1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct kmem_cache *f2fs_inode_cachep; 39 40 #ifdef CONFIG_F2FS_FAULT_INJECTION 41 42 const char *f2fs_fault_name[FAULT_MAX] = { 43 [FAULT_KMALLOC] = "kmalloc", 44 [FAULT_KVMALLOC] = "kvmalloc", 45 [FAULT_PAGE_ALLOC] = "page alloc", 46 [FAULT_PAGE_GET] = "page get", 47 [FAULT_ALLOC_BIO] = "alloc bio", 48 [FAULT_ALLOC_NID] = "alloc nid", 49 [FAULT_ORPHAN] = "orphan", 50 [FAULT_BLOCK] = "no more block", 51 [FAULT_DIR_DEPTH] = "too big dir depth", 52 [FAULT_EVICT_INODE] = "evict_inode fail", 53 [FAULT_TRUNCATE] = "truncate fail", 54 [FAULT_READ_IO] = "read IO error", 55 [FAULT_CHECKPOINT] = "checkpoint error", 56 [FAULT_DISCARD] = "discard error", 57 [FAULT_WRITE_IO] = "write IO error", 58 }; 59 60 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 61 unsigned int type) 62 { 63 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 64 65 if (rate) { 66 atomic_set(&ffi->inject_ops, 0); 67 ffi->inject_rate = rate; 68 } 69 70 if (type) 71 ffi->inject_type = type; 72 73 if (!rate && !type) 74 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 75 } 76 #endif 77 78 /* f2fs-wide shrinker description */ 79 static struct shrinker f2fs_shrinker_info = { 80 .scan_objects = f2fs_shrink_scan, 81 .count_objects = f2fs_shrink_count, 82 .seeks = DEFAULT_SEEKS, 83 }; 84 85 enum { 86 Opt_gc_background, 87 Opt_disable_roll_forward, 88 Opt_norecovery, 89 Opt_discard, 90 Opt_nodiscard, 91 Opt_noheap, 92 Opt_heap, 93 Opt_user_xattr, 94 Opt_nouser_xattr, 95 Opt_acl, 96 Opt_noacl, 97 Opt_active_logs, 98 Opt_disable_ext_identify, 99 Opt_inline_xattr, 100 Opt_noinline_xattr, 101 Opt_inline_xattr_size, 102 Opt_inline_data, 103 Opt_inline_dentry, 104 Opt_noinline_dentry, 105 Opt_flush_merge, 106 Opt_noflush_merge, 107 Opt_nobarrier, 108 Opt_fastboot, 109 Opt_extent_cache, 110 Opt_noextent_cache, 111 Opt_noinline_data, 112 Opt_data_flush, 113 Opt_reserve_root, 114 Opt_resgid, 115 Opt_resuid, 116 Opt_mode, 117 Opt_io_size_bits, 118 Opt_fault_injection, 119 Opt_fault_type, 120 Opt_lazytime, 121 Opt_nolazytime, 122 Opt_quota, 123 Opt_noquota, 124 Opt_usrquota, 125 Opt_grpquota, 126 Opt_prjquota, 127 Opt_usrjquota, 128 Opt_grpjquota, 129 Opt_prjjquota, 130 Opt_offusrjquota, 131 Opt_offgrpjquota, 132 Opt_offprjjquota, 133 Opt_jqfmt_vfsold, 134 Opt_jqfmt_vfsv0, 135 Opt_jqfmt_vfsv1, 136 Opt_whint, 137 Opt_alloc, 138 Opt_fsync, 139 Opt_test_dummy_encryption, 140 Opt_checkpoint_disable, 141 Opt_checkpoint_disable_cap, 142 Opt_checkpoint_disable_cap_perc, 143 Opt_checkpoint_enable, 144 Opt_err, 145 }; 146 147 static match_table_t f2fs_tokens = { 148 {Opt_gc_background, "background_gc=%s"}, 149 {Opt_disable_roll_forward, "disable_roll_forward"}, 150 {Opt_norecovery, "norecovery"}, 151 {Opt_discard, "discard"}, 152 {Opt_nodiscard, "nodiscard"}, 153 {Opt_noheap, "no_heap"}, 154 {Opt_heap, "heap"}, 155 {Opt_user_xattr, "user_xattr"}, 156 {Opt_nouser_xattr, "nouser_xattr"}, 157 {Opt_acl, "acl"}, 158 {Opt_noacl, "noacl"}, 159 {Opt_active_logs, "active_logs=%u"}, 160 {Opt_disable_ext_identify, "disable_ext_identify"}, 161 {Opt_inline_xattr, "inline_xattr"}, 162 {Opt_noinline_xattr, "noinline_xattr"}, 163 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 164 {Opt_inline_data, "inline_data"}, 165 {Opt_inline_dentry, "inline_dentry"}, 166 {Opt_noinline_dentry, "noinline_dentry"}, 167 {Opt_flush_merge, "flush_merge"}, 168 {Opt_noflush_merge, "noflush_merge"}, 169 {Opt_nobarrier, "nobarrier"}, 170 {Opt_fastboot, "fastboot"}, 171 {Opt_extent_cache, "extent_cache"}, 172 {Opt_noextent_cache, "noextent_cache"}, 173 {Opt_noinline_data, "noinline_data"}, 174 {Opt_data_flush, "data_flush"}, 175 {Opt_reserve_root, "reserve_root=%u"}, 176 {Opt_resgid, "resgid=%u"}, 177 {Opt_resuid, "resuid=%u"}, 178 {Opt_mode, "mode=%s"}, 179 {Opt_io_size_bits, "io_bits=%u"}, 180 {Opt_fault_injection, "fault_injection=%u"}, 181 {Opt_fault_type, "fault_type=%u"}, 182 {Opt_lazytime, "lazytime"}, 183 {Opt_nolazytime, "nolazytime"}, 184 {Opt_quota, "quota"}, 185 {Opt_noquota, "noquota"}, 186 {Opt_usrquota, "usrquota"}, 187 {Opt_grpquota, "grpquota"}, 188 {Opt_prjquota, "prjquota"}, 189 {Opt_usrjquota, "usrjquota=%s"}, 190 {Opt_grpjquota, "grpjquota=%s"}, 191 {Opt_prjjquota, "prjjquota=%s"}, 192 {Opt_offusrjquota, "usrjquota="}, 193 {Opt_offgrpjquota, "grpjquota="}, 194 {Opt_offprjjquota, "prjjquota="}, 195 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 196 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 197 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 198 {Opt_whint, "whint_mode=%s"}, 199 {Opt_alloc, "alloc_mode=%s"}, 200 {Opt_fsync, "fsync_mode=%s"}, 201 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 202 {Opt_checkpoint_disable, "checkpoint=disable"}, 203 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 204 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 205 {Opt_checkpoint_enable, "checkpoint=enable"}, 206 {Opt_err, NULL}, 207 }; 208 209 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 210 { 211 struct va_format vaf; 212 va_list args; 213 int level; 214 215 va_start(args, fmt); 216 217 level = printk_get_level(fmt); 218 vaf.fmt = printk_skip_level(fmt); 219 vaf.va = &args; 220 printk("%c%cF2FS-fs (%s): %pV\n", 221 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 222 223 va_end(args); 224 } 225 226 #ifdef CONFIG_UNICODE 227 static const struct f2fs_sb_encodings { 228 __u16 magic; 229 char *name; 230 char *version; 231 } f2fs_sb_encoding_map[] = { 232 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"}, 233 }; 234 235 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb, 236 const struct f2fs_sb_encodings **encoding, 237 __u16 *flags) 238 { 239 __u16 magic = le16_to_cpu(sb->s_encoding); 240 int i; 241 242 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 243 if (magic == f2fs_sb_encoding_map[i].magic) 244 break; 245 246 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map)) 247 return -EINVAL; 248 249 *encoding = &f2fs_sb_encoding_map[i]; 250 *flags = le16_to_cpu(sb->s_encoding_flags); 251 252 return 0; 253 } 254 #endif 255 256 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 257 { 258 block_t limit = min((sbi->user_block_count << 1) / 1000, 259 sbi->user_block_count - sbi->reserved_blocks); 260 261 /* limit is 0.2% */ 262 if (test_opt(sbi, RESERVE_ROOT) && 263 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 264 F2FS_OPTION(sbi).root_reserved_blocks = limit; 265 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 266 F2FS_OPTION(sbi).root_reserved_blocks); 267 } 268 if (!test_opt(sbi, RESERVE_ROOT) && 269 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 270 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 271 !gid_eq(F2FS_OPTION(sbi).s_resgid, 272 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 273 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 274 from_kuid_munged(&init_user_ns, 275 F2FS_OPTION(sbi).s_resuid), 276 from_kgid_munged(&init_user_ns, 277 F2FS_OPTION(sbi).s_resgid)); 278 } 279 280 static void init_once(void *foo) 281 { 282 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 283 284 inode_init_once(&fi->vfs_inode); 285 } 286 287 #ifdef CONFIG_QUOTA 288 static const char * const quotatypes[] = INITQFNAMES; 289 #define QTYPE2NAME(t) (quotatypes[t]) 290 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 291 substring_t *args) 292 { 293 struct f2fs_sb_info *sbi = F2FS_SB(sb); 294 char *qname; 295 int ret = -EINVAL; 296 297 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 298 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 299 return -EINVAL; 300 } 301 if (f2fs_sb_has_quota_ino(sbi)) { 302 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 303 return 0; 304 } 305 306 qname = match_strdup(args); 307 if (!qname) { 308 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 309 return -ENOMEM; 310 } 311 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 312 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 313 ret = 0; 314 else 315 f2fs_err(sbi, "%s quota file already specified", 316 QTYPE2NAME(qtype)); 317 goto errout; 318 } 319 if (strchr(qname, '/')) { 320 f2fs_err(sbi, "quotafile must be on filesystem root"); 321 goto errout; 322 } 323 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 324 set_opt(sbi, QUOTA); 325 return 0; 326 errout: 327 kvfree(qname); 328 return ret; 329 } 330 331 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 332 { 333 struct f2fs_sb_info *sbi = F2FS_SB(sb); 334 335 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 336 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 337 return -EINVAL; 338 } 339 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 340 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 341 return 0; 342 } 343 344 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 345 { 346 /* 347 * We do the test below only for project quotas. 'usrquota' and 348 * 'grpquota' mount options are allowed even without quota feature 349 * to support legacy quotas in quota files. 350 */ 351 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 352 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 353 return -1; 354 } 355 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 356 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 357 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 358 if (test_opt(sbi, USRQUOTA) && 359 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 360 clear_opt(sbi, USRQUOTA); 361 362 if (test_opt(sbi, GRPQUOTA) && 363 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 364 clear_opt(sbi, GRPQUOTA); 365 366 if (test_opt(sbi, PRJQUOTA) && 367 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 368 clear_opt(sbi, PRJQUOTA); 369 370 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 371 test_opt(sbi, PRJQUOTA)) { 372 f2fs_err(sbi, "old and new quota format mixing"); 373 return -1; 374 } 375 376 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 377 f2fs_err(sbi, "journaled quota format not specified"); 378 return -1; 379 } 380 } 381 382 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 383 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 384 F2FS_OPTION(sbi).s_jquota_fmt = 0; 385 } 386 return 0; 387 } 388 #endif 389 390 static int parse_options(struct super_block *sb, char *options) 391 { 392 struct f2fs_sb_info *sbi = F2FS_SB(sb); 393 substring_t args[MAX_OPT_ARGS]; 394 char *p, *name; 395 int arg = 0; 396 kuid_t uid; 397 kgid_t gid; 398 #ifdef CONFIG_QUOTA 399 int ret; 400 #endif 401 402 if (!options) 403 return 0; 404 405 while ((p = strsep(&options, ",")) != NULL) { 406 int token; 407 if (!*p) 408 continue; 409 /* 410 * Initialize args struct so we know whether arg was 411 * found; some options take optional arguments. 412 */ 413 args[0].to = args[0].from = NULL; 414 token = match_token(p, f2fs_tokens, args); 415 416 switch (token) { 417 case Opt_gc_background: 418 name = match_strdup(&args[0]); 419 420 if (!name) 421 return -ENOMEM; 422 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 423 set_opt(sbi, BG_GC); 424 clear_opt(sbi, FORCE_FG_GC); 425 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 426 clear_opt(sbi, BG_GC); 427 clear_opt(sbi, FORCE_FG_GC); 428 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 429 set_opt(sbi, BG_GC); 430 set_opt(sbi, FORCE_FG_GC); 431 } else { 432 kvfree(name); 433 return -EINVAL; 434 } 435 kvfree(name); 436 break; 437 case Opt_disable_roll_forward: 438 set_opt(sbi, DISABLE_ROLL_FORWARD); 439 break; 440 case Opt_norecovery: 441 /* this option mounts f2fs with ro */ 442 set_opt(sbi, DISABLE_ROLL_FORWARD); 443 if (!f2fs_readonly(sb)) 444 return -EINVAL; 445 break; 446 case Opt_discard: 447 set_opt(sbi, DISCARD); 448 break; 449 case Opt_nodiscard: 450 if (f2fs_sb_has_blkzoned(sbi)) { 451 f2fs_warn(sbi, "discard is required for zoned block devices"); 452 return -EINVAL; 453 } 454 clear_opt(sbi, DISCARD); 455 break; 456 case Opt_noheap: 457 set_opt(sbi, NOHEAP); 458 break; 459 case Opt_heap: 460 clear_opt(sbi, NOHEAP); 461 break; 462 #ifdef CONFIG_F2FS_FS_XATTR 463 case Opt_user_xattr: 464 set_opt(sbi, XATTR_USER); 465 break; 466 case Opt_nouser_xattr: 467 clear_opt(sbi, XATTR_USER); 468 break; 469 case Opt_inline_xattr: 470 set_opt(sbi, INLINE_XATTR); 471 break; 472 case Opt_noinline_xattr: 473 clear_opt(sbi, INLINE_XATTR); 474 break; 475 case Opt_inline_xattr_size: 476 if (args->from && match_int(args, &arg)) 477 return -EINVAL; 478 set_opt(sbi, INLINE_XATTR_SIZE); 479 F2FS_OPTION(sbi).inline_xattr_size = arg; 480 break; 481 #else 482 case Opt_user_xattr: 483 f2fs_info(sbi, "user_xattr options not supported"); 484 break; 485 case Opt_nouser_xattr: 486 f2fs_info(sbi, "nouser_xattr options not supported"); 487 break; 488 case Opt_inline_xattr: 489 f2fs_info(sbi, "inline_xattr options not supported"); 490 break; 491 case Opt_noinline_xattr: 492 f2fs_info(sbi, "noinline_xattr options not supported"); 493 break; 494 #endif 495 #ifdef CONFIG_F2FS_FS_POSIX_ACL 496 case Opt_acl: 497 set_opt(sbi, POSIX_ACL); 498 break; 499 case Opt_noacl: 500 