1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 44 char *fault_name[FAULT_MAX] = { 45 [FAULT_KMALLOC] = "kmalloc", 46 [FAULT_PAGE_ALLOC] = "page alloc", 47 [FAULT_ALLOC_NID] = "alloc nid", 48 [FAULT_ORPHAN] = "orphan", 49 [FAULT_BLOCK] = "no more block", 50 [FAULT_DIR_DEPTH] = "too big dir depth", 51 [FAULT_EVICT_INODE] = "evict_inode fail", 52 [FAULT_TRUNCATE] = "truncate fail", 53 [FAULT_IO] = "IO error", 54 [FAULT_CHECKPOINT] = "checkpoint error", 55 }; 56 57 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 58 unsigned int rate) 59 { 60 struct f2fs_fault_info *ffi = &sbi->fault_info; 61 62 if (rate) { 63 atomic_set(&ffi->inject_ops, 0); 64 ffi->inject_rate = rate; 65 ffi->inject_type = (1 << FAULT_MAX) - 1; 66 } else { 67 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 68 } 69 } 70 #endif 71 72 /* f2fs-wide shrinker description */ 73 static struct shrinker f2fs_shrinker_info = { 74 .scan_objects = f2fs_shrink_scan, 75 .count_objects = f2fs_shrink_count, 76 .seeks = DEFAULT_SEEKS, 77 }; 78 79 enum { 80 Opt_gc_background, 81 Opt_disable_roll_forward, 82 Opt_norecovery, 83 Opt_discard, 84 Opt_nodiscard, 85 Opt_noheap, 86 Opt_heap, 87 Opt_user_xattr, 88 Opt_nouser_xattr, 89 Opt_acl, 90 Opt_noacl, 91 Opt_active_logs, 92 Opt_disable_ext_identify, 93 Opt_inline_xattr, 94 Opt_noinline_xattr, 95 Opt_inline_data, 96 Opt_inline_dentry, 97 Opt_noinline_dentry, 98 Opt_flush_merge, 99 Opt_noflush_merge, 100 Opt_nobarrier, 101 Opt_fastboot, 102 Opt_extent_cache, 103 Opt_noextent_cache, 104 Opt_noinline_data, 105 Opt_data_flush, 106 Opt_mode, 107 Opt_io_size_bits, 108 Opt_fault_injection, 109 Opt_lazytime, 110 Opt_nolazytime, 111 Opt_err, 112 }; 113 114 static match_table_t f2fs_tokens = { 115 {Opt_gc_background, "background_gc=%s"}, 116 {Opt_disable_roll_forward, "disable_roll_forward"}, 117 {Opt_norecovery, "norecovery"}, 118 {Opt_discard, "discard"}, 119 {Opt_nodiscard, "nodiscard"}, 120 {Opt_noheap, "no_heap"}, 121 {Opt_heap, "heap"}, 122 {Opt_user_xattr, "user_xattr"}, 123 {Opt_nouser_xattr, "nouser_xattr"}, 124 {Opt_acl, "acl"}, 125 {Opt_noacl, "noacl"}, 126 {Opt_active_logs, "active_logs=%u"}, 127 {Opt_disable_ext_identify, "disable_ext_identify"}, 128 {Opt_inline_xattr, "inline_xattr"}, 129 {Opt_noinline_xattr, "noinline_xattr"}, 130 {Opt_inline_data, "inline_data"}, 131 {Opt_inline_dentry, "inline_dentry"}, 132 {Opt_noinline_dentry, "noinline_dentry"}, 133 {Opt_flush_merge, "flush_merge"}, 134 {Opt_noflush_merge, "noflush_merge"}, 135 {Opt_nobarrier, "nobarrier"}, 136 {Opt_fastboot, "fastboot"}, 137 {Opt_extent_cache, "extent_cache"}, 138 {Opt_noextent_cache, "noextent_cache"}, 139 {Opt_noinline_data, "noinline_data"}, 140 {Opt_data_flush, "data_flush"}, 141 {Opt_mode, "mode=%s"}, 142 {Opt_io_size_bits, "io_bits=%u"}, 143 {Opt_fault_injection, "fault_injection=%u"}, 144 {Opt_lazytime, "lazytime"}, 145 {Opt_nolazytime, "nolazytime"}, 146 {Opt_err, NULL}, 147 }; 148 149 /* Sysfs support for f2fs */ 150 enum { 151 GC_THREAD, /* struct f2fs_gc_thread */ 152 SM_INFO, /* struct f2fs_sm_info */ 153 DCC_INFO, /* struct discard_cmd_control */ 154 NM_INFO, /* struct f2fs_nm_info */ 155 F2FS_SBI, /* struct f2fs_sb_info */ 156 #ifdef CONFIG_F2FS_FAULT_INJECTION 157 FAULT_INFO_RATE, /* struct f2fs_fault_info */ 158 FAULT_INFO_TYPE, /* struct f2fs_fault_info */ 159 #endif 160 }; 161 162 struct f2fs_attr { 163 struct attribute attr; 164 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 165 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 166 const char *, size_t); 167 int struct_type; 168 int offset; 169 }; 170 171 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 172 { 173 if (struct_type == GC_THREAD) 174 return (unsigned char *)sbi->gc_thread; 175 else if (struct_type == SM_INFO) 176 return (unsigned char *)SM_I(sbi); 177 else if (struct_type == DCC_INFO) 178 return (unsigned char *)SM_I(sbi)->dcc_info; 179 else if (struct_type == NM_INFO) 180 return (unsigned char *)NM_I(sbi); 181 else if (struct_type == F2FS_SBI) 182 return (unsigned char *)sbi; 183 #ifdef CONFIG_F2FS_FAULT_INJECTION 184 else if (struct_type == FAULT_INFO_RATE || 185 struct_type == FAULT_INFO_TYPE) 186 return (unsigned char *)&sbi->fault_info; 187 #endif 188 return NULL; 189 } 190 191 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a, 192 struct f2fs_sb_info *sbi, char *buf) 193 { 194 struct super_block *sb = sbi->sb; 195 196 if (!sb->s_bdev->bd_part) 197 return snprintf(buf, PAGE_SIZE, "0\n"); 198 199 return snprintf(buf, PAGE_SIZE, "%llu\n", 200 (unsigned long long)(sbi->kbytes_written + 201 BD_PART_WRITTEN(sbi))); 202 } 203 204 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 205 struct f2fs_sb_info *sbi, char *buf) 206 { 207 unsigned char *ptr = NULL; 208 unsigned int *ui; 209 210 ptr = __struct_ptr(sbi, a->struct_type); 211 if (!ptr) 212 return -EINVAL; 213 214 ui = (unsigned int *)(ptr + a->offset); 215 216 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 217 } 218 219 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 220 struct f2fs_sb_info *sbi, 221 const char *buf, size_t count) 222 { 223 unsigned char *ptr; 224 unsigned long t; 225 unsigned int *ui; 226 ssize_t ret; 227 228 ptr = __struct_ptr(sbi, a->struct_type); 229 if (!ptr) 230 return -EINVAL; 231 232 ui = (unsigned int *)(ptr + a->offset); 233 234 ret = kstrtoul(skip_spaces(buf), 0, &t); 235 if (ret < 0) 236 return ret; 237 #ifdef CONFIG_F2FS_FAULT_INJECTION 238 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX)) 239 return -EINVAL; 240 #endif 241 *ui = t; 242 return count; 243 } 244 245 static ssize_t f2fs_attr_show(struct kobject *kobj, 246 struct attribute *attr, char *buf) 247 { 248 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 249 s_kobj); 250 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 251 252 return a->show ? a->show(a, sbi, buf) : 0; 253 } 254 255 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 256 const char *buf, size_t len) 257 { 258 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 259 s_kobj); 260 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 261 262 return a->store ? a->store(a, sbi, buf, len) : 0; 263 } 264 265 static void f2fs_sb_release(struct kobject *kobj) 266 { 267 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 268 s_kobj); 269 complete(&sbi->s_kobj_unregister); 270 } 271 272 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 273 static struct f2fs_attr f2fs_attr_##_name = { \ 274 .attr = {.name = __stringify(_name), .mode = _mode }, \ 275 .show = _show, \ 276 .store = _store, \ 277 .struct_type = _struct_type, \ 278 .offset = _offset \ 279 } 280 281 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 282 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 283 f2fs_sbi_show, f2fs_sbi_store, \ 284 offsetof(struct struct_name, elname)) 285 286 #define F2FS_GENERAL_RO_ATTR(name) \ 287 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL) 288 289 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 290 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 291 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 292 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 293 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 294 F2FS_RW_ATTR(DCC_INFO, discard_cmd_control, max_small_discards, max_discards); 295 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 296 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 297 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 298 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 299 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_hot_blocks, min_hot_blocks); 300 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 301 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); 302 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio); 303 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 304 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 305 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]); 306 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]); 307 #ifdef CONFIG_F2FS_FAULT_INJECTION 308 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate); 309 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type); 310 #endif 311 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes); 312 313 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 314 static struct attribute *f2fs_attrs[] = { 