xref: /linux/fs/f2fs/super.c (revision ca64d84e93762f4e587e040a44ad9f6089afc777)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38 
39 static struct kmem_cache *f2fs_inode_cachep;
40 
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42 
43 const char *f2fs_fault_name[FAULT_MAX] = {
44 	[FAULT_KMALLOC]		= "kmalloc",
45 	[FAULT_KVMALLOC]	= "kvmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_PAGE_GET]	= "page get",
48 	[FAULT_ALLOC_BIO]	= "alloc bio",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_READ_IO]		= "read IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 	[FAULT_DISCARD]		= "discard error",
58 	[FAULT_WRITE_IO]	= "write IO error",
59 };
60 
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_checkpoint_disable,
142 	Opt_checkpoint_disable_cap,
143 	Opt_checkpoint_disable_cap_perc,
144 	Opt_checkpoint_enable,
145 	Opt_compress_algorithm,
146 	Opt_compress_log_size,
147 	Opt_compress_extension,
148 	Opt_err,
149 };
150 
151 static match_table_t f2fs_tokens = {
152 	{Opt_gc_background, "background_gc=%s"},
153 	{Opt_disable_roll_forward, "disable_roll_forward"},
154 	{Opt_norecovery, "norecovery"},
155 	{Opt_discard, "discard"},
156 	{Opt_nodiscard, "nodiscard"},
157 	{Opt_noheap, "no_heap"},
158 	{Opt_heap, "heap"},
159 	{Opt_user_xattr, "user_xattr"},
160 	{Opt_nouser_xattr, "nouser_xattr"},
161 	{Opt_acl, "acl"},
162 	{Opt_noacl, "noacl"},
163 	{Opt_active_logs, "active_logs=%u"},
164 	{Opt_disable_ext_identify, "disable_ext_identify"},
165 	{Opt_inline_xattr, "inline_xattr"},
166 	{Opt_noinline_xattr, "noinline_xattr"},
167 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
168 	{Opt_inline_data, "inline_data"},
169 	{Opt_inline_dentry, "inline_dentry"},
170 	{Opt_noinline_dentry, "noinline_dentry"},
171 	{Opt_flush_merge, "flush_merge"},
172 	{Opt_noflush_merge, "noflush_merge"},
173 	{Opt_nobarrier, "nobarrier"},
174 	{Opt_fastboot, "fastboot"},
175 	{Opt_extent_cache, "extent_cache"},
176 	{Opt_noextent_cache, "noextent_cache"},
177 	{Opt_noinline_data, "noinline_data"},
178 	{Opt_data_flush, "data_flush"},
179 	{Opt_reserve_root, "reserve_root=%u"},
180 	{Opt_resgid, "resgid=%u"},
181 	{Opt_resuid, "resuid=%u"},
182 	{Opt_mode, "mode=%s"},
183 	{Opt_io_size_bits, "io_bits=%u"},
184 	{Opt_fault_injection, "fault_injection=%u"},
185 	{Opt_fault_type, "fault_type=%u"},
186 	{Opt_lazytime, "lazytime"},
187 	{Opt_nolazytime, "nolazytime"},
188 	{Opt_quota, "quota"},
189 	{Opt_noquota, "noquota"},
190 	{Opt_usrquota, "usrquota"},
191 	{Opt_grpquota, "grpquota"},
192 	{Opt_prjquota, "prjquota"},
193 	{Opt_usrjquota, "usrjquota=%s"},
194 	{Opt_grpjquota, "grpjquota=%s"},
195 	{Opt_prjjquota, "prjjquota=%s"},
196 	{Opt_offusrjquota, "usrjquota="},
197 	{Opt_offgrpjquota, "grpjquota="},
198 	{Opt_offprjjquota, "prjjquota="},
199 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
200 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
201 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
202 	{Opt_whint, "whint_mode=%s"},
203 	{Opt_alloc, "alloc_mode=%s"},
204 	{Opt_fsync, "fsync_mode=%s"},
205 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
206 	{Opt_checkpoint_disable, "checkpoint=disable"},
207 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
208 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
209 	{Opt_checkpoint_enable, "checkpoint=enable"},
210 	{Opt_compress_algorithm, "compress_algorithm=%s"},
211 	{Opt_compress_log_size, "compress_log_size=%u"},
212 	{Opt_compress_extension, "compress_extension=%s"},
213 	{Opt_err, NULL},
214 };
215 
216 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
217 {
218 	struct va_format vaf;
219 	va_list args;
220 	int level;
221 
222 	va_start(args, fmt);
223 
224 	level = printk_get_level(fmt);
225 	vaf.fmt = printk_skip_level(fmt);
226 	vaf.va = &args;
227 	printk("%c%cF2FS-fs (%s): %pV\n",
228 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
229 
230 	va_end(args);
231 }
232 
233 #ifdef CONFIG_UNICODE
234 static const struct f2fs_sb_encodings {
235 	__u16 magic;
236 	char *name;
237 	char *version;
238 } f2fs_sb_encoding_map[] = {
239 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
240 };
241 
242 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
243 				 const struct f2fs_sb_encodings **encoding,
244 				 __u16 *flags)
245 {
246 	__u16 magic = le16_to_cpu(sb->s_encoding);
247 	int i;
248 
249 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
250 		if (magic == f2fs_sb_encoding_map[i].magic)
251 			break;
252 
253 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
254 		return -EINVAL;
255 
256 	*encoding = &f2fs_sb_encoding_map[i];
257 	*flags = le16_to_cpu(sb->s_encoding_flags);
258 
259 	return 0;
260 }
261 #endif
262 
263 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
264 {
265 	block_t limit = min((sbi->user_block_count << 1) / 1000,
266 			sbi->user_block_count - sbi->reserved_blocks);
267 
268 	/* limit is 0.2% */
269 	if (test_opt(sbi, RESERVE_ROOT) &&
270 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
271 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
272 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
273 			  F2FS_OPTION(sbi).root_reserved_blocks);
274 	}
275 	if (!test_opt(sbi, RESERVE_ROOT) &&
276 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
277 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
278 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
279 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
280 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
281 			  from_kuid_munged(&init_user_ns,
282 					   F2FS_OPTION(sbi).s_resuid),
283 			  from_kgid_munged(&init_user_ns,
284 					   F2FS_OPTION(sbi).s_resgid));
285 }
286 
287 static void init_once(void *foo)
288 {
289 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
290 
291 	inode_init_once(&fi->vfs_inode);
292 }
293 
294 #ifdef CONFIG_QUOTA
295 static const char * const quotatypes[] = INITQFNAMES;
296 #define QTYPE2NAME(t) (quotatypes[t])
297 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
298 							substring_t *args)
299 {
300 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
301 	char *qname;
302 	int ret = -EINVAL;
303 
304 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
305 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
306 		return -EINVAL;
307 	}
308 	if (f2fs_sb_has_quota_ino(sbi)) {
309 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
310 		return 0;
311 	}
312 
313 	qname = match_strdup(args);
314 	if (!qname) {
315 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
316 		return -ENOMEM;
317 	}
318 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
319 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
320 			ret = 0;
321 		else
322 			f2fs_err(sbi, "%s quota file already specified",
323 				 QTYPE2NAME(qtype));
324 		goto errout;
325 	}
326 	if (strchr(qname, '/')) {
327 		f2fs_err(sbi, "quotafile must be on filesystem root");
328 		goto errout;
329 	}
330 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
331 	set_opt(sbi, QUOTA);
332 	return 0;
333 errout:
334 	kvfree(qname);
335 	return ret;
336 }
337 
338 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
339 {
340 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
341 
342 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
343 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
344 		return -EINVAL;
345 	}
346 	kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
347 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
348 	return 0;
349 }
350 
351 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
352 {
353 	/*
354 	 * We do the test below only for project quotas. 'usrquota' and
355 	 * 'grpquota' mount options are allowed even without quota feature
356 	 * to support legacy quotas in quota files.
357 	 */
358 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
359 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
360 		return -1;
361 	}
362 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
363 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
364 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
365 		if (test_opt(sbi, USRQUOTA) &&
366 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
367 			clear_opt(sbi, USRQUOTA);
368 
369 		if (test_opt(sbi, GRPQUOTA) &&
370 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
371 			clear_opt(sbi, GRPQUOTA);
372 
373 		if (test_opt(sbi, PRJQUOTA) &&
374 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
375 			clear_opt(sbi, PRJQUOTA);
376 
377 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
378 				test_opt(sbi, PRJQUOTA)) {
379 			f2fs_err(sbi, "old and new quota format mixing");
380 			return -1;
381 		}
382 
383 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
384 			f2fs_err(sbi, "journaled quota format not specified");
385 			return -1;
386 		}
387 	}
388 
389 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
390 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
391 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
392 	}
393 	return 0;
394 }
395 #endif
396 
397 static int parse_options(struct super_block *sb, char *options)
398 {
399 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
400 	substring_t args[MAX_OPT_ARGS];
401 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
402 	char *p, *name;
403 	int arg = 0, ext_cnt;
404 	kuid_t uid;
405 	kgid_t gid;
406 #ifdef CONFIG_QUOTA
407 	int ret;
408 #endif
409 
410 	if (!options)
411 		return 0;
412 
413 	while ((p = strsep(&options, ",")) != NULL) {
414 		int token;
415 		if (!*p)
416 			continue;
417 		/*
418 		 * Initialize args struct so we know whether arg was
419 		 * found; some options take optional arguments.
420 		 */
421 		args[0].to = args[0].from = NULL;
422 		token = match_token(p, f2fs_tokens, args);
423 
424 		switch (token) {
425 		case Opt_gc_background:
426 			name = match_strdup(&args[0]);
427 
428 			if (!name)
429 				return -ENOMEM;
430 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
431 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
432 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
433 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
434 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
435 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
436 			} else {
437 				kvfree(name);
438 				return -EINVAL;
439 			}
440 			kvfree(name);
441 			break;
442 		case Opt_disable_roll_forward:
443 			set_opt(sbi, DISABLE_ROLL_FORWARD);
444 			break;
445 		case Opt_norecovery:
446 			/* this option mounts f2fs with ro */
447 			set_opt(sbi, NORECOVERY);
448 			if (!f2fs_readonly(sb))
449 				return -EINVAL;
450 			break;
451 		case Opt_discard:
452 			set_opt(sbi, DISCARD);
453 			break;
454 		case Opt_nodiscard:
455 			if (f2fs_sb_has_blkzoned(sbi)) {
456 				f2fs_warn(sbi, "discard is required for zoned block devices");
457 				return -EINVAL;
458 			}
459 			clear_opt(sbi, DISCARD);
460 			break;
461 		case Opt_noheap:
462 			set_opt(sbi, NOHEAP);
463 			break;
464 		case Opt_heap:
465 			clear_opt(sbi, NOHEAP);
466 			break;
467 #ifdef CONFIG_F2FS_FS_XATTR
468 		case Opt_user_xattr:
469 			set_opt(sbi, XATTR_USER);
470 			break;
471 		case Opt_nouser_xattr:
472 			clear_opt(sbi, XATTR_USER);
473 			break;
474 		case Opt_inline_xattr:
475 			set_opt(sbi, INLINE_XATTR);
476 			break;
477 		case Opt_noinline_xattr:
478 			clear_opt(sbi, INLINE_XATTR);
479 			break;
480 		case Opt_inline_xattr_size:
481 			if (args->from && match_int(args, &arg))
482 				return -EINVAL;
483 			set_opt(sbi, INLINE_XATTR_SIZE);
484 			F2FS_OPTION(sbi).inline_xattr_size = arg;
485 			break;
486 #else
487 		case Opt_user_xattr:
488 			f2fs_info(sbi, "user_xattr options not supported");
489 			break;
490 		case Opt_nouser_xattr:
491 			f2fs_info(sbi, "nouser_xattr options not supported");
492 			break;
493 		case Opt_inline_xattr:
494 			f2fs_info(sbi, "inline_xattr options not supported");
495 			break;
496 		case Opt_noinline_xattr:
497 			f2fs_info(sbi, "noinline_xattr options not supported");
498 			break;
499 #endif
500 #ifdef CONFIG_F2FS_FS_POSIX_ACL
501 		case Opt_acl:
502 			set_opt(sbi, POSIX_ACL);
503 			break;
504 		case Opt_noacl:
505 			clear_opt(sbi, POSIX_ACL);
506 			break;
507 #else
508 		case Opt_acl:
509 			f2fs_info(sbi, "acl options not supported");
510 			break;
511 		case Opt_noacl:
512 			f2fs_info(sbi, "noacl options not supported");
513 			break;
514 #endif
515 		case Opt_active_logs:
516 			if (args->from && match_int(args, &arg))
517 				return -EINVAL;
518 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
519 				return -EINVAL;
520 			F2FS_OPTION(sbi).active_logs = arg;
521 			break;
522 		case Opt_disable_ext_identify:
523 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
524 			break;
525 		case Opt_inline_data:
526 			set_opt(sbi, INLINE_DATA);
527 			break;
528 		case Opt_inline_dentry:
529 			set_opt(sbi, INLINE_DENTRY);
530 			break;
531 		case Opt_noinline_dentry:
532 			clear_opt(sbi, INLINE_DENTRY);
533 			break;
534 		case Opt_flush_merge:
535 			set_opt(sbi, FLUSH_MERGE);
536 			break;
537 		case Opt_noflush_merge:
538 			clear_opt(sbi, FLUSH_MERGE);
539 			break;
540 		case Opt_nobarrier:
541 			set_opt(sbi, NOBARRIER);
542 			break;
543 		case Opt_fastboot:
544 			set_opt(sbi, FASTBOOT);
545 			break;
546 		case Opt_extent_cache:
547 			set_opt(sbi, EXTENT_CACHE);
548 			break;
549 		case Opt_noextent_cache:
550 			clear_opt(sbi, EXTENT_CACHE);
551 			break;
552 		case Opt_noinline_data:
553 			clear_opt(sbi, INLINE_DATA);
554 			break;
555 		case Opt_data_flush:
556 			set_opt(sbi, DATA_FLUSH);
557 			break;
558 		case Opt_reserve_root:
559 			if (args->from && match_int(args, &arg))
560 				return -EINVAL;
561 			if (test_opt(sbi, RESERVE_ROOT)) {
562 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
563 					  F2FS_OPTION(sbi).root_reserved_blocks);
564 			} else {
565 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
566 				set_opt(sbi, RESERVE_ROOT);
567 			}
568 			break;
569 		case Opt_resuid:
570 			if (args->from && match_int(args, &arg))
571 				return -EINVAL;
572 			uid = make_kuid(current_user_ns(), arg);
573 			if (!uid_valid(uid)) {
574 				f2fs_err(sbi, "Invalid uid value %d", arg);
575 				return -EINVAL;
576 			}
577 			F2FS_OPTION(sbi).s_resuid = uid;
578 			break;
579 		case Opt_resgid:
580 			if (args->from && match_int(args, &arg))
581 				return -EINVAL;
582 			gid = make_kgid(current_user_ns(), arg);
583 			if (!gid_valid(gid)) {
584 				f2fs_err(sbi, "Invalid gid value %d", arg);
585 				return -EINVAL;
586 			}
587 			F2FS_OPTION(sbi).s_resgid = gid;
588 			break;
589 		case Opt_mode:
590 			name = match_strdup(&args[0]);
591 
592 			if (!name)
593 				return -ENOMEM;
594 			if (strlen(name) == 8 &&
595 					!strncmp(name, "adaptive", 8)) {
596 				if (f2fs_sb_has_blkzoned(sbi)) {
597 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
