1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/f2fs_fs.h> 27 #include <linux/sysfs.h> 28 #include <linux/quota.h> 29 30 #include "f2fs.h" 31 #include "node.h" 32 #include "segment.h" 33 #include "xattr.h" 34 #include "gc.h" 35 #include "trace.h" 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/f2fs.h> 39 40 static struct kmem_cache *f2fs_inode_cachep; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 44 char *fault_name[FAULT_MAX] = { 45 [FAULT_KMALLOC] = "kmalloc", 46 [FAULT_KVMALLOC] = "kvmalloc", 47 [FAULT_PAGE_ALLOC] = "page alloc", 48 [FAULT_PAGE_GET] = "page get", 49 [FAULT_ALLOC_BIO] = "alloc bio", 50 [FAULT_ALLOC_NID] = "alloc nid", 51 [FAULT_ORPHAN] = "orphan", 52 [FAULT_BLOCK] = "no more block", 53 [FAULT_DIR_DEPTH] = "too big dir depth", 54 [FAULT_EVICT_INODE] = "evict_inode fail", 55 [FAULT_TRUNCATE] = "truncate fail", 56 [FAULT_IO] = "IO error", 57 [FAULT_CHECKPOINT] = "checkpoint error", 58 }; 59 60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 61 unsigned int rate) 62 { 63 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 64 65 if (rate) { 66 atomic_set(&ffi->inject_ops, 0); 67 ffi->inject_rate = rate; 68 ffi->inject_type = (1 << FAULT_MAX) - 1; 69 } else { 70 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 71 } 72 } 73 #endif 74 75 /* f2fs-wide shrinker description */ 76 static struct shrinker f2fs_shrinker_info = { 77 .scan_objects = f2fs_shrink_scan, 78 .count_objects = f2fs_shrink_count, 79 .seeks = DEFAULT_SEEKS, 80 }; 81 82 enum { 83 Opt_gc_background, 84 Opt_disable_roll_forward, 85 Opt_norecovery, 86 Opt_discard, 87 Opt_nodiscard, 88 Opt_noheap, 89 Opt_heap, 90 Opt_user_xattr, 91 Opt_nouser_xattr, 92 Opt_acl, 93 Opt_noacl, 94 Opt_active_logs, 95 Opt_disable_ext_identify, 96 Opt_inline_xattr, 97 Opt_noinline_xattr, 98 Opt_inline_xattr_size, 99 Opt_inline_data, 100 Opt_inline_dentry, 101 Opt_noinline_dentry, 102 Opt_flush_merge, 103 Opt_noflush_merge, 104 Opt_nobarrier, 105 Opt_fastboot, 106 Opt_extent_cache, 107 Opt_noextent_cache, 108 Opt_noinline_data, 109 Opt_data_flush, 110 Opt_reserve_root, 111 Opt_resgid, 112 Opt_resuid, 113 Opt_mode, 114 Opt_io_size_bits, 115 Opt_fault_injection, 116 Opt_lazytime, 117 Opt_nolazytime, 118 Opt_quota, 119 Opt_noquota, 120 Opt_usrquota, 121 Opt_grpquota, 122 Opt_prjquota, 123 Opt_usrjquota, 124 Opt_grpjquota, 125 Opt_prjjquota, 126 Opt_offusrjquota, 127 Opt_offgrpjquota, 128 Opt_offprjjquota, 129 Opt_jqfmt_vfsold, 130 Opt_jqfmt_vfsv0, 131 Opt_jqfmt_vfsv1, 132 Opt_whint, 133 Opt_alloc, 134 Opt_fsync, 135 Opt_test_dummy_encryption, 136 Opt_err, 137 }; 138 139 static match_table_t f2fs_tokens = { 140 {Opt_gc_background, "background_gc=%s"}, 141 {Opt_disable_roll_forward, "disable_roll_forward"}, 142 {Opt_norecovery, "norecovery"}, 143 {Opt_discard, "discard"}, 144 {Opt_nodiscard, "nodiscard"}, 145 {Opt_noheap, "no_heap"}, 146 {Opt_heap, "heap"}, 147 {Opt_user_xattr, "user_xattr"}, 148 {Opt_nouser_xattr, "nouser_xattr"}, 149 {Opt_acl, "acl"}, 150 {Opt_noacl, "noacl"}, 151 {Opt_active_logs, "active_logs=%u"}, 152 {Opt_disable_ext_identify, "disable_ext_identify"}, 153 {Opt_inline_xattr, "inline_xattr"}, 154 {Opt_noinline_xattr, "noinline_xattr"}, 155 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 156 {Opt_inline_data, "inline_data"}, 157 {Opt_inline_dentry, "inline_dentry"}, 158 {Opt_noinline_dentry, "noinline_dentry"}, 159 {Opt_flush_merge, "flush_merge"}, 160 {Opt_noflush_merge, "noflush_merge"}, 161 {Opt_nobarrier, "nobarrier"}, 162 {Opt_fastboot, "fastboot"}, 163 {Opt_extent_cache, "extent_cache"}, 164 {Opt_noextent_cache, "noextent_cache"}, 165 {Opt_noinline_data, "noinline_data"}, 166 {Opt_data_flush, "data_flush"}, 167 {Opt_reserve_root, "reserve_root=%u"}, 168 {Opt_resgid, "resgid=%u"}, 169 {Opt_resuid, "resuid=%u"}, 170 {Opt_mode, "mode=%s"}, 171 {Opt_io_size_bits, "io_bits=%u"}, 172 {Opt_fault_injection, "fault_injection=%u"}, 173 {Opt_lazytime, "lazytime"}, 174 {Opt_nolazytime, "nolazytime"}, 175 {Opt_quota, "quota"}, 176 {Opt_noquota, "noquota"}, 177 {Opt_usrquota, "usrquota"}, 178 {Opt_grpquota, "grpquota"}, 179 {Opt_prjquota, "prjquota"}, 180 {Opt_usrjquota, "usrjquota=%s"}, 181 {Opt_grpjquota, "grpjquota=%s"}, 182 {Opt_prjjquota, "prjjquota=%s"}, 183 {Opt_offusrjquota, "usrjquota="}, 184 {Opt_offgrpjquota, "grpjquota="}, 185 {Opt_offprjjquota, "prjjquota="}, 186 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 187 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 188 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 189 {Opt_whint, "whint_mode=%s"}, 190 {Opt_alloc, "alloc_mode=%s"}, 191 {Opt_fsync, "fsync_mode=%s"}, 192 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 193 {Opt_err, NULL}, 194 }; 195 196 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 197 { 198 struct va_format vaf; 199 va_list args; 200 201 va_start(args, fmt); 202 vaf.fmt = fmt; 203 vaf.va = &args; 204 printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 205 va_end(args); 206 } 207 208 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 209 { 210 block_t limit = (sbi->user_block_count << 1) / 1000; 211 212 /* limit is 0.2% */ 213 if (test_opt(sbi, RESERVE_ROOT) && 214 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 215 F2FS_OPTION(sbi).root_reserved_blocks = limit; 216 f2fs_msg(sbi->sb, KERN_INFO, 217 "Reduce reserved blocks for root = %u", 218 F2FS_OPTION(sbi).root_reserved_blocks); 219 } 220 if (!test_opt(sbi, RESERVE_ROOT) && 221 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 222 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 223 !gid_eq(F2FS_OPTION(sbi).s_resgid, 224 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 225 f2fs_msg(sbi->sb, KERN_INFO, 226 "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 227 from_kuid_munged(&init_user_ns, 228 F2FS_OPTION(sbi).s_resuid), 229 from_kgid_munged(&init_user_ns, 230 F2FS_OPTION(sbi).s_resgid)); 231 } 232 233 static void init_once(void *foo) 234 { 235 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 236 237 inode_init_once(&fi->vfs_inode); 238 } 239 240 #ifdef CONFIG_QUOTA 241 static const char * const quotatypes[] = INITQFNAMES; 242 #define QTYPE2NAME(t) (quotatypes[t]) 243 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 244 substring_t *args) 245 { 246 struct f2fs_sb_info *sbi = F2FS_SB(sb); 247 char *qname; 248 int ret = -EINVAL; 249 250 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 251 f2fs_msg(sb, KERN_ERR, 252 "Cannot change journaled " 253 "quota options when quota turned on"); 254 return -EINVAL; 255 } 256 if (f2fs_sb_has_quota_ino(sb)) { 257 f2fs_msg(sb, KERN_INFO, 258 "QUOTA feature is enabled, so ignore qf_name"); 259 return 0; 260 } 261 262 qname = match_strdup(args); 263 if (!qname) { 264 f2fs_msg(sb, KERN_ERR, 265 "Not enough memory for storing quotafile name"); 266 return -EINVAL; 267 } 268 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 269 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 270 ret = 0; 271 else 272 f2fs_msg(sb, KERN_ERR, 273 "%s quota file already specified", 274 QTYPE2NAME(qtype)); 275 goto errout; 276 } 277 if (strchr(qname, '/')) { 278 f2fs_msg(sb, KERN_ERR, 279 "quotafile must be on filesystem root"); 280 goto errout; 281 } 282 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 283 set_opt(sbi, QUOTA); 284 return 0; 285 errout: 286 kfree(qname); 287 return ret; 288 } 289 290 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 291 { 292 struct f2fs_sb_info *sbi = F2FS_SB(sb); 293 294 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 295 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options" 296 " when quota turned on"); 297 return -EINVAL; 298 } 299 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 300 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 301 return 0; 302 } 303 304 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 305 { 306 /* 307 * We do the test below only for project quotas. 'usrquota' and 308 * 'grpquota' mount options are allowed even without quota feature 309 * to support legacy quotas in quota files. 310 */ 311 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) { 312 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. " 313 "Cannot enable project quota enforcement."); 314 return -1; 315 } 316 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 317 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 318 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 319 if (test_opt(sbi, USRQUOTA) && 320 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 321 clear_opt(sbi, USRQUOTA); 322 323 if (test_opt(sbi, GRPQUOTA) && 324 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 325 clear_opt(sbi, GRPQUOTA); 326 327 if (test_opt(sbi, PRJQUOTA) && 328 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 329 clear_opt(sbi, PRJQUOTA); 330 331 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 332 test_opt(sbi, PRJQUOTA)) { 333 f2fs_msg(sbi->sb, KERN_ERR, "old and new quota " 334 "format mixing"); 335 return -1; 336 } 337 338 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 339 f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format " 340 "not specified"); 341 return -1; 342 } 343 } 344 345 if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) { 346 f2fs_msg(sbi->sb, KERN_INFO, 347 "QUOTA feature is enabled, so ignore jquota_fmt"); 348 F2FS_OPTION(sbi).s_jquota_fmt = 0; 349 } 350 if (f2fs_sb_has_quota_ino(sbi->sb) && f2fs_readonly(sbi->sb)) { 351 f2fs_msg(sbi->sb, KERN_INFO, 352 "Filesystem with quota feature cannot be mounted RDWR " 353 "without CONFIG_QUOTA"); 354 return -1; 355 } 356 return 0; 357 } 358 #endif 359 360 static int parse_options(struct super_block *sb, char *options) 361 { 362 struct f2fs_sb_info *sbi = F2FS_SB(sb); 363 struct request_queue *q; 364 substring_t args[MAX_OPT_ARGS]; 365 char *p, *name; 366 int arg = 0; 367 kuid_t uid; 368 kgid_t gid; 369 #ifdef CONFIG_QUOTA 370 int ret; 371 #endif 372 373 if (!options) 374 return 0; 375 376 while ((p = strsep(&options, ",")) != NULL) { 377 int token; 378 if (!*p) 379 continue; 380 /* 381 * Initialize args struct so we know whether arg was 382 * found; some options take optional arguments. 