[FAULT_IO]		= "IO error",
57 	[FAULT_CHECKPOINT]	= "checkpoint error",
58 	[FAULT_DISCARD]		= "discard error",
59 };
60 
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_err,
142 };
143 
144 static match_table_t f2fs_tokens = {
145 	{Opt_gc_background, "background_gc=%s"},
146 	{Opt_disable_roll_forward, "disable_roll_forward"},
147 	{Opt_norecovery, "norecovery"},
148 	{Opt_discard, "discard"},
149 	{Opt_nodiscard, "nodiscard"},
150 	{Opt_noheap, "no_heap"},
151 	{Opt_heap, "heap"},
152 	{Opt_user_xattr, "user_xattr"},
153 	{Opt_nouser_xattr, "nouser_xattr"},
154 	{Opt_acl, "acl"},
155 	{Opt_noacl, "noacl"},
156 	{Opt_active_logs, "active_logs=%u"},
157 	{Opt_disable_ext_identify, "disable_ext_identify"},
158 	{Opt_inline_xattr, "inline_xattr"},
159 	{Opt_noinline_xattr, "noinline_xattr"},
160 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
161 	{Opt_inline_data, "inline_data"},
162 	{Opt_inline_dentry, "inline_dentry"},
163 	{Opt_noinline_dentry, "noinline_dentry"},
164 	{Opt_flush_merge, "flush_merge"},
165 	{Opt_noflush_merge, "noflush_merge"},
166 	{Opt_nobarrier, "nobarrier"},
167 	{Opt_fastboot, "fastboot"},
168 	{Opt_extent_cache, "extent_cache"},
169 	{Opt_noextent_cache, "noextent_cache"},
170 	{Opt_noinline_data, "noinline_data"},
171 	{Opt_data_flush, "data_flush"},
172 	{Opt_reserve_root, "reserve_root=%u"},
173 	{Opt_resgid, "resgid=%u"},
174 	{Opt_resuid, "resuid=%u"},
175 	{Opt_mode, "mode=%s"},
176 	{Opt_io_size_bits, "io_bits=%u"},
177 	{Opt_fault_injection, "fault_injection=%u"},
178 	{Opt_fault_type, "fault_type=%u"},
179 	{Opt_lazytime, "lazytime"},
180 	{Opt_nolazytime, "nolazytime"},
181 	{Opt_quota, "quota"},
182 	{Opt_noquota, "noquota"},
183 	{Opt_usrquota, "usrquota"},
184 	{Opt_grpquota, "grpquota"},
185 	{Opt_prjquota, "prjquota"},
186 	{Opt_usrjquota, "usrjquota=%s"},
187 	{Opt_grpjquota, "grpjquota=%s"},
188 	{Opt_prjjquota, "prjjquota=%s"},
189 	{Opt_offusrjquota, "usrjquota="},
190 	{Opt_offgrpjquota, "grpjquota="},
191 	{Opt_offprjjquota, "prjjquota="},
192 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
193 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
194 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
195 	{Opt_whint, "whint_mode=%s"},
196 	{Opt_alloc, "alloc_mode=%s"},
197 	{Opt_fsync, "fsync_mode=%s"},
198 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
199 	{Opt_err, NULL},
200 };
201 
202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
203 {
204 	struct va_format vaf;
205 	va_list args;
206 
207 	va_start(args, fmt);
208 	vaf.fmt = fmt;
209 	vaf.va = &args;
210 	printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
211 	va_end(args);
212 }
213 
214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
215 {
216 	block_t limit = (sbi->user_block_count << 1) / 1000;
217 
218 	/* limit is 0.2% */
219 	if (test_opt(sbi, RESERVE_ROOT) &&
220 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
221 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
222 		f2fs_msg(sbi->sb, KERN_INFO,
223 			"Reduce reserved blocks for root = %u",
224 			F2FS_OPTION(sbi).root_reserved_blocks);
225 	}
226 	if (!test_opt(sbi, RESERVE_ROOT) &&
227 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
228 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
229 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
230 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
231 		f2fs_msg(sbi->sb, KERN_INFO,
232 			"Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
233 				from_kuid_munged(&init_user_ns,
234 					F2FS_OPTION(sbi).s_resuid),
235 				from_kgid_munged(&init_user_ns,
236 					F2FS_OPTION(sbi).s_resgid));
237 }
238 
239 static void init_once(void *foo)
240 {
241 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
242 
243 	inode_init_once(&fi->vfs_inode);
244 }
245 
246 #ifdef CONFIG_QUOTA
247 static const char * const quotatypes[] = INITQFNAMES;
248 #define QTYPE2NAME(t) (quotatypes[t])
249 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
250 							substring_t *args)
251 {
252 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
253 	char *qname;
254 	int ret = -EINVAL;
255 
256 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
257 		f2fs_msg(sb, KERN_ERR,
258 			"Cannot change journaled "
259 			"quota options when quota turned on");
260 		return -EINVAL;
261 	}
262 	if (f2fs_sb_has_quota_ino(sb)) {
263 		f2fs_msg(sb, KERN_INFO,
264 			"QUOTA feature is enabled, so ignore qf_name");
265 		return 0;
266 	}
267 
268 	qname = match_strdup(args);
269 	if (!qname) {
270 		f2fs_msg(sb, KERN_ERR,
271 			"Not enough memory for storing quotafile name");
272 		return -EINVAL;
273 	}
274 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
275 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
276 			ret = 0;
277 		else
278 			f2fs_msg(sb, KERN_ERR,
279 				 "%s quota file already specified",
280 				 QTYPE2NAME(qtype));
281 		goto errout;
282 	}
283 	if (strchr(qname, '/')) {
284 		f2fs_msg(sb, KERN_ERR,
285 			"quotafile must be on filesystem root");
286 		goto errout;
287 	}
288 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
289 	set_opt(sbi, QUOTA);
290 	return 0;
291 errout:
292 	kfree(qname);
293 	return ret;
294 }
295 
296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
297 {
298 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
299 
300 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
301 		f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
302 			" when quota turned on");
303 		return -EINVAL;
304 	}
305 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
306 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
307 	return 0;
308 }
309 
310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
311 {
312 	/*
313 	 * We do the test below only for project quotas. 'usrquota' and
314 	 * 'grpquota' mount options are allowed even without quota feature
315 	 * to support legacy quotas in quota files.
316 	 */
317 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
318 		f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
319 			 "Cannot enable project quota enforcement.");
320 		return -1;
321 	}
322 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
323 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
324 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
325 		if (test_opt(sbi, USRQUOTA) &&
326 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
327 			clear_opt(sbi, USRQUOTA);
328 
329 		if (test_opt(sbi, GRPQUOTA) &&
330 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
331 			clear_opt(sbi, GRPQUOTA);
332 
333 		if (test_opt(sbi, PRJQUOTA) &&
334 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
335 			clear_opt(sbi, PRJQUOTA);
336 
337 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
338 				test_opt(sbi, PRJQUOTA)) {
339 			f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
340 					"format mixing");
341 			return -1;
342 		}
343 
344 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
345 			f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
346 					"not specified");
347 			return -1;
348 		}
349 	}
350 
351 	if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
352 		f2fs_msg(sbi->sb, KERN_INFO,
353 			"QUOTA feature is enabled, so ignore jquota_fmt");
354 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
355 	}
356 	return 0;
357 }
358 #endif
359 
360 static int parse_options(struct super_block *sb, char *options)
361 {
362 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
363 	struct request_queue *q;
364 	substring_t args[MAX_OPT_ARGS];
365 	char *p, *name;
366 	int arg = 0;
367 	kuid_t uid;
368 	kgid_t gid;
369 #ifdef CONFIG_QUOTA
370 	int ret;
371 #endif
372 
373 	if (!options)
374 		return 0;
375 
376 	while ((p = strsep(&options, ",")) != NULL) {
377 		int token;
378 		if (!*p)
379 			continue;
380 		/*
381 		 * Initialize args struct so we know whether arg was
382 		 * found; some options take optional arguments.
383 		 */
384 		args[0].to = args[0].from = NULL;
385 		token = match_token(p, f2fs_tokens, args);
386 
387 		switch (token) {
388 		case Opt_gc_background:
389 			name = match_strdup(&args[0]);
390 
391 			if (!name)
392 				return -ENOMEM;
393 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394 				set_opt(sbi, BG_GC);
395 				clear_opt(sbi, FORCE_FG_GC);
396 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397 				clear_opt(sbi, BG_GC);
398 				clear_opt(sbi, FORCE_FG_GC);
399 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400 				set_opt(sbi, BG_GC);
401 				set_opt(sbi, FORCE_FG_GC);
402 			} else {
403 				kfree(name);
404 				return -EINVAL;
405 			}
406 			kfree(name);
407 			break;
408 		case Opt_disable_roll_forward:
409 			set_opt(sbi, DISABLE_ROLL_FORWARD);
410 			break;
411 		case Opt_norecovery:
412 			/* this option mounts f2fs with ro */
413 			set_opt(sbi, DISABLE_ROLL_FORWARD);
414 			if (!f2fs_readonly(sb))
415 				return -EINVAL;
416 			break;
417 		case Opt_discard:
418 			q = bdev_get_queue(sb->s_bdev);
419 			if (blk_queue_discard(q)) {
420 				set_opt(sbi, DISCARD);
421 			} else if (!f2fs_sb_has_blkzoned(sb)) {
422 				f2fs_msg(sb, KERN_WARNING,
423 					"mounting with \"discard\" option, but "
424 					"the device does not support discard");
425 			}
426 			break;
427 		case Opt_nodiscard:
428 			if (f2fs_sb_has_blkzoned(sb)) {
429 				f2fs_msg(sb, KERN_WARNING,
430 					"discard is required for zoned block devices");
431 				return -EINVAL;
432 			}
433 			clear_opt(sbi, DISCARD);
434 			break;
435 		case Opt_noheap:
436 			set_opt(sbi, NOHEAP);
437 			break;
438 		case Opt_heap:
439 			clear_opt(sbi, NOHEAP);
440 			break;
441 #ifdef CONFIG_F2FS_FS_XATTR
442 		case Opt_user_xattr:
443 			set_opt(sbi, XATTR_USER);
444 			break;
445 		case Opt_nouser_xattr:
446 			clear_opt(sbi, XATTR_USER);
447 			break;
448 		case Opt_inline_xattr:
449 			set_opt(sbi, INLINE_XATTR);
450 			break;
451 		case Opt_noinline_xattr:
452 			clear_opt(sbi, INLINE_XATTR);
453 			break;
454 		case Opt_inline_xattr_size:
455 			if (args->from && match_int(args, &arg))
456 				return -EINVAL;
457 			set_opt(sbi, INLINE_XATTR_SIZE);
458 			F2FS_OPTION(sbi).inline_xattr_size = arg;
459 			break;
460 #else
461 		case Opt_user_xattr:
462 			f2fs_msg(sb, KERN_INFO,
463 				"user_xattr options not supported");
464 			break;
465 		case Opt_nouser_xattr:
466 			f2fs_msg(sb, KERN_INFO,
467 				"nouser_xattr options not supported");
468 			break;
469 		case Opt_inline_xattr:
470 			f2fs_msg(sb, KERN_INFO,
471 				"inline_xattr options not supported");
472 			break;
473 		case Opt_noinline_xattr:
474 			f2fs_msg(sb, KERN_INFO,
475 				"noinline_xattr options not supported");
476 			break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479 		case Opt_acl:
480 			set_opt(sbi, POSIX_ACL);
481 			break;
482 		case Opt_noacl:
483 			clear_opt(sbi, POSIX_ACL);
484 			break;
485 #else
486 		case Opt_acl:
487 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
488 			break;
489 		case Opt_noacl:
490 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491 			break;
492 #endif
493 		case Opt_active_logs:
494 			if (args->from && match_int(args, &arg))
495 				return -EINVAL;
496 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497 				return -EINVAL;
