xref: /linux/fs/f2fs/super.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 char *fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_ALLOC_NID]	= "alloc nid",
48 	[FAULT_ORPHAN]		= "orphan",
49 	[FAULT_BLOCK]		= "no more block",
50 	[FAULT_DIR_DEPTH]	= "too big dir depth",
51 	[FAULT_EVICT_INODE]	= "evict_inode fail",
52 	[FAULT_TRUNCATE]	= "truncate fail",
53 	[FAULT_IO]		= "IO error",
54 	[FAULT_CHECKPOINT]	= "checkpoint error",
55 };
56 
57 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
58 						unsigned int rate)
59 {
60 	struct f2fs_fault_info *ffi = &sbi->fault_info;
61 
62 	if (rate) {
63 		atomic_set(&ffi->inject_ops, 0);
64 		ffi->inject_rate = rate;
65 		ffi->inject_type = (1 << FAULT_MAX) - 1;
66 	} else {
67 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
68 	}
69 }
70 #endif
71 
72 /* f2fs-wide shrinker description */
73 static struct shrinker f2fs_shrinker_info = {
74 	.scan_objects = f2fs_shrink_scan,
75 	.count_objects = f2fs_shrink_count,
76 	.seeks = DEFAULT_SEEKS,
77 };
78 
79 enum {
80 	Opt_gc_background,
81 	Opt_disable_roll_forward,
82 	Opt_norecovery,
83 	Opt_discard,
84 	Opt_nodiscard,
85 	Opt_noheap,
86 	Opt_heap,
87 	Opt_user_xattr,
88 	Opt_nouser_xattr,
89 	Opt_acl,
90 	Opt_noacl,
91 	Opt_active_logs,
92 	Opt_disable_ext_identify,
93 	Opt_inline_xattr,
94 	Opt_noinline_xattr,
95 	Opt_inline_data,
96 	Opt_inline_dentry,
97 	Opt_noinline_dentry,
98 	Opt_flush_merge,
99 	Opt_noflush_merge,
100 	Opt_nobarrier,
101 	Opt_fastboot,
102 	Opt_extent_cache,
103 	Opt_noextent_cache,
104 	Opt_noinline_data,
105 	Opt_data_flush,
106 	Opt_mode,
107 	Opt_io_size_bits,
108 	Opt_fault_injection,
109 	Opt_lazytime,
110 	Opt_nolazytime,
111 	Opt_err,
112 };
113 
114 static match_table_t f2fs_tokens = {
115 	{Opt_gc_background, "background_gc=%s"},
116 	{Opt_disable_roll_forward, "disable_roll_forward"},
117 	{Opt_norecovery, "norecovery"},
118 	{Opt_discard, "discard"},
119 	{Opt_nodiscard, "nodiscard"},
120 	{Opt_noheap, "no_heap"},
121 	{Opt_heap, "heap"},
122 	{Opt_user_xattr, "user_xattr"},
123 	{Opt_nouser_xattr, "nouser_xattr"},
124 	{Opt_acl, "acl"},
125 	{Opt_noacl, "noacl"},
126 	{Opt_active_logs, "active_logs=%u"},
127 	{Opt_disable_ext_identify, "disable_ext_identify"},
128 	{Opt_inline_xattr, "inline_xattr"},
129 	{Opt_noinline_xattr, "noinline_xattr"},
130 	{Opt_inline_data, "inline_data"},
131 	{Opt_inline_dentry, "inline_dentry"},
132 	{Opt_noinline_dentry, "noinline_dentry"},
133 	{Opt_flush_merge, "flush_merge"},
134 	{Opt_noflush_merge, "noflush_merge"},
135 	{Opt_nobarrier, "nobarrier"},
136 	{Opt_fastboot, "fastboot"},
137 	{Opt_extent_cache, "extent_cache"},
138 	{Opt_noextent_cache, "noextent_cache"},
139 	{Opt_noinline_data, "noinline_data"},
140 	{Opt_data_flush, "data_flush"},
141 	{Opt_mode, "mode=%s"},
142 	{Opt_io_size_bits, "io_bits=%u"},
143 	{Opt_fault_injection, "fault_injection=%u"},
144 	{Opt_lazytime, "lazytime"},
145 	{Opt_nolazytime, "nolazytime"},
146 	{Opt_err, NULL},
147 };
148 
149 /* Sysfs support for f2fs */
150 enum {
151 	GC_THREAD,	/* struct f2fs_gc_thread */
152 	SM_INFO,	/* struct f2fs_sm_info */
153 	DCC_INFO,	/* struct discard_cmd_control */
154 	NM_INFO,	/* struct f2fs_nm_info */
155 	F2FS_SBI,	/* struct f2fs_sb_info */
156 #ifdef CONFIG_F2FS_FAULT_INJECTION
157 	FAULT_INFO_RATE,	/* struct f2fs_fault_info */
158 	FAULT_INFO_TYPE,	/* struct f2fs_fault_info */
159 #endif
160 };
161 
162 struct f2fs_attr {
163 	struct attribute attr;
164 	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
165 	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
166 			 const char *, size_t);
167 	int struct_type;
168 	int offset;
169 };
170 
171 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
172 {
173 	if (struct_type == GC_THREAD)
174 		return (unsigned char *)sbi->gc_thread;
175 	else if (struct_type == SM_INFO)
176 		return (unsigned char *)SM_I(sbi);
177 	else if (struct_type == DCC_INFO)
178 		return (unsigned char *)SM_I(sbi)->dcc_info;
179 	else if (struct_type == NM_INFO)
180 		return (unsigned char *)NM_I(sbi);
181 	else if (struct_type == F2FS_SBI)
182 		return (unsigned char *)sbi;
183 #ifdef CONFIG_F2FS_FAULT_INJECTION
184 	else if (struct_type == FAULT_INFO_RATE ||
185 					struct_type == FAULT_INFO_TYPE)
186 		return (unsigned char *)&sbi->fault_info;
187 #endif
188 	return NULL;
189 }
190 
191 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
192 		struct f2fs_sb_info *sbi, char *buf)
193 {
194 	struct super_block *sb = sbi->sb;
195 
196 	if (!sb->s_bdev->bd_part)
197 		return snprintf(buf, PAGE_SIZE, "0\n");
198 
199 	return snprintf(buf, PAGE_SIZE, "%llu\n",
200 		(unsigned long long)(sbi->kbytes_written +
201 			BD_PART_WRITTEN(sbi)));
202 }
203 
204 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
205 			struct f2fs_sb_info *sbi, char *buf)
206 {
207 	unsigned char *ptr = NULL;
208 	unsigned int *ui;
209 
210 	ptr = __struct_ptr(sbi, a->struct_type);
211 	if (!ptr)
212 		return -EINVAL;
213 
214 	ui = (unsigned int *)(ptr + a->offset);
215 
216 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
217 }
218 
219 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
220 			struct f2fs_sb_info *sbi,
221 			const char *buf, size_t count)
222 {
223 	unsigned char *ptr;
224 	unsigned long t;
225 	unsigned int *ui;
226 	ssize_t ret;
227 
228 	ptr = __struct_ptr(sbi, a->struct_type);
229 	if (!ptr)
230 		return -EINVAL;
231 
232 	ui = (unsigned int *)(ptr + a->offset);
233 
234 	ret = kstrtoul(skip_spaces(buf), 0, &t);
235 	if (ret < 0)
236 		return ret;
237 #ifdef CONFIG_F2FS_FAULT_INJECTION
238 	if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
239 		return -EINVAL;
240 #endif
241 	*ui = t;
242 	return count;
243 }
244 
245 static ssize_t f2fs_attr_show(struct kobject *kobj,
246 				struct attribute *attr, char *buf)
247 {
248 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
249 								s_kobj);
250 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
251 
252 	return a->show ? a->show(a, sbi, buf) : 0;
253 }
254 
255 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
256 						const char *buf, size_t len)
257 {
258 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
259 									s_kobj);
260 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
261 
262 	return a->store ? a->store(a, sbi, buf, len) : 0;
263 }
264 
265 static void f2fs_sb_release(struct kobject *kobj)
266 {
267 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
268 								s_kobj);
269 	complete(&sbi->s_kobj_unregister);
270 }
271 
272 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
273 static struct f2fs_attr f2fs_attr_##_name = {			\
274 	.attr = {.name = __stringify(_name), .mode = _mode },	\
275 	.show	= _show,					\
276 	.store	= _store,					\
277 	.struct_type = _struct_type,				\
278 	.offset = _offset					\
279 }
280 
281 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
282 	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
283 		f2fs_sbi_show, f2fs_sbi_store,			\
284 		offsetof(struct struct_name, elname))
285 
286 #define F2FS_GENERAL_RO_ATTR(name) \
287 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
288 
289 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
290 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
291 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
292 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
293 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
294 F2FS_RW_ATTR(DCC_INFO, discard_cmd_control, max_small_discards, max_discards);
295 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
296 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
297 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
298 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
299 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_hot_blocks, min_hot_blocks);
300 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
301 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
302 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
303 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
304 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
305 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
306 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
307 #ifdef CONFIG_F2FS_FAULT_INJECTION
308 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
309 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
310 #endif
311 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
312 
313 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
314 static struct attribute *f2fs_attrs[] = {
315 	ATTR_LIST(gc_min_sleep_time),
316 	ATTR_LIST(gc_max_sleep_time),
317 	ATTR_LIST(gc_no_gc_sleep_time),
318 	ATTR_LIST(gc_idle),
319 	ATTR_LIST(reclaim_segments),
320 	ATTR_LIST(max_small_discards),
321 	ATTR_LIST(batched_trim_sections),
322 	ATTR_LIST(ipu_policy),
323 	ATTR_LIST(min_ipu_util),
324 	ATTR_LIST(min_fsync_blocks),
325 	ATTR_LIST(min_hot_blocks),
326 	ATTR_LIST(max_victim_search),
327 	ATTR_LIST(dir_level),
328 	ATTR_LIST(ram_thresh),
329 	ATTR_LIST(ra_nid_pages),
330 	ATTR_LIST(dirty_nats_ratio),
331 	ATTR_LIST(cp_interval),
332 	ATTR_LIST(idle_interval),
333 #ifdef CONFIG_F2FS_FAULT_INJECTION
334 	ATTR_LIST(inject_rate),
335 	ATTR_LIST(inject_type),
336 #endif
337 	ATTR_LIST(lifetime_write_kbytes),
338 	NULL,
339 };
340 
341 static const struct sysfs_ops f2fs_attr_ops = {
342 	.show	= f2fs_attr_show,
343 	.store	= f2fs_attr_store,
344 };
345 
346 static struct kobj_type f2fs_ktype = {
347 	.default_attrs	= f2fs_attrs,
348 	.sysfs_ops	= &f2fs_attr_ops,
349 	.release	= f2fs_sb_release,
350 };
351 
352 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
353 {
354 	struct va_format vaf;
355 	va_list args;
356 
357 	va_start(args, fmt);
358 	vaf.fmt = fmt;
359 	vaf.va = &args;
360 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
361 	va_end(args);
362 }
363 
364 static void init_once(void *foo)
365 {
366 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
367 
368 	inode_init_once(&fi->vfs_inode);
369 }
370 
371 static int parse_options(struct super_block *sb, char *options)
372 {
373 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
374 	struct request_queue *q;
375 	substring_t args[MAX_OPT_ARGS];
376 	char *p, *name;
377 	int arg = 0;
378 
379 	if (!options)
380 		return 0;
381 
382 	while ((p = strsep(&options, ",")) != NULL) {
383 		int token;
384 		if (!*p)
385 			continue;
386 		/*
387 		 * Initialize args struct so we know whether arg was
388 		 * found; some options take optional arguments.