598 					kvfree(name);
599 					return -EINVAL;
600 				}
601 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
602 			} else if (strlen(name) == 3 &&
603 					!strncmp(name, "lfs", 3)) {
604 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
605 			} else {
606 				kvfree(name);
607 				return -EINVAL;
608 			}
609 			kvfree(name);
610 			break;
611 		case Opt_io_size_bits:
612 			if (args->from && match_int(args, &arg))
613 				return -EINVAL;
614 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
615 				f2fs_warn(sbi, "Not support %d, larger than %d",
616 					  1 << arg, BIO_MAX_PAGES);
617 				return -EINVAL;
618 			}
619 			F2FS_OPTION(sbi).write_io_size_bits = arg;
620 			break;
621 #ifdef CONFIG_F2FS_FAULT_INJECTION
622 		case Opt_fault_injection:
623 			if (args->from && match_int(args, &arg))
624 				return -EINVAL;
625 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
626 			set_opt(sbi, FAULT_INJECTION);
627 			break;
628 
629 		case Opt_fault_type:
630 			if (args->from && match_int(args, &arg))
631 				return -EINVAL;
632 			f2fs_build_fault_attr(sbi, 0, arg);
633 			set_opt(sbi, FAULT_INJECTION);
634 			break;
635 #else
636 		case Opt_fault_injection:
637 			f2fs_info(sbi, "fault_injection options not supported");
638 			break;
639 
640 		case Opt_fault_type:
641 			f2fs_info(sbi, "fault_type options not supported");
642 			break;
643 #endif
644 		case Opt_lazytime:
645 			sb->s_flags |= SB_LAZYTIME;
646 			break;
647 		case Opt_nolazytime:
648 			sb->s_flags &= ~SB_LAZYTIME;
649 			break;
650 #ifdef CONFIG_QUOTA
651 		case Opt_quota:
652 		case Opt_usrquota:
653 			set_opt(sbi, USRQUOTA);
654 			break;
655 		case Opt_grpquota:
656 			set_opt(sbi, GRPQUOTA);
657 			break;
658 		case Opt_prjquota:
659 			set_opt(sbi, PRJQUOTA);
660 			break;
661 		case Opt_usrjquota:
662 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
663 			if (ret)
664 				return ret;
665 			break;
666 		case Opt_grpjquota:
667 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
668 			if (ret)
669 				return ret;
670 			break;
671 		case Opt_prjjquota:
672 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
673 			if (ret)
674 				return ret;
675 			break;
676 		case Opt_offusrjquota:
677 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
678 			if (ret)
679 				return ret;
680 			break;
681 		case Opt_offgrpjquota:
682 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
683 			if (ret)
684 				return ret;
685 			break;
686 		case Opt_offprjjquota:
687 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
688 			if (ret)
689 				return ret;
690 			break;
691 		case Opt_jqfmt_vfsold:
692 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
693 			break;
694 		case Opt_jqfmt_vfsv0:
695 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
696 			break;
697 		case Opt_jqfmt_vfsv1:
698 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
699 			break;
700 		case Opt_noquota:
701 			clear_opt(sbi, QUOTA);
702 			clear_opt(sbi, USRQUOTA);
703 			clear_opt(sbi, GRPQUOTA);
704 			clear_opt(sbi, PRJQUOTA);
705 			break;
706 #else
707 		case Opt_quota:
708 		case Opt_usrquota:
709 		case Opt_grpquota:
710 		case Opt_prjquota:
711 		case Opt_usrjquota:
712 		case Opt_grpjquota:
713 		case Opt_prjjquota:
714 		case Opt_offusrjquota:
715 		case Opt_offgrpjquota:
716 		case Opt_offprjjquota:
717 		case Opt_jqfmt_vfsold:
718 		case Opt_jqfmt_vfsv0:
719 		case Opt_jqfmt_vfsv1:
720 		case Opt_noquota:
721 			f2fs_info(sbi, "quota operations not supported");
722 			break;
723 #endif
724 		case Opt_whint:
725 			name = match_strdup(&args[0]);
726 			if (!name)
727 				return -ENOMEM;
728 			if (strlen(name) == 10 &&
729 					!strncmp(name, "user-based", 10)) {
730 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
731 			} else if (strlen(name) == 3 &&
732 					!strncmp(name, "off", 3)) {
733 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
734 			} else if (strlen(name) == 8 &&
735 					!strncmp(name, "fs-based", 8)) {
736 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
737 			} else {
738 				kvfree(name);
739 				return -EINVAL;
740 			}
741 			kvfree(name);
742 			break;
743 		case Opt_alloc:
744 			name = match_strdup(&args[0]);
745 			if (!name)
746 				return -ENOMEM;
747 
748 			if (strlen(name) == 7 &&
749 					!strncmp(name, "default", 7)) {
750 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
751 			} else if (strlen(name) == 5 &&
752 					!strncmp(name, "reuse", 5)) {
753 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
754 			} else {
755 				kvfree(name);
756 				return -EINVAL;
757 			}
758 			kvfree(name);
759 			break;
760 		case Opt_fsync:
761 			name = match_strdup(&args[0]);
762 			if (!name)
763 				return -ENOMEM;
764 			if (strlen(name) == 5 &&
765 					!strncmp(name, "posix", 5)) {
766 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
767 			} else if (strlen(name) == 6 &&
768 					!strncmp(name, "strict", 6)) {
769 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
770 			} else if (strlen(name) == 9 &&
771 					!strncmp(name, "nobarrier", 9)) {
772 				F2FS_OPTION(sbi).fsync_mode =
773 							FSYNC_MODE_NOBARRIER;
774 			} else {
775 				kvfree(name);
776 				return -EINVAL;
777 			}
778 			kvfree(name);
779 			break;
780 		case Opt_test_dummy_encryption:
781 #ifdef CONFIG_FS_ENCRYPTION
782 			if (!f2fs_sb_has_encrypt(sbi)) {
783 				f2fs_err(sbi, "Encrypt feature is off");
784 				return -EINVAL;
785 			}
786 
787 			F2FS_OPTION(sbi).test_dummy_encryption = true;
788 			f2fs_info(sbi, "Test dummy encryption mode enabled");
789 #else
790 			f2fs_info(sbi, "Test dummy encryption mount option ignored");
791 #endif
792 			break;
793 		case Opt_checkpoint_disable_cap_perc:
794 			if (args->from && match_int(args, &arg))
795 				return -EINVAL;
796 			if (arg < 0 || arg > 100)
797 				return -EINVAL;
798 			if (arg == 100)
799 				F2FS_OPTION(sbi).unusable_cap =
800 					sbi->user_block_count;
801 			else
802 				F2FS_OPTION(sbi).unusable_cap =
803 					(sbi->user_block_count / 100) *	arg;
804 			set_opt(sbi, DISABLE_CHECKPOINT);
805 			break;
806 		case Opt_checkpoint_disable_cap:
807 			if (args->from && match_int(args, &arg))
808 				return -EINVAL;
809 			F2FS_OPTION(sbi).unusable_cap = arg;
810 			set_opt(sbi, DISABLE_CHECKPOINT);
811 			break;
812 		case Opt_checkpoint_disable:
813 			set_opt(sbi, DISABLE_CHECKPOINT);
814 			break;
815 		case Opt_checkpoint_enable:
816 			clear_opt(sbi, DISABLE_CHECKPOINT);
817 			break;
818 		case Opt_compress_algorithm:
819 			if (!f2fs_sb_has_compression(sbi)) {
820 				f2fs_err(sbi, "Compression feature if off");
821 				return -EINVAL;
822 			}
823 			name = match_strdup(&args[0]);
824 			if (!name)
825 				return -ENOMEM;
826 			if (strlen(name) == 3 && !strcmp(name, "lzo")) {
827 				F2FS_OPTION(sbi).compress_algorithm =
828 								COMPRESS_LZO;
829 			} else if (strlen(name) == 3 &&
830 					!strcmp(name, "lz4")) {
831 				F2FS_OPTION(sbi).compress_algorithm =
832 								COMPRESS_LZ4;
833 			} else if (strlen(name) == 4 &&
834 					!strcmp(name, "zstd")) {
835 				F2FS_OPTION(sbi).compress_algorithm =
836 								COMPRESS_ZSTD;
837 			} else {
838 				kfree(name);
839 				return -EINVAL;
840 			}
841 			kfree(name);
842 			break;
843 		case Opt_compress_log_size:
844 			if (!f2fs_sb_has_compression(sbi)) {
845 				f2fs_err(sbi, "Compression feature is off");
846 				return -EINVAL;
847 			}
848 			if (args->from && match_int(args, &arg))
849 				return -EINVAL;
850 			if (arg < MIN_COMPRESS_LOG_SIZE ||
851 				arg > MAX_COMPRESS_LOG_SIZE) {
852 				f2fs_err(sbi,
853 					"Compress cluster log size is out of range");
854 				return -EINVAL;
855 			}
856 			F2FS_OPTION(sbi).compress_log_size = arg;
857 			break;
858 		case Opt_compress_extension:
859 			if (!f2fs_sb_has_compression(sbi)) {
860 				f2fs_err(sbi, "Compression feature is off");
861 				return -EINVAL;
862 			}
863 			name = match_strdup(&args[0]);
864 			if (!name)
865 				return -ENOMEM;
866 
867 			ext = F2FS_OPTION(sbi).extensions;
868 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
869 
870 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
871 				ext_cnt >= COMPRESS_EXT_NUM) {
872 				f2fs_err(sbi,
873 					"invalid extension length/number");
874 				kfree(name);
875 				return -EINVAL;
876 			}
877 
878 			strcpy(ext[ext_cnt], name);
879 			F2FS_OPTION(sbi).compress_ext_cnt++;
880 			kfree(name);
881 			break;
882 		default:
883 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
884 				 p);
885 			return -EINVAL;
886 		}
887 	}
888 #ifdef CONFIG_QUOTA
889 	if (f2fs_check_quota_options(sbi))
890 		return -EINVAL;
891 #else
892 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
893 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
894 		return -EINVAL;
895 	}
896 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
897 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
898 		return -EINVAL;
899 	}
900 #endif
901 #ifndef CONFIG_UNICODE
902 	if (f2fs_sb_has_casefold(sbi)) {
903 		f2fs_err(sbi,
904 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
905 		return -EINVAL;
906 	}
907 #endif
908 
909 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
910 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
911 			 F2FS_IO_SIZE_KB(sbi));
912 		return -EINVAL;
913 	}
914 
915 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
916 		int min_size, max_size;
917 
918 		if (!f2fs_sb_has_extra_attr(sbi) ||
919 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
920 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
921 			return -EINVAL;
922 		}
923 		if (!test_opt(sbi, INLINE_XATTR)) {
924 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
925 			return -EINVAL;
926 		}
927 
928 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
929 		max_size = MAX_INLINE_XATTR_SIZE;
930 
931 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
932 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
933 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
934 				 min_size, max_size);
935 			return -EINVAL;
936 		}
937 	}
938 
939 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
940 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
941 		return -EINVAL;
942 	}
943 
944 	/* Not pass down write hints if the number of active logs is lesser
945 	 * than NR_CURSEG_TYPE.
946 	 */
947 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
948 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
949 	return 0;
950 }
951 
952 static struct inode *f2fs_alloc_inode(struct super_block *sb)
953 {
954 	struct f2fs_inode_info *fi;
955 
956 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
957 	if (!fi)
958 		return NULL;
959 
960 	init_once((void *) fi);
961 
962 	/* Initialize f2fs-specific inode info */
963 	atomic_set(&fi->dirty_pages, 0);
964 	init_rwsem(&fi->i_sem);
965 	spin_lock_init(&fi->i_size_lock);
966 	INIT_LIST_HEAD(&fi->dirty_list);
967 	INIT_LIST_HEAD(&fi->gdirty_list);
968 	INIT_LIST_HEAD(&fi->inmem_ilist);
969 	INIT_LIST_HEAD(&fi->inmem_pages);
970 	mutex_init(&fi->inmem_lock);
971 	init_rwsem(&fi->i_gc_rwsem[READ]);
972 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
973 	init_rwsem(&fi->i_mmap_sem);
974 	init_rwsem(&fi->i_xattr_sem);
975 
976 	/* Will be used by directory only */
977 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
978 
979 	return &fi->vfs_inode;
980 }
981 
982 static int f2fs_drop_inode(struct inode *inode)
983 {
984 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
985 	int ret;
986 
987 	/*
988 	 * during filesystem shutdown, if checkpoint is disabled,
989 	 * drop useless meta/node dirty pages.
990 	 */
991 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
992 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
993 			inode->i_ino == F2FS_META_INO(sbi)) {
994 			trace_f2fs_drop_inode(inode, 1);
995 			return 1;
996 		}
997 	}
998 
999 	/*
1000 	 * This is to avoid a deadlock condition like below.
1001 	 * writeback_single_inode(inode)
1002 	 *  - f2fs_write_data_page
1003 	 *    - f2fs_gc -> iput -> evict
1004 	 *       - inode_wait_for_writeback(inode)
1005 	 */
1006 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1007 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1008 			/* to avoid evict_inode call simultaneously */
1009 			atomic_inc(&inode->i_count);
1010 			spin_unlock(&inode->i_lock);
1011 
1012 			/* some remained atomic pages should discarded */
1013 			if (f2fs_is_atomic_file(inode))
1014 				f2fs_drop_inmem_pages(inode);
1015 
1016 			/* should remain fi->extent_tree for writepage */
1017 			f2fs_destroy_extent_node(inode);
1018 
1019 			sb_start_intwrite(inode->i_sb);
1020 			f2fs_i_size_write(inode, 0);
1021 
1022 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1023 					inode, NULL, 0, DATA);
1024 			truncate_inode_pages_final(inode->i_mapping);
1025 
1026 			if (F2FS_HAS_BLOCKS(inode))
1027 				f2fs_truncate(inode);
1028 
1029 			sb_end_intwrite(inode->i_sb);
1030 
1031 			spin_lock(&inode->i_lock);
1032 			atomic_dec(&inode->i_count);
1033 		}
1034 		trace_f2fs_drop_inode(inode, 0);
1035 		return 0;
1036 	}
1037 	ret = generic_drop_inode(inode);
1038 	if (!ret)
1039 		ret = fscrypt_drop_inode(inode);
1040 	trace_f2fs_drop_inode(inode, ret);
1041 	return ret;
1042 }
1043 
1044 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1045 {
1046 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1047 	int ret = 0;
1048 
1049 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1050 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1051 		ret = 1;
1052 	} else {
1053 		set_inode_flag(inode, FI_DIRTY_INODE);
1054 		stat_inc_dirty_inode(sbi, DIRTY_META);
1055 	}
1056 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1057 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1058 				&sbi->inode_list[DIRTY_META]);
1059 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1060 	}
1061 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1062 	return ret;
1063 }
1064 
1065 void f2fs_inode_synced(struct inode *inode)
1066 {
1067 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1068 
1069 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1070 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1071 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1072 		return;
1073 	}
1074 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1075 		list_del_init(&F2FS_I(inode)->gdirty_list);
1076 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1077 	}
1078 	clear_inode_flag(inode, FI_DIRTY_INODE);
1079 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1080 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1081 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1082 }
1083 
1084 /*
1085  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1086  *
1087  * We should call set_dirty_inode to write the dirty inode through write_inode.