498 			F2FS_OPTION(sbi).active_logs = arg;
499 			break;
500 		case Opt_disable_ext_identify:
501 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
502 			break;
503 		case Opt_inline_data:
504 			set_opt(sbi, INLINE_DATA);
505 			break;
506 		case Opt_inline_dentry:
507 			set_opt(sbi, INLINE_DENTRY);
508 			break;
509 		case Opt_noinline_dentry:
510 			clear_opt(sbi, INLINE_DENTRY);
511 			break;
512 		case Opt_flush_merge:
513 			set_opt(sbi, FLUSH_MERGE);
514 			break;
515 		case Opt_noflush_merge:
516 			clear_opt(sbi, FLUSH_MERGE);
517 			break;
518 		case Opt_nobarrier:
519 			set_opt(sbi, NOBARRIER);
520 			break;
521 		case Opt_fastboot:
522 			set_opt(sbi, FASTBOOT);
523 			break;
524 		case Opt_extent_cache:
525 			set_opt(sbi, EXTENT_CACHE);
526 			break;
527 		case Opt_noextent_cache:
528 			clear_opt(sbi, EXTENT_CACHE);
529 			break;
530 		case Opt_noinline_data:
531 			clear_opt(sbi, INLINE_DATA);
532 			break;
533 		case Opt_data_flush:
534 			set_opt(sbi, DATA_FLUSH);
535 			break;
536 		case Opt_reserve_root:
537 			if (args->from && match_int(args, &arg))
538 				return -EINVAL;
539 			if (test_opt(sbi, RESERVE_ROOT)) {
540 				f2fs_msg(sb, KERN_INFO,
541 					"Preserve previous reserve_root=%u",
542 					F2FS_OPTION(sbi).root_reserved_blocks);
543 			} else {
544 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
545 				set_opt(sbi, RESERVE_ROOT);
546 			}
547 			break;
548 		case Opt_resuid:
549 			if (args->from && match_int(args, &arg))
550 				return -EINVAL;
551 			uid = make_kuid(current_user_ns(), arg);
552 			if (!uid_valid(uid)) {
553 				f2fs_msg(sb, KERN_ERR,
554 					"Invalid uid value %d", arg);
555 				return -EINVAL;
556 			}
557 			F2FS_OPTION(sbi).s_resuid = uid;
558 			break;
559 		case Opt_resgid:
560 			if (args->from && match_int(args, &arg))
561 				return -EINVAL;
562 			gid = make_kgid(current_user_ns(), arg);
563 			if (!gid_valid(gid)) {
564 				f2fs_msg(sb, KERN_ERR,
565 					"Invalid gid value %d", arg);
566 				return -EINVAL;
567 			}
568 			F2FS_OPTION(sbi).s_resgid = gid;
569 			break;
570 		case Opt_mode:
571 			name = match_strdup(&args[0]);
572 
573 			if (!name)
574 				return -ENOMEM;
575 			if (strlen(name) == 8 &&
576 					!strncmp(name, "adaptive", 8)) {
577 				if (f2fs_sb_has_blkzoned(sb)) {
578 					f2fs_msg(sb, KERN_WARNING,
579 						 "adaptive mode is not allowed with "
580 						 "zoned block device feature");
581 					kfree(name);
582 					return -EINVAL;
583 				}
584 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
585 			} else if (strlen(name) == 3 &&
586 					!strncmp(name, "lfs", 3)) {
587 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
588 			} else {
589 				kfree(name);
590 				return -EINVAL;
591 			}
592 			kfree(name);
593 			break;
594 		case Opt_io_size_bits:
595 			if (args->from && match_int(args, &arg))
596 				return -EINVAL;
597 			if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
598 				f2fs_msg(sb, KERN_WARNING,
599 					"Not support %d, larger than %d",
600 					1 << arg, BIO_MAX_PAGES);
601 				return -EINVAL;
602 			}
603 			F2FS_OPTION(sbi).write_io_size_bits = arg;
604 			break;
605 		case Opt_fault_injection:
606 			if (args->from && match_int(args, &arg))
607 				return -EINVAL;
608 #ifdef CONFIG_F2FS_FAULT_INJECTION
609 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
610 			set_opt(sbi, FAULT_INJECTION);
611 #else
612 			f2fs_msg(sb, KERN_INFO,
613 				"FAULT_INJECTION was not selected");
614 #endif
615 			break;
616 		case Opt_fault_type:
617 			if (args->from && match_int(args, &arg))
618 				return -EINVAL;
619 #ifdef CONFIG_F2FS_FAULT_INJECTION
620 			f2fs_build_fault_attr(sbi, 0, arg);
621 			set_opt(sbi, FAULT_INJECTION);
622 #else
623 			f2fs_msg(sb, KERN_INFO,
624 				"FAULT_INJECTION was not selected");
625 #endif
626 			break;
627 		case Opt_lazytime:
628 			sb->s_flags |= SB_LAZYTIME;
629 			break;
630 		case Opt_nolazytime:
631 			sb->s_flags &= ~SB_LAZYTIME;
632 			break;
633 #ifdef CONFIG_QUOTA
634 		case Opt_quota:
635 		case Opt_usrquota:
636 			set_opt(sbi, USRQUOTA);
637 			break;
638 		case Opt_grpquota:
639 			set_opt(sbi, GRPQUOTA);
640 			break;
641 		case Opt_prjquota:
642 			set_opt(sbi, PRJQUOTA);
643 			break;
644 		case Opt_usrjquota:
645 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
646 			if (ret)
647 				return ret;
648 			break;
649 		case Opt_grpjquota:
650 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
651 			if (ret)
652 				return ret;
653 			break;
654 		case Opt_prjjquota:
655 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
656 			if (ret)
657 				return ret;
658 			break;
659 		case Opt_offusrjquota:
660 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
661 			if (ret)
662 				return ret;
663 			break;
664 		case Opt_offgrpjquota:
665 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
666 			if (ret)
667 				return ret;
668 			break;
669 		case Opt_offprjjquota:
670 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
671 			if (ret)
672 				return ret;
673 			break;
674 		case Opt_jqfmt_vfsold:
675 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
676 			break;
677 		case Opt_jqfmt_vfsv0:
678 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
679 			break;
680 		case Opt_jqfmt_vfsv1:
681 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
682 			break;
683 		case Opt_noquota:
684 			clear_opt(sbi, QUOTA);
685 			clear_opt(sbi, USRQUOTA);
686 			clear_opt(sbi, GRPQUOTA);
687 			clear_opt(sbi, PRJQUOTA);
688 			break;
689 #else
690 		case Opt_quota:
691 		case Opt_usrquota:
692 		case Opt_grpquota:
693 		case Opt_prjquota:
694 		case Opt_usrjquota:
695 		case Opt_grpjquota:
696 		case Opt_prjjquota:
697 		case Opt_offusrjquota:
698 		case Opt_offgrpjquota:
699 		case Opt_offprjjquota:
700 		case Opt_jqfmt_vfsold:
701 		case Opt_jqfmt_vfsv0:
702 		case Opt_jqfmt_vfsv1:
703 		case Opt_noquota:
704 			f2fs_msg(sb, KERN_INFO,
705 					"quota operations not supported");
706 			break;
707 #endif
708 		case Opt_whint:
709 			name = match_strdup(&args[0]);
710 			if (!name)
711 				return -ENOMEM;
712 			if (strlen(name) == 10 &&
713 					!strncmp(name, "user-based", 10)) {
714 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
715 			} else if (strlen(name) == 3 &&
716 					!strncmp(name, "off", 3)) {
717 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
718 			} else if (strlen(name) == 8 &&
719 					!strncmp(name, "fs-based", 8)) {
720 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
721 			} else {
722 				kfree(name);
723 				return -EINVAL;
724 			}
725 			kfree(name);
726 			break;
727 		case Opt_alloc:
728 			name = match_strdup(&args[0]);
729 			if (!name)
730 				return -ENOMEM;
731 
732 			if (strlen(name) == 7 &&
733 					!strncmp(name, "default", 7)) {
734 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
735 			} else if (strlen(name) == 5 &&
736 					!strncmp(name, "reuse", 5)) {
737 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
738 			} else {
739 				kfree(name);
740 				return -EINVAL;
741 			}
742 			kfree(name);
743 			break;
744 		case Opt_fsync:
745 			name = match_strdup(&args[0]);
746 			if (!name)
747 				return -ENOMEM;
748 			if (strlen(name) == 5 &&
749 					!strncmp(name, "posix", 5)) {
750 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
751 			} else if (strlen(name) == 6 &&
752 					!strncmp(name, "strict", 6)) {
753 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
754 			} else if (strlen(name) == 9 &&
755 					!strncmp(name, "nobarrier", 9)) {
756 				F2FS_OPTION(sbi).fsync_mode =
757 							FSYNC_MODE_NOBARRIER;
758 			} else {
759 				kfree(name);
760 				return -EINVAL;
761 			}
762 			kfree(name);
763 			break;
764 		case Opt_test_dummy_encryption:
765 #ifdef CONFIG_F2FS_FS_ENCRYPTION
766 			if (!f2fs_sb_has_encrypt(sb)) {
767 				f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
768 				return -EINVAL;
769 			}
770 
771 			F2FS_OPTION(sbi).test_dummy_encryption = true;
772 			f2fs_msg(sb, KERN_INFO,
773 					"Test dummy encryption mode enabled");
774 #else
775 			f2fs_msg(sb, KERN_INFO,
776 					"Test dummy encryption mount option ignored");
777 #endif
778 			break;
779 		default:
780 			f2fs_msg(sb, KERN_ERR,
781 				"Unrecognized mount option \"%s\" or missing value",
782 				p);
783 			return -EINVAL;
784 		}
785 	}
786 #ifdef CONFIG_QUOTA
787 	if (f2fs_check_quota_options(sbi))
788 		return -EINVAL;
789 #else
790 	if (f2fs_sb_has_quota_ino(sbi->sb) && !f2fs_readonly(sbi->sb)) {
791 		f2fs_msg(sbi->sb, KERN_INFO,
792 			 "Filesystem with quota feature cannot be mounted RDWR "
793 			 "without CONFIG_QUOTA");
794 		return -EINVAL;
795 	}
796 	if (f2fs_sb_has_project_quota(sbi->sb) && !f2fs_readonly(sbi->sb)) {
797 		f2fs_msg(sb, KERN_ERR,
798 			"Filesystem with project quota feature cannot be "
799 			"mounted RDWR without CONFIG_QUOTA");
800 		return -EINVAL;
801 	}
802 #endif
803 
804 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
805 		f2fs_msg(sb, KERN_ERR,
806 				"Should set mode=lfs with %uKB-sized IO",
807 				F2FS_IO_SIZE_KB(sbi));
808 		return -EINVAL;
809 	}
810 
811 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
812 		if (!f2fs_sb_has_extra_attr(sb) ||
813 			!f2fs_sb_has_flexible_inline_xattr(sb)) {
814 			f2fs_msg(sb, KERN_ERR,
815 					"extra_attr or flexible_inline_xattr "
816 					"feature is off");
817 			return -EINVAL;
818 		}
819 		if (!test_opt(sbi, INLINE_XATTR)) {
820 			f2fs_msg(sb, KERN_ERR,
821 					"inline_xattr_size option should be "
822 					"set with inline_xattr option");
823 			return -EINVAL;
824 		}
825 		if (!F2FS_OPTION(sbi).inline_xattr_size ||
826 			F2FS_OPTION(sbi).inline_xattr_size >=
827 					DEF_ADDRS_PER_INODE -
828 					F2FS_TOTAL_EXTRA_ATTR_SIZE -
829 					DEF_INLINE_RESERVED_SIZE -
830 					DEF_MIN_INLINE_SIZE) {
831 			f2fs_msg(sb, KERN_ERR,
832 					"inline xattr size is out of range");
833 			return -EINVAL;
834 		}
835 	}
836 
837 	/* Not pass down write hints if the number of active logs is lesser
838 	 * than NR_CURSEG_TYPE.
839 	 */
840 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
841 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
842 	return 0;
843 }
844 
845 static struct inode *f2fs_alloc_inode(struct super_block *sb)
846 {
847 	struct f2fs_inode_info *fi;
848 
849 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
850 	if (!fi)
851 		return NULL;
852 
853 	init_once((void *) fi);
854 
855 	/* Initialize f2fs-specific inode info */
856 	atomic_set(&fi->dirty_pages, 0);
857 	init_rwsem(&fi->i_sem);
858 	INIT_LIST_HEAD(&fi->dirty_list);
859 	INIT_LIST_HEAD(&fi->gdirty_list);
860 	INIT_LIST_HEAD(&fi->inmem_ilist);
861 	INIT_LIST_HEAD(&fi->inmem_pages);
862 	mutex_init(&fi->inmem_lock);
863 	init_rwsem(&fi->i_gc_rwsem[READ]);
864 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
865 	init_rwsem(&fi->i_mmap_sem);
866 	init_rwsem(&fi->i_xattr_sem);
867 
868 	/* Will be used by directory only */
869 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
870 
871 	return &fi->vfs_inode;
872 }
873 
874 static int f2fs_drop_inode(struct inode *inode)
875 {
876 	int ret;
877 	/*
878 	 * This is to avoid a deadlock condition like below.