389 		 */
390 		args[0].to = args[0].from = NULL;
391 		token = match_token(p, f2fs_tokens, args);
392 
393 		switch (token) {
394 		case Opt_gc_background:
395 			name = match_strdup(&args[0]);
396 
397 			if (!name)
398 				return -ENOMEM;
399 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
400 				set_opt(sbi, BG_GC);
401 				clear_opt(sbi, FORCE_FG_GC);
402 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
403 				clear_opt(sbi, BG_GC);
404 				clear_opt(sbi, FORCE_FG_GC);
405 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
406 				set_opt(sbi, BG_GC);
407 				set_opt(sbi, FORCE_FG_GC);
408 			} else {
409 				kfree(name);
410 				return -EINVAL;
411 			}
412 			kfree(name);
413 			break;
414 		case Opt_disable_roll_forward:
415 			set_opt(sbi, DISABLE_ROLL_FORWARD);
416 			break;
417 		case Opt_norecovery:
418 			/* this option mounts f2fs with ro */
419 			set_opt(sbi, DISABLE_ROLL_FORWARD);
420 			if (!f2fs_readonly(sb))
421 				return -EINVAL;
422 			break;
423 		case Opt_discard:
424 			q = bdev_get_queue(sb->s_bdev);
425 			if (blk_queue_discard(q)) {
426 				set_opt(sbi, DISCARD);
427 			} else if (!f2fs_sb_mounted_blkzoned(sb)) {
428 				f2fs_msg(sb, KERN_WARNING,
429 					"mounting with \"discard\" option, but "
430 					"the device does not support discard");
431 			}
432 			break;
433 		case Opt_nodiscard:
434 			if (f2fs_sb_mounted_blkzoned(sb)) {
435 				f2fs_msg(sb, KERN_WARNING,
436 					"discard is required for zoned block devices");
437 				return -EINVAL;
438 			}
439 			clear_opt(sbi, DISCARD);
440 			break;
441 		case Opt_noheap:
442 			set_opt(sbi, NOHEAP);
443 			break;
444 		case Opt_heap:
445 			clear_opt(sbi, NOHEAP);
446 			break;
447 #ifdef CONFIG_F2FS_FS_XATTR
448 		case Opt_user_xattr:
449 			set_opt(sbi, XATTR_USER);
450 			break;
451 		case Opt_nouser_xattr:
452 			clear_opt(sbi, XATTR_USER);
453 			break;
454 		case Opt_inline_xattr:
455 			set_opt(sbi, INLINE_XATTR);
456 			break;
457 		case Opt_noinline_xattr:
458 			clear_opt(sbi, INLINE_XATTR);
459 			break;
460 #else
461 		case Opt_user_xattr:
462 			f2fs_msg(sb, KERN_INFO,
463 				"user_xattr options not supported");
464 			break;
465 		case Opt_nouser_xattr:
466 			f2fs_msg(sb, KERN_INFO,
467 				"nouser_xattr options not supported");
468 			break;
469 		case Opt_inline_xattr:
470 			f2fs_msg(sb, KERN_INFO,
471 				"inline_xattr options not supported");
472 			break;
473 		case Opt_noinline_xattr:
474 			f2fs_msg(sb, KERN_INFO,
475 				"noinline_xattr options not supported");
476 			break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479 		case Opt_acl:
480 			set_opt(sbi, POSIX_ACL);
481 			break;
482 		case Opt_noacl:
483 			clear_opt(sbi, POSIX_ACL);
484 			break;
485 #else
486 		case Opt_acl:
487 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
488 			break;
489 		case Opt_noacl:
490 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491 			break;
492 #endif
493 		case Opt_active_logs:
494 			if (args->from && match_int(args, &arg))
495 				return -EINVAL;
496 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497 				return -EINVAL;
498 			sbi->active_logs = arg;
499 			break;
500 		case Opt_disable_ext_identify:
501 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
502 			break;
503 		case Opt_inline_data:
504 			set_opt(sbi, INLINE_DATA);
505 			break;
506 		case Opt_inline_dentry:
507 			set_opt(sbi, INLINE_DENTRY);
508 			break;
509 		case Opt_noinline_dentry:
510 			clear_opt(sbi, INLINE_DENTRY);
511 			break;
512 		case Opt_flush_merge:
513 			set_opt(sbi, FLUSH_MERGE);
514 			break;
515 		case Opt_noflush_merge:
516 			clear_opt(sbi, FLUSH_MERGE);
517 			break;
518 		case Opt_nobarrier:
519 			set_opt(sbi, NOBARRIER);
520 			break;
521 		case Opt_fastboot:
522 			set_opt(sbi, FASTBOOT);
523 			break;
524 		case Opt_extent_cache:
525 			set_opt(sbi, EXTENT_CACHE);
526 			break;
527 		case Opt_noextent_cache:
528 			clear_opt(sbi, EXTENT_CACHE);
529 			break;
530 		case Opt_noinline_data:
531 			clear_opt(sbi, INLINE_DATA);
532 			break;
533 		case Opt_data_flush:
534 			set_opt(sbi, DATA_FLUSH);
535 			break;
536 		case Opt_mode:
537 			name = match_strdup(&args[0]);
538 
539 			if (!name)
540 				return -ENOMEM;
541 			if (strlen(name) == 8 &&
542 					!strncmp(name, "adaptive", 8)) {
543 				if (f2fs_sb_mounted_blkzoned(sb)) {
544 					f2fs_msg(sb, KERN_WARNING,
545 						 "adaptive mode is not allowed with "
546 						 "zoned block device feature");
547 					kfree(name);
548 					return -EINVAL;
549 				}
550 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
551 			} else if (strlen(name) == 3 &&
552 					!strncmp(name, "lfs", 3)) {
553 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
554 			} else {
555 				kfree(name);
556 				return -EINVAL;
557 			}
558 			kfree(name);
559 			break;
560 		case Opt_io_size_bits:
561 			if (args->from && match_int(args, &arg))
562 				return -EINVAL;
563 			if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
564 				f2fs_msg(sb, KERN_WARNING,
565 					"Not support %d, larger than %d",
566 					1 << arg, BIO_MAX_PAGES);
567 				return -EINVAL;
568 			}
569 			sbi->write_io_size_bits = arg;
570 			break;
571 		case Opt_fault_injection:
572 			if (args->from && match_int(args, &arg))
573 				return -EINVAL;
574 #ifdef CONFIG_F2FS_FAULT_INJECTION
575 			f2fs_build_fault_attr(sbi, arg);
576 			set_opt(sbi, FAULT_INJECTION);
577 #else
578 			f2fs_msg(sb, KERN_INFO,
579 				"FAULT_INJECTION was not selected");
580 #endif
581 			break;
582 		case Opt_lazytime:
583 			sb->s_flags |= MS_LAZYTIME;
584 			break;
585 		case Opt_nolazytime:
586 			sb->s_flags &= ~MS_LAZYTIME;
587 			break;
588 		default:
589 			f2fs_msg(sb, KERN_ERR,
590 				"Unrecognized mount option \"%s\" or missing value",
591 				p);
592 			return -EINVAL;
593 		}
594 	}
595 
596 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
597 		f2fs_msg(sb, KERN_ERR,
598 				"Should set mode=lfs with %uKB-sized IO",
599 				F2FS_IO_SIZE_KB(sbi));
600 		return -EINVAL;
601 	}
602 	return 0;
603 }
604 
605 static struct inode *f2fs_alloc_inode(struct super_block *sb)
606 {
607 	struct f2fs_inode_info *fi;
608 
609 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
610 	if (!fi)
611 		return NULL;
612 
613 	init_once((void *) fi);
614 
615 	/* Initialize f2fs-specific inode info */
616 	fi->vfs_inode.i_version = 1;
617 	atomic_set(&fi->dirty_pages, 0);
618 	fi->i_current_depth = 1;
619 	fi->i_advise = 0;
620 	init_rwsem(&fi->i_sem);
621 	INIT_LIST_HEAD(&fi->dirty_list);
622 	INIT_LIST_HEAD(&fi->gdirty_list);
623 	INIT_LIST_HEAD(&fi->inmem_pages);
624 	mutex_init(&fi->inmem_lock);
625 	init_rwsem(&fi->dio_rwsem[READ]);
626 	init_rwsem(&fi->dio_rwsem[WRITE]);
627 
628 	/* Will be used by directory only */
629 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
630 	return &fi->vfs_inode;
631 }
632 
633 static int f2fs_drop_inode(struct inode *inode)
634 {
635 	int ret;
636 	/*
637 	 * This is to avoid a deadlock condition like below.