315 ATTR_LIST(gc_min_sleep_time), 316 ATTR_LIST(gc_max_sleep_time), 317 ATTR_LIST(gc_no_gc_sleep_time), 318 ATTR_LIST(gc_idle), 319 ATTR_LIST(reclaim_segments), 320 ATTR_LIST(max_small_discards), 321 ATTR_LIST(batched_trim_sections), 322 ATTR_LIST(ipu_policy), 323 ATTR_LIST(min_ipu_util), 324 ATTR_LIST(min_fsync_blocks), 325 ATTR_LIST(min_hot_blocks), 326 ATTR_LIST(max_victim_search), 327 ATTR_LIST(dir_level), 328 ATTR_LIST(ram_thresh), 329 ATTR_LIST(ra_nid_pages), 330 ATTR_LIST(dirty_nats_ratio), 331 ATTR_LIST(cp_interval), 332 ATTR_LIST(idle_interval), 333 #ifdef CONFIG_F2FS_FAULT_INJECTION 334 ATTR_LIST(inject_rate), 335 ATTR_LIST(inject_type), 336 #endif 337 ATTR_LIST(lifetime_write_kbytes), 338 NULL, 339 }; 340 341 static const struct sysfs_ops f2fs_attr_ops = { 342 .show = f2fs_attr_show, 343 .store = f2fs_attr_store, 344 }; 345 346 static struct kobj_type f2fs_ktype = { 347 .default_attrs = f2fs_attrs, 348 .sysfs_ops = &f2fs_attr_ops, 349 .release = f2fs_sb_release, 350 }; 351 352 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 353 { 354 struct va_format vaf; 355 va_list args; 356 357 va_start(args, fmt); 358 vaf.fmt = fmt; 359 vaf.va = &args; 360 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 361 va_end(args); 362 } 363 364 static void init_once(void *foo) 365 { 366 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 367 368 inode_init_once(&fi->vfs_inode); 369 } 370 371 static int parse_options(struct super_block *sb, char *options) 372 { 373 struct f2fs_sb_info *sbi = F2FS_SB(sb); 374 struct request_queue *q; 375 substring_t args[MAX_OPT_ARGS]; 376 char *p, *name; 377 int arg = 0; 378 379 if (!options) 380 return 0; 381 382 while ((p = strsep(&options, ",")) != NULL) { 383 int token; 384 if (!*p) 385 continue; 386 /* 387 * Initialize args struct so we know whether arg was 388 * found; some options take optional arguments. 389 */ 390 args[0].to = args[0].from = NULL; 391 token = match_token(p, f2fs_tokens, args); 392 393 switch (token) { 394 case Opt_gc_background: 395 name = match_strdup(&args[0]); 396 397 if (!name) 398 return -ENOMEM; 399 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 400 set_opt(sbi, BG_GC); 401 clear_opt(sbi, FORCE_FG_GC); 402 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 403 clear_opt(sbi, BG_GC); 404 clear_opt(sbi, FORCE_FG_GC); 405 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 406 set_opt(sbi, BG_GC); 407 set_opt(sbi, FORCE_FG_GC); 408 } else { 409 kfree(name); 410 return -EINVAL; 411 } 412 kfree(name); 413 break; 414 case Opt_disable_roll_forward: 415 set_opt(sbi, DISABLE_ROLL_FORWARD); 416 break; 417 case Opt_norecovery: 418 /* this option mounts f2fs with ro */ 419 set_opt(sbi, DISABLE_ROLL_FORWARD); 420 if (!f2fs_readonly(sb)) 421 return -EINVAL; 422 break; 423 case Opt_discard: 424 q = bdev_get_queue(sb->s_bdev); 425 if (blk_queue_discard(q)) { 426 set_opt(sbi, DISCARD); 427 } else if (!f2fs_sb_mounted_blkzoned(sb)) { 428 f2fs_msg(sb, KERN_WARNING, 429 "mounting with \"discard\" option, but " 430 "the device does not support discard"); 431 } 432 break; 433 case Opt_nodiscard: 434 if (f2fs_sb_mounted_blkzoned(sb)) { 435 f2fs_msg(sb, KERN_WARNING, 436 "discard is required for zoned block devices"); 437 return -EINVAL; 438 } 439 clear_opt(sbi, DISCARD); 440 break; 441 case Opt_noheap: 442 set_opt(sbi, NOHEAP); 443 break; 444 case Opt_heap: 445 clear_opt(sbi, NOHEAP); 446 break; 447 #ifdef CONFIG_F2FS_FS_XATTR 448 case Opt_user_xattr: 449 set_opt(sbi, XATTR_USER); 450 break; 451 case Opt_nouser_xattr: 452 clear_opt(sbi, XATTR_USER); 453 break; 454 case Opt_inline_xattr: 455 set_opt(sbi, INLINE_XATTR); 456 break; 457 case Opt_noinline_xattr: 458 clear_opt(sbi, INLINE_XATTR); 459 break; 460 #else 461 case Opt_user_xattr: 462 f2fs_msg(sb, KERN_INFO, 463 "user_xattr options not supported"); 464 break; 465 case Opt_nouser_xattr: 466 f2fs_msg(sb, KERN_INFO, 467 "nouser_xattr options not supported"); 468 break; 469 case Opt_inline_xattr: 470 f2fs_msg(sb, KERN_INFO, 471 "inline_xattr options not supported"); 472 break; 473 case Opt_noinline_xattr: 474 f2fs_msg(sb, KERN_INFO, 475 "noinline_xattr options not supported"); 476 break; 477 #endif 478 #ifdef CONFIG_F2FS_FS_POSIX_ACL 479 case Opt_acl: 480 set_opt(sbi, POSIX_ACL); 481 break; 482 case Opt_noacl: 483 clear_opt(sbi, POSIX_ACL); 484 break; 485 #else 486 case Opt_acl: 487 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 488 break; 489 case Opt_noacl: 490 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 491 break; 492 #endif 493 case Opt_active_logs: 494 if (args->from && match_int(args, &arg)) 495 return -EINVAL; 496 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 497 return -EINVAL; 498 sbi->active_logs = arg; 499 break; 500 case Opt_disable_ext_identify: 501 set_opt(sbi, DISABLE_EXT_IDENTIFY); 502 break; 503 case Opt_inline_data: 504 set_opt(sbi, INLINE_DATA); 505 break; 506 case Opt_inline_dentry: 507 set_opt(sbi, INLINE_DENTRY); 508 break; 509 case Opt_noinline_dentry: 510 clear_opt(sbi, INLINE_DENTRY); 511 break; 512 case Opt_flush_merge: 513 set_opt(sbi, FLUSH_MERGE); 514 break; 515 case Opt_noflush_merge: 516 clear_opt(sbi, FLUSH_MERGE); 517 break; 518 case Opt_nobarrier: 519 set_opt(sbi, NOBARRIER); 520 break; 521 case Opt_fastboot: 522 set_opt(sbi, FASTBOOT); 523 break; 524 case Opt_extent_cache: 525 set_opt(sbi, EXTENT_CACHE); 526 break; 527 case Opt_noextent_cache: 528 clear_opt(sbi, EXTENT_CACHE); 529 break; 530 case Opt_noinline_data: 531 clear_opt(sbi, INLINE_DATA); 532 break; 533 case Opt_data_flush: 534 set_opt(sbi, DATA_FLUSH); 535 break; 536 case Opt_mode: 537 name = match_strdup(&args[0]); 538 539 if (!name) 540 return -ENOMEM; 541 if (strlen(name) == 8 && 542 !strncmp(name, "adaptive", 8)) { 543 if (f2fs_sb_mounted_blkzoned(sb)) { 544 f2fs_msg(sb, KERN_WARNING, 545 "adaptive mode is not allowed with " 546 "zoned block device feature"); 547 kfree(name); 548 return -EINVAL; 549 } 550 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 551 } else if (strlen(name) == 3 && 552 !strncmp(name, "lfs", 3)) { 553 set_opt_mode(sbi, F2FS_MOUNT_LFS); 554 } else { 555 kfree(name); 556 return -EINVAL; 557 } 558 kfree(name); 559 break; 560 case Opt_io_size_bits: 561 if (args->from && match_int(args, &arg)) 562 return -EINVAL; 563 if (arg > __ilog2_u32(BIO_MAX_PAGES)) { 564 f2fs_msg(sb, KERN_WARNING, 565 "Not support %d, larger than %d", 566 1 << arg, BIO_MAX_PAGES); 567 return -EINVAL; 568 } 569 sbi->write_io_size_bits = arg; 570 break; 571 case Opt_fault_injection: 572 if (args->from && match_int(args, &arg)) 573 return -EINVAL; 574 #ifdef CONFIG_F2FS_FAULT_INJECTION 575 f2fs_build_fault_attr(sbi, arg); 576 set_opt(sbi, FAULT_INJECTION); 577 #else 578 f2fs_msg(sb, KERN_INFO, 579 "FAULT_INJECTION was not selected"); 580 #endif 581 break; 582 case Opt_lazytime: 583 sb->s_flags |= MS_LAZYTIME; 584 break; 585 case Opt_nolazytime: 586 sb->s_flags &= ~MS_LAZYTIME; 587 break; 588 default: 589 f2fs_msg(sb, KERN_ERR, 590 "Unrecognized mount option \"%s\" or missing value", 591 p); 592 return -EINVAL; 593 } 594 } 595 596 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 597 f2fs_msg(sb, KERN_ERR, 598 "Should set mode=lfs with %uKB-sized IO", 599 F2FS_IO_SIZE_KB(sbi)); 600 return -EINVAL; 601 } 602 return 0; 603 } 604 605 static struct inode *f2fs_alloc_inode(struct super_block *sb) 606 { 607 struct f2fs_inode_info *fi; 608 609 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 610 if (!fi) 611 return NULL; 612 613 init_once((void *) fi); 614 615 /* Initialize f2fs-specific inode info */ 616 fi->vfs_inode.i_version = 1; 617 atomic_set(&fi->dirty_pages, 0); 618 fi->i_current_depth = 1; 619 fi->i_advise = 0; 620 init_rwsem(&fi->i_sem); 621 INIT_LIST_HEAD(&fi->dirty_list); 622 INIT_LIST_HEAD(&fi->gdirty_list); 623 INIT_LIST_HEAD(&fi->inmem_pages); 624 mutex_init(&fi->inmem_lock); 625 init_rwsem(&fi->dio_rwsem[READ]); 626 init_rwsem(&fi->dio_rwsem[WRITE]); 627 628 /* Will be used by directory only */ 629 fi->i_dir_level = F2FS_SB(sb)->dir_level; 630 return &fi->vfs_inode; 631 } 632 633 static int f2fs_drop_inode(struct inode *inode) 634 { 635 int ret; 636 /* 637 * This is to avoid a deadlock condition like below. 