383 */ 384 args[0].to = args[0].from = NULL; 385 token = match_token(p, f2fs_tokens, args); 386 387 switch (token) { 388 case Opt_gc_background: 389 name = match_strdup(&args[0]); 390 391 if (!name) 392 return -ENOMEM; 393 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 394 set_opt(sbi, BG_GC); 395 clear_opt(sbi, FORCE_FG_GC); 396 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 397 clear_opt(sbi, BG_GC); 398 clear_opt(sbi, FORCE_FG_GC); 399 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 400 set_opt(sbi, BG_GC); 401 set_opt(sbi, FORCE_FG_GC); 402 } else { 403 kfree(name); 404 return -EINVAL; 405 } 406 kfree(name); 407 break; 408 case Opt_disable_roll_forward: 409 set_opt(sbi, DISABLE_ROLL_FORWARD); 410 break; 411 case Opt_norecovery: 412 /* this option mounts f2fs with ro */ 413 set_opt(sbi, DISABLE_ROLL_FORWARD); 414 if (!f2fs_readonly(sb)) 415 return -EINVAL; 416 break; 417 case Opt_discard: 418 q = bdev_get_queue(sb->s_bdev); 419 if (blk_queue_discard(q)) { 420 set_opt(sbi, DISCARD); 421 } else if (!f2fs_sb_has_blkzoned(sb)) { 422 f2fs_msg(sb, KERN_WARNING, 423 "mounting with \"discard\" option, but " 424 "the device does not support discard"); 425 } 426 break; 427 case Opt_nodiscard: 428 if (f2fs_sb_has_blkzoned(sb)) { 429 f2fs_msg(sb, KERN_WARNING, 430 "discard is required for zoned block devices"); 431 return -EINVAL; 432 } 433 clear_opt(sbi, DISCARD); 434 break; 435 case Opt_noheap: 436 set_opt(sbi, NOHEAP); 437 break; 438 case Opt_heap: 439 clear_opt(sbi, NOHEAP); 440 break; 441 #ifdef CONFIG_F2FS_FS_XATTR 442 case Opt_user_xattr: 443 set_opt(sbi, XATTR_USER); 444 break; 445 case Opt_nouser_xattr: 446 clear_opt(sbi, XATTR_USER); 447 break; 448 case Opt_inline_xattr: 449 set_opt(sbi, INLINE_XATTR); 450 break; 451 case Opt_noinline_xattr: 452 clear_opt(sbi, INLINE_XATTR); 453 break; 454 case Opt_inline_xattr_size: 455 if (args->from && match_int(args, &arg)) 456 return -EINVAL; 457 set_opt(sbi, INLINE_XATTR_SIZE); 458 F2FS_OPTION(sbi).inline_xattr_size = arg; 459 break; 460 #else 461 case Opt_user_xattr: 462 f2fs_msg(sb, KERN_INFO, 463 "user_xattr options not supported"); 464 break; 465 case Opt_nouser_xattr: 466 f2fs_msg(sb, KERN_INFO, 467 "nouser_xattr options not supported"); 468 break; 469 case Opt_inline_xattr: 470 f2fs_msg(sb, KERN_INFO, 471 "inline_xattr options not supported"); 472 break; 473 case Opt_noinline_xattr: 474 f2fs_msg(sb, KERN_INFO, 475 "noinline_xattr options not supported"); 476 break; 477 #endif 478 #ifdef CONFIG_F2FS_FS_POSIX_ACL 479 case Opt_acl: 480 set_opt(sbi, POSIX_ACL); 481 break; 482 case Opt_noacl: 483 clear_opt(sbi, POSIX_ACL); 484 break; 485 #else 486 case Opt_acl: 487 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 488 break; 489 case Opt_noacl: 490 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 491 break; 492 #endif 493 case Opt_active_logs: 494 if (args->from && match_int(args, &arg)) 495 return -EINVAL; 496 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 497 return -EINVAL; 498 F2FS_OPTION(sbi).active_logs = arg; 499 break; 500 case Opt_disable_ext_identify: 501 set_opt(sbi, DISABLE_EXT_IDENTIFY); 502 break; 503 case Opt_inline_data: 504 set_opt(sbi, INLINE_DATA); 505 break; 506 case Opt_inline_dentry: 507 set_opt(sbi, INLINE_DENTRY); 508 break; 509 case Opt_noinline_dentry: 510 clear_opt(sbi, INLINE_DENTRY); 511 break; 512 case Opt_flush_merge: 513 set_opt(sbi, FLUSH_MERGE); 514 break; 515 case Opt_noflush_merge: 516 clear_opt(sbi, FLUSH_MERGE); 517 break; 518 case Opt_nobarrier: 519 set_opt(sbi, NOBARRIER); 520 break; 521 case Opt_fastboot: 522 set_opt(sbi, FASTBOOT); 523 break; 524 case Opt_extent_cache: 525 set_opt(sbi, EXTENT_CACHE); 526 break; 527 case Opt_noextent_cache: 528 clear_opt(sbi, EXTENT_CACHE); 529 break; 530 case Opt_noinline_data: 531 clear_opt(sbi, INLINE_DATA); 532 break; 533 case Opt_data_flush: 534 set_opt(sbi, DATA_FLUSH); 535 break; 536 case Opt_reserve_root: 537 if (args->from && match_int(args, &arg)) 538 return -EINVAL; 539 if (test_opt(sbi, RESERVE_ROOT)) { 540 f2fs_msg(sb, KERN_INFO, 541 "Preserve previous reserve_root=%u", 542 F2FS_OPTION(sbi).root_reserved_blocks); 543 } else { 544 F2FS_OPTION(sbi).root_reserved_blocks = arg; 545 set_opt(sbi, RESERVE_ROOT); 546 } 547 break; 548 case Opt_resuid: 549 if (args->from && match_int(args, &arg)) 550 return -EINVAL; 551 uid = make_kuid(current_user_ns(), arg); 552 if (!uid_valid(uid)) { 553 f2fs_msg(sb, KERN_ERR, 554 "Invalid uid value %d", arg); 555 return -EINVAL; 556 } 557 F2FS_OPTION(sbi).s_resuid = uid; 558 break; 559 case Opt_resgid: 560 if (args->from && match_int(args, &arg)) 561 return -EINVAL; 562 gid = make_kgid(current_user_ns(), arg); 563 if (!gid_valid(gid)) { 564 f2fs_msg(sb, KERN_ERR, 565 "Invalid gid value %d", arg); 566 return -EINVAL; 567 } 568 F2FS_OPTION(sbi).s_resgid = gid; 569 break; 570 case Opt_mode: 571 name = match_strdup(&args[0]); 572 573 if (!name) 574 return -ENOMEM; 575 if (strlen(name) == 8 && 576 !strncmp(name, "adaptive", 8)) { 577 if (f2fs_sb_has_blkzoned(sb)) { 578 f2fs_msg(sb, KERN_WARNING, 579 "adaptive mode is not allowed with " 580 "zoned block device feature"); 581 kfree(name); 582 return -EINVAL; 583 } 584 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 585 } else if (strlen(name) == 3 && 586 !strncmp(name, "lfs", 3)) { 587 set_opt_mode(sbi, F2FS_MOUNT_LFS); 588 } else { 589 kfree(name); 590 return -EINVAL; 591 } 592 kfree(name); 593 break; 594 case Opt_io_size_bits: 595 if (args->from && match_int(args, &arg)) 596 return -EINVAL; 597 if (arg > __ilog2_u32(BIO_MAX_PAGES)) { 598 f2fs_msg(sb, KERN_WARNING, 599 "Not support %d, larger than %d", 600 1 << arg, BIO_MAX_PAGES); 601 return -EINVAL; 602 } 603 F2FS_OPTION(sbi).write_io_size_bits = arg; 604 break; 605 case Opt_fault_injection: 606 if (args->from && match_int(args, &arg)) 607 return -EINVAL; 608 #ifdef CONFIG_F2FS_FAULT_INJECTION 609 f2fs_build_fault_attr(sbi, arg); 610 set_opt(sbi, FAULT_INJECTION); 611 #else 612 f2fs_msg(sb, KERN_INFO, 613 "FAULT_INJECTION was not selected"); 614 #endif 615 break; 616 case Opt_lazytime: 617 sb->s_flags |= SB_LAZYTIME; 618 break; 619 case Opt_nolazytime: 620 sb->s_flags &= ~SB_LAZYTIME; 621 break; 622 #ifdef CONFIG_QUOTA 623 case Opt_quota: 624 case Opt_usrquota: 625 set_opt(sbi, USRQUOTA); 626 break; 627 case Opt_grpquota: 628 set_opt(sbi, GRPQUOTA); 629 break; 630 case Opt_prjquota: 631 set_opt(sbi, PRJQUOTA); 632 break; 633 case Opt_usrjquota: 634 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 635 if (ret) 636 return ret; 637 break; 638 case Opt_grpjquota: 639 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 640 if (ret) 641 return ret; 642 break; 643 case Opt_prjjquota: 644 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 645 if (ret) 646 return ret; 647 break; 648 case Opt_offusrjquota: 649 ret = f2fs_clear_qf_name(sb, USRQUOTA); 650 if (ret) 651 return ret; 652 break; 653 case Opt_offgrpjquota: 654 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 655 if (ret) 656 return ret; 657 break; 658 case Opt_offprjjquota: 659 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 660 if (ret) 661 return ret; 662 break; 663 case Opt_jqfmt_vfsold: 664 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 665 break; 666 case Opt_jqfmt_vfsv0: 667 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 668 break; 669 case Opt_jqfmt_vfsv1: 670 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 671 break; 672 case Opt_noquota: 673 clear_opt(sbi, QUOTA); 674 clear_opt(sbi, USRQUOTA); 675 clear_opt(sbi, GRPQUOTA); 676 clear_opt(sbi, PRJQUOTA); 677 break; 678 #else 679 case Opt_quota: 680 case Opt_usrquota: 681 case Opt_grpquota: 682 case Opt_prjquota: 683 case Opt_usrjquota: 684 case Opt_grpjquota: 685 case Opt_prjjquota: 686 case Opt_offusrjquota: 687 case Opt_offgrpjquota: 688 case Opt_offprjjquota: 689 case Opt_jqfmt_vfsold: 690 case Opt_jqfmt_vfsv0: 691 case Opt_jqfmt_vfsv1: 692 case Opt_noquota: 693 f2fs_msg(sb, KERN_INFO, 694 "quota operations not supported"); 695 break; 696 #endif 697 case Opt_whint: 698 name = match_strdup(&args[0]); 699 if (!name) 700 return -ENOMEM; 701 if (strlen(name) == 10 && 702 !strncmp(name, "user-based", 10)) { 703 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 704 } else if (strlen(name) == 3 && 705 !strncmp(name, "off", 3)) { 706 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 707 } else if (strlen(name) == 8 && 708 !strncmp(name, "fs-based", 8)) { 709 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 710 } else { 711 kfree(name); 712 return -EINVAL; 713 } 714 kfree(name); 715 break; 716 case Opt_alloc: 717 name = match_strdup(&args[0]); 718 if (!name) 719 return -ENOMEM; 720 721 if (strlen(name) == 7 && 722 !strncmp(name, "default", 7)) { 723 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 724 } else if (strlen(name) == 5 && 725 !strncmp(name, "reuse", 5)) { 726 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 727 } else { 728 kfree(name); 729 return -EINVAL; 730 } 731 kfree(name); 732 break; 733 case Opt_fsync: 734 name = match_strdup(&args[0]); 735 if (!name) 736 return -ENOMEM; 737 if (strlen(name) == 5 && 738 !strncmp(name, "posix", 5)) { 739 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 740 } else if (strlen(name) == 6 && 741 !strncmp(name, "strict", 6)) { 742 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 743 } else if (strlen(name) == 9 && 744 !strncmp(name, "nobarrier", 9)) { 745 F2FS_OPTION(sbi).fsync_mode = 746 FSYNC_MODE_NOBARRIER; 747 } else { 748 kfree(name); 749 return -EINVAL; 750 } 751 kfree(name); 752 break; 753 case Opt_test_dummy_encryption: 754 #ifdef CONFIG_F2FS_FS_ENCRYPTION 755 if (!f2fs_sb_has_encrypt(sb)) { 756 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off"); 757 return -EINVAL; 758 } 759 760 F2FS_OPTION(sbi).test_dummy_encryption = true; 761 f2fs_msg(sb, KERN_INFO, 762 "Test dummy encryption mode enabled"); 763 #else 764 f2fs_msg(sb, KERN_INFO, 765 "Test dummy encryption mount option ignored"); 766 #endif 767 break; 768 default: 769 f2fs_msg(sb, KERN_ERR, 770 "Unrecognized mount option \"%s\" or missing value", 771 p); 772 return -EINVAL; 773 } 774 } 775 #ifdef CONFIG_QUOTA 776 if (f2fs_check_quota_options(sbi)) 777 return -EINVAL; 778 #endif 779 780 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 781 f2fs_msg(sb, KERN_ERR, 782 "Should set mode=lfs with %uKB-sized IO", 783 F2FS_IO_SIZE_KB(sbi)); 784 return -EINVAL; 785 } 786 787 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 788 if (!f2fs_sb_has_extra_attr(sb) || 789 !f2fs_sb_has_flexible_inline_xattr(sb)) { 790 f2fs_msg(sb, KERN_ERR, 791 "extra_attr or flexible_inline_xattr " 792 "feature is off"); 793 return -EINVAL; 794 } 795 if (!test_opt(sbi, INLINE_XATTR)) { 796 f2fs_msg(sb, KERN_ERR, 797 "inline_xattr_size option should be " 798 "set with inline_xattr option"); 799 return -EINVAL; 800 } 801 if (!F2FS_OPTION(sbi).inline_xattr_size || 802 F2FS_OPTION(sbi).inline_xattr_size >= 803 DEF_ADDRS_PER_INODE - 804 F2FS_TOTAL_EXTRA_ATTR_SIZE - 805 DEF_INLINE_RESERVED_SIZE - 806 DEF_MIN_INLINE_SIZE) { 807 f2fs_msg(sb, KERN_ERR, 808 "inline xattr size is out of range"); 809 return -EINVAL; 810 } 811 } 812 813 /* Not pass down write hints if the number of active logs is lesser 814 * than NR_CURSEG_TYPE. 815 */ 816 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 817 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 818 return 0; 819 } 820 821 static struct inode *f2fs_alloc_inode(struct super_block *sb) 822 { 823 struct f2fs_inode_info *fi; 824 825 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 826 if (!fi) 827 return NULL; 828 829 init_once((void *) fi); 830 831 /* Initialize f2fs-specific inode info */ 832 atomic_set(&fi->dirty_pages, 0); 833 init_rwsem(&fi->i_sem); 834 INIT_LIST_HEAD(&fi->dirty_list); 835 INIT_LIST_HEAD(&fi->gdirty_list); 836 INIT_LIST_HEAD(&fi->inmem_ilist); 837 INIT_LIST_HEAD(&fi->inmem_pages); 838 mutex_init(&fi->inmem_lock); 839 init_rwsem(&fi->i_gc_rwsem[READ]); 840 init_rwsem(&fi->i_gc_rwsem[WRITE]); 841 init_rwsem(&fi->i_mmap_sem); 842 init_rwsem(&fi->i_xattr_sem); 843 844 /* Will be used by directory only */ 845 fi->i_dir_level = F2FS_SB(sb)->dir_level; 846 847 return &fi->vfs_inode; 848 } 849 850 static int f2fs_drop_inode(struct inode *inode) 851 { 852 int ret; 853 /* 854 * This is to avoid a deadlock condition like below. 