xref: /linux/fs/f2fs/super.c (revision c80e42a4963b3f593d53fb8f565e5bbca61a6531)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38 
39 static struct kmem_cache *f2fs_inode_cachep;
40 
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42 
43 const char *f2fs_fault_name[FAULT_MAX] = {
44 	[FAULT_KMALLOC]		= "kmalloc",
45 	[FAULT_KVMALLOC]	= "kvmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_PAGE_GET]	= "page get",
48 	[FAULT_ALLOC_BIO]	= "alloc bio",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_READ_IO]		= "read IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 	[FAULT_DISCARD]		= "discard error",
58 	[FAULT_WRITE_IO]	= "write IO error",
59 };
60 
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_inlinecrypt,
142 	Opt_checkpoint_disable,
143 	Opt_checkpoint_disable_cap,
144 	Opt_checkpoint_disable_cap_perc,
145 	Opt_checkpoint_enable,
146 	Opt_compress_algorithm,
147 	Opt_compress_log_size,
148 	Opt_compress_extension,
149 	Opt_atgc,
150 	Opt_err,
151 };
152 
153 static match_table_t f2fs_tokens = {
154 	{Opt_gc_background, "background_gc=%s"},
155 	{Opt_disable_roll_forward, "disable_roll_forward"},
156 	{Opt_norecovery, "norecovery"},
157 	{Opt_discard, "discard"},
158 	{Opt_nodiscard, "nodiscard"},
159 	{Opt_noheap, "no_heap"},
160 	{Opt_heap, "heap"},
161 	{Opt_user_xattr, "user_xattr"},
162 	{Opt_nouser_xattr, "nouser_xattr"},
163 	{Opt_acl, "acl"},
164 	{Opt_noacl, "noacl"},
165 	{Opt_active_logs, "active_logs=%u"},
166 	{Opt_disable_ext_identify, "disable_ext_identify"},
167 	{Opt_inline_xattr, "inline_xattr"},
168 	{Opt_noinline_xattr, "noinline_xattr"},
169 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
170 	{Opt_inline_data, "inline_data"},
171 	{Opt_inline_dentry, "inline_dentry"},
172 	{Opt_noinline_dentry, "noinline_dentry"},
173 	{Opt_flush_merge, "flush_merge"},
174 	{Opt_noflush_merge, "noflush_merge"},
175 	{Opt_nobarrier, "nobarrier"},
176 	{Opt_fastboot, "fastboot"},
177 	{Opt_extent_cache, "extent_cache"},
178 	{Opt_noextent_cache, "noextent_cache"},
179 	{Opt_noinline_data, "noinline_data"},
180 	{Opt_data_flush, "data_flush"},
181 	{Opt_reserve_root, "reserve_root=%u"},
182 	{Opt_resgid, "resgid=%u"},
183 	{Opt_resuid, "resuid=%u"},
184 	{Opt_mode, "mode=%s"},
185 	{Opt_io_size_bits, "io_bits=%u"},
186 	{Opt_fault_injection, "fault_injection=%u"},
187 	{Opt_fault_type, "fault_type=%u"},
188 	{Opt_lazytime, "lazytime"},
189 	{Opt_nolazytime, "nolazytime"},
190 	{Opt_quota, "quota"},
191 	{Opt_noquota, "noquota"},
192 	{Opt_usrquota, "usrquota"},
193 	{Opt_grpquota, "grpquota"},
194 	{Opt_prjquota, "prjquota"},
195 	{Opt_usrjquota, "usrjquota=%s"},
196 	{Opt_grpjquota, "grpjquota=%s"},
197 	{Opt_prjjquota, "prjjquota=%s"},
198 	{Opt_offusrjquota, "usrjquota="},
199 	{Opt_offgrpjquota, "grpjquota="},
200 	{Opt_offprjjquota, "prjjquota="},
201 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
202 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
203 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
204 	{Opt_whint, "whint_mode=%s"},
205 	{Opt_alloc, "alloc_mode=%s"},
206 	{Opt_fsync, "fsync_mode=%s"},
207 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
208 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
209 	{Opt_inlinecrypt, "inlinecrypt"},
210 	{Opt_checkpoint_disable, "checkpoint=disable"},
211 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
212 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
213 	{Opt_checkpoint_enable, "checkpoint=enable"},
214 	{Opt_compress_algorithm, "compress_algorithm=%s"},
215 	{Opt_compress_log_size, "compress_log_size=%u"},
216 	{Opt_compress_extension, "compress_extension=%s"},
217 	{Opt_atgc, "atgc"},
218 	{Opt_err, NULL},
219 };
220 
221 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
222 {
223 	struct va_format vaf;
224 	va_list args;
225 	int level;
226 
227 	va_start(args, fmt);
228 
229 	level = printk_get_level(fmt);
230 	vaf.fmt = printk_skip_level(fmt);
231 	vaf.va = &args;
232 	printk("%c%cF2FS-fs (%s): %pV\n",
233 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
234 
235 	va_end(args);
236 }
237 
238 #ifdef CONFIG_UNICODE
239 static const struct f2fs_sb_encodings {
240 	__u16 magic;
241 	char *name;
242 	char *version;
243 } f2fs_sb_encoding_map[] = {
244 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
245 };
246 
247 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
248 				 const struct f2fs_sb_encodings **encoding,
249 				 __u16 *flags)
250 {
251 	__u16 magic = le16_to_cpu(sb->s_encoding);
252 	int i;
253 
254 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
255 		if (magic == f2fs_sb_encoding_map[i].magic)
256 			break;
257 
258 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
259 		return -EINVAL;
260 
261 	*encoding = &f2fs_sb_encoding_map[i];
262 	*flags = le16_to_cpu(sb->s_encoding_flags);
263 
264 	return 0;
265 }
266 #endif
267 
268 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
269 {
270 	block_t limit = min((sbi->user_block_count << 1) / 1000,
271 			sbi->user_block_count - sbi->reserved_blocks);
272 
273 	/* limit is 0.2% */
274 	if (test_opt(sbi, RESERVE_ROOT) &&
275 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
276 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
277 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
278 			  F2FS_OPTION(sbi).root_reserved_blocks);
279 	}
280 	if (!test_opt(sbi, RESERVE_ROOT) &&
281 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
282 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
283 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
284 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
285 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
286 			  from_kuid_munged(&init_user_ns,
287 					   F2FS_OPTION(sbi).s_resuid),
288 			  from_kgid_munged(&init_user_ns,
289 					   F2FS_OPTION(sbi).s_resgid));
290 }
291 
292 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
293 {
294 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
295 		return;
296 
297 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
298 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
299 	else
300 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
301 					F2FS_OPTION(sbi).unusable_cap_perc;
302 
303 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
304 			F2FS_OPTION(sbi).unusable_cap,
305 			F2FS_OPTION(sbi).unusable_cap_perc);
306 }
307 
308 static void init_once(void *foo)
309 {
310 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
311 
312 	inode_init_once(&fi->vfs_inode);
313 }
314 
315 #ifdef CONFIG_QUOTA
316 static const char * const quotatypes[] = INITQFNAMES;
317 #define QTYPE2NAME(t) (quotatypes[t])
318 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
319 							substring_t *args)
320 {
321 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
322 	char *qname;
323 	int ret = -EINVAL;
324 
325 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
326 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
327 		return -EINVAL;
328 	}
329 	if (f2fs_sb_has_quota_ino(sbi)) {
330 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
331 		return 0;
332 	}
333 
334 	qname = match_strdup(args);
335 	if (!qname) {
336 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
337 		return -ENOMEM;
338 	}
339 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
340 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
341 			ret = 0;
342 		else
343 			f2fs_err(sbi, "%s quota file already specified",
344 				 QTYPE2NAME(qtype));
345 		goto errout;
346 	}
347 	if (strchr(qname, '/')) {
348 		f2fs_err(sbi, "quotafile must be on filesystem root");
349 		goto errout;
350 	}
351 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
352 	set_opt(sbi, QUOTA);
353 	return 0;
354 errout:
355 	kfree(qname);
356 	return ret;
357 }
358 
359 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
360 {
361 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
362 
363 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
364 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
365 		return -EINVAL;
366 	}
367 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
368 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
369 	return 0;
370 }
371 
372 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
373 {
374 	/*
375 	 * We do the test below only for project quotas. 'usrquota' and
376 	 * 'grpquota' mount options are allowed even without quota feature
377 	 * to support legacy quotas in quota files.
378 	 */
379 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
380 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
381 		return -1;
382 	}
383 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
384 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
385 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
386 		if (test_opt(sbi, USRQUOTA) &&
387 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
388 			clear_opt(sbi, USRQUOTA);
389 
390 		if (test_opt(sbi, GRPQUOTA) &&
391 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
392 			clear_opt(sbi, GRPQUOTA);
393 
394 		if (test_opt(sbi, PRJQUOTA) &&
395 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
396 			clear_opt(sbi, PRJQUOTA);
397 
398 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
399 				test_opt(sbi, PRJQUOTA)) {
400 			f2fs_err(sbi, "old and new quota format mixing");
401 			return -1;
402 		}
403 
404 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
405 			f2fs_err(sbi, "journaled quota format not specified");
406 			return -1;
407 		}
408 	}
409 
410 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
411 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
412 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
413 	}
414 	return 0;
415 }
416 #endif
417 
418 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
419 					  const char *opt,
420 					  const substring_t *arg,
421 					  bool is_remount)
422 {
423 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
424 #ifdef CONFIG_FS_ENCRYPTION
425 	int err;
426 
427 	if (!f2fs_sb_has_encrypt(sbi)) {
428 		f2fs_err(sbi, "Encrypt feature is off");
429 		return -EINVAL;
430 	}
431 
432 	/*
433 	 * This mount option is just for testing, and it's not worthwhile to
434 	 * implement the extra complexity (e.g. RCU protection) that would be
435 	 * needed to allow it to be set or changed during remount.  We do allow
436 	 * it to be specified during remount, but only if there is no change.
437 	 */
438 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
439 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
440 		return -EINVAL;
441 	}
442 	err = fscrypt_set_test_dummy_encryption(
443 		sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
444 	if (err) {
445 		if (err == -EEXIST)
446 			f2fs_warn(sbi,
447 				  "Can't change test_dummy_encryption on remount");
448 		else if (err == -EINVAL)
449 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
450 				  opt);
451 		else
452 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
453 				  opt, err);
454 		return -EINVAL;
455 	}
456 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
457 #else
458 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
459 #endif
460 	return 0;
461 }
462 
463 static int parse_options(struct super_block *sb, char *options, bool is_remount)
464 {
465 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
466 	substring_t args[MAX_OPT_ARGS];
467 #ifdef CONFIG_F2FS_FS_COMPRESSION
468 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
469 	int ext_cnt;
470 #endif
471 	char *p, *name;
472 	int arg = 0;
473 	kuid_t uid;
474 	kgid_t gid;
475 	int ret;
476 
477 	if (!options)
478 		return 0;
479 
480 	while ((p = strsep(&options, ",")) != NULL) {
481 		int token;
482 		if (!*p)
483 			continue;
484 		/*
485 		 * Initialize args struct so we know whether arg was
486 		 * found; some options take optional arguments.