1088  */
1089 static void f2fs_dirty_inode(struct inode *inode, int flags)
1090 {
1091 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1092 
1093 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1094 			inode->i_ino == F2FS_META_INO(sbi))
1095 		return;
1096 
1097 	if (flags == I_DIRTY_TIME)
1098 		return;
1099 
1100 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1101 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1102 
1103 	f2fs_inode_dirtied(inode, false);
1104 }
1105 
1106 static void f2fs_free_inode(struct inode *inode)
1107 {
1108 	fscrypt_free_inode(inode);
1109 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1110 }
1111 
1112 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1113 {
1114 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1115 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1116 }
1117 
1118 static void destroy_device_list(struct f2fs_sb_info *sbi)
1119 {
1120 	int i;
1121 
1122 	for (i = 0; i < sbi->s_ndevs; i++) {
1123 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1124 #ifdef CONFIG_BLK_DEV_ZONED
1125 		kvfree(FDEV(i).blkz_seq);
1126 #endif
1127 	}
1128 	kvfree(sbi->devs);
1129 }
1130 
1131 static void f2fs_put_super(struct super_block *sb)
1132 {
1133 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1134 	int i;
1135 	bool dropped;
1136 
1137 	f2fs_quota_off_umount(sb);
1138 
1139 	/* prevent remaining shrinker jobs */
1140 	mutex_lock(&sbi->umount_mutex);
1141 
1142 	/*
1143 	 * We don't need to do checkpoint when superblock is clean.
1144 	 * But, the previous checkpoint was not done by umount, it needs to do
1145 	 * clean checkpoint again.
1146 	 */
1147 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1148 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1149 		struct cp_control cpc = {
1150 			.reason = CP_UMOUNT,
1151 		};
1152 		f2fs_write_checkpoint(sbi, &cpc);
1153 	}
1154 
1155 	/* be sure to wait for any on-going discard commands */
1156 	dropped = f2fs_issue_discard_timeout(sbi);
1157 
1158 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1159 					!sbi->discard_blks && !dropped) {
1160 		struct cp_control cpc = {
1161 			.reason = CP_UMOUNT | CP_TRIMMED,
1162 		};
1163 		f2fs_write_checkpoint(sbi, &cpc);
1164 	}
1165 
1166 	/*
1167 	 * normally superblock is clean, so we need to release this.
1168 	 * In addition, EIO will skip do checkpoint, we need this as well.
1169 	 */
1170 	f2fs_release_ino_entry(sbi, true);
1171 
1172 	f2fs_leave_shrinker(sbi);
1173 	mutex_unlock(&sbi->umount_mutex);
1174 
1175 	/* our cp_error case, we can wait for any writeback page */
1176 	f2fs_flush_merged_writes(sbi);
1177 
1178 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1179 
1180 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1181 
1182 	iput(sbi->node_inode);
1183 	sbi->node_inode = NULL;
1184 
1185 	iput(sbi->meta_inode);
1186 	sbi->meta_inode = NULL;
1187 
1188 	/*
1189 	 * iput() can update stat information, if f2fs_write_checkpoint()
1190 	 * above failed with error.
1191 	 */
1192 	f2fs_destroy_stats(sbi);
1193 
1194 	/* destroy f2fs internal modules */
1195 	f2fs_destroy_node_manager(sbi);
1196 	f2fs_destroy_segment_manager(sbi);
1197 
1198 	f2fs_destroy_post_read_wq(sbi);
1199 
1200 	kvfree(sbi->ckpt);
1201 
1202 	f2fs_unregister_sysfs(sbi);
1203 
1204 	sb->s_fs_info = NULL;
1205 	if (sbi->s_chksum_driver)
1206 		crypto_free_shash(sbi->s_chksum_driver);
1207 	kvfree(sbi->raw_super);
1208 
1209 	destroy_device_list(sbi);
1210 	f2fs_destroy_xattr_caches(sbi);
1211 	mempool_destroy(sbi->write_io_dummy);
1212 #ifdef CONFIG_QUOTA
1213 	for (i = 0; i < MAXQUOTAS; i++)
1214 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1215 #endif
1216 	destroy_percpu_info(sbi);
1217 	for (i = 0; i < NR_PAGE_TYPE; i++)
1218 		kvfree(sbi->write_io[i]);
1219 #ifdef CONFIG_UNICODE
1220 	utf8_unload(sbi->s_encoding);
1221 #endif
1222 	kvfree(sbi);
1223 }
1224 
1225 int f2fs_sync_fs(struct super_block *sb, int sync)
1226 {
1227 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1228 	int err = 0;
1229 
1230 	if (unlikely(f2fs_cp_error(sbi)))
1231 		return 0;
1232 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1233 		return 0;
1234 
1235 	trace_f2fs_sync_fs(sb, sync);
1236 
1237 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1238 		return -EAGAIN;
1239 
1240 	if (sync) {
1241 		struct cp_control cpc;
1242 
1243 		cpc.reason = __get_cp_reason(sbi);
1244 
1245 		down_write(&sbi->gc_lock);
1246 		err = f2fs_write_checkpoint(sbi, &cpc);
1247 		up_write(&sbi->gc_lock);
1248 	}
1249 	f2fs_trace_ios(NULL, 1);
1250 
1251 	return err;
1252 }
1253 
1254 static int f2fs_freeze(struct super_block *sb)
1255 {
1256 	if (f2fs_readonly(sb))
1257 		return 0;
1258 
1259 	/* IO error happened before */
1260 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1261 		return -EIO;
1262 
1263 	/* must be clean, since sync_filesystem() was already called */
1264 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1265 		return -EINVAL;
1266 	return 0;
1267 }
1268 
1269 static int f2fs_unfreeze(struct super_block *sb)
1270 {
1271 	return 0;
1272 }
1273 
1274 #ifdef CONFIG_QUOTA
1275 static int f2fs_statfs_project(struct super_block *sb,
1276 				kprojid_t projid, struct kstatfs *buf)
1277 {
1278 	struct kqid qid;
1279 	struct dquot *dquot;
1280 	u64 limit;
1281 	u64 curblock;
1282 
1283 	qid = make_kqid_projid(projid);
1284 	dquot = dqget(sb, qid);
1285 	if (IS_ERR(dquot))
1286 		return PTR_ERR(dquot);
1287 	spin_lock(&dquot->dq_dqb_lock);
1288 
1289 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1290 					dquot->dq_dqb.dqb_bhardlimit);
1291 	if (limit)
1292 		limit >>= sb->s_blocksize_bits;
1293 
1294 	if (limit && buf->f_blocks > limit) {
1295 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1296 		buf->f_blocks = limit;
1297 		buf->f_bfree = buf->f_bavail =
1298 			(buf->f_blocks > curblock) ?
1299 			 (buf->f_blocks - curblock) : 0;
1300 	}
1301 
1302 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1303 					dquot->dq_dqb.dqb_ihardlimit);
1304 
1305 	if (limit && buf->f_files > limit) {
1306 		buf->f_files = limit;
1307 		buf->f_ffree =
1308 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1309 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1310 	}
1311 
1312 	spin_unlock(&dquot->dq_dqb_lock);
1313 	dqput(dquot);
1314 	return 0;
1315 }
1316 #endif
1317 
1318 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1319 {
1320 	struct super_block *sb = dentry->d_sb;
1321 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1322 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1323 	block_t total_count, user_block_count, start_count;
1324 	u64 avail_node_count;
1325 
1326 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1327 	user_block_count = sbi->user_block_count;
1328 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1329 	buf->f_type = F2FS_SUPER_MAGIC;
1330 	buf->f_bsize = sbi->blocksize;
1331 
1332 	buf->f_blocks = total_count - start_count;
1333 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1334 						sbi->current_reserved_blocks;
1335 
1336 	spin_lock(&sbi->stat_lock);
1337 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1338 		buf->f_bfree = 0;
1339 	else
1340 		buf->f_bfree -= sbi->unusable_block_count;
1341 	spin_unlock(&sbi->stat_lock);
1342 
1343 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1344 		buf->f_bavail = buf->f_bfree -
1345 				F2FS_OPTION(sbi).root_reserved_blocks;
1346 	else
1347 		buf->f_bavail = 0;
1348 
1349 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1350 
1351 	if (avail_node_count > user_block_count) {
1352 		buf->f_files = user_block_count;
1353 		buf->f_ffree = buf->f_bavail;
1354 	} else {
1355 		buf->f_files = avail_node_count;
1356 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1357 					buf->f_bavail);
1358 	}
1359 
1360 	buf->f_namelen = F2FS_NAME_LEN;
1361 	buf->f_fsid.val[0] = (u32)id;
1362 	buf->f_fsid.val[1] = (u32)(id >> 32);
1363 
1364 #ifdef CONFIG_QUOTA
1365 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1366 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1367 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1368 	}
1369 #endif
1370 	return 0;
1371 }
1372 
1373 static inline void f2fs_show_quota_options(struct seq_file *seq,
1374 					   struct super_block *sb)
1375 {
1376 #ifdef CONFIG_QUOTA
1377 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1378 
1379 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1380 		char *fmtname = "";
1381 
1382 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1383 		case QFMT_VFS_OLD:
1384 			fmtname = "vfsold";
1385 			break;
1386 		case QFMT_VFS_V0:
1387 			fmtname = "vfsv0";
1388 			break;
1389 		case QFMT_VFS_V1:
1390 			fmtname = "vfsv1";
1391 			break;
1392 		}
1393 		seq_printf(seq, ",jqfmt=%s", fmtname);
1394 	}
1395 
1396 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1397 		seq_show_option(seq, "usrjquota",
1398 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1399 
1400 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1401 		seq_show_option(seq, "grpjquota",
1402 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1403 
1404 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1405 		seq_show_option(seq, "prjjquota",
1406 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1407 #endif
1408 }
1409 
1410 static inline void f2fs_show_compress_options(struct seq_file *seq,
1411 							struct super_block *sb)
1412 {
1413 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1414 	char *algtype = "";
1415 	int i;
1416 
1417 	if (!f2fs_sb_has_compression(sbi))
1418 		return;
1419 
1420 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1421 	case COMPRESS_LZO:
1422 		algtype = "lzo";
1423 		break;
1424 	case COMPRESS_LZ4:
1425 		algtype = "lz4";
1426 		break;
1427 	case COMPRESS_ZSTD:
1428 		algtype = "zstd";
1429 		break;
1430 	}
1431 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1432 
1433 	seq_printf(seq, ",compress_log_size=%u",
1434 			F2FS_OPTION(sbi).compress_log_size);
1435 
1436 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1437 		seq_printf(seq, ",compress_extension=%s",
1438 			F2FS_OPTION(sbi).extensions[i]);
1439 	}
1440 }
1441 
1442 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1443 {
1444 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1445 
1446 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1447 		seq_printf(seq, ",background_gc=%s", "sync");
1448 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1449 		seq_printf(seq, ",background_gc=%s", "on");
1450 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1451 		seq_printf(seq, ",background_gc=%s", "off");
1452 
1453 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1454 		seq_puts(seq, ",disable_roll_forward");
1455 	if (test_opt(sbi, NORECOVERY))
1456 		seq_puts(seq, ",norecovery");
1457 	if (test_opt(sbi, DISCARD))
1458 		seq_puts(seq, ",discard");
1459 	else
1460 		seq_puts(seq, ",nodiscard");
1461 	if (test_opt(sbi, NOHEAP))
1462 		seq_puts(seq, ",no_heap");
1463 	else
1464 		seq_puts(seq, ",heap");
1465 #ifdef CONFIG_F2FS_FS_XATTR
1466 	if (test_opt(sbi, XATTR_USER))
1467 		seq_puts(seq, ",user_xattr");
1468 	else
1469 		seq_puts(seq, ",nouser_xattr");
1470 	if (test_opt(sbi, INLINE_XATTR))
1471 		seq_puts(seq, ",inline_xattr");
1472 	else
1473 		seq_puts(seq, ",noinline_xattr");
1474 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1475 		seq_printf(seq, ",inline_xattr_size=%u",
1476 					F2FS_OPTION(sbi).inline_xattr_size);
1477 #endif
1478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1479 	if (test_opt(sbi, POSIX_ACL))
1480 		seq_puts(seq, ",acl");
1481 	else
1482 		seq_puts(seq, ",noacl");
1483 #endif
1484 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1485 		seq_puts(seq, ",disable_ext_identify");
1486 	if (test_opt(sbi, INLINE_DATA))
1487 		seq_puts(seq, ",inline_data");
1488 	else
1489 		seq_puts(seq, ",noinline_data");
1490 	if (test_opt(sbi, INLINE_DENTRY))
1491 		seq_puts(seq, ",inline_dentry");
1492 	else
1493 		seq_puts(seq, ",noinline_dentry");
1494 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1495 		seq_puts(seq, ",flush_merge");
1496 	if (test_opt(sbi, NOBARRIER))
1497 		seq_puts(seq, ",nobarrier");
1498 	if (test_opt(sbi, FASTBOOT))
1499 		seq_puts(seq, ",fastboot");
1500 	if (test_opt(sbi, EXTENT_CACHE))
1501 		seq_puts(seq, ",extent_cache");
1502 	else
1503 		seq_puts(seq, ",noextent_cache");
1504 	if (test_opt(sbi, DATA_FLUSH))
1505 		seq_puts(seq, ",data_flush");
1506 
1507 	seq_puts(seq, ",mode=");
1508 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1509 		seq_puts(seq, "adaptive");
1510 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1511 		seq_puts(seq, "lfs");
1512 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1513 	if (test_opt(sbi, RESERVE_ROOT))
1514 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1515 				F2FS_OPTION(sbi).root_reserved_blocks,
1516 				from_kuid_munged(&init_user_ns,
1517 					F2FS_OPTION(sbi).s_resuid),
1518 				from_kgid_munged(&init_user_ns,
1519 					F2FS_OPTION(sbi).s_resgid));
1520 	if (F2FS_IO_SIZE_BITS(sbi))
1521 		seq_printf(seq, ",io_bits=%u",
1522 				F2FS_OPTION(sbi).write_io_size_bits);
1523 #ifdef CONFIG_F2FS_FAULT_INJECTION
1524 	if (test_opt(sbi, FAULT_INJECTION)) {
1525 		seq_printf(seq, ",fault_injection=%u",
1526 				F2FS_OPTION(sbi).fault_info.inject_rate);
1527 		seq_printf(seq, ",fault_type=%u",
1528 				F2FS_OPTION(sbi).fault_info.inject_type);
1529 	}
1530 #endif
1531 #ifdef CONFIG_QUOTA
1532 	if (test_opt(sbi, QUOTA))
1533 		seq_puts(seq, ",quota");
1534 	if (test_opt(sbi, USRQUOTA))
1535 		seq_puts(seq, ",usrquota");
1536 	if (test_opt(sbi, GRPQUOTA))
1537 		seq_puts(seq, ",grpquota");
1538 	if (test_opt(sbi, PRJQUOTA))
1539 		seq_puts(seq, ",prjquota");
1540 #endif
1541 	f2fs_show_quota_options(seq, sbi->sb);
1542 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1543 		seq_printf(seq, ",whint_mode=%s", "user-based");
1544 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1545 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1546 #ifdef CONFIG_FS_ENCRYPTION
1547 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1548 		seq_puts(seq, ",test_dummy_encryption");
1549 #endif
1550 
1551 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1552 		seq_printf(seq, ",alloc_mode=%s", "default");
1553 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1554 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1555 
1556 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1557 		seq_printf(seq, ",checkpoint=disable:%u",
1558 				F2FS_OPTION(sbi).unusable_cap);
1559 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1560 		seq_printf(seq, ",fsync_mode=%s", "posix");
1561 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1562 		seq_printf(seq, ",fsync_mode=%s", "strict");
1563 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1564 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1565 
1566 	f2fs_show_compress_options(seq, sbi->sb);
1567 	return 0;
1568 }
1569 
1570 static void default_options(struct f2fs_sb_info *sbi)
1571 {
1572 	/* init some FS parameters */
1573 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1574 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1575 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1576 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1577 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1578 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1579 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1580 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1581 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1582 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1583 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1584 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1585 