clear_opt(sbi, POSIX_ACL); 501 break; 502 #else 503 case Opt_acl: 504 f2fs_info(sbi, "acl options not supported"); 505 break; 506 case Opt_noacl: 507 f2fs_info(sbi, "noacl options not supported"); 508 break; 509 #endif 510 case Opt_active_logs: 511 if (args->from && match_int(args, &arg)) 512 return -EINVAL; 513 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 514 return -EINVAL; 515 F2FS_OPTION(sbi).active_logs = arg; 516 break; 517 case Opt_disable_ext_identify: 518 set_opt(sbi, DISABLE_EXT_IDENTIFY); 519 break; 520 case Opt_inline_data: 521 set_opt(sbi, INLINE_DATA); 522 break; 523 case Opt_inline_dentry: 524 set_opt(sbi, INLINE_DENTRY); 525 break; 526 case Opt_noinline_dentry: 527 clear_opt(sbi, INLINE_DENTRY); 528 break; 529 case Opt_flush_merge: 530 set_opt(sbi, FLUSH_MERGE); 531 break; 532 case Opt_noflush_merge: 533 clear_opt(sbi, FLUSH_MERGE); 534 break; 535 case Opt_nobarrier: 536 set_opt(sbi, NOBARRIER); 537 break; 538 case Opt_fastboot: 539 set_opt(sbi, FASTBOOT); 540 break; 541 case Opt_extent_cache: 542 set_opt(sbi, EXTENT_CACHE); 543 break; 544 case Opt_noextent_cache: 545 clear_opt(sbi, EXTENT_CACHE); 546 break; 547 case Opt_noinline_data: 548 clear_opt(sbi, INLINE_DATA); 549 break; 550 case Opt_data_flush: 551 set_opt(sbi, DATA_FLUSH); 552 break; 553 case Opt_reserve_root: 554 if (args->from && match_int(args, &arg)) 555 return -EINVAL; 556 if (test_opt(sbi, RESERVE_ROOT)) { 557 f2fs_info(sbi, "Preserve previous reserve_root=%u", 558 F2FS_OPTION(sbi).root_reserved_blocks); 559 } else { 560 F2FS_OPTION(sbi).root_reserved_blocks = arg; 561 set_opt(sbi, RESERVE_ROOT); 562 } 563 break; 564 case Opt_resuid: 565 if (args->from && match_int(args, &arg)) 566 return -EINVAL; 567 uid = make_kuid(current_user_ns(), arg); 568 if (!uid_valid(uid)) { 569 f2fs_err(sbi, "Invalid uid value %d", arg); 570 return -EINVAL; 571 } 572 F2FS_OPTION(sbi).s_resuid = uid; 573 break; 574 case Opt_resgid: 575 if (args->from && match_int(args, &arg)) 576 return -EINVAL; 577 gid = make_kgid(current_user_ns(), arg); 578 if (!gid_valid(gid)) { 579 f2fs_err(sbi, "Invalid gid value %d", arg); 580 return -EINVAL; 581 } 582 F2FS_OPTION(sbi).s_resgid = gid; 583 break; 584 case Opt_mode: 585 name = match_strdup(&args[0]); 586 587 if (!name) 588 return -ENOMEM; 589 if (strlen(name) == 8 && 590 !strncmp(name, "adaptive", 8)) { 591 if (f2fs_sb_has_blkzoned(sbi)) { 592 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 593 kvfree(name); 594 return -EINVAL; 595 } 596 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 597 } else if (strlen(name) == 3 && 598 !strncmp(name, "lfs", 3)) { 599 set_opt_mode(sbi, F2FS_MOUNT_LFS); 600 } else { 601 kvfree(name); 602 return -EINVAL; 603 } 604 kvfree(name); 605 break; 606 case Opt_io_size_bits: 607 if (args->from && match_int(args, &arg)) 608 return -EINVAL; 609 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 610 f2fs_warn(sbi, "Not support %d, larger than %d", 611 1 << arg, BIO_MAX_PAGES); 612 return -EINVAL; 613 } 614 F2FS_OPTION(sbi).write_io_size_bits = arg; 615 break; 616 #ifdef CONFIG_F2FS_FAULT_INJECTION 617 case Opt_fault_injection: 618 if (args->from && match_int(args, &arg)) 619 return -EINVAL; 620 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 621 set_opt(sbi, FAULT_INJECTION); 622 break; 623 624 case Opt_fault_type: 625 if (args->from && match_int(args, &arg)) 626 return -EINVAL; 627 f2fs_build_fault_attr(sbi, 0, arg); 628 set_opt(sbi, FAULT_INJECTION); 629 break; 630 #else 631 case Opt_fault_injection: 632 f2fs_info(sbi, "fault_injection options not supported"); 633 break; 634 635 case Opt_fault_type: 636 f2fs_info(sbi, "fault_type options not supported"); 637 break; 638 #endif 639 case Opt_lazytime: 640 sb->s_flags |= SB_LAZYTIME; 641 break; 642 case Opt_nolazytime: 643 sb->s_flags &= ~SB_LAZYTIME; 644 break; 645 #ifdef CONFIG_QUOTA 646 case Opt_quota: 647 case Opt_usrquota: 648 set_opt(sbi, USRQUOTA); 649 break; 650 case Opt_grpquota: 651 set_opt(sbi, GRPQUOTA); 652 break; 653 case Opt_prjquota: 654 set_opt(sbi, PRJQUOTA); 655 break; 656 case Opt_usrjquota: 657 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 658 if (ret) 659 return ret; 660 break; 661 case Opt_grpjquota: 662 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 663 if (ret) 664 return ret; 665 break; 666 case Opt_prjjquota: 667 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 668 if (ret) 669 return ret; 670 break; 671 case Opt_offusrjquota: 672 ret = f2fs_clear_qf_name(sb, USRQUOTA); 673 if (ret) 674 return ret; 675 break; 676 case Opt_offgrpjquota: 677 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 678 if (ret) 679 return ret; 680 break; 681 case Opt_offprjjquota: 682 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 683 if (ret) 684 return ret; 685 break; 686 case Opt_jqfmt_vfsold: 687 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 688 break; 689 case Opt_jqfmt_vfsv0: 690 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 691 break; 692 case Opt_jqfmt_vfsv1: 693 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 694 break; 695 case Opt_noquota: 696 clear_opt(sbi, QUOTA); 697 clear_opt(sbi, USRQUOTA); 698 clear_opt(sbi, GRPQUOTA); 699 clear_opt(sbi, PRJQUOTA); 700 break; 701 #else 702 case Opt_quota: 703 case Opt_usrquota: 704 case Opt_grpquota: 705 case Opt_prjquota: 706 case Opt_usrjquota: 707 case Opt_grpjquota: 708 case Opt_prjjquota: 709 case Opt_offusrjquota: 710 case Opt_offgrpjquota: 711 case Opt_offprjjquota: 712 case Opt_jqfmt_vfsold: 713 case Opt_jqfmt_vfsv0: 714 case Opt_jqfmt_vfsv1: 715 case Opt_noquota: 716 f2fs_info(sbi, "quota operations not supported"); 717 break; 718 #endif 719 case Opt_whint: 720 name = match_strdup(&args[0]); 721 if (!name) 722 return -ENOMEM; 723 if (strlen(name) == 10 && 724 !strncmp(name, "user-based", 10)) { 725 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 726 } else if (strlen(name) == 3 && 727 !strncmp(name, "off", 3)) { 728 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 729 } else if (strlen(name) == 8 && 730 !strncmp(name, "fs-based", 8)) { 731 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 732 } else { 733 kvfree(name); 734 return -EINVAL; 735 } 736 kvfree(name); 737 break; 738 case Opt_alloc: 739 name = match_strdup(&args[0]); 740 if (!name) 741 return -ENOMEM; 742 743 if (strlen(name) == 7 && 744 !strncmp(name, "default", 7)) { 745 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 746 } else if (strlen(name) == 5 && 747 !strncmp(name, "reuse", 5)) { 748 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 749 } else { 750 kvfree(name); 751 return -EINVAL; 752 } 753 kvfree(name); 754 break; 755 case Opt_fsync: 756 name = match_strdup(&args[0]); 757 if (!name) 758 return -ENOMEM; 759 if (strlen(name) == 5 && 760 !strncmp(name, "posix", 5)) { 761 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 762 } else if (strlen(name) == 6 && 763 !strncmp(name, "strict", 6)) { 764 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 765 } else if (strlen(name) == 9 && 766 !strncmp(name, "nobarrier", 9)) { 767 F2FS_OPTION(sbi).fsync_mode = 768 FSYNC_MODE_NOBARRIER; 769 } else { 770 kvfree(name); 771 return -EINVAL; 772 } 773 kvfree(name); 774 break; 775 case Opt_test_dummy_encryption: 776 #ifdef CONFIG_FS_ENCRYPTION 777 if (!f2fs_sb_has_encrypt(sbi)) { 778 f2fs_err(sbi, "Encrypt feature is off"); 779 return -EINVAL; 780 } 781 782 F2FS_OPTION(sbi).test_dummy_encryption = true; 783 f2fs_info(sbi, "Test dummy encryption mode enabled"); 784 #else 785 f2fs_info(sbi, "Test dummy encryption mount option ignored"); 786 #endif 787 break; 788 case Opt_checkpoint_disable_cap_perc: 789 if (args->from && match_int(args, &arg)) 790 return -EINVAL; 791 if (arg < 0 || arg > 100) 792 return -EINVAL; 793 if (arg == 100) 794 F2FS_OPTION(sbi).unusable_cap = 795 sbi->user_block_count; 796 else 797 F2FS_OPTION(sbi).unusable_cap = 798 (sbi->user_block_count / 100) * arg; 799 set_opt(sbi, DISABLE_CHECKPOINT); 800 break; 801 case Opt_checkpoint_disable_cap: 802 if (args->from && match_int(args, &arg)) 803 return -EINVAL; 804 F2FS_OPTION(sbi).unusable_cap = arg; 805 set_opt(sbi, DISABLE_CHECKPOINT); 806 break; 807 case Opt_checkpoint_disable: 808 set_opt(sbi, DISABLE_CHECKPOINT); 809 break; 810 case Opt_checkpoint_enable: 811 clear_opt(sbi, DISABLE_CHECKPOINT); 812 break; 813 default: 814 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 815 p); 816 return -EINVAL; 817 } 818 } 819 #ifdef CONFIG_QUOTA 820 if (f2fs_check_quota_options(sbi)) 821 return -EINVAL; 822 #else 823 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 824 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 825 return -EINVAL; 826 } 827 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 828 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 829 return -EINVAL; 830 } 831 #endif 832 #ifndef CONFIG_UNICODE 833 if (f2fs_sb_has_casefold(sbi)) { 834 f2fs_err(sbi, 835 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 836 return -EINVAL; 837 } 838 #endif 839 840 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 841 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 842 F2FS_IO_SIZE_KB(sbi)); 843 return -EINVAL; 844 } 845 846 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 847 int min_size, max_size; 848 849 if (!f2fs_sb_has_extra_attr(sbi) || 850 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 851 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 852 return -EINVAL; 853 } 854 if (!test_opt(sbi, INLINE_XATTR)) { 855 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 856 return -EINVAL; 857 } 858 859 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 860 max_size = MAX_INLINE_XATTR_SIZE; 861 862 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 863 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 864 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 865 min_size, max_size); 866 return -EINVAL; 867 } 868 } 869 870 if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) { 871 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n"); 872 return -EINVAL; 873 } 874 875 /* Not pass down write hints if the number of active logs is lesser 876 * than NR_CURSEG_TYPE. 877 */ 878 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 879 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 880 return 0; 881 } 882 883 static struct inode *f2fs_alloc_inode(struct super_block *sb) 884 { 885 struct f2fs_inode_info *fi; 886 887 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 888 if (!fi) 889 return NULL; 890 891 init_once((void *) fi); 892 893 /* Initialize f2fs-specific inode info */ 894 atomic_set(&fi->dirty_pages, 0); 895 init_rwsem(&fi->i_sem); 896 INIT_LIST_HEAD(&fi->dirty_list); 897 INIT_LIST_HEAD(&fi->gdirty_list); 898 INIT_LIST_HEAD(&fi->inmem_ilist); 899 INIT_LIST_HEAD(&fi->inmem_pages); 900 mutex_init(&fi->inmem_lock); 901 init_rwsem(&fi->i_gc_rwsem[READ]); 902 init_rwsem(&fi->i_gc_rwsem[WRITE]); 903 init_rwsem(&fi->i_mmap_sem); 904 init_rwsem(&fi->i_xattr_sem); 905 906 /* Will be used by directory only */ 907 fi->i_dir_level = F2FS_SB(sb)->dir_level; 908 909 return &fi->vfs_inode; 910 } 911 912 static int f2fs_drop_inode(struct inode *inode) 913 { 914 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 915 int ret; 916 917 /* 918 * during filesystem shutdown, if checkpoint is disabled, 919 * drop useless meta/node dirty pages. 920 */ 921 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 922 if (inode->i_ino == F2FS_NODE_INO(sbi) || 923 inode->i_ino == F2FS_META_INO(sbi)) { 924 trace_f2fs_drop_inode(inode, 1); 925 return 1; 926 } 927 } 928 929 /* 930 * This is to avoid a deadlock condition like below. 931 * writeback_single_inode(inode) 932 * - f2fs_write_data_page 933 * - f2fs_gc -> iput -> evict 934 * - inode_wait_for_writeback(inode) 935 */ 936 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 937 if (!inode->i_nlink && !is_bad_inode(inode)) { 938 /* to avoid evict_inode call simultaneously */ 939 atomic_inc(&inode->i_count); 940 spin_unlock(&inode->i_lock); 941 942 /* some remained atomic pages should discarded */ 943 if (f2fs_is_atomic_file(inode)) 944 f2fs_drop_inmem_pages(inode); 945 946 /* should remain fi->extent_tree for writepage */ 947 f2fs_destroy_extent_node(inode); 948 949 sb_start_intwrite(inode->i_sb); 950 f2fs_i_size_write(inode, 0); 951 952 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 953 inode, NULL, 0, DATA); 954 truncate_inode_pages_final(inode->i_mapping); 955 956 if (F2FS_HAS_BLOCKS(inode)) 957 f2fs_truncate(inode); 958 959 sb_end_intwrite(inode->i_sb); 960 961 spin_lock(&inode->i_lock); 962 atomic_dec(&inode->i_count); 963 } 964 trace_f2fs_drop_inode(inode, 0); 965 return 0; 966 } 967 ret = generic_drop_inode(inode); 968 if (!ret) 969 ret = fscrypt_drop_inode(inode); 970 trace_f2fs_drop_inode(inode, ret); 971 return ret; 972 } 973 974 int f2fs_inode_dirtied(struct inode *inode, bool sync) 975 { 976 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 977 int ret = 0; 978 979 spin_lock(&sbi->inode_lock[DIRTY_META]); 980 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 981 ret = 1; 982 } else { 983 set_inode_flag(inode, FI_DIRTY_INODE); 984 stat_inc_dirty_inode(sbi, DIRTY_META); 985 } 986 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 987 list_add_tail(&F2FS_I(inode)->gdirty_list, 988 &sbi->inode_list[DIRTY_META]); 989 inc_page_count(sbi, F2FS_DIRTY_IMETA); 990 } 991 spin_unlock(&sbi->inode_lock[DIRTY_META]); 992 return ret; 993 } 994 995 void f2fs_inode_synced(struct inode *inode) 996 { 997 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 998 999 spin_lock(&sbi->inode_lock[DIRTY_META]); 1000 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1001 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1002 return; 1003 } 1004 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1005 list_del_init(&F2FS_I(inode)->gdirty_list); 1006 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1007 } 1008 clear_inode_flag(inode, FI_DIRTY_INODE); 1009 clear_inode_flag(inode, FI_AUTO_RECOVER); 1010 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1011 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1012 } 1013 1014 /* 1015 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1016 * 1017 * We should call set_dirty_inode to write the dirty inode through write_inode. 