879 	 * writeback_single_inode(inode)
880 	 *  - f2fs_write_data_page
881 	 *    - f2fs_gc -> iput -> evict
882 	 *       - inode_wait_for_writeback(inode)
883 	 */
884 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
885 		if (!inode->i_nlink && !is_bad_inode(inode)) {
886 			/* to avoid evict_inode call simultaneously */
887 			atomic_inc(&inode->i_count);
888 			spin_unlock(&inode->i_lock);
889 
890 			/* some remained atomic pages should discarded */
891 			if (f2fs_is_atomic_file(inode))
892 				f2fs_drop_inmem_pages(inode);
893 
894 			/* should remain fi->extent_tree for writepage */
895 			f2fs_destroy_extent_node(inode);
896 
897 			sb_start_intwrite(inode->i_sb);
898 			f2fs_i_size_write(inode, 0);
899 
900 			if (F2FS_HAS_BLOCKS(inode))
901 				f2fs_truncate(inode);
902 
903 			sb_end_intwrite(inode->i_sb);
904 
905 			spin_lock(&inode->i_lock);
906 			atomic_dec(&inode->i_count);
907 		}
908 		trace_f2fs_drop_inode(inode, 0);
909 		return 0;
910 	}
911 	ret = generic_drop_inode(inode);
912 	trace_f2fs_drop_inode(inode, ret);
913 	return ret;
914 }
915 
916 int f2fs_inode_dirtied(struct inode *inode, bool sync)
917 {
918 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
919 	int ret = 0;
920 
921 	spin_lock(&sbi->inode_lock[DIRTY_META]);
922 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
923 		ret = 1;
924 	} else {
925 		set_inode_flag(inode, FI_DIRTY_INODE);
926 		stat_inc_dirty_inode(sbi, DIRTY_META);
927 	}
928 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
929 		list_add_tail(&F2FS_I(inode)->gdirty_list,
930 				&sbi->inode_list[DIRTY_META]);
931 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
932 	}
933 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
934 	return ret;
935 }
936 
937 void f2fs_inode_synced(struct inode *inode)
938 {
939 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
940 
941 	spin_lock(&sbi->inode_lock[DIRTY_META]);
942 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
943 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
944 		return;
945 	}
946 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
947 		list_del_init(&F2FS_I(inode)->gdirty_list);
948 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
949 	}
950 	clear_inode_flag(inode, FI_DIRTY_INODE);
951 	clear_inode_flag(inode, FI_AUTO_RECOVER);
952 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
953 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
954 }
955 
956 /*
957  * f2fs_dirty_inode() is called from __mark_inode_dirty()
958  *
959  * We should call set_dirty_inode to write the dirty inode through write_inode.
960  */
961 static void f2fs_dirty_inode(struct inode *inode, int flags)
962 {
963 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
964 
965 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
966 			inode->i_ino == F2FS_META_INO(sbi))
967 		return;
968 
969 	if (flags == I_DIRTY_TIME)
970 		return;
971 
972 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
973 		clear_inode_flag(inode, FI_AUTO_RECOVER);
974 
975 	f2fs_inode_dirtied(inode, false);
976 }
977 
978 static void f2fs_i_callback(struct rcu_head *head)
979 {
980 	struct inode *inode = container_of(head, struct inode, i_rcu);
981 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
982 }
983 
984 static void f2fs_destroy_inode(struct inode *inode)
985 {
986 	call_rcu(&inode->i_rcu, f2fs_i_callback);
987 }
988 
989 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
990 {
991 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
992 	percpu_counter_destroy(&sbi->total_valid_inode_count);
993 }
994 
995 static void destroy_device_list(struct f2fs_sb_info *sbi)
996 {
997 	int i;
998 
999 	for (i = 0; i < sbi->s_ndevs; i++) {
1000 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1001 #ifdef CONFIG_BLK_DEV_ZONED
1002 		kfree(FDEV(i).blkz_type);
1003 #endif
1004 	}
1005 	kfree(sbi->devs);
1006 }
1007 
1008 static void f2fs_put_super(struct super_block *sb)
1009 {
1010 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1011 	int i;
1012 	bool dropped;
1013 
1014 	f2fs_quota_off_umount(sb);
1015 
1016 	/* prevent remaining shrinker jobs */
1017 	mutex_lock(&sbi->umount_mutex);
1018 
1019 	/*
1020 	 * We don't need to do checkpoint when superblock is clean.
1021 	 * But, the previous checkpoint was not done by umount, it needs to do
1022 	 * clean checkpoint again.
1023 	 */
1024 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1025 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1026 		struct cp_control cpc = {
1027 			.reason = CP_UMOUNT,
1028 		};
1029 		f2fs_write_checkpoint(sbi, &cpc);
1030 	}
1031 
1032 	/* be sure to wait for any on-going discard commands */
1033 	dropped = f2fs_wait_discard_bios(sbi);
1034 
1035 	if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
1036 		struct cp_control cpc = {
1037 			.reason = CP_UMOUNT | CP_TRIMMED,
1038 		};
1039 		f2fs_write_checkpoint(sbi, &cpc);
1040 	}
1041 
1042 	/* f2fs_write_checkpoint can update stat informaion */
1043 	f2fs_destroy_stats(sbi);
1044 
1045 	/*
1046 	 * normally superblock is clean, so we need to release this.
1047 	 * In addition, EIO will skip do checkpoint, we need this as well.
1048 	 */
1049 	f2fs_release_ino_entry(sbi, true);
1050 
1051 	f2fs_leave_shrinker(sbi);
1052 	mutex_unlock(&sbi->umount_mutex);
1053 
1054 	/* our cp_error case, we can wait for any writeback page */
1055 	f2fs_flush_merged_writes(sbi);
1056 
1057 	f2fs_wait_on_all_pages_writeback(sbi);
1058 
1059 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1060 
1061 	iput(sbi->node_inode);
1062 	iput(sbi->meta_inode);
1063 
1064 	/* destroy f2fs internal modules */
1065 	f2fs_destroy_node_manager(sbi);
1066 	f2fs_destroy_segment_manager(sbi);
1067 
1068 	kfree(sbi->ckpt);
1069 
1070 	f2fs_unregister_sysfs(sbi);
1071 
1072 	sb->s_fs_info = NULL;
1073 	if (sbi->s_chksum_driver)
1074 		crypto_free_shash(sbi->s_chksum_driver);
1075 	kfree(sbi->raw_super);
1076 
1077 	destroy_device_list(sbi);
1078 	mempool_destroy(sbi->write_io_dummy);
1079 #ifdef CONFIG_QUOTA
1080 	for (i = 0; i < MAXQUOTAS; i++)
1081 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1082 #endif
1083 	destroy_percpu_info(sbi);
1084 	for (i = 0; i < NR_PAGE_TYPE; i++)
1085 		kfree(sbi->write_io[i]);
1086 	kfree(sbi);
1087 }
1088 
1089 int f2fs_sync_fs(struct super_block *sb, int sync)
1090 {
1091 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1092 	int err = 0;
1093 
1094 	if (unlikely(f2fs_cp_error(sbi)))
1095 		return 0;
1096 
1097 	trace_f2fs_sync_fs(sb, sync);
1098 
1099 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1100 		return -EAGAIN;
1101 
1102 	if (sync) {
1103 		struct cp_control cpc;
1104 
1105 		cpc.reason = __get_cp_reason(sbi);
1106 
1107 		mutex_lock(&sbi->gc_mutex);
1108 		err = f2fs_write_checkpoint(sbi, &cpc);
1109 		mutex_unlock(&sbi->gc_mutex);
1110 	}
1111 	f2fs_trace_ios(NULL, 1);
1112 
1113 	return err;
1114 }
1115 
1116 static int f2fs_freeze(struct super_block *sb)
1117 {
1118 	if (f2fs_readonly(sb))
1119 		return 0;
1120 
1121 	/* IO error happened before */
1122 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1123 		return -EIO;
1124 
1125 	/* must be clean, since sync_filesystem() was already called */
1126 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1127 		return -EINVAL;
1128 	return 0;
1129 }
1130 
1131 static int f2fs_unfreeze(struct super_block *sb)
1132 {
1133 	return 0;
1134 }
1135 
1136 #ifdef CONFIG_QUOTA
1137 static int f2fs_statfs_project(struct super_block *sb,
1138 				kprojid_t projid, struct kstatfs *buf)
1139 {
1140 	struct kqid qid;
1141 	struct dquot *dquot;
1142 	u64 limit;
1143 	u64 curblock;
1144 
1145 	qid = make_kqid_projid(projid);
1146 	dquot = dqget(sb, qid);
1147 	if (IS_ERR(dquot))
1148 		return PTR_ERR(dquot);
1149 	spin_lock(&dquot->dq_dqb_lock);
1150 
1151 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1152 		 dquot->dq_dqb.dqb_bsoftlimit :
1153 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1154 	if (limit && buf->f_blocks > limit) {
1155 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1156 		buf->f_blocks = limit;
1157 		buf->f_bfree = buf->f_bavail =
1158 			(buf->f_blocks > curblock) ?
1159 			 (buf->f_blocks - curblock) : 0;
1160 	}
1161 
1162 	limit = dquot->dq_dqb.dqb_isoftlimit ?
1163 		dquot->dq_dqb.dqb_isoftlimit :
1164 		dquot->dq_dqb.dqb_ihardlimit;
1165 	if (limit && buf->f_files > limit) {
1166 		buf->f_files = limit;
1167 		buf->f_ffree =
1168 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1169 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1170 	}
1171 
1172 	spin_unlock(&dquot->dq_dqb_lock);
1173 	dqput(dquot);
1174 	return 0;
1175 }
1176 #endif
1177 
1178 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1179 {
1180 	struct super_block *sb = dentry->d_sb;
1181 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1182 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1183 	block_t total_count, user_block_count, start_count;
1184 	u64 avail_node_count;
1185 
1186 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1187 	user_block_count = sbi->user_block_count;
1188 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1189 	buf->f_type = F2FS_SUPER_MAGIC;
1190 	buf->f_bsize = sbi->blocksize;
1191 
1192 	buf->f_blocks = total_count - start_count;
1193 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1194 						sbi->current_reserved_blocks;
1195 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1196 		buf->f_bavail = buf->f_bfree -
1197 				F2FS_OPTION(sbi).root_reserved_blocks;
1198 	else
1199 		buf->f_bavail = 0;
1200 
1201 	avail_node_count = sbi->total_node_count - sbi->nquota_files -
1202 						F2FS_RESERVED_NODE_NUM;
1203 
1204 	if (avail_node_count > user_block_count) {
1205 		buf->f_files = user_block_count;
1206 		buf->f_ffree = buf->f_bavail;
1207 	} else {
1208 		buf->f_files = avail_node_count;
1209 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1210 					buf->f_bavail);
1211 	}
1212 
1213 	buf->f_namelen = F2FS_NAME_LEN;
1214 	buf->f_fsid.val[0] = (u32)id;
1215 	buf->f_fsid.val[1] = (u32)(id >> 32);
1216 
1217 #ifdef CONFIG_QUOTA
1218 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1219 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1220 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1221 	}
1222 #endif
1223 	return 0;
1224 }
1225 
1226 static inline void f2fs_show_quota_options(struct seq_file *seq,
1227 					   struct super_block *sb)
1228 {
1229 #ifdef CONFIG_QUOTA
1230 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1231 
1232 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1233 		char *fmtname = "";
1234 
1235 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1236 		case QFMT_VFS_OLD:
1237 			fmtname = "vfsold";
1238 			break;
1239 		case QFMT_VFS_V0:
1240 			fmtname = "vfsv0";
1241 			break;
1242 		case QFMT_VFS_V1:
1243 			fmtname = "vfsv1";
1244 			break;
1245 		}
1246 		seq_printf(seq, ",jqfmt=%s", fmtname);
1247 	}
1248 
1249 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1250 		seq_show_option(seq, "usrjquota",
1251 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1252 
1253 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1254 		seq_show_option(seq, "grpjquota",
1255 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1256 
1257 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1258 		seq_show_option(seq, "prjjquota",
1259 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1260 #endif
1261 }
1262 
1263 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1264 {
1265 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1266 
1267 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1268 		if (test_opt(sbi, FORCE_FG_GC))
1269 			seq_printf(seq, ",background_gc=%s", "sync");
1270 		else
1271 			seq_printf(seq, ",background_gc=%s", "on");
1272 	} else {
1273 		seq_printf(seq, ",background_gc=%s", "off");
1274 	}
1275 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1276 		seq_puts(seq, ",disable_roll_forward");
1277 	if (test_opt(sbi, DISCARD))
1278 		seq_puts(seq, ",discard");
1279 	if (test_opt(sbi, NOHEAP))
1280 		seq_puts(seq, ",no_heap");
1281 	else
1282 		seq_puts(seq, ",heap");
1283 #ifdef CONFIG_F2FS_FS_XATTR
1284 	if (test_opt(sbi, XATTR_USER))
1285 		seq_puts(seq, ",user_xattr");
1286 	else
1287 		seq_puts(seq, ",nouser_xattr");
1288 	if (test_opt(sbi, INLINE_XATTR))
1289 		seq_puts(seq, ",inline_xattr");
1290 	else
1291 		seq_puts(seq, ",noinline_xattr");
1292 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1293 		seq_printf(seq, ",inline_xattr_size=%u",
1294 					F2FS_OPTION(sbi).inline_xattr_size);
1295 #endif
1296 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1297 	if (test_opt(sbi, POSIX_ACL))
1298 		seq_puts(seq, ",acl");
1299 	else
1300 		seq_puts(seq, ",noacl");
1301 #endif
1302 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1303 		seq_puts(seq, ",disable_ext_identify");
1304 	if (test_opt(sbi, INLINE_DATA))
1305 		seq_puts(seq, ",inline_data");
1306 	else
1307 		seq_puts(seq, ",noinline_data");
1308 	if (test_opt(sbi, INLINE_DENTRY))
1309 		seq_puts(seq, ",inline_dentry");
1310 	else
1311 		seq_puts(seq, ",noinline_dentry");
1312 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1313 		seq_puts(seq, ",flush_merge");
1314 	if (test_opt(sbi, NOBARRIER))
1315 		seq_puts(seq, ",nobarrier");
1316 	if (test_opt(sbi, FASTBOOT))
1317 		seq_puts(seq, ",fastboot");
1318 	if (test_opt(sbi, EXTENT_CACHE))
1319 		seq_puts(seq, ",extent_cache");
1320 	else
1321 		seq_puts(seq, ",noextent_cache");
1322 	if (test_opt(sbi, DATA_FLUSH))
1323 		seq_puts(seq, ",data_flush");
1324 
1325 	seq_puts(seq, ",mode=");
1326 	if (test_opt(sbi, ADAPTIVE))
1327 		seq_puts(seq, "adaptive");
1328 	else if (test_opt(sbi, LFS))
1329 		seq_puts(seq, "lfs");
1330 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1331 	if (test_opt(sbi, RESERVE_ROOT))
1332 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1333 				F2FS_OPTION(sbi).root_reserved_blocks,
1334 				from_kuid_munged(&init_user_ns,
1335 					F2FS_OPTION(sbi).s_resuid),
1336 				from_kgid_munged(&init_user_ns,
1337 					F2FS_OPTION(sbi).s_resgid));
1338 	if (F2FS_IO_SIZE_BITS(sbi))