1586 	set_opt(sbi, INLINE_XATTR);
1587 	set_opt(sbi, INLINE_DATA);
1588 	set_opt(sbi, INLINE_DENTRY);
1589 	set_opt(sbi, EXTENT_CACHE);
1590 	set_opt(sbi, NOHEAP);
1591 	clear_opt(sbi, DISABLE_CHECKPOINT);
1592 	F2FS_OPTION(sbi).unusable_cap = 0;
1593 	sbi->sb->s_flags |= SB_LAZYTIME;
1594 	set_opt(sbi, FLUSH_MERGE);
1595 	set_opt(sbi, DISCARD);
1596 	if (f2fs_sb_has_blkzoned(sbi))
1597 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1598 	else
1599 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1600 
1601 #ifdef CONFIG_F2FS_FS_XATTR
1602 	set_opt(sbi, XATTR_USER);
1603 #endif
1604 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1605 	set_opt(sbi, POSIX_ACL);
1606 #endif
1607 
1608 	f2fs_build_fault_attr(sbi, 0, 0);
1609 }
1610 
1611 #ifdef CONFIG_QUOTA
1612 static int f2fs_enable_quotas(struct super_block *sb);
1613 #endif
1614 
1615 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1616 {
1617 	unsigned int s_flags = sbi->sb->s_flags;
1618 	struct cp_control cpc;
1619 	int err = 0;
1620 	int ret;
1621 	block_t unusable;
1622 
1623 	if (s_flags & SB_RDONLY) {
1624 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1625 		return -EINVAL;
1626 	}
1627 	sbi->sb->s_flags |= SB_ACTIVE;
1628 
1629 	f2fs_update_time(sbi, DISABLE_TIME);
1630 
1631 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1632 		down_write(&sbi->gc_lock);
1633 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1634 		if (err == -ENODATA) {
1635 			err = 0;
1636 			break;
1637 		}
1638 		if (err && err != -EAGAIN)
1639 			break;
1640 	}
1641 
1642 	ret = sync_filesystem(sbi->sb);
1643 	if (ret || err) {
1644 		err = ret ? ret: err;
1645 		goto restore_flag;
1646 	}
1647 
1648 	unusable = f2fs_get_unusable_blocks(sbi);
1649 	if (f2fs_disable_cp_again(sbi, unusable)) {
1650 		err = -EAGAIN;
1651 		goto restore_flag;
1652 	}
1653 
1654 	down_write(&sbi->gc_lock);
1655 	cpc.reason = CP_PAUSE;
1656 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1657 	err = f2fs_write_checkpoint(sbi, &cpc);
1658 	if (err)
1659 		goto out_unlock;
1660 
1661 	spin_lock(&sbi->stat_lock);
1662 	sbi->unusable_block_count = unusable;
1663 	spin_unlock(&sbi->stat_lock);
1664 
1665 out_unlock:
1666 	up_write(&sbi->gc_lock);
1667 restore_flag:
1668 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
1669 	return err;
1670 }
1671 
1672 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1673 {
1674 	down_write(&sbi->gc_lock);
1675 	f2fs_dirty_to_prefree(sbi);
1676 
1677 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1678 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1679 	up_write(&sbi->gc_lock);
1680 
1681 	f2fs_sync_fs(sbi->sb, 1);
1682 }
1683 
1684 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1685 {
1686 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1687 	struct f2fs_mount_info org_mount_opt;
1688 	unsigned long old_sb_flags;
1689 	int err;
1690 	bool need_restart_gc = false;
1691 	bool need_stop_gc = false;
1692 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1693 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1694 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1695 	bool checkpoint_changed;
1696 #ifdef CONFIG_QUOTA
1697 	int i, j;
1698 #endif
1699 
1700 	/*
1701 	 * Save the old mount options in case we
1702 	 * need to restore them.
1703 	 */
1704 	org_mount_opt = sbi->mount_opt;
1705 	old_sb_flags = sb->s_flags;
1706 
1707 #ifdef CONFIG_QUOTA
1708 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1709 	for (i = 0; i < MAXQUOTAS; i++) {
1710 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1711 			org_mount_opt.s_qf_names[i] =
1712 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1713 				GFP_KERNEL);
1714 			if (!org_mount_opt.s_qf_names[i]) {
1715 				for (j = 0; j < i; j++)
1716 					kvfree(org_mount_opt.s_qf_names[j]);
1717 				return -ENOMEM;
1718 			}
1719 		} else {
1720 			org_mount_opt.s_qf_names[i] = NULL;
1721 		}
1722 	}
1723 #endif
1724 
1725 	/* recover superblocks we couldn't write due to previous RO mount */
1726 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1727 		err = f2fs_commit_super(sbi, false);
1728 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1729 			  err);
1730 		if (!err)
1731 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1732 	}
1733 
1734 	default_options(sbi);
1735 
1736 	/* parse mount options */
1737 	err = parse_options(sb, data);
1738 	if (err)
1739 		goto restore_opts;
1740 	checkpoint_changed =
1741 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1742 
1743 	/*
1744 	 * Previous and new state of filesystem is RO,
1745 	 * so skip checking GC and FLUSH_MERGE conditions.
1746 	 */
1747 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1748 		goto skip;
1749 
1750 #ifdef CONFIG_QUOTA
1751 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1752 		err = dquot_suspend(sb, -1);
1753 		if (err < 0)
1754 			goto restore_opts;
1755 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1756 		/* dquot_resume needs RW */
1757 		sb->s_flags &= ~SB_RDONLY;
1758 		if (sb_any_quota_suspended(sb)) {
1759 			dquot_resume(sb, -1);
1760 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1761 			err = f2fs_enable_quotas(sb);
1762 			if (err)
1763 				goto restore_opts;
1764 		}
1765 	}
1766 #endif
1767 	/* disallow enable/disable extent_cache dynamically */
1768 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1769 		err = -EINVAL;
1770 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1771 		goto restore_opts;
1772 	}
1773 
1774 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1775 		err = -EINVAL;
1776 		f2fs_warn(sbi, "switch io_bits option is not allowed");
1777 		goto restore_opts;
1778 	}
1779 
1780 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1781 		err = -EINVAL;
1782 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1783 		goto restore_opts;
1784 	}
1785 
1786 	/*
1787 	 * We stop the GC thread if FS is mounted as RO
1788 	 * or if background_gc = off is passed in mount
1789 	 * option. Also sync the filesystem.
1790 	 */
1791 	if ((*flags & SB_RDONLY) ||
1792 			F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
1793 		if (sbi->gc_thread) {
1794 			f2fs_stop_gc_thread(sbi);
1795 			need_restart_gc = true;
1796 		}
1797 	} else if (!sbi->gc_thread) {
1798 		err = f2fs_start_gc_thread(sbi);
1799 		if (err)
1800 			goto restore_opts;
1801 		need_stop_gc = true;
1802 	}
1803 
1804 	if (*flags & SB_RDONLY ||
1805 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1806 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1807 		sync_inodes_sb(sb);
1808 
1809 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1810 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1811 		f2fs_sync_fs(sb, 1);
1812 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1813 	}
1814 
1815 	if (checkpoint_changed) {
1816 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1817 			err = f2fs_disable_checkpoint(sbi);
1818 			if (err)
1819 				goto restore_gc;
1820 		} else {
1821 			f2fs_enable_checkpoint(sbi);
1822 		}
1823 	}
1824 
1825 	/*
1826 	 * We stop issue flush thread if FS is mounted as RO
1827 	 * or if flush_merge is not passed in mount option.
1828 	 */
1829 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1830 		clear_opt(sbi, FLUSH_MERGE);
1831 		f2fs_destroy_flush_cmd_control(sbi, false);
1832 	} else {
1833 		err = f2fs_create_flush_cmd_control(sbi);
1834 		if (err)
1835 			goto restore_gc;
1836 	}
1837 skip:
1838 #ifdef CONFIG_QUOTA
1839 	/* Release old quota file names */
1840 	for (i = 0; i < MAXQUOTAS; i++)
1841 		kvfree(org_mount_opt.s_qf_names[i]);
1842 #endif
1843 	/* Update the POSIXACL Flag */
1844 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1845 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1846 
1847 	limit_reserve_root(sbi);
1848 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1849 	return 0;
1850 restore_gc:
1851 	if (need_restart_gc) {
1852 		if (f2fs_start_gc_thread(sbi))
1853 			f2fs_warn(sbi, "background gc thread has stopped");
1854 	} else if (need_stop_gc) {
1855 		f2fs_stop_gc_thread(sbi);
1856 	}
1857 restore_opts:
1858 #ifdef CONFIG_QUOTA
1859 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1860 	for (i = 0; i < MAXQUOTAS; i++) {
1861 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1862 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1863 	}
1864 #endif
1865 	sbi->mount_opt = org_mount_opt;
1866 	sb->s_flags = old_sb_flags;
1867 	return err;
1868 }
1869 
1870 #ifdef CONFIG_QUOTA
1871 /* Read data from quotafile */
1872 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1873 			       size_t len, loff_t off)
1874 {
1875 	struct inode *inode = sb_dqopt(sb)->files[type];
1876 	struct address_space *mapping = inode->i_mapping;
1877 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1878 	int offset = off & (sb->s_blocksize - 1);
1879 	int tocopy;
1880 	size_t toread;
1881 	loff_t i_size = i_size_read(inode);
1882 	struct page *page;
1883 	char *kaddr;
1884 
1885 	if (off > i_size)
1886 		return 0;
1887 
1888 	if (off + len > i_size)
1889 		len = i_size - off;
1890 	toread = len;
1891 	while (toread > 0) {
1892 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1893 repeat:
1894 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1895 		if (IS_ERR(page)) {
1896 			if (PTR_ERR(page) == -ENOMEM) {
1897 				congestion_wait(BLK_RW_ASYNC,
1898 						DEFAULT_IO_TIMEOUT);
1899 				goto repeat;
1900 			}
1901 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1902 			return PTR_ERR(page);
1903 		}
1904 
1905 		lock_page(page);
1906 
1907 		if (unlikely(page->mapping != mapping)) {
1908 			f2fs_put_page(page, 1);
1909 			goto repeat;
1910 		}
1911 		if (unlikely(!PageUptodate(page))) {
1912 			f2fs_put_page(page, 1);
1913 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1914 			return -EIO;
1915 		}
1916 
1917 		kaddr = kmap_atomic(page);
1918 		memcpy(data, kaddr + offset, tocopy);
1919 		kunmap_atomic(kaddr);
1920 		f2fs_put_page(page, 1);
1921 
1922 		offset = 0;
1923 		toread -= tocopy;
1924 		data += tocopy;
1925 		blkidx++;
1926 	}
1927 	return len;
1928 }
1929 
1930 /* Write to quotafile */
1931 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1932 				const char *data, size_t len, loff_t off)
1933 {
1934 	struct inode *inode = sb_dqopt(sb)->files[type];
1935 	struct address_space *mapping = inode->i_mapping;
1936 	const struct address_space_operations *a_ops = mapping->a_ops;
1937 	int offset = off & (sb->s_blocksize - 1);
1938 	size_t towrite = len;
1939 	struct page *page;
1940 	void *fsdata = NULL;
1941 	char *kaddr;
1942 	int err = 0;
1943 	int tocopy;
1944 
1945 	while (towrite > 0) {
1946 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1947 								towrite);
1948 retry:
1949 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1950 							&page, &fsdata);
1951 		if (unlikely(err)) {
1952 			if (err == -ENOMEM) {
1953 				congestion_wait(BLK_RW_ASYNC,
1954 						DEFAULT_IO_TIMEOUT);
1955 				goto retry;
1956 			}
1957 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1958 			break;
1959 		}
1960 
1961 		kaddr = kmap_atomic(page);
1962 		memcpy(kaddr + offset, data, tocopy);
1963 		kunmap_atomic(kaddr);
1964 		flush_dcache_page(page);
1965 
1966 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1967 						page, fsdata);
1968 		offset = 0;
1969 		towrite -= tocopy;
1970 		off += tocopy;
1971 		data += tocopy;
1972 		cond_resched();
1973 	}
1974 
1975 	if (len == towrite)
1976 		return err;
1977 	inode->i_mtime = inode->i_ctime = current_time(inode);
1978 	f2fs_mark_inode_dirty_sync(inode, false);
1979 	return len - towrite;
1980 }
1981 
1982 static struct dquot **f2fs_get_dquots(struct inode *inode)
1983 {
1984 	return F2FS_I(inode)->i_dquot;
1985 }
1986 
1987 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1988 {
1989 	return &F2FS_I(inode)->i_reserved_quota;
1990 }
1991 
1992 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1993 {
1994 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1995 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
1996 		return 0;
1997 	}
1998 
1999 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2000 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2001 }
2002 
2003 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2004 {
2005 	int enabled = 0;
2006 	int i, err;
2007 
2008 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2009 		err = f2fs_enable_quotas(sbi->sb);
2010 		if (err) {
2011 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2012 			return 0;
2013 		}
2014 		return 1;
2015 	}
2016 
2017 	for (i = 0; i < MAXQUOTAS; i++) {
2018 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2019 			err = f2fs_quota_on_mount(sbi, i);
2020 			if (!err) {
2021 				enabled = 1;
2022 				continue;
2023 			}
2024 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2025 				 err, i);
2026 		}
2027 	}
2028 	return enabled;
2029 }
2030 
2031 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2032 			     unsigned int flags)
2033 {
2034 	struct inode *qf_inode;
2035 	unsigned long qf_inum;
2036 	int err;
2037 
2038 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2039 
2040 	qf_inum = f2fs_qf_ino(sb, type);
2041 	if (!qf_inum)
2042 		return -EPERM;
2043 
2044 	qf_inode = f2fs_iget(sb, qf_inum);
2045 	if (IS_ERR(qf_inode)) {
2046 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2047 		return PTR_ERR(qf_inode);
2048 	}
2049 
2050 	/* Don't account quota for quota files to avoid recursion */
2051 	qf_inode->i_flags |= S_NOQUOTA;
2052 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2053 	iput(qf_inode);
2054 	return err;
2055 }
2056 
2057 static int f2fs_enable_quotas(struct super_block *sb)
2058 {
2059 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2060 	int type, err = 0;
2061 	unsigned long qf_inum;
2062 	bool quota_mopt[MAXQUOTAS] = {
2063 		test_opt(sbi, USRQUOTA),
2064 		test_opt(sbi, GRPQUOTA),
2065 		test_opt(sbi, PRJQUOTA),
2066 	};
2067 
2068 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2069 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2070 		return 0;
2071 	}
2072 
2073 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2074 
2075 	for (type = 0; type < MAXQUOTAS; type++) {
2076 		qf_inum = f2fs_qf_ino(sb, type);
2077 		if (qf_inum) {
2078 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2079 				DQUOT_USAGE_ENABLED |
2080 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2081 			if (err) {
2082 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2083 					 type, err);
2084 				for (type--; type >= 0; type--)
2085 					dquot_quota_off(sb, type);
2086 				set_sbi_flag(F2FS_SB(sb),
2087 						SBI_QUOTA_NEED_REPAIR);
2088 				return err;
2089 			}
2090 		}
2091 	}
2092 	return 0;
2093 }
2094 
2095 int f2fs_quota_sync(struct super_block *sb, int type)
2096 {
2097 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2098 	struct quota_info *dqopt = sb_dqopt(sb);
2099 	int cnt;
2100 	int ret;
2101 
2102 	/*
2103 	 * do_quotactl
2104 	 *  f2fs_quota_sync
2105 	 *  down_read(quota_sem)
2106 	 *  dquot_writeback_dquots()
2107 	 *  f2fs_dquot_commit
2108 	 *                            block_operation
2109 	 *                            down_read(quota_sem)
2110 	 */
2111 	f2fs_lock_op(sbi);
2112 
2113 	down_read(&sbi->quota_sem);
2114 	ret = dquot_writeback_dquots(sb, type);
2115 	if (ret)
2116 		goto out;
2117 
2118 	/*
2119 	 * Now when everything is written we can discard the pagecache so
2120 	 * that userspace sees the changes.