855 * writeback_single_inode(inode) 856 * - f2fs_write_data_page 857 * - f2fs_gc -> iput -> evict 858 * - inode_wait_for_writeback(inode) 859 */ 860 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 861 if (!inode->i_nlink && !is_bad_inode(inode)) { 862 /* to avoid evict_inode call simultaneously */ 863 atomic_inc(&inode->i_count); 864 spin_unlock(&inode->i_lock); 865 866 /* some remained atomic pages should discarded */ 867 if (f2fs_is_atomic_file(inode)) 868 f2fs_drop_inmem_pages(inode); 869 870 /* should remain fi->extent_tree for writepage */ 871 f2fs_destroy_extent_node(inode); 872 873 sb_start_intwrite(inode->i_sb); 874 f2fs_i_size_write(inode, 0); 875 876 if (F2FS_HAS_BLOCKS(inode)) 877 f2fs_truncate(inode); 878 879 sb_end_intwrite(inode->i_sb); 880 881 spin_lock(&inode->i_lock); 882 atomic_dec(&inode->i_count); 883 } 884 trace_f2fs_drop_inode(inode, 0); 885 return 0; 886 } 887 ret = generic_drop_inode(inode); 888 trace_f2fs_drop_inode(inode, ret); 889 return ret; 890 } 891 892 int f2fs_inode_dirtied(struct inode *inode, bool sync) 893 { 894 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 895 int ret = 0; 896 897 spin_lock(&sbi->inode_lock[DIRTY_META]); 898 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 899 ret = 1; 900 } else { 901 set_inode_flag(inode, FI_DIRTY_INODE); 902 stat_inc_dirty_inode(sbi, DIRTY_META); 903 } 904 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 905 list_add_tail(&F2FS_I(inode)->gdirty_list, 906 &sbi->inode_list[DIRTY_META]); 907 inc_page_count(sbi, F2FS_DIRTY_IMETA); 908 } 909 spin_unlock(&sbi->inode_lock[DIRTY_META]); 910 return ret; 911 } 912 913 void f2fs_inode_synced(struct inode *inode) 914 { 915 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 916 917 spin_lock(&sbi->inode_lock[DIRTY_META]); 918 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 919 spin_unlock(&sbi->inode_lock[DIRTY_META]); 920 return; 921 } 922 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 923 list_del_init(&F2FS_I(inode)->gdirty_list); 924 dec_page_count(sbi, F2FS_DIRTY_IMETA); 925 } 926 clear_inode_flag(inode, FI_DIRTY_INODE); 927 clear_inode_flag(inode, FI_AUTO_RECOVER); 928 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 929 spin_unlock(&sbi->inode_lock[DIRTY_META]); 930 } 931 932 /* 933 * f2fs_dirty_inode() is called from __mark_inode_dirty() 934 * 935 * We should call set_dirty_inode to write the dirty inode through write_inode. 936 */ 937 static void f2fs_dirty_inode(struct inode *inode, int flags) 938 { 939 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 940 941 if (inode->i_ino == F2FS_NODE_INO(sbi) || 942 inode->i_ino == F2FS_META_INO(sbi)) 943 return; 944 945 if (flags == I_DIRTY_TIME) 946 return; 947 948 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 949 clear_inode_flag(inode, FI_AUTO_RECOVER); 950 951 f2fs_inode_dirtied(inode, false); 952 } 953 954 static void f2fs_i_callback(struct rcu_head *head) 955 { 956 struct inode *inode = container_of(head, struct inode, i_rcu); 957 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 958 } 959 960 static void f2fs_destroy_inode(struct inode *inode) 961 { 962 call_rcu(&inode->i_rcu, f2fs_i_callback); 963 } 964 965 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 966 { 967 percpu_counter_destroy(&sbi->alloc_valid_block_count); 968 percpu_counter_destroy(&sbi->total_valid_inode_count); 969 } 970 971 static void destroy_device_list(struct f2fs_sb_info *sbi) 972 { 973 int i; 974 975 for (i = 0; i < sbi->s_ndevs; i++) { 976 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 977 #ifdef CONFIG_BLK_DEV_ZONED 978 kfree(FDEV(i).blkz_type); 979 #endif 980 } 981 kfree(sbi->devs); 982 } 983 984 static void f2fs_put_super(struct super_block *sb) 985 { 986 struct f2fs_sb_info *sbi = F2FS_SB(sb); 987 int i; 988 bool dropped; 989 990 f2fs_quota_off_umount(sb); 991 992 /* prevent remaining shrinker jobs */ 993 mutex_lock(&sbi->umount_mutex); 994 995 /* 996 * We don't need to do checkpoint when superblock is clean. 997 * But, the previous checkpoint was not done by umount, it needs to do 998 * clean checkpoint again. 999 */ 1000 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1001 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 1002 struct cp_control cpc = { 1003 .reason = CP_UMOUNT, 1004 }; 1005 f2fs_write_checkpoint(sbi, &cpc); 1006 } 1007 1008 /* be sure to wait for any on-going discard commands */ 1009 dropped = f2fs_wait_discard_bios(sbi); 1010 1011 if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) { 1012 struct cp_control cpc = { 1013 .reason = CP_UMOUNT | CP_TRIMMED, 1014 }; 1015 f2fs_write_checkpoint(sbi, &cpc); 1016 } 1017 1018 /* f2fs_write_checkpoint can update stat informaion */ 1019 f2fs_destroy_stats(sbi); 1020 1021 /* 1022 * normally superblock is clean, so we need to release this. 1023 * In addition, EIO will skip do checkpoint, we need this as well. 1024 */ 1025 f2fs_release_ino_entry(sbi, true); 1026 1027 f2fs_leave_shrinker(sbi); 1028 mutex_unlock(&sbi->umount_mutex); 1029 1030 /* our cp_error case, we can wait for any writeback page */ 1031 f2fs_flush_merged_writes(sbi); 1032 1033 iput(sbi->node_inode); 1034 iput(sbi->meta_inode); 1035 1036 /* destroy f2fs internal modules */ 1037 f2fs_destroy_node_manager(sbi); 1038 f2fs_destroy_segment_manager(sbi); 1039 1040 kfree(sbi->ckpt); 1041 1042 f2fs_unregister_sysfs(sbi); 1043 1044 sb->s_fs_info = NULL; 1045 if (sbi->s_chksum_driver) 1046 crypto_free_shash(sbi->s_chksum_driver); 1047 kfree(sbi->raw_super); 1048 1049 destroy_device_list(sbi); 1050 mempool_destroy(sbi->write_io_dummy); 1051 #ifdef CONFIG_QUOTA 1052 for (i = 0; i < MAXQUOTAS; i++) 1053 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1054 #endif 1055 destroy_percpu_info(sbi); 1056 for (i = 0; i < NR_PAGE_TYPE; i++) 1057 kfree(sbi->write_io[i]); 1058 kfree(sbi); 1059 } 1060 1061 int f2fs_sync_fs(struct super_block *sb, int sync) 1062 { 1063 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1064 int err = 0; 1065 1066 if (unlikely(f2fs_cp_error(sbi))) 1067 return 0; 1068 1069 trace_f2fs_sync_fs(sb, sync); 1070 1071 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1072 return -EAGAIN; 1073 1074 if (sync) { 1075 struct cp_control cpc; 1076 1077 cpc.reason = __get_cp_reason(sbi); 1078 1079 mutex_lock(&sbi->gc_mutex); 1080 err = f2fs_write_checkpoint(sbi, &cpc); 1081 mutex_unlock(&sbi->gc_mutex); 1082 } 1083 f2fs_trace_ios(NULL, 1); 1084 1085 return err; 1086 } 1087 1088 static int f2fs_freeze(struct super_block *sb) 1089 { 1090 if (f2fs_readonly(sb)) 1091 return 0; 1092 1093 /* IO error happened before */ 1094 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1095 return -EIO; 1096 1097 /* must be clean, since sync_filesystem() was already called */ 1098 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1099 return -EINVAL; 1100 return 0; 1101 } 1102 1103 static int f2fs_unfreeze(struct super_block *sb) 1104 { 1105 return 0; 1106 } 1107 1108 #ifdef CONFIG_QUOTA 1109 static int f2fs_statfs_project(struct super_block *sb, 1110 kprojid_t projid, struct kstatfs *buf) 1111 { 1112 struct kqid qid; 1113 struct dquot *dquot; 1114 u64 limit; 1115 u64 curblock; 1116 1117 qid = make_kqid_projid(projid); 1118 dquot = dqget(sb, qid); 1119 if (IS_ERR(dquot)) 1120 return PTR_ERR(dquot); 1121 spin_lock(&dq_data_lock); 1122 1123 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 1124 dquot->dq_dqb.dqb_bsoftlimit : 1125 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 1126 if (limit && buf->f_blocks > limit) { 1127 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1128 buf->f_blocks = limit; 1129 buf->f_bfree = buf->f_bavail = 1130 (buf->f_blocks > curblock) ? 1131 (buf->f_blocks - curblock) : 0; 1132 } 1133 1134 limit = dquot->dq_dqb.dqb_isoftlimit ? 1135 dquot->dq_dqb.dqb_isoftlimit : 1136 dquot->dq_dqb.dqb_ihardlimit; 1137 if (limit && buf->f_files > limit) { 1138 buf->f_files = limit; 1139 buf->f_ffree = 1140 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1141 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1142 } 1143 1144 spin_unlock(&dq_data_lock); 1145 dqput(dquot); 1146 return 0; 1147 } 1148 #endif 1149 1150 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1151 { 1152 struct super_block *sb = dentry->d_sb; 1153 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1154 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1155 block_t total_count, user_block_count, start_count; 1156 u64 avail_node_count; 1157 1158 total_count = le64_to_cpu(sbi->raw_super->block_count); 1159 user_block_count = sbi->user_block_count; 1160 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1161 buf->f_type = F2FS_SUPER_MAGIC; 1162 buf->f_bsize = sbi->blocksize; 1163 1164 buf->f_blocks = total_count - start_count; 1165 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1166 sbi->current_reserved_blocks; 1167 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1168 buf->f_bavail = buf->f_bfree - 1169 F2FS_OPTION(sbi).root_reserved_blocks; 1170 else 1171 buf->f_bavail = 0; 1172 1173 avail_node_count = sbi->total_node_count - sbi->nquota_files - 1174 F2FS_RESERVED_NODE_NUM; 1175 1176 if (avail_node_count > user_block_count) { 1177 buf->f_files = user_block_count; 1178 buf->f_ffree = buf->f_bavail; 1179 } else { 1180 buf->f_files = avail_node_count; 1181 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1182 buf->f_bavail); 1183 } 1184 1185 buf->f_namelen = F2FS_NAME_LEN; 1186 buf->f_fsid.val[0] = (u32)id; 1187 buf->f_fsid.val[1] = (u32)(id >> 32); 1188 1189 #ifdef CONFIG_QUOTA 1190 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1191 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1192 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1193 } 1194 #endif 1195 return 0; 1196 } 1197 1198 static inline void f2fs_show_quota_options(struct seq_file *seq, 1199 struct super_block *sb) 1200 { 1201 #ifdef CONFIG_QUOTA 1202 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1203 1204 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1205 char *fmtname = ""; 1206 1207 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1208 case QFMT_VFS_OLD: 1209 fmtname = "vfsold"; 1210 break; 1211 case QFMT_VFS_V0: 1212 fmtname = "vfsv0"; 1213 break; 1214 case QFMT_VFS_V1: 1215 fmtname = "vfsv1"; 1216 break; 1217 } 1218 seq_printf(seq, ",jqfmt=%s", fmtname); 1219 } 1220 1221 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1222 seq_show_option(seq, "usrjquota", 1223 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1224 1225 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1226 seq_show_option(seq, "grpjquota", 1227 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1228 1229 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1230 seq_show_option(seq, "prjjquota", 1231 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1232 #endif 1233 } 1234 1235 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1236 { 1237 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1238 1239 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 1240 if (test_opt(sbi, FORCE_FG_GC)) 1241 seq_printf(seq, ",background_gc=%s", "sync"); 1242 else 1243 seq_printf(seq, ",background_gc=%s", "on"); 1244 } else { 1245 seq_printf(seq, ",background_gc=%s", "off"); 1246 } 1247 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1248 seq_puts(seq, ",disable_roll_forward"); 1249 if (test_opt(sbi, DISCARD)) 1250 seq_puts(seq, ",discard"); 1251 if (test_opt(sbi, NOHEAP)) 1252 seq_puts(seq, ",no_heap"); 1253 else 1254 seq_puts(seq, ",heap"); 1255 #ifdef CONFIG_F2FS_FS_XATTR 1256 if (test_opt(sbi, XATTR_USER)) 1257 seq_puts(seq, ",user_xattr"); 1258 else 1259 seq_puts(seq, ",nouser_xattr"); 1260 if (test_opt(sbi, INLINE_XATTR)) 1261 seq_puts(seq, ",inline_xattr"); 1262 else 1263 seq_puts(seq, ",noinline_xattr"); 1264 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1265 seq_printf(seq, ",inline_xattr_size=%u", 1266 F2FS_OPTION(sbi).inline_xattr_size); 