638 * writeback_single_inode(inode) 639 * - f2fs_write_data_page 640 * - f2fs_gc -> iput -> evict 641 * - inode_wait_for_writeback(inode) 642 */ 643 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 644 if (!inode->i_nlink && !is_bad_inode(inode)) { 645 /* to avoid evict_inode call simultaneously */ 646 atomic_inc(&inode->i_count); 647 spin_unlock(&inode->i_lock); 648 649 /* some remained atomic pages should discarded */ 650 if (f2fs_is_atomic_file(inode)) 651 drop_inmem_pages(inode); 652 653 /* should remain fi->extent_tree for writepage */ 654 f2fs_destroy_extent_node(inode); 655 656 sb_start_intwrite(inode->i_sb); 657 f2fs_i_size_write(inode, 0); 658 659 if (F2FS_HAS_BLOCKS(inode)) 660 f2fs_truncate(inode); 661 662 sb_end_intwrite(inode->i_sb); 663 664 fscrypt_put_encryption_info(inode, NULL); 665 spin_lock(&inode->i_lock); 666 atomic_dec(&inode->i_count); 667 } 668 trace_f2fs_drop_inode(inode, 0); 669 return 0; 670 } 671 ret = generic_drop_inode(inode); 672 trace_f2fs_drop_inode(inode, ret); 673 return ret; 674 } 675 676 int f2fs_inode_dirtied(struct inode *inode, bool sync) 677 { 678 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 679 int ret = 0; 680 681 spin_lock(&sbi->inode_lock[DIRTY_META]); 682 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 683 ret = 1; 684 } else { 685 set_inode_flag(inode, FI_DIRTY_INODE); 686 stat_inc_dirty_inode(sbi, DIRTY_META); 687 } 688 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 689 list_add_tail(&F2FS_I(inode)->gdirty_list, 690 &sbi->inode_list[DIRTY_META]); 691 inc_page_count(sbi, F2FS_DIRTY_IMETA); 692 } 693 spin_unlock(&sbi->inode_lock[DIRTY_META]); 694 return ret; 695 } 696 697 void f2fs_inode_synced(struct inode *inode) 698 { 699 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 700 701 spin_lock(&sbi->inode_lock[DIRTY_META]); 702 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 703 spin_unlock(&sbi->inode_lock[DIRTY_META]); 704 return; 705 } 706 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 707 list_del_init(&F2FS_I(inode)->gdirty_list); 708 dec_page_count(sbi, F2FS_DIRTY_IMETA); 709 } 710 clear_inode_flag(inode, FI_DIRTY_INODE); 711 clear_inode_flag(inode, FI_AUTO_RECOVER); 712 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 713 spin_unlock(&sbi->inode_lock[DIRTY_META]); 714 } 715 716 /* 717 * f2fs_dirty_inode() is called from __mark_inode_dirty() 718 * 719 * We should call set_dirty_inode to write the dirty inode through write_inode. 720 */ 721 static void f2fs_dirty_inode(struct inode *inode, int flags) 722 { 723 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 724 725 if (inode->i_ino == F2FS_NODE_INO(sbi) || 726 inode->i_ino == F2FS_META_INO(sbi)) 727 return; 728 729 if (flags == I_DIRTY_TIME) 730 return; 731 732 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 733 clear_inode_flag(inode, FI_AUTO_RECOVER); 734 735 f2fs_inode_dirtied(inode, false); 736 } 737 738 static void f2fs_i_callback(struct rcu_head *head) 739 { 740 struct inode *inode = container_of(head, struct inode, i_rcu); 741 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 742 } 743 744 static void f2fs_destroy_inode(struct inode *inode) 745 { 746 call_rcu(&inode->i_rcu, f2fs_i_callback); 747 } 748 749 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 750 { 751 percpu_counter_destroy(&sbi->alloc_valid_block_count); 752 percpu_counter_destroy(&sbi->total_valid_inode_count); 753 } 754 755 static void destroy_device_list(struct f2fs_sb_info *sbi) 756 { 757 int i; 758 759 for (i = 0; i < sbi->s_ndevs; i++) { 760 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 761 #ifdef CONFIG_BLK_DEV_ZONED 762 kfree(FDEV(i).blkz_type); 763 #endif 764 } 765 kfree(sbi->devs); 766 } 767 768 static void f2fs_put_super(struct super_block *sb) 769 { 770 struct f2fs_sb_info *sbi = F2FS_SB(sb); 771 772 if (sbi->s_proc) { 773 remove_proc_entry("segment_info", sbi->s_proc); 774 remove_proc_entry("segment_bits", sbi->s_proc); 775 remove_proc_entry(sb->s_id, f2fs_proc_root); 776 } 777 kobject_del(&sbi->s_kobj); 778 779 stop_gc_thread(sbi); 780 781 /* prevent remaining shrinker jobs */ 782 mutex_lock(&sbi->umount_mutex); 783 784 /* 785 * We don't need to do checkpoint when superblock is clean. 786 * But, the previous checkpoint was not done by umount, it needs to do 787 * clean checkpoint again. 788 */ 789 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 790 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 791 struct cp_control cpc = { 792 .reason = CP_UMOUNT, 793 }; 794 write_checkpoint(sbi, &cpc); 795 } 796 797 /* be sure to wait for any on-going discard commands */ 798 f2fs_wait_discard_bios(sbi); 799 800 if (!sbi->discard_blks) { 801 struct cp_control cpc = { 802 .reason = CP_UMOUNT | CP_TRIMMED, 803 }; 804 write_checkpoint(sbi, &cpc); 805 } 806 807 /* write_checkpoint can update stat informaion */ 808 f2fs_destroy_stats(sbi); 809 810 /* 811 * normally superblock is clean, so we need to release this. 812 * In addition, EIO will skip do checkpoint, we need this as well. 813 */ 814 release_ino_entry(sbi, true); 815 816 f2fs_leave_shrinker(sbi); 817 mutex_unlock(&sbi->umount_mutex); 818 819 /* our cp_error case, we can wait for any writeback page */ 820 f2fs_flush_merged_bios(sbi); 821 822 iput(sbi->node_inode); 823 iput(sbi->meta_inode); 824 825 /* destroy f2fs internal modules */ 826 destroy_node_manager(sbi); 827 destroy_segment_manager(sbi); 828 829 kfree(sbi->ckpt); 830 kobject_put(&sbi->s_kobj); 831 wait_for_completion(&sbi->s_kobj_unregister); 832 833 sb->s_fs_info = NULL; 834 if (sbi->s_chksum_driver) 835 crypto_free_shash(sbi->s_chksum_driver); 836 kfree(sbi->raw_super); 837 838 destroy_device_list(sbi); 839 mempool_destroy(sbi->write_io_dummy); 840 destroy_percpu_info(sbi); 841 kfree(sbi); 842 } 843 844 int f2fs_sync_fs(struct super_block *sb, int sync) 845 { 846 struct f2fs_sb_info *sbi = F2FS_SB(sb); 847 int err = 0; 848 849 trace_f2fs_sync_fs(sb, sync); 850 851 if (sync) { 852 struct cp_control cpc; 853 854 cpc.reason = __get_cp_reason(sbi); 855 856 mutex_lock(&sbi->gc_mutex); 857 err = write_checkpoint(sbi, &cpc); 858 mutex_unlock(&sbi->gc_mutex); 859 } 860 f2fs_trace_ios(NULL, 1); 861 862 return err; 863 } 864 865 static int f2fs_freeze(struct super_block *sb) 866 { 867 if (f2fs_readonly(sb)) 868 return 0; 869 870 /* IO error happened before */ 871 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 872 return -EIO; 873 874 /* must be clean, since sync_filesystem() was already called */ 875 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 876 return -EINVAL; 877 return 0; 878 } 879 880 static int f2fs_unfreeze(struct super_block *sb) 881 { 882 return 0; 883 } 884 885 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 886 { 887 struct super_block *sb = dentry->d_sb; 888 struct f2fs_sb_info *sbi = F2FS_SB(sb); 889 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 890 block_t total_count, user_block_count, start_count, ovp_count; 891 892 total_count = le64_to_cpu(sbi->raw_super->block_count); 893 user_block_count = sbi->user_block_count; 894 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 895 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 896 buf->f_type = F2FS_SUPER_MAGIC; 897 buf->f_bsize = sbi->blocksize; 898 899 buf->f_blocks = total_count - start_count; 900 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count; 901 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 902 903 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 904 buf->f_ffree = min(buf->f_files - valid_node_count(sbi), 905 buf->f_bavail); 906 907 buf->f_namelen = F2FS_NAME_LEN; 908 buf->f_fsid.val[0] = (u32)id; 909 buf->f_fsid.val[1] = (u32)(id >> 32); 910 911 return 0; 912 } 913 914 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 915 { 916 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 917 918 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 919 if (test_opt(sbi, FORCE_FG_GC)) 920 seq_printf(seq, ",background_gc=%s", "sync"); 921 else 922 seq_printf(seq, ",background_gc=%s", "on"); 923 } else { 924 seq_printf(seq, ",background_gc=%s", "off"); 925 } 926 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 927 seq_puts(seq, ",disable_roll_forward"); 928 if (test_opt(sbi, DISCARD)) 929 seq_puts(seq, ",discard"); 930 if (test_opt(sbi, NOHEAP)) 931 seq_puts(seq, ",no_heap"); 932 else 933 seq_puts(seq, ",heap"); 934 #ifdef CONFIG_F2FS_FS_XATTR 935 if (test_opt(sbi, XATTR_USER)) 936 seq_puts(seq, ",user_xattr"); 937 else 938 seq_puts(seq, ",nouser_xattr"); 939 