2121 	 */
2122 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2123 		struct address_space *mapping;
2124 
2125 		if (type != -1 && cnt != type)
2126 			continue;
2127 		if (!sb_has_quota_active(sb, cnt))
2128 			continue;
2129 
2130 		mapping = dqopt->files[cnt]->i_mapping;
2131 
2132 		ret = filemap_fdatawrite(mapping);
2133 		if (ret)
2134 			goto out;
2135 
2136 		/* if we are using journalled quota */
2137 		if (is_journalled_quota(sbi))
2138 			continue;
2139 
2140 		ret = filemap_fdatawait(mapping);
2141 		if (ret)
2142 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2143 
2144 		inode_lock(dqopt->files[cnt]);
2145 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2146 		inode_unlock(dqopt->files[cnt]);
2147 	}
2148 out:
2149 	if (ret)
2150 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2151 	up_read(&sbi->quota_sem);
2152 	f2fs_unlock_op(sbi);
2153 	return ret;
2154 }
2155 
2156 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2157 							const struct path *path)
2158 {
2159 	struct inode *inode;
2160 	int err;
2161 
2162 	/* if quota sysfile exists, deny enabling quota with specific file */
2163 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2164 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2165 		return -EBUSY;
2166 	}
2167 
2168 	err = f2fs_quota_sync(sb, type);
2169 	if (err)
2170 		return err;
2171 
2172 	err = dquot_quota_on(sb, type, format_id, path);
2173 	if (err)
2174 		return err;
2175 
2176 	inode = d_inode(path->dentry);
2177 
2178 	inode_lock(inode);
2179 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2180 	f2fs_set_inode_flags(inode);
2181 	inode_unlock(inode);
2182 	f2fs_mark_inode_dirty_sync(inode, false);
2183 
2184 	return 0;
2185 }
2186 
2187 static int __f2fs_quota_off(struct super_block *sb, int type)
2188 {
2189 	struct inode *inode = sb_dqopt(sb)->files[type];
2190 	int err;
2191 
2192 	if (!inode || !igrab(inode))
2193 		return dquot_quota_off(sb, type);
2194 
2195 	err = f2fs_quota_sync(sb, type);
2196 	if (err)
2197 		goto out_put;
2198 
2199 	err = dquot_quota_off(sb, type);
2200 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2201 		goto out_put;
2202 
2203 	inode_lock(inode);
2204 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2205 	f2fs_set_inode_flags(inode);
2206 	inode_unlock(inode);
2207 	f2fs_mark_inode_dirty_sync(inode, false);
2208 out_put:
2209 	iput(inode);
2210 	return err;
2211 }
2212 
2213 static int f2fs_quota_off(struct super_block *sb, int type)
2214 {
2215 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2216 	int err;
2217 
2218 	err = __f2fs_quota_off(sb, type);
2219 
2220 	/*
2221 	 * quotactl can shutdown journalled quota, result in inconsistence
2222 	 * between quota record and fs data by following updates, tag the
2223 	 * flag to let fsck be aware of it.
2224 	 */
2225 	if (is_journalled_quota(sbi))
2226 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2227 	return err;
2228 }
2229 
2230 void f2fs_quota_off_umount(struct super_block *sb)
2231 {
2232 	int type;
2233 	int err;
2234 
2235 	for (type = 0; type < MAXQUOTAS; type++) {
2236 		err = __f2fs_quota_off(sb, type);
2237 		if (err) {
2238 			int ret = dquot_quota_off(sb, type);
2239 
2240 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2241 				 type, err, ret);
2242 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2243 		}
2244 	}
2245 	/*
2246 	 * In case of checkpoint=disable, we must flush quota blocks.
2247 	 * This can cause NULL exception for node_inode in end_io, since
2248 	 * put_super already dropped it.
2249 	 */
2250 	sync_filesystem(sb);
2251 }
2252 
2253 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2254 {
2255 	struct quota_info *dqopt = sb_dqopt(sb);
2256 	int type;
2257 
2258 	for (type = 0; type < MAXQUOTAS; type++) {
2259 		if (!dqopt->files[type])
2260 			continue;
2261 		f2fs_inode_synced(dqopt->files[type]);
2262 	}
2263 }
2264 
2265 static int f2fs_dquot_commit(struct dquot *dquot)
2266 {
2267 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2268 	int ret;
2269 
2270 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2271 	ret = dquot_commit(dquot);
2272 	if (ret < 0)
2273 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2274 	up_read(&sbi->quota_sem);
2275 	return ret;
2276 }
2277 
2278 static int f2fs_dquot_acquire(struct dquot *dquot)
2279 {
2280 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2281 	int ret;
2282 
2283 	down_read(&sbi->quota_sem);
2284 	ret = dquot_acquire(dquot);
2285 	if (ret < 0)
2286 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2287 	up_read(&sbi->quota_sem);
2288 	return ret;
2289 }
2290 
2291 static int f2fs_dquot_release(struct dquot *dquot)
2292 {
2293 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2294 	int ret = dquot_release(dquot);
2295 
2296 	if (ret < 0)
2297 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2298 	return ret;
2299 }
2300 
2301 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2302 {
2303 	struct super_block *sb = dquot->dq_sb;
2304 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2305 	int ret = dquot_mark_dquot_dirty(dquot);
2306 
2307 	/* if we are using journalled quota */
2308 	if (is_journalled_quota(sbi))
2309 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2310 
2311 	return ret;
2312 }
2313 
2314 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2315 {
2316 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2317 	int ret = dquot_commit_info(sb, type);
2318 
2319 	if (ret < 0)
2320 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2321 	return ret;
2322 }
2323 
2324 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2325 {
2326 	*projid = F2FS_I(inode)->i_projid;
2327 	return 0;
2328 }
2329 
2330 static const struct dquot_operations f2fs_quota_operations = {
2331 	.get_reserved_space = f2fs_get_reserved_space,
2332 	.write_dquot	= f2fs_dquot_commit,
2333 	.acquire_dquot	= f2fs_dquot_acquire,
2334 	.release_dquot	= f2fs_dquot_release,
2335 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2336 	.write_info	= f2fs_dquot_commit_info,
2337 	.alloc_dquot	= dquot_alloc,
2338 	.destroy_dquot	= dquot_destroy,
2339 	.get_projid	= f2fs_get_projid,
2340 	.get_next_id	= dquot_get_next_id,
2341 };
2342 
2343 static const struct quotactl_ops f2fs_quotactl_ops = {
2344 	.quota_on	= f2fs_quota_on,
2345 	.quota_off	= f2fs_quota_off,
2346 	.quota_sync	= f2fs_quota_sync,
2347 	.get_state	= dquot_get_state,
2348 	.set_info	= dquot_set_dqinfo,
2349 	.get_dqblk	= dquot_get_dqblk,
2350 	.set_dqblk	= dquot_set_dqblk,
2351 	.get_nextdqblk	= dquot_get_next_dqblk,
2352 };
2353 #else
2354 int f2fs_quota_sync(struct super_block *sb, int type)
2355 {
2356 	return 0;
2357 }
2358 
2359 void f2fs_quota_off_umount(struct super_block *sb)
2360 {
2361 }
2362 #endif
2363 
2364 static const struct super_operations f2fs_sops = {
2365 	.alloc_inode	= f2fs_alloc_inode,
2366 	.free_inode	= f2fs_free_inode,
2367 	.drop_inode	= f2fs_drop_inode,
2368 	.write_inode	= f2fs_write_inode,
2369 	.dirty_inode	= f2fs_dirty_inode,
2370 	.show_options	= f2fs_show_options,
2371 #ifdef CONFIG_QUOTA
2372 	.quota_read	= f2fs_quota_read,
2373 	.quota_write	= f2fs_quota_write,
2374 	.get_dquots	= f2fs_get_dquots,
2375 #endif
2376 	.evict_inode	= f2fs_evict_inode,
2377 	.put_super	= f2fs_put_super,
2378 	.sync_fs	= f2fs_sync_fs,
2379 	.freeze_fs	= f2fs_freeze,
2380 	.unfreeze_fs	= f2fs_unfreeze,
2381 	.statfs		= f2fs_statfs,
2382 	.remount_fs	= f2fs_remount,
2383 };
2384 
2385 #ifdef CONFIG_FS_ENCRYPTION
2386 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2387 {
2388 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2389 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2390 				ctx, len, NULL);
2391 }
2392 
2393 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2394 							void *fs_data)
2395 {
2396 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2397 
2398 	/*
2399 	 * Encrypting the root directory is not allowed because fsck
2400 	 * expects lost+found directory to exist and remain unencrypted
2401 	 * if LOST_FOUND feature is enabled.
2402 	 *
2403 	 */
2404 	if (f2fs_sb_has_lost_found(sbi) &&
2405 			inode->i_ino == F2FS_ROOT_INO(sbi))
2406 		return -EPERM;
2407 
2408 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2409 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2410 				ctx, len, fs_data, XATTR_CREATE);
2411 }
2412 
2413 static bool f2fs_dummy_context(struct inode *inode)
2414 {
2415 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2416 }
2417 
2418 static bool f2fs_has_stable_inodes(struct super_block *sb)
2419 {
2420 	return true;
2421 }
2422 
2423 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2424 				       int *ino_bits_ret, int *lblk_bits_ret)
2425 {
2426 	*ino_bits_ret = 8 * sizeof(nid_t);
2427 	*lblk_bits_ret = 8 * sizeof(block_t);
2428 }
2429 
2430 static const struct fscrypt_operations f2fs_cryptops = {
2431 	.key_prefix		= "f2fs:",
2432 	.get_context		= f2fs_get_context,
2433 	.set_context		= f2fs_set_context,
2434 	.dummy_context		= f2fs_dummy_context,
2435 	.empty_dir		= f2fs_empty_dir,
2436 	.max_namelen		= F2FS_NAME_LEN,
2437 	.has_stable_inodes	= f2fs_has_stable_inodes,
2438 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2439 };
2440 #endif
2441 
2442 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2443 		u64 ino, u32 generation)
2444 {
2445 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2446 	struct inode *inode;
2447 
2448 	if (f2fs_check_nid_range(sbi, ino))
2449 		return ERR_PTR(-ESTALE);
2450 
2451 	/*
2452 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2453 	 * However f2fs_iget currently does appropriate checks to handle stale
2454 	 * inodes so everything is OK.
2455 	 */
2456 	inode = f2fs_iget(sb, ino);
2457 	if (IS_ERR(inode))
2458 		return ERR_CAST(inode);
2459 	if (unlikely(generation && inode->i_generation != generation)) {
2460 		/* we didn't find the right inode.. */
2461 		iput(inode);
2462 		return ERR_PTR(-ESTALE);
2463 	}
2464 	return inode;
2465 }
2466 
2467 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2468 		int fh_len, int fh_type)
2469 {
2470 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2471 				    f2fs_nfs_get_inode);
2472 }
2473 
2474 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2475 		int fh_len, int fh_type)
2476 {
2477 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2478 				    f2fs_nfs_get_inode);
2479 }
2480 
2481 static const struct export_operations f2fs_export_ops = {
2482 	.fh_to_dentry = f2fs_fh_to_dentry,
2483 	.fh_to_parent = f2fs_fh_to_parent,
2484 	.get_parent = f2fs_get_parent,
2485 };
2486 
2487 static loff_t max_file_blocks(void)
2488 {
2489 	loff_t result = 0;
2490 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2491 
2492 	/*
2493 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2494 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2495 	 * space in inode.i_addr, it will be more safe to reassign
2496 	 * result as zero.