1267 #endif 1268 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1269 if (test_opt(sbi, POSIX_ACL)) 1270 seq_puts(seq, ",acl"); 1271 else 1272 seq_puts(seq, ",noacl"); 1273 #endif 1274 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1275 seq_puts(seq, ",disable_ext_identify"); 1276 if (test_opt(sbi, INLINE_DATA)) 1277 seq_puts(seq, ",inline_data"); 1278 else 1279 seq_puts(seq, ",noinline_data"); 1280 if (test_opt(sbi, INLINE_DENTRY)) 1281 seq_puts(seq, ",inline_dentry"); 1282 else 1283 seq_puts(seq, ",noinline_dentry"); 1284 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1285 seq_puts(seq, ",flush_merge"); 1286 if (test_opt(sbi, NOBARRIER)) 1287 seq_puts(seq, ",nobarrier"); 1288 if (test_opt(sbi, FASTBOOT)) 1289 seq_puts(seq, ",fastboot"); 1290 if (test_opt(sbi, EXTENT_CACHE)) 1291 seq_puts(seq, ",extent_cache"); 1292 else 1293 seq_puts(seq, ",noextent_cache"); 1294 if (test_opt(sbi, DATA_FLUSH)) 1295 seq_puts(seq, ",data_flush"); 1296 1297 seq_puts(seq, ",mode="); 1298 if (test_opt(sbi, ADAPTIVE)) 1299 seq_puts(seq, "adaptive"); 1300 else if (test_opt(sbi, LFS)) 1301 seq_puts(seq, "lfs"); 1302 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1303 if (test_opt(sbi, RESERVE_ROOT)) 1304 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1305 F2FS_OPTION(sbi).root_reserved_blocks, 1306 from_kuid_munged(&init_user_ns, 1307 F2FS_OPTION(sbi).s_resuid), 1308 from_kgid_munged(&init_user_ns, 1309 F2FS_OPTION(sbi).s_resgid)); 1310 if (F2FS_IO_SIZE_BITS(sbi)) 1311 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi)); 1312 #ifdef CONFIG_F2FS_FAULT_INJECTION 1313 if (test_opt(sbi, FAULT_INJECTION)) 1314 seq_printf(seq, ",fault_injection=%u", 1315 F2FS_OPTION(sbi).fault_info.inject_rate); 1316 #endif 1317 #ifdef CONFIG_QUOTA 1318 if (test_opt(sbi, QUOTA)) 1319 seq_puts(seq, ",quota"); 1320 if (test_opt(sbi, USRQUOTA)) 1321 seq_puts(seq, ",usrquota"); 1322 if (test_opt(sbi, GRPQUOTA)) 1323 seq_puts(seq, ",grpquota"); 1324 if (test_opt(sbi, PRJQUOTA)) 1325 seq_puts(seq, ",prjquota"); 1326 #endif 1327 f2fs_show_quota_options(seq, sbi->sb); 1328 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1329 seq_printf(seq, ",whint_mode=%s", "user-based"); 1330 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1331 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1332 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1333 if (F2FS_OPTION(sbi).test_dummy_encryption) 1334 seq_puts(seq, ",test_dummy_encryption"); 1335 #endif 1336 1337 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1338 seq_printf(seq, ",alloc_mode=%s", "default"); 1339 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1340 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1341 1342 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1343 seq_printf(seq, ",fsync_mode=%s", "posix"); 1344 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1345 seq_printf(seq, ",fsync_mode=%s", "strict"); 1346 return 0; 1347 } 1348 1349 static void default_options(struct f2fs_sb_info *sbi) 1350 { 1351 /* init some FS parameters */ 1352 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1353 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1354 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1355 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1356 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1357 F2FS_OPTION(sbi).test_dummy_encryption = false; 1358 sbi->readdir_ra = 1; 1359 1360 set_opt(sbi, BG_GC); 1361 set_opt(sbi, INLINE_XATTR); 1362 set_opt(sbi, INLINE_DATA); 1363 set_opt(sbi, INLINE_DENTRY); 1364 set_opt(sbi, EXTENT_CACHE); 1365 set_opt(sbi, NOHEAP); 1366 sbi->sb->s_flags |= SB_LAZYTIME; 1367 set_opt(sbi, FLUSH_MERGE); 1368 if (f2fs_sb_has_blkzoned(sbi->sb)) { 1369 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1370 set_opt(sbi, DISCARD); 1371 } else { 1372 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1373 } 1374 1375 #ifdef CONFIG_F2FS_FS_XATTR 1376 set_opt(sbi, XATTR_USER); 1377 #endif 1378 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1379 set_opt(sbi, POSIX_ACL); 1380 #endif 1381 1382 #ifdef CONFIG_F2FS_FAULT_INJECTION 1383 f2fs_build_fault_attr(sbi, 0); 1384 #endif 1385 } 1386 1387 #ifdef CONFIG_QUOTA 1388 static int f2fs_enable_quotas(struct super_block *sb); 1389 #endif 1390 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1391 { 1392 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1393 struct f2fs_mount_info org_mount_opt; 1394 unsigned long old_sb_flags; 1395 int err; 1396 bool need_restart_gc = false; 1397 bool need_stop_gc = false; 1398 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1399 #ifdef CONFIG_QUOTA 1400 int i, j; 1401 #endif 1402 1403 /* 1404 * Save the old mount options in case we 1405 * need to restore them. 1406 */ 1407 org_mount_opt = sbi->mount_opt; 1408 old_sb_flags = sb->s_flags; 1409 1410 #ifdef CONFIG_QUOTA 1411 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1412 for (i = 0; i < MAXQUOTAS; i++) { 1413 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1414 org_mount_opt.s_qf_names[i] = 1415 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1416 GFP_KERNEL); 1417 if (!org_mount_opt.s_qf_names[i]) { 1418 for (j = 0; j < i; j++) 1419 kfree(org_mount_opt.s_qf_names[j]); 1420 return -ENOMEM; 1421 } 1422 } else { 1423 org_mount_opt.s_qf_names[i] = NULL; 1424 } 1425 } 1426 #endif 1427 1428 /* recover superblocks we couldn't write due to previous RO mount */ 1429 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1430 err = f2fs_commit_super(sbi, false); 1431 f2fs_msg(sb, KERN_INFO, 1432 "Try to recover all the superblocks, ret: %d", err); 1433 if (!err) 1434 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1435 } 1436 1437 default_options(sbi); 1438 1439 /* parse mount options */ 1440 err = parse_options(sb, data); 1441 if (err) 1442 goto restore_opts; 1443 1444 /* 1445 * Previous and new state of filesystem is RO, 1446 * so skip checking GC and FLUSH_MERGE conditions. 1447 */ 1448 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1449 goto skip; 1450 1451 #ifdef CONFIG_QUOTA 1452 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1453 err = dquot_suspend(sb, -1); 1454 if (err < 0) 1455 goto restore_opts; 1456 } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) { 1457 /* dquot_resume needs RW */ 1458 sb->s_flags &= ~SB_RDONLY; 1459 if (sb_any_quota_suspended(sb)) { 1460 dquot_resume(sb, -1); 1461 } else if (f2fs_sb_has_quota_ino(sb)) { 1462 err = f2fs_enable_quotas(sb); 1463 if (err) 1464 goto restore_opts; 1465 } 1466 } 1467 #endif 1468 /* disallow enable/disable extent_cache dynamically */ 1469 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1470 err = -EINVAL; 1471 f2fs_msg(sbi->sb, KERN_WARNING, 1472 "switch extent_cache option is not allowed"); 1473 goto restore_opts; 1474 } 1475 1476 /* 1477 * We stop the GC thread if FS is mounted as RO 1478 * or if background_gc = off is passed in mount 1479 * option. Also sync the filesystem. 1480 */ 1481 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) { 1482 if (sbi->gc_thread) { 1483 f2fs_stop_gc_thread(sbi); 1484 need_restart_gc = true; 1485 } 1486 } else if (!sbi->gc_thread) { 1487 err = f2fs_start_gc_thread(sbi); 1488 if (err) 1489 goto restore_opts; 1490 need_stop_gc = true; 1491 } 1492 1493 if (*flags & SB_RDONLY || 1494 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1495 writeback_inodes_sb(sb, WB_REASON_SYNC); 1496 sync_inodes_sb(sb); 1497 1498 set_sbi_flag(sbi, SBI_IS_DIRTY); 1499 set_sbi_flag(sbi, SBI_IS_CLOSE); 1500 f2fs_sync_fs(sb, 1); 1501 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1502 } 1503 1504 /* 1505 * We stop issue flush thread if FS is mounted as RO 1506 * or if flush_merge is not passed in mount option. 1507 */ 1508 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1509 clear_opt(sbi, FLUSH_MERGE); 1510 f2fs_destroy_flush_cmd_control(sbi, false); 1511 } else { 1512 err = f2fs_create_flush_cmd_control(sbi); 1513 if (err) 1514 goto restore_gc; 1515 } 1516 skip: 1517 #ifdef CONFIG_QUOTA 1518 /* Release old quota file names */ 1519 for (i = 0; i < MAXQUOTAS; i++) 1520 kfree(org_mount_opt.s_qf_names[i]); 1521 #endif 1522 /* Update the POSIXACL Flag */ 1523 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1524 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1525 1526 limit_reserve_root(sbi); 1527 return 0; 1528 restore_gc: 1529 if (need_restart_gc) { 1530 if (f2fs_start_gc_thread(sbi)) 1531 f2fs_msg(sbi->sb, KERN_WARNING, 1532 "background gc thread has stopped"); 1533 } else if (need_stop_gc) { 1534 f2fs_stop_gc_thread(sbi); 1535 } 1536 restore_opts: 1537 #ifdef CONFIG_QUOTA 1538 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1539 for (i = 0; i < MAXQUOTAS; i++) { 1540 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1541 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1542 } 1543 #endif 1544 sbi->mount_opt = org_mount_opt; 1545 sb->s_flags = old_sb_flags; 1546 return err; 1547 } 1548 1549 #ifdef CONFIG_QUOTA 1550 /* Read data from quotafile */ 1551 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1552 size_t len, loff_t off) 1553 { 1554 struct inode *inode = sb_dqopt(sb)->files[type]; 1555 struct address_space *mapping = inode->i_mapping; 1556 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1557 int offset = off & (sb->s_blocksize - 1); 1558 int tocopy; 1559 size_t toread; 1560 loff_t i_size = i_size_read(inode); 1561 struct page *page; 1562 char *kaddr; 1563 1564 if (off > i_size) 1565 return 0; 1566 1567 if (off + len > i_size) 1568 len = i_size - off; 1569 toread = len; 1570 while (toread > 0) { 1571 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1572 repeat: 1573 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1574 if (IS_ERR(page)) { 1575 if (PTR_ERR(page) == -ENOMEM) { 1576 congestion_wait(BLK_RW_ASYNC, HZ/50); 1577 goto repeat; 1578 } 1579 return PTR_ERR(page); 1580 } 1581 1582 lock_page(page); 1583 1584 if (unlikely(page->mapping != mapping)) { 1585 f2fs_put_page(page, 1); 1586 goto repeat; 1587 } 1588 if (unlikely(!PageUptodate(page))) { 1589 f2fs_put_page(page, 1); 1590 return -EIO; 1591 } 1592 1593 kaddr = kmap_atomic(page); 1594 memcpy(data, kaddr + offset, tocopy); 1595 kunmap_atomic(kaddr); 1596 f2fs_put_page(page, 1); 1597 1598 offset = 0; 1599 toread -= tocopy; 1600 data += tocopy; 1601 blkidx++; 1602 } 1603 return len; 1604 } 1605 1606 /* Write to quotafile */ 1607 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1608 const char *data, size_t len, loff_t off) 1609 { 1610 struct inode *inode = sb_dqopt(sb)->files[type]; 1611 struct address_space *mapping = inode->i_mapping; 1612 const struct address_space_operations *a_ops = mapping->a_ops; 1613 int offset = off & (sb->s_blocksize - 1); 1614 size_t towrite = len; 1615 struct page *page; 1616 char *kaddr; 1617 int err = 0; 1618 int tocopy; 1619 1620 while (towrite > 0) { 1621 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1622 towrite); 1623 retry: 1624 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1625 &page, NULL); 1626 if (unlikely(err)) { 1627 if (err == -ENOMEM) { 1628 congestion_wait(BLK_RW_ASYNC, HZ/50); 1629 goto retry; 1630 } 1631 break; 1632 } 1633 1634 kaddr = kmap_atomic(page); 1635 memcpy(kaddr + offset, data, tocopy); 1636 kunmap_atomic(kaddr); 1637 flush_dcache_page(page); 1638 1639 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1640 page, NULL); 1641 offset = 0; 1642 towrite -= tocopy; 1643 off += tocopy; 1644 data += tocopy; 1645 cond_resched(); 