1018 */ 1019 static void f2fs_dirty_inode(struct inode *inode, int flags) 1020 { 1021 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1022 1023 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1024 inode->i_ino == F2FS_META_INO(sbi)) 1025 return; 1026 1027 if (flags == I_DIRTY_TIME) 1028 return; 1029 1030 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1031 clear_inode_flag(inode, FI_AUTO_RECOVER); 1032 1033 f2fs_inode_dirtied(inode, false); 1034 } 1035 1036 static void f2fs_free_inode(struct inode *inode) 1037 { 1038 fscrypt_free_inode(inode); 1039 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1040 } 1041 1042 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1043 { 1044 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1045 percpu_counter_destroy(&sbi->total_valid_inode_count); 1046 } 1047 1048 static void destroy_device_list(struct f2fs_sb_info *sbi) 1049 { 1050 int i; 1051 1052 for (i = 0; i < sbi->s_ndevs; i++) { 1053 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1054 #ifdef CONFIG_BLK_DEV_ZONED 1055 kvfree(FDEV(i).blkz_seq); 1056 #endif 1057 } 1058 kvfree(sbi->devs); 1059 } 1060 1061 static void f2fs_put_super(struct super_block *sb) 1062 { 1063 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1064 int i; 1065 bool dropped; 1066 1067 f2fs_quota_off_umount(sb); 1068 1069 /* prevent remaining shrinker jobs */ 1070 mutex_lock(&sbi->umount_mutex); 1071 1072 /* 1073 * We don't need to do checkpoint when superblock is clean. 1074 * But, the previous checkpoint was not done by umount, it needs to do 1075 * clean checkpoint again. 1076 */ 1077 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1078 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1079 struct cp_control cpc = { 1080 .reason = CP_UMOUNT, 1081 }; 1082 f2fs_write_checkpoint(sbi, &cpc); 1083 } 1084 1085 /* be sure to wait for any on-going discard commands */ 1086 dropped = f2fs_issue_discard_timeout(sbi); 1087 1088 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1089 !sbi->discard_blks && !dropped) { 1090 struct cp_control cpc = { 1091 .reason = CP_UMOUNT | CP_TRIMMED, 1092 }; 1093 f2fs_write_checkpoint(sbi, &cpc); 1094 } 1095 1096 /* 1097 * normally superblock is clean, so we need to release this. 1098 * In addition, EIO will skip do checkpoint, we need this as well. 1099 */ 1100 f2fs_release_ino_entry(sbi, true); 1101 1102 f2fs_leave_shrinker(sbi); 1103 mutex_unlock(&sbi->umount_mutex); 1104 1105 /* our cp_error case, we can wait for any writeback page */ 1106 f2fs_flush_merged_writes(sbi); 1107 1108 f2fs_wait_on_all_pages_writeback(sbi); 1109 1110 f2fs_bug_on(sbi, sbi->fsync_node_num); 1111 1112 iput(sbi->node_inode); 1113 sbi->node_inode = NULL; 1114 1115 iput(sbi->meta_inode); 1116 sbi->meta_inode = NULL; 1117 1118 /* 1119 * iput() can update stat information, if f2fs_write_checkpoint() 1120 * above failed with error. 1121 */ 1122 f2fs_destroy_stats(sbi); 1123 1124 /* destroy f2fs internal modules */ 1125 f2fs_destroy_node_manager(sbi); 1126 f2fs_destroy_segment_manager(sbi); 1127 1128 kvfree(sbi->ckpt); 1129 1130 f2fs_unregister_sysfs(sbi); 1131 1132 sb->s_fs_info = NULL; 1133 if (sbi->s_chksum_driver) 1134 crypto_free_shash(sbi->s_chksum_driver); 1135 kvfree(sbi->raw_super); 1136 1137 destroy_device_list(sbi); 1138 mempool_destroy(sbi->write_io_dummy); 1139 #ifdef CONFIG_QUOTA 1140 for (i = 0; i < MAXQUOTAS; i++) 1141 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1142 #endif 1143 destroy_percpu_info(sbi); 1144 for (i = 0; i < NR_PAGE_TYPE; i++) 1145 kvfree(sbi->write_io[i]); 1146 #ifdef CONFIG_UNICODE 1147 utf8_unload(sbi->s_encoding); 1148 #endif 1149 kvfree(sbi); 1150 } 1151 1152 int f2fs_sync_fs(struct super_block *sb, int sync) 1153 { 1154 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1155 int err = 0; 1156 1157 if (unlikely(f2fs_cp_error(sbi))) 1158 return 0; 1159 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1160 return 0; 1161 1162 trace_f2fs_sync_fs(sb, sync); 1163 1164 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1165 return -EAGAIN; 1166 1167 if (sync) { 1168 struct cp_control cpc; 1169 1170 cpc.reason = __get_cp_reason(sbi); 1171 1172 mutex_lock(&sbi->gc_mutex); 1173 err = f2fs_write_checkpoint(sbi, &cpc); 1174 mutex_unlock(&sbi->gc_mutex); 1175 } 1176 f2fs_trace_ios(NULL, 1); 1177 1178 return err; 1179 } 1180 1181 static int f2fs_freeze(struct super_block *sb) 1182 { 1183 if (f2fs_readonly(sb)) 1184 return 0; 1185 1186 /* IO error happened before */ 1187 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1188 return -EIO; 1189 1190 /* must be clean, since sync_filesystem() was already called */ 1191 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1192 return -EINVAL; 1193 return 0; 1194 } 1195 1196 static int f2fs_unfreeze(struct super_block *sb) 1197 { 1198 return 0; 1199 } 1200 1201 #ifdef CONFIG_QUOTA 1202 static int f2fs_statfs_project(struct super_block *sb, 1203 kprojid_t projid, struct kstatfs *buf) 1204 { 1205 struct kqid qid; 1206 struct dquot *dquot; 1207 u64 limit; 1208 u64 curblock; 1209 1210 qid = make_kqid_projid(projid); 1211 dquot = dqget(sb, qid); 1212 if (IS_ERR(dquot)) 1213 return PTR_ERR(dquot); 1214 spin_lock(&dquot->dq_dqb_lock); 1215 1216 limit = 0; 1217 if (dquot->dq_dqb.dqb_bsoftlimit) 1218 limit = dquot->dq_dqb.dqb_bsoftlimit; 1219 if (dquot->dq_dqb.dqb_bhardlimit && 1220 (!limit || dquot->dq_dqb.dqb_bhardlimit < limit)) 1221 limit = dquot->dq_dqb.dqb_bhardlimit; 1222 1223 if (limit && buf->f_blocks > limit) { 1224 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1225 buf->f_blocks = limit; 1226 buf->f_bfree = buf->f_bavail = 1227 (buf->f_blocks > curblock) ? 1228 (buf->f_blocks - curblock) : 0; 1229 } 1230 1231 limit = 0; 1232 if (dquot->dq_dqb.dqb_isoftlimit) 1233 limit = dquot->dq_dqb.dqb_isoftlimit; 1234 if (dquot->dq_dqb.dqb_ihardlimit && 1235 (!limit || dquot->dq_dqb.dqb_ihardlimit < limit)) 1236 limit = dquot->dq_dqb.dqb_ihardlimit; 1237 1238 if (limit && buf->f_files > limit) { 1239 buf->f_files = limit; 1240 buf->f_ffree = 1241 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1242 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1243 } 1244 1245 spin_unlock(&dquot->dq_dqb_lock); 1246 dqput(dquot); 1247 return 0; 1248 } 1249 #endif 1250 1251 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1252 { 1253 struct super_block *sb = dentry->d_sb; 1254 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1255 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1256 block_t total_count, user_block_count, start_count; 1257 u64 avail_node_count; 1258 1259 total_count = le64_to_cpu(sbi->raw_super->block_count); 1260 user_block_count = sbi->user_block_count; 1261 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1262 buf->f_type = F2FS_SUPER_MAGIC; 1263 buf->f_bsize = sbi->blocksize; 1264 1265 buf->f_blocks = total_count - start_count; 1266 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1267 sbi->current_reserved_blocks; 1268 1269 spin_lock(&sbi->stat_lock); 1270 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1271 buf->f_bfree = 0; 1272 else 1273 buf->f_bfree -= sbi->unusable_block_count; 1274 spin_unlock(&sbi->stat_lock); 1275 1276 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1277 buf->f_bavail = buf->f_bfree - 1278 F2FS_OPTION(sbi).root_reserved_blocks; 1279 else 1280 buf->f_bavail = 0; 1281 1282 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1283 1284 if (avail_node_count > user_block_count) { 1285 buf->f_files = user_block_count; 1286 buf->f_ffree = buf->f_bavail; 1287 } else { 1288 buf->f_files = avail_node_count; 1289 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1290 buf->f_bavail); 1291 } 1292 1293 buf->f_namelen = F2FS_NAME_LEN; 1294 buf->f_fsid.val[0] = (u32)id; 1295 buf->f_fsid.val[1] = (u32)(id >> 32); 1296 1297 #ifdef CONFIG_QUOTA 1298 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1299 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1300 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1301 } 1302 #endif 1303 return 0; 1304 } 1305 1306 static inline void f2fs_show_quota_options(struct seq_file *seq, 1307 struct super_block *sb) 1308 { 1309 #ifdef CONFIG_QUOTA 1310 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1311 1312 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1313 char *fmtname = ""; 1314 1315 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1316 case QFMT_VFS_OLD: 1317 fmtname = "vfsold"; 1318 break; 1319 case QFMT_VFS_V0: 1320 fmtname = "vfsv0"; 1321 break; 1322 case QFMT_VFS_V1: 1323 fmtname = "vfsv1"; 1324 break; 1325 } 1326 seq_printf(seq, ",jqfmt=%s", fmtname); 1327 } 1328 1329 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1330 seq_show_option(seq, "usrjquota", 1331 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1332 1333 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1334 seq_show_option(seq, "grpjquota", 1335 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1336 1337 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1338 seq_show_option(seq, "prjjquota", 1339 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1340 #endif 1341 } 1342 1343 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1344 { 1345 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1346 1347 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 1348 if (test_opt(sbi, FORCE_FG_GC)) 1349 seq_printf(seq, ",background_gc=%s", "sync"); 1350 else 1351 seq_printf(seq, ",background_gc=%s", "on"); 1352 } else { 1353 seq_printf(seq, ",background_gc=%s", "off"); 1354 } 1355 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1356 seq_puts(seq, ",disable_roll_forward"); 1357 if (test_opt(sbi, DISCARD)) 1358 seq_puts(seq, ",discard"); 1359 else 1360 seq_puts(seq, ",nodiscard"); 1361 if (test_opt(sbi, NOHEAP)) 1362 seq_puts(seq, ",no_heap"); 1363 else 1364 seq_puts(seq, ",heap"); 1365 #ifdef CONFIG_F2FS_FS_XATTR 1366 if (test_opt(sbi, XATTR_USER)) 1367 seq_puts(seq, ",user_xattr"); 1368 else 1369 seq_puts(seq, ",nouser_xattr"); 1370 if (test_opt(sbi, INLINE_XATTR)) 1371 seq_puts(seq, ",inline_xattr"); 1372 else 1373 seq_puts(seq, ",noinline_xattr"); 1374 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1375 seq_printf(seq, ",inline_xattr_size=%u", 1376 F2FS_OPTION(sbi).inline_xattr_size); 1377 #endif 1378 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1379 if (test_opt(sbi, POSIX_ACL)) 1380 seq_puts(seq, ",acl"); 1381 else 1382 seq_puts(seq, ",noacl"); 1383 #endif 1384 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1385 seq_puts(seq, ",disable_ext_identify"); 1386 if (test_opt(sbi, INLINE_DATA)) 1387 seq_puts(seq, ",inline_data"); 1388 else 1389 seq_puts(seq, ",noinline_data"); 1390 if (test_opt(sbi, INLINE_DENTRY)) 1391 seq_puts(seq, ",inline_dentry"); 1392 else 1393 seq_puts(seq, ",noinline_dentry"); 1394 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1395 seq_puts(seq, ",flush_merge"); 1396 if (test_opt(sbi, NOBARRIER)) 1397 seq_puts(seq, ",nobarrier"); 1398 if (test_opt(sbi, FASTBOOT)) 1399 seq_puts(seq, ",fastboot"); 1400 if (test_opt(sbi, EXTENT_CACHE)) 1401 seq_puts(seq, ",extent_cache"); 1402 else 1403 seq_puts(seq, ",noextent_cache"); 1404 if (test_opt(sbi, DATA_FLUSH)) 1405 seq_puts(seq, ",data_flush"); 1406 1407 seq_puts(seq, ",mode="); 1408 if (test_opt(sbi, ADAPTIVE)) 1409 seq_puts(seq, "adaptive"); 1410 else if (test_opt(sbi, LFS)) 1411 seq_puts(seq, "lfs"); 1412 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1413 if (test_opt(sbi, RESERVE_ROOT)) 1414 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1415 F2FS_OPTION(sbi).root_reserved_blocks, 1416 from_kuid_munged(&init_user_ns, 1417 F2FS_OPTION(sbi).s_resuid), 1418 from_kgid_munged(&init_user_ns, 1419 F2FS_OPTION(sbi).s_resgid)); 1420 if (F2FS_IO_SIZE_BITS(sbi)) 1421 seq_printf(seq, ",io_bits=%u", 1422 F2FS_OPTION(sbi).write_io_size_bits); 1423 #ifdef CONFIG_F2FS_FAULT_INJECTION 1424 if (test_opt(sbi, FAULT_INJECTION)) { 1425 seq_printf(seq, ",fault_injection=%u", 1426 F2FS_OPTION(sbi).fault_info.inject_rate); 1427 seq_printf(seq, ",fault_type=%u", 1428 F2FS_OPTION(sbi).fault_info.inject_type); 1429 } 1430 #endif 1431 #ifdef CONFIG_QUOTA 1432 if (test_opt(sbi, QUOTA)) 1433 seq_puts(seq, ",quota"); 1434 if (test_opt(sbi, USRQUOTA)) 1435 seq_puts(seq, ",usrquota"); 1436 if (test_opt(sbi, GRPQUOTA)) 1437 seq_puts(seq, ",grpquota"); 1438 if (test_opt(sbi, PRJQUOTA)) 1439 seq_puts(seq, ",prjquota"); 1440 #endif 1441 f2fs_show_quota_options(seq, sbi->sb); 1442 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1443 seq_printf(seq, ",whint_mode=%s", "user-based"); 1444 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1445 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1446 #ifdef CONFIG_FS_ENCRYPTION 1447 if (F2FS_OPTION(sbi).test_dummy_encryption) 1448 seq_puts(seq, ",test_dummy_encryption"); 1449 #endif 1450 1451 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1452 seq_printf(seq, ",alloc_mode=%s", "default"); 1453 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1454 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1455 1456 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1457 seq_printf(seq, ",checkpoint=disable:%u", 1458 F2FS_OPTION(sbi).unusable_cap); 1459 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1460 seq_printf(seq, ",fsync_mode=%s", "posix"); 1461 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1462 seq_printf(seq, ",fsync_mode=%s", "strict"); 1463 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1464 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1465 return 0; 1466 } 1467 1468 static void default_options(struct f2fs_sb_info *sbi) 1469 { 1470 /* init some FS parameters */ 1471 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1472 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1473 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1474 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1475 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1476 F2FS_OPTION(sbi).test_dummy_encryption = false; 1477 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1478 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1479 1480 set_opt(sbi, BG_GC); 1481 set_opt(sbi, INLINE_XATTR); 1482 set_opt(sbi, INLINE_DATA); 1483 set_opt(sbi, INLINE_DENTRY); 1484 set_opt(sbi, EXTENT_CACHE); 1485 set_opt(sbi, NOHEAP); 1486 clear_opt(sbi, DISABLE_CHECKPOINT); 1487 F2FS_OPTION(sbi).unusable_cap = 0; 1488 sbi->sb->s_flags |= SB_LAZYTIME; 1489 set_opt(sbi, FLUSH_MERGE); 1490 set_opt(sbi, DISCARD); 1491 if (f2fs_sb_has_blkzoned(sbi)) 1492 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1493 else 1494 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1495 1496 #ifdef CONFIG_F2FS_FS_XATTR 1497 set_opt(sbi, XATTR_USER); 1498 #endif 1499 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1500 set_opt(sbi, POSIX_ACL); 1501 #endif 1502 1503 f2fs_build_fault_attr(sbi, 0, 0); 1504 } 1505 1506 #ifdef CONFIG_QUOTA 1507 static int f2fs_enable_quotas(struct super_block *sb); 1508 #endif 1509 1510 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1511 { 1512 unsigned int s_flags = sbi->sb->s_flags; 1513 struct cp_control cpc; 1514 int err = 0; 1515 int ret; 1516 block_t unusable; 1517 1518 if (s_flags & SB_RDONLY) { 1519 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 1520 return -EINVAL; 1521 } 1522 sbi->sb->s_flags |= SB_ACTIVE; 1523 1524 f2fs_update_time(sbi, DISABLE_TIME); 1525 1526 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1527 mutex_lock(&sbi->gc_mutex); 1528 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1529 if (err == -ENODATA) { 1530 err = 0; 1531 break; 1532 } 1533 if (err && err != -EAGAIN) 1534 break; 1535 } 1536 1537 ret = sync_filesystem(sbi->sb); 1538 if (ret || err) { 1539 err = ret ? ret: err; 1540 goto restore_flag; 1541 } 1542 1543 unusable = f2fs_get_unusable_blocks(sbi); 1544 if (f2fs_disable_cp_again(sbi, unusable)) { 1545 err = -EAGAIN; 1546 goto restore_flag; 1547 } 1548 1549 mutex_lock(&sbi->gc_mutex); 1550 cpc.reason = CP_PAUSE; 1551 set_sbi_flag(sbi, SBI_CP_DISABLED); 1552 err = f2fs_write_checkpoint(sbi, &cpc); 1553 if (err) 1554 goto out_unlock; 1555 1556 spin_lock(&sbi->stat_lock); 1557 sbi->unusable_block_count = unusable; 1558 spin_unlock(&sbi->stat_lock); 1559 1560 out_unlock: 1561 mutex_unlock(&sbi->gc_mutex); 1562 restore_flag: 1563 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1564 return err; 1565 } 1566 1567 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1568 { 1569 mutex_lock(&sbi->gc_mutex); 1570 f2fs_dirty_to_prefree(sbi); 1571 1572 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1573 set_sbi_flag(sbi, SBI_IS_DIRTY); 1574 mutex_unlock(&sbi->gc_mutex); 1575 1576 f2fs_sync_fs(sbi->sb, 1); 1577 } 1578 1579 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1580 { 1581 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1582 struct f2fs_mount_info org_mount_opt; 1583 unsigned long old_sb_flags; 1584 int err; 1585 bool need_restart_gc = false; 1586 bool need_stop_gc = false; 1587 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1588 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1589 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 1590 bool checkpoint_changed; 1591 #ifdef CONFIG_QUOTA 1592 int i, j; 1593 #endif 1594 1595 /* 1596 * Save the old mount options in case we 1597 * need to restore them. 1598 */ 1599 org_mount_opt = sbi->mount_opt; 1600 old_sb_flags = sb->s_flags; 1601 1602 #ifdef CONFIG_QUOTA 1603 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1604 for (i = 0; i < MAXQUOTAS; i++) { 1605 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1606 org_mount_opt.s_qf_names[i] = 1607 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1608 GFP_KERNEL); 1609 if (!org_mount_opt.s_qf_names[i]) { 1610 for (j = 0; j < i; j++) 1611 kvfree(org_mount_opt.s_qf_names[j]); 1612 return -ENOMEM; 1613 } 1614 } else { 1615 org_mount_opt.s_qf_names[i] = NULL; 1616 } 1617 } 1618 #endif 1619 1620 /* recover superblocks we couldn't write due to previous RO mount */ 1621 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1622 err = f2fs_commit_super(sbi, false); 1623 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 1624 err); 1625 if (!err) 1626 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1627 } 1628 1629 default_options(sbi); 1630 1631 /* parse mount options */ 1632 err = parse_options(sb, data); 1633 if (err) 1634 goto restore_opts; 1635 checkpoint_changed = 1636 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1637 1638 /* 1639 * Previous and new state of filesystem is RO, 1640 * so skip checking GC and FLUSH_MERGE conditions. 1641 */ 1642 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1643 goto skip; 1644 1645 #ifdef CONFIG_QUOTA 1646 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1647 err = dquot_suspend(sb, -1); 1648 if (err < 0) 1649 goto restore_opts; 1650 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1651 /* dquot_resume needs RW */ 1652 sb->s_flags &= ~SB_RDONLY; 1653 if (sb_any_quota_suspended(sb)) { 1654 dquot_resume(sb, -1); 1655 } else if (f2fs_sb_has_quota_ino(sbi)) { 1656 err = f2fs_enable_quotas(sb); 1657 if (err) 1658 goto restore_opts; 1659 } 1660 } 1661 #endif 1662 /* disallow enable/disable extent_cache dynamically */ 1663 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1664 err = -EINVAL; 1665 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 1666 goto restore_opts; 1667 } 1668 1669 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 1670 err = -EINVAL; 1671 f2fs_warn(sbi, "switch io_bits option is not allowed"); 1672 goto restore_opts; 1673 } 1674 1675 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1676 err = -EINVAL; 1677 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 1678 goto restore_opts; 1679 } 1680 1681 /* 1682 * We stop the GC thread if FS is mounted as RO 1683 * or if background_gc = off is passed in mount 1684 * option. Also sync the filesystem. 1685 */ 1686 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) { 1687 if (sbi->gc_thread) { 1688 f2fs_stop_gc_thread(sbi); 1689 need_restart_gc = true; 1690 } 1691 } else if (!sbi->gc_thread) { 1692 err = f2fs_start_gc_thread(sbi); 1693 if (err) 1694 goto restore_opts; 1695 need_stop_gc = true; 1696 } 1697 1698 if (*flags & SB_RDONLY || 1699 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1700 writeback_inodes_sb(sb, WB_REASON_SYNC); 1701 sync_inodes_sb(sb); 1702 1703 set_sbi_flag(sbi, SBI_IS_DIRTY); 1704 set_sbi_flag(sbi, SBI_IS_CLOSE); 1705 f2fs_sync_fs(sb, 1); 1706 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1707 } 1708 1709 if (checkpoint_changed) { 1710 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1711 err = f2fs_disable_checkpoint(sbi); 1712 if (err) 1713 goto restore_gc; 1714 } else { 1715 f2fs_enable_checkpoint(sbi); 1716 } 1717 } 1718 1719 /* 1720 * We stop issue flush thread if FS is mounted as RO 1721 * or if flush_merge is not passed in mount option. 1722 */ 1723 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1724 clear_opt(sbi, FLUSH_MERGE); 1725 f2fs_destroy_flush_cmd_control(sbi, false); 1726 } else { 1727 err = f2fs_create_flush_cmd_control(sbi); 1728 if (err) 1729 goto restore_gc; 1730 } 1731 skip: 1732 #ifdef CONFIG_QUOTA 1733 /* Release old quota file names */ 1734 for (i = 0; i < MAXQUOTAS; i++) 1735 kvfree(org_mount_opt.s_qf_names[i]); 1736 #endif 1737 /* Update the POSIXACL Flag */ 1738 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1739 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1740 1741 limit_reserve_root(sbi); 1742 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 1743 return 0; 1744 restore_gc: 1745 if (need_restart_gc) { 1746 if (f2fs_start_gc_thread(sbi)) 1747 f2fs_warn(sbi, "background gc thread has stopped"); 1748 } else if (need_stop_gc) { 1749 f2fs_stop_gc_thread(sbi); 1750 } 1751 restore_opts: 1752 #ifdef CONFIG_QUOTA 1753 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1754 for (i = 0; i < MAXQUOTAS; i++) { 1755 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1756 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1757 } 1758 #endif 1759 sbi->mount_opt = org_mount_opt; 1760 sb->s_flags = old_sb_flags; 1761 return err; 1762 } 1763 1764 #ifdef CONFIG_QUOTA 1765 /* Read data from quotafile */ 1766 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1767 size_t len, loff_t off) 1768 { 1769 struct inode *inode = sb_dqopt(sb)->files[type]; 1770 struct address_space *mapping = inode->i_mapping; 1771 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1772 int offset = off & (sb->s_blocksize - 1); 1773 int tocopy; 1774 size_t toread; 1775 loff_t i_size = i_size_read(inode); 1776 struct page *page; 1777 char *kaddr; 1778 1779 if (off > i_size) 1780 return 0; 1781 1782 if (off + len > i_size) 1783 len = i_size - off; 1784 toread = len; 1785 while (toread > 0) { 1786 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1787 repeat: 1788 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1789 if (IS_ERR(page)) { 1790 if (PTR_ERR(page) == -ENOMEM) { 1791 congestion_wait(BLK_RW_ASYNC, HZ/50); 1792 goto repeat; 1793 } 1794 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1795 return PTR_ERR(page); 1796 } 1797 1798 lock_page(page); 1799 1800 if (unlikely(page->mapping != mapping)) { 1801 f2fs_put_page(page, 1); 1802 goto repeat; 1803 } 1804 if (unlikely(!PageUptodate(page))) { 1805 f2fs_put_page(page, 1); 1806 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1807 return -EIO; 1808 } 1809 1810 kaddr = kmap_atomic(page); 1811 memcpy(data, kaddr + offset, tocopy); 1812 kunmap_atomic(kaddr); 1813 f2fs_put_page(page, 1); 1814 1815 offset = 0; 1816 toread -= tocopy; 1817 data += tocopy; 1818 blkidx++; 1819 } 1820 return len; 1821 } 1822 1823 /* Write to quotafile */ 1824 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1825 const char *data, size_t len, loff_t off) 1826 { 1827 struct inode *inode = sb_dqopt(sb)->files[type]; 1828 struct address_space *mapping = inode->i_mapping; 1829 const struct address_space_operations *a_ops = mapping->a_ops; 1830 int offset = off & (sb->s_blocksize - 1); 1831 size_t towrite = len; 1832 struct page *page; 1833 char *kaddr; 1834 int err = 0; 1835 int tocopy; 1836 1837 while (towrite > 0) { 1838 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1839 towrite); 1840 retry: 1841 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1842 &page, NULL); 1843 if (unlikely(err)) { 1844 if (err == -ENOMEM) { 1845 congestion_wait(BLK_RW_ASYNC, HZ/50); 1846 goto retry; 1847 } 1848 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1849 break; 1850 } 1851 1852 kaddr = kmap_atomic(page); 1853 memcpy(kaddr + offset, data, tocopy); 1854 kunmap_atomic(kaddr); 1855 flush_dcache_page(page); 1856 1857 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1858 