1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct kmem_cache *f2fs_inode_cachep; 39 40 #ifdef CONFIG_F2FS_FAULT_INJECTION 41 42 const char *f2fs_fault_name[FAULT_MAX] = { 43 [FAULT_KMALLOC] = "kmalloc", 44 [FAULT_KVMALLOC] = "kvmalloc", 45 [FAULT_PAGE_ALLOC] = "page alloc", 46 [FAULT_PAGE_GET] = "page get", 47 [FAULT_ALLOC_BIO] = "alloc bio", 48 [FAULT_ALLOC_NID] = "alloc nid", 49 [FAULT_ORPHAN] = "orphan", 50 [FAULT_BLOCK] = "no more block", 51 [FAULT_DIR_DEPTH] = "too big dir depth", 52 [FAULT_EVICT_INODE] = "evict_inode fail", 53 [FAULT_TRUNCATE] = "truncate fail", 54 [FAULT_READ_IO] = "read IO error", 55 [FAULT_CHECKPOINT] = "checkpoint error", 56 [FAULT_DISCARD] = "discard error", 57 [FAULT_WRITE_IO] = "write IO error", 58 }; 59 60 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 61 unsigned int type) 62 { 63 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 64 65 if (rate) { 66 atomic_set(&ffi->inject_ops, 0); 67 ffi->inject_rate = rate; 68 } 69 70 if (type) 71 ffi->inject_type = type; 72 73 if (!rate && !type) 74 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 75 } 76 #endif 77 78 /* f2fs-wide shrinker description */ 79 static struct shrinker f2fs_shrinker_info = { 80 .scan_objects = f2fs_shrink_scan, 81 .count_objects = f2fs_shrink_count, 82 .seeks = DEFAULT_SEEKS, 83 }; 84 85 enum { 86 Opt_gc_background, 87 Opt_disable_roll_forward, 88 Opt_norecovery, 89 Opt_discard, 90 Opt_nodiscard, 91 Opt_noheap, 92 Opt_heap, 93 Opt_user_xattr, 94 Opt_nouser_xattr, 95 Opt_acl, 96 Opt_noacl, 97 Opt_active_logs, 98 Opt_disable_ext_identify, 99 Opt_inline_xattr, 100 Opt_noinline_xattr, 101 Opt_inline_xattr_size, 102 Opt_inline_data, 103 Opt_inline_dentry, 104 Opt_noinline_dentry, 105 Opt_flush_merge, 106 Opt_noflush_merge, 107 Opt_nobarrier, 108 Opt_fastboot, 109 Opt_extent_cache, 110 Opt_noextent_cache, 111 Opt_noinline_data, 112 Opt_data_flush, 113 Opt_reserve_root, 114 Opt_resgid, 115 Opt_resuid, 116 Opt_mode, 117 Opt_io_size_bits, 118 Opt_fault_injection, 119 Opt_fault_type, 120 Opt_lazytime, 121 Opt_nolazytime, 122 Opt_quota, 123 Opt_noquota, 124 Opt_usrquota, 125 Opt_grpquota, 126 Opt_prjquota, 127 Opt_usrjquota, 128 Opt_grpjquota, 129 Opt_prjjquota, 130 Opt_offusrjquota, 131 Opt_offgrpjquota, 132 Opt_offprjjquota, 133 Opt_jqfmt_vfsold, 134 Opt_jqfmt_vfsv0, 135 Opt_jqfmt_vfsv1, 136 Opt_whint, 137 Opt_alloc, 138 Opt_fsync, 139 Opt_test_dummy_encryption, 140 Opt_checkpoint_disable, 141 Opt_checkpoint_disable_cap, 142 Opt_checkpoint_disable_cap_perc, 143 Opt_checkpoint_enable, 144 Opt_compress_algorithm, 145 Opt_compress_log_size, 146 Opt_compress_extension, 147 Opt_err, 148 }; 149 150 static match_table_t f2fs_tokens = { 151 {Opt_gc_background, "background_gc=%s"}, 152 {Opt_disable_roll_forward, "disable_roll_forward"}, 153 {Opt_norecovery, "norecovery"}, 154 {Opt_discard, "discard"}, 155 {Opt_nodiscard, "nodiscard"}, 156 {Opt_noheap, "no_heap"}, 157 {Opt_heap, "heap"}, 158 {Opt_user_xattr, "user_xattr"}, 159 {Opt_nouser_xattr, "nouser_xattr"}, 160 {Opt_acl, "acl"}, 161 {Opt_noacl, "noacl"}, 162 {Opt_active_logs, "active_logs=%u"}, 163 {Opt_disable_ext_identify, "disable_ext_identify"}, 164 {Opt_inline_xattr, "inline_xattr"}, 165 {Opt_noinline_xattr, "noinline_xattr"}, 166 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 167 {Opt_inline_data, "inline_data"}, 168 {Opt_inline_dentry, "inline_dentry"}, 169 {Opt_noinline_dentry, "noinline_dentry"}, 170 {Opt_flush_merge, "flush_merge"}, 171 {Opt_noflush_merge, "noflush_merge"}, 172 {Opt_nobarrier, "nobarrier"}, 173 {Opt_fastboot, "fastboot"}, 174 {Opt_extent_cache, "extent_cache"}, 175 {Opt_noextent_cache, "noextent_cache"}, 176 {Opt_noinline_data, "noinline_data"}, 177 {Opt_data_flush, "data_flush"}, 178 {Opt_reserve_root, "reserve_root=%u"}, 179 {Opt_resgid, "resgid=%u"}, 180 {Opt_resuid, "resuid=%u"}, 181 {Opt_mode, "mode=%s"}, 182 {Opt_io_size_bits, "io_bits=%u"}, 183 {Opt_fault_injection, "fault_injection=%u"}, 184 {Opt_fault_type, "fault_type=%u"}, 185 {Opt_lazytime, "lazytime"}, 186 {Opt_nolazytime, "nolazytime"}, 187 {Opt_quota, "quota"}, 188 {Opt_noquota, "noquota"}, 189 {Opt_usrquota, "usrquota"}, 190 {Opt_grpquota, "grpquota"}, 191 {Opt_prjquota, "prjquota"}, 192 {Opt_usrjquota, "usrjquota=%s"}, 193 {Opt_grpjquota, "grpjquota=%s"}, 194 {Opt_prjjquota, "prjjquota=%s"}, 195 {Opt_offusrjquota, "usrjquota="}, 196 {Opt_offgrpjquota, "grpjquota="}, 197 {Opt_offprjjquota, "prjjquota="}, 198 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 199 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 200 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 201 {Opt_whint, "whint_mode=%s"}, 202 {Opt_alloc, "alloc_mode=%s"}, 203 {Opt_fsync, "fsync_mode=%s"}, 204 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 205 {Opt_checkpoint_disable, "checkpoint=disable"}, 206 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 207 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 208 {Opt_checkpoint_enable, "checkpoint=enable"}, 209 {Opt_compress_algorithm, "compress_algorithm=%s"}, 210 {Opt_compress_log_size, "compress_log_size=%u"}, 211 {Opt_compress_extension, "compress_extension=%s"}, 212 {Opt_err, NULL}, 213 }; 214 215 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 216 { 217 struct va_format vaf; 218 va_list args; 219 int level; 220 221 va_start(args, fmt); 222 223 level = printk_get_level(fmt); 224 vaf.fmt = printk_skip_level(fmt); 225 vaf.va = &args; 226 printk("%c%cF2FS-fs (%s): %pV\n", 227 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 228 229 va_end(args); 230 } 231 232 #ifdef CONFIG_UNICODE 233 static const struct f2fs_sb_encodings { 234 __u16 magic; 235 char *name; 236 char *version; 237 } f2fs_sb_encoding_map[] = { 238 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"}, 239 }; 240 241 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb, 242 const struct f2fs_sb_encodings **encoding, 243 __u16 *flags) 244 { 245 __u16 magic = le16_to_cpu(sb->s_encoding); 246 int i; 247 248 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 249 if (magic == f2fs_sb_encoding_map[i].magic) 250 break; 251 252 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map)) 253 return -EINVAL; 254 255 *encoding = &f2fs_sb_encoding_map[i]; 256 *flags = le16_to_cpu(sb->s_encoding_flags); 257 258 return 0; 259 } 260 #endif 261 262 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 263 { 264 block_t limit = min((sbi->user_block_count << 1) / 1000, 265 sbi->user_block_count - sbi->reserved_blocks); 266 267 /* limit is 0.2% */ 268 if (test_opt(sbi, RESERVE_ROOT) && 269 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 270 F2FS_OPTION(sbi).root_reserved_blocks = limit; 271 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 272 F2FS_OPTION(sbi).root_reserved_blocks); 273 } 274 if (!test_opt(sbi, RESERVE_ROOT) && 275 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 276 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 277 !gid_eq(F2FS_OPTION(sbi).s_resgid, 278 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 279 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 280 from_kuid_munged(&init_user_ns, 281 F2FS_OPTION(sbi).s_resuid), 282 from_kgid_munged(&init_user_ns, 283 F2FS_OPTION(sbi).s_resgid)); 284 } 285 286 static void init_once(void *foo) 287 { 288 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 289 290 inode_init_once(&fi->vfs_inode); 291 } 292 293 #ifdef CONFIG_QUOTA 294 static const char * const quotatypes[] = INITQFNAMES; 295 #define QTYPE2NAME(t) (quotatypes[t]) 296 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 297 substring_t *args) 298 { 299 struct f2fs_sb_info *sbi = F2FS_SB(sb); 300 char *qname; 301 int ret = -EINVAL; 302 303 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 304 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 305 return -EINVAL; 306 } 307 if (f2fs_sb_has_quota_ino(sbi)) { 308 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 309 return 0; 310 } 311 312 qname = match_strdup(args); 313 if (!qname) { 314 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 315 return -ENOMEM; 316 } 317 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 318 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 319 ret = 0; 320 else 321 f2fs_err(sbi, "%s quota file already specified", 322 QTYPE2NAME(qtype)); 323 goto errout; 324 } 325 if (strchr(qname, '/')) { 326 f2fs_err(sbi, "quotafile must be on filesystem root"); 327 goto errout; 328 } 329 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 330 set_opt(sbi, QUOTA); 331 return 0; 332 errout: 333 kvfree(qname); 334 return ret; 335 } 336 337 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 338 { 339 struct f2fs_sb_info *sbi = F2FS_SB(sb); 340 341 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 342 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 343 return -EINVAL; 344 } 345 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 346 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 347 return 0; 348 } 349 350 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 351 { 352 /* 353 * We do the test below only for project quotas. 'usrquota' and 354 * 'grpquota' mount options are allowed even without quota feature 355 * to support legacy quotas in quota files. 356 */ 357 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 358 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 359 return -1; 360 } 361 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 362 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 363 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 364 if (test_opt(sbi, USRQUOTA) && 365 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 366 clear_opt(sbi, USRQUOTA); 367 368 if (test_opt(sbi, GRPQUOTA) && 369 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 370 clear_opt(sbi, GRPQUOTA); 371 372 if (test_opt(sbi, PRJQUOTA) && 373 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 374 clear_opt(sbi, PRJQUOTA); 375 376 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 377 test_opt(sbi, PRJQUOTA)) { 378 f2fs_err(sbi, "old and new quota format mixing"); 379 return -1; 380 } 381 382 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 383 f2fs_err(sbi, "journaled quota format not specified"); 384 return -1; 385 } 386 } 387 388 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 389 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 390 F2FS_OPTION(sbi).s_jquota_fmt = 0; 391 } 392 return 0; 393 } 394 #endif 395 396 static int parse_options(struct super_block *sb, char *options) 397 { 398 struct f2fs_sb_info *sbi = F2FS_SB(sb); 399 substring_t args[MAX_OPT_ARGS]; 400 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 401 char *p, *name; 402 int arg = 0, ext_cnt; 403 kuid_t uid; 404 kgid_t gid; 405 #ifdef CONFIG_QUOTA 406 int ret; 407 #endif 408 409 if (!options) 410 return 0; 411 412 while ((p = strsep(&options, ",")) != NULL) { 413 int token; 414 if (!*p) 415 continue; 416 /* 417 * Initialize args struct so we know whether arg was 418 * found; some options take optional arguments. 419 */ 420 args[0].to = args[0].from = NULL; 421 token = match_token(p, f2fs_tokens, args); 422 423 switch (token) { 424 case Opt_gc_background: 425 name = match_strdup(&args[0]); 426 427 if (!name) 428 return -ENOMEM; 429 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 430 set_opt(sbi, BG_GC); 431 clear_opt(sbi, FORCE_FG_GC); 432 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 433 clear_opt(sbi, BG_GC); 434 clear_opt(sbi, FORCE_FG_GC); 435 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 436 set_opt(sbi, BG_GC); 437 set_opt(sbi, FORCE_FG_GC); 438 } else { 439 kvfree(name); 440 return -EINVAL; 441 } 442 kvfree(name); 443 break; 444 case Opt_disable_roll_forward: 445 set_opt(sbi, DISABLE_ROLL_FORWARD); 446 break; 447 case Opt_norecovery: 448 /* this option mounts f2fs with ro */ 449 set_opt(sbi, DISABLE_ROLL_FORWARD); 450 if (!f2fs_readonly(sb)) 451 return -EINVAL; 452 break; 453 case Opt_discard: 454 set_opt(sbi, DISCARD); 455 break; 456 case Opt_nodiscard: 457 if (f2fs_sb_has_blkzoned(sbi)) { 458 f2fs_warn(sbi, "discard is required for zoned block devices"); 459 return -EINVAL; 460 } 461 clear_opt(sbi, DISCARD); 462 break; 463 case Opt_noheap: 464 set_opt(sbi, NOHEAP); 465 break; 466 case Opt_heap: 467 clear_opt(sbi, NOHEAP); 468 break; 469 #ifdef CONFIG_F2FS_FS_XATTR 470 case Opt_user_xattr: 471 set_opt(sbi, XATTR_USER); 472 break; 473 case Opt_nouser_xattr: 474 clear_opt(sbi, XATTR_USER); 475 break; 476 case Opt_inline_xattr: 477 set_opt(sbi, INLINE_XATTR); 478 break; 479 case Opt_noinline_xattr: 480 clear_opt(sbi, INLINE_XATTR); 481 break; 482 case Opt_inline_xattr_size: 483 if (args->from && match_int(args, &arg)) 484 return -EINVAL; 485 set_opt(sbi, INLINE_XATTR_SIZE); 486 F2FS_OPTION(sbi).inline_xattr_size = arg; 487 break; 488 #else 489 case Opt_user_xattr: 490 f2fs_info(sbi, "user_xattr options not supported"); 491 break; 492 case Opt_nouser_xattr: 493 f2fs_info(sbi, "nouser_xattr options not supported"); 494 break; 495 case Opt_inline_xattr: 496 f2fs_info(sbi, "inline_xattr options not supported"); 497 break; 498 case Opt_noinline_xattr: 499 f2fs_info(sbi, "noinline_xattr options not supported"); 500 break; 501 #endif 502 #ifdef CONFIG_F2FS_FS_POSIX_ACL 503 case Opt_acl: 504 set_opt(sbi, POSIX_ACL); 505 break; 506 case Opt_noacl: 507 clear_opt(sbi, POSIX_ACL); 508 break; 509 #else 510 case Opt_acl: 511 f2fs_info(sbi, "acl options not supported"); 512 break; 513 case Opt_noacl: 514 f2fs_info(sbi, "noacl options not supported"); 515 break; 516 #endif 517 case Opt_active_logs: 518 if (args->from && match_int(args, &arg)) 519 return -EINVAL; 520 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 521 return -EINVAL; 522 F2FS_OPTION(sbi).active_logs = arg; 523 break; 524 case Opt_disable_ext_identify: 525 set_opt(sbi, DISABLE_EXT_IDENTIFY); 526 break; 527 case Opt_inline_data: 528 set_opt(sbi, INLINE_DATA); 529 break; 530 case Opt_inline_dentry: 531 set_opt(sbi, INLINE_DENTRY); 532 break; 533 case Opt_noinline_dentry: 534 clear_opt(sbi, INLINE_DENTRY); 535 break; 536 case Opt_flush_merge: 537 set_opt(sbi, FLUSH_MERGE); 538 break; 539 case Opt_noflush_merge: 540 