if (test_opt(sbi, INLINE_XATTR)) 940 seq_puts(seq, ",inline_xattr"); 941 else 942 seq_puts(seq, ",noinline_xattr"); 943 #endif 944 #ifdef CONFIG_F2FS_FS_POSIX_ACL 945 if (test_opt(sbi, POSIX_ACL)) 946 seq_puts(seq, ",acl"); 947 else 948 seq_puts(seq, ",noacl"); 949 #endif 950 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 951 seq_puts(seq, ",disable_ext_identify"); 952 if (test_opt(sbi, INLINE_DATA)) 953 seq_puts(seq, ",inline_data"); 954 else 955 seq_puts(seq, ",noinline_data"); 956 if (test_opt(sbi, INLINE_DENTRY)) 957 seq_puts(seq, ",inline_dentry"); 958 else 959 seq_puts(seq, ",noinline_dentry"); 960 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 961 seq_puts(seq, ",flush_merge"); 962 if (test_opt(sbi, NOBARRIER)) 963 seq_puts(seq, ",nobarrier"); 964 if (test_opt(sbi, FASTBOOT)) 965 seq_puts(seq, ",fastboot"); 966 if (test_opt(sbi, EXTENT_CACHE)) 967 seq_puts(seq, ",extent_cache"); 968 else 969 seq_puts(seq, ",noextent_cache"); 970 if (test_opt(sbi, DATA_FLUSH)) 971 seq_puts(seq, ",data_flush"); 972 973 seq_puts(seq, ",mode="); 974 if (test_opt(sbi, ADAPTIVE)) 975 seq_puts(seq, "adaptive"); 976 else if (test_opt(sbi, LFS)) 977 seq_puts(seq, "lfs"); 978 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 979 if (F2FS_IO_SIZE_BITS(sbi)) 980 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi)); 981 #ifdef CONFIG_F2FS_FAULT_INJECTION 982 if (test_opt(sbi, FAULT_INJECTION)) 983 seq_puts(seq, ",fault_injection"); 984 #endif 985 986 return 0; 987 } 988 989 static int segment_info_seq_show(struct seq_file *seq, void *offset) 990 { 991 struct super_block *sb = seq->private; 992 struct f2fs_sb_info *sbi = F2FS_SB(sb); 993 unsigned int total_segs = 994 le32_to_cpu(sbi->raw_super->segment_count_main); 995 int i; 996 997 seq_puts(seq, "format: segment_type|valid_blocks\n" 998 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 999 1000 for (i = 0; i < total_segs; i++) { 1001 struct seg_entry *se = get_seg_entry(sbi, i); 1002 1003 if ((i % 10) == 0) 1004 seq_printf(seq, "%-10d", i); 1005 seq_printf(seq, "%d|%-3u", se->type, 1006 get_valid_blocks(sbi, i, false)); 1007 if ((i % 10) == 9 || i == (total_segs - 1)) 1008 seq_putc(seq, '\n'); 1009 else 1010 seq_putc(seq, ' '); 1011 } 1012 1013 return 0; 1014 } 1015 1016 static int segment_bits_seq_show(struct seq_file *seq, void *offset) 1017 { 1018 struct super_block *sb = seq->private; 1019 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1020 unsigned int total_segs = 1021 le32_to_cpu(sbi->raw_super->segment_count_main); 1022 int i, j; 1023 1024 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n" 1025 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 1026 1027 for (i = 0; i < total_segs; i++) { 1028 struct seg_entry *se = get_seg_entry(sbi, i); 1029 1030 seq_printf(seq, "%-10d", i); 1031 seq_printf(seq, "%d|%-3u|", se->type, 1032 get_valid_blocks(sbi, i, false)); 1033 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) 1034 seq_printf(seq, " %.2x", se->cur_valid_map[j]); 1035 seq_putc(seq, '\n'); 1036 } 1037 return 0; 1038 } 1039 1040 #define F2FS_PROC_FILE_DEF(_name) \ 1041 static int _name##_open_fs(struct inode *inode, struct file *file) \ 1042 { \ 1043 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \ 1044 } \ 1045 \ 1046 static const struct file_operations f2fs_seq_##_name##_fops = { \ 1047 .open = _name##_open_fs, \ 1048 .read = seq_read, \ 1049 .llseek = seq_lseek, \ 1050 .release = single_release, \ 1051 }; 1052 1053 F2FS_PROC_FILE_DEF(segment_info); 1054 F2FS_PROC_FILE_DEF(segment_bits); 1055 1056 static void default_options(struct f2fs_sb_info *sbi) 1057 { 1058 /* init some FS parameters */ 1059 sbi->active_logs = NR_CURSEG_TYPE; 1060 1061 set_opt(sbi, BG_GC); 1062 set_opt(sbi, INLINE_XATTR); 1063 set_opt(sbi, INLINE_DATA); 1064 set_opt(sbi, INLINE_DENTRY); 1065 set_opt(sbi, EXTENT_CACHE); 1066 set_opt(sbi, NOHEAP); 1067 sbi->sb->s_flags |= MS_LAZYTIME; 1068 set_opt(sbi, FLUSH_MERGE); 1069 if (f2fs_sb_mounted_blkzoned(sbi->sb)) { 1070 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1071 set_opt(sbi, DISCARD); 1072 } else { 1073 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1074 } 1075 1076 #ifdef CONFIG_F2FS_FS_XATTR 1077 set_opt(sbi, XATTR_USER); 1078 #endif 1079 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1080 set_opt(sbi, POSIX_ACL); 1081 #endif 1082 1083 #ifdef CONFIG_F2FS_FAULT_INJECTION 1084 f2fs_build_fault_attr(sbi, 0); 1085 #endif 1086 } 1087 1088 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1089 { 1090 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1091 struct f2fs_mount_info org_mount_opt; 1092 int err, active_logs; 1093 bool need_restart_gc = false; 1094 bool need_stop_gc = false; 1095 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1096 #ifdef CONFIG_F2FS_FAULT_INJECTION 1097 struct f2fs_fault_info ffi = sbi->fault_info; 1098 #endif 1099 1100 /* 1101 * Save the old mount options in case we 1102 * need to restore them. 1103 */ 1104 org_mount_opt = sbi->mount_opt; 1105 active_logs = sbi->active_logs; 1106 1107 /* recover superblocks we couldn't write due to previous RO mount */ 1108 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1109 err = f2fs_commit_super(sbi, false); 1110 f2fs_msg(sb, KERN_INFO, 1111 "Try to recover all the superblocks, ret: %d", err); 1112 if (!err) 1113 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1114 } 1115 1116 sbi->mount_opt.opt = 0; 1117 default_options(sbi); 1118 1119 /* parse mount options */ 1120 err = parse_options(sb, data); 1121 if (err) 1122 goto restore_opts; 1123 1124 /* 1125 * Previous and new state of filesystem is RO, 1126 * so skip checking GC and FLUSH_MERGE conditions. 1127 */ 1128 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 1129 goto skip; 1130 1131 /* disallow enable/disable extent_cache dynamically */ 1132 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1133 err = -EINVAL; 1134 f2fs_msg(sbi->sb, KERN_WARNING, 1135 "switch extent_cache option is not allowed"); 1136 goto restore_opts; 1137 } 1138 1139 /* 1140 * We stop the GC thread if FS is mounted as RO 1141 * or if background_gc = off is passed in mount 1142 * option. Also sync the filesystem. 1143 */ 1144 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 1145 if (sbi->gc_thread) { 1146 stop_gc_thread(sbi); 1147 need_restart_gc = true; 1148 } 1149 } else if (!sbi->gc_thread) { 1150 err = start_gc_thread(sbi); 1151 if (err) 1152 goto restore_opts; 1153 need_stop_gc = true; 1154 } 1155 1156 if (*flags & MS_RDONLY) { 1157 writeback_inodes_sb(sb, WB_REASON_SYNC); 1158 sync_inodes_sb(sb); 1159 1160 set_sbi_flag(sbi, SBI_IS_DIRTY); 1161 set_sbi_flag(sbi, SBI_IS_CLOSE); 1162 f2fs_sync_fs(sb, 1); 1163 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1164 } 1165 1166 /* 1167 * We stop issue flush thread if FS is mounted as RO 1168 * or if flush_merge is not passed in mount option. 1169 */ 1170 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1171 clear_opt(sbi, FLUSH_MERGE); 1172 destroy_flush_cmd_control(sbi, false); 1173 } else { 1174 err = create_flush_cmd_control(sbi); 1175 if (err) 1176 goto restore_gc; 1177 } 1178 skip: 1179 /* Update the POSIXACL Flag */ 1180 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1181 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1182 1183 return 0; 1184 restore_gc: 1185 if (need_restart_gc) { 1186 if (start_gc_thread(sbi)) 1187 f2fs_msg(sbi->sb, KERN_WARNING, 1188 "background gc thread has stopped"); 1189 } else if (need_stop_gc) { 1190 stop_gc_thread(sbi); 1191 } 1192 restore_opts: 1193 sbi->mount_opt = org_mount_opt; 1194 sbi->active_logs = active_logs; 1195 #ifdef CONFIG_F2FS_FAULT_INJECTION 1196 sbi->fault_info = ffi; 1197 #endif 1198 return err; 1199 } 1200 1201 static struct super_operations f2fs_sops = { 1202 .alloc_inode = f2fs_alloc_inode, 1203 .drop_inode = f2fs_drop_inode, 1204 .destroy_inode = f2fs_destroy_inode, 1205 .write_inode = f2fs_write_inode, 1206 .dirty_inode = f2fs_dirty_inode, 1207 .show_options = f2fs_show_options, 1208 .evict_inode = f2fs_evict_inode, 1209 .put_super = f2fs_put_super, 1210 .sync_fs = f2fs_sync_fs, 1211 .freeze_fs = f2fs_freeze, 1212 .unfreeze_fs = f2fs_unfreeze, 1213 .statfs = f2fs_statfs, 1214 .remount_fs = f2fs_remount, 1215 }; 1216 1217 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1218 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1219 { 1220 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1221 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1222 ctx, len, NULL); 1223 } 1224 1225 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1226 void *fs_data) 1227 { 1228 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1229 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1230 ctx, len, fs_data, XATTR_CREATE); 1231 } 1232 1233 static unsigned f2fs_max_namelen(struct inode *inode) 1234 { 1235 return S_ISLNK(inode->i_mode) ? 