487 		 */
488 		args[0].to = args[0].from = NULL;
489 		token = match_token(p, f2fs_tokens, args);
490 
491 		switch (token) {
492 		case Opt_gc_background:
493 			name = match_strdup(&args[0]);
494 
495 			if (!name)
496 				return -ENOMEM;
497 			if (!strcmp(name, "on")) {
498 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
499 			} else if (!strcmp(name, "off")) {
500 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
501 			} else if (!strcmp(name, "sync")) {
502 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
503 			} else {
504 				kfree(name);
505 				return -EINVAL;
506 			}
507 			kfree(name);
508 			break;
509 		case Opt_disable_roll_forward:
510 			set_opt(sbi, DISABLE_ROLL_FORWARD);
511 			break;
512 		case Opt_norecovery:
513 			/* this option mounts f2fs with ro */
514 			set_opt(sbi, NORECOVERY);
515 			if (!f2fs_readonly(sb))
516 				return -EINVAL;
517 			break;
518 		case Opt_discard:
519 			set_opt(sbi, DISCARD);
520 			break;
521 		case Opt_nodiscard:
522 			if (f2fs_sb_has_blkzoned(sbi)) {
523 				f2fs_warn(sbi, "discard is required for zoned block devices");
524 				return -EINVAL;
525 			}
526 			clear_opt(sbi, DISCARD);
527 			break;
528 		case Opt_noheap:
529 			set_opt(sbi, NOHEAP);
530 			break;
531 		case Opt_heap:
532 			clear_opt(sbi, NOHEAP);
533 			break;
534 #ifdef CONFIG_F2FS_FS_XATTR
535 		case Opt_user_xattr:
536 			set_opt(sbi, XATTR_USER);
537 			break;
538 		case Opt_nouser_xattr:
539 			clear_opt(sbi, XATTR_USER);
540 			break;
541 		case Opt_inline_xattr:
542 			set_opt(sbi, INLINE_XATTR);
543 			break;
544 		case Opt_noinline_xattr:
545 			clear_opt(sbi, INLINE_XATTR);
546 			break;
547 		case Opt_inline_xattr_size:
548 			if (args->from && match_int(args, &arg))
549 				return -EINVAL;
550 			set_opt(sbi, INLINE_XATTR_SIZE);
551 			F2FS_OPTION(sbi).inline_xattr_size = arg;
552 			break;
553 #else
554 		case Opt_user_xattr:
555 			f2fs_info(sbi, "user_xattr options not supported");
556 			break;
557 		case Opt_nouser_xattr:
558 			f2fs_info(sbi, "nouser_xattr options not supported");
559 			break;
560 		case Opt_inline_xattr:
561 			f2fs_info(sbi, "inline_xattr options not supported");
562 			break;
563 		case Opt_noinline_xattr:
564 			f2fs_info(sbi, "noinline_xattr options not supported");
565 			break;
566 #endif
567 #ifdef CONFIG_F2FS_FS_POSIX_ACL
568 		case Opt_acl:
569 			set_opt(sbi, POSIX_ACL);
570 			break;
571 		case Opt_noacl:
572 			clear_opt(sbi, POSIX_ACL);
573 			break;
574 #else
575 		case Opt_acl:
576 			f2fs_info(sbi, "acl options not supported");
577 			break;
578 		case Opt_noacl:
579 			f2fs_info(sbi, "noacl options not supported");
580 			break;
581 #endif
582 		case Opt_active_logs:
583 			if (args->from && match_int(args, &arg))
584 				return -EINVAL;
585 			if (arg != 2 && arg != 4 &&
586 				arg != NR_CURSEG_PERSIST_TYPE)
587 				return -EINVAL;
588 			F2FS_OPTION(sbi).active_logs = arg;
589 			break;
590 		case Opt_disable_ext_identify:
591 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
592 			break;
593 		case Opt_inline_data:
594 			set_opt(sbi, INLINE_DATA);
595 			break;
596 		case Opt_inline_dentry:
597 			set_opt(sbi, INLINE_DENTRY);
598 			break;
599 		case Opt_noinline_dentry:
600 			clear_opt(sbi, INLINE_DENTRY);
601 			break;
602 		case Opt_flush_merge:
603 			set_opt(sbi, FLUSH_MERGE);
604 			break;
605 		case Opt_noflush_merge:
606 			clear_opt(sbi, FLUSH_MERGE);
607 			break;
608 		case Opt_nobarrier:
609 			set_opt(sbi, NOBARRIER);
610 			break;
611 		case Opt_fastboot:
612 			set_opt(sbi, FASTBOOT);
613 			break;
614 		case Opt_extent_cache:
615 			set_opt(sbi, EXTENT_CACHE);
616 			break;
617 		case Opt_noextent_cache:
618 			clear_opt(sbi, EXTENT_CACHE);
619 			break;
620 		case Opt_noinline_data:
621 			clear_opt(sbi, INLINE_DATA);
622 			break;
623 		case Opt_data_flush:
624 			set_opt(sbi, DATA_FLUSH);
625 			break;
626 		case Opt_reserve_root:
627 			if (args->from && match_int(args, &arg))
628 				return -EINVAL;
629 			if (test_opt(sbi, RESERVE_ROOT)) {
630 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
631 					  F2FS_OPTION(sbi).root_reserved_blocks);
632 			} else {
633 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
634 				set_opt(sbi, RESERVE_ROOT);
635 			}
636 			break;
637 		case Opt_resuid:
638 			if (args->from && match_int(args, &arg))
639 				return -EINVAL;
640 			uid = make_kuid(current_user_ns(), arg);
641 			if (!uid_valid(uid)) {
642 				f2fs_err(sbi, "Invalid uid value %d", arg);
643 				return -EINVAL;
644 			}
645 			F2FS_OPTION(sbi).s_resuid = uid;
646 			break;
647 		case Opt_resgid:
648 			if (args->from && match_int(args, &arg))
649 				return -EINVAL;
650 			gid = make_kgid(current_user_ns(), arg);
651 			if (!gid_valid(gid)) {
652 				f2fs_err(sbi, "Invalid gid value %d", arg);
653 				return -EINVAL;
654 			}
655 			F2FS_OPTION(sbi).s_resgid = gid;
656 			break;
657 		case Opt_mode:
658 			name = match_strdup(&args[0]);
659 
660 			if (!name)
661 				return -ENOMEM;
662 			if (!strcmp(name, "adaptive")) {
663 				if (f2fs_sb_has_blkzoned(sbi)) {
664 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
665 					kfree(name);
666 					return -EINVAL;
667 				}
668 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
669 			} else if (!strcmp(name, "lfs")) {
670 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
671 			} else {
672 				kfree(name);
673 				return -EINVAL;
674 			}
675 			kfree(name);
676 			break;
677 		case Opt_io_size_bits:
678 			if (args->from && match_int(args, &arg))
679 				return -EINVAL;
680 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
681 				f2fs_warn(sbi, "Not support %d, larger than %d",
682 					  1 << arg, BIO_MAX_PAGES);
683 				return -EINVAL;
684 			}
685 			F2FS_OPTION(sbi).write_io_size_bits = arg;
686 			break;
687 #ifdef CONFIG_F2FS_FAULT_INJECTION
688 		case Opt_fault_injection:
689 			if (args->from && match_int(args, &arg))
690 				return -EINVAL;
691 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
692 			set_opt(sbi, FAULT_INJECTION);
693 			break;
694 
695 		case Opt_fault_type:
696 			if (args->from && match_int(args, &arg))
697 				return -EINVAL;
698 			f2fs_build_fault_attr(sbi, 0, arg);
699 			set_opt(sbi, FAULT_INJECTION);
700 			break;
701 #else
702 		case Opt_fault_injection:
703 			f2fs_info(sbi, "fault_injection options not supported");
704 			break;
705 
706 		case Opt_fault_type:
707 			f2fs_info(sbi, "fault_type options not supported");
708 			break;
709 #endif
710 		case Opt_lazytime:
711 			sb->s_flags |= SB_LAZYTIME;
712 			break;
713 		case Opt_nolazytime:
714 			sb->s_flags &= ~SB_LAZYTIME;
715 			break;
716 #ifdef CONFIG_QUOTA
717 		case Opt_quota:
718 		case Opt_usrquota:
719 			set_opt(sbi, USRQUOTA);
720 			break;
721 		case Opt_grpquota:
722 			set_opt(sbi, GRPQUOTA);
723 			break;
724 		case Opt_prjquota:
725 			set_opt(sbi, PRJQUOTA);
726 			break;
727 		case Opt_usrjquota:
728 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
729 			if (ret)
730 				return ret;
731 			break;
732 		case Opt_grpjquota:
733 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
734 			if (ret)
735 				return ret;
736 			break;
737 		case Opt_prjjquota:
738 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
739 			if (ret)
740 				return ret;
741 			break;
742 		case Opt_offusrjquota:
743 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
744 			if (ret)
745 				return ret;
746 			break;
747 		case Opt_offgrpjquota:
748 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
749 			if (ret)
750 				return ret;
751 			break;
752 		case Opt_offprjjquota:
753 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
754 			if (ret)
755 				return ret;
756 			break;
757 		case Opt_jqfmt_vfsold:
758 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
759 			break;
760 		case Opt_jqfmt_vfsv0:
761 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
762 			break;
763 		case Opt_jqfmt_vfsv1:
764 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
765 			break;
766 		case Opt_noquota:
767 			clear_opt(sbi, QUOTA);
768 			clear_opt(sbi, USRQUOTA);
769 			clear_opt(sbi, GRPQUOTA);
770 			clear_opt(sbi, PRJQUOTA);
771 			break;
772 #else
773 		case Opt_quota:
774 		case Opt_usrquota:
775 		case Opt_grpquota:
776 		case Opt_prjquota:
777 		case Opt_usrjquota:
778 		case Opt_grpjquota:
779 		case Opt_prjjquota:
780 		case Opt_offusrjquota:
781 		case Opt_offgrpjquota:
782 		case Opt_offprjjquota:
783 		case Opt_jqfmt_vfsold:
784 		case Opt_jqfmt_vfsv0:
785 		case Opt_jqfmt_vfsv1:
786 		case Opt_noquota:
787 			f2fs_info(sbi, "quota operations not supported");
788 			break;
789 #endif
790 		case Opt_whint:
791 			name = match_strdup(&args[0]);
792 			if (!name)
793 				return -ENOMEM;
794 			if (!strcmp(name, "user-based")) {
795 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
796 			} else if (!strcmp(name, "off")) {
797 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
798 			} else if (!strcmp(name, "fs-based")) {
799 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
800 			} else {
801 				kfree(name);
802 				return -EINVAL;
803 			}
804 			kfree(name);
805 			break;
806 		case Opt_alloc:
807 			name = match_strdup(&args[0]);
808 			if (!name)
809 				return -ENOMEM;
810 
811 			if (!strcmp(name, "default")) {
812 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
813 			} else if (!strcmp(name, "reuse")) {
814 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
815 			} else {
816 				kfree(name);
817 				return -EINVAL;
818 			}
819 			kfree(name);
820 			break;
821 		case Opt_fsync:
822 			name = match_strdup(&args[0]);
823 			if (!name)
824 				return -ENOMEM;
825 			if (!strcmp(name, "posix")) {
826 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
827 			} else if (!strcmp(name, "strict")) {
828 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
829 			} else if (!strcmp(name, "nobarrier")) {
830 				F2FS_OPTION(sbi).fsync_mode =
831 							FSYNC_MODE_NOBARRIER;
832 			} else {
833 				kfree(name);
834 				return -EINVAL;
835 			}
836 			kfree(name);
837 			break;
838 		case Opt_test_dummy_encryption:
839 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
840 							     is_remount);
841 			if (ret)
842 				return ret;
843 			break;
844 		case Opt_inlinecrypt:
845 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
846 			sb->s_flags |= SB_INLINECRYPT;
847 #else
848 			f2fs_info(sbi, "inline encryption not supported");
849 #endif
850 			break;
851 		case Opt_checkpoint_disable_cap_perc:
852 			if (args->from && match_int(args, &arg))
853 				return -EINVAL;
854 			if (arg < 0 || arg > 100)
855 				return -EINVAL;
856 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
857 			set_opt(sbi, DISABLE_CHECKPOINT);
858 			break;
859 		case Opt_checkpoint_disable_cap:
860 			if (args->from && match_int(args, &arg))
861 				return -EINVAL;
862 			F2FS_OPTION(sbi).unusable_cap = arg;
863 			set_opt(sbi, DISABLE_CHECKPOINT);
864 			break;
865 		case Opt_checkpoint_disable:
866 			set_opt(sbi, DISABLE_CHECKPOINT);
867 			break;
868 		case Opt_checkpoint_enable:
869 			clear_opt(sbi, DISABLE_CHECKPOINT);
870 			break;
871 #ifdef CONFIG_F2FS_FS_COMPRESSION
872 		case Opt_compress_algorithm:
873 			if (!f2fs_sb_has_compression(sbi)) {
874 				f2fs_info(sbi, "Image doesn't support compression");
875 				break;
876 			}
877 			name = match_strdup(&args[0]);
878 			if (!name)
879 				return -ENOMEM;
880 			if (!strcmp(name, "lzo")) {
881 				F2FS_OPTION(sbi).compress_algorithm =
882 								COMPRESS_LZO;
883 			} else if (!strcmp(name, "lz4")) {
884 				F2FS_OPTION(sbi).compress_algorithm =
885 								COMPRESS_LZ4;
886 			} else if (!strcmp(name, "zstd")) {
887 				F2FS_OPTION(sbi).compress_algorithm =
888 								COMPRESS_ZSTD;
889 			} else if (!strcmp(name, "lzo-rle")) {
890 				F2FS_OPTION(sbi).compress_algorithm =
891 								COMPRESS_LZORLE;
892 			} else {
893 				kfree(name);
894 				return -EINVAL;
895 			}
896 			kfree(name);
897 			break;
898 		case Opt_compress_log_size:
899 			if (!f2fs_sb_has_compression(sbi)) {
900 				f2fs_info(sbi, "Image doesn't support compression");
901 				break;
902 			}
903 			if (args->from && match_int(args, &arg))
904 				return -EINVAL;
905 			if (arg < MIN_COMPRESS_LOG_SIZE ||
906 				arg > MAX_COMPRESS_LOG_SIZE) {
907 				f2fs_err(sbi,
908 					"Compress cluster log size is out of range");
909 				return -EINVAL;
910 			}
911 			F2FS_OPTION(sbi).compress_log_size = arg;
912 			break;
913 		case Opt_compress_extension:
914 			if (!f2fs_sb_has_compression(sbi)) {
915 				f2fs_info(sbi, "Image doesn't support compression");
916 				break;
917 			}
918 			name = match_strdup(&args[0]);
919 			if (!name)
920 				return -ENOMEM;
921 
922 			ext = F2FS_OPTION(sbi).extensions;
923 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
924 
925 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
926 				ext_cnt >= COMPRESS_EXT_NUM) {
927 				f2fs_err(sbi,
928 					"invalid extension length/number");
929 				kfree(name);
930 				return -EINVAL;
931 			}
932 
933 			strcpy(ext[ext_cnt], name);
934 			F2FS_OPTION(sbi).compress_ext_cnt++;
935 			kfree(name);
936 			break;
937 #else
938 		case Opt_compress_algorithm:
939 		case Opt_compress_log_size:
940 		case Opt_compress_extension:
941 			f2fs_info(sbi, "compression options not supported");
942 			break;
943 #endif
944 		case Opt_atgc:
945 			set_opt(sbi, ATGC);
946 			break;
947 		default:
948 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
949 				 p);
950 			return -EINVAL;
951 		}
952 	}
953 #ifdef CONFIG_QUOTA
954 	if (f2fs_check_quota_options(sbi))
955 		return -EINVAL;
956 #else
957 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
958 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
959 		return -EINVAL;
960 	}
961 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
962 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
963 		return -EINVAL;
964 	}
965 #endif
966 #ifndef CONFIG_UNICODE
967 	if (f2fs_sb_has_casefold(sbi)) {
968 		f2fs_err(sbi,
969 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
970 		return -EINVAL;
971 	}
972 #endif
973 	/*
974 	 * The BLKZONED feature indicates that the drive was formatted with
975 	 * zone alignment optimization. This is optional for host-aware
976 	 * devices, but mandatory for host-managed zoned block devices.
977 	 */
978 #ifndef CONFIG_BLK_DEV_ZONED
979 	if (f2fs_sb_has_blkzoned(sbi)) {
980 		f2fs_err(sbi, "Zoned block device support is not enabled");
981 		return -EINVAL;
982 	}
983 #endif
984 
985 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
986 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
987 			 F2FS_IO_SIZE_KB(sbi));
988 		return -EINVAL;
989 	}
990 
991 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
992 		int min_size, max_size;
993 
994 		if (!f2fs_sb_has_extra_attr(sbi) ||
995 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
996 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
997 			return -EINVAL;
998 		}
999 		if (!test_opt(sbi, INLINE_XATTR)) {
1000 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1001 			return -EINVAL;
1002 		}
1003 
1004 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1005 		max_size = MAX_INLINE_XATTR_SIZE;
1006 
1007 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1008 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1009 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1010 				 min_size, max_size);
1011 			return -EINVAL;
1012 		}
1013 	}
1014 
1015 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1016 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
1017 		return -EINVAL;
1018 	}
1019 
1020 	/* Not pass down write hints if the number of active logs is lesser
1021 	 * than NR_CURSEG_PERSIST_TYPE.
1022 	 */
1023 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
1024 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1025 	return 0;
1026 }
1027 
1028 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1029 {
1030 	struct f2fs_inode_info *fi;
1031 
1032 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1033 	if (!fi)
1034 		return NULL;
1035 
1036 	init_once((void *) fi);
1037 
1038 	/* Initialize f2fs-specific inode info */
1039 	atomic_set(&fi->dirty_pages, 0);
1040 	atomic_set(&fi->i_compr_blocks, 0);
1041 	init_rwsem(&fi->i_sem);
1042 	spin_lock_init(&fi->i_size_lock);
1043 	INIT_LIST_HEAD(&fi->dirty_list);
1044 	INIT_LIST_HEAD(&fi->gdirty_list);
1045 	INIT_LIST_HEAD(&fi->inmem_ilist);
1046 	INIT_LIST_HEAD(&fi->inmem_pages);
1047 	mutex_init(&fi->inmem_lock);
1048 	init_rwsem(&fi->i_gc_rwsem[READ]);
1049 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1050 	init_rwsem(&fi->i_mmap_sem);
1051 	init_rwsem(&fi->i_xattr_sem);
1052 
1053 	/* Will be used by directory only */
1054 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1055 
1056 	fi->ra_offset = -1;
1057 
1058 	return &fi->vfs_inode;
1059 }
1060 
1061 static int f2fs_drop_inode(struct inode *inode)
1062 {
1063 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1064 	int ret;
1065 
1066 	/*
1067 	 * during filesystem shutdown, if checkpoint is disabled,
1068 	 * drop useless meta/node dirty pages.
1069 	 */
1070 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1071 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1072 			inode->i_ino == F2FS_META_INO(sbi)) {
1073 			trace_f2fs_drop_inode(inode, 1);
1074 			return 1;
1075 		}
1076 	}
1077 
1078 	/*
1079 	 * This is to avoid a deadlock condition like below.