638 	 * writeback_single_inode(inode)
639 	 *  - f2fs_write_data_page
640 	 *    - f2fs_gc -> iput -> evict
641 	 *       - inode_wait_for_writeback(inode)
642 	 */
643 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
644 		if (!inode->i_nlink && !is_bad_inode(inode)) {
645 			/* to avoid evict_inode call simultaneously */
646 			atomic_inc(&inode->i_count);
647 			spin_unlock(&inode->i_lock);
648 
649 			/* some remained atomic pages should discarded */
650 			if (f2fs_is_atomic_file(inode))
651 				drop_inmem_pages(inode);
652 
653 			/* should remain fi->extent_tree for writepage */
654 			f2fs_destroy_extent_node(inode);
655 
656 			sb_start_intwrite(inode->i_sb);
657 			f2fs_i_size_write(inode, 0);
658 
659 			if (F2FS_HAS_BLOCKS(inode))
660 				f2fs_truncate(inode);
661 
662 			sb_end_intwrite(inode->i_sb);
663 
664 			fscrypt_put_encryption_info(inode, NULL);
665 			spin_lock(&inode->i_lock);
666 			atomic_dec(&inode->i_count);
667 		}
668 		trace_f2fs_drop_inode(inode, 0);
669 		return 0;
670 	}
671 	ret = generic_drop_inode(inode);
672 	trace_f2fs_drop_inode(inode, ret);
673 	return ret;
674 }
675 
676 int f2fs_inode_dirtied(struct inode *inode, bool sync)
677 {
678 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
679 	int ret = 0;
680 
681 	spin_lock(&sbi->inode_lock[DIRTY_META]);
682 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
683 		ret = 1;
684 	} else {
685 		set_inode_flag(inode, FI_DIRTY_INODE);
686 		stat_inc_dirty_inode(sbi, DIRTY_META);
687 	}
688 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
689 		list_add_tail(&F2FS_I(inode)->gdirty_list,
690 				&sbi->inode_list[DIRTY_META]);
691 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
692 	}
693 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
694 	return ret;
695 }
696 
697 void f2fs_inode_synced(struct inode *inode)
698 {
699 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
700 
701 	spin_lock(&sbi->inode_lock[DIRTY_META]);
702 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
703 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
704 		return;
705 	}
706 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
707 		list_del_init(&F2FS_I(inode)->gdirty_list);
708 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
709 	}
710 	clear_inode_flag(inode, FI_DIRTY_INODE);
711 	clear_inode_flag(inode, FI_AUTO_RECOVER);
712 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
713 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
714 }
715 
716 /*
717  * f2fs_dirty_inode() is called from __mark_inode_dirty()
718  *
719  * We should call set_dirty_inode to write the dirty inode through write_inode.
720  */
721 static void f2fs_dirty_inode(struct inode *inode, int flags)
722 {
723 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
724 
725 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
726 			inode->i_ino == F2FS_META_INO(sbi))
727 		return;
728 
729 	if (flags == I_DIRTY_TIME)
730 		return;
731 
732 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
733 		clear_inode_flag(inode, FI_AUTO_RECOVER);
734 
735 	f2fs_inode_dirtied(inode, false);
736 }
737 
738 static void f2fs_i_callback(struct rcu_head *head)
739 {
740 	struct inode *inode = container_of(head, struct inode, i_rcu);
741 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
742 }
743 
744 static void f2fs_destroy_inode(struct inode *inode)
745 {
746 	call_rcu(&inode->i_rcu, f2fs_i_callback);
747 }
748 
749 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
750 {
751 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
752 	percpu_counter_destroy(&sbi->total_valid_inode_count);
753 }
754 
755 static void destroy_device_list(struct f2fs_sb_info *sbi)
756 {
757 	int i;
758 
759 	for (i = 0; i < sbi->s_ndevs; i++) {
760 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
761 #ifdef CONFIG_BLK_DEV_ZONED
762 		kfree(FDEV(i).blkz_type);
763 #endif
764 	}
765 	kfree(sbi->devs);
766 }
767 
768 static void f2fs_put_super(struct super_block *sb)
769 {
770 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
771 
772 	if (sbi->s_proc) {
773 		remove_proc_entry("segment_info", sbi->s_proc);
774 		remove_proc_entry("segment_bits", sbi->s_proc);
775 		remove_proc_entry(sb->s_id, f2fs_proc_root);
776 	}
777 	kobject_del(&sbi->s_kobj);
778 
779 	stop_gc_thread(sbi);
780 
781 	/* prevent remaining shrinker jobs */
782 	mutex_lock(&sbi->umount_mutex);
783 
784 	/*
785 	 * We don't need to do checkpoint when superblock is clean.
786 	 * But, the previous checkpoint was not done by umount, it needs to do
787 	 * clean checkpoint again.
788 	 */
789 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
790 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
791 		struct cp_control cpc = {
792 			.reason = CP_UMOUNT,
793 		};
794 		write_checkpoint(sbi, &cpc);
795 	}
796 
797 	/* be sure to wait for any on-going discard commands */
798 	f2fs_wait_discard_bios(sbi);
799 
800 	if (!sbi->discard_blks) {
801 		struct cp_control cpc = {
802 			.reason = CP_UMOUNT | CP_TRIMMED,
803 		};
804 		write_checkpoint(sbi, &cpc);
805 	}
806 
807 	/* write_checkpoint can update stat informaion */
808 	f2fs_destroy_stats(sbi);
809 
810 	/*
811 	 * normally superblock is clean, so we need to release this.
812 	 * In addition, EIO will skip do checkpoint, we need this as well.
813 	 */
814 	release_ino_entry(sbi, true);
815 
816 	f2fs_leave_shrinker(sbi);
817 	mutex_unlock(&sbi->umount_mutex);
818 
819 	/* our cp_error case, we can wait for any writeback page */
820 	f2fs_flush_merged_bios(sbi);
821 
822 	iput(sbi->node_inode);
823 	iput(sbi->meta_inode);
824 
825 	/* destroy f2fs internal modules */
826 	destroy_node_manager(sbi);
827 	destroy_segment_manager(sbi);
828 
829 	kfree(sbi->ckpt);
830 	kobject_put(&sbi->s_kobj);
831 	wait_for_completion(&sbi->s_kobj_unregister);
832 
833 	sb->s_fs_info = NULL;
834 	if (sbi->s_chksum_driver)
835 		crypto_free_shash(sbi->s_chksum_driver);
836 	kfree(sbi->raw_super);
837 
838 	destroy_device_list(sbi);
839 	mempool_destroy(sbi->write_io_dummy);
840 	destroy_percpu_info(sbi);
841 	kfree(sbi);
842 }
843 
844 int f2fs_sync_fs(struct super_block *sb, int sync)
845 {
846 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
847 	int err = 0;
848 
849 	trace_f2fs_sync_fs(sb, sync);
850 
851 	if (sync) {
852 		struct cp_control cpc;
853 
854 		cpc.reason = __get_cp_reason(sbi);
855 
856 		mutex_lock(&sbi->gc_mutex);
857 		err = write_checkpoint(sbi, &cpc);
858 		mutex_unlock(&sbi->gc_mutex);
859 	}
860 	f2fs_trace_ios(NULL, 1);
861 
862 	return err;
863 }
864 
865 static int f2fs_freeze(struct super_block *sb)
866 {
867 	if (f2fs_readonly(sb))
868 		return 0;
869 
870 	/* IO error happened before */
871 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
872 		return -EIO;
873 
874 	/* must be clean, since sync_filesystem() was already called */
875 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
876 		return -EINVAL;
877 	return 0;
878 }
879 
880 static int f2fs_unfreeze(struct super_block *sb)
881 {
882 	return 0;
883 }
884 
885 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
886 {
887 	struct super_block *sb = dentry->d_sb;
888 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
889 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
890 	block_t total_count, user_block_count, start_count, ovp_count;
891 
892 	total_count = le64_to_cpu(sbi->raw_super->block_count);
893 	user_block_count = sbi->user_block_count;
894 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
895 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
896 	buf->f_type = F2FS_SUPER_MAGIC;
897 	buf->f_bsize = sbi->blocksize;
898 
899 	buf->f_blocks = total_count - start_count;
900 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
901 	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
902 
903 	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
904 	buf->f_ffree = min(buf->f_files - valid_node_count(sbi),
905 							buf->f_bavail);
906 
907 	buf->f_namelen = F2FS_NAME_LEN;
908 	buf->f_fsid.val[0] = (u32)id;
909 	buf->f_fsid.val[1] = (u32)(id >> 32);