1339 		seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1340 #ifdef CONFIG_F2FS_FAULT_INJECTION
1341 	if (test_opt(sbi, FAULT_INJECTION)) {
1342 		seq_printf(seq, ",fault_injection=%u",
1343 				F2FS_OPTION(sbi).fault_info.inject_rate);
1344 		seq_printf(seq, ",fault_type=%u",
1345 				F2FS_OPTION(sbi).fault_info.inject_type);
1346 	}
1347 #endif
1348 #ifdef CONFIG_QUOTA
1349 	if (test_opt(sbi, QUOTA))
1350 		seq_puts(seq, ",quota");
1351 	if (test_opt(sbi, USRQUOTA))
1352 		seq_puts(seq, ",usrquota");
1353 	if (test_opt(sbi, GRPQUOTA))
1354 		seq_puts(seq, ",grpquota");
1355 	if (test_opt(sbi, PRJQUOTA))
1356 		seq_puts(seq, ",prjquota");
1357 #endif
1358 	f2fs_show_quota_options(seq, sbi->sb);
1359 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1360 		seq_printf(seq, ",whint_mode=%s", "user-based");
1361 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1362 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1363 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1364 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1365 		seq_puts(seq, ",test_dummy_encryption");
1366 #endif
1367 
1368 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1369 		seq_printf(seq, ",alloc_mode=%s", "default");
1370 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1371 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1372 
1373 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1374 		seq_printf(seq, ",fsync_mode=%s", "posix");
1375 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1376 		seq_printf(seq, ",fsync_mode=%s", "strict");
1377 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1378 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1379 	return 0;
1380 }
1381 
1382 static void default_options(struct f2fs_sb_info *sbi)
1383 {
1384 	/* init some FS parameters */
1385 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1386 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1387 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1388 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1389 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1390 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1391 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1392 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1393 
1394 	set_opt(sbi, BG_GC);
1395 	set_opt(sbi, INLINE_XATTR);
1396 	set_opt(sbi, INLINE_DATA);
1397 	set_opt(sbi, INLINE_DENTRY);
1398 	set_opt(sbi, EXTENT_CACHE);
1399 	set_opt(sbi, NOHEAP);
1400 	sbi->sb->s_flags |= SB_LAZYTIME;
1401 	set_opt(sbi, FLUSH_MERGE);
1402 	if (blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev)))
1403 		set_opt(sbi, DISCARD);
1404 	if (f2fs_sb_has_blkzoned(sbi->sb))
1405 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1406 	else
1407 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1408 
1409 #ifdef CONFIG_F2FS_FS_XATTR
1410 	set_opt(sbi, XATTR_USER);
1411 #endif
1412 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1413 	set_opt(sbi, POSIX_ACL);
1414 #endif
1415 
1416 	f2fs_build_fault_attr(sbi, 0, 0);
1417 }
1418 
1419 #ifdef CONFIG_QUOTA
1420 static int f2fs_enable_quotas(struct super_block *sb);
1421 #endif
1422 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1423 {
1424 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1425 	struct f2fs_mount_info org_mount_opt;
1426 	unsigned long old_sb_flags;
1427 	int err;
1428 	bool need_restart_gc = false;
1429 	bool need_stop_gc = false;
1430 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1431 #ifdef CONFIG_QUOTA
1432 	int i, j;
1433 #endif
1434 
1435 	/*
1436 	 * Save the old mount options in case we
1437 	 * need to restore them.
1438 	 */
1439 	org_mount_opt = sbi->mount_opt;
1440 	old_sb_flags = sb->s_flags;
1441 
1442 #ifdef CONFIG_QUOTA
1443 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1444 	for (i = 0; i < MAXQUOTAS; i++) {
1445 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1446 			org_mount_opt.s_qf_names[i] =
1447 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1448 				GFP_KERNEL);
1449 			if (!org_mount_opt.s_qf_names[i]) {
1450 				for (j = 0; j < i; j++)
1451 					kfree(org_mount_opt.s_qf_names[j]);
1452 				return -ENOMEM;
1453 			}
1454 		} else {
1455 			org_mount_opt.s_qf_names[i] = NULL;
1456 		}
1457 	}
1458 #endif
1459 
1460 	/* recover superblocks we couldn't write due to previous RO mount */
1461 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1462 		err = f2fs_commit_super(sbi, false);
1463 		f2fs_msg(sb, KERN_INFO,
1464 			"Try to recover all the superblocks, ret: %d", err);
1465 		if (!err)
1466 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1467 	}
1468 
1469 	default_options(sbi);
1470 
1471 	/* parse mount options */
1472 	err = parse_options(sb, data);
1473 	if (err)
1474 		goto restore_opts;
1475 
1476 	/*
1477 	 * Previous and new state of filesystem is RO,
1478 	 * so skip checking GC and FLUSH_MERGE conditions.
1479 	 */
1480 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1481 		goto skip;
1482 
1483 #ifdef CONFIG_QUOTA
1484 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1485 		err = dquot_suspend(sb, -1);
1486 		if (err < 0)
1487 			goto restore_opts;
1488 	} else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1489 		/* dquot_resume needs RW */
1490 		sb->s_flags &= ~SB_RDONLY;
1491 		if (sb_any_quota_suspended(sb)) {
1492 			dquot_resume(sb, -1);
1493 		} else if (f2fs_sb_has_quota_ino(sb)) {
1494 			err = f2fs_enable_quotas(sb);
1495 			if (err)
1496 				goto restore_opts;
1497 		}
1498 	}
1499 #endif
1500 	/* disallow enable/disable extent_cache dynamically */
1501 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1502 		err = -EINVAL;
1503 		f2fs_msg(sbi->sb, KERN_WARNING,
1504 				"switch extent_cache option is not allowed");
1505 		goto restore_opts;
1506 	}
1507 
1508 	/*
1509 	 * We stop the GC thread if FS is mounted as RO
1510 	 * or if background_gc = off is passed in mount
1511 	 * option. Also sync the filesystem.
1512 	 */
1513 	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1514 		if (sbi->gc_thread) {
1515 			f2fs_stop_gc_thread(sbi);
1516 			need_restart_gc = true;
1517 		}
1518 	} else if (!sbi->gc_thread) {
1519 		err = f2fs_start_gc_thread(sbi);
1520 		if (err)
1521 			goto restore_opts;
1522 		need_stop_gc = true;
1523 	}
1524 
1525 	if (*flags & SB_RDONLY ||
1526 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1527 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1528 		sync_inodes_sb(sb);
1529 
1530 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1531 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1532 		f2fs_sync_fs(sb, 1);
1533 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1534 	}
1535 
1536 	/*
1537 	 * We stop issue flush thread if FS is mounted as RO
1538 	 * or if flush_merge is not passed in mount option.
1539 	 */
1540 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1541 		clear_opt(sbi, FLUSH_MERGE);
1542 		f2fs_destroy_flush_cmd_control(sbi, false);
1543 	} else {
1544 		err = f2fs_create_flush_cmd_control(sbi);
1545 		if (err)
1546 			goto restore_gc;
1547 	}
1548 skip:
1549 #ifdef CONFIG_QUOTA
1550 	/* Release old quota file names */
1551 	for (i = 0; i < MAXQUOTAS; i++)
1552 		kfree(org_mount_opt.s_qf_names[i]);
1553 #endif
1554 	/* Update the POSIXACL Flag */
1555 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1556 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1557 
1558 	limit_reserve_root(sbi);
1559 	return 0;
1560 restore_gc:
1561 	if (need_restart_gc) {
1562 		if (f2fs_start_gc_thread(sbi))
1563 			f2fs_msg(sbi->sb, KERN_WARNING,
1564 				"background gc thread has stopped");
1565 	} else if (need_stop_gc) {
1566 		f2fs_stop_gc_thread(sbi);
1567 	}
1568 restore_opts:
1569 #ifdef CONFIG_QUOTA
1570 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1571 	for (i = 0; i < MAXQUOTAS; i++) {
1572 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1573 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1574 	}
1575 #endif
1576 	sbi->mount_opt = org_mount_opt;
1577 	sb->s_flags = old_sb_flags;
1578 	return err;
1579 }
1580 
1581 #ifdef CONFIG_QUOTA
1582 /* Read data from quotafile */
1583 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1584 			       size_t len, loff_t off)
1585 {
1586 	struct inode *inode = sb_dqopt(sb)->files[type];
1587 	struct address_space *mapping = inode->i_mapping;
1588 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1589 	int offset = off & (sb->s_blocksize - 1);
1590 	int tocopy;
1591 	size_t toread;
1592 	loff_t i_size = i_size_read(inode);
1593 	struct page *page;
1594 	char *kaddr;
1595 
1596 	if (off > i_size)
1597 		return 0;
1598 
1599 	if (off + len > i_size)
1600 		len = i_size - off;
1601 	toread = len;
1602 	while (toread > 0) {
1603 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1604 repeat:
1605 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1606 		if (IS_ERR(page)) {
1607 			if (PTR_ERR(page) == -ENOMEM) {
1608 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1609 				goto repeat;
1610 			}
1611 			return PTR_ERR(page);
1612 		}
1613 
1614 		lock_page(page);
1615 
1616 		if (unlikely(page->mapping != mapping)) {
1617 			f2fs_put_page(page, 1);
1618 			goto repeat;
1619 		}
1620 		if (unlikely(!PageUptodate(page))) {
1621 			f2fs_put_page(page, 1);
1622 			return -EIO;
1623 		}
1624 
1625 		kaddr = kmap_atomic(page);
1626 		memcpy(data, kaddr + offset, tocopy);
1627 		kunmap_atomic(kaddr);
1628 		f2fs_put_page(page, 1);
1629 
1630 		offset = 0;
1631 		toread -= tocopy;
1632 		data += tocopy;
1633 		blkidx++;
1634 	}
1635 	return len;
1636 }
1637 
1638 /* Write to quotafile */
1639 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1640 				const char *data, size_t len, loff_t off)
1641 {
1642 	struct inode *inode = sb_dqopt(sb)->files[type];
1643 	struct address_space *mapping = inode->i_mapping;
1644 	const struct address_space_operations *a_ops = mapping->a_ops;
1645 	int offset = off & (sb->s_blocksize - 1);
1646 	size_t towrite = len;
1647 	struct page *page;
1648 	char *kaddr;
1649 	int err = 0;
1650 	int tocopy;
1651 
1652 	while (towrite > 0) {
1653 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1654 								towrite);
1655 retry:
1656 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1657 							&page, NULL);
1658 		if (unlikely(err)) {
1659 			if (err == -ENOMEM) {
1660 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1661 				goto retry;
1662 			}
1663 			break;
1664 		}
1665 
1666 		kaddr = kmap_atomic(page);
1667 		memcpy(kaddr + offset, data, tocopy);
1668 		kunmap_atomic(kaddr);
1669 		flush_dcache_page(page);
1670 
1671 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1672 						page, NULL);
1673 		offset = 0;
1674 		towrite -= tocopy;
1675 		off += tocopy;
1676 		data += tocopy;
1677 		cond_resched();
1678 	}
1679 
1680 	if (len == towrite)
1681 		return err;
1682 	inode->i_mtime = inode->i_ctime = current_time(inode);
1683 	f2fs_mark_inode_dirty_sync(inode, false);
1684 	return len - towrite;
1685 }
1686 
1687 static struct dquot **f2fs_get_dquots(struct inode *inode)
1688 {
1689 	return F2FS_I(inode)->i_dquot;
1690 }
1691 
1692 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1693 {
1694 	return &F2FS_I(inode)->i_reserved_quota;
1695 }
1696 
1697 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1698 {
1699 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1700 					F2FS_OPTION(sbi).s_jquota_fmt, type);
1701 }
1702 
1703 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1704 {
1705 	int enabled = 0;
1706 	int i, err;
1707 
1708 	if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1709 		err = f2fs_enable_quotas(sbi->sb);
1710 		if (err) {
1711 			f2fs_msg(sbi->sb, KERN_ERR,
1712 					"Cannot turn on quota_ino: %d", err);
1713 			return 0;
1714 		}
1715 		return 1;
1716 	}
1717 
1718 	for (i = 0; i < MAXQUOTAS; i++) {
1719 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1720 			err = f2fs_quota_on_mount(sbi, i);
1721 			if (!err) {
1722 				enabled = 1;
1723 				continue;
1724 			}
1725 			f2fs_msg(sbi->sb, KERN_ERR,
1726 				"Cannot turn on quotas: %d on %d", err, i);
1727 		}
1728 	}
1729 	return enabled;
1730 }
1731 
1732 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1733 			     unsigned int flags)
1734 {
1735 	struct inode *qf_inode;
1736 	unsigned long qf_inum;
1737 	int err;
1738 
1739 	BUG_ON(!f2fs_sb_has_quota_ino(sb));
1740 
1741 	qf_inum = f2fs_qf_ino(sb, type);
1742 	if (!qf_inum)
1743 		return -EPERM;
1744 
1745 	qf_inode = f2fs_iget(sb, qf_inum);
1746 	if (IS_ERR(qf_inode)) {
1747 		f2fs_msg(sb, KERN_ERR,
1748 			"Bad quota inode %u:%lu", type, qf_inum);
1749 		return PTR_ERR(qf_inode);
1750 	}
1751 
1752 	/* Don't account quota for quota files to avoid recursion */
1753 	qf_inode->i_flags |= S_NOQUOTA;
1754 	err = dquot_enable(qf_inode, type, format_id, flags);
1755 	iput(qf_inode);
1756 	return err;
1757 }
1758 
1759 static int f2fs_enable_quotas(struct super_block *sb)
1760 {
1761 	int type, err = 0;
1762 	unsigned long qf_inum;
1763 	bool quota_mopt[MAXQUOTAS] = {
1764 		test_opt(F2FS_SB(sb), USRQUOTA),
1765 		test_opt(F2FS_SB(sb), GRPQUOTA),
1766 		test_opt(F2FS_SB(sb), PRJQUOTA),
1767 	};
1768 
1769 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1770 	for (type = 0; type < MAXQUOTAS; type++) {
1771 		qf_inum = f2fs_qf_ino(sb, type);
1772 		if (qf_inum) {
1773 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1774 				DQUOT_USAGE_ENABLED |
1775 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1776 			if (err) {
1777 				f2fs_msg(sb, KERN_ERR,
1778 					"Failed to enable quota tracking "
1779 					"(type=%d, err=%d). Please run "
1780 					"fsck to fix.", type, err);
1781 				for (type--; type >= 0; type--)
1782 					dquot_quota_off(sb, type);
1783 				return err;
1784 			}
1785 		}
1786 	}
1787 	return 0;
1788 }
1789 
1790 static int f2fs_quota_sync(struct super_block *sb, int type)
1791 {
1792 	struct quota_info *dqopt = sb_dqopt(sb);
1793 	int cnt;
1794 	int ret;
1795 
1796 	ret = dquot_writeback_dquots(sb, type);
1797 	if (ret)
1798 		return ret;
1799 
1800 	/*
1801 	 * Now when everything is written we can discard the pagecache so
1802 	 * that userspace sees the changes.