clear_opt(sbi, FLUSH_MERGE); 541 break; 542 case Opt_nobarrier: 543 set_opt(sbi, NOBARRIER); 544 break; 545 case Opt_fastboot: 546 set_opt(sbi, FASTBOOT); 547 break; 548 case Opt_extent_cache: 549 set_opt(sbi, EXTENT_CACHE); 550 break; 551 case Opt_noextent_cache: 552 clear_opt(sbi, EXTENT_CACHE); 553 break; 554 case Opt_noinline_data: 555 clear_opt(sbi, INLINE_DATA); 556 break; 557 case Opt_data_flush: 558 set_opt(sbi, DATA_FLUSH); 559 break; 560 case Opt_reserve_root: 561 if (args->from && match_int(args, &arg)) 562 return -EINVAL; 563 if (test_opt(sbi, RESERVE_ROOT)) { 564 f2fs_info(sbi, "Preserve previous reserve_root=%u", 565 F2FS_OPTION(sbi).root_reserved_blocks); 566 } else { 567 F2FS_OPTION(sbi).root_reserved_blocks = arg; 568 set_opt(sbi, RESERVE_ROOT); 569 } 570 break; 571 case Opt_resuid: 572 if (args->from && match_int(args, &arg)) 573 return -EINVAL; 574 uid = make_kuid(current_user_ns(), arg); 575 if (!uid_valid(uid)) { 576 f2fs_err(sbi, "Invalid uid value %d", arg); 577 return -EINVAL; 578 } 579 F2FS_OPTION(sbi).s_resuid = uid; 580 break; 581 case Opt_resgid: 582 if (args->from && match_int(args, &arg)) 583 return -EINVAL; 584 gid = make_kgid(current_user_ns(), arg); 585 if (!gid_valid(gid)) { 586 f2fs_err(sbi, "Invalid gid value %d", arg); 587 return -EINVAL; 588 } 589 F2FS_OPTION(sbi).s_resgid = gid; 590 break; 591 case Opt_mode: 592 name = match_strdup(&args[0]); 593 594 if (!name) 595 return -ENOMEM; 596 if (strlen(name) == 8 && 597 !strncmp(name, "adaptive", 8)) { 598 if (f2fs_sb_has_blkzoned(sbi)) { 599 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 600 kvfree(name); 601 return -EINVAL; 602 } 603 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 604 } else if (strlen(name) == 3 && 605 !strncmp(name, "lfs", 3)) { 606 set_opt_mode(sbi, F2FS_MOUNT_LFS); 607 } else { 608 kvfree(name); 609 return -EINVAL; 610 } 611 kvfree(name); 612 break; 613 case Opt_io_size_bits: 614 if (args->from && match_int(args, &arg)) 615 return -EINVAL; 616 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 617 f2fs_warn(sbi, "Not support %d, larger than %d", 618 1 << arg, BIO_MAX_PAGES); 619 return -EINVAL; 620 } 621 F2FS_OPTION(sbi).write_io_size_bits = arg; 622 break; 623 #ifdef CONFIG_F2FS_FAULT_INJECTION 624 case Opt_fault_injection: 625 if (args->from && match_int(args, &arg)) 626 return -EINVAL; 627 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 628 set_opt(sbi, FAULT_INJECTION); 629 break; 630 631 case Opt_fault_type: 632 if (args->from && match_int(args, &arg)) 633 return -EINVAL; 634 f2fs_build_fault_attr(sbi, 0, arg); 635 set_opt(sbi, FAULT_INJECTION); 636 break; 637 #else 638 case Opt_fault_injection: 639 f2fs_info(sbi, "fault_injection options not supported"); 640 break; 641 642 case Opt_fault_type: 643 f2fs_info(sbi, "fault_type options not supported"); 644 break; 645 #endif 646 case Opt_lazytime: 647 sb->s_flags |= SB_LAZYTIME; 648 break; 649 case Opt_nolazytime: 650 sb->s_flags &= ~SB_LAZYTIME; 651 break; 652 #ifdef CONFIG_QUOTA 653 case Opt_quota: 654 case Opt_usrquota: 655 set_opt(sbi, USRQUOTA); 656 break; 657 case Opt_grpquota: 658 set_opt(sbi, GRPQUOTA); 659 break; 660 case Opt_prjquota: 661 set_opt(sbi, PRJQUOTA); 662 break; 663 case Opt_usrjquota: 664 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 665 if (ret) 666 return ret; 667 break; 668 case Opt_grpjquota: 669 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 670 if (ret) 671 return ret; 672 break; 673 case Opt_prjjquota: 674 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 675 if (ret) 676 return ret; 677 break; 678 case Opt_offusrjquota: 679 ret = f2fs_clear_qf_name(sb, USRQUOTA); 680 if (ret) 681 return ret; 682 break; 683 case Opt_offgrpjquota: 684 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 685 if (ret) 686 return ret; 687 break; 688 case Opt_offprjjquota: 689 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 690 if (ret) 691 return ret; 692 break; 693 case Opt_jqfmt_vfsold: 694 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 695 break; 696 case Opt_jqfmt_vfsv0: 697 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 698 break; 699 case Opt_jqfmt_vfsv1: 700 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 701 break; 702 case Opt_noquota: 703 clear_opt(sbi, QUOTA); 704 clear_opt(sbi, USRQUOTA); 705 clear_opt(sbi, GRPQUOTA); 706 clear_opt(sbi, PRJQUOTA); 707 break; 708 #else 709 case Opt_quota: 710 case Opt_usrquota: 711 case Opt_grpquota: 712 case Opt_prjquota: 713 case Opt_usrjquota: 714 case Opt_grpjquota: 715 case Opt_prjjquota: 716 case Opt_offusrjquota: 717 case Opt_offgrpjquota: 718 case Opt_offprjjquota: 719 case Opt_jqfmt_vfsold: 720 case Opt_jqfmt_vfsv0: 721 case Opt_jqfmt_vfsv1: 722 case Opt_noquota: 723 f2fs_info(sbi, "quota operations not supported"); 724 break; 725 #endif 726 case Opt_whint: 727 name = match_strdup(&args[0]); 728 if (!name) 729 return -ENOMEM; 730 if (strlen(name) == 10 && 731 !strncmp(name, "user-based", 10)) { 732 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 733 } else if (strlen(name) == 3 && 734 !strncmp(name, "off", 3)) { 735 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 736 } else if (strlen(name) == 8 && 737 !strncmp(name, "fs-based", 8)) { 738 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 739 } else { 740 kvfree(name); 741 return -EINVAL; 742 } 743 kvfree(name); 744 break; 745 case Opt_alloc: 746 name = match_strdup(&args[0]); 747 if (!name) 748 return -ENOMEM; 749 750 if (strlen(name) == 7 && 751 !strncmp(name, "default", 7)) { 752 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 753 } else if (strlen(name) == 5 && 754 !strncmp(name, "reuse", 5)) { 755 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 756 } else { 757 kvfree(name); 758 return -EINVAL; 759 } 760 kvfree(name); 761 break; 762 case Opt_fsync: 763 name = match_strdup(&args[0]); 764 if (!name) 765 return -ENOMEM; 766 if (strlen(name) == 5 && 767 !strncmp(name, "posix", 5)) { 768 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 769 } else if (strlen(name) == 6 && 770 !strncmp(name, "strict", 6)) { 771 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 772 } else if (strlen(name) == 9 && 773 !strncmp(name, "nobarrier", 9)) { 774 F2FS_OPTION(sbi).fsync_mode = 775 FSYNC_MODE_NOBARRIER; 776 } else { 777 kvfree(name); 778 return -EINVAL; 779 } 780 kvfree(name); 781 break; 782 case Opt_test_dummy_encryption: 783 #ifdef CONFIG_FS_ENCRYPTION 784 if (!f2fs_sb_has_encrypt(sbi)) { 785 f2fs_err(sbi, "Encrypt feature is off"); 786 return -EINVAL; 787 } 788 789 F2FS_OPTION(sbi).test_dummy_encryption = true; 790 f2fs_info(sbi, "Test dummy encryption mode enabled"); 791 #else 792 f2fs_info(sbi, "Test dummy encryption mount option ignored"); 793 #endif 794 break; 795 case Opt_checkpoint_disable_cap_perc: 796 if (args->from && match_int(args, &arg)) 797 return -EINVAL; 798 if (arg < 0 || arg > 100) 799 return -EINVAL; 800 if (arg == 100) 801 F2FS_OPTION(sbi).unusable_cap = 802 sbi->user_block_count; 803 else 804 F2FS_OPTION(sbi).unusable_cap = 805 (sbi->user_block_count / 100) * arg; 806 set_opt(sbi, DISABLE_CHECKPOINT); 807 break; 808 case Opt_checkpoint_disable_cap: 809 if (args->from && match_int(args, &arg)) 810 return -EINVAL; 811 F2FS_OPTION(sbi).unusable_cap = arg; 812 set_opt(sbi, DISABLE_CHECKPOINT); 813 break; 814 case Opt_checkpoint_disable: 815 set_opt(sbi, DISABLE_CHECKPOINT); 816 break; 817 case Opt_checkpoint_enable: 818 clear_opt(sbi, DISABLE_CHECKPOINT); 819 break; 820 case Opt_compress_algorithm: 821 if (!f2fs_sb_has_compression(sbi)) { 822 f2fs_err(sbi, "Compression feature if off"); 823 return -EINVAL; 824 } 825 name = match_strdup(&args[0]); 826 if (!name) 827 return -ENOMEM; 828 if (strlen(name) == 3 && !strcmp(name, "lzo")) { 829 F2FS_OPTION(sbi).compress_algorithm = 830 COMPRESS_LZO; 831 } else if (strlen(name) == 3 && 832 !strcmp(name, "lz4")) { 833 F2FS_OPTION(sbi).compress_algorithm = 834 COMPRESS_LZ4; 835 } else { 836 kfree(name); 837 return -EINVAL; 838 } 839 kfree(name); 840 break; 841 case Opt_compress_log_size: 842 if (!f2fs_sb_has_compression(sbi)) { 843 f2fs_err(sbi, "Compression feature is off"); 844 return -EINVAL; 845 } 846 if (args->from && match_int(args, &arg)) 847 return -EINVAL; 848 if (arg < MIN_COMPRESS_LOG_SIZE || 849 arg > MAX_COMPRESS_LOG_SIZE) { 850 f2fs_err(sbi, 851 "Compress cluster log size is out of range"); 852 return -EINVAL; 853 } 854 F2FS_OPTION(sbi).compress_log_size = arg; 855 break; 856 case Opt_compress_extension: 857 if (!f2fs_sb_has_compression(sbi)) { 858 f2fs_err(sbi, "Compression feature is off"); 859 return -EINVAL; 860 } 861 name = match_strdup(&args[0]); 862 if (!name) 863 return -ENOMEM; 864 865 ext = F2FS_OPTION(sbi).extensions; 866 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 867 868 if (strlen(name) >= F2FS_EXTENSION_LEN || 869 ext_cnt >= COMPRESS_EXT_NUM) { 870 f2fs_err(sbi, 871 "invalid extension length/number"); 872 kfree(name); 873 return -EINVAL; 874 } 875 876 strcpy(ext[ext_cnt], name); 877 F2FS_OPTION(sbi).compress_ext_cnt++; 878 kfree(name); 879 break; 880 default: 881 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 882 p); 883 return -EINVAL; 884 } 885 } 886 #ifdef CONFIG_QUOTA 887 if (f2fs_check_quota_options(sbi)) 888 return -EINVAL; 889 #else 890 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 891 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 892 return -EINVAL; 893 } 894 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 895 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 896 return -EINVAL; 897 } 898 #endif 899 #ifndef CONFIG_UNICODE 900 if (f2fs_sb_has_casefold(sbi)) { 901 f2fs_err(sbi, 902 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 903 return -EINVAL; 904 } 905 #endif 906 907 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 908 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 909 F2FS_IO_SIZE_KB(sbi)); 910 return -EINVAL; 911 } 912 913 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 914 int min_size, max_size; 915 916 if (!f2fs_sb_has_extra_attr(sbi) || 917 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 918 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 919 return -EINVAL; 920 } 921 if (!test_opt(sbi, INLINE_XATTR)) { 922 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 923 return -EINVAL; 924 } 925 926 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 927 max_size = MAX_INLINE_XATTR_SIZE; 928 929 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 930 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 931 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 932 min_size, max_size); 933 return -EINVAL; 934 } 935 } 936 937 if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) { 938 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n"); 939 return -EINVAL; 940 } 941 942 /* Not pass down write hints if the number of active logs is lesser 943 * than NR_CURSEG_TYPE. 944 */ 945 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 946 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 947 return 0; 948 } 949 950 static struct inode *f2fs_alloc_inode(struct super_block *sb) 951 { 952 struct f2fs_inode_info *fi; 953 954 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 955 if (!fi) 956 return NULL; 957 958 init_once((void *) fi); 959 960 /* Initialize f2fs-specific inode info */ 961 atomic_set(&fi->dirty_pages, 0); 962 init_rwsem(&fi->i_sem); 963 INIT_LIST_HEAD(&fi->dirty_list); 964 INIT_LIST_HEAD(&fi->gdirty_list); 965 INIT_LIST_HEAD(&fi->inmem_ilist); 966 INIT_LIST_HEAD(&fi->inmem_pages); 967 mutex_init(&fi->inmem_lock); 968 init_rwsem(&fi->i_gc_rwsem[READ]); 969 init_rwsem(&fi->i_gc_rwsem[WRITE]); 970 init_rwsem(&fi->i_mmap_sem); 971 init_rwsem(&fi->i_xattr_sem); 972 973 /* Will be used by directory only */ 974 fi->i_dir_level = F2FS_SB(sb)->dir_level; 975 976 return &fi->vfs_inode; 977 } 978 979 static int f2fs_drop_inode(struct inode *inode) 980 { 981 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 982 int ret; 983 984 /* 985 * during filesystem shutdown, if checkpoint is disabled, 986 * drop useless meta/node dirty pages. 987 */ 988 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 989 if (inode->i_ino == F2FS_NODE_INO(sbi) || 990 inode->i_ino == F2FS_META_INO(sbi)) { 991 trace_f2fs_drop_inode(inode, 1); 992 return 1; 993 } 994 } 995 996 /* 997 * This is to avoid a deadlock condition like below. 998 * writeback_single_inode(inode) 999 * - f2fs_write_data_page 1000 * - f2fs_gc -> iput -> evict 1001 * - inode_wait_for_writeback(inode) 1002 */ 1003 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1004 if (!inode->i_nlink && !is_bad_inode(inode)) { 1005 /* to avoid evict_inode call simultaneously */ 1006 atomic_inc(&inode->i_count); 1007 spin_unlock(&inode->i_lock); 1008 1009 /* some remained atomic pages should discarded */ 1010 if (f2fs_is_atomic_file(inode)) 1011 f2fs_drop_inmem_pages(inode); 1012 1013 /* should remain fi->extent_tree for writepage */ 1014 f2fs_destroy_extent_node(inode); 1015 1016 sb_start_intwrite(inode->i_sb); 1017 f2fs_i_size_write(inode, 0); 1018 1019 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1020 inode, NULL, 0, DATA); 1021 truncate_inode_pages_final(inode->i_mapping); 1022 1023 if (F2FS_HAS_BLOCKS(inode)) 1024 f2fs_truncate(inode); 1025 1026 sb_end_intwrite(inode->i_sb); 1027 1028 spin_lock(&inode->i_lock); 1029 atomic_dec(&inode->i_count); 1030 } 1031 trace_f2fs_drop_inode(inode, 0); 1032 return 0; 1033 } 1034 ret = generic_drop_inode(inode); 1035 if (!ret) 1036 ret = fscrypt_drop_inode(inode); 1037 trace_f2fs_drop_inode(inode, ret); 1038 return ret; 1039 } 1040 1041 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1042 { 1043 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1044 int ret = 0; 1045 1046 spin_lock(&sbi->inode_lock[DIRTY_META]); 1047 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1048 ret = 1; 1049 } else { 1050 set_inode_flag(inode, FI_DIRTY_INODE); 1051 stat_inc_dirty_inode(sbi, DIRTY_META); 1052 } 1053 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1054 list_add_tail(&F2FS_I(inode)->gdirty_list, 1055 &sbi->inode_list[DIRTY_META]); 1056 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1057 } 1058 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1059 return ret; 1060 } 1061 1062 void f2fs_inode_synced(struct inode *inode) 1063 { 1064 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1065 1066 spin_lock(&sbi->inode_lock[DIRTY_META]); 1067 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1068 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1069 return; 1070 } 1071 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1072 list_del_init(&F2FS_I(inode)->gdirty_list); 1073 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1074 } 1075 clear_inode_flag(inode, FI_DIRTY_INODE); 1076 clear_inode_flag(inode, FI_AUTO_RECOVER); 1077 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1078 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1079 } 1080 1081 /* 1082 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1083 * 1084 * We should call set_dirty_inode to write the dirty inode through write_inode. 