1646 } 1647 1648 if (len == towrite) 1649 return err; 1650 inode->i_mtime = inode->i_ctime = current_time(inode); 1651 f2fs_mark_inode_dirty_sync(inode, false); 1652 return len - towrite; 1653 } 1654 1655 static struct dquot **f2fs_get_dquots(struct inode *inode) 1656 { 1657 return F2FS_I(inode)->i_dquot; 1658 } 1659 1660 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1661 { 1662 return &F2FS_I(inode)->i_reserved_quota; 1663 } 1664 1665 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1666 { 1667 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 1668 F2FS_OPTION(sbi).s_jquota_fmt, type); 1669 } 1670 1671 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 1672 { 1673 int enabled = 0; 1674 int i, err; 1675 1676 if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) { 1677 err = f2fs_enable_quotas(sbi->sb); 1678 if (err) { 1679 f2fs_msg(sbi->sb, KERN_ERR, 1680 "Cannot turn on quota_ino: %d", err); 1681 return 0; 1682 } 1683 return 1; 1684 } 1685 1686 for (i = 0; i < MAXQUOTAS; i++) { 1687 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1688 err = f2fs_quota_on_mount(sbi, i); 1689 if (!err) { 1690 enabled = 1; 1691 continue; 1692 } 1693 f2fs_msg(sbi->sb, KERN_ERR, 1694 "Cannot turn on quotas: %d on %d", err, i); 1695 } 1696 } 1697 return enabled; 1698 } 1699 1700 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 1701 unsigned int flags) 1702 { 1703 struct inode *qf_inode; 1704 unsigned long qf_inum; 1705 int err; 1706 1707 BUG_ON(!f2fs_sb_has_quota_ino(sb)); 1708 1709 qf_inum = f2fs_qf_ino(sb, type); 1710 if (!qf_inum) 1711 return -EPERM; 1712 1713 qf_inode = f2fs_iget(sb, qf_inum); 1714 if (IS_ERR(qf_inode)) { 1715 f2fs_msg(sb, KERN_ERR, 1716 "Bad quota inode %u:%lu", type, qf_inum); 1717 return PTR_ERR(qf_inode); 1718 } 1719 1720 /* Don't account quota for quota files to avoid recursion */ 1721 qf_inode->i_flags |= S_NOQUOTA; 1722 err = dquot_enable(qf_inode, type, format_id, flags); 1723 iput(qf_inode); 1724 return err; 1725 } 1726 1727 static int f2fs_enable_quotas(struct super_block *sb) 1728 { 1729 int type, err = 0; 1730 unsigned long qf_inum; 1731 bool quota_mopt[MAXQUOTAS] = { 1732 test_opt(F2FS_SB(sb), USRQUOTA), 1733 test_opt(F2FS_SB(sb), GRPQUOTA), 1734 test_opt(F2FS_SB(sb), PRJQUOTA), 1735 }; 1736 1737 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 1738 for (type = 0; type < MAXQUOTAS; type++) { 1739 qf_inum = f2fs_qf_ino(sb, type); 1740 if (qf_inum) { 1741 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 1742 DQUOT_USAGE_ENABLED | 1743 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 1744 if (err) { 1745 f2fs_msg(sb, KERN_ERR, 1746 "Failed to enable quota tracking " 1747 "(type=%d, err=%d). Please run " 1748 "fsck to fix.", type, err); 1749 for (type--; type >= 0; type--) 1750 dquot_quota_off(sb, type); 1751 return err; 1752 } 1753 } 1754 } 1755 return 0; 1756 } 1757 1758 static int f2fs_quota_sync(struct super_block *sb, int type) 1759 { 1760 struct quota_info *dqopt = sb_dqopt(sb); 1761 int cnt; 1762 int ret; 1763 1764 ret = dquot_writeback_dquots(sb, type); 1765 if (ret) 1766 return ret; 1767 1768 /* 1769 * Now when everything is written we can discard the pagecache so 1770 * that userspace sees the changes. 1771 */ 1772 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 1773 if (type != -1 && cnt != type) 1774 continue; 1775 if (!sb_has_quota_active(sb, cnt)) 1776 continue; 1777 1778 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping); 1779 if (ret) 1780 return ret; 1781 1782 inode_lock(dqopt->files[cnt]); 1783 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 1784 inode_unlock(dqopt->files[cnt]); 1785 } 1786 return 0; 1787 } 1788 1789 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 1790 const struct path *path) 1791 { 1792 struct inode *inode; 1793 int err; 1794 1795 err = f2fs_quota_sync(sb, type); 1796 if (err) 1797 return err; 1798 1799 err = dquot_quota_on(sb, type, format_id, path); 1800 if (err) 1801 return err; 1802 1803 inode = d_inode(path->dentry); 1804 1805 inode_lock(inode); 1806 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 1807 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 1808 S_NOATIME | S_IMMUTABLE); 1809 inode_unlock(inode); 1810 f2fs_mark_inode_dirty_sync(inode, false); 1811 1812 return 0; 1813 } 1814 1815 static int f2fs_quota_off(struct super_block *sb, int type) 1816 { 1817 struct inode *inode = sb_dqopt(sb)->files[type]; 1818 int err; 1819 1820 if (!inode || !igrab(inode)) 1821 return dquot_quota_off(sb, type); 1822 1823 f2fs_quota_sync(sb, type); 1824 1825 err = dquot_quota_off(sb, type); 1826 if (err || f2fs_sb_has_quota_ino(sb)) 1827 goto out_put; 1828 1829 inode_lock(inode); 1830 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 1831 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 1832 inode_unlock(inode); 1833 f2fs_mark_inode_dirty_sync(inode, false); 1834 out_put: 1835 iput(inode); 1836 return err; 1837 } 1838 1839 void f2fs_quota_off_umount(struct super_block *sb) 1840 { 1841 int type; 1842 1843 for (type = 0; type < MAXQUOTAS; type++) 1844 f2fs_quota_off(sb, type); 1845 } 1846 1847 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 1848 { 1849 *projid = F2FS_I(inode)->i_projid; 1850 return 0; 1851 } 1852 1853 static const struct dquot_operations f2fs_quota_operations = { 1854 .get_reserved_space = f2fs_get_reserved_space, 1855 .write_dquot = dquot_commit, 1856 .acquire_dquot = dquot_acquire, 1857 .release_dquot = dquot_release, 1858 .mark_dirty = dquot_mark_dquot_dirty, 1859 .write_info = dquot_commit_info, 1860 .alloc_dquot = dquot_alloc, 1861 .destroy_dquot = dquot_destroy, 1862 .get_projid = f2fs_get_projid, 1863 .get_next_id = dquot_get_next_id, 1864 }; 1865 1866 static const struct quotactl_ops f2fs_quotactl_ops = { 1867 .quota_on = f2fs_quota_on, 1868 .quota_off = f2fs_quota_off, 1869 .quota_sync = f2fs_quota_sync, 1870 .get_state = dquot_get_state, 1871 .set_info = dquot_set_dqinfo, 1872 .get_dqblk = dquot_get_dqblk, 1873 .set_dqblk = dquot_set_dqblk, 1874 .get_nextdqblk = dquot_get_next_dqblk, 1875 }; 1876 #else 1877 void f2fs_quota_off_umount(struct super_block *sb) 1878 { 1879 } 1880 #endif 1881 1882 static const struct super_operations f2fs_sops = { 1883 .alloc_inode = f2fs_alloc_inode, 1884 .drop_inode = f2fs_drop_inode, 1885 .destroy_inode = f2fs_destroy_inode, 1886 .write_inode = f2fs_write_inode, 1887 .dirty_inode = f2fs_dirty_inode, 1888 .show_options = f2fs_show_options, 1889 #ifdef CONFIG_QUOTA 1890 .quota_read = f2fs_quota_read, 1891 .quota_write = f2fs_quota_write, 1892 .get_dquots = f2fs_get_dquots, 1893 #endif 1894 .evict_inode = f2fs_evict_inode, 1895 .put_super = f2fs_put_super, 1896 .sync_fs = f2fs_sync_fs, 1897 .freeze_fs = f2fs_freeze, 1898 .unfreeze_fs = f2fs_unfreeze, 1899 .statfs = f2fs_statfs, 1900 .remount_fs = f2fs_remount, 1901 }; 1902 1903 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1904 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1905 { 1906 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1907 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1908 ctx, len, NULL); 1909 } 1910 1911 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1912 void *fs_data) 1913 { 1914 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1915 1916 /* 1917 * Encrypting the root directory is not allowed because fsck 1918 * expects lost+found directory to exist and remain unencrypted 1919 * if LOST_FOUND feature is enabled. 1920 * 1921 */ 1922 if (f2fs_sb_has_lost_found(sbi->sb) && 1923 inode->i_ino == F2FS_ROOT_INO(sbi)) 1924 return -EPERM; 1925 1926 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1927 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1928 ctx, len, fs_data, XATTR_CREATE); 1929 } 1930 1931 static bool f2fs_dummy_context(struct inode *inode) 1932 { 1933 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 1934 } 1935 1936 static const struct fscrypt_operations f2fs_cryptops = { 1937 .key_prefix = "f2fs:", 1938 .get_context = f2fs_get_context, 1939 .set_context = f2fs_set_context, 1940 .dummy_context = f2fs_dummy_context, 1941 .empty_dir = f2fs_empty_dir, 1942 .max_namelen = F2FS_NAME_LEN, 1943 }; 1944 #endif 1945 1946 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1947 u64 ino, u32 generation) 1948 { 1949 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1950 struct inode *inode; 1951 1952 if (f2fs_check_nid_range(sbi, ino)) 1953 return ERR_PTR(-ESTALE); 1954 1955 /* 1956 * f2fs_iget isn't quite right if the inode is currently unallocated! 1957 * However f2fs_iget currently does appropriate checks to handle stale 1958 * inodes so everything is OK. 1959 */ 1960 inode = f2fs_iget(sb, ino); 1961 if (IS_ERR(inode)) 1962 return ERR_CAST(inode); 1963 if (unlikely(generation && inode->i_generation != generation)) { 1964 /* we didn't find the right inode.. */ 1965 iput(inode); 1966 return ERR_PTR(-ESTALE); 1967 } 1968 return inode; 1969 } 1970 1971 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1972 int fh_len, int fh_type) 1973 { 1974 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1975 f2fs_nfs_get_inode); 1976 } 1977 1978 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1979 int fh_len, int fh_type) 1980 { 1981 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1982 f2fs_nfs_get_inode); 1983 } 1984 1985 static const struct export_operations f2fs_export_ops = { 1986 .fh_to_dentry = f2fs_fh_to_dentry, 1987 .fh_to_parent = f2fs_fh_to_parent, 1988 .get_parent = f2fs_get_parent, 1989 }; 1990 1991 static loff_t max_file_blocks(void) 1992 { 1993 loff_t result = 0; 1994 loff_t leaf_count = ADDRS_PER_BLOCK; 1995 1996 /* 1997 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 1998 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 1999 * space in inode.i_addr, it will be more safe to reassign 2000 * result as zero. 2001 */ 2002 2003 /* two direct node blocks */ 2004 result += (leaf_count * 2); 2005 2006 /* two indirect node blocks */ 2007 leaf_count *= NIDS_PER_BLOCK; 2008 result += (leaf_count * 2); 2009 2010 /* one double indirect node block */ 2011 leaf_count *= NIDS_PER_BLOCK; 2012 result += leaf_count; 2013 2014 return result; 2015 } 2016 2017 static int __f2fs_commit_super(struct buffer_head *bh, 2018 struct f2fs_super_block *super) 2019 { 2020 lock_buffer(bh); 2021 if (super) 2022 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2023 set_buffer_dirty(bh); 2024 unlock_buffer(bh); 2025 2026 /* it's rare case, we can do fua all the time */ 2027 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2028 } 2029 2030 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2031 struct buffer_head *bh) 2032 { 2033 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2034 (bh->b_data + F2FS_SUPER_OFFSET); 2035 struct super_block *sb = sbi->sb; 2036 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2037 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2038 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2039 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2040 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2041 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2042 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2043 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2044 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2045 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2046 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2047 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2048 