1236 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1237 } 1238 1239 static const struct fscrypt_operations f2fs_cryptops = { 1240 .key_prefix = "f2fs:", 1241 .get_context = f2fs_get_context, 1242 .set_context = f2fs_set_context, 1243 .is_encrypted = f2fs_encrypted_inode, 1244 .empty_dir = f2fs_empty_dir, 1245 .max_namelen = f2fs_max_namelen, 1246 }; 1247 #else 1248 static const struct fscrypt_operations f2fs_cryptops = { 1249 .is_encrypted = f2fs_encrypted_inode, 1250 }; 1251 #endif 1252 1253 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1254 u64 ino, u32 generation) 1255 { 1256 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1257 struct inode *inode; 1258 1259 if (check_nid_range(sbi, ino)) 1260 return ERR_PTR(-ESTALE); 1261 1262 /* 1263 * f2fs_iget isn't quite right if the inode is currently unallocated! 1264 * However f2fs_iget currently does appropriate checks to handle stale 1265 * inodes so everything is OK. 1266 */ 1267 inode = f2fs_iget(sb, ino); 1268 if (IS_ERR(inode)) 1269 return ERR_CAST(inode); 1270 if (unlikely(generation && inode->i_generation != generation)) { 1271 /* we didn't find the right inode.. */ 1272 iput(inode); 1273 return ERR_PTR(-ESTALE); 1274 } 1275 return inode; 1276 } 1277 1278 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1279 int fh_len, int fh_type) 1280 { 1281 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1282 f2fs_nfs_get_inode); 1283 } 1284 1285 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1286 int fh_len, int fh_type) 1287 { 1288 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1289 f2fs_nfs_get_inode); 1290 } 1291 1292 static const struct export_operations f2fs_export_ops = { 1293 .fh_to_dentry = f2fs_fh_to_dentry, 1294 .fh_to_parent = f2fs_fh_to_parent, 1295 .get_parent = f2fs_get_parent, 1296 }; 1297 1298 static loff_t max_file_blocks(void) 1299 { 1300 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 1301 loff_t leaf_count = ADDRS_PER_BLOCK; 1302 1303 /* two direct node blocks */ 1304 result += (leaf_count * 2); 1305 1306 /* two indirect node blocks */ 1307 leaf_count *= NIDS_PER_BLOCK; 1308 result += (leaf_count * 2); 1309 1310 /* one double indirect node block */ 1311 leaf_count *= NIDS_PER_BLOCK; 1312 result += leaf_count; 1313 1314 return result; 1315 } 1316 1317 static int __f2fs_commit_super(struct buffer_head *bh, 1318 struct f2fs_super_block *super) 1319 { 1320 lock_buffer(bh); 1321 if (super) 1322 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 1323 set_buffer_uptodate(bh); 1324 set_buffer_dirty(bh); 1325 unlock_buffer(bh); 1326 1327 /* it's rare case, we can do fua all the time */ 1328 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 1329 } 1330 1331 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 1332 struct buffer_head *bh) 1333 { 1334 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1335 (bh->b_data + F2FS_SUPER_OFFSET); 1336 struct super_block *sb = sbi->sb; 1337 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1338 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 1339 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 1340 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 1341 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1342 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1343 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 1344 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 1345 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 1346 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 1347 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 1348 u32 segment_count = le32_to_cpu(raw_super->segment_count); 1349 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1350 u64 main_end_blkaddr = main_blkaddr + 1351 (segment_count_main << log_blocks_per_seg); 1352 u64 seg_end_blkaddr = segment0_blkaddr + 1353 (segment_count << log_blocks_per_seg); 1354 1355 if (segment0_blkaddr != cp_blkaddr) { 1356 f2fs_msg(sb, KERN_INFO, 1357 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 1358 segment0_blkaddr, cp_blkaddr); 1359 return true; 1360 } 1361 1362 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 1363 sit_blkaddr) { 1364 f2fs_msg(sb, KERN_INFO, 1365 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 1366 cp_blkaddr, sit_blkaddr, 1367 segment_count_ckpt << log_blocks_per_seg); 1368 return true; 1369 } 1370 1371 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 1372 nat_blkaddr) { 1373 f2fs_msg(sb, KERN_INFO, 1374 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 1375 sit_blkaddr, nat_blkaddr, 1376 segment_count_sit << log_blocks_per_seg); 1377 return true; 1378 } 1379 1380 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 1381 ssa_blkaddr) { 1382 f2fs_msg(sb, KERN_INFO, 1383 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 1384 nat_blkaddr, ssa_blkaddr, 1385 segment_count_nat << log_blocks_per_seg); 1386 return true; 1387 } 1388 1389 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 1390 main_blkaddr) { 1391 f2fs_msg(sb, KERN_INFO, 1392 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 1393 ssa_blkaddr, main_blkaddr, 1394 segment_count_ssa << log_blocks_per_seg); 1395 return true; 1396 } 1397 1398 if (main_end_blkaddr > seg_end_blkaddr) { 1399 f2fs_msg(sb, KERN_INFO, 1400 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 1401 main_blkaddr, 1402 segment0_blkaddr + 1403 (segment_count << log_blocks_per_seg), 1404 segment_count_main << log_blocks_per_seg); 1405 return true; 1406 } else if (main_end_blkaddr < seg_end_blkaddr) { 1407 int err = 0; 1408 char *res; 1409 1410 /* fix in-memory information all the time */ 1411 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 1412 segment0_blkaddr) >> log_blocks_per_seg); 1413 1414 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 1415 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1416 res = "internally"; 1417 } else { 1418 err = __f2fs_commit_super(bh, NULL); 1419 res = err ? "failed" : "done"; 1420 } 1421 f2fs_msg(sb, KERN_INFO, 1422 "Fix alignment : %s, start(%u) end(%u) block(%u)", 1423 res, main_blkaddr, 1424 segment0_blkaddr + 1425 (segment_count << log_blocks_per_seg), 1426 segment_count_main << log_blocks_per_seg); 1427 if (err) 1428 return true; 1429 } 1430 return false; 1431 } 1432 1433 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 1434 struct buffer_head *bh) 1435 { 1436 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1437 (bh->b_data + F2FS_SUPER_OFFSET); 1438 struct super_block *sb = sbi->sb; 1439 unsigned int blocksize; 1440 1441 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 1442 f2fs_msg(sb, KERN_INFO, 1443 "Magic Mismatch, valid(0x%x) - read(0x%x)", 1444 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 1445 return 1; 1446 } 1447 1448 /* Currently, support only 4KB page cache size */ 1449 if (F2FS_BLKSIZE != PAGE_SIZE) { 1450 f2fs_msg(sb, KERN_INFO, 1451 "Invalid page_cache_size (%lu), supports only 4KB\n", 1452 PAGE_SIZE); 1453 return 1; 1454 } 1455 1456 /* Currently, support only 4KB block size */ 1457 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 1458 if (blocksize != F2FS_BLKSIZE) { 1459 f2fs_msg(sb, KERN_INFO, 1460 "Invalid blocksize (%u), supports only 4KB\n", 1461 blocksize); 1462 return 1; 1463 } 1464 1465 /* check log blocks per segment */ 1466 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 1467 f2fs_msg(sb, KERN_INFO, 1468 "Invalid log blocks per segment (%u)\n", 1469 le32_to_cpu(raw_super->log_blocks_per_seg)); 1470 return 1; 1471 } 1472 1473 /* Currently, support 512/1024/2048/4096 bytes sector size */ 1474 if (le32_to_cpu(raw_super->log_sectorsize) > 1475 F2FS_MAX_LOG_SECTOR_SIZE || 1476 le32_to_cpu(raw_super->log_sectorsize) < 1477 F2FS_MIN_LOG_SECTOR_SIZE) { 1478 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 1479 le32_to_cpu(raw_super->log_sectorsize)); 1480 return 1; 