2497 	 */
2498 
2499 	/* two direct node blocks */
2500 	result += (leaf_count * 2);
2501 
2502 	/* two indirect node blocks */
2503 	leaf_count *= NIDS_PER_BLOCK;
2504 	result += (leaf_count * 2);
2505 
2506 	/* one double indirect node block */
2507 	leaf_count *= NIDS_PER_BLOCK;
2508 	result += leaf_count;
2509 
2510 	return result;
2511 }
2512 
2513 static int __f2fs_commit_super(struct buffer_head *bh,
2514 			struct f2fs_super_block *super)
2515 {
2516 	lock_buffer(bh);
2517 	if (super)
2518 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2519 	set_buffer_dirty(bh);
2520 	unlock_buffer(bh);
2521 
2522 	/* it's rare case, we can do fua all the time */
2523 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2524 }
2525 
2526 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2527 					struct buffer_head *bh)
2528 {
2529 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2530 					(bh->b_data + F2FS_SUPER_OFFSET);
2531 	struct super_block *sb = sbi->sb;
2532 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2533 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2534 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2535 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2536 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2537 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2538 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2539 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2540 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2541 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2542 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2543 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2544 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2545 	u64 main_end_blkaddr = main_blkaddr +
2546 				(segment_count_main << log_blocks_per_seg);
2547 	u64 seg_end_blkaddr = segment0_blkaddr +
2548 				(segment_count << log_blocks_per_seg);
2549 
2550 	if (segment0_blkaddr != cp_blkaddr) {
2551 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2552 			  segment0_blkaddr, cp_blkaddr);
2553 		return true;
2554 	}
2555 
2556 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2557 							sit_blkaddr) {
2558 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2559 			  cp_blkaddr, sit_blkaddr,
2560 			  segment_count_ckpt << log_blocks_per_seg);
2561 		return true;
2562 	}
2563 
2564 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2565 							nat_blkaddr) {
2566 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2567 			  sit_blkaddr, nat_blkaddr,
2568 			  segment_count_sit << log_blocks_per_seg);
2569 		return true;
2570 	}
2571 
2572 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2573 							ssa_blkaddr) {
2574 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2575 			  nat_blkaddr, ssa_blkaddr,
2576 			  segment_count_nat << log_blocks_per_seg);
2577 		return true;
2578 	}
2579 
2580 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2581 							main_blkaddr) {
2582 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2583 			  ssa_blkaddr, main_blkaddr,
2584 			  segment_count_ssa << log_blocks_per_seg);
2585 		return true;
2586 	}
2587 
2588 	if (main_end_blkaddr > seg_end_blkaddr) {
2589 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2590 			  main_blkaddr,
2591 			  segment0_blkaddr +
2592 			  (segment_count << log_blocks_per_seg),
2593 			  segment_count_main << log_blocks_per_seg);
2594 		return true;
2595 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2596 		int err = 0;
2597 		char *res;
2598 
2599 		/* fix in-memory information all the time */
2600 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2601 				segment0_blkaddr) >> log_blocks_per_seg);
2602 
2603 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2604 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2605 			res = "internally";
2606 		} else {
2607 			err = __f2fs_commit_super(bh, NULL);
2608 			res = err ? "failed" : "done";
2609 		}
2610 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2611 			  res, main_blkaddr,
2612 			  segment0_blkaddr +
2613 			  (segment_count << log_blocks_per_seg),
2614 			  segment_count_main << log_blocks_per_seg);
2615 		if (err)
2616 			return true;
2617 	}
2618 	return false;
2619 }
2620 
2621 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2622 				struct buffer_head *bh)
2623 {
2624 	block_t segment_count, segs_per_sec, secs_per_zone;
2625 	block_t total_sections, blocks_per_seg;
2626 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2627 					(bh->b_data + F2FS_SUPER_OFFSET);
2628 	unsigned int blocksize;
2629 	size_t crc_offset = 0;
2630 	__u32 crc = 0;
2631 
2632 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2633 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2634 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2635 		return -EINVAL;
2636 	}
2637 
2638 	/* Check checksum_offset and crc in superblock */
2639 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2640 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2641 		if (crc_offset !=
2642 			offsetof(struct f2fs_super_block, crc)) {
2643 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2644 				  crc_offset);
2645 			return -EFSCORRUPTED;
2646 		}
2647 		crc = le32_to_cpu(raw_super->crc);
2648 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2649 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2650 			return -EFSCORRUPTED;
2651 		}
2652 	}
2653 
2654 	/* Currently, support only 4KB page cache size */
2655 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2656 		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2657 			  PAGE_SIZE);
2658 		return -EFSCORRUPTED;
2659 	}
2660 
2661 	/* Currently, support only 4KB block size */
2662 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2663 	if (blocksize != F2FS_BLKSIZE) {
2664 		f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2665 			  blocksize);
2666 		return -EFSCORRUPTED;
2667 	}
2668 
2669 	/* check log blocks per segment */
2670 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2671 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2672 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2673 		return -EFSCORRUPTED;
2674 	}
2675 
2676 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2677 	if (le32_to_cpu(raw_super->log_sectorsize) >
2678 				F2FS_MAX_LOG_SECTOR_SIZE ||
2679 		le32_to_cpu(raw_super->log_sectorsize) <
2680 				F2FS_MIN_LOG_SECTOR_SIZE) {
2681 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2682 			  le32_to_cpu(raw_super->log_sectorsize));
2683 		return -EFSCORRUPTED;
2684 	}
2685 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2686 		le32_to_cpu(raw_super->log_sectorsize) !=
2687 			F2FS_MAX_LOG_SECTOR_SIZE) {
2688 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2689 			  le32_to_cpu(raw_super->log_sectors_per_block),
2690 			  le32_to_cpu(raw_super->log_sectorsize));
2691 		return -EFSCORRUPTED;
2692 	}
2693 
2694 	segment_count = le32_to_cpu(raw_super->segment_count);
2695 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2696 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2697 	total_sections = le32_to_cpu(raw_super->section_count);
2698 
2699 	/* blocks_per_seg should be 512, given the above check */
2700 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2701 
2702 	if (segment_count > F2FS_MAX_SEGMENT ||
2703 				segment_count < F2FS_MIN_SEGMENTS) {
2704 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2705 		return -EFSCORRUPTED;
2706 	}
2707 
2708 	if (total_sections > segment_count ||
2709 			total_sections < F2FS_MIN_SEGMENTS ||
2710 			segs_per_sec > segment_count || !segs_per_sec) {
2711 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2712 			  segment_count, total_sections, segs_per_sec);
2713 		return -EFSCORRUPTED;
2714 	}
2715 
2716 	if ((segment_count / segs_per_sec) < total_sections) {
2717 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2718 			  segment_count, segs_per_sec, total_sections);
2719 		return -EFSCORRUPTED;
2720 	}
2721 
2722 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2723 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2724 			  segment_count, le64_to_cpu(raw_super->block_count));
2725 		return -EFSCORRUPTED;
2726 	}
2727 
2728 	if (RDEV(0).path[0]) {
2729 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2730 		int i = 1;
2731 
2732 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
2733 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2734 			i++;
2735 		}
2736 		if (segment_count != dev_seg_count) {
2737 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2738 					segment_count, dev_seg_count);
2739 			return -EFSCORRUPTED;
2740 		}
2741 	}
2742 
2743 	if (secs_per_zone > total_sections || !secs_per_zone) {
2744 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2745 			  secs_per_zone, total_sections);
2746 		return -EFSCORRUPTED;
2747 	}
2748 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2749 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2750 			(le32_to_cpu(raw_super->extension_count) +
2751 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2752 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2753 			  le32_to_cpu(raw_super->extension_count),
2754 			  raw_super->hot_ext_count,
2755 			  F2FS_MAX_EXTENSION);
2756 		return -EFSCORRUPTED;
2757 	}
2758 
2759 	if (le32_to_cpu(raw_super->cp_payload) >
2760 				(blocks_per_seg - F2FS_CP_PACKS)) {
2761 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2762 			  le32_to_cpu(raw_super->cp_payload),
2763 			  blocks_per_seg - F2FS_CP_PACKS);
2764 		return -EFSCORRUPTED;
2765 	}
2766 
2767 	/* check reserved ino info */
2768 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2769 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2770 		le32_to_cpu(raw_super->root_ino) != 3) {
2771 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2772 			  le32_to_cpu(raw_super->node_ino),
2773 			  le32_to_cpu(raw_super->meta_ino),
2774 			  le32_to_cpu(raw_super->root_ino));
2775 		return -EFSCORRUPTED;
2776 	}
2777 
2778 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2779 	if (sanity_check_area_boundary(sbi, bh))
2780 		return -EFSCORRUPTED;
2781 
2782 	return 0;
2783 }
2784 
2785 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2786 {
2787 	unsigned int total, fsmeta;
2788 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2789 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2790 	unsigned int ovp_segments, reserved_segments;
2791 	unsigned int main_segs, blocks_per_seg;
2792 	unsigned int sit_segs, nat_segs;
2793 	unsigned int sit_bitmap_size, nat_bitmap_size;
2794 	unsigned int log_blocks_per_seg;
2795 	unsigned int segment_count_main;
2796 	unsigned int cp_pack_start_sum, cp_payload;
2797 	block_t user_block_count, valid_user_blocks;
2798 	block_t avail_node_count, valid_node_count;
2799 	int i, j;
2800 
2801 	total = le32_to_cpu(raw_super->segment_count);
2802 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2803 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2804 	fsmeta += sit_segs;
2805 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2806 	fsmeta += nat_segs;
2807 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2808 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2809 
2810 	if (unlikely(fsmeta >= total))
2811 		return 1;
2812 
2813 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2814 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2815 
2816 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2817 			ovp_segments == 0 || reserved_segments == 0)) {
2818 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2819 		return 1;
2820 	}
2821 
2822 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2823 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2824 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2825 	if (!user_block_count || user_block_count >=
2826 			segment_count_main << log_blocks_per_seg) {
2827 		f2fs_err(sbi, "Wrong user_block_count: %u",
2828 			 user_block_count);
2829 		return 1;
2830 	}
2831 
2832 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2833 	if (valid_user_blocks > user_block_count) {
2834 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2835 			 valid_user_blocks, user_block_count);
2836 		return 1;
2837 	}
2838 
2839 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2840 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2841 	if (valid_node_count > avail_node_count) {
2842 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2843 			 valid_node_count, avail_node_count);
2844 		return 1;
2845 	}
2846 
2847 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2848 	blocks_per_seg = sbi->blocks_per_seg;
2849 
2850 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2851 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2852 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2853 			return 1;
2854 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2855 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2856 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2857 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2858 					 i, j,
2859 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2860 				return 1;
2861 			}
2862 		}
2863 	}
2864 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2865 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2866 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2867 			return 1;
2868 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2869 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2870 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2871 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2872 					 i, j,
2873 					 le32_to_cpu(ckpt->cur_data_segno[i]));
2874 				return 1;
2875 			}
2876 		}
2877 	}
2878 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2879 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2880 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2881 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2882 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
2883 					 i, j,
2884 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2885 				return 1;
2886 			}
2887 		}
2888 	}
2889 
2890 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2891 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2892 
2893 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2894 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2895 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2896 			 sit_bitmap_size, nat_bitmap_size);
2897 		return 1;
2898 	}
2899 
2900 	cp_pack_start_sum = __start_sum_addr(sbi);
2901 	cp_payload = __cp_payload(sbi);
2902 	if (cp_pack_start_sum < cp_payload + 1 ||
2903 		cp_pack_start_sum > blocks_per_seg - 1 -
2904 			NR_CURSEG_TYPE) {
2905 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
2906 			 cp_pack_start_sum);
2907 		return 1;
2908 	}
2909 
2910 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
2911 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
2912 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
2913 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
2914 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
2915 			  le32_to_cpu(ckpt->checksum_offset));
2916 		return 1;
2917 	}
2918 
2919 	if (unlikely(f2fs_cp_error(sbi))) {
2920 		f2fs_err(sbi, "A bug case: need to run fsck");
2921 		return 1;
2922 	}
2923 	return 0;
2924 }
2925 
2926 static void init_sb_info(struct f2fs_sb_info *sbi)
2927 {
2928 	struct f2fs_super_block *raw_super = sbi->raw_super;
2929 	int i;
2930 
2931 	sbi->log_sectors_per_block =
2932 		le32_to_cpu(raw_super->log_sectors_per_block);
2933 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2934 	sbi->blocksize = 1 << sbi->log_blocksize;
2935 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2936 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2937 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2938 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2939 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2940 	sbi->total_node_count =
2941 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2942 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2943 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2944 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2945 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2946 	sbi->cur_victim_sec = NULL_SECNO;
2947 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2948 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2949 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2950 	sbi->migration_granularity = sbi->segs_per_sec;
2951 
2952 	sbi->dir_level = DEF_DIR_LEVEL;
2953 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2954 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2955 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2956 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2957 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2958 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2959 				DEF_UMOUNT_DISCARD_TIMEOUT;
2960 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2961 
2962 	for (i = 0; i < NR_COUNT_TYPE; i++)
2963 		atomic_set(&sbi->nr_pages[i], 0);
2964 
2965 	for (i = 0; i < META; i++)
2966 		atomic_set(&sbi->wb_sync_req[i], 0);
2967 
2968 	INIT_LIST_HEAD(&sbi->s_list);
2969 	mutex_init(&sbi->umount_mutex);
2970 	init_rwsem(&sbi->io_order_lock);
2971 	spin_lock_init(&sbi->cp_lock);
2972 
2973 	sbi->dirty_device = 0;
2974 	spin_lock_init(&sbi->dev_lock);
2975 
2976 	init_rwsem(&sbi->sb_lock);
2977 	init_rwsem(&sbi->pin_sem);
2978 }
2979 
2980 static int init_percpu_info(struct f2fs_sb_info *sbi)
2981 {
2982 	int err;
2983 
2984 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2985 	if (err)
2986 		return err;
2987 
2988 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2989 								GFP_KERNEL);
2990 	if (err)
2991 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
2992 
2993 	return err;
2994 }
2995 
2996 #ifdef CONFIG_BLK_DEV_ZONED
2997 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
2998 			       void *data)
2999 {
3000 	struct f2fs_dev_info *dev = data;
3001 
3002 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
3003 		set_bit(idx, dev->blkz_seq);
3004 	return 0;
3005 }
3006 
3007 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3008 {
3009 	struct block_device *bdev = FDEV(devi).bdev;
3010 	sector_t nr_sectors = bdev->bd_part->nr_sects;
3011 	int ret;
3012 
3013 	if (!f2fs_sb_has_blkzoned(sbi))
3014 		return 0;
3015 
3016 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3017 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3018 		return -EINVAL;
3019 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3020 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3021 				__ilog2_u32(sbi->blocks_per_blkz))
3022 		return -EINVAL;
3023 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3024 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3025 					sbi->log_blocks_per_blkz;
3026 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3027 		FDEV(devi).nr_blkz++;
3028 
3029 	FDEV(devi).blkz_seq = f2fs_kzalloc(sbi,
3030 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3031 					* sizeof(unsigned long),
3032 					GFP_KERNEL);
3033 	if (!FDEV(devi).blkz_seq)
3034 		return -ENOMEM;
3035 
3036 	/* Get block zones type */
3037 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3038 				  &FDEV(devi));
3039 	if (ret < 0)
3040 		return ret;
3041 
3042 	return 0;
3043 }
3044 #endif
3045 
3046 /*
3047  * Read f2fs raw super block.