1080 	 * writeback_single_inode(inode)
1081 	 *  - f2fs_write_data_page
1082 	 *    - f2fs_gc -> iput -> evict
1083 	 *       - inode_wait_for_writeback(inode)
1084 	 */
1085 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1086 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1087 			/* to avoid evict_inode call simultaneously */
1088 			atomic_inc(&inode->i_count);
1089 			spin_unlock(&inode->i_lock);
1090 
1091 			/* some remained atomic pages should discarded */
1092 			if (f2fs_is_atomic_file(inode))
1093 				f2fs_drop_inmem_pages(inode);
1094 
1095 			/* should remain fi->extent_tree for writepage */
1096 			f2fs_destroy_extent_node(inode);
1097 
1098 			sb_start_intwrite(inode->i_sb);
1099 			f2fs_i_size_write(inode, 0);
1100 
1101 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1102 					inode, NULL, 0, DATA);
1103 			truncate_inode_pages_final(inode->i_mapping);
1104 
1105 			if (F2FS_HAS_BLOCKS(inode))
1106 				f2fs_truncate(inode);
1107 
1108 			sb_end_intwrite(inode->i_sb);
1109 
1110 			spin_lock(&inode->i_lock);
1111 			atomic_dec(&inode->i_count);
1112 		}
1113 		trace_f2fs_drop_inode(inode, 0);
1114 		return 0;
1115 	}
1116 	ret = generic_drop_inode(inode);
1117 	if (!ret)
1118 		ret = fscrypt_drop_inode(inode);
1119 	trace_f2fs_drop_inode(inode, ret);
1120 	return ret;
1121 }
1122 
1123 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1124 {
1125 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1126 	int ret = 0;
1127 
1128 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1129 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1130 		ret = 1;
1131 	} else {
1132 		set_inode_flag(inode, FI_DIRTY_INODE);
1133 		stat_inc_dirty_inode(sbi, DIRTY_META);
1134 	}
1135 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1136 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1137 				&sbi->inode_list[DIRTY_META]);
1138 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1139 	}
1140 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1141 	return ret;
1142 }
1143 
1144 void f2fs_inode_synced(struct inode *inode)
1145 {
1146 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147 
1148 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1149 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1150 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1151 		return;
1152 	}
1153 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1154 		list_del_init(&F2FS_I(inode)->gdirty_list);
1155 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1156 	}
1157 	clear_inode_flag(inode, FI_DIRTY_INODE);
1158 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1159 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1160 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1161 }
1162 
1163 /*
1164  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1165  *
1166  * We should call set_dirty_inode to write the dirty inode through write_inode.
1167  */
1168 static void f2fs_dirty_inode(struct inode *inode, int flags)
1169 {
1170 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1171 
1172 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1173 			inode->i_ino == F2FS_META_INO(sbi))
1174 		return;
1175 
1176 	if (flags == I_DIRTY_TIME)
1177 		return;
1178 
1179 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1180 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1181 
1182 	f2fs_inode_dirtied(inode, false);
1183 }
1184 
1185 static void f2fs_free_inode(struct inode *inode)
1186 {
1187 	fscrypt_free_inode(inode);
1188 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1189 }
1190 
1191 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1192 {
1193 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1194 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1195 }
1196 
1197 static void destroy_device_list(struct f2fs_sb_info *sbi)
1198 {
1199 	int i;
1200 
1201 	for (i = 0; i < sbi->s_ndevs; i++) {
1202 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1203 #ifdef CONFIG_BLK_DEV_ZONED
1204 		kvfree(FDEV(i).blkz_seq);
1205 		kfree(FDEV(i).zone_capacity_blocks);
1206 #endif
1207 	}
1208 	kvfree(sbi->devs);
1209 }
1210 
1211 static void f2fs_put_super(struct super_block *sb)
1212 {
1213 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1214 	int i;
1215 	bool dropped;
1216 
1217 	/* unregister procfs/sysfs entries in advance to avoid race case */
1218 	f2fs_unregister_sysfs(sbi);
1219 
1220 	f2fs_quota_off_umount(sb);
1221 
1222 	/* prevent remaining shrinker jobs */
1223 	mutex_lock(&sbi->umount_mutex);
1224 
1225 	/*
1226 	 * We don't need to do checkpoint when superblock is clean.
1227 	 * But, the previous checkpoint was not done by umount, it needs to do
1228 	 * clean checkpoint again.
1229 	 */
1230 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1231 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1232 		struct cp_control cpc = {
1233 			.reason = CP_UMOUNT,
1234 		};
1235 		f2fs_write_checkpoint(sbi, &cpc);
1236 	}
1237 
1238 	/* be sure to wait for any on-going discard commands */
1239 	dropped = f2fs_issue_discard_timeout(sbi);
1240 
1241 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1242 					!sbi->discard_blks && !dropped) {
1243 		struct cp_control cpc = {
1244 			.reason = CP_UMOUNT | CP_TRIMMED,
1245 		};
1246 		f2fs_write_checkpoint(sbi, &cpc);
1247 	}
1248 
1249 	/*
1250 	 * normally superblock is clean, so we need to release this.
1251 	 * In addition, EIO will skip do checkpoint, we need this as well.
1252 	 */
1253 	f2fs_release_ino_entry(sbi, true);
1254 
1255 	f2fs_leave_shrinker(sbi);
1256 	mutex_unlock(&sbi->umount_mutex);
1257 
1258 	/* our cp_error case, we can wait for any writeback page */
1259 	f2fs_flush_merged_writes(sbi);
1260 
1261 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1262 
1263 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1264 
1265 	iput(sbi->node_inode);
1266 	sbi->node_inode = NULL;
1267 
1268 	iput(sbi->meta_inode);
1269 	sbi->meta_inode = NULL;
1270 
1271 	/*
1272 	 * iput() can update stat information, if f2fs_write_checkpoint()
1273 	 * above failed with error.
1274 	 */
1275 	f2fs_destroy_stats(sbi);
1276 
1277 	/* destroy f2fs internal modules */
1278 	f2fs_destroy_node_manager(sbi);
1279 	f2fs_destroy_segment_manager(sbi);
1280 
1281 	f2fs_destroy_post_read_wq(sbi);
1282 
1283 	kvfree(sbi->ckpt);
1284 
1285 	sb->s_fs_info = NULL;
1286 	if (sbi->s_chksum_driver)
1287 		crypto_free_shash(sbi->s_chksum_driver);
1288 	kfree(sbi->raw_super);
1289 
1290 	destroy_device_list(sbi);
1291 	f2fs_destroy_page_array_cache(sbi);
1292 	f2fs_destroy_xattr_caches(sbi);
1293 	mempool_destroy(sbi->write_io_dummy);
1294 #ifdef CONFIG_QUOTA
1295 	for (i = 0; i < MAXQUOTAS; i++)
1296 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1297 #endif
1298 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1299 	destroy_percpu_info(sbi);
1300 	for (i = 0; i < NR_PAGE_TYPE; i++)
1301 		kvfree(sbi->write_io[i]);
1302 #ifdef CONFIG_UNICODE
1303 	utf8_unload(sb->s_encoding);
1304 #endif
1305 	kfree(sbi);
1306 }
1307 
1308 int f2fs_sync_fs(struct super_block *sb, int sync)
1309 {
1310 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1311 	int err = 0;
1312 
1313 	if (unlikely(f2fs_cp_error(sbi)))
1314 		return 0;
1315 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1316 		return 0;
1317 
1318 	trace_f2fs_sync_fs(sb, sync);
1319 
1320 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1321 		return -EAGAIN;
1322 
1323 	if (sync) {
1324 		struct cp_control cpc;
1325 
1326 		cpc.reason = __get_cp_reason(sbi);
1327 
1328 		down_write(&sbi->gc_lock);
1329 		err = f2fs_write_checkpoint(sbi, &cpc);
1330 		up_write(&sbi->gc_lock);
1331 	}
1332 	f2fs_trace_ios(NULL, 1);
1333 
1334 	return err;
1335 }
1336 
1337 static int f2fs_freeze(struct super_block *sb)
1338 {
1339 	if (f2fs_readonly(sb))
1340 		return 0;
1341 
1342 	/* IO error happened before */
1343 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1344 		return -EIO;
1345 
1346 	/* must be clean, since sync_filesystem() was already called */
1347 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1348 		return -EINVAL;
1349 	return 0;
1350 }
1351 
1352 static int f2fs_unfreeze(struct super_block *sb)
1353 {
1354 	return 0;
1355 }
1356 
1357 #ifdef CONFIG_QUOTA
1358 static int f2fs_statfs_project(struct super_block *sb,
1359 				kprojid_t projid, struct kstatfs *buf)
1360 {
1361 	struct kqid qid;
1362 	struct dquot *dquot;
1363 	u64 limit;
1364 	u64 curblock;
1365 
1366 	qid = make_kqid_projid(projid);
1367 	dquot = dqget(sb, qid);
1368 	if (IS_ERR(dquot))
1369 		return PTR_ERR(dquot);
1370 	spin_lock(&dquot->dq_dqb_lock);
1371 
1372 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1373 					dquot->dq_dqb.dqb_bhardlimit);
1374 	if (limit)
1375 		limit >>= sb->s_blocksize_bits;
1376 
1377 	if (limit && buf->f_blocks > limit) {
1378 		curblock = (dquot->dq_dqb.dqb_curspace +
1379 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1380 		buf->f_blocks = limit;
1381 		buf->f_bfree = buf->f_bavail =
1382 			(buf->f_blocks > curblock) ?
1383 			 (buf->f_blocks - curblock) : 0;
1384 	}
1385 
1386 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1387 					dquot->dq_dqb.dqb_ihardlimit);
1388 
1389 	if (limit && buf->f_files > limit) {
1390 		buf->f_files = limit;
1391 		buf->f_ffree =
1392 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1393 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1394 	}
1395 
1396 	spin_unlock(&dquot->dq_dqb_lock);
1397 	dqput(dquot);
1398 	return 0;
1399 }
1400 #endif
1401 
1402 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1403 {
1404 	struct super_block *sb = dentry->d_sb;
1405 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1406 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1407 	block_t total_count, user_block_count, start_count;
1408 	u64 avail_node_count;
1409 
1410 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1411 	user_block_count = sbi->user_block_count;
1412 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1413 	buf->f_type = F2FS_SUPER_MAGIC;
1414 	buf->f_bsize = sbi->blocksize;
1415 
1416 	buf->f_blocks = total_count - start_count;
1417 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1418 						sbi->current_reserved_blocks;
1419 
1420 	spin_lock(&sbi->stat_lock);
1421 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1422 		buf->f_bfree = 0;
1423 	else
1424 		buf->f_bfree -= sbi->unusable_block_count;
1425 	spin_unlock(&sbi->stat_lock);
1426 
1427 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1428 		buf->f_bavail = buf->f_bfree -
1429 				F2FS_OPTION(sbi).root_reserved_blocks;
1430 	else
1431 		buf->f_bavail = 0;
1432 
1433 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1434 
1435 	if (avail_node_count > user_block_count) {
1436 		buf->f_files = user_block_count;
1437 		buf->f_ffree = buf->f_bavail;
1438 	} else {
1439 		buf->f_files = avail_node_count;
1440 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1441 					buf->f_bavail);
1442 	}
1443 
1444 	buf->f_namelen = F2FS_NAME_LEN;
1445 	buf->f_fsid.val[0] = (u32)id;
1446 	buf->f_fsid.val[1] = (u32)(id >> 32);
1447 
1448 #ifdef CONFIG_QUOTA
1449 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1450 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1451 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1452 	}
1453 #endif
1454 	return 0;
1455 }
1456 
1457 static inline void f2fs_show_quota_options(struct seq_file *seq,
1458 					   struct super_block *sb)
1459 {
1460 #ifdef CONFIG_QUOTA
1461 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1462 
1463 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1464 		char *fmtname = "";
1465 
1466 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1467 		case QFMT_VFS_OLD:
1468 			fmtname = "vfsold";
1469 			break;
1470 		case QFMT_VFS_V0:
1471 			fmtname = "vfsv0";
1472 			break;
1473 		case QFMT_VFS_V1:
1474 			fmtname = "vfsv1";
1475 			break;
1476 		}
1477 		seq_printf(seq, ",jqfmt=%s", fmtname);
1478 	}
1479 
1480 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1481 		seq_show_option(seq, "usrjquota",
1482 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1483 
1484 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1485 		seq_show_option(seq, "grpjquota",
1486 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1487 
1488 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1489 		seq_show_option(seq, "prjjquota",
1490 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1491 #endif
1492 }
1493 
1494 static inline void f2fs_show_compress_options(struct seq_file *seq,
1495 							struct super_block *sb)
1496 {
1497 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1498 	char *algtype = "";
1499 	int i;
1500 
1501 	if (!f2fs_sb_has_compression(sbi))
1502 		return;
1503 
1504 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1505 	case COMPRESS_LZO:
1506 		algtype = "lzo";
1507 		break;
1508 	case COMPRESS_LZ4:
1509 		algtype = "lz4";
1510 		break;
1511 	case COMPRESS_ZSTD:
1512 		algtype = "zstd";
1513 		break;
1514 	case COMPRESS_LZORLE:
1515 		algtype = "lzo-rle";
1516 		break;
1517 	}
1518 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1519 
1520 	seq_printf(seq, ",compress_log_size=%u",
1521 			F2FS_OPTION(sbi).compress_log_size);
1522 
1523 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1524 		seq_printf(seq, ",compress_extension=%s",
1525 			F2FS_OPTION(sbi).extensions[i]);
1526 	}
1527 }
1528 
1529 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1530 {
1531 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1532 
1533 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1534 		seq_printf(seq, ",background_gc=%s", "sync");
1535 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1536 		seq_printf(seq, ",background_gc=%s", "on");
1537 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1538 		seq_printf(seq, ",background_gc=%s", "off");
1539 
1540 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1541 		seq_puts(seq, ",disable_roll_forward");
1542 	if (test_opt(sbi, NORECOVERY))
1543 		seq_puts(seq, ",norecovery");
1544 	if (test_opt(sbi, DISCARD))
1545 		seq_puts(seq, ",discard");
1546 	else
1547 		seq_puts(seq, ",nodiscard");
1548 	if (test_opt(sbi, NOHEAP))
1549 		seq_puts(seq, ",no_heap");
1550 	else
1551 		seq_puts(seq, ",heap");
1552 #ifdef CONFIG_F2FS_FS_XATTR
1553 	if (test_opt(sbi, XATTR_USER))
1554 		seq_puts(seq, ",user_xattr");
1555 	else
1556 		seq_puts(seq, ",nouser_xattr");
1557 	if (test_opt(sbi, INLINE_XATTR))
1558 		seq_puts(seq, ",inline_xattr");
1559 	else
1560 		seq_puts(seq, ",noinline_xattr");
1561 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1562 		seq_printf(seq, ",inline_xattr_size=%u",
1563 					F2FS_OPTION(sbi).inline_xattr_size);
1564 #endif
1565 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1566 	if (test_opt(sbi, POSIX_ACL))
1567 		seq_puts(seq, ",acl");
1568 	else
1569 		seq_puts(seq, ",noacl");
1570 #endif
1571 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1572 		seq_puts(seq, ",disable_ext_identify");
1573 	if (test_opt(sbi, INLINE_DATA))
1574 		seq_puts(seq, ",inline_data");
1575 	else
1576 		seq_puts(seq, ",noinline_data");
1577 	if (test_opt(sbi, INLINE_DENTRY))
1578 		seq_puts(seq, ",inline_dentry");
1579 	else
1580 		seq_puts(seq, ",noinline_dentry");
1581 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1582 		seq_puts(seq, ",flush_merge");
1583 	if (test_opt(sbi, NOBARRIER))
1584 		seq_puts(seq, ",nobarrier");
1585 	if (test_opt(sbi, FASTBOOT))
1586 		seq_puts(seq, ",fastboot");
1587 	if (test_opt(sbi, EXTENT_CACHE))
1588 		seq_puts(seq, ",extent_cache");
1589 	else
1590 		seq_puts(seq, ",noextent_cache");
1591 	if (test_opt(sbi, DATA_FLUSH))
1592 		seq_puts(seq, ",data_flush");
1593 
1594 	seq_puts(seq, ",mode=");
1595 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1596 		seq_puts(seq, "adaptive");
1597 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1598 		seq_puts(seq, "lfs");
1599 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1600 	if (test_opt(sbi, RESERVE_ROOT))
1601 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1602 				F2FS_OPTION(sbi).root_reserved_blocks,
1603 				from_kuid_munged(&init_user_ns,
1604 					F2FS_OPTION(sbi).s_resuid),
1605 				from_kgid_munged(&init_user_ns,
1606 					F2FS_OPTION(sbi).s_resgid));
1607 	if (F2FS_IO_SIZE_BITS(sbi))
1608 		seq_printf(seq, ",io_bits=%u",
1609 				F2FS_OPTION(sbi).write_io_size_bits);
1610 #ifdef CONFIG_F2FS_FAULT_INJECTION
1611 	if (test_opt(sbi, FAULT_INJECTION)) {
1612 		seq_printf(seq, ",fault_injection=%u",
1613 				F2FS_OPTION(sbi).fault_info.inject_rate);
1614 		seq_printf(seq, ",fault_type=%u",
1615 				F2FS_OPTION(sbi).fault_info.inject_type);
1616 	}
1617 #endif
1618 #ifdef CONFIG_QUOTA
1619 	if (test_opt(sbi, QUOTA))
1620 		seq_puts(seq, ",quota");
1621 	if (test_opt(sbi, USRQUOTA))
1622 		seq_puts(seq, ",usrquota");
1623 	if (test_opt(sbi, GRPQUOTA))
1624 		seq_puts(seq, ",grpquota");
1625 	if (test_opt(sbi, PRJQUOTA))
1626 		seq_puts(seq, ",prjquota");
1627 #endif
1628 	f2fs_show_quota_options(seq, sbi->sb);
1629 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1630 		seq_printf(seq, ",whint_mode=%s", "user-based");
1631 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1632 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1633 
1634 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1635 
1636 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1637 		seq_puts(seq, ",inlinecrypt");
1638 