page, NULL); 1859 offset = 0; 1860 towrite -= tocopy; 1861 off += tocopy; 1862 data += tocopy; 1863 cond_resched(); 1864 } 1865 1866 if (len == towrite) 1867 return err; 1868 inode->i_mtime = inode->i_ctime = current_time(inode); 1869 f2fs_mark_inode_dirty_sync(inode, false); 1870 return len - towrite; 1871 } 1872 1873 static struct dquot **f2fs_get_dquots(struct inode *inode) 1874 { 1875 return F2FS_I(inode)->i_dquot; 1876 } 1877 1878 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1879 { 1880 return &F2FS_I(inode)->i_reserved_quota; 1881 } 1882 1883 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1884 { 1885 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 1886 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 1887 return 0; 1888 } 1889 1890 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 1891 F2FS_OPTION(sbi).s_jquota_fmt, type); 1892 } 1893 1894 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 1895 { 1896 int enabled = 0; 1897 int i, err; 1898 1899 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 1900 err = f2fs_enable_quotas(sbi->sb); 1901 if (err) { 1902 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 1903 return 0; 1904 } 1905 return 1; 1906 } 1907 1908 for (i = 0; i < MAXQUOTAS; i++) { 1909 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1910 err = f2fs_quota_on_mount(sbi, i); 1911 if (!err) { 1912 enabled = 1; 1913 continue; 1914 } 1915 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 1916 err, i); 1917 } 1918 } 1919 return enabled; 1920 } 1921 1922 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 1923 unsigned int flags) 1924 { 1925 struct inode *qf_inode; 1926 unsigned long qf_inum; 1927 int err; 1928 1929 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 1930 1931 qf_inum = f2fs_qf_ino(sb, type); 1932 if (!qf_inum) 1933 return -EPERM; 1934 1935 qf_inode = f2fs_iget(sb, qf_inum); 1936 if (IS_ERR(qf_inode)) { 1937 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 1938 return PTR_ERR(qf_inode); 1939 } 1940 1941 /* Don't account quota for quota files to avoid recursion */ 1942 qf_inode->i_flags |= S_NOQUOTA; 1943 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 1944 iput(qf_inode); 1945 return err; 1946 } 1947 1948 static int f2fs_enable_quotas(struct super_block *sb) 1949 { 1950 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1951 int type, err = 0; 1952 unsigned long qf_inum; 1953 bool quota_mopt[MAXQUOTAS] = { 1954 test_opt(sbi, USRQUOTA), 1955 test_opt(sbi, GRPQUOTA), 1956 test_opt(sbi, PRJQUOTA), 1957 }; 1958 1959 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 1960 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 1961 return 0; 1962 } 1963 1964 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 1965 1966 for (type = 0; type < MAXQUOTAS; type++) { 1967 qf_inum = f2fs_qf_ino(sb, type); 1968 if (qf_inum) { 1969 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 1970 DQUOT_USAGE_ENABLED | 1971 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 1972 if (err) { 1973 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 1974 type, err); 1975 for (type--; type >= 0; type--) 1976 dquot_quota_off(sb, type); 1977 set_sbi_flag(F2FS_SB(sb), 1978 SBI_QUOTA_NEED_REPAIR); 1979 return err; 1980 } 1981 } 1982 } 1983 return 0; 1984 } 1985 1986 int f2fs_quota_sync(struct super_block *sb, int type) 1987 { 1988 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1989 struct quota_info *dqopt = sb_dqopt(sb); 1990 int cnt; 1991 int ret; 1992 1993 /* 1994 * do_quotactl 1995 * f2fs_quota_sync 1996 * down_read(quota_sem) 1997 * dquot_writeback_dquots() 1998 * f2fs_dquot_commit 1999 * block_operation 2000 * down_read(quota_sem) 2001 */ 2002 f2fs_lock_op(sbi); 2003 2004 down_read(&sbi->quota_sem); 2005 ret = dquot_writeback_dquots(sb, type); 2006 if (ret) 2007 goto out; 2008 2009 /* 2010 * Now when everything is written we can discard the pagecache so 2011 * that userspace sees the changes. 2012 */ 2013 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2014 struct address_space *mapping; 2015 2016 if (type != -1 && cnt != type) 2017 continue; 2018 if (!sb_has_quota_active(sb, cnt)) 2019 continue; 2020 2021 mapping = dqopt->files[cnt]->i_mapping; 2022 2023 ret = filemap_fdatawrite(mapping); 2024 if (ret) 2025 goto out; 2026 2027 /* if we are using journalled quota */ 2028 if (is_journalled_quota(sbi)) 2029 continue; 2030 2031 ret = filemap_fdatawait(mapping); 2032 if (ret) 2033 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2034 2035 inode_lock(dqopt->files[cnt]); 2036 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 2037 inode_unlock(dqopt->files[cnt]); 2038 } 2039 out: 2040 if (ret) 2041 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2042 up_read(&sbi->quota_sem); 2043 f2fs_unlock_op(sbi); 2044 return ret; 2045 } 2046 2047 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2048 const struct path *path) 2049 { 2050 struct inode *inode; 2051 int err; 2052 2053 /* if quota sysfile exists, deny enabling quota with specific file */ 2054 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2055 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2056 return -EBUSY; 2057 } 2058 2059 err = f2fs_quota_sync(sb, type); 2060 if (err) 2061 return err; 2062 2063 err = dquot_quota_on(sb, type, format_id, path); 2064 if (err) 2065 return err; 2066 2067 inode = d_inode(path->dentry); 2068 2069 inode_lock(inode); 2070 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2071 f2fs_set_inode_flags(inode); 2072 inode_unlock(inode); 2073 f2fs_mark_inode_dirty_sync(inode, false); 2074 2075 return 0; 2076 } 2077 2078 static int __f2fs_quota_off(struct super_block *sb, int type) 2079 { 2080 struct inode *inode = sb_dqopt(sb)->files[type]; 2081 int err; 2082 2083 if (!inode || !igrab(inode)) 2084 return dquot_quota_off(sb, type); 2085 2086 err = f2fs_quota_sync(sb, type); 2087 if (err) 2088 goto out_put; 2089 2090 err = dquot_quota_off(sb, type); 2091 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2092 goto out_put; 2093 2094 inode_lock(inode); 2095 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2096 f2fs_set_inode_flags(inode); 2097 inode_unlock(inode); 2098 f2fs_mark_inode_dirty_sync(inode, false); 2099 out_put: 2100 iput(inode); 2101 return err; 2102 } 2103 2104 static int f2fs_quota_off(struct super_block *sb, int type) 2105 { 2106 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2107 int err; 2108 2109 err = __f2fs_quota_off(sb, type); 2110 2111 /* 2112 * quotactl can shutdown journalled quota, result in inconsistence 2113 * between quota record and fs data by following updates, tag the 2114 * flag to let fsck be aware of it. 2115 */ 2116 if (is_journalled_quota(sbi)) 2117 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2118 return err; 2119 } 2120 2121 void f2fs_quota_off_umount(struct super_block *sb) 2122 { 2123 int type; 2124 int err; 2125 2126 for (type = 0; type < MAXQUOTAS; type++) { 2127 err = __f2fs_quota_off(sb, type); 2128 if (err) { 2129 int ret = dquot_quota_off(sb, type); 2130 2131 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2132 type, err, ret); 2133 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2134 } 2135 } 2136 /* 2137 * In case of checkpoint=disable, we must flush quota blocks. 2138 * This can cause NULL exception for node_inode in end_io, since 2139 * put_super already dropped it. 2140 */ 2141 sync_filesystem(sb); 2142 } 2143 2144 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2145 { 2146 struct quota_info *dqopt = sb_dqopt(sb); 2147 int type; 2148 2149 for (type = 0; type < MAXQUOTAS; type++) { 2150 if (!dqopt->files[type]) 2151 continue; 2152 f2fs_inode_synced(dqopt->files[type]); 2153 } 2154 } 2155 2156 static int f2fs_dquot_commit(struct dquot *dquot) 2157 { 2158 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2159 int ret; 2160 2161 down_read(&sbi->quota_sem); 2162 ret = dquot_commit(dquot); 2163 if (ret < 0) 2164 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2165 up_read(&sbi->quota_sem); 2166 return ret; 2167 } 2168 2169 static int f2fs_dquot_acquire(struct dquot *dquot) 2170 { 2171 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2172 int ret; 2173 2174 down_read(&sbi->quota_sem); 2175 ret = dquot_acquire(dquot); 2176 if (ret < 0) 2177 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2178 up_read(&sbi->quota_sem); 2179 return ret; 2180 } 2181 2182 static int f2fs_dquot_release(struct dquot *dquot) 2183 { 2184 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2185 int ret; 2186 2187 down_read(&sbi->quota_sem); 2188 ret = dquot_release(dquot); 2189 if (ret < 0) 2190 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2191 up_read(&sbi->quota_sem); 2192 return ret; 2193 } 2194 2195 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2196 { 2197 struct super_block *sb = dquot->dq_sb; 2198 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2199 int ret; 2200 2201 down_read(&sbi->quota_sem); 2202 ret = dquot_mark_dquot_dirty(dquot); 2203 2204 /* if we are using journalled quota */ 2205 if (is_journalled_quota(sbi)) 2206 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2207 2208 up_read(&sbi->quota_sem); 2209 return ret; 2210 } 2211 2212 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2213 { 2214 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2215 int ret; 2216 2217 down_read(&sbi->quota_sem); 2218 ret = dquot_commit_info(sb, type); 2219 if (ret < 0) 2220 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2221 up_read(&sbi->quota_sem); 2222 return ret; 2223 } 2224 2225 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2226 { 2227 *projid = F2FS_I(inode)->i_projid; 2228 return 0; 2229 } 2230 2231 static const struct dquot_operations f2fs_quota_operations = { 2232 .get_reserved_space = f2fs_get_reserved_space, 2233 .write_dquot = f2fs_dquot_commit, 2234 .acquire_dquot = f2fs_dquot_acquire, 2235 .release_dquot = f2fs_dquot_release, 2236 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2237 .write_info = f2fs_dquot_commit_info, 2238 .alloc_dquot = dquot_alloc, 2239 .destroy_dquot = dquot_destroy, 2240 .get_projid = f2fs_get_projid, 2241 .get_next_id = dquot_get_next_id, 2242 }; 2243 2244 static const struct quotactl_ops f2fs_quotactl_ops = { 2245 .quota_on = f2fs_quota_on, 2246 .quota_off = f2fs_quota_off, 2247 .quota_sync = f2fs_quota_sync, 2248 .get_state = dquot_get_state, 2249 .set_info = dquot_set_dqinfo, 2250 .get_dqblk = dquot_get_dqblk, 2251 .set_dqblk = dquot_set_dqblk, 2252 .get_nextdqblk = dquot_get_next_dqblk, 2253 }; 2254 #else 2255 int f2fs_quota_sync(struct super_block *sb, int type) 2256 { 2257 return 0; 2258 } 2259 2260 void f2fs_quota_off_umount(struct super_block *sb) 2261 { 2262 } 2263 #endif 2264 2265 static const struct super_operations f2fs_sops = { 2266 .alloc_inode = f2fs_alloc_inode, 2267 .free_inode = f2fs_free_inode, 2268 .drop_inode = f2fs_drop_inode, 2269 .write_inode = f2fs_write_inode, 2270 .dirty_inode = f2fs_dirty_inode, 2271 .show_options = f2fs_show_options, 2272 #ifdef CONFIG_QUOTA 2273 .quota_read = f2fs_quota_read, 2274 .quota_write = f2fs_quota_write, 2275 .get_dquots = f2fs_get_dquots, 2276 #endif 2277 .evict_inode = f2fs_evict_inode, 2278 .put_super = f2fs_put_super, 2279 .sync_fs = f2fs_sync_fs, 2280 .freeze_fs = f2fs_freeze, 2281 .unfreeze_fs = f2fs_unfreeze, 2282 .statfs = f2fs_statfs, 2283 .remount_fs = f2fs_remount, 2284 }; 2285 2286 #ifdef CONFIG_FS_ENCRYPTION 2287 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2288 { 2289 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2290 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2291 ctx, len, NULL); 2292 } 2293 2294 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2295 void *fs_data) 2296 { 2297 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2298 2299 /* 2300 * Encrypting the root directory is not allowed because fsck 2301 * expects lost+found directory to exist and remain unencrypted 2302 * if LOST_FOUND feature is enabled. 2303 * 2304 */ 2305 if (f2fs_sb_has_lost_found(sbi) && 2306 inode->i_ino == F2FS_ROOT_INO(sbi)) 2307 return -EPERM; 2308 2309 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2310 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2311 ctx, len, fs_data, XATTR_CREATE); 2312 } 2313 2314 static bool f2fs_dummy_context(struct inode *inode) 2315 { 2316 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 2317 } 2318 2319 static bool f2fs_has_stable_inodes(struct super_block *sb) 2320 { 2321 return true; 2322 } 2323 2324 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 2325 int *ino_bits_ret, int *lblk_bits_ret) 2326 { 2327 *ino_bits_ret = 8 * sizeof(nid_t); 2328 *lblk_bits_ret = 8 * sizeof(block_t); 2329 } 2330 2331 static const struct fscrypt_operations f2fs_cryptops = { 2332 .key_prefix = "f2fs:", 2333 .get_context = f2fs_get_context, 2334 .set_context = f2fs_set_context, 2335 .dummy_context = f2fs_dummy_context, 2336 .empty_dir = f2fs_empty_dir, 2337 .max_namelen = F2FS_NAME_LEN, 2338 .has_stable_inodes = f2fs_has_stable_inodes, 2339 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 2340 }; 2341 #endif 2342 2343 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2344 u64 ino, u32 generation) 2345 { 2346 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2347 struct inode *inode; 2348 2349 if (f2fs_check_nid_range(sbi, ino)) 2350 return ERR_PTR(-ESTALE); 2351 2352 /* 2353 * f2fs_iget isn't quite right if the inode is currently unallocated! 