1803 	 */
1804 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1805 		if (type != -1 && cnt != type)
1806 			continue;
1807 		if (!sb_has_quota_active(sb, cnt))
1808 			continue;
1809 
1810 		ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1811 		if (ret)
1812 			return ret;
1813 
1814 		inode_lock(dqopt->files[cnt]);
1815 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1816 		inode_unlock(dqopt->files[cnt]);
1817 	}
1818 	return 0;
1819 }
1820 
1821 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1822 							const struct path *path)
1823 {
1824 	struct inode *inode;
1825 	int err;
1826 
1827 	err = f2fs_quota_sync(sb, type);
1828 	if (err)
1829 		return err;
1830 
1831 	err = dquot_quota_on(sb, type, format_id, path);
1832 	if (err)
1833 		return err;
1834 
1835 	inode = d_inode(path->dentry);
1836 
1837 	inode_lock(inode);
1838 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
1839 	inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1840 					S_NOATIME | S_IMMUTABLE);
1841 	inode_unlock(inode);
1842 	f2fs_mark_inode_dirty_sync(inode, false);
1843 
1844 	return 0;
1845 }
1846 
1847 static int f2fs_quota_off(struct super_block *sb, int type)
1848 {
1849 	struct inode *inode = sb_dqopt(sb)->files[type];
1850 	int err;
1851 
1852 	if (!inode || !igrab(inode))
1853 		return dquot_quota_off(sb, type);
1854 
1855 	f2fs_quota_sync(sb, type);
1856 
1857 	err = dquot_quota_off(sb, type);
1858 	if (err || f2fs_sb_has_quota_ino(sb))
1859 		goto out_put;
1860 
1861 	inode_lock(inode);
1862 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
1863 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1864 	inode_unlock(inode);
1865 	f2fs_mark_inode_dirty_sync(inode, false);
1866 out_put:
1867 	iput(inode);
1868 	return err;
1869 }
1870 
1871 void f2fs_quota_off_umount(struct super_block *sb)
1872 {
1873 	int type;
1874 
1875 	for (type = 0; type < MAXQUOTAS; type++)
1876 		f2fs_quota_off(sb, type);
1877 }
1878 
1879 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1880 {
1881 	*projid = F2FS_I(inode)->i_projid;
1882 	return 0;
1883 }
1884 
1885 static const struct dquot_operations f2fs_quota_operations = {
1886 	.get_reserved_space = f2fs_get_reserved_space,
1887 	.write_dquot	= dquot_commit,
1888 	.acquire_dquot	= dquot_acquire,
1889 	.release_dquot	= dquot_release,
1890 	.mark_dirty	= dquot_mark_dquot_dirty,
1891 	.write_info	= dquot_commit_info,
1892 	.alloc_dquot	= dquot_alloc,
1893 	.destroy_dquot	= dquot_destroy,
1894 	.get_projid	= f2fs_get_projid,
1895 	.get_next_id	= dquot_get_next_id,
1896 };
1897 
1898 static const struct quotactl_ops f2fs_quotactl_ops = {
1899 	.quota_on	= f2fs_quota_on,
1900 	.quota_off	= f2fs_quota_off,
1901 	.quota_sync	= f2fs_quota_sync,
1902 	.get_state	= dquot_get_state,
1903 	.set_info	= dquot_set_dqinfo,
1904 	.get_dqblk	= dquot_get_dqblk,
1905 	.set_dqblk	= dquot_set_dqblk,
1906 	.get_nextdqblk	= dquot_get_next_dqblk,
1907 };
1908 #else
1909 void f2fs_quota_off_umount(struct super_block *sb)
1910 {
1911 }
1912 #endif
1913 
1914 static const struct super_operations f2fs_sops = {
1915 	.alloc_inode	= f2fs_alloc_inode,
1916 	.drop_inode	= f2fs_drop_inode,
1917 	.destroy_inode	= f2fs_destroy_inode,
1918 	.write_inode	= f2fs_write_inode,
1919 	.dirty_inode	= f2fs_dirty_inode,
1920 	.show_options	= f2fs_show_options,
1921 #ifdef CONFIG_QUOTA
1922 	.quota_read	= f2fs_quota_read,
1923 	.quota_write	= f2fs_quota_write,
1924 	.get_dquots	= f2fs_get_dquots,
1925 #endif
1926 	.evict_inode	= f2fs_evict_inode,
1927 	.put_super	= f2fs_put_super,
1928 	.sync_fs	= f2fs_sync_fs,
1929 	.freeze_fs	= f2fs_freeze,
1930 	.unfreeze_fs	= f2fs_unfreeze,
1931 	.statfs		= f2fs_statfs,
1932 	.remount_fs	= f2fs_remount,
1933 };
1934 
1935 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1936 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1937 {
1938 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1939 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1940 				ctx, len, NULL);
1941 }
1942 
1943 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1944 							void *fs_data)
1945 {
1946 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1947 
1948 	/*
1949 	 * Encrypting the root directory is not allowed because fsck
1950 	 * expects lost+found directory to exist and remain unencrypted
1951 	 * if LOST_FOUND feature is enabled.
1952 	 *
1953 	 */
1954 	if (f2fs_sb_has_lost_found(sbi->sb) &&
1955 			inode->i_ino == F2FS_ROOT_INO(sbi))
1956 		return -EPERM;
1957 
1958 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1959 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1960 				ctx, len, fs_data, XATTR_CREATE);
1961 }
1962 
1963 static bool f2fs_dummy_context(struct inode *inode)
1964 {
1965 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
1966 }
1967 
1968 static const struct fscrypt_operations f2fs_cryptops = {
1969 	.key_prefix	= "f2fs:",
1970 	.get_context	= f2fs_get_context,
1971 	.set_context	= f2fs_set_context,
1972 	.dummy_context	= f2fs_dummy_context,
1973 	.empty_dir	= f2fs_empty_dir,
1974 	.max_namelen	= F2FS_NAME_LEN,
1975 };
1976 #endif
1977 
1978 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1979 		u64 ino, u32 generation)
1980 {
1981 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1982 	struct inode *inode;
1983 
1984 	if (f2fs_check_nid_range(sbi, ino))
1985 		return ERR_PTR(-ESTALE);
1986 
1987 	/*
1988 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1989 	 * However f2fs_iget currently does appropriate checks to handle stale
1990 	 * inodes so everything is OK.
1991 	 */
1992 	inode = f2fs_iget(sb, ino);
1993 	if (IS_ERR(inode))
1994 		return ERR_CAST(inode);
1995 	if (unlikely(generation && inode->i_generation != generation)) {
1996 		/* we didn't find the right inode.. */
1997 		iput(inode);
1998 		return ERR_PTR(-ESTALE);
1999 	}
2000 	return inode;
2001 }
2002 
2003 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2004 		int fh_len, int fh_type)
2005 {
2006 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2007 				    f2fs_nfs_get_inode);
2008 }
2009 
2010 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2011 		int fh_len, int fh_type)
2012 {
2013 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2014 				    f2fs_nfs_get_inode);
2015 }
2016 
2017 static const struct export_operations f2fs_export_ops = {
2018 	.fh_to_dentry = f2fs_fh_to_dentry,
2019 	.fh_to_parent = f2fs_fh_to_parent,
2020 	.get_parent = f2fs_get_parent,
2021 };
2022 
2023 static loff_t max_file_blocks(void)
2024 {
2025 	loff_t result = 0;
2026 	loff_t leaf_count = ADDRS_PER_BLOCK;
2027 
2028 	/*
2029 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2030 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2031 	 * space in inode.i_addr, it will be more safe to reassign
2032 	 * result as zero.