1639 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1640 		seq_printf(seq, ",alloc_mode=%s", "default");
1641 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1642 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1643 
1644 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1645 		seq_printf(seq, ",checkpoint=disable:%u",
1646 				F2FS_OPTION(sbi).unusable_cap);
1647 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1648 		seq_printf(seq, ",fsync_mode=%s", "posix");
1649 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1650 		seq_printf(seq, ",fsync_mode=%s", "strict");
1651 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1652 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1653 
1654 #ifdef CONFIG_F2FS_FS_COMPRESSION
1655 	f2fs_show_compress_options(seq, sbi->sb);
1656 #endif
1657 
1658 	if (test_opt(sbi, ATGC))
1659 		seq_puts(seq, ",atgc");
1660 	return 0;
1661 }
1662 
1663 static void default_options(struct f2fs_sb_info *sbi)
1664 {
1665 	/* init some FS parameters */
1666 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1667 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1668 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1669 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1670 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1671 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1672 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1673 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1674 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1675 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1676 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1677 
1678 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
1679 
1680 	set_opt(sbi, INLINE_XATTR);
1681 	set_opt(sbi, INLINE_DATA);
1682 	set_opt(sbi, INLINE_DENTRY);
1683 	set_opt(sbi, EXTENT_CACHE);
1684 	set_opt(sbi, NOHEAP);
1685 	clear_opt(sbi, DISABLE_CHECKPOINT);
1686 	F2FS_OPTION(sbi).unusable_cap = 0;
1687 	sbi->sb->s_flags |= SB_LAZYTIME;
1688 	set_opt(sbi, FLUSH_MERGE);
1689 	set_opt(sbi, DISCARD);
1690 	if (f2fs_sb_has_blkzoned(sbi))
1691 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1692 	else
1693 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1694 
1695 #ifdef CONFIG_F2FS_FS_XATTR
1696 	set_opt(sbi, XATTR_USER);
1697 #endif
1698 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1699 	set_opt(sbi, POSIX_ACL);
1700 #endif
1701 
1702 	f2fs_build_fault_attr(sbi, 0, 0);
1703 }
1704 
1705 #ifdef CONFIG_QUOTA
1706 static int f2fs_enable_quotas(struct super_block *sb);
1707 #endif
1708 
1709 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1710 {
1711 	unsigned int s_flags = sbi->sb->s_flags;
1712 	struct cp_control cpc;
1713 	int err = 0;
1714 	int ret;
1715 	block_t unusable;
1716 
1717 	if (s_flags & SB_RDONLY) {
1718 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1719 		return -EINVAL;
1720 	}
1721 	sbi->sb->s_flags |= SB_ACTIVE;
1722 
1723 	f2fs_update_time(sbi, DISABLE_TIME);
1724 
1725 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1726 		down_write(&sbi->gc_lock);
1727 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1728 		if (err == -ENODATA) {
1729 			err = 0;
1730 			break;
1731 		}
1732 		if (err && err != -EAGAIN)
1733 			break;
1734 	}
1735 
1736 	ret = sync_filesystem(sbi->sb);
1737 	if (ret || err) {
1738 		err = ret ? ret: err;
1739 		goto restore_flag;
1740 	}
1741 
1742 	unusable = f2fs_get_unusable_blocks(sbi);
1743 	if (f2fs_disable_cp_again(sbi, unusable)) {
1744 		err = -EAGAIN;
1745 		goto restore_flag;
1746 	}
1747 
1748 	down_write(&sbi->gc_lock);
1749 	cpc.reason = CP_PAUSE;
1750 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1751 	err = f2fs_write_checkpoint(sbi, &cpc);
1752 	if (err)
1753 		goto out_unlock;
1754 
1755 	spin_lock(&sbi->stat_lock);
1756 	sbi->unusable_block_count = unusable;
1757 	spin_unlock(&sbi->stat_lock);
1758 
1759 out_unlock:
1760 	up_write(&sbi->gc_lock);
1761 restore_flag:
1762 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
1763 	return err;
1764 }
1765 
1766 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1767 {
1768 	down_write(&sbi->gc_lock);
1769 	f2fs_dirty_to_prefree(sbi);
1770 
1771 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1772 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1773 	up_write(&sbi->gc_lock);
1774 
1775 	f2fs_sync_fs(sbi->sb, 1);
1776 }
1777 
1778 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1779 {
1780 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1781 	struct f2fs_mount_info org_mount_opt;
1782 	unsigned long old_sb_flags;
1783 	int err;
1784 	bool need_restart_gc = false;
1785 	bool need_stop_gc = false;
1786 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1787 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1788 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1789 	bool no_atgc = !test_opt(sbi, ATGC);
1790 	bool checkpoint_changed;
1791 #ifdef CONFIG_QUOTA
1792 	int i, j;
1793 #endif
1794 
1795 	/*
1796 	 * Save the old mount options in case we
1797 	 * need to restore them.
1798 	 */
1799 	org_mount_opt = sbi->mount_opt;
1800 	old_sb_flags = sb->s_flags;
1801 
1802 #ifdef CONFIG_QUOTA
1803 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1804 	for (i = 0; i < MAXQUOTAS; i++) {
1805 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1806 			org_mount_opt.s_qf_names[i] =
1807 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1808 				GFP_KERNEL);
1809 			if (!org_mount_opt.s_qf_names[i]) {
1810 				for (j = 0; j < i; j++)
1811 					kfree(org_mount_opt.s_qf_names[j]);
1812 				return -ENOMEM;
1813 			}
1814 		} else {
1815 			org_mount_opt.s_qf_names[i] = NULL;
1816 		}
1817 	}
1818 #endif
1819 
1820 	/* recover superblocks we couldn't write due to previous RO mount */
1821 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1822 		err = f2fs_commit_super(sbi, false);
1823 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1824 			  err);
1825 		if (!err)
1826 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1827 	}
1828 
1829 	default_options(sbi);
1830 
1831 	/* parse mount options */
1832 	err = parse_options(sb, data, true);
1833 	if (err)
1834 		goto restore_opts;
1835 	checkpoint_changed =
1836 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1837 
1838 	/*
1839 	 * Previous and new state of filesystem is RO,
1840 	 * so skip checking GC and FLUSH_MERGE conditions.
1841 	 */
1842 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1843 		goto skip;
1844 
1845 #ifdef CONFIG_QUOTA
1846 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1847 		err = dquot_suspend(sb, -1);
1848 		if (err < 0)
1849 			goto restore_opts;
1850 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1851 		/* dquot_resume needs RW */
1852 		sb->s_flags &= ~SB_RDONLY;
1853 		if (sb_any_quota_suspended(sb)) {
1854 			dquot_resume(sb, -1);
1855 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1856 			err = f2fs_enable_quotas(sb);
1857 			if (err)
1858 				goto restore_opts;
1859 		}
1860 	}
1861 #endif
1862 	/* disallow enable atgc dynamically */
1863 	if (no_atgc == !!test_opt(sbi, ATGC)) {
1864 		err = -EINVAL;
1865 		f2fs_warn(sbi, "switch atgc option is not allowed");
1866 		goto restore_opts;
1867 	}
1868 
1869 	/* disallow enable/disable extent_cache dynamically */
1870 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1871 		err = -EINVAL;
1872 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1873 		goto restore_opts;
1874 	}
1875 
1876 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1877 		err = -EINVAL;
1878 		f2fs_warn(sbi, "switch io_bits option is not allowed");
1879 		goto restore_opts;
1880 	}
1881 
1882 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1883 		err = -EINVAL;
1884 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1885 		goto restore_opts;
1886 	}
1887 
1888 	/*
1889 	 * We stop the GC thread if FS is mounted as RO
1890 	 * or if background_gc = off is passed in mount
1891 	 * option. Also sync the filesystem.
1892 	 */
1893 	if ((*flags & SB_RDONLY) ||
1894 			F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
1895 		if (sbi->gc_thread) {
1896 			f2fs_stop_gc_thread(sbi);
1897 			need_restart_gc = true;
1898 		}
1899 	} else if (!sbi->gc_thread) {
1900 		err = f2fs_start_gc_thread(sbi);
1901 		if (err)
1902 			goto restore_opts;
1903 		need_stop_gc = true;
1904 	}
1905 
1906 	if (*flags & SB_RDONLY ||
1907 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1908 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1909 		sync_inodes_sb(sb);
1910 
1911 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1912 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1913 		f2fs_sync_fs(sb, 1);
1914 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1915 	}
1916 
1917 	if (checkpoint_changed) {
1918 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1919 			err = f2fs_disable_checkpoint(sbi);
1920 			if (err)
1921 				goto restore_gc;
1922 		} else {
1923 			f2fs_enable_checkpoint(sbi);
1924 		}
1925 	}
1926 
1927 	/*
1928 	 * We stop issue flush thread if FS is mounted as RO
1929 	 * or if flush_merge is not passed in mount option.
1930 	 */
1931 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1932 		clear_opt(sbi, FLUSH_MERGE);
1933 		f2fs_destroy_flush_cmd_control(sbi, false);
1934 	} else {
1935 		err = f2fs_create_flush_cmd_control(sbi);
1936 		if (err)
1937 			goto restore_gc;
1938 	}
1939 skip:
1940 #ifdef CONFIG_QUOTA
1941 	/* Release old quota file names */
1942 	for (i = 0; i < MAXQUOTAS; i++)
1943 		kfree(org_mount_opt.s_qf_names[i]);
1944 #endif
1945 	/* Update the POSIXACL Flag */
1946 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1947 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1948 
1949 	limit_reserve_root(sbi);
1950 	adjust_unusable_cap_perc(sbi);
1951 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1952 	return 0;
1953 restore_gc:
1954 	if (need_restart_gc) {
1955 		if (f2fs_start_gc_thread(sbi))
1956 			f2fs_warn(sbi, "background gc thread has stopped");
1957 	} else if (need_stop_gc) {
1958 		f2fs_stop_gc_thread(sbi);
1959 	}
1960 restore_opts:
1961 #ifdef CONFIG_QUOTA
1962 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1963 	for (i = 0; i < MAXQUOTAS; i++) {
1964 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1965 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1966 	}
1967 #endif
1968 	sbi->mount_opt = org_mount_opt;
1969 	sb->s_flags = old_sb_flags;
1970 	return err;
1971 }
1972 
1973 #ifdef CONFIG_QUOTA
1974 /* Read data from quotafile */
1975 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1976 			       size_t len, loff_t off)
1977 {
1978 	struct inode *inode = sb_dqopt(sb)->files[type];
1979 	struct address_space *mapping = inode->i_mapping;
1980 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1981 	int offset = off & (sb->s_blocksize - 1);
1982 	int tocopy;
1983 	size_t toread;
1984 	loff_t i_size = i_size_read(inode);
1985 	struct page *page;
1986 	char *kaddr;
1987 
1988 	if (off > i_size)
1989 		return 0;
1990 
1991 	if (off + len > i_size)
1992 		len = i_size - off;
1993 	toread = len;
1994 	while (toread > 0) {
1995 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1996 repeat:
1997 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1998 		if (IS_ERR(page)) {
1999 			if (PTR_ERR(page) == -ENOMEM) {
2000 				congestion_wait(BLK_RW_ASYNC,
2001 						DEFAULT_IO_TIMEOUT);
2002 				goto repeat;
2003 			}
2004 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2005 			return PTR_ERR(page);
2006 		}
2007 
2008 		lock_page(page);
2009 
2010 		if (unlikely(page->mapping != mapping)) {
2011 			f2fs_put_page(page, 1);
2012 			goto repeat;
2013 		}
2014 		if (unlikely(!PageUptodate(page))) {
2015 			f2fs_put_page(page, 1);
2016 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2017 			return -EIO;
2018 		}
2019 
2020 		kaddr = kmap_atomic(page);
2021 		memcpy(data, kaddr + offset, tocopy);
2022 		kunmap_atomic(kaddr);
2023 		f2fs_put_page(page, 1);
2024 
2025 		offset = 0;
2026 		toread -= tocopy;
2027 		data += tocopy;
2028 		blkidx++;
2029 	}
2030 	return len;
2031 }
2032 
2033 /* Write to quotafile */
2034 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2035 				const char *data, size_t len, loff_t off)
2036 {
2037 	struct inode *inode = sb_dqopt(sb)->files[type];
2038 	struct address_space *mapping = inode->i_mapping;
2039 	const struct address_space_operations *a_ops = mapping->a_ops;
2040 	int offset = off & (sb->s_blocksize - 1);
2041 	size_t towrite = len;
2042 	struct page *page;
2043 	void *fsdata = NULL;
2044 	char *kaddr;
2045 	int err = 0;
2046 	int tocopy;
2047 
2048 	while (towrite > 0) {
2049 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2050 								towrite);
2051 retry:
2052 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2053 							&page, &fsdata);
2054 		if (unlikely(err)) {
2055 			if (err == -ENOMEM) {
2056 				congestion_wait(BLK_RW_ASYNC,
2057 						DEFAULT_IO_TIMEOUT);
2058 				goto retry;
2059 			}
2060 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2061 			break;
2062 		}
2063 
2064 		kaddr = kmap_atomic(page);
2065 		memcpy(kaddr + offset, data, tocopy);
2066 		kunmap_atomic(kaddr);
2067 		flush_dcache_page(page);
2068 
2069 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2070 						page, fsdata);
2071 		offset = 0;
2072 		towrite -= tocopy;
2073 		off += tocopy;
2074 		data += tocopy;
2075 		cond_resched();
2076 	}
2077 
2078 	if (len == towrite)
2079 		return err;
2080 	inode->i_mtime = inode->i_ctime = current_time(inode);
2081 	f2fs_mark_inode_dirty_sync(inode, false);
2082 	return len - towrite;
2083 }
2084 
2085 static struct dquot **f2fs_get_dquots(struct inode *inode)
2086 {
2087 	return F2FS_I(inode)->i_dquot;
2088 }
2089 
2090 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2091 {
2092 	return &F2FS_I(inode)->i_reserved_quota;
2093 }
2094 
2095 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2096 {
2097 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2098 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2099 		return 0;
2100 	}
2101 
2102 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2103 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2104 }
2105 
2106 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2107 {
2108 	int enabled = 0;
2109 	int i, err;
2110 
2111 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2112 		err = f2fs_enable_quotas(sbi->sb);
2113 		if (err) {
2114 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2115 			return 0;
2116 		}
2117 		return 1;
2118 	}
2119 
2120 	for (i = 0; i < MAXQUOTAS; i++) {
2121 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2122 			err = f2fs_quota_on_mount(sbi, i);
2123 			if (!err) {
2124 				enabled = 1;
2125 				continue;
2126 			}
2127 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2128 				 err, i);
2129 		}
2130 	}
2131 	return enabled;
2132 }
2133 
2134 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2135 			     unsigned int flags)
2136 {
2137 	struct inode *qf_inode;
2138 	unsigned long qf_inum;
2139 	int err;
2140 
2141 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2142 
2143 	qf_inum = f2fs_qf_ino(sb, type);
2144 	if (!qf_inum)
2145 		return -EPERM;
2146 
2147 	qf_inode = f2fs_iget(sb, qf_inum);
2148 	if (IS_ERR(qf_inode)) {
2149 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2150 		return PTR_ERR(qf_inode);
2151 	}
2152 
2153 	/* Don't account quota for quota files to avoid recursion */
2154 	qf_inode->i_flags |= S_NOQUOTA;
2155 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2156 	iput(qf_inode);
2157 	return err;
2158 }
2159 
2160 static int f2fs_enable_quotas(struct super_block *sb)
2161 {
2162 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2163 	int type, err = 0;
2164 	unsigned long qf_inum;
2165 	bool quota_mopt[MAXQUOTAS] = {
2166 		test_opt(sbi, USRQUOTA),
2167 		test_opt(sbi, GRPQUOTA),
2168 		test_opt(sbi, PRJQUOTA),
2169 	};
2170 
2171 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2172 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2173 		return 0;
2174 	}
2175 
2176 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2177 
2178 	for (type = 0; type < MAXQUOTAS; type++) {
2179 		qf_inum = f2fs_qf_ino(sb, type);
2180 		if (qf_inum) {
2181 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2182 				DQUOT_USAGE_ENABLED |
2183 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2184 			if (err) {
2185 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2186 					 type, err);
2187 				for (type--; type >= 0; type--)
2188 					dquot_quota_off(sb, type);
2189 				set_sbi_flag(F2FS_SB(sb),
2190 						SBI_QUOTA_NEED_REPAIR);
2191 				return err;
2192 			}
2193 		}
2194 	}
2195 	return 0;
2196 }
2197 
2198 int f2fs_quota_sync(struct super_block *sb, int type)
2199 {
2200 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2201 	struct quota_info *dqopt = sb_dqopt(sb);
2202 	int cnt;
2203 	int ret;
2204 
2205 	/*
2206 	 * do_quotactl
2207 	 *  f2fs_quota_sync
2208 	 *  down_read(quota_sem)
2209 	 *  dquot_writeback_dquots()
2210 	 *  f2fs_dquot_commit
2211 	 *                            block_operation
2212 	 *                            down_read(quota_sem)
2213 	 */
2214 	f2fs_lock_op(sbi);
2215 
2216 	down_read(&sbi->quota_sem);
2217 	ret = dquot_writeback_dquots(sb, type);
2218 	if (ret)
2219 		goto out;
2220 
2221 	/*
2222 	 * Now when everything is written we can discard the pagecache so
2223 	 * that userspace sees the changes.