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2049 u64 main_end_blkaddr = main_blkaddr + 2050 (segment_count_main << log_blocks_per_seg); 2051 u64 seg_end_blkaddr = segment0_blkaddr + 2052 (segment_count << log_blocks_per_seg); 2053 2054 if (segment0_blkaddr != cp_blkaddr) { 2055 f2fs_msg(sb, KERN_INFO, 2056 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2057 segment0_blkaddr, cp_blkaddr); 2058 return true; 2059 } 2060 2061 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2062 sit_blkaddr) { 2063 f2fs_msg(sb, KERN_INFO, 2064 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2065 cp_blkaddr, sit_blkaddr, 2066 segment_count_ckpt << log_blocks_per_seg); 2067 return true; 2068 } 2069 2070 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2071 nat_blkaddr) { 2072 f2fs_msg(sb, KERN_INFO, 2073 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2074 sit_blkaddr, nat_blkaddr, 2075 segment_count_sit << log_blocks_per_seg); 2076 return true; 2077 } 2078 2079 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2080 ssa_blkaddr) { 2081 f2fs_msg(sb, KERN_INFO, 2082 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2083 nat_blkaddr, ssa_blkaddr, 2084 segment_count_nat << log_blocks_per_seg); 2085 return true; 2086 } 2087 2088 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2089 main_blkaddr) { 2090 f2fs_msg(sb, KERN_INFO, 2091 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2092 ssa_blkaddr, main_blkaddr, 2093 segment_count_ssa << log_blocks_per_seg); 2094 return true; 2095 } 2096 2097 if (main_end_blkaddr > seg_end_blkaddr) { 2098 f2fs_msg(sb, KERN_INFO, 2099 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2100 main_blkaddr, 2101 segment0_blkaddr + 2102 (segment_count << log_blocks_per_seg), 2103 segment_count_main << log_blocks_per_seg); 2104 return true; 2105 } else if (main_end_blkaddr < seg_end_blkaddr) { 2106 int err = 0; 2107 char *res; 2108 2109 /* fix in-memory information all the time */ 2110 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2111 segment0_blkaddr) >> log_blocks_per_seg); 2112 2113 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2114 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2115 res = "internally"; 2116 } else { 2117 err = __f2fs_commit_super(bh, NULL); 2118 res = err ? "failed" : "done"; 2119 } 2120 f2fs_msg(sb, KERN_INFO, 2121 "Fix alignment : %s, start(%u) end(%u) block(%u)", 2122 res, main_blkaddr, 2123 segment0_blkaddr + 2124 (segment_count << log_blocks_per_seg), 2125 segment_count_main << log_blocks_per_seg); 2126 if (err) 2127 return true; 2128 } 2129 return false; 2130 } 2131 2132 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2133 struct buffer_head *bh) 2134 { 2135 block_t segment_count, segs_per_sec, secs_per_zone; 2136 block_t total_sections, blocks_per_seg; 2137 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2138 (bh->b_data + F2FS_SUPER_OFFSET); 2139 struct super_block *sb = sbi->sb; 2140 unsigned int blocksize; 2141 2142 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 2143 f2fs_msg(sb, KERN_INFO, 2144 "Magic Mismatch, valid(0x%x) - read(0x%x)", 2145 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2146 return 1; 2147 } 2148 2149 /* Currently, support only 4KB page cache size */ 2150 if (F2FS_BLKSIZE != PAGE_SIZE) { 2151 f2fs_msg(sb, KERN_INFO, 2152 "Invalid page_cache_size (%lu), supports only 4KB\n", 2153 PAGE_SIZE); 2154 return 1; 2155 } 2156 2157 /* Currently, support only 4KB block size */ 2158 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2159 if (blocksize != F2FS_BLKSIZE) { 2160 f2fs_msg(sb, KERN_INFO, 2161 "Invalid blocksize (%u), supports only 4KB\n", 2162 blocksize); 2163 return 1; 2164 } 2165 2166 /* check log blocks per segment */ 2167 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2168 f2fs_msg(sb, KERN_INFO, 2169 "Invalid log blocks per segment (%u)\n", 2170 le32_to_cpu(raw_super->log_blocks_per_seg)); 2171 return 1; 2172 } 2173 2174 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2175 if (le32_to_cpu(raw_super->log_sectorsize) > 2176 F2FS_MAX_LOG_SECTOR_SIZE || 2177 le32_to_cpu(raw_super->log_sectorsize) < 2178 F2FS_MIN_LOG_SECTOR_SIZE) { 2179 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 2180 le32_to_cpu(raw_super->log_sectorsize)); 2181 return 1; 2182 } 2183 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2184 le32_to_cpu(raw_super->log_sectorsize) != 2185 F2FS_MAX_LOG_SECTOR_SIZE) { 2186 f2fs_msg(sb, KERN_INFO, 2187 "Invalid log sectors per block(%u) log sectorsize(%u)", 2188 le32_to_cpu(raw_super->log_sectors_per_block), 2189 le32_to_cpu(raw_super->log_sectorsize)); 2190 return 1; 2191 } 2192 2193 segment_count = le32_to_cpu(raw_super->segment_count); 2194 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2195 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2196 total_sections = le32_to_cpu(raw_super->section_count); 2197 2198 /* blocks_per_seg should be 512, given the above check */ 2199 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2200 2201 if (segment_count > F2FS_MAX_SEGMENT || 2202 segment_count < F2FS_MIN_SEGMENTS) { 2203 f2fs_msg(sb, KERN_INFO, 2204 "Invalid segment count (%u)", 2205 segment_count); 2206 return 1; 2207 } 2208 2209 if (total_sections > segment_count || 2210 total_sections < F2FS_MIN_SEGMENTS || 2211 segs_per_sec > segment_count || !segs_per_sec) { 2212 f2fs_msg(sb, KERN_INFO, 2213 "Invalid segment/section count (%u, %u x %u)", 2214 segment_count, total_sections, segs_per_sec); 2215 return 1; 2216 } 2217 2218 if ((segment_count / segs_per_sec) < total_sections) { 2219 f2fs_msg(sb, KERN_INFO, 2220 "Small segment_count (%u < %u * %u)", 2221 segment_count, segs_per_sec, total_sections); 2222 return 1; 2223 } 2224 2225 if (segment_count > (le32_to_cpu(raw_super->block_count) >> 9)) { 2226 f2fs_msg(sb, KERN_INFO, 2227 "Wrong segment_count / block_count (%u > %u)", 2228 segment_count, le32_to_cpu(raw_super->block_count)); 2229 return 1; 2230 } 2231 2232 if (secs_per_zone > total_sections) { 2233 f2fs_msg(sb, KERN_INFO, 2234 "Wrong secs_per_zone (%u > %u)", 2235 secs_per_zone, total_sections); 2236 return 1; 2237 } 2238 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2239 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2240 (le32_to_cpu(raw_super->extension_count) + 2241 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2242 f2fs_msg(sb, KERN_INFO, 2243 "Corrupted extension count (%u + %u > %u)", 2244 le32_to_cpu(raw_super->extension_count), 2245 raw_super->hot_ext_count, 2246 F2FS_MAX_EXTENSION); 2247 return 1; 2248 } 2249 2250 if (le32_to_cpu(raw_super->cp_payload) > 2251 (blocks_per_seg - F2FS_CP_PACKS)) { 2252 f2fs_msg(sb, KERN_INFO, 2253 "Insane cp_payload (%u > %u)", 2254 le32_to_cpu(raw_super->cp_payload), 2255 blocks_per_seg - F2FS_CP_PACKS); 2256 return 1; 2257 } 2258 2259 /* check reserved ino info */ 2260 if (le32_to_cpu(raw_super->node_ino) != 1 || 2261 le32_to_cpu(raw_super->meta_ino) != 2 || 2262 le32_to_cpu(raw_super->root_ino) != 3) { 2263 f2fs_msg(sb, KERN_INFO, 2264 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2265 le32_to_cpu(raw_super->node_ino), 2266 le32_to_cpu(raw_super->meta_ino), 2267 le32_to_cpu(raw_super->root_ino)); 2268 return 1; 2269 } 2270 2271 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2272 if (sanity_check_area_boundary(sbi, bh)) 2273 return 1; 2274 2275 return 0; 2276 } 2277 2278 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2279 { 2280 unsigned int total, fsmeta; 2281 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2282 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2283 unsigned int ovp_segments, reserved_segments; 2284 unsigned int main_segs, blocks_per_seg; 2285 int i; 2286 2287 total = le32_to_cpu(raw_super->segment_count); 2288 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2289 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 2290 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 2291 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2292 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2293 2294 if (unlikely(fsmeta >= total)) 2295 return 1; 2296 2297 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2298 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2299 2300 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2301 ovp_segments == 0 || reserved_segments == 0)) { 2302 f2fs_msg(sbi->sb, KERN_ERR, 2303 "Wrong layout: check mkfs.f2fs version"); 2304 return 1; 2305 } 2306 2307 main_segs = le32_to_cpu(raw_super->segment_count_main); 2308 blocks_per_seg = sbi->blocks_per_seg; 2309 2310 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2311 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2312 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2313 return 1; 2314 } 2315 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2316 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2317 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2318 return 1; 2319 } 2320 2321 if (unlikely(f2fs_cp_error(sbi))) { 2322 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 2323 return 1; 2324 } 2325 return 0; 2326 } 2327 2328 static void init_sb_info(struct f2fs_sb_info *sbi) 2329 { 2330 struct f2fs_super_block *raw_super = sbi->raw_super; 2331 int i, j; 2332 2333 sbi->log_sectors_per_block = 2334 le32_to_cpu(raw_super->log_sectors_per_block); 2335 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2336 sbi->blocksize = 1 << sbi->log_blocksize; 2337 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2338 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2339 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2340 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2341 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2342 sbi->total_node_count = 2343 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2344 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2345 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2346 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2347 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2348 sbi->cur_victim_sec = NULL_SECNO; 2349 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2350 2351 sbi->dir_level = DEF_DIR_LEVEL; 2352 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2353 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2354 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2355 2356 for (i = 0; i < NR_COUNT_TYPE; i++) 2357 atomic_set(&sbi->nr_pages[i], 0); 2358 2359 for (i = 0; i < META; i++) 2360 atomic_set(&sbi->wb_sync_req[i], 0); 2361 2362 INIT_LIST_HEAD(&sbi->s_list); 2363 mutex_init(&sbi->umount_mutex); 2364 for (i = 0; i < NR_PAGE_TYPE - 1; i++) 2365 for (j = HOT; j < NR_TEMP_TYPE; j++) 2366 mutex_init(&sbi->wio_mutex[i][j]); 2367 init_rwsem(&sbi->io_order_lock); 2368 spin_lock_init(&sbi->cp_lock); 2369 2370 sbi->dirty_device = 0; 2371 spin_lock_init(&sbi->dev_lock); 2372 2373 init_rwsem(&sbi->sb_lock); 2374 } 2375 2376 static int init_percpu_info(struct f2fs_sb_info *sbi) 2377 { 2378 int err; 2379 2380 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2381 if (err) 2382 return err; 2383 2384 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 2385 GFP_KERNEL); 2386 } 2387 2388 #ifdef CONFIG_BLK_DEV_ZONED 2389 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 2390 { 2391 struct block_device *bdev = FDEV(devi).bdev; 2392 sector_t nr_sectors = bdev->bd_part->nr_sects; 2393 sector_t sector = 0; 2394 struct blk_zone *zones; 2395 unsigned int i, nr_zones; 2396 unsigned int n = 0; 2397 int err = -EIO; 2398 2399 if (!f2fs_sb_has_blkzoned(sbi->sb)) 2400 return 0; 2401 2402 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 2403 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 2404 return -EINVAL; 2405 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 2406 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 2407 __ilog2_u32(sbi->blocks_per_blkz)) 2408 return -EINVAL; 2409 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 2410 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 2411 sbi->log_blocks_per_blkz; 2412 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 2413 FDEV(devi).nr_blkz++; 2414 2415 FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz, 2416 GFP_KERNEL); 2417 if (!FDEV(devi).blkz_type) 2418 return -ENOMEM; 2419 2420 #define F2FS_REPORT_NR_ZONES 4096 2421 2422 zones = f2fs_kzalloc(sbi, 2423 array_size(F2FS_REPORT_NR_ZONES, 2424 sizeof(struct blk_zone)), 2425 GFP_KERNEL); 2426 if (!zones) 2427 return -ENOMEM; 2428 2429 /* Get block zones type */ 2430 while (zones && sector < nr_sectors) { 2431 2432 nr_zones = F2FS_REPORT_NR_ZONES; 2433 err = blkdev_report_zones(bdev, sector, 2434 zones, &nr_zones, 2435 GFP_KERNEL); 2436 if (err) 2437 break; 2438 if (!nr_zones) { 2439 err = -EIO; 2440 break; 2441 } 2442 2443 for (i = 0; i < nr_zones; i++) { 2444 FDEV(devi).blkz_type[n] = zones[i].type; 2445 sector += zones[i].len; 2446 n++; 2447 } 2448 } 2449 2450 kfree(zones); 2451 2452 return err; 2453 } 2454 #endif 2455 2456 /* 2457 * Read f2fs raw super block. 