1481 } 1482 if (le32_to_cpu(raw_super->log_sectors_per_block) + 1483 le32_to_cpu(raw_super->log_sectorsize) != 1484 F2FS_MAX_LOG_SECTOR_SIZE) { 1485 f2fs_msg(sb, KERN_INFO, 1486 "Invalid log sectors per block(%u) log sectorsize(%u)", 1487 le32_to_cpu(raw_super->log_sectors_per_block), 1488 le32_to_cpu(raw_super->log_sectorsize)); 1489 return 1; 1490 } 1491 1492 /* check reserved ino info */ 1493 if (le32_to_cpu(raw_super->node_ino) != 1 || 1494 le32_to_cpu(raw_super->meta_ino) != 2 || 1495 le32_to_cpu(raw_super->root_ino) != 3) { 1496 f2fs_msg(sb, KERN_INFO, 1497 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 1498 le32_to_cpu(raw_super->node_ino), 1499 le32_to_cpu(raw_super->meta_ino), 1500 le32_to_cpu(raw_super->root_ino)); 1501 return 1; 1502 } 1503 1504 if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) { 1505 f2fs_msg(sb, KERN_INFO, 1506 "Invalid segment count (%u)", 1507 le32_to_cpu(raw_super->segment_count)); 1508 return 1; 1509 } 1510 1511 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 1512 if (sanity_check_area_boundary(sbi, bh)) 1513 return 1; 1514 1515 return 0; 1516 } 1517 1518 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 1519 { 1520 unsigned int total, fsmeta; 1521 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1522 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1523 unsigned int ovp_segments, reserved_segments; 1524 1525 total = le32_to_cpu(raw_super->segment_count); 1526 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 1527 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 1528 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 1529 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 1530 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 1531 1532 if (unlikely(fsmeta >= total)) 1533 return 1; 1534 1535 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 1536 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 1537 1538 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 1539 ovp_segments == 0 || reserved_segments == 0)) { 1540 f2fs_msg(sbi->sb, KERN_ERR, 1541 "Wrong layout: check mkfs.f2fs version"); 1542 return 1; 1543 } 1544 1545 if (unlikely(f2fs_cp_error(sbi))) { 1546 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 1547 return 1; 1548 } 1549 return 0; 1550 } 1551 1552 static void init_sb_info(struct f2fs_sb_info *sbi) 1553 { 1554 struct f2fs_super_block *raw_super = sbi->raw_super; 1555 int i; 1556 1557 sbi->log_sectors_per_block = 1558 le32_to_cpu(raw_super->log_sectors_per_block); 1559 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1560 sbi->blocksize = 1 << sbi->log_blocksize; 1561 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1562 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1563 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1564 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1565 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1566 sbi->total_node_count = 1567 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1568 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1569 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1570 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1571 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1572 sbi->cur_victim_sec = NULL_SECNO; 1573 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1574 1575 sbi->dir_level = DEF_DIR_LEVEL; 1576 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 1577 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 1578 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1579 1580 for (i = 0; i < NR_COUNT_TYPE; i++) 1581 atomic_set(&sbi->nr_pages[i], 0); 1582 1583 atomic_set(&sbi->wb_sync_req, 0); 1584 1585 INIT_LIST_HEAD(&sbi->s_list); 1586 mutex_init(&sbi->umount_mutex); 1587 mutex_init(&sbi->wio_mutex[NODE]); 1588 mutex_init(&sbi->wio_mutex[DATA]); 1589 spin_lock_init(&sbi->cp_lock); 1590 } 1591 1592 static int init_percpu_info(struct f2fs_sb_info *sbi) 1593 { 1594 int err; 1595 1596 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 1597 if (err) 1598 return err; 1599 1600 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 1601 GFP_KERNEL); 1602 } 1603 1604 #ifdef CONFIG_BLK_DEV_ZONED 1605 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 1606 { 1607 struct block_device *bdev = FDEV(devi).bdev; 1608 sector_t nr_sectors = bdev->bd_part->nr_sects; 1609 sector_t sector = 0; 1610 struct blk_zone *zones; 1611 unsigned int i, nr_zones; 1612 unsigned int n = 0; 1613 int err = -EIO; 1614 1615 if (!f2fs_sb_mounted_blkzoned(sbi->sb)) 1616 return 0; 1617 1618 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 1619 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 1620 return -EINVAL; 1621 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 1622 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 1623 __ilog2_u32(sbi->blocks_per_blkz)) 1624 return -EINVAL; 1625 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 1626 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 1627 sbi->log_blocks_per_blkz; 1628 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 1629 FDEV(devi).nr_blkz++; 1630 1631 FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL); 1632 if (!FDEV(devi).blkz_type) 1633 return -ENOMEM; 1634 1635 #define F2FS_REPORT_NR_ZONES 4096 1636 1637 zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone), 1638 GFP_KERNEL); 1639 if (!zones) 1640 return -ENOMEM; 1641 1642 /* Get block zones type */ 1643 while (zones && sector < nr_sectors) { 1644 1645 nr_zones = F2FS_REPORT_NR_ZONES; 1646 err = blkdev_report_zones(bdev, sector, 1647 zones, &nr_zones, 1648 GFP_KERNEL); 1649 if (err) 1650 break; 1651 if (!nr_zones) { 1652 err = -EIO; 1653 break; 1654 } 1655 1656 for (i = 0; i < nr_zones; i++) { 1657 FDEV(devi).blkz_type[n] = zones[i].type; 1658 sector += zones[i].len; 1659 n++; 1660 } 1661 } 1662 1663 kfree(zones); 1664 1665 return err; 1666 } 1667 #endif 1668 1669 /* 1670 * Read f2fs raw super block. 1671 * Because we have two copies of super block, so read both of them 1672 * to get the first valid one. If any one of them is broken, we pass 1673 * them recovery flag back to the caller. 1674 */ 1675 static int read_raw_super_block(struct f2fs_sb_info *sbi, 1676 struct f2fs_super_block **raw_super, 1677 int *valid_super_block, int *recovery) 1678 { 1679 struct super_block *sb = sbi->sb; 1680 int block; 1681 struct buffer_head *bh; 1682 struct f2fs_super_block *super; 1683 int err = 0; 1684 1685 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 1686 if (!super) 1687 return -ENOMEM; 1688 1689 for (block = 0; block < 2; block++) { 1690 bh = sb_bread(sb, block); 1691 if (!bh) { 1692 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1693 block + 1); 1694 err = -EIO; 1695 continue; 1696 } 1697 1698 /* sanity checking of raw super */ 1699 if (sanity_check_raw_super(sbi, bh)) { 1700 f2fs_msg(sb, KERN_ERR, 1701 "Can't find valid F2FS filesystem in %dth superblock", 1702 block + 1); 1703 err = -EINVAL; 1704 brelse(bh); 1705 continue; 1706 } 1707 1708 if (!*raw_super) { 1709 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 1710 sizeof(*super)); 1711 *valid_super_block = block; 1712 *raw_super = super; 1713 } 1714 brelse(bh); 1715 } 1716 1717 /* Fail to read any one of the superblocks*/ 1718 if (err < 0) 1719 *recovery = 1; 1720 1721 /* No valid superblock */ 1722 if (!*raw_super) 1723 kfree(super); 1724 else 1725 err = 0; 1726 1727 return err; 1728 } 1729 1730 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1731 { 1732 struct buffer_head *bh; 1733 int err; 1734 1735 if ((recover && f2fs_readonly(sbi->sb)) || 1736 bdev_read_only(sbi->sb->s_bdev)) { 1737 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1738 return -EROFS; 1739 } 1740 1741 /* write back-up superblock first */ 1742 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); 1743 if (!bh) 1744 return -EIO; 1745 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1746 brelse(bh); 1747 1748 /* if we are in recovery path, skip writing valid superblock */ 1749 if (recover || err) 1750 return err; 1751 1752 /* write current valid superblock */ 1753 bh = sb_getblk(sbi->sb, sbi->valid_super_block); 1754 if (!bh) 1755 return -EIO; 1756 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1757 brelse(bh); 1758 return err; 1759 } 1760 1761 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 1762 { 1763 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1764 unsigned int max_devices = MAX_DEVICES; 1765 int i; 1766 1767 /* Initialize single device information */ 1768 if (!RDEV(0).path[0]) { 1769 if (!bdev_is_zoned(sbi->sb->s_bdev)) 1770 return 0; 1771 max_devices = 1; 1772 } 1773 1774 /* 1775 * Initialize multiple devices information, or single 1776 * zoned block device information. 