2224 	 */
2225 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2226 		struct address_space *mapping;
2227 
2228 		if (type != -1 && cnt != type)
2229 			continue;
2230 		if (!sb_has_quota_active(sb, cnt))
2231 			continue;
2232 
2233 		mapping = dqopt->files[cnt]->i_mapping;
2234 
2235 		ret = filemap_fdatawrite(mapping);
2236 		if (ret)
2237 			goto out;
2238 
2239 		/* if we are using journalled quota */
2240 		if (is_journalled_quota(sbi))
2241 			continue;
2242 
2243 		ret = filemap_fdatawait(mapping);
2244 		if (ret)
2245 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2246 
2247 		inode_lock(dqopt->files[cnt]);
2248 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2249 		inode_unlock(dqopt->files[cnt]);
2250 	}
2251 out:
2252 	if (ret)
2253 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2254 	up_read(&sbi->quota_sem);
2255 	f2fs_unlock_op(sbi);
2256 	return ret;
2257 }
2258 
2259 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2260 							const struct path *path)
2261 {
2262 	struct inode *inode;
2263 	int err;
2264 
2265 	/* if quota sysfile exists, deny enabling quota with specific file */
2266 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2267 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2268 		return -EBUSY;
2269 	}
2270 
2271 	err = f2fs_quota_sync(sb, type);
2272 	if (err)
2273 		return err;
2274 
2275 	err = dquot_quota_on(sb, type, format_id, path);
2276 	if (err)
2277 		return err;
2278 
2279 	inode = d_inode(path->dentry);
2280 
2281 	inode_lock(inode);
2282 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2283 	f2fs_set_inode_flags(inode);
2284 	inode_unlock(inode);
2285 	f2fs_mark_inode_dirty_sync(inode, false);
2286 
2287 	return 0;
2288 }
2289 
2290 static int __f2fs_quota_off(struct super_block *sb, int type)
2291 {
2292 	struct inode *inode = sb_dqopt(sb)->files[type];
2293 	int err;
2294 
2295 	if (!inode || !igrab(inode))
2296 		return dquot_quota_off(sb, type);
2297 
2298 	err = f2fs_quota_sync(sb, type);
2299 	if (err)
2300 		goto out_put;
2301 
2302 	err = dquot_quota_off(sb, type);
2303 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2304 		goto out_put;
2305 
2306 	inode_lock(inode);
2307 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2308 	f2fs_set_inode_flags(inode);
2309 	inode_unlock(inode);
2310 	f2fs_mark_inode_dirty_sync(inode, false);
2311 out_put:
2312 	iput(inode);
2313 	return err;
2314 }
2315 
2316 static int f2fs_quota_off(struct super_block *sb, int type)
2317 {
2318 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2319 	int err;
2320 
2321 	err = __f2fs_quota_off(sb, type);
2322 
2323 	/*
2324 	 * quotactl can shutdown journalled quota, result in inconsistence
2325 	 * between quota record and fs data by following updates, tag the
2326 	 * flag to let fsck be aware of it.
2327 	 */
2328 	if (is_journalled_quota(sbi))
2329 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2330 	return err;
2331 }
2332 
2333 void f2fs_quota_off_umount(struct super_block *sb)
2334 {
2335 	int type;
2336 	int err;
2337 
2338 	for (type = 0; type < MAXQUOTAS; type++) {
2339 		err = __f2fs_quota_off(sb, type);
2340 		if (err) {
2341 			int ret = dquot_quota_off(sb, type);
2342 
2343 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2344 				 type, err, ret);
2345 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2346 		}
2347 	}
2348 	/*
2349 	 * In case of checkpoint=disable, we must flush quota blocks.
2350 	 * This can cause NULL exception for node_inode in end_io, since
2351 	 * put_super already dropped it.
2352 	 */
2353 	sync_filesystem(sb);
2354 }
2355 
2356 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2357 {
2358 	struct quota_info *dqopt = sb_dqopt(sb);
2359 	int type;
2360 
2361 	for (type = 0; type < MAXQUOTAS; type++) {
2362 		if (!dqopt->files[type])
2363 			continue;
2364 		f2fs_inode_synced(dqopt->files[type]);
2365 	}
2366 }
2367 
2368 static int f2fs_dquot_commit(struct dquot *dquot)
2369 {
2370 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2371 	int ret;
2372 
2373 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2374 	ret = dquot_commit(dquot);
2375 	if (ret < 0)
2376 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2377 	up_read(&sbi->quota_sem);
2378 	return ret;
2379 }
2380 
2381 static int f2fs_dquot_acquire(struct dquot *dquot)
2382 {
2383 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2384 	int ret;
2385 
2386 	down_read(&sbi->quota_sem);
2387 	ret = dquot_acquire(dquot);
2388 	if (ret < 0)
2389 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2390 	up_read(&sbi->quota_sem);
2391 	return ret;
2392 }
2393 
2394 static int f2fs_dquot_release(struct dquot *dquot)
2395 {
2396 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2397 	int ret = dquot_release(dquot);
2398 
2399 	if (ret < 0)
2400 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2401 	return ret;
2402 }
2403 
2404 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2405 {
2406 	struct super_block *sb = dquot->dq_sb;
2407 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2408 	int ret = dquot_mark_dquot_dirty(dquot);
2409 
2410 	/* if we are using journalled quota */
2411 	if (is_journalled_quota(sbi))
2412 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2413 
2414 	return ret;
2415 }
2416 
2417 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2418 {
2419 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2420 	int ret = dquot_commit_info(sb, type);
2421 
2422 	if (ret < 0)
2423 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2424 	return ret;
2425 }
2426 
2427 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2428 {
2429 	*projid = F2FS_I(inode)->i_projid;
2430 	return 0;
2431 }
2432 
2433 static const struct dquot_operations f2fs_quota_operations = {
2434 	.get_reserved_space = f2fs_get_reserved_space,
2435 	.write_dquot	= f2fs_dquot_commit,
2436 	.acquire_dquot	= f2fs_dquot_acquire,
2437 	.release_dquot	= f2fs_dquot_release,
2438 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2439 	.write_info	= f2fs_dquot_commit_info,
2440 	.alloc_dquot	= dquot_alloc,
2441 	.destroy_dquot	= dquot_destroy,
2442 	.get_projid	= f2fs_get_projid,
2443 	.get_next_id	= dquot_get_next_id,
2444 };
2445 
2446 static const struct quotactl_ops f2fs_quotactl_ops = {
2447 	.quota_on	= f2fs_quota_on,
2448 	.quota_off	= f2fs_quota_off,
2449 	.quota_sync	= f2fs_quota_sync,
2450 	.get_state	= dquot_get_state,
2451 	.set_info	= dquot_set_dqinfo,
2452 	.get_dqblk	= dquot_get_dqblk,
2453 	.set_dqblk	= dquot_set_dqblk,
2454 	.get_nextdqblk	= dquot_get_next_dqblk,
2455 };
2456 #else
2457 int f2fs_quota_sync(struct super_block *sb, int type)
2458 {
2459 	return 0;
2460 }
2461 
2462 void f2fs_quota_off_umount(struct super_block *sb)
2463 {
2464 }
2465 #endif
2466 
2467 static const struct super_operations f2fs_sops = {
2468 	.alloc_inode	= f2fs_alloc_inode,
2469 	.free_inode	= f2fs_free_inode,
2470 	.drop_inode	= f2fs_drop_inode,
2471 	.write_inode	= f2fs_write_inode,
2472 	.dirty_inode	= f2fs_dirty_inode,
2473 	.show_options	= f2fs_show_options,
2474 #ifdef CONFIG_QUOTA
2475 	.quota_read	= f2fs_quota_read,
2476 	.quota_write	= f2fs_quota_write,
2477 	.get_dquots	= f2fs_get_dquots,
2478 #endif
2479 	.evict_inode	= f2fs_evict_inode,
2480 	.put_super	= f2fs_put_super,
2481 	.sync_fs	= f2fs_sync_fs,
2482 	.freeze_fs	= f2fs_freeze,
2483 	.unfreeze_fs	= f2fs_unfreeze,
2484 	.statfs		= f2fs_statfs,
2485 	.remount_fs	= f2fs_remount,
2486 };
2487 
2488 #ifdef CONFIG_FS_ENCRYPTION
2489 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2490 {
2491 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2492 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2493 				ctx, len, NULL);
2494 }
2495 
2496 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2497 							void *fs_data)
2498 {
2499 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2500 
2501 	/*
2502 	 * Encrypting the root directory is not allowed because fsck
2503 	 * expects lost+found directory to exist and remain unencrypted
2504 	 * if LOST_FOUND feature is enabled.
2505 	 *
2506 	 */
2507 	if (f2fs_sb_has_lost_found(sbi) &&
2508 			inode->i_ino == F2FS_ROOT_INO(sbi))
2509 		return -EPERM;
2510 
2511 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2512 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2513 				ctx, len, fs_data, XATTR_CREATE);
2514 }
2515 
2516 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2517 {
2518 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2519 }
2520 
2521 static bool f2fs_has_stable_inodes(struct super_block *sb)
2522 {
2523 	return true;
2524 }
2525 
2526 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2527 				       int *ino_bits_ret, int *lblk_bits_ret)
2528 {
2529 	*ino_bits_ret = 8 * sizeof(nid_t);
2530 	*lblk_bits_ret = 8 * sizeof(block_t);
2531 }
2532 
2533 static int f2fs_get_num_devices(struct super_block *sb)
2534 {
2535 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2536 
2537 	if (f2fs_is_multi_device(sbi))
2538 		return sbi->s_ndevs;
2539 	return 1;
2540 }
2541 
2542 static void f2fs_get_devices(struct super_block *sb,
2543 			     struct request_queue **devs)
2544 {
2545 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2546 	int i;
2547 
2548 	for (i = 0; i < sbi->s_ndevs; i++)
2549 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2550 }
2551 
2552 static const struct fscrypt_operations f2fs_cryptops = {
2553 	.key_prefix		= "f2fs:",
2554 	.get_context		= f2fs_get_context,
2555 	.set_context		= f2fs_set_context,
2556 	.get_dummy_policy	= f2fs_get_dummy_policy,
2557 	.empty_dir		= f2fs_empty_dir,
2558 	.max_namelen		= F2FS_NAME_LEN,
2559 	.has_stable_inodes	= f2fs_has_stable_inodes,
2560 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2561 	.get_num_devices	= f2fs_get_num_devices,
2562 	.get_devices		= f2fs_get_devices,
2563 };
2564 #endif
2565 
2566 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2567 		u64 ino, u32 generation)
2568 {
2569 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2570 	struct inode *inode;
2571 
2572 	if (f2fs_check_nid_range(sbi, ino))
2573 		return ERR_PTR(-ESTALE);
2574 
2575 	/*
2576 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2577 	 * However f2fs_iget currently does appropriate checks to handle stale
2578 	 * inodes so everything is OK.
2579 	 */
2580 	inode = f2fs_iget(sb, ino);
2581 	if (IS_ERR(inode))
2582 		return ERR_CAST(inode);
2583 	if (unlikely(generation && inode->i_generation != generation)) {
2584 		/* we didn't find the right inode.. */
2585 		iput(inode);
2586 		return ERR_PTR(-ESTALE);
2587 	}
2588 	return inode;
2589 }
2590 
2591 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2592 		int fh_len, int fh_type)
2593 {
2594 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2595 				    f2fs_nfs_get_inode);
2596 }
2597 
2598 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2599 		int fh_len, int fh_type)
2600 {
2601 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2602 				    f2fs_nfs_get_inode);
2603 }
2604 
2605 static const struct export_operations f2fs_export_ops = {
2606 	.fh_to_dentry = f2fs_fh_to_dentry,
2607 	.fh_to_parent = f2fs_fh_to_parent,
2608 	.get_parent = f2fs_get_parent,
2609 };
2610 
2611 static loff_t max_file_blocks(void)
2612 {
2613 	loff_t result = 0;
2614 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2615 
2616 	/*
2617 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2618 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2619 	 * space in inode.i_addr, it will be more safe to reassign
2620 	 * result as zero.