3048  * Because we have two copies of super block, so read both of them
3049  * to get the first valid one. If any one of them is broken, we pass
3050  * them recovery flag back to the caller.
3051  */
3052 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3053 			struct f2fs_super_block **raw_super,
3054 			int *valid_super_block, int *recovery)
3055 {
3056 	struct super_block *sb = sbi->sb;
3057 	int block;
3058 	struct buffer_head *bh;
3059 	struct f2fs_super_block *super;
3060 	int err = 0;
3061 
3062 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3063 	if (!super)
3064 		return -ENOMEM;
3065 
3066 	for (block = 0; block < 2; block++) {
3067 		bh = sb_bread(sb, block);
3068 		if (!bh) {
3069 			f2fs_err(sbi, "Unable to read %dth superblock",
3070 				 block + 1);
3071 			err = -EIO;
3072 			*recovery = 1;
3073 			continue;
3074 		}
3075 
3076 		/* sanity checking of raw super */
3077 		err = sanity_check_raw_super(sbi, bh);
3078 		if (err) {
3079 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3080 				 block + 1);
3081 			brelse(bh);
3082 			*recovery = 1;
3083 			continue;
3084 		}
3085 
3086 		if (!*raw_super) {
3087 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3088 							sizeof(*super));
3089 			*valid_super_block = block;
3090 			*raw_super = super;
3091 		}
3092 		brelse(bh);
3093 	}
3094 
3095 	/* No valid superblock */
3096 	if (!*raw_super)
3097 		kvfree(super);
3098 	else
3099 		err = 0;
3100 
3101 	return err;
3102 }
3103 
3104 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3105 {
3106 	struct buffer_head *bh;
3107 	__u32 crc = 0;
3108 	int err;
3109 
3110 	if ((recover && f2fs_readonly(sbi->sb)) ||
3111 				bdev_read_only(sbi->sb->s_bdev)) {
3112 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3113 		return -EROFS;
3114 	}
3115 
3116 	/* we should update superblock crc here */
3117 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3118 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3119 				offsetof(struct f2fs_super_block, crc));
3120 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3121 	}
3122 
3123 	/* write back-up superblock first */
3124 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3125 	if (!bh)
3126 		return -EIO;
3127 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3128 	brelse(bh);
3129 
3130 	/* if we are in recovery path, skip writing valid superblock */
3131 	if (recover || err)
3132 		return err;
3133 
3134 	/* write current valid superblock */
3135 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3136 	if (!bh)
3137 		return -EIO;
3138 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3139 	brelse(bh);
3140 	return err;
3141 }
3142 
3143 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3144 {
3145 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3146 	unsigned int max_devices = MAX_DEVICES;
3147 	int i;
3148 
3149 	/* Initialize single device information */
3150 	if (!RDEV(0).path[0]) {
3151 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3152 			return 0;
3153 		max_devices = 1;
3154 	}
3155 
3156 	/*
3157 	 * Initialize multiple devices information, or single
3158 	 * zoned block device information.
3159 	 */
3160 	sbi->devs = f2fs_kzalloc(sbi,
3161 				 array_size(max_devices,
3162 					    sizeof(struct f2fs_dev_info)),
3163 				 GFP_KERNEL);
3164 	if (!sbi->devs)
3165 		return -ENOMEM;
3166 
3167 	for (i = 0; i < max_devices; i++) {
3168 
3169 		if (i > 0 && !RDEV(i).path[0])
3170 			break;
3171 
3172 		if (max_devices == 1) {
3173 			/* Single zoned block device mount */
3174 			FDEV(0).bdev =
3175 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3176 					sbi->sb->s_mode, sbi->sb->s_type);
3177 		} else {
3178 			/* Multi-device mount */
3179 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3180 			FDEV(i).total_segments =
3181 				le32_to_cpu(RDEV(i).total_segments);
3182 			if (i == 0) {
3183 				FDEV(i).start_blk = 0;
3184 				FDEV(i).end_blk = FDEV(i).start_blk +
3185 				    (FDEV(i).total_segments <<
3186 				    sbi->log_blocks_per_seg) - 1 +
3187 				    le32_to_cpu(raw_super->segment0_blkaddr);
3188 			} else {
3189 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3190 				FDEV(i).end_blk = FDEV(i).start_blk +
3191 					(FDEV(i).total_segments <<
3192 					sbi->log_blocks_per_seg) - 1;
3193 			}
3194 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3195 					sbi->sb->s_mode, sbi->sb->s_type);
3196 		}
3197 		if (IS_ERR(FDEV(i).bdev))
3198 			return PTR_ERR(FDEV(i).bdev);
3199 
3200 		/* to release errored devices */
3201 		sbi->s_ndevs = i + 1;
3202 
3203 #ifdef CONFIG_BLK_DEV_ZONED
3204 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3205 				!f2fs_sb_has_blkzoned(sbi)) {
3206 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3207 			return -EINVAL;
3208 		}
3209 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3210 			if (init_blkz_info(sbi, i)) {
3211 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3212 				return -EINVAL;
3213 			}
3214 			if (max_devices == 1)
3215 				break;
3216 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3217 				  i, FDEV(i).path,
3218 				  FDEV(i).total_segments,
3219 				  FDEV(i).start_blk, FDEV(i).end_blk,
3220 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3221 				  "Host-aware" : "Host-managed");
3222 			continue;
3223 		}
3224 #endif
3225 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3226 			  i, FDEV(i).path,
3227 			  FDEV(i).total_segments,
3228 			  FDEV(i).start_blk, FDEV(i).end_blk);
3229 	}
3230 	f2fs_info(sbi,
3231 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3232 	return 0;
3233 }
3234 
3235 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3236 {
3237 #ifdef CONFIG_UNICODE
3238 	if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) {
3239 		const struct f2fs_sb_encodings *encoding_info;
3240 		struct unicode_map *encoding;
3241 		__u16 encoding_flags;
3242 
3243 		if (f2fs_sb_has_encrypt(sbi)) {
3244 			f2fs_err(sbi,
3245 				"Can't mount with encoding and encryption");
3246 			return -EINVAL;
3247 		}
3248 
3249 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3250 					  &encoding_flags)) {
3251 			f2fs_err(sbi,
3252 				 "Encoding requested by superblock is unknown");
3253 			return -EINVAL;
3254 		}
3255 
3256 		encoding = utf8_load(encoding_info->version);
3257 		if (IS_ERR(encoding)) {
3258 			f2fs_err(sbi,
3259 				 "can't mount with superblock charset: %s-%s "
3260 				 "not supported by the kernel. flags: 0x%x.",
3261 				 encoding_info->name, encoding_info->version,
3262 				 encoding_flags);
3263 			return PTR_ERR(encoding);
3264 		}
3265 		f2fs_info(sbi, "Using encoding defined by superblock: "
3266 			 "%s-%s with flags 0x%hx", encoding_info->name,
3267 			 encoding_info->version?:"\b", encoding_flags);
3268 
3269 		sbi->s_encoding = encoding;
3270 		sbi->s_encoding_flags = encoding_flags;
3271 		sbi->sb->s_d_op = &f2fs_dentry_ops;
3272 	}
3273 #else
3274 	if (f2fs_sb_has_casefold(sbi)) {
3275 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3276 		return -EINVAL;
3277 	}
3278 #endif
3279 	return 0;
3280 }
3281 
3282 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3283 {
3284 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3285 
3286 	/* adjust parameters according to the volume size */
3287 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3288 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3289 		sm_i->dcc_info->discard_granularity = 1;
3290 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3291 	}
3292 
3293 	sbi->readdir_ra = 1;
3294 }
3295 
3296 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3297 {
3298 	struct f2fs_sb_info *sbi;
3299 	struct f2fs_super_block *raw_super;
3300 	struct inode *root;
3301 	int err;
3302 	bool skip_recovery = false, need_fsck = false;
3303 	char *options = NULL;
3304 	int recovery, i, valid_super_block;
3305 	struct curseg_info *seg_i;
3306 	int retry_cnt = 1;
3307 
3308 try_onemore:
3309 	err = -EINVAL;
3310 	raw_super = NULL;
3311 	valid_super_block = -1;
3312 	recovery = 0;
3313 
3314 	/* allocate memory for f2fs-specific super block info */
3315 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3316 	if (!sbi)
3317 		return -ENOMEM;
3318 
3319 	sbi->sb = sb;
3320 
3321 	/* Load the checksum driver */
3322 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3323 	if (IS_ERR(sbi->s_chksum_driver)) {
3324 		f2fs_err(sbi, "Cannot load crc32 driver.");
3325 		err = PTR_ERR(sbi->s_chksum_driver);
3326 		sbi->s_chksum_driver = NULL;
3327 		goto free_sbi;
3328 	}
3329 
3330 	/* set a block size */
3331 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3332 		f2fs_err(sbi, "unable to set blocksize");
3333 		goto free_sbi;
3334 	}
3335 
3336 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3337 								&recovery);
3338 	if (err)
3339 		goto free_sbi;
3340 
3341 	sb->s_fs_info = sbi;
3342 	sbi->raw_super = raw_super;
3343 
3344 	/* precompute checksum seed for metadata */
3345 	if (f2fs_sb_has_inode_chksum(sbi))
3346 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3347 						sizeof(raw_super->uuid));
3348 
3349 	/*
3350 	 * The BLKZONED feature indicates that the drive was formatted with
3351 	 * zone alignment optimization. This is optional for host-aware
3352 	 * devices, but mandatory for host-managed zoned block devices.
3353 	 */
3354 #ifndef CONFIG_BLK_DEV_ZONED
3355 	if (f2fs_sb_has_blkzoned(sbi)) {
3356 		f2fs_err(sbi, "Zoned block device support is not enabled");
3357 		err = -EOPNOTSUPP;
3358 		goto free_sb_buf;
3359 	}
3360 #endif
3361 	default_options(sbi);
3362 	/* parse mount options */
3363 	options = kstrdup((const char *)data, GFP_KERNEL);
3364 	if (data && !options) {
3365 		err = -ENOMEM;
3366 		goto free_sb_buf;
3367 	}
3368 
3369 	err = parse_options(sb, options);
3370 	if (err)
3371 		goto free_options;
3372 
3373 	sbi->max_file_blocks = max_file_blocks();
3374 	sb->s_maxbytes = sbi->max_file_blocks <<
3375 				le32_to_cpu(raw_super->log_blocksize);
3376 	sb->s_max_links = F2FS_LINK_MAX;
3377 
3378 	err = f2fs_setup_casefold(sbi);
3379 	if (err)
3380 		goto free_options;
3381 
3382 #ifdef CONFIG_QUOTA
3383 	sb->dq_op = &f2fs_quota_operations;
3384 	sb->s_qcop = &f2fs_quotactl_ops;
3385 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3386 
3387 	if (f2fs_sb_has_quota_ino(sbi)) {
3388 		for (i = 0; i < MAXQUOTAS; i++) {
3389 			if (f2fs_qf_ino(sbi->sb, i))
3390 				sbi->nquota_files++;
3391 		}
3392 	}
3393 #endif
3394 
3395 	sb->s_op = &f2fs_sops;
3396 #ifdef CONFIG_FS_ENCRYPTION
3397 	sb->s_cop = &f2fs_cryptops;
3398 #endif
3399 #ifdef CONFIG_FS_VERITY
3400 	sb->s_vop = &f2fs_verityops;
3401 #endif
3402 	sb->s_xattr = f2fs_xattr_handlers;
3403 	sb->s_export_op = &f2fs_export_ops;
3404 	sb->s_magic = F2FS_SUPER_MAGIC;
3405 	sb->s_time_gran = 1;
3406 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3407 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3408 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3409 	sb->s_iflags |= SB_I_CGROUPWB;
3410 
3411 	/* init f2fs-specific super block info */
3412 	sbi->valid_super_block = valid_super_block;
3413 	init_rwsem(&sbi->gc_lock);
3414 	mutex_init(&sbi->writepages);
3415 	mutex_init(&sbi->cp_mutex);
3416 	mutex_init(&sbi->resize_mutex);
3417 	init_rwsem(&sbi->node_write);
3418 	init_rwsem(&sbi->node_change);
3419 
3420 	/* disallow all the data/node/meta page writes */
3421 	set_sbi_flag(sbi, SBI_POR_DOING);
3422 	spin_lock_init(&sbi->stat_lock);
3423 
3424 	/* init iostat info */
3425 	spin_lock_init(&sbi->iostat_lock);
3426 	sbi->iostat_enable = false;
3427 
3428 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3429 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3430 		int j;
3431 
3432 		sbi->write_io[i] =
3433 			f2fs_kmalloc(sbi,
3434 				     array_size(n,
3435 						sizeof(struct f2fs_bio_info)),
3436 				     GFP_KERNEL);
3437 		if (!sbi->write_io[i]) {
3438 			err = -ENOMEM;
3439 			goto free_bio_info;
3440 		}
3441 
3442 		for (j = HOT; j < n; j++) {
3443 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3444 			sbi->write_io[i][j].sbi = sbi;
3445 			sbi->write_io[i][j].bio = NULL;
3446 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3447 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3448 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3449 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3450 		}
3451 	}
3452 
3453 	init_rwsem(&sbi->cp_rwsem);
3454 	init_rwsem(&sbi->quota_sem);
3455 	init_waitqueue_head(&sbi->cp_wait);
3456 	init_sb_info(sbi);
3457 
3458 	err = init_percpu_info(sbi);
3459 	if (err)
3460 		goto free_bio_info;
3461 
3462 	if (F2FS_IO_ALIGNED(sbi)) {
3463 		sbi->write_io_dummy =
3464 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3465 		if (!sbi->write_io_dummy) {
3466 			err = -ENOMEM;
3467 			goto free_percpu;
3468 		}
3469 	}
3470 
3471 	/* init per sbi slab cache */
3472 	err = f2fs_init_xattr_caches(sbi);
3473 	if (err)
3474 		goto free_io_dummy;
3475 
3476 	/* get an inode for meta space */
3477 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3478 	if (IS_ERR(sbi->meta_inode)) {
3479 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3480 		err = PTR_ERR(sbi->meta_inode);
3481 		goto free_xattr_cache;
3482 	}
3483 
3484 	err = f2fs_get_valid_checkpoint(sbi);
3485 	if (err) {
3486 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3487 		goto free_meta_inode;
3488 	}
3489 
3490 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3491 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3492 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3493 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3494 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3495 	}
3496 
3497 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3498 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3499 
3500 	/* Initialize device list */
3501 	err = f2fs_scan_devices(sbi);
3502 	if (err) {
3503 		f2fs_err(sbi, "Failed to find devices");
3504 		goto free_devices;
3505 	}
3506 
3507 	err = f2fs_init_post_read_wq(sbi);
3508 	if (err) {
3509 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3510 		goto free_devices;
3511 	}
3512 
3513 	sbi->total_valid_node_count =
3514 				le32_to_cpu(sbi->ckpt->valid_node_count);
3515 	percpu_counter_set(&sbi->total_valid_inode_count,
3516 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3517 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3518 	sbi->total_valid_block_count =
3519 				le64_to_cpu(sbi->ckpt->valid_block_count);
3520 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3521 	sbi->reserved_blocks = 0;
3522 	sbi->current_reserved_blocks = 0;
3523 	limit_reserve_root(sbi);
3524 
3525 	for (i = 0; i < NR_INODE_TYPE; i++) {
3526 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3527 		spin_lock_init(&sbi->inode_lock[i]);
3528 	}
3529 	mutex_init(&sbi->flush_lock);
3530 
3531 	f2fs_init_extent_cache_info(sbi);
3532 
3533 	f2fs_init_ino_entry_info(sbi);
3534 
3535 	f2fs_init_fsync_node_info(sbi);
3536 
3537 	/* setup f2fs internal modules */
3538 	err = f2fs_build_segment_manager(sbi);
3539 	if (err) {
3540 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3541 			 err);
3542 		goto free_sm;
3543 	}
3544 	err = f2fs_build_node_manager(sbi);
3545 	if (err) {
3546 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3547 			 err);
3548 		goto free_nm;
3549 	}
3550 
3551 	/* For write statistics */
3552 	if (sb->s_bdev->bd_part)
3553 		sbi->sectors_written_start =
3554 			(u64)part_stat_read(sb->s_bdev->bd_part,
3555 					    sectors[STAT_WRITE]);
3556 
3557 	/* Read accumulated write IO statistics if exists */
3558 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3559 	if (__exist_node_summaries(sbi))
3560 		sbi->kbytes_written =
3561 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3562 
3563 	f2fs_build_gc_manager(sbi);
3564 
3565 	err = f2fs_build_stats(sbi);
3566 	if (err)
3567 		goto free_nm;
3568 
3569 	/* get an inode for node space */
3570 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3571 	if (IS_ERR(sbi->node_inode)) {
3572 		f2fs_err(sbi, "Failed to read node inode");
3573 		err = PTR_ERR(sbi->node_inode);
3574 		goto free_stats;
3575 	}
3576 
3577 	/* read root inode and dentry */
3578 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3579 	if (IS_ERR(root)) {
3580 		f2fs_err(sbi, "Failed to read root inode");
3581 		err = PTR_ERR(root);
3582 		goto free_node_inode;
3583 	}
3584 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3585 			!root->i_size || !root->i_nlink) {
3586 		iput(root);
3587 		err = -EINVAL;
3588 		goto free_node_inode;
3589 	}
3590 
3591 	sb->s_root = d_make_root(root); /* allocate root dentry */
3592 	if (!sb->s_root) {
3593 		err = -ENOMEM;
3594 		goto free_node_inode;
3595 	}
3596 
3597 	err = f2fs_register_sysfs(sbi);
3598 	if (err)
3599 		goto free_root_inode;
3600 
3601 #ifdef CONFIG_QUOTA
3602 	/* Enable quota usage during mount */
3603 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3604 		err = f2fs_enable_quotas(sb);
3605 		if (err)
3606 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3607 	}
3608 #endif
3609 	/* if there are any orphan inodes, free them */
3610 	err = f2fs_recover_orphan_inodes(sbi);
3611 	if (err)
3612 		goto free_meta;
3613 
3614 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3615 		goto reset_checkpoint;
3616 
3617 	/* recover fsynced data */
3618 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3619 			!test_opt(sbi, NORECOVERY)) {
3620 		/*
3621 		 * mount should be failed, when device has readonly mode, and
3622 		 * previous checkpoint was not done by clean system shutdown.