1085 */ 1086 static void f2fs_dirty_inode(struct inode *inode, int flags) 1087 { 1088 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1089 1090 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1091 inode->i_ino == F2FS_META_INO(sbi)) 1092 return; 1093 1094 if (flags == I_DIRTY_TIME) 1095 return; 1096 1097 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1098 clear_inode_flag(inode, FI_AUTO_RECOVER); 1099 1100 f2fs_inode_dirtied(inode, false); 1101 } 1102 1103 static void f2fs_free_inode(struct inode *inode) 1104 { 1105 fscrypt_free_inode(inode); 1106 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1107 } 1108 1109 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1110 { 1111 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1112 percpu_counter_destroy(&sbi->total_valid_inode_count); 1113 } 1114 1115 static void destroy_device_list(struct f2fs_sb_info *sbi) 1116 { 1117 int i; 1118 1119 for (i = 0; i < sbi->s_ndevs; i++) { 1120 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1121 #ifdef CONFIG_BLK_DEV_ZONED 1122 kvfree(FDEV(i).blkz_seq); 1123 #endif 1124 } 1125 kvfree(sbi->devs); 1126 } 1127 1128 static void f2fs_put_super(struct super_block *sb) 1129 { 1130 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1131 int i; 1132 bool dropped; 1133 1134 f2fs_quota_off_umount(sb); 1135 1136 /* prevent remaining shrinker jobs */ 1137 mutex_lock(&sbi->umount_mutex); 1138 1139 /* 1140 * We don't need to do checkpoint when superblock is clean. 1141 * But, the previous checkpoint was not done by umount, it needs to do 1142 * clean checkpoint again. 1143 */ 1144 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1145 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1146 struct cp_control cpc = { 1147 .reason = CP_UMOUNT, 1148 }; 1149 f2fs_write_checkpoint(sbi, &cpc); 1150 } 1151 1152 /* be sure to wait for any on-going discard commands */ 1153 dropped = f2fs_issue_discard_timeout(sbi); 1154 1155 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1156 !sbi->discard_blks && !dropped) { 1157 struct cp_control cpc = { 1158 .reason = CP_UMOUNT | CP_TRIMMED, 1159 }; 1160 f2fs_write_checkpoint(sbi, &cpc); 1161 } 1162 1163 /* 1164 * normally superblock is clean, so we need to release this. 1165 * In addition, EIO will skip do checkpoint, we need this as well. 1166 */ 1167 f2fs_release_ino_entry(sbi, true); 1168 1169 f2fs_leave_shrinker(sbi); 1170 mutex_unlock(&sbi->umount_mutex); 1171 1172 /* our cp_error case, we can wait for any writeback page */ 1173 f2fs_flush_merged_writes(sbi); 1174 1175 f2fs_wait_on_all_pages_writeback(sbi); 1176 1177 f2fs_bug_on(sbi, sbi->fsync_node_num); 1178 1179 iput(sbi->node_inode); 1180 sbi->node_inode = NULL; 1181 1182 iput(sbi->meta_inode); 1183 sbi->meta_inode = NULL; 1184 1185 /* 1186 * iput() can update stat information, if f2fs_write_checkpoint() 1187 * above failed with error. 1188 */ 1189 f2fs_destroy_stats(sbi); 1190 1191 /* destroy f2fs internal modules */ 1192 f2fs_destroy_node_manager(sbi); 1193 f2fs_destroy_segment_manager(sbi); 1194 1195 f2fs_destroy_post_read_wq(sbi); 1196 1197 kvfree(sbi->ckpt); 1198 1199 f2fs_unregister_sysfs(sbi); 1200 1201 sb->s_fs_info = NULL; 1202 if (sbi->s_chksum_driver) 1203 crypto_free_shash(sbi->s_chksum_driver); 1204 kvfree(sbi->raw_super); 1205 1206 destroy_device_list(sbi); 1207 mempool_destroy(sbi->write_io_dummy); 1208 #ifdef CONFIG_QUOTA 1209 for (i = 0; i < MAXQUOTAS; i++) 1210 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1211 #endif 1212 destroy_percpu_info(sbi); 1213 for (i = 0; i < NR_PAGE_TYPE; i++) 1214 kvfree(sbi->write_io[i]); 1215 #ifdef CONFIG_UNICODE 1216 utf8_unload(sbi->s_encoding); 1217 #endif 1218 kvfree(sbi); 1219 } 1220 1221 int f2fs_sync_fs(struct super_block *sb, int sync) 1222 { 1223 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1224 int err = 0; 1225 1226 if (unlikely(f2fs_cp_error(sbi))) 1227 return 0; 1228 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1229 return 0; 1230 1231 trace_f2fs_sync_fs(sb, sync); 1232 1233 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1234 return -EAGAIN; 1235 1236 if (sync) { 1237 struct cp_control cpc; 1238 1239 cpc.reason = __get_cp_reason(sbi); 1240 1241 down_write(&sbi->gc_lock); 1242 err = f2fs_write_checkpoint(sbi, &cpc); 1243 up_write(&sbi->gc_lock); 1244 } 1245 f2fs_trace_ios(NULL, 1); 1246 1247 return err; 1248 } 1249 1250 static int f2fs_freeze(struct super_block *sb) 1251 { 1252 if (f2fs_readonly(sb)) 1253 return 0; 1254 1255 /* IO error happened before */ 1256 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1257 return -EIO; 1258 1259 /* must be clean, since sync_filesystem() was already called */ 1260 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1261 return -EINVAL; 1262 return 0; 1263 } 1264 1265 static int f2fs_unfreeze(struct super_block *sb) 1266 { 1267 return 0; 1268 } 1269 1270 #ifdef CONFIG_QUOTA 1271 static int f2fs_statfs_project(struct super_block *sb, 1272 kprojid_t projid, struct kstatfs *buf) 1273 { 1274 struct kqid qid; 1275 struct dquot *dquot; 1276 u64 limit; 1277 u64 curblock; 1278 1279 qid = make_kqid_projid(projid); 1280 dquot = dqget(sb, qid); 1281 if (IS_ERR(dquot)) 1282 return PTR_ERR(dquot); 1283 spin_lock(&dquot->dq_dqb_lock); 1284 1285 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1286 dquot->dq_dqb.dqb_bhardlimit); 1287 if (limit) 1288 limit >>= sb->s_blocksize_bits; 1289 1290 if (limit && buf->f_blocks > limit) { 1291 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1292 buf->f_blocks = limit; 1293 buf->f_bfree = buf->f_bavail = 1294 (buf->f_blocks > curblock) ? 1295 (buf->f_blocks - curblock) : 0; 1296 } 1297 1298 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1299 dquot->dq_dqb.dqb_ihardlimit); 1300 1301 if (limit && buf->f_files > limit) { 1302 buf->f_files = limit; 1303 buf->f_ffree = 1304 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1305 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1306 } 1307 1308 spin_unlock(&dquot->dq_dqb_lock); 1309 dqput(dquot); 1310 return 0; 1311 } 1312 #endif 1313 1314 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1315 { 1316 struct super_block *sb = dentry->d_sb; 1317 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1318 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1319 block_t total_count, user_block_count, start_count; 1320 u64 avail_node_count; 1321 1322 total_count = le64_to_cpu(sbi->raw_super->block_count); 1323 user_block_count = sbi->user_block_count; 1324 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1325 buf->f_type = F2FS_SUPER_MAGIC; 1326 buf->f_bsize = sbi->blocksize; 1327 1328 buf->f_blocks = total_count - start_count; 1329 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1330 sbi->current_reserved_blocks; 1331 1332 spin_lock(&sbi->stat_lock); 1333 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1334 buf->f_bfree = 0; 1335 else 1336 buf->f_bfree -= sbi->unusable_block_count; 1337 spin_unlock(&sbi->stat_lock); 1338 1339 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1340 buf->f_bavail = buf->f_bfree - 1341 F2FS_OPTION(sbi).root_reserved_blocks; 1342 else 1343 buf->f_bavail = 0; 1344 1345 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1346 1347 if (avail_node_count > user_block_count) { 1348 buf->f_files = user_block_count; 1349 buf->f_ffree = buf->f_bavail; 1350 } else { 1351 buf->f_files = avail_node_count; 1352 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1353 buf->f_bavail); 1354 } 1355 1356 buf->f_namelen = F2FS_NAME_LEN; 1357 buf->f_fsid.val[0] = (u32)id; 1358 buf->f_fsid.val[1] = (u32)(id >> 32); 1359 1360 #ifdef CONFIG_QUOTA 1361 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1362 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1363 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1364 } 1365 #endif 1366 return 0; 1367 } 1368 1369 static inline void f2fs_show_quota_options(struct seq_file *seq, 1370 struct super_block *sb) 1371 { 1372 #ifdef CONFIG_QUOTA 1373 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1374 1375 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1376 char *fmtname = ""; 1377 1378 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1379 case QFMT_VFS_OLD: 1380 fmtname = "vfsold"; 1381 break; 1382 case QFMT_VFS_V0: 1383 fmtname = "vfsv0"; 1384 break; 1385 case QFMT_VFS_V1: 1386 fmtname = "vfsv1"; 1387 break; 1388 } 1389 seq_printf(seq, ",jqfmt=%s", fmtname); 1390 } 1391 1392 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1393 seq_show_option(seq, "usrjquota", 1394 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1395 1396 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1397 seq_show_option(seq, "grpjquota", 1398 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1399 1400 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1401 seq_show_option(seq, "prjjquota", 1402 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1403 #endif 1404 } 1405 1406 static inline void f2fs_show_compress_options(struct seq_file *seq, 1407 struct super_block *sb) 1408 { 1409 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1410 char *algtype = ""; 1411 int i; 1412 1413 if (!f2fs_sb_has_compression(sbi)) 1414 return; 1415 1416 switch (F2FS_OPTION(sbi).compress_algorithm) { 1417 case COMPRESS_LZO: 1418 algtype = "lzo"; 1419 break; 1420 case COMPRESS_LZ4: 1421 algtype = "lz4"; 1422 break; 1423 } 1424 seq_printf(seq, ",compress_algorithm=%s", algtype); 1425 1426 seq_printf(seq, ",compress_log_size=%u", 1427 F2FS_OPTION(sbi).compress_log_size); 1428 1429 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1430 seq_printf(seq, ",compress_extension=%s", 1431 F2FS_OPTION(sbi).extensions[i]); 1432 } 1433 } 1434 1435 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1436 { 1437 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1438 1439 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 1440 if (test_opt(sbi, FORCE_FG_GC)) 1441 seq_printf(seq, ",background_gc=%s", "sync"); 1442 else 1443 seq_printf(seq, ",background_gc=%s", "on"); 1444 } else { 1445 seq_printf(seq, ",background_gc=%s", "off"); 1446 } 1447 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1448 seq_puts(seq, ",disable_roll_forward"); 1449 if (test_opt(sbi, DISCARD)) 1450 seq_puts(seq, ",discard"); 1451 else 1452 seq_puts(seq, ",nodiscard"); 1453 if (test_opt(sbi, NOHEAP)) 1454 seq_puts(seq, ",no_heap"); 1455 else 1456 seq_puts(seq, ",heap"); 1457 #ifdef CONFIG_F2FS_FS_XATTR 1458 if (test_opt(sbi, XATTR_USER)) 1459 seq_puts(seq, ",user_xattr"); 1460 else 1461 seq_puts(seq, ",nouser_xattr"); 1462 if (test_opt(sbi, INLINE_XATTR)) 1463 seq_puts(seq, ",inline_xattr"); 1464 else 1465 seq_puts(seq, ",noinline_xattr"); 1466 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1467 seq_printf(seq, ",inline_xattr_size=%u", 1468 F2FS_OPTION(sbi).inline_xattr_size); 1469 #endif 1470 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1471 if (test_opt(sbi, POSIX_ACL)) 1472 seq_puts(seq, ",acl"); 1473 else 1474 seq_puts(seq, ",noacl"); 1475 #endif 1476 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1477 seq_puts(seq, ",disable_ext_identify"); 1478 if (test_opt(sbi, INLINE_DATA)) 1479 seq_puts(seq, ",inline_data"); 1480 else 1481 seq_puts(seq, ",noinline_data"); 1482 if (test_opt(sbi, INLINE_DENTRY)) 1483 seq_puts(seq, ",inline_dentry"); 1484 else 1485 seq_puts(seq, ",noinline_dentry"); 1486 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1487 seq_puts(seq, ",flush_merge"); 1488 if (test_opt(sbi, NOBARRIER)) 1489 seq_puts(seq, ",nobarrier"); 1490 if (test_opt(sbi, FASTBOOT)) 1491 seq_puts(seq, ",fastboot"); 1492 if (test_opt(sbi, EXTENT_CACHE)) 1493 seq_puts(seq, ",extent_cache"); 1494 else 1495 seq_puts(seq, ",noextent_cache"); 1496 if (test_opt(sbi, DATA_FLUSH)) 1497 seq_puts(seq, ",data_flush"); 1498 1499 seq_puts(seq, ",mode="); 1500 if (test_opt(sbi, ADAPTIVE)) 1501 seq_puts(seq, "adaptive"); 1502 else if (test_opt(sbi, LFS)) 1503 seq_puts(seq, "lfs"); 1504 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1505 if (test_opt(sbi, RESERVE_ROOT)) 1506 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1507 F2FS_OPTION(sbi).root_reserved_blocks, 1508 from_kuid_munged(&init_user_ns, 1509 F2FS_OPTION(sbi).s_resuid), 1510 from_kgid_munged(&init_user_ns, 1511 F2FS_OPTION(sbi).s_resgid)); 1512 if (F2FS_IO_SIZE_BITS(sbi)) 1513 seq_printf(seq, ",io_bits=%u", 1514 F2FS_OPTION(sbi).write_io_size_bits); 1515 #ifdef CONFIG_F2FS_FAULT_INJECTION 1516 if (test_opt(sbi, FAULT_INJECTION)) { 1517 seq_printf(seq, ",fault_injection=%u", 1518 F2FS_OPTION(sbi).fault_info.inject_rate); 1519 seq_printf(seq, ",fault_type=%u", 1520 F2FS_OPTION(sbi).fault_info.inject_type); 1521 } 1522 #endif 1523 #ifdef CONFIG_QUOTA 1524 if (test_opt(sbi, QUOTA)) 1525 seq_puts(seq, ",quota"); 1526 if (test_opt(sbi, USRQUOTA)) 1527 seq_puts(seq, ",usrquota"); 1528 if (test_opt(sbi, GRPQUOTA)) 1529 seq_puts(seq, ",grpquota"); 1530 if (test_opt(sbi, PRJQUOTA)) 1531 seq_puts(seq, ",prjquota"); 1532 #endif 1533 f2fs_show_quota_options(seq, sbi->sb); 1534 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1535 seq_printf(seq, ",whint_mode=%s", "user-based"); 1536 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1537 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1538 #ifdef CONFIG_FS_ENCRYPTION 1539 if (F2FS_OPTION(sbi).test_dummy_encryption) 1540 seq_puts(seq, ",test_dummy_encryption"); 1541 #endif 1542 1543 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1544 seq_printf(seq, ",alloc_mode=%s", "default"); 1545 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1546 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1547 1548 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1549 seq_printf(seq, ",checkpoint=disable:%u", 1550 F2FS_OPTION(sbi).unusable_cap); 1551 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1552 seq_printf(seq, ",fsync_mode=%s", "posix"); 1553 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1554 seq_printf(seq, ",fsync_mode=%s", "strict"); 1555 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1556 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1557 1558 f2fs_show_compress_options(seq, sbi->sb); 1559 return 0; 1560 } 1561 1562 static void default_options(struct f2fs_sb_info *sbi) 1563 { 1564 /* init some FS parameters */ 1565 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1566 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1567 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1568 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1569 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1570 F2FS_OPTION(sbi).test_dummy_encryption = false; 1571 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1572 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1573 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZO; 1574 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 1575 F2FS_OPTION(sbi).compress_ext_cnt = 0; 1576 1577 set_opt(sbi, BG_GC); 1578 set_opt(sbi, INLINE_XATTR); 1579 set_opt(sbi, INLINE_DATA); 1580 set_opt(sbi, INLINE_DENTRY); 1581 set_opt(sbi, EXTENT_CACHE); 1582 set_opt(sbi, NOHEAP); 1583 clear_opt(sbi, DISABLE_CHECKPOINT); 1584 F2FS_OPTION(sbi).unusable_cap = 0; 1585 sbi->sb->s_flags |= SB_LAZYTIME; 1586 set_opt(sbi, FLUSH_MERGE); 1587 set_opt(sbi, DISCARD); 1588 if (f2fs_sb_has_blkzoned(sbi)) 1589 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1590 else 1591 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1592 1593 #ifdef CONFIG_F2FS_FS_XATTR 1594 set_opt(sbi, XATTR_USER); 1595 #endif 1596 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1597 set_opt(sbi, POSIX_ACL); 1598 #endif 1599 1600 f2fs_build_fault_attr(sbi, 0, 0); 1601 } 1602 1603 #ifdef CONFIG_QUOTA 1604 static int f2fs_enable_quotas(struct super_block *sb); 1605 #endif 1606 1607 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1608 { 1609 unsigned int s_flags = sbi->sb->s_flags; 1610 struct cp_control cpc; 1611 int err = 0; 1612 int ret; 1613 block_t unusable; 1614 1615 if (s_flags & SB_RDONLY) { 1616 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 1617 return -EINVAL; 1618 } 1619 sbi->sb->s_flags |= SB_ACTIVE; 1620 1621 f2fs_update_time(sbi, DISABLE_TIME); 1622 1623 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1624 down_write(&sbi->gc_lock); 1625 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1626 if (err == -ENODATA) { 1627 err = 0; 1628 break; 1629 } 1630 if (err && err != -EAGAIN) 1631 break; 1632 } 1633 1634 ret = sync_filesystem(sbi->sb); 1635 if (ret || err) { 1636 err = ret ? ret: err; 1637 goto restore_flag; 1638 } 1639 1640 unusable = f2fs_get_unusable_blocks(sbi); 1641 if (f2fs_disable_cp_again(sbi, unusable)) { 1642 err = -EAGAIN; 1643 goto restore_flag; 1644 } 1645 1646 down_write(&sbi->gc_lock); 1647 cpc.reason = CP_PAUSE; 1648 set_sbi_flag(sbi, SBI_CP_DISABLED); 1649 err = f2fs_write_checkpoint(sbi, &cpc); 1650 if (err) 1651 goto out_unlock; 1652 1653 spin_lock(&sbi->stat_lock); 1654 sbi->unusable_block_count = unusable; 1655 spin_unlock(&sbi->stat_lock); 1656 1657 out_unlock: 1658 up_write(&sbi->gc_lock); 1659 restore_flag: 1660 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1661 return err; 1662 } 1663 1664 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1665 { 1666 down_write(&sbi->gc_lock); 1667 f2fs_dirty_to_prefree(sbi); 1668 1669 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1670 set_sbi_flag(sbi, SBI_IS_DIRTY); 1671 up_write(&sbi->gc_lock); 1672 1673 f2fs_sync_fs(sbi->sb, 1); 1674 } 1675 1676 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1677 { 1678 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1679 struct f2fs_mount_info org_mount_opt; 1680 unsigned long old_sb_flags; 1681 int err; 1682 bool need_restart_gc = false; 1683 bool need_stop_gc = false; 1684 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1685 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1686 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 1687 bool checkpoint_changed; 1688 #ifdef CONFIG_QUOTA 1689 int i, j; 1690 #endif 1691 1692 /* 1693 * Save the old mount options in case we 1694 * need to restore them. 1695 */ 1696 org_mount_opt = sbi->mount_opt; 1697 old_sb_flags = sb->s_flags; 1698 1699 #ifdef CONFIG_QUOTA 1700 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1701 for (i = 0; i < MAXQUOTAS; i++) { 1702 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1703 org_mount_opt.s_qf_names[i] = 1704 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1705 GFP_KERNEL); 1706 if (!org_mount_opt.s_qf_names[i]) { 1707 for (j = 0; j < i; j++) 1708 kvfree(org_mount_opt.s_qf_names[j]); 1709 return -ENOMEM; 1710 } 1711 } else { 1712 org_mount_opt.s_qf_names[i] = NULL; 1713 } 1714 } 1715 #endif 1716 1717 /* recover superblocks we couldn't write due to previous RO mount */ 1718 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1719 err = f2fs_commit_super(sbi, false); 1720 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 1721 err); 1722 if (!err) 1723 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1724 } 1725 1726 default_options(sbi); 1727 1728 /* parse mount options */ 1729 err = parse_options(sb, data); 1730 if (err) 1731 goto restore_opts; 1732 checkpoint_changed = 1733 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1734 1735 /* 1736 * Previous and new state of filesystem is RO, 1737 * so skip checking GC and FLUSH_MERGE conditions. 1738 */ 1739 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1740 goto skip; 1741 1742 #ifdef CONFIG_QUOTA 1743 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1744 err = dquot_suspend(sb, -1); 1745 if (err < 0) 1746 goto restore_opts; 1747 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1748 /* dquot_resume needs RW */ 1749 sb->s_flags &= ~SB_RDONLY; 1750 if (sb_any_quota_suspended(sb)) { 1751 dquot_resume(sb, -1); 1752 } else if (f2fs_sb_has_quota_ino(sbi)) { 1753 err = f2fs_enable_quotas(sb); 1754 if (err) 1755 goto restore_opts; 1756 } 1757 } 1758 #endif 1759 /* disallow enable/disable extent_cache dynamically */ 1760 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1761 err = -EINVAL; 1762 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 1763 goto restore_opts; 1764 } 1765 1766 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 1767 err = -EINVAL; 1768 f2fs_warn(sbi, "switch io_bits option is not allowed"); 1769 goto restore_opts; 1770 } 1771 1772 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1773 err = -EINVAL; 1774 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 1775 goto restore_opts; 1776 } 1777 1778 /* 1779 * We stop the GC thread if FS is mounted as RO 1780 * or if background_gc = off is passed in mount 1781 * option. Also sync the filesystem. 1782 */ 1783 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) { 1784 if (sbi->gc_thread) { 1785 f2fs_stop_gc_thread(sbi); 1786 need_restart_gc = true; 1787 } 1788 } else if (!sbi->gc_thread) { 1789 err = f2fs_start_gc_thread(sbi); 1790 if (err) 1791 goto restore_opts; 1792 need_stop_gc = true; 1793 } 1794 1795 if (*flags & SB_RDONLY || 1796 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1797 writeback_inodes_sb(sb, WB_REASON_SYNC); 1798 sync_inodes_sb(sb); 1799 1800 set_sbi_flag(sbi, SBI_IS_DIRTY); 1801 set_sbi_flag(sbi, SBI_IS_CLOSE); 1802 f2fs_sync_fs(sb, 1); 1803 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1804 } 1805 1806 if (checkpoint_changed) { 1807 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1808 err = f2fs_disable_checkpoint(sbi); 1809 if (err) 1810 goto restore_gc; 1811 } else { 1812 f2fs_enable_checkpoint(sbi); 1813 } 1814 } 1815 1816 /* 1817 * We stop issue flush thread if FS is mounted as RO 1818 * or if flush_merge is not passed in mount option. 1819 */ 1820 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1821 clear_opt(sbi, FLUSH_MERGE); 1822 f2fs_destroy_flush_cmd_control(sbi, false); 1823 } else { 1824 err = f2fs_create_flush_cmd_control(sbi); 1825 if (err) 1826 goto restore_gc; 1827 } 1828 skip: 1829 #ifdef CONFIG_QUOTA 1830 /* Release old quota file names */ 1831 for (i = 0; i < MAXQUOTAS; i++) 1832 kvfree(org_mount_opt.s_qf_names[i]); 1833 #endif 1834 /* Update the POSIXACL Flag */ 1835 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1836 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1837 1838 limit_reserve_root(sbi); 1839 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 1840 return 0; 1841 restore_gc: 1842 if (need_restart_gc) { 1843 if (f2fs_start_gc_thread(sbi)) 1844 f2fs_warn(sbi, "background gc thread has stopped"); 1845 } else if (need_stop_gc) { 1846 f2fs_stop_gc_thread(sbi); 1847 } 1848 restore_opts: 1849 #ifdef CONFIG_QUOTA 1850 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1851 for (i = 0; i < MAXQUOTAS; i++) { 1852 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1853 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1854 } 1855 #endif 1856 sbi->mount_opt = org_mount_opt; 1857 sb->s_flags = old_sb_flags; 1858 return err; 1859 } 1860 1861 #ifdef CONFIG_QUOTA 1862 /* Read data from quotafile */ 1863 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1864 size_t len, loff_t off) 1865 { 1866 struct inode *inode = sb_dqopt(sb)->files[type]; 1867 struct address_space *mapping = inode->i_mapping; 1868 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1869 int offset = off & (sb->s_blocksize - 1); 1870 int tocopy; 1871 size_t toread; 1872 loff_t i_size = i_size_read(inode); 1873 struct page *page; 1874 char *kaddr; 1875 1876 if (off > i_size) 1877 return 0; 1878 1879 if (off + len > i_size) 1880 len = i_size - off; 1881 toread = len; 1882 while (toread > 0) { 1883 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1884 repeat: 1885 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1886 if (IS_ERR(page)) { 1887 if (PTR_ERR(page) == -ENOMEM) { 1888 congestion_wait(BLK_RW_ASYNC, HZ/50); 1889 goto repeat; 1890 } 1891 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1892 return PTR_ERR(page); 1893 } 1894 1895 lock_page(page); 1896 1897 if (unlikely(page->mapping != mapping)) { 1898 f2fs_put_page(page, 1); 1899 goto repeat; 1900 } 1901 if (unlikely(!PageUptodate(page))) { 1902 f2fs_put_page(page, 1); 1903 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1904 return -EIO; 1905 } 1906 1907 kaddr = kmap_atomic(page); 1908 memcpy(data, kaddr + offset, tocopy); 1909 kunmap_atomic(kaddr); 1910 f2fs_put_page(page, 1); 1911 1912 offset = 0; 1913 toread -= tocopy; 1914 data += tocopy; 1915 blkidx++; 1916 } 1917 return len; 1918 } 1919 1920 /* Write to quotafile */ 1921 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1922 const char *data, size_t len, loff_t off) 1923 { 1924 struct inode *inode = sb_dqopt(sb)->files[type]; 1925 struct address_space *mapping = inode->i_mapping; 1926 const struct address_space_operations *a_ops = mapping->a_ops; 1927 int offset = off & (sb->s_blocksize - 1); 1928 size_t towrite = len; 1929 struct page *page; 1930 char *kaddr; 1931 int err = 0; 1932 int tocopy; 1933 1934 while (towrite > 0) { 1935 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1936 towrite); 1937 retry: 1938 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1939 &page, NULL); 1940 if (unlikely(err)) { 1941 if (err == -ENOMEM) { 1942 congestion_wait(BLK_RW_ASYNC, HZ/50); 1943 goto retry; 1944 } 1945 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1946 break; 1947 } 1948 1949 kaddr = kmap_atomic(page); 1950 memcpy(kaddr + offset, data, tocopy); 1951 kunmap_atomic(kaddr); 1952 flush_dcache_page(page); 1953 1954 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1955 page, NULL); 1956 offset = 0; 1957 towrite -= tocopy; 1958 off += tocopy; 1959 data += tocopy; 1960 cond_resched(); 1961 } 1962 1963 if (len == towrite) 1964 return err; 1965 inode->i_mtime = inode->i_ctime = current_time(inode); 1966 f2fs_mark_inode_dirty_sync(inode, false); 1967 return len - towrite; 1968 } 1969 1970 static struct dquot **f2fs_get_dquots(struct inode *inode) 1971 { 1972 return F2FS_I(inode)->i_dquot; 1973 } 1974 1975 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1976 { 1977 return &F2FS_I(inode)->i_reserved_quota; 1978 } 1979 1980 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1981 { 1982 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 1983 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 1984 return 0; 1985 } 1986 1987 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 1988 F2FS_OPTION(sbi).s_jquota_fmt, type); 1989 } 1990 1991 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 1992 { 1993 int enabled = 0; 1994 int i, err; 1995 1996 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 1997 err = f2fs_enable_quotas(sbi->sb); 1998 if (err) { 1999 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2000 return 0; 2001 } 2002 return 1; 2003 } 2004 2005 for (i = 0; i < MAXQUOTAS; i++) { 2006 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2007 err = f2fs_quota_on_mount(sbi, i); 2008 if (!err) { 2009 enabled = 1; 2010 continue; 2011 } 2012 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2013 err, i); 2014 } 2015 } 2016 return enabled; 2017 } 2018 2019 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2020 unsigned int flags) 2021 { 2022 struct inode *qf_inode; 2023 unsigned long qf_inum; 2024 int err; 2025 2026 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2027 2028 qf_inum = f2fs_qf_ino(sb, type); 2029 if (!qf_inum) 2030 return -EPERM; 2031 2032 qf_inode = f2fs_iget(sb, qf_inum); 2033 if (IS_ERR(qf_inode)) { 2034 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2035 return PTR_ERR(qf_inode); 2036 } 2037 2038 /* Don't account quota for quota files to avoid recursion */ 2039 qf_inode->i_flags |= S_NOQUOTA; 2040 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2041 iput(qf_inode); 2042 return err; 2043 } 2044 2045 static int f2fs_enable_quotas(struct super_block *sb) 2046 { 2047 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2048 int type, err = 0; 2049 unsigned long qf_inum; 2050 bool quota_mopt[MAXQUOTAS] = { 2051 test_opt(sbi, USRQUOTA), 2052 test_opt(sbi, GRPQUOTA), 2053 test_opt(sbi, PRJQUOTA), 2054 }; 2055 2056 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2057 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2058 return 0; 2059 } 2060 2061 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2062 2063 for (type = 0; type < MAXQUOTAS; type++) { 2064 qf_inum = f2fs_qf_ino(sb, type); 2065 if (qf_inum) { 2066 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2067 DQUOT_USAGE_ENABLED | 2068 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2069 if (err) { 2070 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2071 type, err); 2072 for (type--; type >= 0; type--) 2073 dquot_quota_off(sb, type); 2074 set_sbi_flag(F2FS_SB(sb), 2075 SBI_QUOTA_NEED_REPAIR); 2076 return err; 2077 } 2078 } 2079 } 2080 return 0; 2081 } 2082 2083 int f2fs_quota_sync(struct super_block *sb, int type) 2084 { 2085 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2086 struct quota_info *dqopt = sb_dqopt(sb); 2087 int cnt; 2088 int ret; 2089 2090 /* 2091 * do_quotactl 2092 * f2fs_quota_sync 2093 * down_read(quota_sem) 2094 * dquot_writeback_dquots() 2095 * f2fs_dquot_commit 2096 * block_operation 2097 * down_read(quota_sem) 2098 */ 2099 f2fs_lock_op(sbi); 2100 2101 down_read(&sbi->quota_sem); 2102 ret = dquot_writeback_dquots(sb, type); 2103 if (ret) 2104 goto out; 2105 2106 /* 2107 * Now when everything is written we can discard the pagecache so 2108 * that userspace sees the changes. 