2354 * However f2fs_iget currently does appropriate checks to handle stale 2355 * inodes so everything is OK. 2356 */ 2357 inode = f2fs_iget(sb, ino); 2358 if (IS_ERR(inode)) 2359 return ERR_CAST(inode); 2360 if (unlikely(generation && inode->i_generation != generation)) { 2361 /* we didn't find the right inode.. */ 2362 iput(inode); 2363 return ERR_PTR(-ESTALE); 2364 } 2365 return inode; 2366 } 2367 2368 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2369 int fh_len, int fh_type) 2370 { 2371 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2372 f2fs_nfs_get_inode); 2373 } 2374 2375 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2376 int fh_len, int fh_type) 2377 { 2378 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2379 f2fs_nfs_get_inode); 2380 } 2381 2382 static const struct export_operations f2fs_export_ops = { 2383 .fh_to_dentry = f2fs_fh_to_dentry, 2384 .fh_to_parent = f2fs_fh_to_parent, 2385 .get_parent = f2fs_get_parent, 2386 }; 2387 2388 static loff_t max_file_blocks(void) 2389 { 2390 loff_t result = 0; 2391 loff_t leaf_count = DEF_ADDRS_PER_BLOCK; 2392 2393 /* 2394 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2395 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2396 * space in inode.i_addr, it will be more safe to reassign 2397 * result as zero. 2398 */ 2399 2400 /* two direct node blocks */ 2401 result += (leaf_count * 2); 2402 2403 /* two indirect node blocks */ 2404 leaf_count *= NIDS_PER_BLOCK; 2405 result += (leaf_count * 2); 2406 2407 /* one double indirect node block */ 2408 leaf_count *= NIDS_PER_BLOCK; 2409 result += leaf_count; 2410 2411 return result; 2412 } 2413 2414 static int __f2fs_commit_super(struct buffer_head *bh, 2415 struct f2fs_super_block *super) 2416 { 2417 lock_buffer(bh); 2418 if (super) 2419 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2420 set_buffer_dirty(bh); 2421 unlock_buffer(bh); 2422 2423 /* it's rare case, we can do fua all the time */ 2424 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2425 } 2426 2427 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2428 struct buffer_head *bh) 2429 { 2430 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2431 (bh->b_data + F2FS_SUPER_OFFSET); 2432 struct super_block *sb = sbi->sb; 2433 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2434 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2435 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2436 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2437 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2438 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2439 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2440 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2441 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2442 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2443 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2444 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2445 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2446 u64 main_end_blkaddr = main_blkaddr + 2447 (segment_count_main << log_blocks_per_seg); 2448 u64 seg_end_blkaddr = segment0_blkaddr + 2449 (segment_count << log_blocks_per_seg); 2450 2451 if (segment0_blkaddr != cp_blkaddr) { 2452 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2453 segment0_blkaddr, cp_blkaddr); 2454 return true; 2455 } 2456 2457 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2458 sit_blkaddr) { 2459 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2460 cp_blkaddr, sit_blkaddr, 2461 segment_count_ckpt << log_blocks_per_seg); 2462 return true; 2463 } 2464 2465 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2466 nat_blkaddr) { 2467 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2468 sit_blkaddr, nat_blkaddr, 2469 segment_count_sit << log_blocks_per_seg); 2470 return true; 2471 } 2472 2473 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2474 ssa_blkaddr) { 2475 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2476 nat_blkaddr, ssa_blkaddr, 2477 segment_count_nat << log_blocks_per_seg); 2478 return true; 2479 } 2480 2481 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2482 main_blkaddr) { 2483 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2484 ssa_blkaddr, main_blkaddr, 2485 segment_count_ssa << log_blocks_per_seg); 2486 return true; 2487 } 2488 2489 if (main_end_blkaddr > seg_end_blkaddr) { 2490 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2491 main_blkaddr, 2492 segment0_blkaddr + 2493 (segment_count << log_blocks_per_seg), 2494 segment_count_main << log_blocks_per_seg); 2495 return true; 2496 } else if (main_end_blkaddr < seg_end_blkaddr) { 2497 int err = 0; 2498 char *res; 2499 2500 /* fix in-memory information all the time */ 2501 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2502 segment0_blkaddr) >> log_blocks_per_seg); 2503 2504 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2505 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2506 res = "internally"; 2507 } else { 2508 err = __f2fs_commit_super(bh, NULL); 2509 res = err ? "failed" : "done"; 2510 } 2511 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)", 2512 res, main_blkaddr, 2513 segment0_blkaddr + 2514 (segment_count << log_blocks_per_seg), 2515 segment_count_main << log_blocks_per_seg); 2516 if (err) 2517 return true; 2518 } 2519 return false; 2520 } 2521 2522 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2523 struct buffer_head *bh) 2524 { 2525 block_t segment_count, segs_per_sec, secs_per_zone; 2526 block_t total_sections, blocks_per_seg; 2527 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2528 (bh->b_data + F2FS_SUPER_OFFSET); 2529 unsigned int blocksize; 2530 size_t crc_offset = 0; 2531 __u32 crc = 0; 2532 2533 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 2534 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 2535 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2536 return -EINVAL; 2537 } 2538 2539 /* Check checksum_offset and crc in superblock */ 2540 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2541 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2542 if (crc_offset != 2543 offsetof(struct f2fs_super_block, crc)) { 2544 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 2545 crc_offset); 2546 return -EFSCORRUPTED; 2547 } 2548 crc = le32_to_cpu(raw_super->crc); 2549 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2550 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 2551 return -EFSCORRUPTED; 2552 } 2553 } 2554 2555 /* Currently, support only 4KB page cache size */ 2556 if (F2FS_BLKSIZE != PAGE_SIZE) { 2557 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB", 2558 PAGE_SIZE); 2559 return -EFSCORRUPTED; 2560 } 2561 2562 /* Currently, support only 4KB block size */ 2563 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2564 if (blocksize != F2FS_BLKSIZE) { 2565 f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB", 2566 blocksize); 2567 return -EFSCORRUPTED; 2568 } 2569 2570 /* check log blocks per segment */ 2571 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2572 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 2573 le32_to_cpu(raw_super->log_blocks_per_seg)); 2574 return -EFSCORRUPTED; 2575 } 2576 2577 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2578 if (le32_to_cpu(raw_super->log_sectorsize) > 2579 F2FS_MAX_LOG_SECTOR_SIZE || 2580 le32_to_cpu(raw_super->log_sectorsize) < 2581 F2FS_MIN_LOG_SECTOR_SIZE) { 2582 f2fs_info(sbi, "Invalid log sectorsize (%u)", 2583 le32_to_cpu(raw_super->log_sectorsize)); 2584 return -EFSCORRUPTED; 2585 } 2586 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2587 le32_to_cpu(raw_super->log_sectorsize) != 2588 F2FS_MAX_LOG_SECTOR_SIZE) { 2589 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 2590 le32_to_cpu(raw_super->log_sectors_per_block), 2591 le32_to_cpu(raw_super->log_sectorsize)); 2592 return -EFSCORRUPTED; 2593 } 2594 2595 segment_count = le32_to_cpu(raw_super->segment_count); 2596 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2597 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2598 total_sections = le32_to_cpu(raw_super->section_count); 2599 2600 /* blocks_per_seg should be 512, given the above check */ 2601 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2602 2603 if (segment_count > F2FS_MAX_SEGMENT || 2604 segment_count < F2FS_MIN_SEGMENTS) { 2605 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 2606 return -EFSCORRUPTED; 2607 } 2608 2609 if (total_sections > segment_count || 2610 total_sections < F2FS_MIN_SEGMENTS || 2611 segs_per_sec > segment_count || !segs_per_sec) { 2612 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 2613 segment_count, total_sections, segs_per_sec); 2614 return -EFSCORRUPTED; 2615 } 2616 2617 if ((segment_count / segs_per_sec) < total_sections) { 2618 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 2619 segment_count, segs_per_sec, total_sections); 2620 return -EFSCORRUPTED; 2621 } 2622 2623 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2624 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 2625 segment_count, le64_to_cpu(raw_super->block_count)); 2626 return -EFSCORRUPTED; 2627 } 2628 2629 if (RDEV(0).path[0]) { 2630 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 2631 int i = 1; 2632 2633 while (i < MAX_DEVICES && RDEV(i).path[0]) { 2634 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 2635 i++; 2636 } 2637 if (segment_count != dev_seg_count) { 2638 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 2639 segment_count, dev_seg_count); 2640 return -EFSCORRUPTED; 2641 } 2642 } 2643 2644 if (secs_per_zone > total_sections || !secs_per_zone) { 2645 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 2646 secs_per_zone, total_sections); 2647 return -EFSCORRUPTED; 2648 } 2649 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2650 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2651 (le32_to_cpu(raw_super->extension_count) + 2652 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2653 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 2654 le32_to_cpu(raw_super->extension_count), 2655 raw_super->hot_ext_count, 2656 F2FS_MAX_EXTENSION); 2657 return -EFSCORRUPTED; 2658 } 2659 2660 if (le32_to_cpu(raw_super->cp_payload) > 2661 (blocks_per_seg - F2FS_CP_PACKS)) { 2662 f2fs_info(sbi, "Insane cp_payload (%u > %u)", 2663 le32_to_cpu(raw_super->cp_payload), 2664 blocks_per_seg - F2FS_CP_PACKS); 2665 return -EFSCORRUPTED; 2666 } 2667 2668 /* check reserved ino info */ 2669 if (le32_to_cpu(raw_super->node_ino) != 1 || 2670 le32_to_cpu(raw_super->meta_ino) != 2 || 2671 le32_to_cpu(raw_super->root_ino) != 3) { 2672 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2673 le32_to_cpu(raw_super->node_ino), 2674 le32_to_cpu(raw_super->meta_ino), 2675 le32_to_cpu(raw_super->root_ino)); 2676 return -EFSCORRUPTED; 2677 } 2678 2679 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2680 if (sanity_check_area_boundary(sbi, bh)) 2681 return -EFSCORRUPTED; 2682 2683 return 0; 2684 } 2685 2686 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2687 { 2688 unsigned int total, fsmeta; 2689 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2690 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2691 unsigned int ovp_segments, reserved_segments; 2692 unsigned int main_segs, blocks_per_seg; 2693 unsigned int sit_segs, nat_segs; 2694 unsigned int sit_bitmap_size, nat_bitmap_size; 2695 unsigned int log_blocks_per_seg; 2696 unsigned int segment_count_main; 2697 unsigned int cp_pack_start_sum, cp_payload; 2698 block_t user_block_count, valid_user_blocks; 2699 block_t avail_node_count, valid_node_count; 2700 int i, j; 2701 2702 total = le32_to_cpu(raw_super->segment_count); 2703 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2704 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 2705 fsmeta += sit_segs; 2706 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 2707 fsmeta += nat_segs; 2708 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2709 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2710 2711 if (unlikely(fsmeta >= total)) 2712 return 1; 2713 2714 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2715 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2716 2717 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2718 ovp_segments == 0 || reserved_segments == 0)) { 2719 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 2720 return 1; 2721 } 2722 2723 user_block_count = le64_to_cpu(ckpt->user_block_count); 2724 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2725 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2726 