910 
911 	return 0;
912 }
913 
914 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
915 {
916 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
917 
918 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
919 		if (test_opt(sbi, FORCE_FG_GC))
920 			seq_printf(seq, ",background_gc=%s", "sync");
921 		else
922 			seq_printf(seq, ",background_gc=%s", "on");
923 	} else {
924 		seq_printf(seq, ",background_gc=%s", "off");
925 	}
926 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
927 		seq_puts(seq, ",disable_roll_forward");
928 	if (test_opt(sbi, DISCARD))
929 		seq_puts(seq, ",discard");
930 	if (test_opt(sbi, NOHEAP))
931 		seq_puts(seq, ",no_heap");
932 	else
933 		seq_puts(seq, ",heap");
934 #ifdef CONFIG_F2FS_FS_XATTR
935 	if (test_opt(sbi, XATTR_USER))
936 		seq_puts(seq, ",user_xattr");
937 	else
938 		seq_puts(seq, ",nouser_xattr");
939 	if (test_opt(sbi, INLINE_XATTR))
940 		seq_puts(seq, ",inline_xattr");
941 	else
942 		seq_puts(seq, ",noinline_xattr");
943 #endif
944 #ifdef CONFIG_F2FS_FS_POSIX_ACL
945 	if (test_opt(sbi, POSIX_ACL))
946 		seq_puts(seq, ",acl");
947 	else
948 		seq_puts(seq, ",noacl");
949 #endif
950 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
951 		seq_puts(seq, ",disable_ext_identify");
952 	if (test_opt(sbi, INLINE_DATA))
953 		seq_puts(seq, ",inline_data");
954 	else
955 		seq_puts(seq, ",noinline_data");
956 	if (test_opt(sbi, INLINE_DENTRY))
957 		seq_puts(seq, ",inline_dentry");
958 	else
959 		seq_puts(seq, ",noinline_dentry");
960 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
961 		seq_puts(seq, ",flush_merge");
962 	if (test_opt(sbi, NOBARRIER))
963 		seq_puts(seq, ",nobarrier");
964 	if (test_opt(sbi, FASTBOOT))
965 		seq_puts(seq, ",fastboot");
966 	if (test_opt(sbi, EXTENT_CACHE))
967 		seq_puts(seq, ",extent_cache");
968 	else
969 		seq_puts(seq, ",noextent_cache");
970 	if (test_opt(sbi, DATA_FLUSH))
971 		seq_puts(seq, ",data_flush");
972 
973 	seq_puts(seq, ",mode=");
974 	if (test_opt(sbi, ADAPTIVE))
975 		seq_puts(seq, "adaptive");
976 	else if (test_opt(sbi, LFS))
977 		seq_puts(seq, "lfs");
978 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
979 	if (F2FS_IO_SIZE_BITS(sbi))
980 		seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
981 #ifdef CONFIG_F2FS_FAULT_INJECTION
982 	if (test_opt(sbi, FAULT_INJECTION))
983 		seq_puts(seq, ",fault_injection");
984 #endif
985 
986 	return 0;
987 }
988 
989 static int segment_info_seq_show(struct seq_file *seq, void *offset)
990 {
991 	struct super_block *sb = seq->private;
992 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
993 	unsigned int total_segs =
994 			le32_to_cpu(sbi->raw_super->segment_count_main);
995 	int i;
996 
997 	seq_puts(seq, "format: segment_type|valid_blocks\n"
998 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
999 
1000 	for (i = 0; i < total_segs; i++) {
1001 		struct seg_entry *se = get_seg_entry(sbi, i);
1002 
1003 		if ((i % 10) == 0)
1004 			seq_printf(seq, "%-10d", i);
1005 		seq_printf(seq, "%d|%-3u", se->type,
1006 					get_valid_blocks(sbi, i, false));
1007 		if ((i % 10) == 9 || i == (total_segs - 1))
1008 			seq_putc(seq, '\n');
1009 		else
1010 			seq_putc(seq, ' ');
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
1017 {
1018 	struct super_block *sb = seq->private;
1019 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1020 	unsigned int total_segs =
1021 			le32_to_cpu(sbi->raw_super->segment_count_main);
1022 	int i, j;
1023 
1024 	seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
1025 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
1026 
1027 	for (i = 0; i < total_segs; i++) {
1028 		struct seg_entry *se = get_seg_entry(sbi, i);
1029 
1030 		seq_printf(seq, "%-10d", i);
1031 		seq_printf(seq, "%d|%-3u|", se->type,
1032 					get_valid_blocks(sbi, i, false));
1033 		for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
1034 			seq_printf(seq, " %.2x", se->cur_valid_map[j]);
1035 		seq_putc(seq, '\n');
1036 	}
1037 	return 0;
1038 }
1039 
1040 #define F2FS_PROC_FILE_DEF(_name)					\
1041 static int _name##_open_fs(struct inode *inode, struct file *file)	\
1042 {									\
1043 	return single_open(file, _name##_seq_show, PDE_DATA(inode));	\
1044 }									\
1045 									\
1046 static const struct file_operations f2fs_seq_##_name##_fops = {		\
1047 	.open = _name##_open_fs,					\
1048 	.read = seq_read,						\
1049 	.llseek = seq_lseek,						\
1050 	.release = single_release,					\
1051 };
1052 
1053 F2FS_PROC_FILE_DEF(segment_info);
1054 F2FS_PROC_FILE_DEF(segment_bits);
1055 
1056 static void default_options(struct f2fs_sb_info *sbi)
1057 {
1058 	/* init some FS parameters */
1059 	sbi->active_logs = NR_CURSEG_TYPE;
1060 
1061 	set_opt(sbi, BG_GC);
1062 	set_opt(sbi, INLINE_XATTR);
1063 	set_opt(sbi, INLINE_DATA);
1064 	set_opt(sbi, INLINE_DENTRY);
1065 	set_opt(sbi, EXTENT_CACHE);
1066 	set_opt(sbi, NOHEAP);
1067 	sbi->sb->s_flags |= MS_LAZYTIME;
1068 	set_opt(sbi, FLUSH_MERGE);
1069 	if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1070 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1071 		set_opt(sbi, DISCARD);
1072 	} else {
1073 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1074 	}
1075 
1076 #ifdef CONFIG_F2FS_FS_XATTR
1077 	set_opt(sbi, XATTR_USER);
1078 #endif
1079 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1080 	set_opt(sbi, POSIX_ACL);
1081 #endif
1082 
1083 #ifdef CONFIG_F2FS_FAULT_INJECTION
1084 	f2fs_build_fault_attr(sbi, 0);
1085 #endif
1086 }
1087 
1088 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1089 {
1090 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1091 	struct f2fs_mount_info org_mount_opt;
1092 	int err, active_logs;
1093 	bool need_restart_gc = false;
1094 	bool need_stop_gc = false;
1095 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1096 #ifdef CONFIG_F2FS_FAULT_INJECTION
1097 	struct f2fs_fault_info ffi = sbi->fault_info;
1098 #endif
1099 
1100 	/*
1101 	 * Save the old mount options in case we
1102 	 * need to restore them.
1103 	 */
1104 	org_mount_opt = sbi->mount_opt;
1105 	active_logs = sbi->active_logs;
1106 
1107 	/* recover superblocks we couldn't write due to previous RO mount */
1108 	if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1109 		err = f2fs_commit_super(sbi, false);
1110 		f2fs_msg(sb, KERN_INFO,
1111 			"Try to recover all the superblocks, ret: %d", err);
1112 		if (!err)
1113 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1114 	}
1115 
1116 	sbi->mount_opt.opt = 0;
1117 	default_options(sbi);
1118 
1119 	/* parse mount options */
1120 	err = parse_options(sb, data);
1121 	if (err)
1122 		goto restore_opts;
1123 
1124 	/*
1125 	 * Previous and new state of filesystem is RO,
1126 	 * so skip checking GC and FLUSH_MERGE conditions.
1127 	 */
1128 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1129 		goto skip;
1130 
1131 	/* disallow enable/disable extent_cache dynamically */
1132 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1133 		err = -EINVAL;
1134 		f2fs_msg(sbi->sb, KERN_WARNING,
1135 				"switch extent_cache option is not allowed");
1136 		goto restore_opts;
1137 	}
1138 
1139 	/*
1140 	 * We stop the GC thread if FS is mounted as RO
1141 	 * or if background_gc = off is passed in mount
1142 	 * option. Also sync the filesystem.
1143 	 */
1144 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1145 		if (sbi->gc_thread) {
1146 			stop_gc_thread(sbi);
1147 			need_restart_gc = true;
1148 		}
1149 	} else if (!sbi->gc_thread) {
1150 		err = start_gc_thread(sbi);
1151 		if (err)
1152 			goto restore_opts;
1153 		need_stop_gc = true;
1154 	}
1155 
1156 	if (*flags & MS_RDONLY) {
1157 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1158 		sync_inodes_sb(sb);
1159 
1160 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1161 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1162 		f2fs_sync_fs(sb, 1);
1163 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1164 	}
1165 
1166 	/*
1167 	 * We stop issue flush thread if FS is mounted as RO
1168 	 * or if flush_merge is not passed in mount option.