2109 */ 2110 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2111 struct address_space *mapping; 2112 2113 if (type != -1 && cnt != type) 2114 continue; 2115 if (!sb_has_quota_active(sb, cnt)) 2116 continue; 2117 2118 mapping = dqopt->files[cnt]->i_mapping; 2119 2120 ret = filemap_fdatawrite(mapping); 2121 if (ret) 2122 goto out; 2123 2124 /* if we are using journalled quota */ 2125 if (is_journalled_quota(sbi)) 2126 continue; 2127 2128 ret = filemap_fdatawait(mapping); 2129 if (ret) 2130 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2131 2132 inode_lock(dqopt->files[cnt]); 2133 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 2134 inode_unlock(dqopt->files[cnt]); 2135 } 2136 out: 2137 if (ret) 2138 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2139 up_read(&sbi->quota_sem); 2140 f2fs_unlock_op(sbi); 2141 return ret; 2142 } 2143 2144 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2145 const struct path *path) 2146 { 2147 struct inode *inode; 2148 int err; 2149 2150 /* if quota sysfile exists, deny enabling quota with specific file */ 2151 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2152 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2153 return -EBUSY; 2154 } 2155 2156 err = f2fs_quota_sync(sb, type); 2157 if (err) 2158 return err; 2159 2160 err = dquot_quota_on(sb, type, format_id, path); 2161 if (err) 2162 return err; 2163 2164 inode = d_inode(path->dentry); 2165 2166 inode_lock(inode); 2167 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2168 f2fs_set_inode_flags(inode); 2169 inode_unlock(inode); 2170 f2fs_mark_inode_dirty_sync(inode, false); 2171 2172 return 0; 2173 } 2174 2175 static int __f2fs_quota_off(struct super_block *sb, int type) 2176 { 2177 struct inode *inode = sb_dqopt(sb)->files[type]; 2178 int err; 2179 2180 if (!inode || !igrab(inode)) 2181 return dquot_quota_off(sb, type); 2182 2183 err = f2fs_quota_sync(sb, type); 2184 if (err) 2185 goto out_put; 2186 2187 err = dquot_quota_off(sb, type); 2188 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2189 goto out_put; 2190 2191 inode_lock(inode); 2192 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2193 f2fs_set_inode_flags(inode); 2194 inode_unlock(inode); 2195 f2fs_mark_inode_dirty_sync(inode, false); 2196 out_put: 2197 iput(inode); 2198 return err; 2199 } 2200 2201 static int f2fs_quota_off(struct super_block *sb, int type) 2202 { 2203 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2204 int err; 2205 2206 err = __f2fs_quota_off(sb, type); 2207 2208 /* 2209 * quotactl can shutdown journalled quota, result in inconsistence 2210 * between quota record and fs data by following updates, tag the 2211 * flag to let fsck be aware of it. 2212 */ 2213 if (is_journalled_quota(sbi)) 2214 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2215 return err; 2216 } 2217 2218 void f2fs_quota_off_umount(struct super_block *sb) 2219 { 2220 int type; 2221 int err; 2222 2223 for (type = 0; type < MAXQUOTAS; type++) { 2224 err = __f2fs_quota_off(sb, type); 2225 if (err) { 2226 int ret = dquot_quota_off(sb, type); 2227 2228 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2229 type, err, ret); 2230 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2231 } 2232 } 2233 /* 2234 * In case of checkpoint=disable, we must flush quota blocks. 2235 * This can cause NULL exception for node_inode in end_io, since 2236 * put_super already dropped it. 2237 */ 2238 sync_filesystem(sb); 2239 } 2240 2241 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2242 { 2243 struct quota_info *dqopt = sb_dqopt(sb); 2244 int type; 2245 2246 for (type = 0; type < MAXQUOTAS; type++) { 2247 if (!dqopt->files[type]) 2248 continue; 2249 f2fs_inode_synced(dqopt->files[type]); 2250 } 2251 } 2252 2253 static int f2fs_dquot_commit(struct dquot *dquot) 2254 { 2255 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2256 int ret; 2257 2258 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 2259 ret = dquot_commit(dquot); 2260 if (ret < 0) 2261 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2262 up_read(&sbi->quota_sem); 2263 return ret; 2264 } 2265 2266 static int f2fs_dquot_acquire(struct dquot *dquot) 2267 { 2268 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2269 int ret; 2270 2271 down_read(&sbi->quota_sem); 2272 ret = dquot_acquire(dquot); 2273 if (ret < 0) 2274 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2275 up_read(&sbi->quota_sem); 2276 return ret; 2277 } 2278 2279 static int f2fs_dquot_release(struct dquot *dquot) 2280 { 2281 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2282 int ret = dquot_release(dquot); 2283 2284 if (ret < 0) 2285 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2286 return ret; 2287 } 2288 2289 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2290 { 2291 struct super_block *sb = dquot->dq_sb; 2292 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2293 int ret = dquot_mark_dquot_dirty(dquot); 2294 2295 /* if we are using journalled quota */ 2296 if (is_journalled_quota(sbi)) 2297 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2298 2299 return ret; 2300 } 2301 2302 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2303 { 2304 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2305 int ret = dquot_commit_info(sb, type); 2306 2307 if (ret < 0) 2308 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2309 return ret; 2310 } 2311 2312 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2313 { 2314 *projid = F2FS_I(inode)->i_projid; 2315 return 0; 2316 } 2317 2318 static const struct dquot_operations f2fs_quota_operations = { 2319 .get_reserved_space = f2fs_get_reserved_space, 2320 .write_dquot = f2fs_dquot_commit, 2321 .acquire_dquot = f2fs_dquot_acquire, 2322 .release_dquot = f2fs_dquot_release, 2323 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2324 .write_info = f2fs_dquot_commit_info, 2325 .alloc_dquot = dquot_alloc, 2326 .destroy_dquot = dquot_destroy, 2327 .get_projid = f2fs_get_projid, 2328 .get_next_id = dquot_get_next_id, 2329 }; 2330 2331 static const struct quotactl_ops f2fs_quotactl_ops = { 2332 .quota_on = f2fs_quota_on, 2333 .quota_off = f2fs_quota_off, 2334 .quota_sync = f2fs_quota_sync, 2335 .get_state = dquot_get_state, 2336 .set_info = dquot_set_dqinfo, 2337 .get_dqblk = dquot_get_dqblk, 2338 .set_dqblk = dquot_set_dqblk, 2339 .get_nextdqblk = dquot_get_next_dqblk, 2340 }; 2341 #else 2342 int f2fs_quota_sync(struct super_block *sb, int type) 2343 { 2344 return 0; 2345 } 2346 2347 void f2fs_quota_off_umount(struct super_block *sb) 2348 { 2349 } 2350 #endif 2351 2352 static const struct super_operations f2fs_sops = { 2353 .alloc_inode = f2fs_alloc_inode, 2354 .free_inode = f2fs_free_inode, 2355 .drop_inode = f2fs_drop_inode, 2356 .write_inode = f2fs_write_inode, 2357 .dirty_inode = f2fs_dirty_inode, 2358 .show_options = f2fs_show_options, 2359 #ifdef CONFIG_QUOTA 2360 .quota_read = f2fs_quota_read, 2361 .quota_write = f2fs_quota_write, 2362 .get_dquots = f2fs_get_dquots, 2363 #endif 2364 .evict_inode = f2fs_evict_inode, 2365 .put_super = f2fs_put_super, 2366 .sync_fs = f2fs_sync_fs, 2367 .freeze_fs = f2fs_freeze, 2368 .unfreeze_fs = f2fs_unfreeze, 2369 .statfs = f2fs_statfs, 2370 .remount_fs = f2fs_remount, 2371 }; 2372 2373 #ifdef CONFIG_FS_ENCRYPTION 2374 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2375 { 2376 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2377 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2378 ctx, len, NULL); 2379 } 2380 2381 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2382 void *fs_data) 2383 { 2384 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2385 2386 /* 2387 * Encrypting the root directory is not allowed because fsck 2388 * expects lost+found directory to exist and remain unencrypted 2389 * if LOST_FOUND feature is enabled. 2390 * 2391 */ 2392 if (f2fs_sb_has_lost_found(sbi) && 2393 inode->i_ino == F2FS_ROOT_INO(sbi)) 2394 return -EPERM; 2395 2396 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2397 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2398 ctx, len, fs_data, XATTR_CREATE); 2399 } 2400 2401 static bool f2fs_dummy_context(struct inode *inode) 2402 { 2403 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 2404 } 2405 2406 static bool f2fs_has_stable_inodes(struct super_block *sb) 2407 { 2408 return true; 2409 } 2410 2411 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 2412 int *ino_bits_ret, int *lblk_bits_ret) 2413 { 2414 *ino_bits_ret = 8 * sizeof(nid_t); 2415 *lblk_bits_ret = 8 * sizeof(block_t); 2416 } 2417 2418 static const struct fscrypt_operations f2fs_cryptops = { 2419 .key_prefix = "f2fs:", 2420 .get_context = f2fs_get_context, 2421 .set_context = f2fs_set_context, 2422 .dummy_context = f2fs_dummy_context, 2423 .empty_dir = f2fs_empty_dir, 2424 .max_namelen = F2FS_NAME_LEN, 2425 .has_stable_inodes = f2fs_has_stable_inodes, 2426 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 2427 }; 2428 #endif 2429 2430 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2431 u64 ino, u32 generation) 2432 { 2433 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2434 struct inode *inode; 2435 2436 if (f2fs_check_nid_range(sbi, ino)) 2437 return ERR_PTR(-ESTALE); 2438 2439 /* 2440 * f2fs_iget isn't quite right if the inode is currently unallocated! 2441 * However f2fs_iget currently does appropriate checks to handle stale 2442 * inodes so everything is OK. 2443 */ 2444 inode = f2fs_iget(sb, ino); 2445 if (IS_ERR(inode)) 2446 return ERR_CAST(inode); 2447 if (unlikely(generation && inode->i_generation != generation)) { 2448 /* we didn't find the right inode.. */ 2449 iput(inode); 2450 return ERR_PTR(-ESTALE); 2451 } 2452 return inode; 2453 } 2454 2455 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2456 int fh_len, int fh_type) 2457 { 2458 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2459 f2fs_nfs_get_inode); 2460 } 2461 2462 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2463 int fh_len, int fh_type) 2464 { 2465 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2466 f2fs_nfs_get_inode); 2467 } 2468 2469 static const struct export_operations f2fs_export_ops = { 2470 .fh_to_dentry = f2fs_fh_to_dentry, 2471 .fh_to_parent = f2fs_fh_to_parent, 2472 .get_parent = f2fs_get_parent, 2473 }; 2474 2475 static loff_t max_file_blocks(void) 2476 { 2477 loff_t result = 0; 2478 loff_t leaf_count = DEF_ADDRS_PER_BLOCK; 2479 2480 /* 2481 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2482 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2483 * space in inode.i_addr, it will be more safe to reassign 2484 * result as zero. 2485 */ 2486 2487 /* two direct node blocks */ 2488 result += (leaf_count * 2); 2489 2490 /* two indirect node blocks */ 2491 leaf_count *= NIDS_PER_BLOCK; 2492 result += (leaf_count * 2); 2493 2494 /* one double indirect node block */ 2495 leaf_count *= NIDS_PER_BLOCK; 2496 result += leaf_count; 2497 2498 return result; 2499 } 2500 2501 static int __f2fs_commit_super(struct buffer_head *bh, 2502 struct f2fs_super_block *super) 2503 { 2504 lock_buffer(bh); 2505 if (super) 2506 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2507 set_buffer_dirty(bh); 2508 unlock_buffer(bh); 2509 2510 /* it's rare case, we can do fua all the time */ 2511 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2512 } 2513 2514 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2515 struct buffer_head *bh) 2516 { 2517 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2518 (bh->b_data + F2FS_SUPER_OFFSET); 2519 struct super_block *sb = sbi->sb; 2520 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2521 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2522 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2523 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2524 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2525 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2526 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2527 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2528 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2529 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2530 