3623 		 */
3624 		if (f2fs_hw_is_readonly(sbi)) {
3625 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3626 				err = -EROFS;
3627 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3628 				goto free_meta;
3629 			}
3630 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3631 			goto reset_checkpoint;
3632 		}
3633 
3634 		if (need_fsck)
3635 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3636 
3637 		if (skip_recovery)
3638 			goto reset_checkpoint;
3639 
3640 		err = f2fs_recover_fsync_data(sbi, false);
3641 		if (err < 0) {
3642 			if (err != -ENOMEM)
3643 				skip_recovery = true;
3644 			need_fsck = true;
3645 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3646 				 err);
3647 			goto free_meta;
3648 		}
3649 	} else {
3650 		err = f2fs_recover_fsync_data(sbi, true);
3651 
3652 		if (!f2fs_readonly(sb) && err > 0) {
3653 			err = -EINVAL;
3654 			f2fs_err(sbi, "Need to recover fsync data");
3655 			goto free_meta;
3656 		}
3657 	}
3658 
3659 	/*
3660 	 * If the f2fs is not readonly and fsync data recovery succeeds,
3661 	 * check zoned block devices' write pointer consistency.
3662 	 */
3663 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3664 		err = f2fs_check_write_pointer(sbi);
3665 		if (err)
3666 			goto free_meta;
3667 	}
3668 
3669 reset_checkpoint:
3670 	/* f2fs_recover_fsync_data() cleared this already */
3671 	clear_sbi_flag(sbi, SBI_POR_DOING);
3672 
3673 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3674 		err = f2fs_disable_checkpoint(sbi);
3675 		if (err)
3676 			goto sync_free_meta;
3677 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3678 		f2fs_enable_checkpoint(sbi);
3679 	}
3680 
3681 	/*
3682 	 * If filesystem is not mounted as read-only then
3683 	 * do start the gc_thread.
3684 	 */
3685 	if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3686 		/* After POR, we can run background GC thread.*/
3687 		err = f2fs_start_gc_thread(sbi);
3688 		if (err)
3689 			goto sync_free_meta;
3690 	}
3691 	kvfree(options);
3692 
3693 	/* recover broken superblock */
3694 	if (recovery) {
3695 		err = f2fs_commit_super(sbi, true);
3696 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3697 			  sbi->valid_super_block ? 1 : 2, err);
3698 	}
3699 
3700 	f2fs_join_shrinker(sbi);
3701 
3702 	f2fs_tuning_parameters(sbi);
3703 
3704 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3705 		    cur_cp_version(F2FS_CKPT(sbi)));
3706 	f2fs_update_time(sbi, CP_TIME);
3707 	f2fs_update_time(sbi, REQ_TIME);
3708 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3709 	return 0;
3710 
3711 sync_free_meta:
3712 	/* safe to flush all the data */
3713 	sync_filesystem(sbi->sb);
3714 	retry_cnt = 0;
3715 
3716 free_meta:
3717 #ifdef CONFIG_QUOTA
3718 	f2fs_truncate_quota_inode_pages(sb);
3719 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3720 		f2fs_quota_off_umount(sbi->sb);
3721 #endif
3722 	/*
3723 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3724 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3725 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3726 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3727 	 */
3728 	truncate_inode_pages_final(META_MAPPING(sbi));
3729 	/* evict some inodes being cached by GC */
3730 	evict_inodes(sb);
3731 	f2fs_unregister_sysfs(sbi);
3732 free_root_inode:
3733 	dput(sb->s_root);
3734 	sb->s_root = NULL;
3735 free_node_inode:
3736 	f2fs_release_ino_entry(sbi, true);
3737 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3738 	iput(sbi->node_inode);
3739 	sbi->node_inode = NULL;
3740 free_stats:
3741 	f2fs_destroy_stats(sbi);
3742 free_nm:
3743 	f2fs_destroy_node_manager(sbi);
3744 free_sm:
3745 	f2fs_destroy_segment_manager(sbi);
3746 	f2fs_destroy_post_read_wq(sbi);
3747 free_devices:
3748 	destroy_device_list(sbi);
3749 	kvfree(sbi->ckpt);
3750 free_meta_inode:
3751 	make_bad_inode(sbi->meta_inode);
3752 	iput(sbi->meta_inode);
3753 	sbi->meta_inode = NULL;
3754 free_xattr_cache:
3755 	f2fs_destroy_xattr_caches(sbi);
3756 free_io_dummy:
3757 	mempool_destroy(sbi->write_io_dummy);
3758 free_percpu:
3759 	destroy_percpu_info(sbi);
3760 free_bio_info:
3761 	for (i = 0; i < NR_PAGE_TYPE; i++)
3762 		kvfree(sbi->write_io[i]);
3763 
3764 #ifdef CONFIG_UNICODE
3765 	utf8_unload(sbi->s_encoding);
3766 #endif
3767 free_options:
3768 #ifdef CONFIG_QUOTA
3769 	for (i = 0; i < MAXQUOTAS; i++)
3770 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3771 #endif
3772 	kvfree(options);
3773 free_sb_buf:
3774 	kvfree(raw_super);
3775 free_sbi:
3776 	if (sbi->s_chksum_driver)
3777 		crypto_free_shash(sbi->s_chksum_driver);
3778 	kvfree(sbi);
3779 
3780 	/* give only one another chance */
3781 	if (retry_cnt > 0 && skip_recovery) {
3782 		retry_cnt--;
3783 		shrink_dcache_sb(sb);
3784 		goto try_onemore;
3785 	}
3786 	return err;
3787 }
3788 
3789 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3790 			const char *dev_name, void *data)
3791 {
3792 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3793 }
3794 
3795 static void kill_f2fs_super(struct super_block *sb)
3796 {
3797 	if (sb->s_root) {
3798 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3799 
3800 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3801 		f2fs_stop_gc_thread(sbi);
3802 		f2fs_stop_discard_thread(sbi);
3803 
3804 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3805 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3806 			struct cp_control cpc = {
3807 				.reason = CP_UMOUNT,
3808 			};
3809 			f2fs_write_checkpoint(sbi, &cpc);
3810 		}
3811 
3812 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3813 			sb->s_flags &= ~SB_RDONLY;
3814 	}
3815 	kill_block_super(sb);
3816 }
3817 
3818 static struct file_system_type f2fs_fs_type = {
3819 	.owner		= THIS_MODULE,
3820 	.name		= "f2fs",
3821 	.mount		= f2fs_mount,
3822 	.kill_sb	= kill_f2fs_super,
3823 	.fs_flags	= FS_REQUIRES_DEV,
3824 };
3825 MODULE_ALIAS_FS("f2fs");
3826 
3827 static int __init init_inodecache(void)
3828 {
3829 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3830 			sizeof(struct f2fs_inode_info), 0,
3831 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3832 	if (!f2fs_inode_cachep)
3833 		return -ENOMEM;
3834 	return 0;
3835 }
3836 
3837 static void destroy_inodecache(void)
3838 {
3839 	/*
3840 	 * Make sure all delayed rcu free inodes are flushed before we
3841 	 * destroy cache.
3842 	 */
3843 	rcu_barrier();
3844 	kmem_cache_destroy(f2fs_inode_cachep);
3845 }
3846 
3847 static int __init init_f2fs_fs(void)
3848 {
3849 	int err;
3850 
3851 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3852 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3853 				PAGE_SIZE, F2FS_BLKSIZE);
3854 		return -EINVAL;
3855 	}
3856 
3857 	f2fs_build_trace_ios();
3858 
3859 	err = init_inodecache();
3860 	if (err)
3861 		goto fail;
3862 	err = f2fs_create_node_manager_caches();
3863 	if (err)
3864 		goto free_inodecache;
3865 	err = f2fs_create_segment_manager_caches();
3866 	if (err)
3867 		goto free_node_manager_caches;
3868 	err = f2fs_create_checkpoint_caches();
3869 	if (err)
3870 		goto free_segment_manager_caches;
3871 	err = f2fs_create_extent_cache();
3872 	if (err)
3873 		goto free_checkpoint_caches;
3874 	err = f2fs_init_sysfs();
3875 	if (err)
3876 		goto free_extent_cache;
3877 	err = register_shrinker(&f2fs_shrinker_info);
3878 	if (err)
3879 		goto free_sysfs;
3880 	err = register_filesystem(&f2fs_fs_type);
3881 	if (err)
3882 		goto free_shrinker;
3883 	f2fs_create_root_stats();
3884 	err = f2fs_init_post_read_processing();
3885 	if (err)
3886 		goto free_root_stats;
3887 	err = f2fs_init_bio_entry_cache();
3888 	if (err)
3889 		goto free_post_read;
3890 	err = f2fs_init_bioset();
3891 	if (err)
3892 		goto free_bio_enrty_cache;
3893 	return 0;
3894 free_bio_enrty_cache:
3895 	f2fs_destroy_bio_entry_cache();
3896 free_post_read:
3897 	f2fs_destroy_post_read_processing();
3898 free_root_stats:
3899 	f2fs_destroy_root_stats();
3900 	unregister_filesystem(&f2fs_fs_type);
3901 free_shrinker:
3902 	unregister_shrinker(&f2fs_shrinker_info);
3903 free_sysfs:
3904 	f2fs_exit_sysfs();
3905 free_extent_cache:
3906 	f2fs_destroy_extent_cache();
3907 free_checkpoint_caches:
3908 	f2fs_destroy_checkpoint_caches();
3909 free_segment_manager_caches:
3910 	f2fs_destroy_segment_manager_caches();
3911 free_node_manager_caches:
3912 	f2fs_destroy_node_manager_caches();
3913 free_inodecache:
3914 	destroy_inodecache();
3915 fail:
3916 	return err;
3917 }
3918 
3919 static void __exit exit_f2fs_fs(void)
3920 {
3921 	f2fs_destroy_bioset();
3922 	f2fs_destroy_bio_entry_cache();
3923 	f2fs_destroy_post_read_processing();
3924 	f2fs_destroy_root_stats();
3925 	unregister_filesystem(&f2fs_fs_type);
3926 	unregister_shrinker(&f2fs_shrinker_info);
3927 	f2fs_exit_sysfs();
3928 	f2fs_destroy_extent_cache();
3929 	f2fs_destroy_checkpoint_caches();
3930 	f2fs_destroy_segment_manager_caches();
3931 	f2fs_destroy_node_manager_caches();
3932 	destroy_inodecache();
3933 	f2fs_destroy_trace_ios();
3934 }
3935 
3936 module_init(init_f2fs_fs)
3937 module_exit(exit_f2fs_fs)
3938 
3939 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3940 MODULE_DESCRIPTION("Flash Friendly File System");
3941 MODULE_LICENSE("GPL");
3942 
3943