1169 	 */
1170 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1171 		clear_opt(sbi, FLUSH_MERGE);
1172 		destroy_flush_cmd_control(sbi, false);
1173 	} else {
1174 		err = create_flush_cmd_control(sbi);
1175 		if (err)
1176 			goto restore_gc;
1177 	}
1178 skip:
1179 	/* Update the POSIXACL Flag */
1180 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1181 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1182 
1183 	return 0;
1184 restore_gc:
1185 	if (need_restart_gc) {
1186 		if (start_gc_thread(sbi))
1187 			f2fs_msg(sbi->sb, KERN_WARNING,
1188 				"background gc thread has stopped");
1189 	} else if (need_stop_gc) {
1190 		stop_gc_thread(sbi);
1191 	}
1192 restore_opts:
1193 	sbi->mount_opt = org_mount_opt;
1194 	sbi->active_logs = active_logs;
1195 #ifdef CONFIG_F2FS_FAULT_INJECTION
1196 	sbi->fault_info = ffi;
1197 #endif
1198 	return err;
1199 }
1200 
1201 static struct super_operations f2fs_sops = {
1202 	.alloc_inode	= f2fs_alloc_inode,
1203 	.drop_inode	= f2fs_drop_inode,
1204 	.destroy_inode	= f2fs_destroy_inode,
1205 	.write_inode	= f2fs_write_inode,
1206 	.dirty_inode	= f2fs_dirty_inode,
1207 	.show_options	= f2fs_show_options,
1208 	.evict_inode	= f2fs_evict_inode,
1209 	.put_super	= f2fs_put_super,
1210 	.sync_fs	= f2fs_sync_fs,
1211 	.freeze_fs	= f2fs_freeze,
1212 	.unfreeze_fs	= f2fs_unfreeze,
1213 	.statfs		= f2fs_statfs,
1214 	.remount_fs	= f2fs_remount,
1215 };
1216 
1217 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1218 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1219 {
1220 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1221 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1222 				ctx, len, NULL);
1223 }
1224 
1225 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1226 							void *fs_data)
1227 {
1228 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1229 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1230 				ctx, len, fs_data, XATTR_CREATE);
1231 }
1232 
1233 static unsigned f2fs_max_namelen(struct inode *inode)
1234 {
1235 	return S_ISLNK(inode->i_mode) ?
1236 			inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1237 }
1238 
1239 static const struct fscrypt_operations f2fs_cryptops = {
1240 	.key_prefix	= "f2fs:",
1241 	.get_context	= f2fs_get_context,
1242 	.set_context	= f2fs_set_context,
1243 	.is_encrypted	= f2fs_encrypted_inode,
1244 	.empty_dir	= f2fs_empty_dir,
1245 	.max_namelen	= f2fs_max_namelen,
1246 };
1247 #else
1248 static const struct fscrypt_operations f2fs_cryptops = {
1249 	.is_encrypted	= f2fs_encrypted_inode,
1250 };
1251 #endif
1252 
1253 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1254 		u64 ino, u32 generation)
1255 {
1256 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1257 	struct inode *inode;
1258 
1259 	if (check_nid_range(sbi, ino))
1260 		return ERR_PTR(-ESTALE);
1261 
1262 	/*
1263 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1264 	 * However f2fs_iget currently does appropriate checks to handle stale
1265 	 * inodes so everything is OK.
1266 	 */
1267 	inode = f2fs_iget(sb, ino);
1268 	if (IS_ERR(inode))
1269 		return ERR_CAST(inode);
1270 	if (unlikely(generation && inode->i_generation != generation)) {
1271 		/* we didn't find the right inode.. */
1272 		iput(inode);
1273 		return ERR_PTR(-ESTALE);
1274 	}
1275 	return inode;
1276 }
1277 
1278 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1279 		int fh_len, int fh_type)
1280 {
1281 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1282 				    f2fs_nfs_get_inode);
1283 }
1284 
1285 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1286 		int fh_len, int fh_type)
1287 {
1288 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1289 				    f2fs_nfs_get_inode);
1290 }
1291 
1292 static const struct export_operations f2fs_export_ops = {
1293 	.fh_to_dentry = f2fs_fh_to_dentry,
1294 	.fh_to_parent = f2fs_fh_to_parent,
1295 	.get_parent = f2fs_get_parent,
1296 };
1297 
1298 static loff_t max_file_blocks(void)
1299 {
1300 	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1301 	loff_t leaf_count = ADDRS_PER_BLOCK;
1302 
1303 	/* two direct node blocks */
1304 	result += (leaf_count * 2);
1305 
1306 	/* two indirect node blocks */
1307 	leaf_count *= NIDS_PER_BLOCK;
1308 	result += (leaf_count * 2);
1309 
1310 	/* one double indirect node block */
1311 	leaf_count *= NIDS_PER_BLOCK;
1312 	result += leaf_count;
1313 
1314 	return result;
1315 }
1316 
1317 static int __f2fs_commit_super(struct buffer_head *bh,
1318 			struct f2fs_super_block *super)
1319 {
1320 	lock_buffer(bh);
1321 	if (super)
1322 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1323 	set_buffer_uptodate(bh);
1324 	set_buffer_dirty(bh);
1325 	unlock_buffer(bh);
1326 
1327 	/* it's rare case, we can do fua all the time */
1328 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1329 }
1330 
1331 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1332 					struct buffer_head *bh)
1333 {
1334 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1335 					(bh->b_data + F2FS_SUPER_OFFSET);
1336 	struct super_block *sb = sbi->sb;
1337 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1338 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1339 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1340 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1341 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1342 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1343 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1344 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1345 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1346 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1347 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1348 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
1349 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1350 	u64 main_end_blkaddr = main_blkaddr +
1351 				(segment_count_main << log_blocks_per_seg);
1352 	u64 seg_end_blkaddr = segment0_blkaddr +
1353 				(segment_count << log_blocks_per_seg);
1354 
1355 	if (segment0_blkaddr != cp_blkaddr) {
1356 		f2fs_msg(sb, KERN_INFO,
1357 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1358 			segment0_blkaddr, cp_blkaddr);
1359 		return true;
1360 	}
1361 
1362 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1363 							sit_blkaddr) {
1364 		f2fs_msg(sb, KERN_INFO,
1365 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1366 			cp_blkaddr, sit_blkaddr,
1367 			segment_count_ckpt << log_blocks_per_seg);
1368 		return true;
1369 	}
1370 
1371 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1372 							nat_blkaddr) {
1373 		f2fs_msg(sb, KERN_INFO,
1374 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1375 			sit_blkaddr, nat_blkaddr,
1376 			segment_count_sit << log_blocks_per_seg);
1377 		return true;
1378 	}
1379 
1380 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1381 							ssa_blkaddr) {
1382 		f2fs_msg(sb, KERN_INFO,
1383 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1384 			nat_blkaddr, ssa_blkaddr,
1385 			segment_count_nat << log_blocks_per_seg);
1386 		return true;
1387 	}
1388 
1389 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1390 							main_blkaddr) {
1391 		f2fs_msg(sb, KERN_INFO,
1392 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1393 			ssa_blkaddr, main_blkaddr,
1394 			segment_count_ssa << log_blocks_per_seg);
1395 		return true;
1396 	}
1397 
1398 	if (main_end_blkaddr > seg_end_blkaddr) {
1399 		f2fs_msg(sb, KERN_INFO,
1400 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1401 			main_blkaddr,
1402 			segment0_blkaddr +
1403 				(segment_count << log_blocks_per_seg),
1404 			segment_count_main << log_blocks_per_seg);
1405 		return true;
1406 	} else if (main_end_blkaddr < seg_end_blkaddr) {
1407 		int err = 0;
1408 		char *res;
1409 
1410 		/* fix in-memory information all the time */
1411 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1412 				segment0_blkaddr) >> log_blocks_per_seg);
1413 
1414 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1415 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1416 			res = "internally";
1417 		} else {
1418 			err = __f2fs_commit_super(bh, NULL);
1419 			res = err ? "failed" : "done";
1420 		}
1421 		f2fs_msg(sb, KERN_INFO,
1422 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
1423 			res, main_blkaddr,
1424 			segment0_blkaddr +
1425 				(segment_count << log_blocks_per_seg),
1426 			segment_count_main << log_blocks_per_seg);
1427 		if (err)
1428 			return true;
1429 	}
1430 	return false;
1431 }
1432 
1433 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1434 				struct buffer_head *bh)
1435 {
1436 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1437 					(bh->b_data + F2FS_SUPER_OFFSET);
1438 	struct super_block *sb = sbi->sb;
1439 	unsigned int blocksize;
1440 
1441 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1442 		f2fs_msg(sb, KERN_INFO,
1443 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
1444 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1445 		return 1;
1446 	}
1447 
1448 	/* Currently, support only 4KB page cache size */
1449 	if (F2FS_BLKSIZE != PAGE_SIZE) {
1450 		f2fs_msg(sb, KERN_INFO,
1451 			"Invalid page_cache_size (%lu), supports only 4KB\n",
1452 			PAGE_SIZE);
1453 		return 1;
1454 	}
1455 
1456 	/* Currently, support only 4KB block size */
1457 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1458 	if (blocksize != F2FS_BLKSIZE) {
1459 		f2fs_msg(sb, KERN_INFO,
1460 			"Invalid blocksize (%u), supports only 4KB\n",
1461 			blocksize);
1462 		return 1;
1463 	}
1464 
1465 	/* check log blocks per segment */