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2531 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2532 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2533 u64 main_end_blkaddr = main_blkaddr + 2534 (segment_count_main << log_blocks_per_seg); 2535 u64 seg_end_blkaddr = segment0_blkaddr + 2536 (segment_count << log_blocks_per_seg); 2537 2538 if (segment0_blkaddr != cp_blkaddr) { 2539 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2540 segment0_blkaddr, cp_blkaddr); 2541 return true; 2542 } 2543 2544 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2545 sit_blkaddr) { 2546 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2547 cp_blkaddr, sit_blkaddr, 2548 segment_count_ckpt << log_blocks_per_seg); 2549 return true; 2550 } 2551 2552 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2553 nat_blkaddr) { 2554 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2555 sit_blkaddr, nat_blkaddr, 2556 segment_count_sit << log_blocks_per_seg); 2557 return true; 2558 } 2559 2560 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2561 ssa_blkaddr) { 2562 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2563 nat_blkaddr, ssa_blkaddr, 2564 segment_count_nat << log_blocks_per_seg); 2565 return true; 2566 } 2567 2568 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2569 main_blkaddr) { 2570 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2571 ssa_blkaddr, main_blkaddr, 2572 segment_count_ssa << log_blocks_per_seg); 2573 return true; 2574 } 2575 2576 if (main_end_blkaddr > seg_end_blkaddr) { 2577 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2578 main_blkaddr, 2579 segment0_blkaddr + 2580 (segment_count << log_blocks_per_seg), 2581 segment_count_main << log_blocks_per_seg); 2582 return true; 2583 } else if (main_end_blkaddr < seg_end_blkaddr) { 2584 int err = 0; 2585 char *res; 2586 2587 /* fix in-memory information all the time */ 2588 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2589 segment0_blkaddr) >> log_blocks_per_seg); 2590 2591 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2592 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2593 res = "internally"; 2594 } else { 2595 err = __f2fs_commit_super(bh, NULL); 2596 res = err ? "failed" : "done"; 2597 } 2598 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)", 2599 res, main_blkaddr, 2600 segment0_blkaddr + 2601 (segment_count << log_blocks_per_seg), 2602 segment_count_main << log_blocks_per_seg); 2603 if (err) 2604 return true; 2605 } 2606 return false; 2607 } 2608 2609 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2610 struct buffer_head *bh) 2611 { 2612 block_t segment_count, segs_per_sec, secs_per_zone; 2613 block_t total_sections, blocks_per_seg; 2614 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2615 (bh->b_data + F2FS_SUPER_OFFSET); 2616 unsigned int blocksize; 2617 size_t crc_offset = 0; 2618 __u32 crc = 0; 2619 2620 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 2621 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 2622 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2623 return -EINVAL; 2624 } 2625 2626 /* Check checksum_offset and crc in superblock */ 2627 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2628 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2629 if (crc_offset != 2630 offsetof(struct f2fs_super_block, crc)) { 2631 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 2632 crc_offset); 2633 return -EFSCORRUPTED; 2634 } 2635 crc = le32_to_cpu(raw_super->crc); 2636 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2637 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 2638 return -EFSCORRUPTED; 2639 } 2640 } 2641 2642 /* Currently, support only 4KB page cache size */ 2643 if (F2FS_BLKSIZE != PAGE_SIZE) { 2644 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB", 2645 PAGE_SIZE); 2646 return -EFSCORRUPTED; 2647 } 2648 2649 /* Currently, support only 4KB block size */ 2650 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2651 if (blocksize != F2FS_BLKSIZE) { 2652 f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB", 2653 blocksize); 2654 return -EFSCORRUPTED; 2655 } 2656 2657 /* check log blocks per segment */ 2658 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2659 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 2660 le32_to_cpu(raw_super->log_blocks_per_seg)); 2661 return -EFSCORRUPTED; 2662 } 2663 2664 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2665 if (le32_to_cpu(raw_super->log_sectorsize) > 2666 F2FS_MAX_LOG_SECTOR_SIZE || 2667 le32_to_cpu(raw_super->log_sectorsize) < 2668 F2FS_MIN_LOG_SECTOR_SIZE) { 2669 f2fs_info(sbi, "Invalid log sectorsize (%u)", 2670 le32_to_cpu(raw_super->log_sectorsize)); 2671 return -EFSCORRUPTED; 2672 } 2673 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2674 le32_to_cpu(raw_super->log_sectorsize) != 2675 F2FS_MAX_LOG_SECTOR_SIZE) { 2676 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 2677 le32_to_cpu(raw_super->log_sectors_per_block), 2678 le32_to_cpu(raw_super->log_sectorsize)); 2679 return -EFSCORRUPTED; 2680 } 2681 2682 segment_count = le32_to_cpu(raw_super->segment_count); 2683 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2684 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2685 total_sections = le32_to_cpu(raw_super->section_count); 2686 2687 /* blocks_per_seg should be 512, given the above check */ 2688 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2689 2690 if (segment_count > F2FS_MAX_SEGMENT || 2691 segment_count < F2FS_MIN_SEGMENTS) { 2692 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 2693 return -EFSCORRUPTED; 2694 } 2695 2696 if (total_sections > segment_count || 2697 total_sections < F2FS_MIN_SEGMENTS || 2698 segs_per_sec > segment_count || !segs_per_sec) { 2699 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 2700 segment_count, total_sections, segs_per_sec); 2701 return -EFSCORRUPTED; 2702 } 2703 2704 if ((segment_count / segs_per_sec) < total_sections) { 2705 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 2706 segment_count, segs_per_sec, total_sections); 2707 return -EFSCORRUPTED; 2708 } 2709 2710 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2711 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 2712 segment_count, le64_to_cpu(raw_super->block_count)); 2713 return -EFSCORRUPTED; 2714 } 2715 2716 if (RDEV(0).path[0]) { 2717 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 2718 int i = 1; 2719 2720 while (i < MAX_DEVICES && RDEV(i).path[0]) { 2721 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 2722 i++; 2723 } 2724 if (segment_count != dev_seg_count) { 2725 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 2726 segment_count, dev_seg_count); 2727 return -EFSCORRUPTED; 2728 } 2729 } 2730 2731 if (secs_per_zone > total_sections || !secs_per_zone) { 2732 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 2733 secs_per_zone, total_sections); 2734 return -EFSCORRUPTED; 2735 } 2736 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2737 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2738 (le32_to_cpu(raw_super->extension_count) + 2739 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2740 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 2741 le32_to_cpu(raw_super->extension_count), 2742 raw_super->hot_ext_count, 2743 F2FS_MAX_EXTENSION); 2744 return -EFSCORRUPTED; 2745 } 2746 2747 if (le32_to_cpu(raw_super->cp_payload) > 2748 (blocks_per_seg - F2FS_CP_PACKS)) { 2749 f2fs_info(sbi, "Insane cp_payload (%u > %u)", 2750 le32_to_cpu(raw_super->cp_payload), 2751 blocks_per_seg - F2FS_CP_PACKS); 2752 return -EFSCORRUPTED; 2753 } 2754 2755 /* check reserved ino info */ 2756 if (le32_to_cpu(raw_super->node_ino) != 1 || 2757 le32_to_cpu(raw_super->meta_ino) != 2 || 2758 le32_to_cpu(raw_super->root_ino) != 3) { 2759 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2760 le32_to_cpu(raw_super->node_ino), 2761 le32_to_cpu(raw_super->meta_ino), 2762 le32_to_cpu(raw_super->root_ino)); 2763 return -EFSCORRUPTED; 2764 } 2765 2766 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2767 if (sanity_check_area_boundary(sbi, bh)) 2768 return -EFSCORRUPTED; 2769 2770 return 0; 2771 } 2772 2773 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2774 { 2775 unsigned int total, fsmeta; 2776 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2777 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2778 unsigned int ovp_segments, reserved_segments; 2779 unsigned int main_segs, blocks_per_seg; 2780 unsigned int sit_segs, nat_segs; 2781 unsigned int sit_bitmap_size, nat_bitmap_size; 2782 unsigned int log_blocks_per_seg; 2783 unsigned int segment_count_main; 2784 unsigned int cp_pack_start_sum, cp_payload; 2785 block_t user_block_count, valid_user_blocks; 2786 block_t avail_node_count, valid_node_count; 2787 int i, j; 2788 2789 total = le32_to_cpu(raw_super->segment_count); 2790 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2791 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 2792 fsmeta += sit_segs; 2793 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 2794 fsmeta += nat_segs; 2795 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2796 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2797 2798 if (unlikely(fsmeta >= total)) 2799 return 1; 2800 2801 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2802 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2803 2804 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2805 ovp_segments == 0 || reserved_segments == 0)) { 2806 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 2807 return 1; 2808 } 2809 2810 user_block_count = le64_to_cpu(ckpt->user_block_count); 2811 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2812 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2813 if (!user_block_count || user_block_count >= 2814 segment_count_main << log_blocks_per_seg) { 2815 f2fs_err(sbi, "Wrong user_block_count: %u", 2816 user_block_count); 2817 return 1; 2818 } 2819 2820 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 2821 if (valid_user_blocks > user_block_count) { 2822 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 2823 valid_user_blocks, user_block_count); 2824 return 1; 2825 } 2826 2827 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 2828 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 2829 if (valid_node_count > avail_node_count) { 2830 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 2831 valid_node_count, avail_node_count); 2832 return 1; 2833 } 2834 2835 main_segs = le32_to_cpu(raw_super->segment_count_main); 2836 blocks_per_seg = sbi->blocks_per_seg; 2837 2838 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2839 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2840 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2841 return 1; 2842 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 2843 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2844 le32_to_cpu(ckpt->cur_node_segno[j])) { 2845 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 2846 i, j, 2847 le32_to_cpu(ckpt->cur_node_segno[i])); 2848 return 1; 2849 } 2850 } 2851 } 2852 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2853 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2854 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2855 return 1; 2856 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 2857 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 2858 le32_to_cpu(ckpt->cur_data_segno[j])) { 2859 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 2860 i, j, 2861 le32_to_cpu(ckpt->cur_data_segno[i])); 2862 return 1; 2863 } 2864 } 2865 } 2866 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2867 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 2868 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2869 le32_to_cpu(ckpt->cur_data_segno[j])) { 2870 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 2871 i, j, 2872 le32_to_cpu(ckpt->cur_node_segno[i])); 2873 return 1; 2874 } 2875 } 2876 } 2877 2878 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2879 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2880 2881 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 2882 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 2883 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 2884 sit_bitmap_size, nat_bitmap_size); 2885 return 1; 2886 } 2887 2888 cp_pack_start_sum = __start_sum_addr(sbi); 2889 cp_payload = __cp_payload(sbi); 2890 if (cp_pack_start_sum < cp_payload + 1 || 2891 cp_pack_start_sum > blocks_per_seg - 1 - 2892 NR_CURSEG_TYPE) { 2893 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 2894 cp_pack_start_sum); 2895 return 1; 2896 } 2897 2898 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 2899 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 2900 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 2901 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 2902 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 2903 le32_to_cpu(ckpt->checksum_offset)); 2904 return 1; 2905 } 2906 2907 if (unlikely(f2fs_cp_error(sbi))) { 2908 f2fs_err(sbi, "A bug case: need to run fsck"); 2909 return 1; 2910 } 2911 return 0; 2912 } 2913 2914 static void init_sb_info(struct f2fs_sb_info *sbi) 2915 { 2916 struct f2fs_super_block *raw_super = sbi->raw_super; 2917 int i; 2918 2919 sbi->log_sectors_per_block = 2920 le32_to_cpu(raw_super->log_sectors_per_block); 2921 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2922 sbi->blocksize = 1 << sbi->log_blocksize; 2923 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2924 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2925 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2926 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2927 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2928 sbi->total_node_count = 2929 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2930 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2931 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2932 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2933 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2934 sbi->cur_victim_sec = NULL_SECNO; 2935 