2621 	 */
2622 
2623 	/* two direct node blocks */
2624 	result += (leaf_count * 2);
2625 
2626 	/* two indirect node blocks */
2627 	leaf_count *= NIDS_PER_BLOCK;
2628 	result += (leaf_count * 2);
2629 
2630 	/* one double indirect node block */
2631 	leaf_count *= NIDS_PER_BLOCK;
2632 	result += leaf_count;
2633 
2634 	return result;
2635 }
2636 
2637 static int __f2fs_commit_super(struct buffer_head *bh,
2638 			struct f2fs_super_block *super)
2639 {
2640 	lock_buffer(bh);
2641 	if (super)
2642 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2643 	set_buffer_dirty(bh);
2644 	unlock_buffer(bh);
2645 
2646 	/* it's rare case, we can do fua all the time */
2647 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2648 }
2649 
2650 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2651 					struct buffer_head *bh)
2652 {
2653 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2654 					(bh->b_data + F2FS_SUPER_OFFSET);
2655 	struct super_block *sb = sbi->sb;
2656 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2657 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2658 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2659 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2660 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2661 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2662 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2663 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2664 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2665 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2666 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2667 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2668 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2669 	u64 main_end_blkaddr = main_blkaddr +
2670 				(segment_count_main << log_blocks_per_seg);
2671 	u64 seg_end_blkaddr = segment0_blkaddr +
2672 				(segment_count << log_blocks_per_seg);
2673 
2674 	if (segment0_blkaddr != cp_blkaddr) {
2675 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2676 			  segment0_blkaddr, cp_blkaddr);
2677 		return true;
2678 	}
2679 
2680 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2681 							sit_blkaddr) {
2682 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2683 			  cp_blkaddr, sit_blkaddr,
2684 			  segment_count_ckpt << log_blocks_per_seg);
2685 		return true;
2686 	}
2687 
2688 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2689 							nat_blkaddr) {
2690 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2691 			  sit_blkaddr, nat_blkaddr,
2692 			  segment_count_sit << log_blocks_per_seg);
2693 		return true;
2694 	}
2695 
2696 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2697 							ssa_blkaddr) {
2698 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2699 			  nat_blkaddr, ssa_blkaddr,
2700 			  segment_count_nat << log_blocks_per_seg);
2701 		return true;
2702 	}
2703 
2704 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2705 							main_blkaddr) {
2706 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2707 			  ssa_blkaddr, main_blkaddr,
2708 			  segment_count_ssa << log_blocks_per_seg);
2709 		return true;
2710 	}
2711 
2712 	if (main_end_blkaddr > seg_end_blkaddr) {
2713 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
2714 			  main_blkaddr, seg_end_blkaddr,
2715 			  segment_count_main << log_blocks_per_seg);
2716 		return true;
2717 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2718 		int err = 0;
2719 		char *res;
2720 
2721 		/* fix in-memory information all the time */
2722 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2723 				segment0_blkaddr) >> log_blocks_per_seg);
2724 
2725 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2726 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2727 			res = "internally";
2728 		} else {
2729 			err = __f2fs_commit_super(bh, NULL);
2730 			res = err ? "failed" : "done";
2731 		}
2732 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
2733 			  res, main_blkaddr, seg_end_blkaddr,
2734 			  segment_count_main << log_blocks_per_seg);
2735 		if (err)
2736 			return true;
2737 	}
2738 	return false;
2739 }
2740 
2741 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2742 				struct buffer_head *bh)
2743 {
2744 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
2745 	block_t total_sections, blocks_per_seg;
2746 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2747 					(bh->b_data + F2FS_SUPER_OFFSET);
2748 	unsigned int blocksize;
2749 	size_t crc_offset = 0;
2750 	__u32 crc = 0;
2751 
2752 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2753 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2754 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2755 		return -EINVAL;
2756 	}
2757 
2758 	/* Check checksum_offset and crc in superblock */
2759 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2760 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2761 		if (crc_offset !=
2762 			offsetof(struct f2fs_super_block, crc)) {
2763 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2764 				  crc_offset);
2765 			return -EFSCORRUPTED;
2766 		}
2767 		crc = le32_to_cpu(raw_super->crc);
2768 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2769 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2770 			return -EFSCORRUPTED;
2771 		}
2772 	}
2773 
2774 	/* Currently, support only 4KB page cache size */
2775 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2776 		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2777 			  PAGE_SIZE);
2778 		return -EFSCORRUPTED;
2779 	}
2780 
2781 	/* Currently, support only 4KB block size */
2782 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2783 	if (blocksize != F2FS_BLKSIZE) {
2784 		f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2785 			  blocksize);
2786 		return -EFSCORRUPTED;
2787 	}
2788 
2789 	/* check log blocks per segment */
2790 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2791 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2792 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2793 		return -EFSCORRUPTED;
2794 	}
2795 
2796 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2797 	if (le32_to_cpu(raw_super->log_sectorsize) >
2798 				F2FS_MAX_LOG_SECTOR_SIZE ||
2799 		le32_to_cpu(raw_super->log_sectorsize) <
2800 				F2FS_MIN_LOG_SECTOR_SIZE) {
2801 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2802 			  le32_to_cpu(raw_super->log_sectorsize));
2803 		return -EFSCORRUPTED;
2804 	}
2805 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2806 		le32_to_cpu(raw_super->log_sectorsize) !=
2807 			F2FS_MAX_LOG_SECTOR_SIZE) {
2808 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2809 			  le32_to_cpu(raw_super->log_sectors_per_block),
2810 			  le32_to_cpu(raw_super->log_sectorsize));
2811 		return -EFSCORRUPTED;
2812 	}
2813 
2814 	segment_count = le32_to_cpu(raw_super->segment_count);
2815 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2816 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2817 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2818 	total_sections = le32_to_cpu(raw_super->section_count);
2819 
2820 	/* blocks_per_seg should be 512, given the above check */
2821 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2822 
2823 	if (segment_count > F2FS_MAX_SEGMENT ||
2824 				segment_count < F2FS_MIN_SEGMENTS) {
2825 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2826 		return -EFSCORRUPTED;
2827 	}
2828 
2829 	if (total_sections > segment_count_main || total_sections < 1 ||
2830 			segs_per_sec > segment_count || !segs_per_sec) {
2831 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2832 			  segment_count, total_sections, segs_per_sec);
2833 		return -EFSCORRUPTED;
2834 	}
2835 
2836 	if (segment_count_main != total_sections * segs_per_sec) {
2837 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
2838 			  segment_count_main, total_sections, segs_per_sec);
2839 		return -EFSCORRUPTED;
2840 	}
2841 
2842 	if ((segment_count / segs_per_sec) < total_sections) {
2843 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2844 			  segment_count, segs_per_sec, total_sections);
2845 		return -EFSCORRUPTED;
2846 	}
2847 
2848 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2849 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2850 			  segment_count, le64_to_cpu(raw_super->block_count));
2851 		return -EFSCORRUPTED;
2852 	}
2853 
2854 	if (RDEV(0).path[0]) {
2855 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2856 		int i = 1;
2857 
2858 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
2859 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2860 			i++;
2861 		}
2862 		if (segment_count != dev_seg_count) {
2863 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2864 					segment_count, dev_seg_count);
2865 			return -EFSCORRUPTED;
2866 		}
2867 	} else {
2868 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
2869 					!bdev_is_zoned(sbi->sb->s_bdev)) {
2870 			f2fs_info(sbi, "Zoned block device path is missing");
2871 			return -EFSCORRUPTED;
2872 		}
2873 	}
2874 
2875 	if (secs_per_zone > total_sections || !secs_per_zone) {
2876 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2877 			  secs_per_zone, total_sections);
2878 		return -EFSCORRUPTED;
2879 	}
2880 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2881 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2882 			(le32_to_cpu(raw_super->extension_count) +
2883 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2884 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2885 			  le32_to_cpu(raw_super->extension_count),
2886 			  raw_super->hot_ext_count,
2887 			  F2FS_MAX_EXTENSION);
2888 		return -EFSCORRUPTED;
2889 	}
2890 
2891 	if (le32_to_cpu(raw_super->cp_payload) >
2892 				(blocks_per_seg - F2FS_CP_PACKS)) {
2893 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2894 			  le32_to_cpu(raw_super->cp_payload),
2895 			  blocks_per_seg - F2FS_CP_PACKS);
2896 		return -EFSCORRUPTED;
2897 	}
2898 
2899 	/* check reserved ino info */
2900 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2901 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2902 		le32_to_cpu(raw_super->root_ino) != 3) {
2903 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2904 			  le32_to_cpu(raw_super->node_ino),
2905 			  le32_to_cpu(raw_super->meta_ino),
2906 			  le32_to_cpu(raw_super->root_ino));
2907 		return -EFSCORRUPTED;
2908 	}
2909 
2910 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2911 	if (sanity_check_area_boundary(sbi, bh))
2912 		return -EFSCORRUPTED;
2913 
2914 	return 0;
2915 }
2916 
2917 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2918 {
2919 	unsigned int total, fsmeta;
2920 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2921 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2922 	unsigned int ovp_segments, reserved_segments;
2923 	unsigned int main_segs, blocks_per_seg;
2924 	unsigned int sit_segs, nat_segs;
2925 	unsigned int sit_bitmap_size, nat_bitmap_size;
2926 	unsigned int log_blocks_per_seg;
2927 	unsigned int segment_count_main;
2928 	unsigned int cp_pack_start_sum, cp_payload;
2929 	block_t user_block_count, valid_user_blocks;
2930 	block_t avail_node_count, valid_node_count;
2931 	int i, j;
2932 
2933 	total = le32_to_cpu(raw_super->segment_count);
2934 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2935 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2936 	fsmeta += sit_segs;
2937 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2938 	fsmeta += nat_segs;
2939 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2940 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2941 
2942 	if (unlikely(fsmeta >= total))
2943 		return 1;
2944 
2945 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2946 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2947 
2948 	if (unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
2949 			ovp_segments == 0 || reserved_segments == 0)) {
2950 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2951 		return 1;
2952 	}
2953 
2954 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2955 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2956 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2957 	if (!user_block_count || user_block_count >=
2958 			segment_count_main << log_blocks_per_seg) {
2959 		f2fs_err(sbi, "Wrong user_block_count: %u",
2960 			 user_block_count);
2961 		return 1;
2962 	}
2963 
2964 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2965 	if (valid_user_blocks > user_block_count) {
2966 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2967 			 valid_user_blocks, user_block_count);
2968 		return 1;
2969 	}
2970 
2971 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2972 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2973 	if (valid_node_count > avail_node_count) {
2974 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2975 			 valid_node_count, avail_node_count);
2976 		return 1;
2977 	}
2978 
2979 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2980 	blocks_per_seg = sbi->blocks_per_seg;
2981 
2982 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2983 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2984 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2985 			return 1;
2986 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2987 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2988 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2989 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2990 					 i, j,
2991 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2992 				return 1;
2993 			}
2994 		}
2995 	}
2996 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2997 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2998 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2999 			return 1;
3000 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3001 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3002 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3003 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3004 					 i, j,
3005 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3006 				return 1;
3007 			}
3008 		}
3009 	}
3010 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3011 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3012 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3013 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3014 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3015 					 i, j,
3016 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3017 				return 1;
3018 			}
3019 		}
3020 	}
3021 
3022 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3023 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3024 
3025 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3026 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3027 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3028 			 sit_bitmap_size, nat_bitmap_size);
3029 		return 1;
3030 	}
3031 
3032 	cp_pack_start_sum = __start_sum_addr(sbi);
3033 	cp_payload = __cp_payload(sbi);
3034 	if (cp_pack_start_sum < cp_payload + 1 ||
3035 		cp_pack_start_sum > blocks_per_seg - 1 -
3036 			NR_CURSEG_PERSIST_TYPE) {
3037 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3038 			 cp_pack_start_sum);
3039 		return 1;
3040 	}
3041 
3042 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3043 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3044 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3045 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3046 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3047 			  le32_to_cpu(ckpt->checksum_offset));
3048 		return 1;
3049 	}
3050 
3051 	if (unlikely(f2fs_cp_error(sbi))) {
3052 		f2fs_err(sbi, "A bug case: need to run fsck");
3053 		return 1;
3054 	}
3055 	return 0;
3056 }
3057 
3058 static void init_sb_info(struct f2fs_sb_info *sbi)
3059 {
3060 	struct f2fs_super_block *raw_super = sbi->raw_super;
3061 	int i;
3062 
3063 	sbi->log_sectors_per_block =
3064 		le32_to_cpu(raw_super->log_sectors_per_block);
3065 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3066 	sbi->blocksize = 1 << sbi->log_blocksize;
3067 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3068 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3069 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3070 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3071 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3072 	sbi->total_node_count =
3073 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3074 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3075 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
3076 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
3077 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
3078 	sbi->cur_victim_sec = NULL_SECNO;
3079 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3080 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3081 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3082 	sbi->migration_granularity = sbi->segs_per_sec;
3083 
3084 	sbi->dir_level = DEF_DIR_LEVEL;
3085 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3086 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3087 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3088 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3089 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3090 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3091 				DEF_UMOUNT_DISCARD_TIMEOUT;
3092 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3093 
3094 	for (i = 0; i < NR_COUNT_TYPE; i++)
3095 		atomic_set(&sbi->nr_pages[i], 0);
3096 
3097 	for (i = 0; i < META; i++)
3098 		atomic_set(&sbi->wb_sync_req[i], 0);
3099 
3100 	INIT_LIST_HEAD(&sbi->s_list);
3101 	mutex_init(&sbi->umount_mutex);
3102 	init_rwsem(&sbi->io_order_lock);
3103 	spin_lock_init(&sbi->cp_lock);
3104 
3105 	sbi->dirty_device = 0;
3106 	spin_lock_init(&sbi->dev_lock);
3107 
3108 	init_rwsem(&sbi->sb_lock);
3109 	init_rwsem(&sbi->pin_sem);
3110 }
3111 
3112 static int init_percpu_info(struct f2fs_sb_info *sbi)
3113 {
3114 	int err;
3115 
3116 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3117 	if (err)
3118 		return err;
3119 
3120 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3121 								GFP_KERNEL);
3122 	if (err)
3123 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3124 
3125 	return err;
3126 }
3127 
3128 #ifdef CONFIG_BLK_DEV_ZONED
3129 
3130 struct f2fs_report_zones_args {
3131 	struct f2fs_dev_info *dev;
3132 	bool zone_cap_mismatch;
3133 };
3134 
3135 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3136 			      void *data)
3137 {
3138 	struct f2fs_report_zones_args *rz_args = data;
3139 
3140 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3141 		return 0;
3142 
3143 	set_bit(idx, rz_args->dev->blkz_seq);
3144 	rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3145 						F2FS_LOG_SECTORS_PER_BLOCK;
3146 	if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3147 		rz_args->zone_cap_mismatch = true;
3148 
3149 	return 0;
3150 }
3151 
3152 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3153 {
3154 	struct block_device *bdev = FDEV(devi).bdev;
3155 	sector_t nr_sectors = bdev->bd_part->nr_sects;
3156 	struct f2fs_report_zones_args rep_zone_arg;
3157 	int ret;
3158 
3159 	if (!f2fs_sb_has_blkzoned(sbi))
3160 		return 0;
3161 
3162 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3163 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3164 		return -EINVAL;
3165 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3166 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3167 				__ilog2_u32(sbi->blocks_per_blkz))
3168 		return -EINVAL;
3169 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3170 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3171 					sbi->log_blocks_per_blkz;
3172 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3173 		FDEV(devi).nr_blkz++;
3174 
3175 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3176 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3177 					* sizeof(unsigned long),
3178 					GFP_KERNEL);
3179 	if (!FDEV(devi).blkz_seq)
3180 		return -ENOMEM;
3181 
3182 	/* Get block zones type and zone-capacity */
3183 	FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3184 					FDEV(devi).nr_blkz * sizeof(block_t),
3185 					GFP_KERNEL);
3186 	if (!FDEV(devi).zone_capacity_blocks)
3187 		return -ENOMEM;
3188 
3189 	rep_zone_arg.dev = &FDEV(devi);
3190 	rep_zone_arg.zone_cap_mismatch = false;
3191 
3192 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3193 				  &rep_zone_arg);
3194 	if (ret < 0)
3195 		return ret;
3196 
3197 	if (!rep_zone_arg.zone_cap_mismatch) {
3198 		kfree(FDEV(devi).zone_capacity_blocks);
3199 		FDEV(devi).zone_capacity_blocks = NULL;
3200 	}
3201 
3202 	return 0;
3203 }
3204 #endif
3205 
3206 /*
3207  * Read f2fs raw super block.