1466 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1467 		f2fs_msg(sb, KERN_INFO,
1468 			"Invalid log blocks per segment (%u)\n",
1469 			le32_to_cpu(raw_super->log_blocks_per_seg));
1470 		return 1;
1471 	}
1472 
1473 	/* Currently, support 512/1024/2048/4096 bytes sector size */
1474 	if (le32_to_cpu(raw_super->log_sectorsize) >
1475 				F2FS_MAX_LOG_SECTOR_SIZE ||
1476 		le32_to_cpu(raw_super->log_sectorsize) <
1477 				F2FS_MIN_LOG_SECTOR_SIZE) {
1478 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1479 			le32_to_cpu(raw_super->log_sectorsize));
1480 		return 1;
1481 	}
1482 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
1483 		le32_to_cpu(raw_super->log_sectorsize) !=
1484 			F2FS_MAX_LOG_SECTOR_SIZE) {
1485 		f2fs_msg(sb, KERN_INFO,
1486 			"Invalid log sectors per block(%u) log sectorsize(%u)",
1487 			le32_to_cpu(raw_super->log_sectors_per_block),
1488 			le32_to_cpu(raw_super->log_sectorsize));
1489 		return 1;
1490 	}
1491 
1492 	/* check reserved ino info */
1493 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
1494 		le32_to_cpu(raw_super->meta_ino) != 2 ||
1495 		le32_to_cpu(raw_super->root_ino) != 3) {
1496 		f2fs_msg(sb, KERN_INFO,
1497 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1498 			le32_to_cpu(raw_super->node_ino),
1499 			le32_to_cpu(raw_super->meta_ino),
1500 			le32_to_cpu(raw_super->root_ino));
1501 		return 1;
1502 	}
1503 
1504 	if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
1505 		f2fs_msg(sb, KERN_INFO,
1506 			"Invalid segment count (%u)",
1507 			le32_to_cpu(raw_super->segment_count));
1508 		return 1;
1509 	}
1510 
1511 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1512 	if (sanity_check_area_boundary(sbi, bh))
1513 		return 1;
1514 
1515 	return 0;
1516 }
1517 
1518 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1519 {
1520 	unsigned int total, fsmeta;
1521 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1522 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1523 	unsigned int ovp_segments, reserved_segments;
1524 
1525 	total = le32_to_cpu(raw_super->segment_count);
1526 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1527 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1528 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1529 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1530 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1531 
1532 	if (unlikely(fsmeta >= total))
1533 		return 1;
1534 
1535 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1536 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1537 
1538 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1539 			ovp_segments == 0 || reserved_segments == 0)) {
1540 		f2fs_msg(sbi->sb, KERN_ERR,
1541 			"Wrong layout: check mkfs.f2fs version");
1542 		return 1;
1543 	}
1544 
1545 	if (unlikely(f2fs_cp_error(sbi))) {
1546 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1547 		return 1;
1548 	}
1549 	return 0;
1550 }
1551 
1552 static void init_sb_info(struct f2fs_sb_info *sbi)
1553 {
1554 	struct f2fs_super_block *raw_super = sbi->raw_super;
1555 	int i;
1556 
1557 	sbi->log_sectors_per_block =
1558 		le32_to_cpu(raw_super->log_sectors_per_block);
1559 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1560 	sbi->blocksize = 1 << sbi->log_blocksize;
1561 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1562 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1563 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1564 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1565 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
1566 	sbi->total_node_count =
1567 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
1568 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1569 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1570 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1571 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1572 	sbi->cur_victim_sec = NULL_SECNO;
1573 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1574 
1575 	sbi->dir_level = DEF_DIR_LEVEL;
1576 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1577 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1578 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
1579 
1580 	for (i = 0; i < NR_COUNT_TYPE; i++)
1581 		atomic_set(&sbi->nr_pages[i], 0);
1582 
1583 	atomic_set(&sbi->wb_sync_req, 0);
1584 
1585 	INIT_LIST_HEAD(&sbi->s_list);
1586 	mutex_init(&sbi->umount_mutex);
1587 	mutex_init(&sbi->wio_mutex[NODE]);
1588 	mutex_init(&sbi->wio_mutex[DATA]);
1589 	spin_lock_init(&sbi->cp_lock);
1590 }
1591 
1592 static int init_percpu_info(struct f2fs_sb_info *sbi)
1593 {
1594 	int err;
1595 
1596 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1597 	if (err)
1598 		return err;
1599 
1600 	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1601 								GFP_KERNEL);
1602 }
1603 
1604 #ifdef CONFIG_BLK_DEV_ZONED
1605 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1606 {
1607 	struct block_device *bdev = FDEV(devi).bdev;
1608 	sector_t nr_sectors = bdev->bd_part->nr_sects;
1609 	sector_t sector = 0;
1610 	struct blk_zone *zones;
1611 	unsigned int i, nr_zones;
1612 	unsigned int n = 0;
1613 	int err = -EIO;
1614 
1615 	if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1616 		return 0;
1617 
1618 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1619 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1620 		return -EINVAL;
1621 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
1622 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
1623 				__ilog2_u32(sbi->blocks_per_blkz))
1624 		return -EINVAL;
1625 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
1626 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
1627 					sbi->log_blocks_per_blkz;
1628 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
1629 		FDEV(devi).nr_blkz++;
1630 
1631 	FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
1632 	if (!FDEV(devi).blkz_type)
1633 		return -ENOMEM;
1634 
1635 #define F2FS_REPORT_NR_ZONES   4096
1636 
1637 	zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
1638 			GFP_KERNEL);
1639 	if (!zones)
1640 		return -ENOMEM;
1641 
1642 	/* Get block zones type */
1643 	while (zones && sector < nr_sectors) {
1644 
1645 		nr_zones = F2FS_REPORT_NR_ZONES;
1646 		err = blkdev_report_zones(bdev, sector,
1647 					  zones, &nr_zones,
1648 					  GFP_KERNEL);
1649 		if (err)
1650 			break;
1651 		if (!nr_zones) {
1652 			err = -EIO;
1653 			break;
1654 		}
1655 
1656 		for (i = 0; i < nr_zones; i++) {
1657 			FDEV(devi).blkz_type[n] = zones[i].type;
1658 			sector += zones[i].len;
1659 			n++;
1660 		}
1661 	}
1662 
1663 	kfree(zones);
1664 
1665 	return err;
1666 }
1667 #endif
1668 
1669 /*
1670  * Read f2fs raw super block.
1671  * Because we have two copies of super block, so read both of them
1672  * to get the first valid one. If any one of them is broken, we pass
1673  * them recovery flag back to the caller.
1674  */
1675 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1676 			struct f2fs_super_block **raw_super,
1677 			int *valid_super_block, int *recovery)
1678 {
1679 	struct super_block *sb = sbi->sb;
1680 	int block;
1681 	struct buffer_head *bh;
1682 	struct f2fs_super_block *super;
1683 	int err = 0;
1684 
1685 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1686 	if (!super)
1687 		return -ENOMEM;
1688 
1689 	for (block = 0; block < 2; block++) {
1690 		bh = sb_bread(sb, block);
1691 		if (!bh) {
1692 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1693 				block + 1);
1694 			err = -EIO;
1695 			continue;
1696 		}
1697 
1698 		/* sanity checking of raw super */
1699 		if (sanity_check_raw_super(sbi, bh)) {
1700 			f2fs_msg(sb, KERN_ERR,
1701 				"Can't find valid F2FS filesystem in %dth superblock",
1702 				block + 1);
1703 			err = -EINVAL;
1704 			brelse(bh);
1705 			continue;
1706 		}
1707 
1708 		if (!*raw_super) {
1709 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1710 							sizeof(*super));
1711 			*valid_super_block = block;
1712 			*raw_super = super;
1713 		}
1714 		brelse(bh);
1715 	}
1716 
1717 	/* Fail to read any one of the superblocks*/
1718 	if (err < 0)
1719 		*recovery = 1;
1720 
1721 	/* No valid superblock */
1722 	if (!*raw_super)
1723 		kfree(super);
1724 	else
1725 		err = 0;
1726 
1727 	return err;
1728 }
1729 
1730 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1731 {
1732 	struct buffer_head *bh;
1733 	int err;
1734 
1735 	if ((recover && f2fs_readonly(sbi->sb)) ||
1736 				bdev_read_only(sbi->sb->s_bdev)) {
1737 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1738 		return -EROFS;
1739 	}
1740 
1741 	/* write back-up superblock first */
1742 	bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1743 	if (!bh)
1744 		return -EIO;
1745 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1746 	brelse(bh);
1747 
1748 	/* if we are in recovery path, skip writing valid superblock */
1749 	if (recover || err)
1750 		return err;
1751 
1752 	/* write current valid superblock */
1753 	bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1754 	if (!bh)
1755 		return -EIO;
1756 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1757 	brelse(bh);
1758 	return err;
1759 }
1760 
1761 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
1762 {
1763 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1764 	unsigned int max_devices = MAX_DEVICES;
1765 	int i;
1766 
1767 	/* Initialize single device information */
1768 	if (!RDEV(0).path[0]) {
1769 		if (!bdev_is_zoned(sbi->sb->s_bdev))
1770 			return 0;
1771 		max_devices = 1;
1772 	}
1773 
1774 	/*
1775 	 * Initialize multiple devices information, or single
1776 	 * zoned block device information.