2033 	 */
2034 
2035 	/* two direct node blocks */
2036 	result += (leaf_count * 2);
2037 
2038 	/* two indirect node blocks */
2039 	leaf_count *= NIDS_PER_BLOCK;
2040 	result += (leaf_count * 2);
2041 
2042 	/* one double indirect node block */
2043 	leaf_count *= NIDS_PER_BLOCK;
2044 	result += leaf_count;
2045 
2046 	return result;
2047 }
2048 
2049 static int __f2fs_commit_super(struct buffer_head *bh,
2050 			struct f2fs_super_block *super)
2051 {
2052 	lock_buffer(bh);
2053 	if (super)
2054 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2055 	set_buffer_dirty(bh);
2056 	unlock_buffer(bh);
2057 
2058 	/* it's rare case, we can do fua all the time */
2059 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2060 }
2061 
2062 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2063 					struct buffer_head *bh)
2064 {
2065 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2066 					(bh->b_data + F2FS_SUPER_OFFSET);
2067 	struct super_block *sb = sbi->sb;
2068 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2069 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2070 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2071 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2072 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2073 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2074 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2075 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2076 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2077 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2078 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2079 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2080 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2081 	u64 main_end_blkaddr = main_blkaddr +
2082 				(segment_count_main << log_blocks_per_seg);
2083 	u64 seg_end_blkaddr = segment0_blkaddr +
2084 				(segment_count << log_blocks_per_seg);
2085 
2086 	if (segment0_blkaddr != cp_blkaddr) {
2087 		f2fs_msg(sb, KERN_INFO,
2088 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2089 			segment0_blkaddr, cp_blkaddr);
2090 		return true;
2091 	}
2092 
2093 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2094 							sit_blkaddr) {
2095 		f2fs_msg(sb, KERN_INFO,
2096 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2097 			cp_blkaddr, sit_blkaddr,
2098 			segment_count_ckpt << log_blocks_per_seg);
2099 		return true;
2100 	}
2101 
2102 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2103 							nat_blkaddr) {
2104 		f2fs_msg(sb, KERN_INFO,
2105 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2106 			sit_blkaddr, nat_blkaddr,
2107 			segment_count_sit << log_blocks_per_seg);
2108 		return true;
2109 	}
2110 
2111 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2112 							ssa_blkaddr) {
2113 		f2fs_msg(sb, KERN_INFO,
2114 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2115 			nat_blkaddr, ssa_blkaddr,
2116 			segment_count_nat << log_blocks_per_seg);
2117 		return true;
2118 	}
2119 
2120 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2121 							main_blkaddr) {
2122 		f2fs_msg(sb, KERN_INFO,
2123 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2124 			ssa_blkaddr, main_blkaddr,
2125 			segment_count_ssa << log_blocks_per_seg);
2126 		return true;
2127 	}
2128 
2129 	if (main_end_blkaddr > seg_end_blkaddr) {
2130 		f2fs_msg(sb, KERN_INFO,
2131 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2132 			main_blkaddr,
2133 			segment0_blkaddr +
2134 				(segment_count << log_blocks_per_seg),
2135 			segment_count_main << log_blocks_per_seg);
2136 		return true;
2137 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2138 		int err = 0;
2139 		char *res;
2140 
2141 		/* fix in-memory information all the time */
2142 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2143 				segment0_blkaddr) >> log_blocks_per_seg);
2144 
2145 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2146 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2147 			res = "internally";
2148 		} else {
2149 			err = __f2fs_commit_super(bh, NULL);
2150 			res = err ? "failed" : "done";
2151 		}
2152 		f2fs_msg(sb, KERN_INFO,
2153 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
2154 			res, main_blkaddr,
2155 			segment0_blkaddr +
2156 				(segment_count << log_blocks_per_seg),
2157 			segment_count_main << log_blocks_per_seg);
2158 		if (err)
2159 			return true;
2160 	}
2161 	return false;
2162 }
2163 
2164 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2165 				struct buffer_head *bh)
2166 {
2167 	block_t segment_count, segs_per_sec, secs_per_zone;
2168 	block_t total_sections, blocks_per_seg;
2169 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2170 					(bh->b_data + F2FS_SUPER_OFFSET);
2171 	struct super_block *sb = sbi->sb;
2172 	unsigned int blocksize;
2173 
2174 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2175 		f2fs_msg(sb, KERN_INFO,
2176 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
2177 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2178 		return 1;
2179 	}
2180 
2181 	/* Currently, support only 4KB page cache size */
2182 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2183 		f2fs_msg(sb, KERN_INFO,
2184 			"Invalid page_cache_size (%lu), supports only 4KB\n",
2185 			PAGE_SIZE);
2186 		return 1;
2187 	}
2188 
2189 	/* Currently, support only 4KB block size */
2190 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2191 	if (blocksize != F2FS_BLKSIZE) {
2192 		f2fs_msg(sb, KERN_INFO,
2193 			"Invalid blocksize (%u), supports only 4KB\n",
2194 			blocksize);
2195 		return 1;
2196 	}
2197 
2198 	/* check log blocks per segment */
2199 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2200 		f2fs_msg(sb, KERN_INFO,
2201 			"Invalid log blocks per segment (%u)\n",
2202 			le32_to_cpu(raw_super->log_blocks_per_seg));
2203 		return 1;
2204 	}
2205 
2206 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2207 	if (le32_to_cpu(raw_super->log_sectorsize) >
2208 				F2FS_MAX_LOG_SECTOR_SIZE ||
2209 		le32_to_cpu(raw_super->log_sectorsize) <
2210 				F2FS_MIN_LOG_SECTOR_SIZE) {
2211 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2212 			le32_to_cpu(raw_super->log_sectorsize));
2213 		return 1;
2214 	}
2215 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2216 		le32_to_cpu(raw_super->log_sectorsize) !=
2217 			F2FS_MAX_LOG_SECTOR_SIZE) {
2218 		f2fs_msg(sb, KERN_INFO,
2219 			"Invalid log sectors per block(%u) log sectorsize(%u)",
2220 			le32_to_cpu(raw_super->log_sectors_per_block),
2221 			le32_to_cpu(raw_super->log_sectorsize));
2222 		return 1;
2223 	}
2224 
2225 	segment_count = le32_to_cpu(raw_super->segment_count);
2226 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2227 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2228 	total_sections = le32_to_cpu(raw_super->section_count);
2229 
2230 	/* blocks_per_seg should be 512, given the above check */
2231 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2232 
2233 	if (segment_count > F2FS_MAX_SEGMENT ||
2234 				segment_count < F2FS_MIN_SEGMENTS) {
2235 		f2fs_msg(sb, KERN_INFO,
2236 			"Invalid segment count (%u)",
2237 			segment_count);
2238 		return 1;
2239 	}
2240 
2241 	if (total_sections > segment_count ||
2242 			total_sections < F2FS_MIN_SEGMENTS ||
2243 			segs_per_sec > segment_count || !segs_per_sec) {
2244 		f2fs_msg(sb, KERN_INFO,
2245 			"Invalid segment/section count (%u, %u x %u)",
2246 			segment_count, total_sections, segs_per_sec);
2247 		return 1;
2248 	}
2249 
2250 	if ((segment_count / segs_per_sec) < total_sections) {
2251 		f2fs_msg(sb, KERN_INFO,
2252 			"Small segment_count (%u < %u * %u)",
2253 			segment_count, segs_per_sec, total_sections);
2254 		return 1;
2255 	}
2256 
2257 	if (segment_count > (le32_to_cpu(raw_super->block_count) >> 9)) {
2258 		f2fs_msg(sb, KERN_INFO,
2259 			"Wrong segment_count / block_count (%u > %u)",
2260 			segment_count, le32_to_cpu(raw_super->block_count));
2261 		return 1;
2262 	}
2263 
2264 	if (secs_per_zone > total_sections || !secs_per_zone) {
2265 		f2fs_msg(sb, KERN_INFO,
2266 			"Wrong secs_per_zone / total_sections (%u, %u)",
2267 			secs_per_zone, total_sections);
2268 		return 1;
2269 	}
2270 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2271 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2272 			(le32_to_cpu(raw_super->extension_count) +
2273 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2274 		f2fs_msg(sb, KERN_INFO,
2275 			"Corrupted extension count (%u + %u > %u)",
2276 			le32_to_cpu(raw_super->extension_count),
2277 			raw_super->hot_ext_count,
2278 			F2FS_MAX_EXTENSION);
2279 		return 1;
2280 	}
2281 
2282 	if (le32_to_cpu(raw_super->cp_payload) >
2283 				(blocks_per_seg - F2FS_CP_PACKS)) {
2284 		f2fs_msg(sb, KERN_INFO,
2285 			"Insane cp_payload (%u > %u)",
2286 			le32_to_cpu(raw_super->cp_payload),
2287 			blocks_per_seg - F2FS_CP_PACKS);
2288 		return 1;
2289 	}
2290 
2291 	/* check reserved ino info */
2292 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2293 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2294 		le32_to_cpu(raw_super->root_ino) != 3) {
2295 		f2fs_msg(sb, KERN_INFO,
2296 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2297 			le32_to_cpu(raw_super->node_ino),
2298 			le32_to_cpu(raw_super->meta_ino),
2299 			le32_to_cpu(raw_super->root_ino));
2300 		return 1;
2301 	}
2302 
2303 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2304 	if (sanity_check_area_boundary(sbi, bh))
2305 		return 1;
2306 
2307 	return 0;
2308 }
2309 
2310 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2311 {
2312 	unsigned int total, fsmeta;
2313 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2314 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2315 	unsigned int ovp_segments, reserved_segments;
2316 	unsigned int main_segs, blocks_per_seg;
2317 	unsigned int sit_segs, nat_segs;
2318 	unsigned int sit_bitmap_size, nat_bitmap_size;
2319 	unsigned int log_blocks_per_seg;
2320 	unsigned int segment_count_main;
2321 	unsigned int cp_pack_start_sum, cp_payload;
2322 	block_t user_block_count;
2323 	int i;
2324 
2325 	total = le32_to_cpu(raw_super->segment_count);
2326 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2327 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2328 	fsmeta += sit_segs;
2329 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2330 	fsmeta += nat_segs;
2331 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2332 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2333 
2334 	if (unlikely(fsmeta >= total))
2335 		return 1;
2336 
2337 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2338 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2339 
2340 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2341 			ovp_segments == 0 || reserved_segments == 0)) {
2342 		f2fs_msg(sbi->sb, KERN_ERR,
2343 			"Wrong layout: check mkfs.f2fs version");
2344 		return 1;
2345 	}
2346 
2347 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2348 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2349 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2350 	if (!user_block_count || user_block_count >=
2351 			segment_count_main << log_blocks_per_seg) {
2352 		f2fs_msg(sbi->sb, KERN_ERR,
2353 			"Wrong user_block_count: %u", user_block_count);
2354 		return 1;
2355 	}
2356 
2357 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2358 	blocks_per_seg = sbi->blocks_per_seg;
2359 
2360 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2361 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2362 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2363 			return 1;
2364 	}
2365 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2366 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2367 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2368 			return 1;
2369 	}
2370 
2371 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2372 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2373 
2374 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2375 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2376 		f2fs_msg(sbi->sb, KERN_ERR,
2377 			"Wrong bitmap size: sit: %u, nat:%u",
2378 			sit_bitmap_size, nat_bitmap_size);
2379 		return 1;
2380 	}
2381 
2382 	cp_pack_start_sum = __start_sum_addr(sbi);
2383 	cp_payload = __cp_payload(sbi);
2384 	if (cp_pack_start_sum < cp_payload + 1 ||
2385 		cp_pack_start_sum > blocks_per_seg - 1 -
2386 			NR_CURSEG_TYPE) {
2387 		f2fs_msg(sbi->sb, KERN_ERR,
2388 			"Wrong cp_pack_start_sum: %u",
2389 			cp_pack_start_sum);
2390 		return 1;
2391 	}
2392 
2393 	if (unlikely(f2fs_cp_error(sbi))) {
2394 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2395 		return 1;
2396 	}
2397 	return 0;
2398 }
2399 
2400 static void init_sb_info(struct f2fs_sb_info *sbi)
2401 {
2402 	struct f2fs_super_block *raw_super = sbi->raw_super;
2403 	int i, j;
2404 
2405 	sbi->log_sectors_per_block =
2406 		le32_to_cpu(raw_super->log_sectors_per_block);
2407 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2408 	sbi->blocksize = 1 << sbi->log_blocksize;
2409 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2410 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2411 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2412 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2413 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2414 	sbi->total_node_count =
2415 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2416 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2417 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2418 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2419 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2420 	sbi->cur_victim_sec = NULL_SECNO;
2421 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2422 
2423 	sbi->dir_level = DEF_DIR_LEVEL;
2424 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2425 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2426 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2427 
2428 	for (i = 0; i < NR_COUNT_TYPE; i++)
2429 		atomic_set(&sbi->nr_pages[i], 0);
2430 
2431 	for (i = 0; i < META; i++)
2432 		atomic_set(&sbi->wb_sync_req[i], 0);
2433 
2434 	INIT_LIST_HEAD(&sbi->s_list);
2435 	mutex_init(&sbi->umount_mutex);
2436 	for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2437 		for (j = HOT; j < NR_TEMP_TYPE; j++)
2438 			mutex_init(&sbi->wio_mutex[i][j]);
2439 	init_rwsem(&sbi->io_order_lock);
2440 	spin_lock_init(&sbi->cp_lock);
2441 
2442 	sbi->dirty_device = 0;
2443 	spin_lock_init(&sbi->dev_lock);
2444 
2445 	init_rwsem(&sbi->sb_lock);
2446 }
2447 
2448 static int init_percpu_info(struct f2fs_sb_info *sbi)
2449 {
2450 	int err;
2451 
2452 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2453 	if (err)
2454 		return err;
2455 
2456 	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2457 								GFP_KERNEL);
2458 }
2459 
2460 #ifdef CONFIG_BLK_DEV_ZONED
2461 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2462 {
2463 	struct block_device *bdev = FDEV(devi).bdev;
2464 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2465 	sector_t sector = 0;
2466 	struct blk_zone *zones;
2467 	unsigned int i, nr_zones;
2468 	unsigned int n = 0;
2469 	int err = -EIO;
2470 
2471 	if (!f2fs_sb_has_blkzoned(sbi->sb))
2472 		return 0;
2473 
2474 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2475 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2476 		return -EINVAL;
2477 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2478 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2479 				__ilog2_u32(sbi->blocks_per_blkz))
2480 		return -EINVAL;
2481 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2482 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2483 					sbi->log_blocks_per_blkz;
2484 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2485 		FDEV(devi).nr_blkz++;
2486 
2487 	FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2488 								GFP_KERNEL);
2489 	if (!FDEV(devi).blkz_type)
2490 		return -ENOMEM;
2491 
2492 #define F2FS_REPORT_NR_ZONES   4096
2493 
2494 	zones = f2fs_kzalloc(sbi,
2495 			     array_size(F2FS_REPORT_NR_ZONES,
2496 					sizeof(struct blk_zone)),
2497 			     GFP_KERNEL);
2498 	if (!zones)
2499 		return -ENOMEM;
2500 
2501 	/* Get block zones type */
2502 	while (zones && sector < nr_sectors) {
2503 
2504 		nr_zones = F2FS_REPORT_NR_ZONES;
2505 		err = blkdev_report_zones(bdev, sector,
2506 					  zones, &nr_zones,
2507 					  GFP_KERNEL);
2508 		if (err)
2509 			break;
2510 		if (!nr_zones) {
2511 			err = -EIO;
2512 			break;
2513 		}
2514 
2515 		for (i = 0; i < nr_zones; i++) {
2516 			FDEV(devi).blkz_type[n] = zones[i].type;
2517 			sector += zones[i].len;
2518 			n++;
2519 		}
2520 	}
2521 
2522 	kfree(zones);
2523 
2524 	return err;
2525 }
2526 #endif
2527 
2528 /*
2529  * Read f2fs raw super block.