3208  * Because we have two copies of super block, so read both of them
3209  * to get the first valid one. If any one of them is broken, we pass
3210  * them recovery flag back to the caller.
3211  */
3212 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3213 			struct f2fs_super_block **raw_super,
3214 			int *valid_super_block, int *recovery)
3215 {
3216 	struct super_block *sb = sbi->sb;
3217 	int block;
3218 	struct buffer_head *bh;
3219 	struct f2fs_super_block *super;
3220 	int err = 0;
3221 
3222 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3223 	if (!super)
3224 		return -ENOMEM;
3225 
3226 	for (block = 0; block < 2; block++) {
3227 		bh = sb_bread(sb, block);
3228 		if (!bh) {
3229 			f2fs_err(sbi, "Unable to read %dth superblock",
3230 				 block + 1);
3231 			err = -EIO;
3232 			*recovery = 1;
3233 			continue;
3234 		}
3235 
3236 		/* sanity checking of raw super */
3237 		err = sanity_check_raw_super(sbi, bh);
3238 		if (err) {
3239 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3240 				 block + 1);
3241 			brelse(bh);
3242 			*recovery = 1;
3243 			continue;
3244 		}
3245 
3246 		if (!*raw_super) {
3247 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3248 							sizeof(*super));
3249 			*valid_super_block = block;
3250 			*raw_super = super;
3251 		}
3252 		brelse(bh);
3253 	}
3254 
3255 	/* No valid superblock */
3256 	if (!*raw_super)
3257 		kfree(super);
3258 	else
3259 		err = 0;
3260 
3261 	return err;
3262 }
3263 
3264 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3265 {
3266 	struct buffer_head *bh;
3267 	__u32 crc = 0;
3268 	int err;
3269 
3270 	if ((recover && f2fs_readonly(sbi->sb)) ||
3271 				bdev_read_only(sbi->sb->s_bdev)) {
3272 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3273 		return -EROFS;
3274 	}
3275 
3276 	/* we should update superblock crc here */
3277 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3278 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3279 				offsetof(struct f2fs_super_block, crc));
3280 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3281 	}
3282 
3283 	/* write back-up superblock first */
3284 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3285 	if (!bh)
3286 		return -EIO;
3287 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3288 	brelse(bh);
3289 
3290 	/* if we are in recovery path, skip writing valid superblock */
3291 	if (recover || err)
3292 		return err;
3293 
3294 	/* write current valid superblock */
3295 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3296 	if (!bh)
3297 		return -EIO;
3298 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3299 	brelse(bh);
3300 	return err;
3301 }
3302 
3303 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3304 {
3305 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3306 	unsigned int max_devices = MAX_DEVICES;
3307 	int i;
3308 
3309 	/* Initialize single device information */
3310 	if (!RDEV(0).path[0]) {
3311 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3312 			return 0;
3313 		max_devices = 1;
3314 	}
3315 
3316 	/*
3317 	 * Initialize multiple devices information, or single
3318 	 * zoned block device information.
3319 	 */
3320 	sbi->devs = f2fs_kzalloc(sbi,
3321 				 array_size(max_devices,
3322 					    sizeof(struct f2fs_dev_info)),
3323 				 GFP_KERNEL);
3324 	if (!sbi->devs)
3325 		return -ENOMEM;
3326 
3327 	for (i = 0; i < max_devices; i++) {
3328 
3329 		if (i > 0 && !RDEV(i).path[0])
3330 			break;
3331 
3332 		if (max_devices == 1) {
3333 			/* Single zoned block device mount */
3334 			FDEV(0).bdev =
3335 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3336 					sbi->sb->s_mode, sbi->sb->s_type);
3337 		} else {
3338 			/* Multi-device mount */
3339 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3340 			FDEV(i).total_segments =
3341 				le32_to_cpu(RDEV(i).total_segments);
3342 			if (i == 0) {
3343 				FDEV(i).start_blk = 0;
3344 				FDEV(i).end_blk = FDEV(i).start_blk +
3345 				    (FDEV(i).total_segments <<
3346 				    sbi->log_blocks_per_seg) - 1 +
3347 				    le32_to_cpu(raw_super->segment0_blkaddr);
3348 			} else {
3349 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3350 				FDEV(i).end_blk = FDEV(i).start_blk +
3351 					(FDEV(i).total_segments <<
3352 					sbi->log_blocks_per_seg) - 1;
3353 			}
3354 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3355 					sbi->sb->s_mode, sbi->sb->s_type);
3356 		}
3357 		if (IS_ERR(FDEV(i).bdev))
3358 			return PTR_ERR(FDEV(i).bdev);
3359 
3360 		/* to release errored devices */
3361 		sbi->s_ndevs = i + 1;
3362 
3363 #ifdef CONFIG_BLK_DEV_ZONED
3364 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3365 				!f2fs_sb_has_blkzoned(sbi)) {
3366 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3367 			return -EINVAL;
3368 		}
3369 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3370 			if (init_blkz_info(sbi, i)) {
3371 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3372 				return -EINVAL;
3373 			}
3374 			if (max_devices == 1)
3375 				break;
3376 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3377 				  i, FDEV(i).path,
3378 				  FDEV(i).total_segments,
3379 				  FDEV(i).start_blk, FDEV(i).end_blk,
3380 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3381 				  "Host-aware" : "Host-managed");
3382 			continue;
3383 		}
3384 #endif
3385 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3386 			  i, FDEV(i).path,
3387 			  FDEV(i).total_segments,
3388 			  FDEV(i).start_blk, FDEV(i).end_blk);
3389 	}
3390 	f2fs_info(sbi,
3391 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3392 	return 0;
3393 }
3394 
3395 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3396 {
3397 #ifdef CONFIG_UNICODE
3398 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3399 		const struct f2fs_sb_encodings *encoding_info;
3400 		struct unicode_map *encoding;
3401 		__u16 encoding_flags;
3402 
3403 		if (f2fs_sb_has_encrypt(sbi)) {
3404 			f2fs_err(sbi,
3405 				"Can't mount with encoding and encryption");
3406 			return -EINVAL;
3407 		}
3408 
3409 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3410 					  &encoding_flags)) {
3411 			f2fs_err(sbi,
3412 				 "Encoding requested by superblock is unknown");
3413 			return -EINVAL;
3414 		}
3415 
3416 		encoding = utf8_load(encoding_info->version);
3417 		if (IS_ERR(encoding)) {
3418 			f2fs_err(sbi,
3419 				 "can't mount with superblock charset: %s-%s "
3420 				 "not supported by the kernel. flags: 0x%x.",
3421 				 encoding_info->name, encoding_info->version,
3422 				 encoding_flags);
3423 			return PTR_ERR(encoding);
3424 		}
3425 		f2fs_info(sbi, "Using encoding defined by superblock: "
3426 			 "%s-%s with flags 0x%hx", encoding_info->name,
3427 			 encoding_info->version?:"\b", encoding_flags);
3428 
3429 		sbi->sb->s_encoding = encoding;
3430 		sbi->sb->s_encoding_flags = encoding_flags;
3431 		sbi->sb->s_d_op = &f2fs_dentry_ops;
3432 	}
3433 #else
3434 	if (f2fs_sb_has_casefold(sbi)) {
3435 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3436 		return -EINVAL;
3437 	}
3438 #endif
3439 	return 0;
3440 }
3441 
3442 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3443 {
3444 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3445 
3446 	/* adjust parameters according to the volume size */
3447 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3448 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3449 		sm_i->dcc_info->discard_granularity = 1;
3450 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3451 	}
3452 
3453 	sbi->readdir_ra = 1;
3454 }
3455 
3456 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3457 {
3458 	struct f2fs_sb_info *sbi;
3459 	struct f2fs_super_block *raw_super;
3460 	struct inode *root;
3461 	int err;
3462 	bool skip_recovery = false, need_fsck = false;
3463 	char *options = NULL;
3464 	int recovery, i, valid_super_block;
3465 	struct curseg_info *seg_i;
3466 	int retry_cnt = 1;
3467 
3468 try_onemore:
3469 	err = -EINVAL;
3470 	raw_super = NULL;
3471 	valid_super_block = -1;
3472 	recovery = 0;
3473 
3474 	/* allocate memory for f2fs-specific super block info */
3475 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3476 	if (!sbi)
3477 		return -ENOMEM;
3478 
3479 	sbi->sb = sb;
3480 
3481 	/* Load the checksum driver */
3482 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3483 	if (IS_ERR(sbi->s_chksum_driver)) {
3484 		f2fs_err(sbi, "Cannot load crc32 driver.");
3485 		err = PTR_ERR(sbi->s_chksum_driver);
3486 		sbi->s_chksum_driver = NULL;
3487 		goto free_sbi;
3488 	}
3489 
3490 	/* set a block size */
3491 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3492 		f2fs_err(sbi, "unable to set blocksize");
3493 		goto free_sbi;
3494 	}
3495 
3496 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3497 								&recovery);
3498 	if (err)
3499 		goto free_sbi;
3500 
3501 	sb->s_fs_info = sbi;
3502 	sbi->raw_super = raw_super;
3503 
3504 	/* precompute checksum seed for metadata */
3505 	if (f2fs_sb_has_inode_chksum(sbi))
3506 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3507 						sizeof(raw_super->uuid));
3508 
3509 	default_options(sbi);
3510 	/* parse mount options */
3511 	options = kstrdup((const char *)data, GFP_KERNEL);
3512 	if (data && !options) {
3513 		err = -ENOMEM;
3514 		goto free_sb_buf;
3515 	}
3516 
3517 	err = parse_options(sb, options, false);
3518 	if (err)
3519 		goto free_options;
3520 
3521 	sbi->max_file_blocks = max_file_blocks();
3522 	sb->s_maxbytes = sbi->max_file_blocks <<
3523 				le32_to_cpu(raw_super->log_blocksize);
3524 	sb->s_max_links = F2FS_LINK_MAX;
3525 
3526 	err = f2fs_setup_casefold(sbi);
3527 	if (err)
3528 		goto free_options;
3529 
3530 #ifdef CONFIG_QUOTA
3531 	sb->dq_op = &f2fs_quota_operations;
3532 	sb->s_qcop = &f2fs_quotactl_ops;
3533 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3534 
3535 	if (f2fs_sb_has_quota_ino(sbi)) {
3536 		for (i = 0; i < MAXQUOTAS; i++) {
3537 			if (f2fs_qf_ino(sbi->sb, i))
3538 				sbi->nquota_files++;
3539 		}
3540 	}
3541 #endif
3542 
3543 	sb->s_op = &f2fs_sops;
3544 #ifdef CONFIG_FS_ENCRYPTION
3545 	sb->s_cop = &f2fs_cryptops;
3546 #endif
3547 #ifdef CONFIG_FS_VERITY
3548 	sb->s_vop = &f2fs_verityops;
3549 #endif
3550 	sb->s_xattr = f2fs_xattr_handlers;
3551 	sb->s_export_op = &f2fs_export_ops;
3552 	sb->s_magic = F2FS_SUPER_MAGIC;
3553 	sb->s_time_gran = 1;
3554 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3555 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3556 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3557 	sb->s_iflags |= SB_I_CGROUPWB;
3558 
3559 	/* init f2fs-specific super block info */
3560 	sbi->valid_super_block = valid_super_block;
3561 	init_rwsem(&sbi->gc_lock);
3562 	mutex_init(&sbi->writepages);
3563 	mutex_init(&sbi->cp_mutex);
3564 	init_rwsem(&sbi->node_write);
3565 	init_rwsem(&sbi->node_change);
3566 
3567 	/* disallow all the data/node/meta page writes */
3568 	set_sbi_flag(sbi, SBI_POR_DOING);
3569 	spin_lock_init(&sbi->stat_lock);
3570 
3571 	/* init iostat info */
3572 	spin_lock_init(&sbi->iostat_lock);
3573 	sbi->iostat_enable = false;
3574 	sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3575 
3576 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3577 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3578 		int j;
3579 
3580 		sbi->write_io[i] =
3581 			f2fs_kmalloc(sbi,
3582 				     array_size(n,
3583 						sizeof(struct f2fs_bio_info)),
3584 				     GFP_KERNEL);
3585 		if (!sbi->write_io[i]) {
3586 			err = -ENOMEM;
3587 			goto free_bio_info;
3588 		}
3589 
3590 		for (j = HOT; j < n; j++) {
3591 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3592 			sbi->write_io[i][j].sbi = sbi;
3593 			sbi->write_io[i][j].bio = NULL;
3594 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3595 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3596 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3597 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3598 		}
3599 	}
3600 
3601 	init_rwsem(&sbi->cp_rwsem);
3602 	init_rwsem(&sbi->quota_sem);
3603 	init_waitqueue_head(&sbi->cp_wait);
3604 	init_sb_info(sbi);
3605 
3606 	err = init_percpu_info(sbi);
3607 	if (err)
3608 		goto free_bio_info;
3609 
3610 	if (F2FS_IO_ALIGNED(sbi)) {
3611 		sbi->write_io_dummy =
3612 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3613 		if (!sbi->write_io_dummy) {
3614 			err = -ENOMEM;
3615 			goto free_percpu;
3616 		}
3617 	}
3618 
3619 	/* init per sbi slab cache */
3620 	err = f2fs_init_xattr_caches(sbi);
3621 	if (err)
3622 		goto free_io_dummy;
3623 	err = f2fs_init_page_array_cache(sbi);
3624 	if (err)
3625 		goto free_xattr_cache;
3626 
3627 	/* get an inode for meta space */
3628 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3629 	if (IS_ERR(sbi->meta_inode)) {
3630 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3631 		err = PTR_ERR(sbi->meta_inode);
3632 		goto free_page_array_cache;
3633 	}
3634 
3635 	err = f2fs_get_valid_checkpoint(sbi);
3636 	if (err) {
3637 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3638 		goto free_meta_inode;
3639 	}
3640 
3641 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3642 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3643 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3644 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3645 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3646 	}
3647 
3648 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3649 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3650 
3651 	/* Initialize device list */
3652 	err = f2fs_scan_devices(sbi);
3653 	if (err) {
3654 		f2fs_err(sbi, "Failed to find devices");
3655 		goto free_devices;
3656 	}
3657 
3658 	err = f2fs_init_post_read_wq(sbi);
3659 	if (err) {
3660 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3661 		goto free_devices;
3662 	}
3663 
3664 	sbi->total_valid_node_count =
3665 				le32_to_cpu(sbi->ckpt->valid_node_count);
3666 	percpu_counter_set(&sbi->total_valid_inode_count,
3667 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3668 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3669 	sbi->total_valid_block_count =
3670 				le64_to_cpu(sbi->ckpt->valid_block_count);
3671 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3672 	sbi->reserved_blocks = 0;
3673 	sbi->current_reserved_blocks = 0;
3674 	limit_reserve_root(sbi);
3675 	adjust_unusable_cap_perc(sbi);
3676 
3677 	for (i = 0; i < NR_INODE_TYPE; i++) {
3678 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3679 		spin_lock_init(&sbi->inode_lock[i]);
3680 	}
3681 	mutex_init(&sbi->flush_lock);
3682 
3683 	f2fs_init_extent_cache_info(sbi);
3684 
3685 	f2fs_init_ino_entry_info(sbi);
3686 
3687 	f2fs_init_fsync_node_info(sbi);
3688 
3689 	/* setup f2fs internal modules */
3690 	err = f2fs_build_segment_manager(sbi);
3691 	if (err) {
3692 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3693 			 err);
3694 		goto free_sm;
3695 	}
3696 	err = f2fs_build_node_manager(sbi);
3697 	if (err) {
3698 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3699 			 err);
3700 		goto free_nm;
3701 	}
3702 
3703 	/* For write statistics */
3704 	if (sb->s_bdev->bd_part)
3705 		sbi->sectors_written_start =
3706 			(u64)part_stat_read(sb->s_bdev->bd_part,
3707 					    sectors[STAT_WRITE]);
3708 
3709 	/* Read accumulated write IO statistics if exists */
3710 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3711 	if (__exist_node_summaries(sbi))
3712 		sbi->kbytes_written =
3713 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3714 
3715 	f2fs_build_gc_manager(sbi);
3716 
3717 	err = f2fs_build_stats(sbi);
3718 	if (err)
3719 		goto free_nm;
3720 
3721 	/* get an inode for node space */
3722 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3723 	if (IS_ERR(sbi->node_inode)) {
3724 		f2fs_err(sbi, "Failed to read node inode");
3725 		err = PTR_ERR(sbi->node_inode);
3726 		goto free_stats;
3727 	}
3728 
3729 	/* read root inode and dentry */
3730 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3731 	if (IS_ERR(root)) {
3732 		f2fs_err(sbi, "Failed to read root inode");
3733 		err = PTR_ERR(root);
3734 		goto free_node_inode;
3735 	}
3736 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3737 			!root->i_size || !root->i_nlink) {
3738 		iput(root);
3739 		err = -EINVAL;
3740 		goto free_node_inode;
3741 	}
3742 
3743 	sb->s_root = d_make_root(root); /* allocate root dentry */
3744 	if (!sb->s_root) {
3745 		err = -ENOMEM;
3746 		goto free_node_inode;
3747 	}
3748 
3749 	err = f2fs_register_sysfs(sbi);
3750 	if (err)
3751 		goto free_root_inode;
3752 
3753 #ifdef CONFIG_QUOTA
3754 	/* Enable quota usage during mount */
3755 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3756 		err = f2fs_enable_quotas(sb);
3757 		if (err)
3758 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3759 	}
3760 #endif
3761 	/* if there are any orphan inodes, free them */
3762 	err = f2fs_recover_orphan_inodes(sbi);
3763 	if (err)
3764 		goto free_meta;
3765 
3766 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3767 		goto reset_checkpoint;
3768 
3769 	/* recover fsynced data */
3770 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3771 			!test_opt(sbi, NORECOVERY)) {
3772 		/*
3773 		 * mount should be failed, when device has readonly mode, and
3774 		 * previous checkpoint was not done by clean system shutdown.