1777 	 */
1778 	sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
1779 				GFP_KERNEL);
1780 	if (!sbi->devs)
1781 		return -ENOMEM;
1782 
1783 	for (i = 0; i < max_devices; i++) {
1784 
1785 		if (i > 0 && !RDEV(i).path[0])
1786 			break;
1787 
1788 		if (max_devices == 1) {
1789 			/* Single zoned block device mount */
1790 			FDEV(0).bdev =
1791 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
1792 					sbi->sb->s_mode, sbi->sb->s_type);
1793 		} else {
1794 			/* Multi-device mount */
1795 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
1796 			FDEV(i).total_segments =
1797 				le32_to_cpu(RDEV(i).total_segments);
1798 			if (i == 0) {
1799 				FDEV(i).start_blk = 0;
1800 				FDEV(i).end_blk = FDEV(i).start_blk +
1801 				    (FDEV(i).total_segments <<
1802 				    sbi->log_blocks_per_seg) - 1 +
1803 				    le32_to_cpu(raw_super->segment0_blkaddr);
1804 			} else {
1805 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
1806 				FDEV(i).end_blk = FDEV(i).start_blk +
1807 					(FDEV(i).total_segments <<
1808 					sbi->log_blocks_per_seg) - 1;
1809 			}
1810 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
1811 					sbi->sb->s_mode, sbi->sb->s_type);
1812 		}
1813 		if (IS_ERR(FDEV(i).bdev))
1814 			return PTR_ERR(FDEV(i).bdev);
1815 
1816 		/* to release errored devices */
1817 		sbi->s_ndevs = i + 1;
1818 
1819 #ifdef CONFIG_BLK_DEV_ZONED
1820 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
1821 				!f2fs_sb_mounted_blkzoned(sbi->sb)) {
1822 			f2fs_msg(sbi->sb, KERN_ERR,
1823 				"Zoned block device feature not enabled\n");
1824 			return -EINVAL;
1825 		}
1826 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
1827 			if (init_blkz_info(sbi, i)) {
1828 				f2fs_msg(sbi->sb, KERN_ERR,
1829 					"Failed to initialize F2FS blkzone information");
1830 				return -EINVAL;
1831 			}
1832 			if (max_devices == 1)
1833 				break;
1834 			f2fs_msg(sbi->sb, KERN_INFO,
1835 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
1836 				i, FDEV(i).path,
1837 				FDEV(i).total_segments,
1838 				FDEV(i).start_blk, FDEV(i).end_blk,
1839 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
1840 				"Host-aware" : "Host-managed");
1841 			continue;
1842 		}
1843 #endif
1844 		f2fs_msg(sbi->sb, KERN_INFO,
1845 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
1846 				i, FDEV(i).path,
1847 				FDEV(i).total_segments,
1848 				FDEV(i).start_blk, FDEV(i).end_blk);
1849 	}
1850 	f2fs_msg(sbi->sb, KERN_INFO,
1851 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
1852 	return 0;
1853 }
1854 
1855 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1856 {
1857 	struct f2fs_sb_info *sbi;
1858 	struct f2fs_super_block *raw_super;
1859 	struct inode *root;
1860 	int err;
1861 	bool retry = true, need_fsck = false;
1862 	char *options = NULL;
1863 	int recovery, i, valid_super_block;
1864 	struct curseg_info *seg_i;
1865 
1866 try_onemore:
1867 	err = -EINVAL;
1868 	raw_super = NULL;
1869 	valid_super_block = -1;
1870 	recovery = 0;
1871 
1872 	/* allocate memory for f2fs-specific super block info */
1873 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1874 	if (!sbi)
1875 		return -ENOMEM;
1876 
1877 	sbi->sb = sb;
1878 
1879 	/* Load the checksum driver */
1880 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1881 	if (IS_ERR(sbi->s_chksum_driver)) {
1882 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1883 		err = PTR_ERR(sbi->s_chksum_driver);
1884 		sbi->s_chksum_driver = NULL;
1885 		goto free_sbi;
1886 	}
1887 
1888 	/* set a block size */
1889 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1890 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1891 		goto free_sbi;
1892 	}
1893 
1894 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1895 								&recovery);
1896 	if (err)
1897 		goto free_sbi;
1898 
1899 	sb->s_fs_info = sbi;
1900 	sbi->raw_super = raw_super;
1901 
1902 	/*
1903 	 * The BLKZONED feature indicates that the drive was formatted with
1904 	 * zone alignment optimization. This is optional for host-aware
1905 	 * devices, but mandatory for host-managed zoned block devices.
1906 	 */
1907 #ifndef CONFIG_BLK_DEV_ZONED
1908 	if (f2fs_sb_mounted_blkzoned(sb)) {
1909 		f2fs_msg(sb, KERN_ERR,
1910 			 "Zoned block device support is not enabled\n");
1911 		goto free_sb_buf;
1912 	}
1913 #endif
1914 	default_options(sbi);
1915 	/* parse mount options */
1916 	options = kstrdup((const char *)data, GFP_KERNEL);
1917 	if (data && !options) {
1918 		err = -ENOMEM;
1919 		goto free_sb_buf;
1920 	}
1921 
1922 	err = parse_options(sb, options);
1923 	if (err)
1924 		goto free_options;
1925 
1926 	sbi->max_file_blocks = max_file_blocks();
1927 	sb->s_maxbytes = sbi->max_file_blocks <<
1928 				le32_to_cpu(raw_super->log_blocksize);
1929 	sb->s_max_links = F2FS_LINK_MAX;
1930 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1931 
1932 	sb->s_op = &f2fs_sops;
1933 	sb->s_cop = &f2fs_cryptops;
1934 	sb->s_xattr = f2fs_xattr_handlers;
1935 	sb->s_export_op = &f2fs_export_ops;
1936 	sb->s_magic = F2FS_SUPER_MAGIC;
1937 	sb->s_time_gran = 1;
1938 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1939 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1940 	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1941 
1942 	/* init f2fs-specific super block info */
1943 	sbi->valid_super_block = valid_super_block;
1944 	mutex_init(&sbi->gc_mutex);
1945 	mutex_init(&sbi->cp_mutex);
1946 	init_rwsem(&sbi->node_write);
1947 	init_rwsem(&sbi->node_change);
1948 
1949 	/* disallow all the data/node/meta page writes */
1950 	set_sbi_flag(sbi, SBI_POR_DOING);
1951 	spin_lock_init(&sbi->stat_lock);
1952 
1953 	init_rwsem(&sbi->read_io.io_rwsem);
1954 	sbi->read_io.sbi = sbi;
1955 	sbi->read_io.bio = NULL;
1956 	for (i = 0; i < NR_PAGE_TYPE; i++) {
1957 		init_rwsem(&sbi->write_io[i].io_rwsem);
1958 		sbi->write_io[i].sbi = sbi;
1959 		sbi->write_io[i].bio = NULL;
1960 	}
1961 
1962 	init_rwsem(&sbi->cp_rwsem);
1963 	init_waitqueue_head(&sbi->cp_wait);
1964 	init_sb_info(sbi);
1965 
1966 	err = init_percpu_info(sbi);
1967 	if (err)
1968 		goto free_options;
1969 
1970 	if (F2FS_IO_SIZE(sbi) > 1) {
1971 		sbi->write_io_dummy =
1972 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
1973 		if (!sbi->write_io_dummy)
1974 			goto free_options;
1975 	}
1976 
1977 	/* get an inode for meta space */
1978 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1979 	if (IS_ERR(sbi->meta_inode)) {
1980 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1981 		err = PTR_ERR(sbi->meta_inode);
1982 		goto free_io_dummy;
1983 	}
1984 
1985 	err = get_valid_checkpoint(sbi);
1986 	if (err) {
1987 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1988 		goto free_meta_inode;
1989 	}
1990 
1991 	/* Initialize device list */
1992 	err = f2fs_scan_devices(sbi);
1993 	if (err) {
1994 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
1995 		goto free_devices;
1996 	}
1997 
1998 	sbi->total_valid_node_count =
1999 				le32_to_cpu(sbi->ckpt->valid_node_count);
2000 	percpu_counter_set(&sbi->total_valid_inode_count,
2001 				le32_to_cpu(sbi->ckpt->valid_inode_count));
2002 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2003 	sbi->total_valid_block_count =
2004 				le64_to_cpu(sbi->ckpt->valid_block_count);
2005 	sbi->last_valid_block_count = sbi->total_valid_block_count;
2006 
2007 	for (i = 0; i < NR_INODE_TYPE; i++) {
2008 		INIT_LIST_HEAD(&sbi->inode_list[i]);
2009 		spin_lock_init(&sbi->inode_lock[i]);
2010 	}
2011 
2012 	init_extent_cache_info(sbi);
2013 
2014 	init_ino_entry_info(sbi);
2015 
2016 	/* setup f2fs internal modules */
2017 	err = build_segment_manager(sbi);
2018 	if (err) {
2019 		f2fs_msg(sb, KERN_ERR,
2020 			"Failed to initialize F2FS segment manager");
2021 		goto free_sm;
2022 	}
2023 	err = build_node_manager(sbi);
2024 	if (err) {
2025 		f2fs_msg(sb, KERN_ERR,
2026 			"Failed to initialize F2FS node manager");
2027 		goto free_nm;
2028 	}
2029 
2030 	/* For write statistics */
2031 	if (sb->s_bdev->bd_part)
2032 		sbi->sectors_written_start =
2033 			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2034 
2035 	/* Read accumulated write IO statistics if exists */
2036 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2037 	if (__exist_node_summaries(sbi))
2038 		sbi->kbytes_written =
2039 			le64_to_cpu(seg_i->journal->info.kbytes_written);
2040 
2041 	build_gc_manager(sbi);
2042 
2043 	/* get an inode for node space */
2044 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2045 	if (IS_ERR(sbi->node_inode)) {
2046 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2047 		err = PTR_ERR(sbi->node_inode);
2048 		goto free_nm;
2049 	}
2050 
2051 	f2fs_join_shrinker(sbi);
2052 
2053 	err = f2fs_build_stats(sbi);
2054 	if (err)
2055 		goto free_nm;
2056 
2057 	/* if there are nt orphan nodes free them */
2058 	err = recover_orphan_inodes(sbi);
2059 	if (err)
2060 		goto free_node_inode;
2061 
2062 	/* read root inode and dentry */
2063 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2064 	if (IS_ERR(root)) {
2065 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2066 		err = PTR_ERR(root);
2067 		goto free_node_inode;
2068 	}
2069 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2070 		iput(root);
2071 		err = -EINVAL;
2072 		goto free_node_inode;
2073 	}
2074 
2075 	sb->s_root = d_make_root(root); /* allocate root dentry */
2076 	if (!sb->s_root) {
2077 		err = -ENOMEM;
2078 		goto free_root_inode;
2079 	}
2080 
2081 	if (f2fs_proc_root)
2082 		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
2083 
2084 	if (sbi->s_proc) {
2085 		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
2086 				 &f2fs_seq_segment_info_fops, sb);
2087 		proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
2088 				 &f2fs_seq_segment_bits_fops, sb);
2089 	}
2090 
2091 	sbi->s_kobj.kset = f2fs_kset;
2092 	init_completion(&sbi->s_kobj_unregister);
2093 	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
2094 							"%s", sb->s_id);
2095 	if (err)
2096 		goto free_proc;
2097 
2098 	/* recover fsynced data */
2099 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2100 		/*
2101 		 * mount should be failed, when device has readonly mode, and
2102 		 * previous checkpoint was not done by clean system shutdown.