2530  * Because we have two copies of super block, so read both of them
2531  * to get the first valid one. If any one of them is broken, we pass
2532  * them recovery flag back to the caller.
2533  */
2534 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2535 			struct f2fs_super_block **raw_super,
2536 			int *valid_super_block, int *recovery)
2537 {
2538 	struct super_block *sb = sbi->sb;
2539 	int block;
2540 	struct buffer_head *bh;
2541 	struct f2fs_super_block *super;
2542 	int err = 0;
2543 
2544 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2545 	if (!super)
2546 		return -ENOMEM;
2547 
2548 	for (block = 0; block < 2; block++) {
2549 		bh = sb_bread(sb, block);
2550 		if (!bh) {
2551 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2552 				block + 1);
2553 			err = -EIO;
2554 			continue;
2555 		}
2556 
2557 		/* sanity checking of raw super */
2558 		if (sanity_check_raw_super(sbi, bh)) {
2559 			f2fs_msg(sb, KERN_ERR,
2560 				"Can't find valid F2FS filesystem in %dth superblock",
2561 				block + 1);
2562 			err = -EINVAL;
2563 			brelse(bh);
2564 			continue;
2565 		}
2566 
2567 		if (!*raw_super) {
2568 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2569 							sizeof(*super));
2570 			*valid_super_block = block;
2571 			*raw_super = super;
2572 		}
2573 		brelse(bh);
2574 	}
2575 
2576 	/* Fail to read any one of the superblocks*/
2577 	if (err < 0)
2578 		*recovery = 1;
2579 
2580 	/* No valid superblock */
2581 	if (!*raw_super)
2582 		kfree(super);
2583 	else
2584 		err = 0;
2585 
2586 	return err;
2587 }
2588 
2589 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2590 {
2591 	struct buffer_head *bh;
2592 	int err;
2593 
2594 	if ((recover && f2fs_readonly(sbi->sb)) ||
2595 				bdev_read_only(sbi->sb->s_bdev)) {
2596 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2597 		return -EROFS;
2598 	}
2599 
2600 	/* write back-up superblock first */
2601 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2602 	if (!bh)
2603 		return -EIO;
2604 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2605 	brelse(bh);
2606 
2607 	/* if we are in recovery path, skip writing valid superblock */
2608 	if (recover || err)
2609 		return err;
2610 
2611 	/* write current valid superblock */
2612 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
2613 	if (!bh)
2614 		return -EIO;
2615 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2616 	brelse(bh);
2617 	return err;
2618 }
2619 
2620 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2621 {
2622 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2623 	unsigned int max_devices = MAX_DEVICES;
2624 	int i;
2625 
2626 	/* Initialize single device information */
2627 	if (!RDEV(0).path[0]) {
2628 		if (!bdev_is_zoned(sbi->sb->s_bdev))
2629 			return 0;
2630 		max_devices = 1;
2631 	}
2632 
2633 	/*
2634 	 * Initialize multiple devices information, or single
2635 	 * zoned block device information.
2636 	 */
2637 	sbi->devs = f2fs_kzalloc(sbi,
2638 				 array_size(max_devices,
2639 					    sizeof(struct f2fs_dev_info)),
2640 				 GFP_KERNEL);
2641 	if (!sbi->devs)
2642 		return -ENOMEM;
2643 
2644 	for (i = 0; i < max_devices; i++) {
2645 
2646 		if (i > 0 && !RDEV(i).path[0])
2647 			break;
2648 
2649 		if (max_devices == 1) {
2650 			/* Single zoned block device mount */
2651 			FDEV(0).bdev =
2652 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2653 					sbi->sb->s_mode, sbi->sb->s_type);
2654 		} else {
2655 			/* Multi-device mount */
2656 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2657 			FDEV(i).total_segments =
2658 				le32_to_cpu(RDEV(i).total_segments);
2659 			if (i == 0) {
2660 				FDEV(i).start_blk = 0;
2661 				FDEV(i).end_blk = FDEV(i).start_blk +
2662 				    (FDEV(i).total_segments <<
2663 				    sbi->log_blocks_per_seg) - 1 +
2664 				    le32_to_cpu(raw_super->segment0_blkaddr);
2665 			} else {
2666 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2667 				FDEV(i).end_blk = FDEV(i).start_blk +
2668 					(FDEV(i).total_segments <<
2669 					sbi->log_blocks_per_seg) - 1;
2670 			}
2671 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2672 					sbi->sb->s_mode, sbi->sb->s_type);
2673 		}
2674 		if (IS_ERR(FDEV(i).bdev))
2675 			return PTR_ERR(FDEV(i).bdev);
2676 
2677 		/* to release errored devices */
2678 		sbi->s_ndevs = i + 1;
2679 
2680 #ifdef CONFIG_BLK_DEV_ZONED
2681 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2682 				!f2fs_sb_has_blkzoned(sbi->sb)) {
2683 			f2fs_msg(sbi->sb, KERN_ERR,
2684 				"Zoned block device feature not enabled\n");
2685 			return -EINVAL;
2686 		}
2687 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2688 			if (init_blkz_info(sbi, i)) {
2689 				f2fs_msg(sbi->sb, KERN_ERR,
2690 					"Failed to initialize F2FS blkzone information");
2691 				return -EINVAL;
2692 			}
2693 			if (max_devices == 1)
2694 				break;
2695 			f2fs_msg(sbi->sb, KERN_INFO,
2696 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2697 				i, FDEV(i).path,
2698 				FDEV(i).total_segments,
2699 				FDEV(i).start_blk, FDEV(i).end_blk,
2700 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2701 				"Host-aware" : "Host-managed");
2702 			continue;
2703 		}
2704 #endif
2705 		f2fs_msg(sbi->sb, KERN_INFO,
2706 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
2707 				i, FDEV(i).path,
2708 				FDEV(i).total_segments,
2709 				FDEV(i).start_blk, FDEV(i).end_blk);
2710 	}
2711 	f2fs_msg(sbi->sb, KERN_INFO,
2712 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2713 	return 0;
2714 }
2715 
2716 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2717 {
2718 	struct f2fs_sm_info *sm_i = SM_I(sbi);
2719 
2720 	/* adjust parameters according to the volume size */
2721 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2722 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2723 		sm_i->dcc_info->discard_granularity = 1;
2724 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2725 	}
2726 
2727 	sbi->readdir_ra = 1;
2728 }
2729 
2730 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2731 {
2732 	struct f2fs_sb_info *sbi;
2733 	struct f2fs_super_block *raw_super;
2734 	struct inode *root;
2735 	int err;
2736 	bool retry = true, need_fsck = false;
2737 	char *options = NULL;
2738 	int recovery, i, valid_super_block;
2739 	struct curseg_info *seg_i;
2740 
2741 try_onemore:
2742 	err = -EINVAL;
2743 	raw_super = NULL;
2744 	valid_super_block = -1;
2745 	recovery = 0;
2746 
2747 	/* allocate memory for f2fs-specific super block info */
2748 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2749 	if (!sbi)
2750 		return -ENOMEM;
2751 
2752 	sbi->sb = sb;
2753 
2754 	/* Load the checksum driver */
2755 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2756 	if (IS_ERR(sbi->s_chksum_driver)) {
2757 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2758 		err = PTR_ERR(sbi->s_chksum_driver);
2759 		sbi->s_chksum_driver = NULL;
2760 		goto free_sbi;
2761 	}
2762 
2763 	/* set a block size */
2764 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2765 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2766 		goto free_sbi;
2767 	}
2768 
2769 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2770 								&recovery);
2771 	if (err)
2772 		goto free_sbi;
2773 
2774 	sb->s_fs_info = sbi;
2775 	sbi->raw_super = raw_super;
2776 
2777 	/* precompute checksum seed for metadata */
2778 	if (f2fs_sb_has_inode_chksum(sb))
2779 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2780 						sizeof(raw_super->uuid));
2781 
2782 	/*
2783 	 * The BLKZONED feature indicates that the drive was formatted with
2784 	 * zone alignment optimization. This is optional for host-aware
2785 	 * devices, but mandatory for host-managed zoned block devices.
2786 	 */
2787 #ifndef CONFIG_BLK_DEV_ZONED
2788 	if (f2fs_sb_has_blkzoned(sb)) {
2789 		f2fs_msg(sb, KERN_ERR,
2790 			 "Zoned block device support is not enabled\n");
2791 		err = -EOPNOTSUPP;
2792 		goto free_sb_buf;
2793 	}
2794 #endif
2795 	default_options(sbi);
2796 	/* parse mount options */
2797 	options = kstrdup((const char *)data, GFP_KERNEL);
2798 	if (data && !options) {
2799 		err = -ENOMEM;
2800 		goto free_sb_buf;
2801 	}
2802 
2803 	err = parse_options(sb, options);
2804 	if (err)
2805 		goto free_options;
2806 
2807 	sbi->max_file_blocks = max_file_blocks();
2808 	sb->s_maxbytes = sbi->max_file_blocks <<
2809 				le32_to_cpu(raw_super->log_blocksize);
2810 	sb->s_max_links = F2FS_LINK_MAX;
2811 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2812 
2813 #ifdef CONFIG_QUOTA
2814 	sb->dq_op = &f2fs_quota_operations;
2815 	if (f2fs_sb_has_quota_ino(sb))
2816 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
2817 	else
2818 		sb->s_qcop = &f2fs_quotactl_ops;
2819 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2820 
2821 	if (f2fs_sb_has_quota_ino(sbi->sb)) {
2822 		for (i = 0; i < MAXQUOTAS; i++) {
2823 			if (f2fs_qf_ino(sbi->sb, i))
2824 				sbi->nquota_files++;
2825 		}
2826 	}
2827 #endif
2828 
2829 	sb->s_op = &f2fs_sops;
2830 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2831 	sb->s_cop = &f2fs_cryptops;
2832 #endif
2833 	sb->s_xattr = f2fs_xattr_handlers;
2834 	sb->s_export_op = &f2fs_export_ops;
2835 	sb->s_magic = F2FS_SUPER_MAGIC;
2836 	sb->s_time_gran = 1;
2837 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2838 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2839 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2840 	sb->s_iflags |= SB_I_CGROUPWB;
2841 
2842 	/* init f2fs-specific super block info */
2843 	sbi->valid_super_block = valid_super_block;
2844 	mutex_init(&sbi->gc_mutex);
2845 	mutex_init(&sbi->writepages);
2846 	mutex_init(&sbi->cp_mutex);
2847 	init_rwsem(&sbi->node_write);
2848 	init_rwsem(&sbi->node_change);
2849 
2850 	/* disallow all the data/node/meta page writes */
2851 	set_sbi_flag(sbi, SBI_POR_DOING);
2852 	spin_lock_init(&sbi->stat_lock);
2853 
2854 	/* init iostat info */
2855 	spin_lock_init(&sbi->iostat_lock);
2856 	sbi->iostat_enable = false;
2857 
2858 	for (i = 0; i < NR_PAGE_TYPE; i++) {
2859 		int n = (i == META) ? 1: NR_TEMP_TYPE;
2860 		int j;
2861 
2862 		sbi->write_io[i] =
2863 			f2fs_kmalloc(sbi,
2864 				     array_size(n,
2865 						sizeof(struct f2fs_bio_info)),
2866 				     GFP_KERNEL);
2867 		if (!sbi->write_io[i]) {
2868 			err = -ENOMEM;
2869 			goto free_options;
2870 		}
2871 
2872 		for (j = HOT; j < n; j++) {
2873 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
2874 			sbi->write_io[i][j].sbi = sbi;
2875 			sbi->write_io[i][j].bio = NULL;
2876 			spin_lock_init(&sbi->write_io[i][j].io_lock);
2877 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2878 		}
2879 	}
2880 
2881 	init_rwsem(&sbi->cp_rwsem);
2882 	init_waitqueue_head(&sbi->cp_wait);
2883 	init_sb_info(sbi);
2884 
2885 	err = init_percpu_info(sbi);
2886 	if (err)
2887 		goto free_bio_info;
2888 
2889 	if (F2FS_IO_SIZE(sbi) > 1) {
2890 		sbi->write_io_dummy =
2891 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2892 		if (!sbi->write_io_dummy) {
2893 			err = -ENOMEM;
2894 			goto free_percpu;
2895 		}
2896 	}
2897 
2898 	/* get an inode for meta space */
2899 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2900 	if (IS_ERR(sbi->meta_inode)) {
2901 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2902 		err = PTR_ERR(sbi->meta_inode);
2903 		goto free_io_dummy;
2904 	}