2458 * Because we have two copies of super block, so read both of them 2459 * to get the first valid one. If any one of them is broken, we pass 2460 * them recovery flag back to the caller. 2461 */ 2462 static int read_raw_super_block(struct f2fs_sb_info *sbi, 2463 struct f2fs_super_block **raw_super, 2464 int *valid_super_block, int *recovery) 2465 { 2466 struct super_block *sb = sbi->sb; 2467 int block; 2468 struct buffer_head *bh; 2469 struct f2fs_super_block *super; 2470 int err = 0; 2471 2472 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 2473 if (!super) 2474 return -ENOMEM; 2475 2476 for (block = 0; block < 2; block++) { 2477 bh = sb_bread(sb, block); 2478 if (!bh) { 2479 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 2480 block + 1); 2481 err = -EIO; 2482 continue; 2483 } 2484 2485 /* sanity checking of raw super */ 2486 if (sanity_check_raw_super(sbi, bh)) { 2487 f2fs_msg(sb, KERN_ERR, 2488 "Can't find valid F2FS filesystem in %dth superblock", 2489 block + 1); 2490 err = -EINVAL; 2491 brelse(bh); 2492 continue; 2493 } 2494 2495 if (!*raw_super) { 2496 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 2497 sizeof(*super)); 2498 *valid_super_block = block; 2499 *raw_super = super; 2500 } 2501 brelse(bh); 2502 } 2503 2504 /* Fail to read any one of the superblocks*/ 2505 if (err < 0) 2506 *recovery = 1; 2507 2508 /* No valid superblock */ 2509 if (!*raw_super) 2510 kfree(super); 2511 else 2512 err = 0; 2513 2514 return err; 2515 } 2516 2517 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 2518 { 2519 struct buffer_head *bh; 2520 int err; 2521 2522 if ((recover && f2fs_readonly(sbi->sb)) || 2523 bdev_read_only(sbi->sb->s_bdev)) { 2524 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2525 return -EROFS; 2526 } 2527 2528 /* write back-up superblock first */ 2529 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 2530 if (!bh) 2531 return -EIO; 2532 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2533 brelse(bh); 2534 2535 /* if we are in recovery path, skip writing valid superblock */ 2536 if (recover || err) 2537 return err; 2538 2539 /* write current valid superblock */ 2540 bh = sb_bread(sbi->sb, sbi->valid_super_block); 2541 if (!bh) 2542 return -EIO; 2543 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2544 brelse(bh); 2545 return err; 2546 } 2547 2548 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 2549 { 2550 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2551 unsigned int max_devices = MAX_DEVICES; 2552 int i; 2553 2554 /* Initialize single device information */ 2555 if (!RDEV(0).path[0]) { 2556 if (!bdev_is_zoned(sbi->sb->s_bdev)) 2557 return 0; 2558 max_devices = 1; 2559 } 2560 2561 /* 2562 * Initialize multiple devices information, or single 2563 * zoned block device information. 2564 */ 2565 sbi->devs = f2fs_kzalloc(sbi, 2566 array_size(max_devices, 2567 sizeof(struct f2fs_dev_info)), 2568 GFP_KERNEL); 2569 if (!sbi->devs) 2570 return -ENOMEM; 2571 2572 for (i = 0; i < max_devices; i++) { 2573 2574 if (i > 0 && !RDEV(i).path[0]) 2575 break; 2576 2577 if (max_devices == 1) { 2578 /* Single zoned block device mount */ 2579 FDEV(0).bdev = 2580 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 2581 sbi->sb->s_mode, sbi->sb->s_type); 2582 } else { 2583 /* Multi-device mount */ 2584 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 2585 FDEV(i).total_segments = 2586 le32_to_cpu(RDEV(i).total_segments); 2587 if (i == 0) { 2588 FDEV(i).start_blk = 0; 2589 FDEV(i).end_blk = FDEV(i).start_blk + 2590 (FDEV(i).total_segments << 2591 sbi->log_blocks_per_seg) - 1 + 2592 le32_to_cpu(raw_super->segment0_blkaddr); 2593 } else { 2594 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 2595 FDEV(i).end_blk = FDEV(i).start_blk + 2596 (FDEV(i).total_segments << 2597 sbi->log_blocks_per_seg) - 1; 2598 } 2599 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 2600 sbi->sb->s_mode, sbi->sb->s_type); 2601 } 2602 if (IS_ERR(FDEV(i).bdev)) 2603 return PTR_ERR(FDEV(i).bdev); 2604 2605 /* to release errored devices */ 2606 sbi->s_ndevs = i + 1; 2607 2608 #ifdef CONFIG_BLK_DEV_ZONED 2609 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 2610 !f2fs_sb_has_blkzoned(sbi->sb)) { 2611 f2fs_msg(sbi->sb, KERN_ERR, 2612 "Zoned block device feature not enabled\n"); 2613 return -EINVAL; 2614 } 2615 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 2616 if (init_blkz_info(sbi, i)) { 2617 f2fs_msg(sbi->sb, KERN_ERR, 2618 "Failed to initialize F2FS blkzone information"); 2619 return -EINVAL; 2620 } 2621 if (max_devices == 1) 2622 break; 2623 f2fs_msg(sbi->sb, KERN_INFO, 2624 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 2625 i, FDEV(i).path, 2626 FDEV(i).total_segments, 2627 FDEV(i).start_blk, FDEV(i).end_blk, 2628 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 2629 "Host-aware" : "Host-managed"); 2630 continue; 2631 } 2632 #endif 2633 f2fs_msg(sbi->sb, KERN_INFO, 2634 "Mount Device [%2d]: %20s, %8u, %8x - %8x", 2635 i, FDEV(i).path, 2636 FDEV(i).total_segments, 2637 FDEV(i).start_blk, FDEV(i).end_blk); 2638 } 2639 f2fs_msg(sbi->sb, KERN_INFO, 2640 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 2641 return 0; 2642 } 2643 2644 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 2645 { 2646 struct f2fs_sm_info *sm_i = SM_I(sbi); 2647 2648 /* adjust parameters according to the volume size */ 2649 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 2650 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2651 sm_i->dcc_info->discard_granularity = 1; 2652 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 2653 } 2654 } 2655 2656 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 2657 { 2658 struct f2fs_sb_info *sbi; 2659 struct f2fs_super_block *raw_super; 2660 struct inode *root; 2661 int err; 2662 bool retry = true, need_fsck = false; 2663 char *options = NULL; 2664 int recovery, i, valid_super_block; 2665 struct curseg_info *seg_i; 2666 2667 try_onemore: 2668 err = -EINVAL; 2669 raw_super = NULL; 2670 valid_super_block = -1; 2671 recovery = 0; 2672 2673 /* allocate memory for f2fs-specific super block info */ 2674 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 2675 if (!sbi) 2676 return -ENOMEM; 2677 2678 sbi->sb = sb; 2679 2680 /* Load the checksum driver */ 2681 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 2682 if (IS_ERR(sbi->s_chksum_driver)) { 2683 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 2684 err = PTR_ERR(sbi->s_chksum_driver); 2685 sbi->s_chksum_driver = NULL; 2686 goto free_sbi; 2687 } 2688 2689 /* set a block size */ 2690 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 2691 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 2692 goto free_sbi; 2693 } 2694 2695 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 2696 &recovery); 2697 if (err) 2698 goto free_sbi; 2699 2700 sb->s_fs_info = sbi; 2701 sbi->raw_super = raw_super; 2702 2703 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2704 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2705 2706 /* precompute checksum seed for metadata */ 2707 if (f2fs_sb_has_inode_chksum(sb)) 2708 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 2709 sizeof(raw_super->uuid)); 2710 2711 /* 2712 * The BLKZONED feature indicates that the drive was formatted with 2713 * zone alignment optimization. This is optional for host-aware 2714 * devices, but mandatory for host-managed zoned block devices. 2715 */ 2716 #ifndef CONFIG_BLK_DEV_ZONED 2717 if (f2fs_sb_has_blkzoned(sb)) { 2718 f2fs_msg(sb, KERN_ERR, 2719 "Zoned block device support is not enabled\n"); 2720 err = -EOPNOTSUPP; 2721 goto free_sb_buf; 2722 } 2723 #endif 2724 default_options(sbi); 2725 /* parse mount options */ 2726 options = kstrdup((const char *)data, GFP_KERNEL); 2727 if (data && !options) { 2728 err = -ENOMEM; 2729 goto free_sb_buf; 2730 } 2731 2732 err = parse_options(sb, options); 2733 if (err) 2734 goto free_options; 2735 2736 sbi->max_file_blocks = max_file_blocks(); 2737 sb->s_maxbytes = sbi->max_file_blocks << 2738 le32_to_cpu(raw_super->log_blocksize); 2739 sb->s_max_links = F2FS_LINK_MAX; 2740 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 2741 2742 #ifdef CONFIG_QUOTA 2743 sb->dq_op = &f2fs_quota_operations; 2744 if (f2fs_sb_has_quota_ino(sb)) 2745 sb->s_qcop = &dquot_quotactl_sysfile_ops; 2746 else 2747 sb->s_qcop = &f2fs_quotactl_ops; 2748 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 2749 2750 if (f2fs_sb_has_quota_ino(sbi->sb)) { 2751 for (i = 0; i < MAXQUOTAS; i++) { 2752 if (f2fs_qf_ino(sbi->sb, i)) 2753 sbi->nquota_files++; 2754 } 2755 } 2756 #endif 2757 2758 sb->s_op = &f2fs_sops; 2759 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2760 sb->s_cop = &f2fs_cryptops; 2761 #endif 2762 sb->s_xattr = f2fs_xattr_handlers; 2763 sb->s_export_op = &f2fs_export_ops; 2764 sb->s_magic = F2FS_SUPER_MAGIC; 2765 sb->s_time_gran = 1; 2766 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2767 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2768 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 2769 sb->s_iflags |= SB_I_CGROUPWB; 2770 2771 /* init f2fs-specific super block info */ 2772 sbi->valid_super_block = valid_super_block; 2773 mutex_init(&sbi->gc_mutex); 2774 mutex_init(&sbi->cp_mutex); 2775 init_rwsem(&sbi->node_write); 2776 init_rwsem(&sbi->node_change); 2777 2778 /* disallow all the data/node/meta page writes */ 2779 set_sbi_flag(sbi, SBI_POR_DOING); 2780 spin_lock_init(&sbi->stat_lock); 2781 2782 /* init iostat info */ 2783 spin_lock_init(&sbi->iostat_lock); 2784 sbi->iostat_enable = false; 2785 2786 for (i = 0; i < NR_PAGE_TYPE; i++) { 2787 int n = (i == META) ? 