2103 		 */
2104 		if (bdev_read_only(sb->s_bdev) &&
2105 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2106 			err = -EROFS;
2107 			goto free_kobj;
2108 		}
2109 
2110 		if (need_fsck)
2111 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2112 
2113 		if (!retry)
2114 			goto skip_recovery;
2115 
2116 		err = recover_fsync_data(sbi, false);
2117 		if (err < 0) {
2118 			need_fsck = true;
2119 			f2fs_msg(sb, KERN_ERR,
2120 				"Cannot recover all fsync data errno=%d", err);
2121 			goto free_kobj;
2122 		}
2123 	} else {
2124 		err = recover_fsync_data(sbi, true);
2125 
2126 		if (!f2fs_readonly(sb) && err > 0) {
2127 			err = -EINVAL;
2128 			f2fs_msg(sb, KERN_ERR,
2129 				"Need to recover fsync data");
2130 			goto free_kobj;
2131 		}
2132 	}
2133 skip_recovery:
2134 	/* recover_fsync_data() cleared this already */
2135 	clear_sbi_flag(sbi, SBI_POR_DOING);
2136 
2137 	/*
2138 	 * If filesystem is not mounted as read-only then
2139 	 * do start the gc_thread.
2140 	 */
2141 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2142 		/* After POR, we can run background GC thread.*/
2143 		err = start_gc_thread(sbi);
2144 		if (err)
2145 			goto free_kobj;
2146 	}
2147 	kfree(options);
2148 
2149 	/* recover broken superblock */
2150 	if (recovery) {
2151 		err = f2fs_commit_super(sbi, true);
2152 		f2fs_msg(sb, KERN_INFO,
2153 			"Try to recover %dth superblock, ret: %d",
2154 			sbi->valid_super_block ? 1 : 2, err);
2155 	}
2156 
2157 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2158 				cur_cp_version(F2FS_CKPT(sbi)));
2159 	f2fs_update_time(sbi, CP_TIME);
2160 	f2fs_update_time(sbi, REQ_TIME);
2161 	return 0;
2162 
2163 free_kobj:
2164 	f2fs_sync_inode_meta(sbi);
2165 	kobject_del(&sbi->s_kobj);
2166 	kobject_put(&sbi->s_kobj);
2167 	wait_for_completion(&sbi->s_kobj_unregister);
2168 free_proc:
2169 	if (sbi->s_proc) {
2170 		remove_proc_entry("segment_info", sbi->s_proc);
2171 		remove_proc_entry("segment_bits", sbi->s_proc);
2172 		remove_proc_entry(sb->s_id, f2fs_proc_root);
2173 	}
2174 free_root_inode:
2175 	dput(sb->s_root);
2176 	sb->s_root = NULL;
2177 free_node_inode:
2178 	truncate_inode_pages_final(NODE_MAPPING(sbi));
2179 	mutex_lock(&sbi->umount_mutex);
2180 	release_ino_entry(sbi, true);
2181 	f2fs_leave_shrinker(sbi);
2182 	/*
2183 	 * Some dirty meta pages can be produced by recover_orphan_inodes()
2184 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2185 	 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2186 	 * falls into an infinite loop in sync_meta_pages().
2187 	 */
2188 	truncate_inode_pages_final(META_MAPPING(sbi));
2189 	iput(sbi->node_inode);
2190 	mutex_unlock(&sbi->umount_mutex);
2191 	f2fs_destroy_stats(sbi);
2192 free_nm:
2193 	destroy_node_manager(sbi);
2194 free_sm:
2195 	destroy_segment_manager(sbi);
2196 free_devices:
2197 	destroy_device_list(sbi);
2198 	kfree(sbi->ckpt);
2199 free_meta_inode:
2200 	make_bad_inode(sbi->meta_inode);
2201 	iput(sbi->meta_inode);
2202 free_io_dummy:
2203 	mempool_destroy(sbi->write_io_dummy);
2204 free_options:
2205 	destroy_percpu_info(sbi);
2206 	kfree(options);
2207 free_sb_buf:
2208 	kfree(raw_super);
2209 free_sbi:
2210 	if (sbi->s_chksum_driver)
2211 		crypto_free_shash(sbi->s_chksum_driver);
2212 	kfree(sbi);
2213 
2214 	/* give only one another chance */
2215 	if (retry) {
2216 		retry = false;
2217 		shrink_dcache_sb(sb);
2218 		goto try_onemore;
2219 	}
2220 	return err;
2221 }
2222 
2223 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2224 			const char *dev_name, void *data)
2225 {
2226 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2227 }
2228 
2229 static void kill_f2fs_super(struct super_block *sb)
2230 {
2231 	if (sb->s_root)
2232 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2233 	kill_block_super(sb);
2234 }
2235 
2236 static struct file_system_type f2fs_fs_type = {
2237 	.owner		= THIS_MODULE,
2238 	.name		= "f2fs",
2239 	.mount		= f2fs_mount,
2240 	.kill_sb	= kill_f2fs_super,
2241 	.fs_flags	= FS_REQUIRES_DEV,
2242 };
2243 MODULE_ALIAS_FS("f2fs");
2244 
2245 static int __init init_inodecache(void)
2246 {
2247 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2248 			sizeof(struct f2fs_inode_info), 0,
2249 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2250 	if (!f2fs_inode_cachep)
2251 		return -ENOMEM;
2252 	return 0;
2253 }
2254 
2255 static void destroy_inodecache(void)
2256 {
2257 	/*
2258 	 * Make sure all delayed rcu free inodes are flushed before we
2259 	 * destroy cache.
2260 	 */
2261 	rcu_barrier();
2262 	kmem_cache_destroy(f2fs_inode_cachep);
2263 }
2264 
2265 static int __init init_f2fs_fs(void)
2266 {
2267 	int err;
2268 
2269 	f2fs_build_trace_ios();
2270 
2271 	err = init_inodecache();
2272 	if (err)
2273 		goto fail;
2274 	err = create_node_manager_caches();
2275 	if (err)
2276 		goto free_inodecache;
2277 	err = create_segment_manager_caches();
2278 	if (err)
2279 		goto free_node_manager_caches;
2280 	err = create_checkpoint_caches();
2281 	if (err)
2282 		goto free_segment_manager_caches;
2283 	err = create_extent_cache();
2284 	if (err)
2285 		goto free_checkpoint_caches;
2286 	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
2287 	if (!f2fs_kset) {
2288 		err = -ENOMEM;
2289 		goto free_extent_cache;
2290 	}
2291 	err = register_shrinker(&f2fs_shrinker_info);
2292 	if (err)
2293 		goto free_kset;
2294 
2295 	err = register_filesystem(&f2fs_fs_type);
2296 	if (err)
2297 		goto free_shrinker;
2298 	err = f2fs_create_root_stats();
2299 	if (err)
2300 		goto free_filesystem;
2301 	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2302 	return 0;
2303 
2304 free_filesystem:
2305 	unregister_filesystem(&f2fs_fs_type);
2306 free_shrinker:
2307 	unregister_shrinker(&f2fs_shrinker_info);
2308 free_kset:
2309 	kset_unregister(f2fs_kset);
2310 free_extent_cache:
2311 	destroy_extent_cache();
2312 free_checkpoint_caches:
2313 	destroy_checkpoint_caches();
2314 free_segment_manager_caches:
2315 	destroy_segment_manager_caches();
2316 free_node_manager_caches:
2317 	destroy_node_manager_caches();
2318 free_inodecache:
2319 	destroy_inodecache();
2320 fail:
2321 	return err;
2322 }
2323 
2324 static void __exit exit_f2fs_fs(void)
2325 {
2326 	remove_proc_entry("fs/f2fs", NULL);
2327 	f2fs_destroy_root_stats();
2328 	unregister_filesystem(&f2fs_fs_type);
2329 	unregister_shrinker(&f2fs_shrinker_info);
2330 	kset_unregister(f2fs_kset);
2331 	destroy_extent_cache();
2332 	destroy_checkpoint_caches();
2333 	destroy_segment_manager_caches();
2334 	destroy_node_manager_caches();
2335 	destroy_inodecache();
2336 	f2fs_destroy_trace_ios();
2337 }
2338 
2339 module_init(init_f2fs_fs)
2340 module_exit(exit_f2fs_fs)
2341 
2342 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2343 MODULE_DESCRIPTION("Flash Friendly File System");
2344 MODULE_LICENSE("GPL");
2345 
2346