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 2936 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 2937 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2938 sbi->migration_granularity = sbi->segs_per_sec; 2939 2940 sbi->dir_level = DEF_DIR_LEVEL; 2941 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2942 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2943 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 2944 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 2945 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 2946 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 2947 DEF_UMOUNT_DISCARD_TIMEOUT; 2948 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2949 2950 for (i = 0; i < NR_COUNT_TYPE; i++) 2951 atomic_set(&sbi->nr_pages[i], 0); 2952 2953 for (i = 0; i < META; i++) 2954 atomic_set(&sbi->wb_sync_req[i], 0); 2955 2956 INIT_LIST_HEAD(&sbi->s_list); 2957 mutex_init(&sbi->umount_mutex); 2958 init_rwsem(&sbi->io_order_lock); 2959 spin_lock_init(&sbi->cp_lock); 2960 2961 sbi->dirty_device = 0; 2962 spin_lock_init(&sbi->dev_lock); 2963 2964 init_rwsem(&sbi->sb_lock); 2965 init_rwsem(&sbi->pin_sem); 2966 } 2967 2968 static int init_percpu_info(struct f2fs_sb_info *sbi) 2969 { 2970 int err; 2971 2972 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2973 if (err) 2974 return err; 2975 2976 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 2977 GFP_KERNEL); 2978 if (err) 2979 percpu_counter_destroy(&sbi->alloc_valid_block_count); 2980 2981 return err; 2982 } 2983 2984 #ifdef CONFIG_BLK_DEV_ZONED 2985 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 2986 void *data) 2987 { 2988 struct f2fs_dev_info *dev = data; 2989 2990 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) 2991 set_bit(idx, dev->blkz_seq); 2992 return 0; 2993 } 2994 2995 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 2996 { 2997 struct block_device *bdev = FDEV(devi).bdev; 2998 sector_t nr_sectors = bdev->bd_part->nr_sects; 2999 int ret; 3000 3001 if (!f2fs_sb_has_blkzoned(sbi)) 3002 return 0; 3003 3004 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3005 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 3006 return -EINVAL; 3007 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 3008 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 3009 __ilog2_u32(sbi->blocks_per_blkz)) 3010 return -EINVAL; 3011 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 3012 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 3013 sbi->log_blocks_per_blkz; 3014 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 3015 FDEV(devi).nr_blkz++; 3016 3017 FDEV(devi).blkz_seq = f2fs_kzalloc(sbi, 3018 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3019 * sizeof(unsigned long), 3020 GFP_KERNEL); 3021 if (!FDEV(devi).blkz_seq) 3022 return -ENOMEM; 3023 3024 /* Get block zones type */ 3025 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3026 &FDEV(devi)); 3027 if (ret < 0) 3028 return ret; 3029 3030 return 0; 3031 } 3032 #endif 3033 3034 /* 3035 * Read f2fs raw super block. 3036 * Because we have two copies of super block, so read both of them 3037 * to get the first valid one. If any one of them is broken, we pass 3038 * them recovery flag back to the caller. 3039 */ 3040 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3041 struct f2fs_super_block **raw_super, 3042 int *valid_super_block, int *recovery) 3043 { 3044 struct super_block *sb = sbi->sb; 3045 int block; 3046 struct buffer_head *bh; 3047 struct f2fs_super_block *super; 3048 int err = 0; 3049 3050 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3051 if (!super) 3052 return -ENOMEM; 3053 3054 for (block = 0; block < 2; block++) { 3055 bh = sb_bread(sb, block); 3056 if (!bh) { 3057 f2fs_err(sbi, "Unable to read %dth superblock", 3058 block + 1); 3059 err = -EIO; 3060 *recovery = 1; 3061 continue; 3062 } 3063 3064 /* sanity checking of raw super */ 3065 err = sanity_check_raw_super(sbi, bh); 3066 if (err) { 3067 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3068 block + 1); 3069 brelse(bh); 3070 *recovery = 1; 3071 continue; 3072 } 3073 3074 if (!*raw_super) { 3075 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3076 sizeof(*super)); 3077 *valid_super_block = block; 3078 *raw_super = super; 3079 } 3080 brelse(bh); 3081 } 3082 3083 /* No valid superblock */ 3084 if (!*raw_super) 3085 kvfree(super); 3086 else 3087 err = 0; 3088 3089 return err; 3090 } 3091 3092 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3093 { 3094 struct buffer_head *bh; 3095 __u32 crc = 0; 3096 int err; 3097 3098 if ((recover && f2fs_readonly(sbi->sb)) || 3099 bdev_read_only(sbi->sb->s_bdev)) { 3100 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3101 return -EROFS; 3102 } 3103 3104 /* we should update superblock crc here */ 3105 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3106 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3107 offsetof(struct f2fs_super_block, crc)); 3108 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3109 } 3110 3111 /* write back-up superblock first */ 3112 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3113 if (!bh) 3114 return -EIO; 3115 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3116 brelse(bh); 3117 3118 /* if we are in recovery path, skip writing valid superblock */ 3119 if (recover || err) 3120 return err; 3121 3122 /* write current valid superblock */ 3123 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3124 if (!bh) 3125 return -EIO; 3126 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3127 brelse(bh); 3128 return err; 3129 } 3130 3131 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3132 { 3133 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3134 unsigned int max_devices = MAX_DEVICES; 3135 int i; 3136 3137 /* Initialize single device information */ 3138 if (!RDEV(0).path[0]) { 3139 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3140 return 0; 3141 max_devices = 1; 3142 } 3143 3144 /* 3145 * Initialize multiple devices information, or single 3146 * zoned block device information. 3147 */ 3148 sbi->devs = f2fs_kzalloc(sbi, 3149 array_size(max_devices, 3150 sizeof(struct f2fs_dev_info)), 3151 GFP_KERNEL); 3152 if (!sbi->devs) 3153 return -ENOMEM; 3154 3155 for (i = 0; i < max_devices; i++) { 3156 3157 if (i > 0 && !RDEV(i).path[0]) 3158 break; 3159 3160 if (max_devices == 1) { 3161 /* Single zoned block device mount */ 3162 FDEV(0).bdev = 3163 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3164 sbi->sb->s_mode, sbi->sb->s_type); 3165 } else { 3166 /* Multi-device mount */ 3167 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3168 FDEV(i).total_segments = 3169 le32_to_cpu(RDEV(i).total_segments); 3170 if (i == 0) { 3171 FDEV(i).start_blk = 0; 3172 FDEV(i).end_blk = FDEV(i).start_blk + 3173 (FDEV(i).total_segments << 3174 sbi->log_blocks_per_seg) - 1 + 3175 le32_to_cpu(raw_super->segment0_blkaddr); 3176 } else { 3177 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3178 FDEV(i).end_blk = FDEV(i).start_blk + 3179 (FDEV(i).total_segments << 3180 sbi->log_blocks_per_seg) - 1; 3181 } 3182 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3183 sbi->sb->s_mode, sbi->sb->s_type); 3184 } 3185 if (IS_ERR(FDEV(i).bdev)) 3186 return PTR_ERR(FDEV(i).bdev); 3187 3188 /* to release errored devices */ 3189 sbi->s_ndevs = i + 1; 3190 3191 #ifdef CONFIG_BLK_DEV_ZONED 3192 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3193 !f2fs_sb_has_blkzoned(sbi)) { 3194 f2fs_err(sbi, "Zoned block device feature not enabled\n"); 3195 return -EINVAL; 3196 } 3197 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3198 if (init_blkz_info(sbi, i)) { 3199 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3200 return -EINVAL; 3201 } 3202 if (max_devices == 1) 3203 break; 3204 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3205 i, FDEV(i).path, 3206 FDEV(i).total_segments, 3207 FDEV(i).start_blk, FDEV(i).end_blk, 3208 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3209 "Host-aware" : "Host-managed"); 3210 continue; 3211 } 3212 #endif 3213 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3214 i, FDEV(i).path, 3215 FDEV(i).total_segments, 3216 FDEV(i).start_blk, FDEV(i).end_blk); 3217 } 3218 f2fs_info(sbi, 3219 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3220 return 0; 3221 } 3222 3223 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3224 { 3225 #ifdef CONFIG_UNICODE 3226 if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) { 3227 const struct f2fs_sb_encodings *encoding_info; 3228 struct unicode_map *encoding; 3229 __u16 encoding_flags; 3230 3231 if (f2fs_sb_has_encrypt(sbi)) { 3232 f2fs_err(sbi, 3233 "Can't mount with encoding and encryption"); 3234 return -EINVAL; 3235 } 3236 3237 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info, 3238 &encoding_flags)) { 3239 f2fs_err(sbi, 3240 "Encoding requested by superblock is unknown"); 3241 return -EINVAL; 3242 } 3243 3244 encoding = utf8_load(encoding_info->version); 3245 if (IS_ERR(encoding)) { 3246 f2fs_err(sbi, 3247 "can't mount with superblock charset: %s-%s " 3248 "not supported by the kernel. flags: 0x%x.", 3249 encoding_info->name, encoding_info->version, 3250 encoding_flags); 3251 return PTR_ERR(encoding); 3252 } 3253 f2fs_info(sbi, "Using encoding defined by superblock: " 3254 "%s-%s with flags 0x%hx", encoding_info->name, 3255 encoding_info->version?:"\b", encoding_flags); 3256 3257 sbi->s_encoding = encoding; 3258 sbi->s_encoding_flags = encoding_flags; 3259 sbi->sb->s_d_op = &f2fs_dentry_ops; 3260 } 3261 #else 3262 if (f2fs_sb_has_casefold(sbi)) { 3263 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3264 return -EINVAL; 3265 } 3266 #endif 3267 return 0; 3268 } 3269 3270 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3271 { 3272 struct f2fs_sm_info *sm_i = SM_I(sbi); 3273 3274 /* adjust parameters according to the volume size */ 3275 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3276 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3277 sm_i->dcc_info->discard_granularity = 1; 3278 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3279 } 3280 3281 sbi->readdir_ra = 1; 3282 } 3283 3284 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3285 { 3286 struct f2fs_sb_info *sbi; 3287 struct f2fs_super_block *raw_super; 3288 struct inode *root; 3289 int err; 3290 bool skip_recovery = false, need_fsck = false; 3291 char *options = NULL; 3292 int recovery, i, valid_super_block; 3293 struct curseg_info *seg_i; 3294 int retry_cnt = 1; 3295 3296 try_onemore: 3297 err = -EINVAL; 3298 raw_super = NULL; 3299 valid_super_block = -1; 3300 recovery = 0; 3301 3302 /* allocate memory for f2fs-specific super block info */ 3303 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3304 if (!sbi) 3305 return -ENOMEM; 3306 3307 sbi->sb = sb; 3308 3309 /* Load the checksum driver */ 3310 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3311 if (IS_ERR(sbi->s_chksum_driver)) { 3312 f2fs_err(sbi, "Cannot load crc32 driver."); 3313 err = PTR_ERR(sbi->s_chksum_driver); 3314 sbi->s_chksum_driver = NULL; 3315 goto free_sbi; 3316 } 3317 3318 /* set a block size */ 3319 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3320 f2fs_err(sbi, "unable to set blocksize"); 3321 goto free_sbi; 3322 } 3323 3324 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3325 &recovery); 3326 if (err) 3327 goto free_sbi; 3328 3329 sb->s_fs_info = sbi; 3330 sbi->raw_super = raw_super; 3331 3332 /* precompute checksum seed for metadata */ 3333 if (f2fs_sb_has_inode_chksum(sbi)) 3334 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3335 sizeof(raw_super->uuid)); 3336 3337 /* 3338 * The BLKZONED feature indicates that the drive was formatted with 3339 * zone alignment optimization. This is optional for host-aware 3340 * devices, but mandatory for host-managed zoned block devices. 3341 */ 3342 #ifndef CONFIG_BLK_DEV_ZONED 3343 if (f2fs_sb_has_blkzoned(sbi)) { 3344 f2fs_err(sbi, "Zoned block device support is not enabled"); 3345 err = -EOPNOTSUPP; 3346 goto free_sb_buf; 3347 } 3348 #endif 3349 default_options(sbi); 3350 /* parse mount options */ 3351 options = kstrdup((const char *)data, GFP_KERNEL); 3352 if (data && !options) { 3353 err = -ENOMEM; 3354 goto free_sb_buf; 3355 } 3356 3357 err = parse_options(sb, options); 3358 if (err) 3359 goto free_options; 3360 3361 sbi->max_file_blocks = max_file_blocks(); 3362 sb->s_maxbytes = sbi->max_file_blocks << 3363 le32_to_cpu(raw_super->log_blocksize); 3364 sb->s_max_links = F2FS_LINK_MAX; 3365 3366 err = f2fs_setup_casefold(sbi); 3367 if (err) 3368 goto free_options; 3369 3370 #ifdef CONFIG_QUOTA 3371 sb->dq_op = &f2fs_quota_operations; 3372 sb->s_qcop = &f2fs_quotactl_ops; 3373 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3374 3375 if (f2fs_sb_has_quota_ino(sbi)) { 3376 for (i = 0; i < MAXQUOTAS; i++) { 3377 if (f2fs_qf_ino(sbi->sb, i)) 3378 sbi->nquota_files++; 3379 } 3380 } 3381 #endif 3382 3383 sb->s_op = &f2fs_sops; 3384 #ifdef CONFIG_FS_ENCRYPTION 3385 sb->s_cop = &f2fs_cryptops; 3386 #endif 3387 #ifdef CONFIG_FS_VERITY 3388 sb->s_vop = &f2fs_verityops; 3389 #endif 3390 sb->s_xattr = f2fs_xattr_handlers; 3391 sb->s_export_op = &f2fs_export_ops; 3392 sb->s_magic = F2FS_SUPER_MAGIC; 3393 sb->s_time_gran = 1; 3394 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3395 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3396 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3397 sb->s_iflags |= SB_I_CGROUPWB; 3398 3399 /* init f2fs-specific super block info */ 3400 sbi->valid_super_block = valid_super_block; 3401 init_rwsem(&sbi->gc_lock); 3402 mutex_init(&sbi->writepages); 3403 mutex_init(&sbi->cp_mutex); 3404 mutex_init(&sbi->resize_mutex); 3405 init_rwsem(&sbi->node_write); 3406 init_rwsem(&sbi->node_change); 3407 3408 /* disallow all the data/node/meta page writes */ 3409 set_sbi_flag(sbi, SBI_POR_DOING); 3410 spin_lock_init(&sbi->stat_lock); 3411 3412 /* init iostat info */ 3413 spin_lock_init(&sbi->iostat_lock); 3414 sbi->iostat_enable = false; 3415 3416 for (i = 0; i < NR_PAGE_TYPE; i++) { 3417 int n = (i == META) ? 