1777 */ 1778 sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info), 1779 GFP_KERNEL); 1780 if (!sbi->devs) 1781 return -ENOMEM; 1782 1783 for (i = 0; i < max_devices; i++) { 1784 1785 if (i > 0 && !RDEV(i).path[0]) 1786 break; 1787 1788 if (max_devices == 1) { 1789 /* Single zoned block device mount */ 1790 FDEV(0).bdev = 1791 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 1792 sbi->sb->s_mode, sbi->sb->s_type); 1793 } else { 1794 /* Multi-device mount */ 1795 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 1796 FDEV(i).total_segments = 1797 le32_to_cpu(RDEV(i).total_segments); 1798 if (i == 0) { 1799 FDEV(i).start_blk = 0; 1800 FDEV(i).end_blk = FDEV(i).start_blk + 1801 (FDEV(i).total_segments << 1802 sbi->log_blocks_per_seg) - 1 + 1803 le32_to_cpu(raw_super->segment0_blkaddr); 1804 } else { 1805 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 1806 FDEV(i).end_blk = FDEV(i).start_blk + 1807 (FDEV(i).total_segments << 1808 sbi->log_blocks_per_seg) - 1; 1809 } 1810 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 1811 sbi->sb->s_mode, sbi->sb->s_type); 1812 } 1813 if (IS_ERR(FDEV(i).bdev)) 1814 return PTR_ERR(FDEV(i).bdev); 1815 1816 /* to release errored devices */ 1817 sbi->s_ndevs = i + 1; 1818 1819 #ifdef CONFIG_BLK_DEV_ZONED 1820 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 1821 !f2fs_sb_mounted_blkzoned(sbi->sb)) { 1822 f2fs_msg(sbi->sb, KERN_ERR, 1823 "Zoned block device feature not enabled\n"); 1824 return -EINVAL; 1825 } 1826 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 1827 if (init_blkz_info(sbi, i)) { 1828 f2fs_msg(sbi->sb, KERN_ERR, 1829 "Failed to initialize F2FS blkzone information"); 1830 return -EINVAL; 1831 } 1832 if (max_devices == 1) 1833 break; 1834 f2fs_msg(sbi->sb, KERN_INFO, 1835 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 1836 i, FDEV(i).path, 1837 FDEV(i).total_segments, 1838 FDEV(i).start_blk, FDEV(i).end_blk, 1839 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 1840 "Host-aware" : "Host-managed"); 1841 continue; 1842 } 1843 #endif 1844 f2fs_msg(sbi->sb, KERN_INFO, 1845 "Mount Device [%2d]: %20s, %8u, %8x - %8x", 1846 i, FDEV(i).path, 1847 FDEV(i).total_segments, 1848 FDEV(i).start_blk, FDEV(i).end_blk); 1849 } 1850 f2fs_msg(sbi->sb, KERN_INFO, 1851 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 1852 return 0; 1853 } 1854 1855 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1856 { 1857 struct f2fs_sb_info *sbi; 1858 struct f2fs_super_block *raw_super; 1859 struct inode *root; 1860 int err; 1861 bool retry = true, need_fsck = false; 1862 char *options = NULL; 1863 int recovery, i, valid_super_block; 1864 struct curseg_info *seg_i; 1865 1866 try_onemore: 1867 err = -EINVAL; 1868 raw_super = NULL; 1869 valid_super_block = -1; 1870 recovery = 0; 1871 1872 /* allocate memory for f2fs-specific super block info */ 1873 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1874 if (!sbi) 1875 return -ENOMEM; 1876 1877 sbi->sb = sb; 1878 1879 /* Load the checksum driver */ 1880 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 1881 if (IS_ERR(sbi->s_chksum_driver)) { 1882 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 1883 err = PTR_ERR(sbi->s_chksum_driver); 1884 sbi->s_chksum_driver = NULL; 1885 goto free_sbi; 1886 } 1887 1888 /* set a block size */ 1889 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1890 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1891 goto free_sbi; 1892 } 1893 1894 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 1895 &recovery); 1896 if (err) 1897 goto free_sbi; 1898 1899 sb->s_fs_info = sbi; 1900 sbi->raw_super = raw_super; 1901 1902 /* 1903 * The BLKZONED feature indicates that the drive was formatted with 1904 * zone alignment optimization. This is optional for host-aware 1905 * devices, but mandatory for host-managed zoned block devices. 1906 */ 1907 #ifndef CONFIG_BLK_DEV_ZONED 1908 if (f2fs_sb_mounted_blkzoned(sb)) { 1909 f2fs_msg(sb, KERN_ERR, 1910 "Zoned block device support is not enabled\n"); 1911 goto free_sb_buf; 1912 } 1913 #endif 1914 default_options(sbi); 1915 /* parse mount options */ 1916 options = kstrdup((const char *)data, GFP_KERNEL); 1917 if (data && !options) { 1918 err = -ENOMEM; 1919 goto free_sb_buf; 1920 } 1921 1922 err = parse_options(sb, options); 1923 if (err) 1924 goto free_options; 1925 1926 sbi->max_file_blocks = max_file_blocks(); 1927 sb->s_maxbytes = sbi->max_file_blocks << 1928 le32_to_cpu(raw_super->log_blocksize); 1929 sb->s_max_links = F2FS_LINK_MAX; 1930 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1931 1932 sb->s_op = &f2fs_sops; 1933 sb->s_cop = &f2fs_cryptops; 1934 sb->s_xattr = f2fs_xattr_handlers; 1935 sb->s_export_op = &f2fs_export_ops; 1936 sb->s_magic = F2FS_SUPER_MAGIC; 1937 sb->s_time_gran = 1; 1938 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1939 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1940 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1941 1942 /* init f2fs-specific super block info */ 1943 sbi->valid_super_block = valid_super_block; 1944 mutex_init(&sbi->gc_mutex); 1945 mutex_init(&sbi->cp_mutex); 1946 init_rwsem(&sbi->node_write); 1947 init_rwsem(&sbi->node_change); 1948 1949 /* disallow all the data/node/meta page writes */ 1950 set_sbi_flag(sbi, SBI_POR_DOING); 1951 spin_lock_init(&sbi->stat_lock); 1952 1953 init_rwsem(&sbi->read_io.io_rwsem); 1954 sbi->read_io.sbi = sbi; 1955 sbi->read_io.bio = NULL; 1956 for (i = 0; i < NR_PAGE_TYPE; i++) { 1957 init_rwsem(&sbi->write_io[i].io_rwsem); 1958 sbi->write_io[i].sbi = sbi; 1959 sbi->write_io[i].bio = NULL; 1960 } 1961 1962 init_rwsem(&sbi->cp_rwsem); 1963 init_waitqueue_head(&sbi->cp_wait); 1964 init_sb_info(sbi); 1965 1966 err = init_percpu_info(sbi); 1967 if (err) 1968 goto free_options; 1969 1970 if (F2FS_IO_SIZE(sbi) > 1) { 1971 sbi->write_io_dummy = 1972 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 1973 if (!sbi->write_io_dummy) 1974 goto free_options; 1975 } 1976 1977 /* get an inode for meta space */ 1978 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1979 if (IS_ERR(sbi->meta_inode)) { 1980 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1981 err = PTR_ERR(sbi->meta_inode); 1982 goto free_io_dummy; 1983 } 1984 1985 err = get_valid_checkpoint(sbi); 1986 if (err) { 1987 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1988 goto free_meta_inode; 1989 } 1990 1991 /* Initialize device list */ 1992 err = f2fs_scan_devices(sbi); 1993 if (err) { 1994 f2fs_msg(sb, KERN_ERR, "Failed to find devices"); 1995 goto free_devices; 1996 } 1997 1998 sbi->total_valid_node_count = 1999 le32_to_cpu(sbi->ckpt->valid_node_count); 2000 percpu_counter_set(&sbi->total_valid_inode_count, 2001 le32_to_cpu(sbi->ckpt->valid_inode_count)); 2002 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 2003 sbi->total_valid_block_count = 2004 le64_to_cpu(sbi->ckpt->valid_block_count); 2005 sbi->last_valid_block_count = sbi->total_valid_block_count; 2006 2007 for (i = 0; i < NR_INODE_TYPE; i++) { 2008 INIT_LIST_HEAD(&sbi->inode_list[i]); 2009 spin_lock_init(&sbi->inode_lock[i]); 2010 } 2011 2012 init_extent_cache_info(sbi); 2013 2014 init_ino_entry_info(sbi); 2015 2016 /* setup f2fs internal modules */ 2017 err = build_segment_manager(sbi); 2018 if (err) { 2019 f2fs_msg(sb, KERN_ERR, 2020 "Failed to initialize F2FS segment manager"); 2021 goto free_sm; 2022 } 2023 err = build_node_manager(sbi); 2024 if (err) { 2025 f2fs_msg(sb, KERN_ERR, 2026 "Failed to initialize F2FS node manager"); 2027 goto free_nm; 2028 } 2029 2030 /* For write statistics */ 2031 if (sb->s_bdev->bd_part) 2032 sbi->sectors_written_start = 2033 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 2034 2035 /* Read accumulated write IO statistics if exists */ 2036 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 2037 if (__exist_node_summaries(sbi)) 2038 sbi->kbytes_written = 2039 le64_to_cpu(seg_i->journal->info.kbytes_written); 2040 2041 build_gc_manager(sbi); 2042 2043 /* get