if (!user_block_count || user_block_count >= 2727 segment_count_main << log_blocks_per_seg) { 2728 f2fs_err(sbi, "Wrong user_block_count: %u", 2729 user_block_count); 2730 return 1; 2731 } 2732 2733 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 2734 if (valid_user_blocks > user_block_count) { 2735 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 2736 valid_user_blocks, user_block_count); 2737 return 1; 2738 } 2739 2740 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 2741 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 2742 if (valid_node_count > avail_node_count) { 2743 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 2744 valid_node_count, avail_node_count); 2745 return 1; 2746 } 2747 2748 main_segs = le32_to_cpu(raw_super->segment_count_main); 2749 blocks_per_seg = sbi->blocks_per_seg; 2750 2751 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2752 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2753 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2754 return 1; 2755 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 2756 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2757 le32_to_cpu(ckpt->cur_node_segno[j])) { 2758 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 2759 i, j, 2760 le32_to_cpu(ckpt->cur_node_segno[i])); 2761 return 1; 2762 } 2763 } 2764 } 2765 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2766 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2767 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2768 return 1; 2769 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 2770 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 2771 le32_to_cpu(ckpt->cur_data_segno[j])) { 2772 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 2773 i, j, 2774 le32_to_cpu(ckpt->cur_data_segno[i])); 2775 return 1; 2776 } 2777 } 2778 } 2779 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2780 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 2781 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2782 le32_to_cpu(ckpt->cur_data_segno[j])) { 2783 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 2784 i, j, 2785 le32_to_cpu(ckpt->cur_node_segno[i])); 2786 return 1; 2787 } 2788 } 2789 } 2790 2791 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2792 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2793 2794 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 2795 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 2796 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 2797 sit_bitmap_size, nat_bitmap_size); 2798 return 1; 2799 } 2800 2801 cp_pack_start_sum = __start_sum_addr(sbi); 2802 cp_payload = __cp_payload(sbi); 2803 if (cp_pack_start_sum < cp_payload + 1 || 2804 cp_pack_start_sum > blocks_per_seg - 1 - 2805 NR_CURSEG_TYPE) { 2806 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 2807 cp_pack_start_sum); 2808 return 1; 2809 } 2810 2811 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 2812 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 2813 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 2814 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 2815 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 2816 le32_to_cpu(ckpt->checksum_offset)); 2817 return 1; 2818 } 2819 2820 if (unlikely(f2fs_cp_error(sbi))) { 2821 f2fs_err(sbi, "A bug case: need to run fsck"); 2822 return 1; 2823 } 2824 return 0; 2825 } 2826 2827 static void init_sb_info(struct f2fs_sb_info *sbi) 2828 { 2829 struct f2fs_super_block *raw_super = sbi->raw_super; 2830 int i; 2831 2832 sbi->log_sectors_per_block = 2833 le32_to_cpu(raw_super->log_sectors_per_block); 2834 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2835 sbi->blocksize = 1 << sbi->log_blocksize; 2836 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2837 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2838 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2839 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2840 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2841 sbi->total_node_count = 2842 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2843 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2844 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2845 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2846 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2847 sbi->cur_victim_sec = NULL_SECNO; 2848 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 2849 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 2850 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2851 sbi->migration_granularity = sbi->segs_per_sec; 2852 2853 sbi->dir_level = DEF_DIR_LEVEL; 2854 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2855 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2856 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 2857 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 2858 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 2859 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 2860 DEF_UMOUNT_DISCARD_TIMEOUT; 2861 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2862 2863 for (i = 0; i < NR_COUNT_TYPE; i++) 2864 atomic_set(&sbi->nr_pages[i], 0); 2865 2866 for (i = 0; i < META; i++) 2867 atomic_set(&sbi->wb_sync_req[i], 0); 2868 2869 INIT_LIST_HEAD(&sbi->s_list); 2870 mutex_init(&sbi->umount_mutex); 2871 init_rwsem(&sbi->io_order_lock); 2872 spin_lock_init(&sbi->cp_lock); 2873 2874 sbi->dirty_device = 0; 2875 spin_lock_init(&sbi->dev_lock); 2876 2877 init_rwsem(&sbi->sb_lock); 2878 init_rwsem(&sbi->pin_sem); 2879 } 2880 2881 static int init_percpu_info(struct f2fs_sb_info *sbi) 2882 { 2883 int err; 2884 2885 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2886 if (err) 2887 return err; 2888 2889 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 2890 GFP_KERNEL); 2891 if (err) 2892 percpu_counter_destroy(&sbi->alloc_valid_block_count); 2893 2894 return err; 2895 } 2896 2897 #ifdef CONFIG_BLK_DEV_ZONED 2898 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 2899 void *data) 2900 { 2901 struct f2fs_dev_info *dev = data; 2902 2903 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) 2904 set_bit(idx, dev->blkz_seq); 2905 return 0; 2906 } 2907 2908 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 2909 { 2910 struct block_device *bdev = FDEV(devi).bdev; 2911 sector_t nr_sectors = bdev->bd_part->nr_sects; 2912 int ret; 2913 2914 if (!f2fs_sb_has_blkzoned(sbi)) 2915 return 0; 2916 2917 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 2918 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 2919 return -EINVAL; 2920 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 2921 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 2922 __ilog2_u32(sbi->blocks_per_blkz)) 2923 return -EINVAL; 2924 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 2925 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 2926 sbi->log_blocks_per_blkz; 2927 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 2928 FDEV(devi).nr_blkz++; 2929 2930 FDEV(devi).blkz_seq = f2fs_kzalloc(sbi, 2931 BITS_TO_LONGS(FDEV(devi).nr_blkz) 2932 * sizeof(unsigned long), 2933 GFP_KERNEL); 2934 if (!FDEV(devi).blkz_seq) 2935 return -ENOMEM; 2936 2937 /* Get block zones type */ 2938 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 2939 &FDEV(devi)); 2940 if (ret < 0) 2941 return ret; 2942 2943 return 0; 2944 } 2945 #endif 2946 2947 /* 2948 * Read f2fs raw super block. 2949 * Because we have two copies of super block, so read both of them 2950 * to get the first valid one. If any one of them is broken, we pass 2951 * them recovery flag back to the caller. 2952 */ 2953 static int read_raw_super_block(struct f2fs_sb_info *sbi, 2954 struct f2fs_super_block **raw_super, 2955 int *valid_super_block, int *recovery) 2956 { 2957 struct super_block *sb = sbi->sb; 2958 int block; 2959 struct buffer_head *bh; 2960 struct f2fs_super_block *super; 2961 int err = 0; 2962 2963 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 2964 if (!super) 2965 return -ENOMEM; 2966 2967 for (block = 0; block < 2; block++) { 2968 bh = sb_bread(sb, block); 2969 if (!bh) { 2970 f2fs_err(sbi, "Unable to read %dth superblock", 2971 block + 1); 2972 err = -EIO; 2973 *recovery = 1; 2974 continue; 2975 } 2976 2977 /* sanity checking of raw super */ 2978 err = sanity_check_raw_super(sbi, bh); 2979 if (err) { 2980 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 2981 block + 1); 2982 brelse(bh); 2983 *recovery = 1; 2984 continue; 2985 } 2986 2987 if (!*raw_super) { 2988 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 2989 sizeof(*super)); 2990 *valid_super_block = block; 2991 *raw_super = super; 2992 } 2993 brelse(bh); 2994 } 2995 2996 /* No valid superblock */ 2997 if (!*raw_super) 2998 kvfree(super); 2999 else 3000 err = 0; 3001 3002 return err; 3003 } 3004 3005 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3006 { 3007 struct buffer_head *bh; 3008 __u32 crc = 0; 3009 int err; 3010 3011 if ((recover && f2fs_readonly(sbi->sb)) || 3012 bdev_read_only(sbi->sb->s_bdev)) { 3013 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3014 return -EROFS; 3015 } 3016 3017 /* we should update superblock crc here */ 3018 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3019 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3020 offsetof(struct f2fs_super_block, crc)); 3021 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3022 } 3023 3024 /* write back-up superblock first */ 3025 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3026 if (!bh) 3027 return -EIO; 3028 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3029 brelse(bh); 3030 3031 /* if we are in recovery path, skip writing valid superblock */ 3032 if (recover || err) 3033 return err; 3034 3035 /* write current valid superblock */ 3036 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3037 if (!bh) 3038 return -EIO; 3039 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3040 brelse(bh); 3041 return err; 3042 } 3043 3044 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3045 { 3046 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3047 unsigned int max_devices = MAX_DEVICES; 3048 int i; 3049 3050 /* Initialize single device information */ 3051 if (!RDEV(0).path[0]) { 3052 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3053 return 0; 3054 max_devices = 1; 3055 } 3056 3057 /* 3058 * Initialize multiple devices information, or single 3059 * zoned block device information. 3060 */ 3061 sbi->devs = f2fs_kzalloc(sbi, 3062 array_size(max_devices, 3063 sizeof(struct f2fs_dev_info)), 3064 GFP_KERNEL); 3065 if (!sbi->devs) 3066 return -ENOMEM; 3067 3068 for (i = 0; i < max_devices; i++) { 3069 3070 if (i > 0 && !RDEV(i).path[0]) 3071 break; 3072 3073 if (max_devices == 1) { 3074 /* Single zoned block device mount */ 3075 FDEV(0).bdev = 3076 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3077 sbi->sb->s_mode, sbi->sb->s_type); 3078 } else { 3079 /* Multi-device mount */ 3080 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3081 FDEV(i).total_segments = 3082 le32_to_cpu(RDEV(i).total_segments); 3083 if (i == 0) { 3084 FDEV(i).start_blk = 0; 3085 FDEV(i).end_blk = FDEV(i).start_blk + 3086 (FDEV(i).total_segments << 3087 sbi->log_blocks_per_seg) - 1 + 3088 le32_to_cpu(raw_super->segment0_blkaddr); 3089 } else { 3090 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3091 FDEV(i).end_blk = FDEV(i).start_blk + 3092 (FDEV(i).total_segments << 3093 sbi->log_blocks_per_seg) - 1; 3094 } 3095 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3096 sbi->sb->s_mode, sbi->sb->s_type); 3097 } 3098 if (IS_ERR(FDEV(i).bdev)) 3099 return PTR_ERR(FDEV(i).bdev); 3100 3101 /* to release errored devices */ 3102 sbi->s_ndevs = i + 1; 3103 3104 #ifdef CONFIG_BLK_DEV_ZONED 3105 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3106 !f2fs_sb_has_blkzoned(sbi)) { 3107 f2fs_err(sbi, "Zoned block device feature not enabled\n"); 3108 return -EINVAL; 3109 } 3110 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3111 if (init_blkz_info(sbi, i)) { 3112 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3113 return -EINVAL; 3114 } 3115 if (max_devices == 1) 3116 break; 3117 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3118 i, FDEV(i).path, 3119 FDEV(i).total_segments, 3120 FDEV(i).start_blk, FDEV(i).end_blk, 3121 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3122 "Host-aware" : "Host-managed"); 3123 continue; 3124 } 3125 #endif 3126 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3127 i, FDEV(i).path, 3128 FDEV(i).total_segments, 3129 FDEV(i).start_blk, FDEV(i).end_blk); 3130 } 3131 f2fs_info(sbi, 3132 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3133 return 0; 3134 } 3135 3136 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3137 { 3138 #ifdef CONFIG_UNICODE 3139 if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) { 3140 const struct f2fs_sb_encodings *encoding_info; 3141 struct unicode_map *encoding; 3142 __u16 encoding_flags; 3143 3144 if (f2fs_sb_has_encrypt(sbi)) { 