1: NR_TEMP_TYPE; 3418 int j; 3419 3420 sbi->write_io[i] = 3421 f2fs_kmalloc(sbi, 3422 array_size(n, 3423 sizeof(struct f2fs_bio_info)), 3424 GFP_KERNEL); 3425 if (!sbi->write_io[i]) { 3426 err = -ENOMEM; 3427 goto free_bio_info; 3428 } 3429 3430 for (j = HOT; j < n; j++) { 3431 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3432 sbi->write_io[i][j].sbi = sbi; 3433 sbi->write_io[i][j].bio = NULL; 3434 spin_lock_init(&sbi->write_io[i][j].io_lock); 3435 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3436 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 3437 init_rwsem(&sbi->write_io[i][j].bio_list_lock); 3438 } 3439 } 3440 3441 init_rwsem(&sbi->cp_rwsem); 3442 init_rwsem(&sbi->quota_sem); 3443 init_waitqueue_head(&sbi->cp_wait); 3444 init_sb_info(sbi); 3445 3446 err = init_percpu_info(sbi); 3447 if (err) 3448 goto free_bio_info; 3449 3450 if (F2FS_IO_ALIGNED(sbi)) { 3451 sbi->write_io_dummy = 3452 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3453 if (!sbi->write_io_dummy) { 3454 err = -ENOMEM; 3455 goto free_percpu; 3456 } 3457 } 3458 3459 /* get an inode for meta space */ 3460 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3461 if (IS_ERR(sbi->meta_inode)) { 3462 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 3463 err = PTR_ERR(sbi->meta_inode); 3464 goto free_io_dummy; 3465 } 3466 3467 err = f2fs_get_valid_checkpoint(sbi); 3468 if (err) { 3469 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 3470 goto free_meta_inode; 3471 } 3472 3473 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3474 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3475 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3476 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3477 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3478 } 3479 3480 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 3481 set_sbi_flag(sbi, SBI_NEED_FSCK); 3482 3483 /* Initialize device list */ 3484 err = f2fs_scan_devices(sbi); 3485 if (err) { 3486 f2fs_err(sbi, "Failed to find devices"); 3487 goto free_devices; 3488 } 3489 3490 err = f2fs_init_post_read_wq(sbi); 3491 if (err) { 3492 f2fs_err(sbi, "Failed to initialize post read workqueue"); 3493 goto free_devices; 3494 } 3495 3496 sbi->total_valid_node_count = 3497 le32_to_cpu(sbi->ckpt->valid_node_count); 3498 percpu_counter_set(&sbi->total_valid_inode_count, 3499 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3500 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3501 sbi->total_valid_block_count = 3502 le64_to_cpu(sbi->ckpt->valid_block_count); 3503 sbi->last_valid_block_count = sbi->total_valid_block_count; 3504 sbi->reserved_blocks = 0; 3505 sbi->current_reserved_blocks = 0; 3506 limit_reserve_root(sbi); 3507 3508 for (i = 0; i < NR_INODE_TYPE; i++) { 3509 INIT_LIST_HEAD(&sbi->inode_list[i]); 3510 spin_lock_init(&sbi->inode_lock[i]); 3511 } 3512 mutex_init(&sbi->flush_lock); 3513 3514 f2fs_init_extent_cache_info(sbi); 3515 3516 f2fs_init_ino_entry_info(sbi); 3517 3518 f2fs_init_fsync_node_info(sbi); 3519 3520 /* setup f2fs internal modules */ 3521 err = f2fs_build_segment_manager(sbi); 3522 if (err) { 3523 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 3524 err); 3525 goto free_sm; 3526 } 3527 err = f2fs_build_node_manager(sbi); 3528 if (err) { 3529 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 3530 err); 3531 goto free_nm; 3532 } 3533 3534 /* For write statistics */ 3535 if (sb->s_bdev->bd_part) 3536 sbi->sectors_written_start = 3537 (u64)part_stat_read(sb->s_bdev->bd_part, 3538 sectors[STAT_WRITE]); 3539 3540 /* Read accumulated write IO statistics if exists */ 3541 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3542 if (__exist_node_summaries(sbi)) 3543 sbi->kbytes_written = 3544 le64_to_cpu(seg_i->journal->info.kbytes_written); 3545 3546 f2fs_build_gc_manager(sbi); 3547 3548 err = f2fs_build_stats(sbi); 3549 if (err) 3550 goto free_nm; 3551 3552 /* get an inode for node space */ 3553 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3554 if (IS_ERR(sbi->node_inode)) { 3555 f2fs_err(sbi, "Failed to read node inode"); 3556 err = PTR_ERR(sbi->node_inode); 3557 goto free_stats; 3558 } 3559 3560 /* read root inode and dentry */ 3561 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3562 if (IS_ERR(root)) { 3563 f2fs_err(sbi, "Failed to read root inode"); 3564 err = PTR_ERR(root); 3565 goto free_node_inode; 3566 } 3567 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3568 !root->i_size || !root->i_nlink) { 3569 iput(root); 3570 err = -EINVAL; 3571 goto free_node_inode; 3572 } 3573 3574 sb->s_root = d_make_root(root); /* allocate root dentry */ 3575 if (!sb->s_root) { 3576 err = -ENOMEM; 3577 goto free_node_inode; 3578 } 3579 3580 err = f2fs_register_sysfs(sbi); 3581 if (err) 3582 goto free_root_inode; 3583 3584 #ifdef CONFIG_QUOTA 3585 /* Enable quota usage during mount */ 3586 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3587 err = f2fs_enable_quotas(sb); 3588 if (err) 3589 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 3590 } 3591 #endif 3592 /* if there are nt orphan nodes free them */ 3593 err = f2fs_recover_orphan_inodes(sbi); 3594 if (err) 3595 goto free_meta; 3596 3597 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3598 goto reset_checkpoint; 3599 3600 /* recover fsynced data */ 3601 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 3602 /* 3603 * mount should be failed, when device has readonly mode, and 3604 * previous checkpoint was not done by clean system shutdown. 3605 */ 3606 if (f2fs_hw_is_readonly(sbi)) { 3607 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3608 err = -EROFS; 3609 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable"); 3610 goto free_meta; 3611 } 3612 f2fs_info(sbi, "write access unavailable, skipping recovery"); 3613 goto reset_checkpoint; 3614 } 3615 3616 if (need_fsck) 3617 set_sbi_flag(sbi, SBI_NEED_FSCK); 3618 3619 if (skip_recovery) 3620 goto reset_checkpoint; 3621 3622 err = f2fs_recover_fsync_data(sbi, false); 3623 if (err < 0) { 3624 if (err != -ENOMEM) 3625 skip_recovery = true; 3626 need_fsck = true; 3627 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 3628 err); 3629 goto free_meta; 3630 } 3631 } else { 3632 err = f2fs_recover_fsync_data(sbi, true); 3633 3634 if (!f2fs_readonly(sb) && err > 0) { 3635 err = -EINVAL; 3636 f2fs_err(sbi, "Need to recover fsync data"); 3637 goto free_meta; 3638 } 3639 } 3640 3641 /* 3642 * If the f2fs is not readonly and fsync data recovery succeeds, 3643 * check zoned block devices' write pointer consistency. 3644 */ 3645 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 3646 err = f2fs_check_write_pointer(sbi); 3647 if (err) 3648 goto free_meta; 3649 } 3650 3651 reset_checkpoint: 3652 /* f2fs_recover_fsync_data() cleared this already */ 3653 clear_sbi_flag(sbi, SBI_POR_DOING); 3654 3655 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3656 err = f2fs_disable_checkpoint(sbi); 3657 if (err) 3658 goto sync_free_meta; 3659 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3660 f2fs_enable_checkpoint(sbi); 3661 } 3662 3663 /* 3664 * If filesystem is not mounted as read-only then 3665 * do start the gc_thread. 3666 */ 3667 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 3668 /* After POR, we can run background GC thread.*/ 3669 err = f2fs_start_gc_thread(sbi); 3670 if (err) 3671 goto sync_free_meta; 3672 } 3673 kvfree(options); 3674 3675 /* recover broken superblock */ 3676 if (recovery) { 3677 err = f2fs_commit_super(sbi, true); 3678 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 3679 sbi->valid_super_block ? 1 : 2, err); 3680 } 3681 3682 f2fs_join_shrinker(sbi); 3683 3684 f2fs_tuning_parameters(sbi); 3685 3686 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 3687 cur_cp_version(F2FS_CKPT(sbi))); 3688 f2fs_update_time(sbi, CP_TIME); 3689 f2fs_update_time(sbi, REQ_TIME); 3690 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3691 return 0; 3692 3693 sync_free_meta: 3694 /* safe to flush all the data */ 3695 sync_filesystem(sbi->sb); 3696 retry_cnt = 0; 3697 3698 free_meta: 3699 #ifdef CONFIG_QUOTA 3700 f2fs_truncate_quota_inode_pages(sb); 3701 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 3702 f2fs_quota_off_umount(sbi->sb); 3703 #endif 3704 /* 3705 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3706 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3707 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3708 * falls into an infinite loop in f2fs_sync_meta_pages(). 3709 */ 3710 truncate_inode_pages_final(META_MAPPING(sbi)); 3711 /* evict some inodes being cached by GC */ 3712 evict_inodes(sb); 3713 f2fs_unregister_sysfs(sbi); 3714 free_root_inode: 3715 dput(sb->s_root); 3716 sb->s_root = NULL; 3717 free_node_inode: 3718 f2fs_release_ino_entry(sbi, true); 3719 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3720 iput(sbi->node_inode); 3721 sbi->node_inode = NULL; 3722 free_stats: 3723 f2fs_destroy_stats(sbi); 3724 free_nm: 3725 f2fs_destroy_node_manager(sbi); 3726 free_sm: 3727 f2fs_destroy_segment_manager(sbi); 3728 f2fs_destroy_post_read_wq(sbi); 3729 free_devices: 3730 destroy_device_list(sbi); 3731 kvfree(sbi->ckpt); 3732 free_meta_inode: 3733 make_bad_inode(sbi->meta_inode); 3734 iput(sbi->meta_inode); 3735 sbi->meta_inode = NULL; 3736 free_io_dummy: 3737 mempool_destroy(sbi->write_io_dummy); 3738 free_percpu: 3739 destroy_percpu_info(sbi); 3740 free_bio_info: 3741 for (i = 0; i < NR_PAGE_TYPE; i++) 3742 kvfree(sbi->write_io[i]); 3743 3744 #ifdef CONFIG_UNICODE 3745 utf8_unload(sbi->s_encoding); 3746 #endif 3747 free_options: 3748 #ifdef CONFIG_QUOTA 3749 for (i = 0; i < MAXQUOTAS; i++) 3750 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 3751 #endif 3752 kvfree(options); 3753 free_sb_buf: 3754 kvfree(raw_super); 3755 free_sbi: 3756 if (sbi->s_chksum_driver) 3757 crypto_free_shash(sbi->s_chksum_driver); 3758 kvfree(sbi); 3759 3760 /* give only one another chance */ 3761 if (retry_cnt > 0 && skip_recovery) { 3762 retry_cnt--; 3763 shrink_dcache_sb(sb); 3764 goto try_onemore; 3765 } 3766 return err; 3767 } 3768 3769 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3770 const char *dev_name, void *data) 3771 { 3772 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3773 } 3774 3775 static void kill_f2fs_super(struct super_block *sb) 3776 { 3777 if (sb->s_root) { 3778 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3779 3780 set_sbi_flag(sbi, SBI_IS_CLOSE); 3781 f2fs_stop_gc_thread(sbi); 3782 f2fs_stop_discard_thread(sbi); 3783 3784 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 3785 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3786 struct cp_control cpc = { 3787 .reason = CP_UMOUNT, 3788 }; 3789 f2fs_write_checkpoint(sbi, &cpc); 3790 } 3791 3792 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 3793 sb->s_flags &= ~SB_RDONLY; 3794 } 3795 kill_block_super(sb); 3796 } 3797 3798 static struct file_system_type f2fs_fs_type = { 3799 .owner = THIS_MODULE, 3800 .name = "f2fs", 3801 .mount = f2fs_mount, 3802 .kill_sb = kill_f2fs_super, 3803 .fs_flags = FS_REQUIRES_DEV, 3804 }; 3805 MODULE_ALIAS_FS("f2fs"); 3806 3807 static int __init init_inodecache(void) 3808 { 3809 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3810 sizeof(struct f2fs_inode_info), 0, 3811 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3812 if (!f2fs_inode_cachep) 3813 return -ENOMEM; 3814 return 0; 3815 } 3816 3817 static void destroy_inodecache(void) 3818 { 3819 /* 3820 * Make sure all delayed rcu free inodes are flushed before we 3821 * destroy cache. 3822 */ 3823 rcu_barrier(); 3824 kmem_cache_destroy(f2fs_inode_cachep); 3825 } 3826 3827 static int __init init_f2fs_fs(void) 3828 { 3829 int err; 3830 3831 if (PAGE_SIZE != F2FS_BLKSIZE) { 3832 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3833 PAGE_SIZE, F2FS_BLKSIZE); 3834 return -EINVAL; 3835 } 3836 3837 f2fs_build_trace_ios(); 3838 3839 err = init_inodecache(); 3840 if (err) 3841 goto fail; 3842 err = f2fs_create_node_manager_caches(); 3843 if (err) 3844 goto free_inodecache; 3845 err = f2fs_create_segment_manager_caches(); 3846 if (err) 3847 goto free_node_manager_caches; 3848 err = f2fs_create_checkpoint_caches(); 3849 if (err) 3850 goto free_segment_manager_caches; 3851 err = f2fs_create_extent_cache(); 3852 if (err) 3853 goto free_checkpoint_caches; 3854 err = f2fs_init_sysfs(); 3855 if (err) 3856 goto free_extent_cache; 3857 err = register_shrinker(&f2fs_shrinker_info); 3858 if (err) 3859 goto free_sysfs; 3860 err = register_filesystem(&f2fs_fs_type); 3861 if (err) 3862 goto free_shrinker; 3863 f2fs_create_root_stats(); 3864 err = f2fs_init_post_read_processing(); 3865 if (err) 3866 goto free_root_stats; 3867 err = f2fs_init_bio_entry_cache(); 3868 if (err) 3869 goto free_post_read; 3870 err = f2fs_init_bioset(); 3871 if (err) 3872 goto free_bio_enrty_cache; 3873 return 0; 3874 free_bio_enrty_cache: 3875 f2fs_destroy_bio_entry_cache(); 3876 free_post_read: 3877 f2fs_destroy_post_read_processing(); 3878 free_root_stats: 3879 f2fs_destroy_root_stats(); 3880 unregister_filesystem(&f2fs_fs_type); 3881 free_shrinker: 3882 unregister_shrinker(&f2fs_shrinker_info); 3883 free_sysfs: 3884 f2fs_exit_sysfs(); 3885 free_extent_cache: 3886 f2fs_destroy_extent_cache(); 3887 free_checkpoint_caches: 3888 f2fs_destroy_checkpoint_caches(); 3889 free_segment_manager_caches: 3890 f2fs_destroy_segment_manager_caches(); 3891 free_node_manager_caches: 3892 f2fs_destroy_node_manager_caches(); 3893 free_inodecache: 3894 destroy_inodecache(); 3895 fail: 3896 return err; 3897 } 3898 3899 static void __exit exit_f2fs_fs(void) 3900 { 3901 f2fs_destroy_bioset(); 3902 f2fs_destroy_bio_entry_cache(); 3903 f2fs_destroy_post_read_processing(); 3904 f2fs_destroy_root_stats(); 3905 unregister_filesystem(&f2fs_fs_type); 3906 unregister_shrinker(&f2fs_shrinker_info); 3907 f2fs_exit_sysfs(); 3908 f2fs_destroy_extent_cache(); 3909 f2fs_destroy_checkpoint_caches(); 3910 f2fs_destroy_segment_manager_caches(); 3911 f2fs_destroy_node_manager_caches(); 3912 destroy_inodecache(); 3913 f2fs_destroy_trace_ios(); 3914 } 3915 3916 module_init(init_f2fs_fs) 3917 module_exit(exit_f2fs_fs) 3918 3919 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3920 MODULE_DESCRIPTION("Flash Friendly File System"); 3921 MODULE_LICENSE("GPL"); 3922 3923