an inode for node space */ 2044 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 2045 if (IS_ERR(sbi->node_inode)) { 2046 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 2047 err = PTR_ERR(sbi->node_inode); 2048 goto free_nm; 2049 } 2050 2051 f2fs_join_shrinker(sbi); 2052 2053 err = f2fs_build_stats(sbi); 2054 if (err) 2055 goto free_nm; 2056 2057 /* if there are nt orphan nodes free them */ 2058 err = recover_orphan_inodes(sbi); 2059 if (err) 2060 goto free_node_inode; 2061 2062 /* read root inode and dentry */ 2063 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 2064 if (IS_ERR(root)) { 2065 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 2066 err = PTR_ERR(root); 2067 goto free_node_inode; 2068 } 2069 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2070 iput(root); 2071 err = -EINVAL; 2072 goto free_node_inode; 2073 } 2074 2075 sb->s_root = d_make_root(root); /* allocate root dentry */ 2076 if (!sb->s_root) { 2077 err = -ENOMEM; 2078 goto free_root_inode; 2079 } 2080 2081 if (f2fs_proc_root) 2082 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 2083 2084 if (sbi->s_proc) { 2085 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 2086 &f2fs_seq_segment_info_fops, sb); 2087 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc, 2088 &f2fs_seq_segment_bits_fops, sb); 2089 } 2090 2091 sbi->s_kobj.kset = f2fs_kset; 2092 init_completion(&sbi->s_kobj_unregister); 2093 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 2094 "%s", sb->s_id); 2095 if (err) 2096 goto free_proc; 2097 2098 /* recover fsynced data */ 2099 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 2100 /* 2101 * mount should be failed, when device has readonly mode, and 2102 * previous checkpoint was not done by clean system shutdown. 2103 */ 2104 if (bdev_read_only(sb->s_bdev) && 2105 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 2106 err = -EROFS; 2107 goto free_kobj; 2108 } 2109 2110 if (need_fsck) 2111 set_sbi_flag(sbi, SBI_NEED_FSCK); 2112 2113 if (!retry) 2114 goto skip_recovery; 2115 2116 err = recover_fsync_data(sbi, false); 2117 if (err < 0) { 2118 need_fsck = true; 2119 f2fs_msg(sb, KERN_ERR, 2120 "Cannot recover all fsync data errno=%d", err); 2121 goto free_kobj; 2122 } 2123 } else { 2124 err = recover_fsync_data(sbi, true); 2125 2126 if (!f2fs_readonly(sb) && err > 0) { 2127 err = -EINVAL; 2128 f2fs_msg(sb, KERN_ERR, 2129 "Need to recover fsync data"); 2130 goto free_kobj; 2131 } 2132 } 2133 skip_recovery: 2134 /* recover_fsync_data() cleared this already */ 2135 clear_sbi_flag(sbi, SBI_POR_DOING); 2136 2137 /* 2138 * If filesystem is not mounted as read-only then 2139 * do start the gc_thread. 2140 */ 2141 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 2142 /* After POR, we can run background GC thread.*/ 2143 err = start_gc_thread(sbi); 2144 if (err) 2145 goto free_kobj; 2146 } 2147 kfree(options); 2148 2149 /* recover broken superblock */ 2150 if (recovery) { 2151 err = f2fs_commit_super(sbi, true); 2152 f2fs_msg(sb, KERN_INFO, 2153 "Try to recover %dth superblock, ret: %d", 2154 sbi->valid_super_block ? 1 : 2, err); 2155 } 2156 2157 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", 2158 cur_cp_version(F2FS_CKPT(sbi))); 2159 f2fs_update_time(sbi, CP_TIME); 2160 f2fs_update_time(sbi, REQ_TIME); 2161 return 0; 2162 2163 free_kobj: 2164 f2fs_sync_inode_meta(sbi); 2165 kobject_del(&sbi->s_kobj); 2166 kobject_put(&sbi->s_kobj); 2167 wait_for_completion(&sbi->s_kobj_unregister); 2168 free_proc: 2169 if (sbi->s_proc) { 2170 remove_proc_entry("segment_info", sbi->s_proc); 2171 remove_proc_entry("segment_bits", sbi->s_proc); 2172 remove_proc_entry(sb->s_id, f2fs_proc_root); 2173 } 2174 free_root_inode: 2175 dput(sb->s_root); 2176 sb->s_root = NULL; 2177 free_node_inode: 2178 truncate_inode_pages_final(NODE_MAPPING(sbi)); 2179 mutex_lock(&sbi->umount_mutex); 2180 release_ino_entry(sbi, true); 2181 f2fs_leave_shrinker(sbi); 2182 /* 2183 * Some dirty meta pages can be produced by recover_orphan_inodes() 2184 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 2185 * followed by write_checkpoint() through f2fs_write_node_pages(), which 2186 * falls into an infinite loop in sync_meta_pages(). 2187 */ 2188 truncate_inode_pages_final(META_MAPPING(sbi)); 2189 iput(sbi->node_inode); 2190 mutex_unlock(&sbi->umount_mutex); 2191 f2fs_destroy_stats(sbi); 2192 free_nm: 2193 destroy_node_manager(sbi); 2194 free_sm: 2195 destroy_segment_manager(sbi); 2196 free_devices: 2197 destroy_device_list(sbi); 2198 kfree(sbi->ckpt); 2199 free_meta_inode: 2200 make_bad_inode(sbi->meta_inode); 2201 iput(sbi->meta_inode); 2202 free_io_dummy: 2203 mempool_destroy(sbi->write_io_dummy); 2204 free_options: 2205 destroy_percpu_info(sbi); 2206 kfree(options); 2207 free_sb_buf: 2208 kfree(raw_super); 2209 free_sbi: 2210 if (sbi->s_chksum_driver) 2211 crypto_free_shash(sbi->s_chksum_driver); 2212 kfree(sbi); 2213 2214 /* give only one another chance */ 2215 if (retry) { 2216 retry = false; 2217 shrink_dcache_sb(sb); 2218 goto try_onemore; 2219 } 2220 return err; 2221 } 2222 2223 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 2224 const char *dev_name, void *data) 2225 { 2226 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 2227 } 2228 2229 static void kill_f2fs_super(struct super_block *sb) 2230 { 2231 if (sb->s_root) 2232 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 2233 kill_block_super(sb); 2234 } 2235 2236 static struct file_system_type f2fs_fs_type = { 2237 .owner = THIS_MODULE, 2238 .name = "f2fs", 2239 .mount = f2fs_mount, 2240 .kill_sb = kill_f2fs_super, 2241 .fs_flags = FS_REQUIRES_DEV, 2242 }; 2243 MODULE_ALIAS_FS("f2fs"); 2244 2245 static int __init init_inodecache(void) 2246 { 2247 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 2248 sizeof(struct f2fs_inode_info), 0, 2249 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 2250 if (!f2fs_inode_cachep) 2251 return -ENOMEM; 2252 return 0; 2253 } 2254 2255 static void destroy_inodecache(void) 2256 { 2257 /* 2258 * Make sure all delayed rcu free inodes are flushed before we 2259 * destroy cache. 2260 */ 2261 rcu_barrier(); 2262 kmem_cache_destroy(f2fs_inode_cachep); 2263 } 2264 2265 static int __init init_f2fs_fs(void) 2266 { 2267 int err; 2268 2269 f2fs_build_trace_ios(); 2270 2271 err = init_inodecache(); 2272 if (err) 2273 goto fail; 2274 err = create_node_manager_caches(); 2275 if (err) 2276 goto free_inodecache; 2277 err = create_segment_manager_caches(); 2278 if (err) 2279 goto free_node_manager_caches; 2280 err = create_checkpoint_caches(); 2281 if (err) 2282 goto free_segment_manager_caches; 2283 err = create_extent_cache(); 2284 if (err) 2285 goto free_checkpoint_caches; 2286 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 2287 if (!f2fs_kset) { 2288 err = -ENOMEM; 2289 goto free_extent_cache; 2290 } 2291 err = register_shrinker(&f2fs_shrinker_info); 2292 if (err) 2293 goto free_kset; 2294 2295 err = register_filesystem(&f2fs_fs_type); 2296 if (err) 2297 goto free_shrinker; 2298 err = f2fs_create_root_stats(); 2299 if (err) 2300 goto free_filesystem; 2301 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 2302 return 0; 2303 2304 free_filesystem: 2305 unregister_filesystem(&f2fs_fs_type); 2306 free_shrinker: 2307 unregister_shrinker(&f2fs_shrinker_info); 2308 free_kset: 2309 kset_unregister(f2fs_kset); 2310 free_extent_cache: 2311 destroy_extent_cache(); 2312 free_checkpoint_caches: 2313 destroy_checkpoint_caches(); 2314 free_segment_manager_caches: 2315 destroy_segment_manager_caches(); 2316 free_node_manager_caches: 2317 destroy_node_manager_caches(); 2318 free_inodecache: 2319 destroy_inodecache(); 2320 fail: 2321 return err; 2322 } 2323 2324 static void __exit exit_f2fs_fs(void) 2325 { 2326 remove_proc_entry("fs/f2fs", NULL); 2327 f2fs_destroy_root_stats(); 2328 unregister_filesystem(&f2fs_fs_type); 2329 unregister_shrinker(&f2fs_shrinker_info); 2330 kset_unregister(f2fs_kset); 2331 destroy_extent_cache(); 2332 destroy_checkpoint_caches(); 2333 destroy_segment_manager_caches(); 2334 destroy_node_manager_caches(); 2335 destroy_inodecache(); 2336 f2fs_destroy_trace_ios(); 2337 } 2338 2339 module_init(init_f2fs_fs) 2340 module_exit(exit_f2fs_fs) 2341 2342 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 2343 MODULE_DESCRIPTION("Flash Friendly File System"); 2344 MODULE_LICENSE("GPL"); 2345 2346