1: NR_TEMP_TYPE; 2788 int j; 2789 2790 sbi->write_io[i] = 2791 f2fs_kmalloc(sbi, 2792 array_size(n, 2793 sizeof(struct f2fs_bio_info)), 2794 GFP_KERNEL); 2795 if (!sbi->write_io[i]) { 2796 err = -ENOMEM; 2797 goto free_options; 2798 } 2799 2800 for (j = HOT; j < n; j++) { 2801 init_rwsem(&sbi->write_io[i][j].io_rwsem); 2802 sbi->write_io[i][j].sbi = sbi; 2803 sbi->write_io[i][j].bio = NULL; 2804 spin_lock_init(&sbi->write_io[i][j].io_lock); 2805 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 2806 } 2807 } 2808 2809 init_rwsem(&sbi->cp_rwsem); 2810 init_waitqueue_head(&sbi->cp_wait); 2811 init_sb_info(sbi); 2812 2813 err = init_percpu_info(sbi); 2814 if (err) 2815 goto free_bio_info; 2816 2817 if (F2FS_IO_SIZE(sbi) > 1) { 2818 sbi->write_io_dummy = 2819 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 2820 if (!sbi->write_io_dummy) { 2821 err = -ENOMEM; 2822 goto free_percpu; 2823 } 2824 } 2825 2826 /* get an inode for meta space */ 2827 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 2828 if (IS_ERR(sbi->meta_inode)) { 2829 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 2830 err = PTR_ERR(sbi->meta_inode); 2831 goto free_io_dummy; 2832 } 2833 2834 err = f2fs_get_valid_checkpoint(sbi); 2835 if (err) { 2836 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 2837 goto free_meta_inode; 2838 } 2839 2840 /* Initialize device list */ 2841 err = f2fs_scan_devices(sbi); 2842 if (err) { 2843 f2fs_msg(sb, KERN_ERR, "Failed to find devices"); 2844 goto free_devices; 2845 } 2846 2847 sbi->total_valid_node_count = 2848 le32_to_cpu(sbi->ckpt->valid_node_count); 2849 percpu_counter_set(&sbi->total_valid_inode_count, 2850 le32_to_cpu(sbi->ckpt->valid_inode_count)); 2851 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 2852 sbi->total_valid_block_count = 2853 le64_to_cpu(sbi->ckpt->valid_block_count); 2854 sbi->last_valid_block_count = sbi->total_valid_block_count; 2855 sbi->reserved_blocks = 0; 2856 sbi->current_reserved_blocks = 0; 2857 limit_reserve_root(sbi); 2858 2859 for (i = 0; i < NR_INODE_TYPE; i++) { 2860 INIT_LIST_HEAD(&sbi->inode_list[i]); 2861 spin_lock_init(&sbi->inode_lock[i]); 2862 } 2863 2864 f2fs_init_extent_cache_info(sbi); 2865 2866 f2fs_init_ino_entry_info(sbi); 2867 2868 /* setup f2fs internal modules */ 2869 err = f2fs_build_segment_manager(sbi); 2870 if (err) { 2871 f2fs_msg(sb, KERN_ERR, 2872 "Failed to initialize F2FS segment manager"); 2873 goto free_sm; 2874 } 2875 err = f2fs_build_node_manager(sbi); 2876 if (err) { 2877 f2fs_msg(sb, KERN_ERR, 2878 "Failed to initialize F2FS node manager"); 2879 goto free_nm; 2880 } 2881 2882 /* For write statistics */ 2883 if (sb->s_bdev->bd_part) 2884 sbi->sectors_written_start = 2885 (u64)part_stat_read(sb->s_bdev->bd_part, 2886 sectors[STAT_WRITE]); 2887 2888 /* Read accumulated write IO statistics if exists */ 2889 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 2890 if (__exist_node_summaries(sbi)) 2891 sbi->kbytes_written = 2892 le64_to_cpu(seg_i->journal->info.kbytes_written); 2893 2894 f2fs_build_gc_manager(sbi); 2895 2896 /* get an inode for node space */ 2897 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 2898 if (IS_ERR(sbi->node_inode)) { 2899 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 2900 err = PTR_ERR(sbi->node_inode); 2901 goto free_nm; 2902 } 2903 2904 err = f2fs_build_stats(sbi); 2905 if (err) 2906 goto free_node_inode; 2907 2908 /* read root inode and dentry */ 2909 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 2910 if (IS_ERR(root)) { 2911 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 2912 err = PTR_ERR(root); 2913 goto free_stats; 2914 } 2915 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2916 iput(root); 2917 err = -EINVAL; 2918 goto free_node_inode; 2919 } 2920 2921 sb->s_root = d_make_root(root); /* allocate root dentry */ 2922 if (!sb->s_root) { 2923 err = -ENOMEM; 2924 goto free_root_inode; 2925 } 2926 2927 err = f2fs_register_sysfs(sbi); 2928 if (err) 2929 goto free_root_inode; 2930 2931 #ifdef CONFIG_QUOTA 2932 /* 2933 * Turn on quotas which were not enabled for read-only mounts if 2934 * filesystem has quota feature, so that they are updated correctly. 2935 */ 2936 if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) { 2937 err = f2fs_enable_quotas(sb); 2938 if (err) { 2939 f2fs_msg(sb, KERN_ERR, 2940 "Cannot turn on quotas: error %d", err); 2941 goto free_sysfs; 2942 } 2943 } 2944 #endif 2945 /* if there are nt orphan nodes free them */ 2946 err = f2fs_recover_orphan_inodes(sbi); 2947 if (err) 2948 goto free_meta; 2949 2950 /* recover fsynced data */ 2951 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 2952 /* 2953 * mount should be failed, when device has readonly mode, and 2954 * previous checkpoint was not done by clean system shutdown. 2955 */ 2956 if (bdev_read_only(sb->s_bdev) && 2957 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 2958 err = -EROFS; 2959 goto free_meta; 2960 } 2961 2962 if (need_fsck) 2963 set_sbi_flag(sbi, SBI_NEED_FSCK); 2964 2965 if (!retry) 2966 goto skip_recovery; 2967 2968 err = f2fs_recover_fsync_data(sbi, false); 2969 if (err < 0) { 2970 need_fsck = true; 2971 f2fs_msg(sb, KERN_ERR, 2972 "Cannot recover all fsync data errno=%d", err); 2973 goto free_meta; 2974 } 2975 } else { 2976 err = f2fs_recover_fsync_data(sbi, true); 2977 2978 if (!f2fs_readonly(sb) && err > 0) { 2979 err = -EINVAL; 2980 f2fs_msg(sb, KERN_ERR, 2981 "Need to recover fsync data"); 2982 goto free_meta; 2983 } 2984 } 2985 skip_recovery: 2986 /* f2fs_recover_fsync_data() cleared this already */ 2987 clear_sbi_flag(sbi, SBI_POR_DOING); 2988 2989 /* 2990 * If filesystem is not mounted as read-only then 2991 * do start the gc_thread. 2992 */ 2993 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 2994 /* After POR, we can run background GC thread.*/ 2995 err = f2fs_start_gc_thread(sbi); 2996 if (err) 2997 goto free_meta; 2998 } 2999 kfree(options); 3000 3001 /* recover broken superblock */ 3002 if (recovery) { 3003 err = f2fs_commit_super(sbi, true); 3004 f2fs_msg(sb, KERN_INFO, 3005 "Try to recover %dth superblock, ret: %d", 3006 sbi->valid_super_block ? 1 : 2, err); 3007 } 3008 3009 f2fs_join_shrinker(sbi); 3010 3011 f2fs_tuning_parameters(sbi); 3012 3013 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", 3014 cur_cp_version(F2FS_CKPT(sbi))); 3015 f2fs_update_time(sbi, CP_TIME); 3016 f2fs_update_time(sbi, REQ_TIME); 3017 return 0; 3018 3019 free_meta: 3020 #ifdef CONFIG_QUOTA 3021 if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) 3022 f2fs_quota_off_umount(sbi->sb); 3023 #endif 3024 f2fs_sync_inode_meta(sbi); 3025 /* 3026 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3027 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3028 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3029 * falls into an infinite loop in f2fs_sync_meta_pages(). 3030 */ 3031 truncate_inode_pages_final(META_MAPPING(sbi)); 3032 #ifdef CONFIG_QUOTA 3033 free_sysfs: 3034 #endif 3035 f2fs_unregister_sysfs(sbi); 3036 free_root_inode: 3037 dput(sb->s_root); 3038 sb->s_root = NULL; 3039 free_stats: 3040 f2fs_destroy_stats(sbi); 3041 free_node_inode: 3042 f2fs_release_ino_entry(sbi, true); 3043 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3044 iput(sbi->node_inode); 3045 free_nm: 3046 f2fs_destroy_node_manager(sbi); 3047 free_sm: 3048 f2fs_destroy_segment_manager(sbi); 3049 free_devices: 3050 destroy_device_list(sbi); 3051 kfree(sbi->ckpt); 3052 free_meta_inode: 3053 make_bad_inode(sbi->meta_inode); 3054 iput(sbi->meta_inode); 3055 free_io_dummy: 3056 mempool_destroy(sbi->write_io_dummy); 3057 free_percpu: 3058 destroy_percpu_info(sbi); 3059 free_bio_info: 3060 for (i = 0; i < NR_PAGE_TYPE; i++) 3061 kfree(sbi->write_io[i]); 3062 free_options: 3063 #ifdef CONFIG_QUOTA 3064 for (i = 0; i < MAXQUOTAS; i++) 3065 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 3066 #endif 3067 kfree(options); 3068 free_sb_buf: 3069 kfree(raw_super); 3070 free_sbi: 3071 if (sbi->s_chksum_driver) 3072 crypto_free_shash(sbi->s_chksum_driver); 3073 kfree(sbi); 3074 3075 /* give only one another chance */ 3076 if (retry) { 3077 retry = false; 3078 shrink_dcache_sb(sb); 3079 goto try_onemore; 3080 } 3081 return err; 3082 } 3083 3084 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3085 const char *dev_name, void *data) 3086 { 3087 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3088 } 3089 3090 static void kill_f2fs_super(struct super_block *sb) 3091 { 3092 if (sb->s_root) { 3093 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 3094 f2fs_stop_gc_thread(F2FS_SB(sb)); 3095 f2fs_stop_discard_thread(F2FS_SB(sb)); 3096 } 3097 kill_block_super(sb); 3098 } 3099 3100 static struct file_system_type f2fs_fs_type = { 3101 .owner = THIS_MODULE, 3102 .name = "f2fs", 3103 .mount = f2fs_mount, 3104 .kill_sb = kill_f2fs_super, 3105 .fs_flags = FS_REQUIRES_DEV, 3106 }; 3107 MODULE_ALIAS_FS("f2fs"); 3108 3109 static int __init init_inodecache(void) 3110 { 3111 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3112 sizeof(struct f2fs_inode_info), 0, 3113 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3114 if (!f2fs_inode_cachep) 3115 return -ENOMEM; 3116 return 0; 3117 } 3118 3119 static void destroy_inodecache(void) 3120 { 3121 /* 3122 * Make sure all delayed rcu free inodes are flushed before we 3123 * destroy cache. 3124 */ 3125 rcu_barrier(); 3126 kmem_cache_destroy(f2fs_inode_cachep); 3127 } 3128 3129 static int __init init_f2fs_fs(void) 3130 { 3131 int err; 3132 3133 if (PAGE_SIZE != F2FS_BLKSIZE) { 3134 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3135 PAGE_SIZE, F2FS_BLKSIZE); 3136 return -EINVAL; 3137 } 3138 3139 f2fs_build_trace_ios(); 3140 3141 err = init_inodecache(); 3142 if (err) 3143 goto fail; 3144 err = f2fs_create_node_manager_caches(); 3145 if (err) 3146 goto free_inodecache; 3147 err = f2fs_create_segment_manager_caches(); 3148 if (err) 3149 goto free_node_manager_caches; 3150 err = f2fs_create_checkpoint_caches(); 3151 if (err) 3152 goto free_segment_manager_caches; 3153 err = f2fs_create_extent_cache(); 3154 if (err) 3155 goto free_checkpoint_caches; 3156 err = f2fs_init_sysfs(); 3157 if (err) 3158 goto free_extent_cache; 3159 err = register_shrinker(&f2fs_shrinker_info); 3160 if (err) 3161 goto free_sysfs; 3162 err = register_filesystem(&f2fs_fs_type); 3163 if (err) 3164 goto free_shrinker; 3165 err = f2fs_create_root_stats(); 3166 if (err) 3167 goto free_filesystem; 3168 err = f2fs_init_post_read_processing(); 3169 if (err) 3170 goto free_root_stats; 3171 return 0; 3172 3173 free_root_stats: 3174 f2fs_destroy_root_stats(); 3175 free_filesystem: 3176 unregister_filesystem(&f2fs_fs_type); 3177 free_shrinker: 3178 unregister_shrinker(&f2fs_shrinker_info); 3179 free_sysfs: 3180 f2fs_exit_sysfs(); 3181 free_extent_cache: 3182 f2fs_destroy_extent_cache(); 3183 free_checkpoint_caches: 3184 f2fs_destroy_checkpoint_caches(); 3185 free_segment_manager_caches: 3186 f2fs_destroy_segment_manager_caches(); 3187 free_node_manager_caches: 3188 f2fs_destroy_node_manager_caches(); 3189 free_inodecache: 3190 destroy_inodecache(); 3191 fail: 3192 return err; 3193 } 3194 3195 static void __exit exit_f2fs_fs(void) 3196 { 3197 f2fs_destroy_post_read_processing(); 3198 f2fs_destroy_root_stats(); 3199 unregister_filesystem(&f2fs_fs_type); 3200 unregister_shrinker(&f2fs_shrinker_info); 3201 f2fs_exit_sysfs(); 3202 f2fs_destroy_extent_cache(); 3203 f2fs_destroy_checkpoint_caches(); 3204 f2fs_destroy_segment_manager_caches(); 3205 f2fs_destroy_node_manager_caches(); 3206 destroy_inodecache(); 3207 f2fs_destroy_trace_ios(); 3208 } 3209 3210 module_init(init_f2fs_fs) 3211 module_exit(exit_f2fs_fs) 3212 3213 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3214 MODULE_DESCRIPTION("Flash Friendly File System"); 3215 MODULE_LICENSE("GPL"); 3216 3217