2905 
2906 	err = f2fs_get_valid_checkpoint(sbi);
2907 	if (err) {
2908 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2909 		goto free_meta_inode;
2910 	}
2911 
2912 	/* Initialize device list */
2913 	err = f2fs_scan_devices(sbi);
2914 	if (err) {
2915 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2916 		goto free_devices;
2917 	}
2918 
2919 	sbi->total_valid_node_count =
2920 				le32_to_cpu(sbi->ckpt->valid_node_count);
2921 	percpu_counter_set(&sbi->total_valid_inode_count,
2922 				le32_to_cpu(sbi->ckpt->valid_inode_count));
2923 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2924 	sbi->total_valid_block_count =
2925 				le64_to_cpu(sbi->ckpt->valid_block_count);
2926 	sbi->last_valid_block_count = sbi->total_valid_block_count;
2927 	sbi->reserved_blocks = 0;
2928 	sbi->current_reserved_blocks = 0;
2929 	limit_reserve_root(sbi);
2930 
2931 	for (i = 0; i < NR_INODE_TYPE; i++) {
2932 		INIT_LIST_HEAD(&sbi->inode_list[i]);
2933 		spin_lock_init(&sbi->inode_lock[i]);
2934 	}
2935 
2936 	f2fs_init_extent_cache_info(sbi);
2937 
2938 	f2fs_init_ino_entry_info(sbi);
2939 
2940 	f2fs_init_fsync_node_info(sbi);
2941 
2942 	/* setup f2fs internal modules */
2943 	err = f2fs_build_segment_manager(sbi);
2944 	if (err) {
2945 		f2fs_msg(sb, KERN_ERR,
2946 			"Failed to initialize F2FS segment manager");
2947 		goto free_sm;
2948 	}
2949 	err = f2fs_build_node_manager(sbi);
2950 	if (err) {
2951 		f2fs_msg(sb, KERN_ERR,
2952 			"Failed to initialize F2FS node manager");
2953 		goto free_nm;
2954 	}
2955 
2956 	/* For write statistics */
2957 	if (sb->s_bdev->bd_part)
2958 		sbi->sectors_written_start =
2959 			(u64)part_stat_read(sb->s_bdev->bd_part,
2960 					    sectors[STAT_WRITE]);
2961 
2962 	/* Read accumulated write IO statistics if exists */
2963 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2964 	if (__exist_node_summaries(sbi))
2965 		sbi->kbytes_written =
2966 			le64_to_cpu(seg_i->journal->info.kbytes_written);
2967 
2968 	f2fs_build_gc_manager(sbi);
2969 
2970 	/* get an inode for node space */
2971 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2972 	if (IS_ERR(sbi->node_inode)) {
2973 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2974 		err = PTR_ERR(sbi->node_inode);
2975 		goto free_nm;
2976 	}
2977 
2978 	err = f2fs_build_stats(sbi);
2979 	if (err)
2980 		goto free_node_inode;
2981 
2982 	/* read root inode and dentry */
2983 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2984 	if (IS_ERR(root)) {
2985 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2986 		err = PTR_ERR(root);
2987 		goto free_stats;
2988 	}
2989 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
2990 			!root->i_size || !root->i_nlink) {
2991 		iput(root);
2992 		err = -EINVAL;
2993 		goto free_stats;
2994 	}
2995 
2996 	sb->s_root = d_make_root(root); /* allocate root dentry */
2997 	if (!sb->s_root) {
2998 		err = -ENOMEM;
2999 		goto free_root_inode;
3000 	}
3001 
3002 	err = f2fs_register_sysfs(sbi);
3003 	if (err)
3004 		goto free_root_inode;
3005 
3006 #ifdef CONFIG_QUOTA
3007 	/* Enable quota usage during mount */
3008 	if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
3009 		err = f2fs_enable_quotas(sb);
3010 		if (err) {
3011 			f2fs_msg(sb, KERN_ERR,
3012 				"Cannot turn on quotas: error %d", err);
3013 			goto free_sysfs;
3014 		}
3015 	}
3016 #endif
3017 	/* if there are nt orphan nodes free them */
3018 	err = f2fs_recover_orphan_inodes(sbi);
3019 	if (err)
3020 		goto free_meta;
3021 
3022 	/* recover fsynced data */
3023 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3024 		/*
3025 		 * mount should be failed, when device has readonly mode, and
3026 		 * previous checkpoint was not done by clean system shutdown.
3027 		 */
3028 		if (bdev_read_only(sb->s_bdev) &&
3029 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3030 			err = -EROFS;
3031 			goto free_meta;
3032 		}
3033 
3034 		if (need_fsck)
3035 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3036 
3037 		if (!retry)
3038 			goto skip_recovery;
3039 
3040 		err = f2fs_recover_fsync_data(sbi, false);
3041 		if (err < 0) {
3042 			need_fsck = true;
3043 			f2fs_msg(sb, KERN_ERR,
3044 				"Cannot recover all fsync data errno=%d", err);
3045 			goto free_meta;
3046 		}
3047 	} else {
3048 		err = f2fs_recover_fsync_data(sbi, true);
3049 
3050 		if (!f2fs_readonly(sb) && err > 0) {
3051 			err = -EINVAL;
3052 			f2fs_msg(sb, KERN_ERR,
3053 				"Need to recover fsync data");
3054 			goto free_meta;
3055 		}
3056 	}
3057 skip_recovery:
3058 	/* f2fs_recover_fsync_data() cleared this already */
3059 	clear_sbi_flag(sbi, SBI_POR_DOING);
3060 
3061 	/*
3062 	 * If filesystem is not mounted as read-only then
3063 	 * do start the gc_thread.
3064 	 */
3065 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3066 		/* After POR, we can run background GC thread.*/
3067 		err = f2fs_start_gc_thread(sbi);
3068 		if (err)
3069 			goto free_meta;
3070 	}
3071 	kfree(options);
3072 
3073 	/* recover broken superblock */
3074 	if (recovery) {
3075 		err = f2fs_commit_super(sbi, true);
3076 		f2fs_msg(sb, KERN_INFO,
3077 			"Try to recover %dth superblock, ret: %d",
3078 			sbi->valid_super_block ? 1 : 2, err);
3079 	}
3080 
3081 	f2fs_join_shrinker(sbi);
3082 
3083 	f2fs_tuning_parameters(sbi);
3084 
3085 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3086 				cur_cp_version(F2FS_CKPT(sbi)));
3087 	f2fs_update_time(sbi, CP_TIME);
3088 	f2fs_update_time(sbi, REQ_TIME);
3089 	return 0;
3090 
3091 free_meta:
3092 #ifdef CONFIG_QUOTA
3093 	if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
3094 		f2fs_quota_off_umount(sbi->sb);
3095 #endif
3096 	f2fs_sync_inode_meta(sbi);
3097 	/*
3098 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3099 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3100 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3101 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3102 	 */
3103 	truncate_inode_pages_final(META_MAPPING(sbi));
3104 #ifdef CONFIG_QUOTA
3105 free_sysfs:
3106 #endif
3107 	f2fs_unregister_sysfs(sbi);
3108 free_root_inode:
3109 	dput(sb->s_root);
3110 	sb->s_root = NULL;
3111 free_stats:
3112 	f2fs_destroy_stats(sbi);
3113 free_node_inode:
3114 	f2fs_release_ino_entry(sbi, true);
3115 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3116 	iput(sbi->node_inode);
3117 free_nm:
3118 	f2fs_destroy_node_manager(sbi);
3119 free_sm:
3120 	f2fs_destroy_segment_manager(sbi);
3121 free_devices:
3122 	destroy_device_list(sbi);
3123 	kfree(sbi->ckpt);
3124 free_meta_inode:
3125 	make_bad_inode(sbi->meta_inode);
3126 	iput(sbi->meta_inode);
3127 free_io_dummy:
3128 	mempool_destroy(sbi->write_io_dummy);
3129 free_percpu:
3130 	destroy_percpu_info(sbi);
3131 free_bio_info:
3132 	for (i = 0; i < NR_PAGE_TYPE; i++)
3133 		kfree(sbi->write_io[i]);
3134 free_options:
3135 #ifdef CONFIG_QUOTA
3136 	for (i = 0; i < MAXQUOTAS; i++)
3137 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3138 #endif
3139 	kfree(options);
3140 free_sb_buf:
3141 	kfree(raw_super);
3142 free_sbi:
3143 	if (sbi->s_chksum_driver)
3144 		crypto_free_shash(sbi->s_chksum_driver);
3145 	kfree(sbi);
3146 
3147 	/* give only one another chance */
3148 	if (retry) {
3149 		retry = false;
3150 		shrink_dcache_sb(sb);
3151 		goto try_onemore;
3152 	}
3153 	return err;
3154 }
3155 
3156 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3157 			const char *dev_name, void *data)
3158 {
3159 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3160 }
3161 
3162 static void kill_f2fs_super(struct super_block *sb)
3163 {
3164 	if (sb->s_root) {
3165 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3166 
3167 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3168 		f2fs_stop_gc_thread(sbi);
3169 		f2fs_stop_discard_thread(sbi);
3170 
3171 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3172 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3173 			struct cp_control cpc = {
3174 				.reason = CP_UMOUNT,
3175 			};
3176 			f2fs_write_checkpoint(sbi, &cpc);
3177 		}
3178 	}
3179 	kill_block_super(sb);
3180 }
3181 
3182 static struct file_system_type f2fs_fs_type = {
3183 	.owner		= THIS_MODULE,
3184 	.name		= "f2fs",
3185 	.mount		= f2fs_mount,
3186 	.kill_sb	= kill_f2fs_super,
3187 	.fs_flags	= FS_REQUIRES_DEV,
3188 };
3189 MODULE_ALIAS_FS("f2fs");
3190 
3191 static int __init init_inodecache(void)
3192 {
3193 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3194 			sizeof(struct f2fs_inode_info), 0,
3195 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3196 	if (!f2fs_inode_cachep)
3197 		return -ENOMEM;
3198 	return 0;
3199 }
3200 
3201 static void destroy_inodecache(void)
3202 {
3203 	/*
3204 	 * Make sure all delayed rcu free inodes are flushed before we
3205 	 * destroy cache.
3206 	 */
3207 	rcu_barrier();
3208 	kmem_cache_destroy(f2fs_inode_cachep);
3209 }
3210 
3211 static int __init init_f2fs_fs(void)
3212 {
3213 	int err;
3214 
3215 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3216 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3217 				PAGE_SIZE, F2FS_BLKSIZE);
3218 		return -EINVAL;
3219 	}
3220 
3221 	f2fs_build_trace_ios();
3222 
3223 	err = init_inodecache();
3224 	if (err)
3225 		goto fail;
3226 	err = f2fs_create_node_manager_caches();
3227 	if (err)
3228 		goto free_inodecache;
3229 	err = f2fs_create_segment_manager_caches();
3230 	if (err)
3231 		goto free_node_manager_caches;
3232 	err = f2fs_create_checkpoint_caches();
3233 	if (err)
3234 		goto free_segment_manager_caches;
3235 	err = f2fs_create_extent_cache();
3236 	if (err)
3237 		goto free_checkpoint_caches;
3238 	err = f2fs_init_sysfs();
3239 	if (err)
3240 		goto free_extent_cache;
3241 	err = register_shrinker(&f2fs_shrinker_info);
3242 	if (err)
3243 		goto free_sysfs;
3244 	err = register_filesystem(&f2fs_fs_type);
3245 	if (err)
3246 		goto free_shrinker;
3247 	err = f2fs_create_root_stats();
3248 	if (err)
3249 		goto free_filesystem;
3250 	err = f2fs_init_post_read_processing();
3251 	if (err)
3252 		goto free_root_stats;
3253 	return 0;
3254 
3255 free_root_stats:
3256 	f2fs_destroy_root_stats();
3257 free_filesystem:
3258 	unregister_filesystem(&f2fs_fs_type);
3259 free_shrinker:
3260 	unregister_shrinker(&f2fs_shrinker_info);
3261 free_sysfs:
3262 	f2fs_exit_sysfs();
3263 free_extent_cache:
3264 	f2fs_destroy_extent_cache();
3265 free_checkpoint_caches:
3266 	f2fs_destroy_checkpoint_caches();
3267 free_segment_manager_caches:
3268 	f2fs_destroy_segment_manager_caches();
3269 free_node_manager_caches:
3270 	f2fs_destroy_node_manager_caches();
3271 free_inodecache:
3272 	destroy_inodecache();
3273 fail:
3274 	return err;
3275 }
3276 
3277 static void __exit exit_f2fs_fs(void)
3278 {
3279 	f2fs_destroy_post_read_processing();
3280 	f2fs_destroy_root_stats();
3281 	unregister_filesystem(&f2fs_fs_type);
3282 	unregister_shrinker(&f2fs_shrinker_info);
3283 	f2fs_exit_sysfs();
3284 	f2fs_destroy_extent_cache();
3285 	f2fs_destroy_checkpoint_caches();
3286 	f2fs_destroy_segment_manager_caches();
3287 	f2fs_destroy_node_manager_caches();
3288 	destroy_inodecache();
3289 	f2fs_destroy_trace_ios();
3290 }
3291 
3292 module_init(init_f2fs_fs)
3293 module_exit(exit_f2fs_fs)
3294 
3295 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3296 MODULE_DESCRIPTION("Flash Friendly File System");
3297 MODULE_LICENSE("GPL");
3298 
3299