3775 		 */
3776 		if (f2fs_hw_is_readonly(sbi)) {
3777 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3778 				err = -EROFS;
3779 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3780 				goto free_meta;
3781 			}
3782 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3783 			goto reset_checkpoint;
3784 		}
3785 
3786 		if (need_fsck)
3787 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3788 
3789 		if (skip_recovery)
3790 			goto reset_checkpoint;
3791 
3792 		err = f2fs_recover_fsync_data(sbi, false);
3793 		if (err < 0) {
3794 			if (err != -ENOMEM)
3795 				skip_recovery = true;
3796 			need_fsck = true;
3797 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3798 				 err);
3799 			goto free_meta;
3800 		}
3801 	} else {
3802 		err = f2fs_recover_fsync_data(sbi, true);
3803 
3804 		if (!f2fs_readonly(sb) && err > 0) {
3805 			err = -EINVAL;
3806 			f2fs_err(sbi, "Need to recover fsync data");
3807 			goto free_meta;
3808 		}
3809 	}
3810 
3811 	/*
3812 	 * If the f2fs is not readonly and fsync data recovery succeeds,
3813 	 * check zoned block devices' write pointer consistency.
3814 	 */
3815 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3816 		err = f2fs_check_write_pointer(sbi);
3817 		if (err)
3818 			goto free_meta;
3819 	}
3820 
3821 reset_checkpoint:
3822 	f2fs_init_inmem_curseg(sbi);
3823 
3824 	/* f2fs_recover_fsync_data() cleared this already */
3825 	clear_sbi_flag(sbi, SBI_POR_DOING);
3826 
3827 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3828 		err = f2fs_disable_checkpoint(sbi);
3829 		if (err)
3830 			goto sync_free_meta;
3831 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3832 		f2fs_enable_checkpoint(sbi);
3833 	}
3834 
3835 	/*
3836 	 * If filesystem is not mounted as read-only then
3837 	 * do start the gc_thread.
3838 	 */
3839 	if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3840 		/* After POR, we can run background GC thread.*/
3841 		err = f2fs_start_gc_thread(sbi);
3842 		if (err)
3843 			goto sync_free_meta;
3844 	}
3845 	kvfree(options);
3846 
3847 	/* recover broken superblock */
3848 	if (recovery) {
3849 		err = f2fs_commit_super(sbi, true);
3850 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3851 			  sbi->valid_super_block ? 1 : 2, err);
3852 	}
3853 
3854 	f2fs_join_shrinker(sbi);
3855 
3856 	f2fs_tuning_parameters(sbi);
3857 
3858 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3859 		    cur_cp_version(F2FS_CKPT(sbi)));
3860 	f2fs_update_time(sbi, CP_TIME);
3861 	f2fs_update_time(sbi, REQ_TIME);
3862 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3863 	return 0;
3864 
3865 sync_free_meta:
3866 	/* safe to flush all the data */
3867 	sync_filesystem(sbi->sb);
3868 	retry_cnt = 0;
3869 
3870 free_meta:
3871 #ifdef CONFIG_QUOTA
3872 	f2fs_truncate_quota_inode_pages(sb);
3873 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3874 		f2fs_quota_off_umount(sbi->sb);
3875 #endif
3876 	/*
3877 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3878 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3879 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3880 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3881 	 */
3882 	truncate_inode_pages_final(META_MAPPING(sbi));
3883 	/* evict some inodes being cached by GC */
3884 	evict_inodes(sb);
3885 	f2fs_unregister_sysfs(sbi);
3886 free_root_inode:
3887 	dput(sb->s_root);
3888 	sb->s_root = NULL;
3889 free_node_inode:
3890 	f2fs_release_ino_entry(sbi, true);
3891 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3892 	iput(sbi->node_inode);
3893 	sbi->node_inode = NULL;
3894 free_stats:
3895 	f2fs_destroy_stats(sbi);
3896 free_nm:
3897 	f2fs_destroy_node_manager(sbi);
3898 free_sm:
3899 	f2fs_destroy_segment_manager(sbi);
3900 	f2fs_destroy_post_read_wq(sbi);
3901 free_devices:
3902 	destroy_device_list(sbi);
3903 	kvfree(sbi->ckpt);
3904 free_meta_inode:
3905 	make_bad_inode(sbi->meta_inode);
3906 	iput(sbi->meta_inode);
3907 	sbi->meta_inode = NULL;
3908 free_page_array_cache:
3909 	f2fs_destroy_page_array_cache(sbi);
3910 free_xattr_cache:
3911 	f2fs_destroy_xattr_caches(sbi);
3912 free_io_dummy:
3913 	mempool_destroy(sbi->write_io_dummy);
3914 free_percpu:
3915 	destroy_percpu_info(sbi);
3916 free_bio_info:
3917 	for (i = 0; i < NR_PAGE_TYPE; i++)
3918 		kvfree(sbi->write_io[i]);
3919 
3920 #ifdef CONFIG_UNICODE
3921 	utf8_unload(sb->s_encoding);
3922 #endif
3923 free_options:
3924 #ifdef CONFIG_QUOTA
3925 	for (i = 0; i < MAXQUOTAS; i++)
3926 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3927 #endif
3928 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
3929 	kvfree(options);
3930 free_sb_buf:
3931 	kfree(raw_super);
3932 free_sbi:
3933 	if (sbi->s_chksum_driver)
3934 		crypto_free_shash(sbi->s_chksum_driver);
3935 	kfree(sbi);
3936 
3937 	/* give only one another chance */
3938 	if (retry_cnt > 0 && skip_recovery) {
3939 		retry_cnt--;
3940 		shrink_dcache_sb(sb);
3941 		goto try_onemore;
3942 	}
3943 	return err;
3944 }
3945 
3946 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3947 			const char *dev_name, void *data)
3948 {
3949 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3950 }
3951 
3952 static void kill_f2fs_super(struct super_block *sb)
3953 {
3954 	if (sb->s_root) {
3955 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3956 
3957 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3958 		f2fs_stop_gc_thread(sbi);
3959 		f2fs_stop_discard_thread(sbi);
3960 
3961 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3962 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3963 			struct cp_control cpc = {
3964 				.reason = CP_UMOUNT,
3965 			};
3966 			f2fs_write_checkpoint(sbi, &cpc);
3967 		}
3968 
3969 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3970 			sb->s_flags &= ~SB_RDONLY;
3971 	}
3972 	kill_block_super(sb);
3973 }
3974 
3975 static struct file_system_type f2fs_fs_type = {
3976 	.owner		= THIS_MODULE,
3977 	.name		= "f2fs",
3978 	.mount		= f2fs_mount,
3979 	.kill_sb	= kill_f2fs_super,
3980 	.fs_flags	= FS_REQUIRES_DEV,
3981 };
3982 MODULE_ALIAS_FS("f2fs");
3983 
3984 static int __init init_inodecache(void)
3985 {
3986 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3987 			sizeof(struct f2fs_inode_info), 0,
3988 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3989 	if (!f2fs_inode_cachep)
3990 		return -ENOMEM;
3991 	return 0;
3992 }
3993 
3994 static void destroy_inodecache(void)
3995 {
3996 	/*
3997 	 * Make sure all delayed rcu free inodes are flushed before we
3998 	 * destroy cache.
3999 	 */
4000 	rcu_barrier();
4001 	kmem_cache_destroy(f2fs_inode_cachep);
4002 }
4003 
4004 static int __init init_f2fs_fs(void)
4005 {
4006 	int err;
4007 
4008 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4009 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4010 				PAGE_SIZE, F2FS_BLKSIZE);
4011 		return -EINVAL;
4012 	}
4013 
4014 	f2fs_build_trace_ios();
4015 
4016 	err = init_inodecache();
4017 	if (err)
4018 		goto fail;
4019 	err = f2fs_create_node_manager_caches();
4020 	if (err)
4021 		goto free_inodecache;
4022 	err = f2fs_create_segment_manager_caches();
4023 	if (err)
4024 		goto free_node_manager_caches;
4025 	err = f2fs_create_checkpoint_caches();
4026 	if (err)
4027 		goto free_segment_manager_caches;
4028 	err = f2fs_create_extent_cache();
4029 	if (err)
4030 		goto free_checkpoint_caches;
4031 	err = f2fs_create_garbage_collection_cache();
4032 	if (err)
4033 		goto free_extent_cache;
4034 	err = f2fs_init_sysfs();
4035 	if (err)
4036 		goto free_garbage_collection_cache;
4037 	err = register_shrinker(&f2fs_shrinker_info);
4038 	if (err)
4039 		goto free_sysfs;
4040 	err = register_filesystem(&f2fs_fs_type);
4041 	if (err)
4042 		goto free_shrinker;
4043 	f2fs_create_root_stats();
4044 	err = f2fs_init_post_read_processing();
4045 	if (err)
4046 		goto free_root_stats;
4047 	err = f2fs_init_bio_entry_cache();
4048 	if (err)
4049 		goto free_post_read;
4050 	err = f2fs_init_bioset();
4051 	if (err)
4052 		goto free_bio_enrty_cache;
4053 	err = f2fs_init_compress_mempool();
4054 	if (err)
4055 		goto free_bioset;
4056 	err = f2fs_init_compress_cache();
4057 	if (err)
4058 		goto free_compress_mempool;
4059 	return 0;
4060 free_compress_mempool:
4061 	f2fs_destroy_compress_mempool();
4062 free_bioset:
4063 	f2fs_destroy_bioset();
4064 free_bio_enrty_cache:
4065 	f2fs_destroy_bio_entry_cache();
4066 free_post_read:
4067 	f2fs_destroy_post_read_processing();
4068 free_root_stats:
4069 	f2fs_destroy_root_stats();
4070 	unregister_filesystem(&f2fs_fs_type);
4071 free_shrinker:
4072 	unregister_shrinker(&f2fs_shrinker_info);
4073 free_sysfs:
4074 	f2fs_exit_sysfs();
4075 free_garbage_collection_cache:
4076 	f2fs_destroy_garbage_collection_cache();
4077 free_extent_cache:
4078 	f2fs_destroy_extent_cache();
4079 free_checkpoint_caches:
4080 	f2fs_destroy_checkpoint_caches();
4081 free_segment_manager_caches:
4082 	f2fs_destroy_segment_manager_caches();
4083 free_node_manager_caches:
4084 	f2fs_destroy_node_manager_caches();
4085 free_inodecache:
4086 	destroy_inodecache();
4087 fail:
4088 	return err;
4089 }
4090 
4091 static void __exit exit_f2fs_fs(void)
4092 {
4093 	f2fs_destroy_compress_cache();
4094 	f2fs_destroy_compress_mempool();
4095 	f2fs_destroy_bioset();
4096 	f2fs_destroy_bio_entry_cache();
4097 	f2fs_destroy_post_read_processing();
4098 	f2fs_destroy_root_stats();
4099 	unregister_filesystem(&f2fs_fs_type);
4100 	unregister_shrinker(&f2fs_shrinker_info);
4101 	f2fs_exit_sysfs();
4102 	f2fs_destroy_garbage_collection_cache();
4103 	f2fs_destroy_extent_cache();
4104 	f2fs_destroy_checkpoint_caches();
4105 	f2fs_destroy_segment_manager_caches();
4106 	f2fs_destroy_node_manager_caches();
4107 	destroy_inodecache();
4108 	f2fs_destroy_trace_ios();
4109 }
4110 
4111 module_init(init_f2fs_fs)
4112 module_exit(exit_f2fs_fs)
4113 
4114 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4115 MODULE_DESCRIPTION("Flash Friendly File System");
4116 MODULE_LICENSE("GPL");
4117 
4118