3145 f2fs_err(sbi, 3146 "Can't mount with encoding and encryption"); 3147 return -EINVAL; 3148 } 3149 3150 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info, 3151 &encoding_flags)) { 3152 f2fs_err(sbi, 3153 "Encoding requested by superblock is unknown"); 3154 return -EINVAL; 3155 } 3156 3157 encoding = utf8_load(encoding_info->version); 3158 if (IS_ERR(encoding)) { 3159 f2fs_err(sbi, 3160 "can't mount with superblock charset: %s-%s " 3161 "not supported by the kernel. flags: 0x%x.", 3162 encoding_info->name, encoding_info->version, 3163 encoding_flags); 3164 return PTR_ERR(encoding); 3165 } 3166 f2fs_info(sbi, "Using encoding defined by superblock: " 3167 "%s-%s with flags 0x%hx", encoding_info->name, 3168 encoding_info->version?:"\b", encoding_flags); 3169 3170 sbi->s_encoding = encoding; 3171 sbi->s_encoding_flags = encoding_flags; 3172 sbi->sb->s_d_op = &f2fs_dentry_ops; 3173 } 3174 #else 3175 if (f2fs_sb_has_casefold(sbi)) { 3176 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3177 return -EINVAL; 3178 } 3179 #endif 3180 return 0; 3181 } 3182 3183 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3184 { 3185 struct f2fs_sm_info *sm_i = SM_I(sbi); 3186 3187 /* adjust parameters according to the volume size */ 3188 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3189 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3190 sm_i->dcc_info->discard_granularity = 1; 3191 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3192 } 3193 3194 sbi->readdir_ra = 1; 3195 } 3196 3197 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3198 { 3199 struct f2fs_sb_info *sbi; 3200 struct f2fs_super_block *raw_super; 3201 struct inode *root; 3202 int err; 3203 bool skip_recovery = false, need_fsck = false; 3204 char *options = NULL; 3205 int recovery, i, valid_super_block; 3206 struct curseg_info *seg_i; 3207 int retry_cnt = 1; 3208 3209 try_onemore: 3210 err = -EINVAL; 3211 raw_super = NULL; 3212 valid_super_block = -1; 3213 recovery = 0; 3214 3215 /* allocate memory for f2fs-specific super block info */ 3216 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3217 if (!sbi) 3218 return -ENOMEM; 3219 3220 sbi->sb = sb; 3221 3222 /* Load the checksum driver */ 3223 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3224 if (IS_ERR(sbi->s_chksum_driver)) { 3225 f2fs_err(sbi, "Cannot load crc32 driver."); 3226 err = PTR_ERR(sbi->s_chksum_driver); 3227 sbi->s_chksum_driver = NULL; 3228 goto free_sbi; 3229 } 3230 3231 /* set a block size */ 3232 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3233 f2fs_err(sbi, "unable to set blocksize"); 3234 goto free_sbi; 3235 } 3236 3237 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3238 &recovery); 3239 if (err) 3240 goto free_sbi; 3241 3242 sb->s_fs_info = sbi; 3243 sbi->raw_super = raw_super; 3244 3245 /* precompute checksum seed for metadata */ 3246 if (f2fs_sb_has_inode_chksum(sbi)) 3247 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3248 sizeof(raw_super->uuid)); 3249 3250 /* 3251 * The BLKZONED feature indicates that the drive was formatted with 3252 * zone alignment optimization. This is optional for host-aware 3253 * devices, but mandatory for host-managed zoned block devices. 3254 */ 3255 #ifndef CONFIG_BLK_DEV_ZONED 3256 if (f2fs_sb_has_blkzoned(sbi)) { 3257 f2fs_err(sbi, "Zoned block device support is not enabled"); 3258 err = -EOPNOTSUPP; 3259 goto free_sb_buf; 3260 } 3261 #endif 3262 default_options(sbi); 3263 /* parse mount options */ 3264 options = kstrdup((const char *)data, GFP_KERNEL); 3265 if (data && !options) { 3266 err = -ENOMEM; 3267 goto free_sb_buf; 3268 } 3269 3270 err = parse_options(sb, options); 3271 if (err) 3272 goto free_options; 3273 3274 sbi->max_file_blocks = max_file_blocks(); 3275 sb->s_maxbytes = sbi->max_file_blocks << 3276 le32_to_cpu(raw_super->log_blocksize); 3277 sb->s_max_links = F2FS_LINK_MAX; 3278 3279 err = f2fs_setup_casefold(sbi); 3280 if (err) 3281 goto free_options; 3282 3283 #ifdef CONFIG_QUOTA 3284 sb->dq_op = &f2fs_quota_operations; 3285 sb->s_qcop = &f2fs_quotactl_ops; 3286 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3287 3288 if (f2fs_sb_has_quota_ino(sbi)) { 3289 for (i = 0; i < MAXQUOTAS; i++) { 3290 if (f2fs_qf_ino(sbi->sb, i)) 3291 sbi->nquota_files++; 3292 } 3293 } 3294 #endif 3295 3296 sb->s_op = &f2fs_sops; 3297 #ifdef CONFIG_FS_ENCRYPTION 3298 sb->s_cop = &f2fs_cryptops; 3299 #endif 3300 #ifdef CONFIG_FS_VERITY 3301 sb->s_vop = &f2fs_verityops; 3302 #endif 3303 sb->s_xattr = f2fs_xattr_handlers; 3304 sb->s_export_op = &f2fs_export_ops; 3305 sb->s_magic = F2FS_SUPER_MAGIC; 3306 sb->s_time_gran = 1; 3307 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3308 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3309 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3310 sb->s_iflags |= SB_I_CGROUPWB; 3311 3312 /* init f2fs-specific super block info */ 3313 sbi->valid_super_block = valid_super_block; 3314 mutex_init(&sbi->gc_mutex); 3315 mutex_init(&sbi->writepages); 3316 mutex_init(&sbi->cp_mutex); 3317 mutex_init(&sbi->resize_mutex); 3318 init_rwsem(&sbi->node_write); 3319 init_rwsem(&sbi->node_change); 3320 3321 /* disallow all the data/node/meta page writes */ 3322 set_sbi_flag(sbi, SBI_POR_DOING); 3323 spin_lock_init(&sbi->stat_lock); 3324 3325 /* init iostat info */ 3326 spin_lock_init(&sbi->iostat_lock); 3327 sbi->iostat_enable = false; 3328 3329 for (i = 0; i < NR_PAGE_TYPE; i++) { 3330 int n = (i == META) ? 1: NR_TEMP_TYPE; 3331 int j; 3332 3333 sbi->write_io[i] = 3334 f2fs_kmalloc(sbi, 3335 array_size(n, 3336 sizeof(struct f2fs_bio_info)), 3337 GFP_KERNEL); 3338 if (!sbi->write_io[i]) { 3339 err = -ENOMEM; 3340 goto free_bio_info; 3341 } 3342 3343 for (j = HOT; j < n; j++) { 3344 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3345 sbi->write_io[i][j].sbi = sbi; 3346 sbi->write_io[i][j].bio = NULL; 3347 spin_lock_init(&sbi->write_io[i][j].io_lock); 3348 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3349 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 3350 init_rwsem(&sbi->write_io[i][j].bio_list_lock); 3351 } 3352 } 3353 3354 init_rwsem(&sbi->cp_rwsem); 3355 init_rwsem(&sbi->quota_sem); 3356 init_waitqueue_head(&sbi->cp_wait); 3357 init_sb_info(sbi); 3358 3359 err = init_percpu_info(sbi); 3360 if (err) 3361 goto free_bio_info; 3362 3363 if (F2FS_IO_ALIGNED(sbi)) { 3364 sbi->write_io_dummy = 3365 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3366 if (!sbi->write_io_dummy) { 3367 err = -ENOMEM; 3368 goto free_percpu; 3369 } 3370 } 3371 3372 /* get an inode for meta space */ 3373 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3374 if (IS_ERR(sbi->meta_inode)) { 3375 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 3376 err = PTR_ERR(sbi->meta_inode); 3377 goto free_io_dummy; 3378 } 3379 3380 err = f2fs_get_valid_checkpoint(sbi); 3381 if (err) { 3382 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 3383 goto free_meta_inode; 3384 } 3385 3386 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3387 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3388 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3389 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3390 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3391 } 3392 3393 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 3394 set_sbi_flag(sbi, SBI_NEED_FSCK); 3395 3396 /* Initialize device list */ 3397 err = f2fs_scan_devices(sbi); 3398 if (err) { 3399 f2fs_err(sbi, "Failed to find devices"); 3400 goto free_devices; 3401 } 3402 3403 sbi->total_valid_node_count = 3404 le32_to_cpu(sbi->ckpt->valid_node_count); 3405 percpu_counter_set(&sbi->total_valid_inode_count, 3406 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3407 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3408 sbi->total_valid_block_count = 3409 le64_to_cpu(sbi->ckpt->valid_block_count); 3410 sbi->last_valid_block_count = sbi->total_valid_block_count; 3411 sbi->reserved_blocks = 0; 3412 sbi->current_reserved_blocks = 0; 3413 limit_reserve_root(sbi); 3414 3415 for (i = 0; i < NR_INODE_TYPE; i++) { 3416 INIT_LIST_HEAD(&sbi->inode_list[i]); 3417 spin_lock_init(&sbi->inode_lock[i]); 3418 } 3419 mutex_init(&sbi->flush_lock); 3420 3421 f2fs_init_extent_cache_info(sbi); 3422 3423 f2fs_init_ino_entry_info(sbi); 3424 3425 f2fs_init_fsync_node_info(sbi); 3426 3427 /* setup f2fs internal modules */ 3428 err = f2fs_build_segment_manager(sbi); 3429 if (err) { 3430 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 3431 err); 3432 goto free_sm; 3433 } 3434 err = f2fs_build_node_manager(sbi); 3435 if (err) { 3436 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 3437 err); 3438 goto free_nm; 3439 } 3440 3441 /* For write statistics */ 3442 if (sb->s_bdev->bd_part) 3443 sbi->sectors_written_start = 3444 (u64)part_stat_read(sb->s_bdev->bd_part, 3445 sectors[STAT_WRITE]); 3446 3447 /* Read accumulated write IO statistics if exists */ 3448 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3449 if (__exist_node_summaries(sbi)) 3450 sbi->kbytes_written = 3451 le64_to_cpu(seg_i->journal->info.kbytes_written); 3452 3453 f2fs_build_gc_manager(sbi); 3454 3455 err = f2fs_build_stats(sbi); 3456 if (err) 3457 goto free_nm; 3458 3459 /* get an inode for node space */ 3460 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3461 if (IS_ERR(sbi->node_inode)) { 3462 f2fs_err(sbi, "Failed to read node inode"); 3463 err = PTR_ERR(sbi->node_inode); 3464 goto free_stats; 3465 } 3466 3467 /* read root inode and dentry */ 3468 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3469 if (IS_ERR(root)) { 3470 f2fs_err(sbi, "Failed to read root inode"); 3471 err = PTR_ERR(root); 3472 goto free_node_inode; 3473 } 3474 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3475 !root->i_size || !root->i_nlink) { 3476 iput(root); 3477 err = -EINVAL; 3478 goto free_node_inode; 3479 } 3480 3481 sb->s_root = d_make_root(root); /* allocate root dentry */ 3482 if (!sb->s_root) { 3483 err = -ENOMEM; 3484 goto free_node_inode; 3485 } 3486 3487 err = f2fs_register_sysfs(sbi); 3488 if (err) 3489 goto free_root_inode; 3490 3491 #ifdef CONFIG_QUOTA 3492 /* Enable quota usage during mount */ 3493 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3494 err = f2fs_enable_quotas(sb); 3495 if (err) 3496 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 3497 } 3498 #endif 3499 /* if there are nt orphan nodes free them */ 3500 err = f2fs_recover_orphan_inodes(sbi); 3501 if (err) 3502 goto free_meta; 3503 3504 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3505 goto reset_checkpoint; 3506 3507 /* recover fsynced data */ 3508 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 3509 /* 3510 * mount should be failed, when device has readonly mode, and 3511 * previous checkpoint was not done by clean system shutdown. 3512 */ 3513 if (f2fs_hw_is_readonly(sbi)) { 3514 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3515 err = -EROFS; 3516 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable"); 3517 goto free_meta; 3518 } 3519 f2fs_info(sbi, "write access unavailable, skipping recovery"); 3520 goto reset_checkpoint; 3521 } 3522 3523 if (need_fsck) 3524 set_sbi_flag(sbi, SBI_NEED_FSCK); 3525 3526 if (skip_recovery) 3527 goto reset_checkpoint; 3528 3529 err = f2fs_recover_fsync_data(sbi, false); 3530 if (err < 0) { 3531 if (err != -ENOMEM) 3532 skip_recovery = true; 3533 need_fsck = true; 3534 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 3535 err); 3536 goto free_meta; 3537 } 3538 } else { 3539 err = f2fs_recover_fsync_data(sbi, true); 3540 3541 if (!f2fs_readonly(sb) && err > 0) { 3542 err = -EINVAL; 3543 f2fs_err(sbi, "Need to recover fsync data"); 3544 goto free_meta; 3545 } 3546 } 3547 reset_checkpoint: 3548 /* f2fs_recover_fsync_data() cleared this already */ 3549 clear_sbi_flag(sbi, SBI_POR_DOING); 3550 3551 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3552 err = f2fs_disable_checkpoint(sbi); 3553 if (err) 3554 goto sync_free_meta; 3555 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3556 f2fs_enable_checkpoint(sbi); 3557 } 3558 3559 /* 3560 * If filesystem is not mounted as read-only then 3561 * do start the gc_thread. 3562 */ 3563 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 3564 /* After POR, we can run background GC thread.*/ 3565 err = f2fs_start_gc_thread(sbi); 3566 if (err) 3567 goto sync_free_meta; 3568 } 3569 kvfree(options); 3570 3571 /* recover broken superblock */ 3572 if (recovery) { 3573 err = f2fs_commit_super(sbi, true); 3574 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 3575 sbi->valid_super_block ? 1 : 2, err); 3576 } 3577 3578 f2fs_join_shrinker(sbi); 3579 3580 f2fs_tuning_parameters(sbi); 3581 3582 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 3583 cur_cp_version(F2FS_CKPT(sbi))); 3584 f2fs_update_time(sbi, CP_TIME); 3585 f2fs_update_time(sbi, REQ_TIME); 3586 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3587 return 0; 3588 3589 sync_free_meta: 3590 /* safe to flush all the data */ 3591 sync_filesystem(sbi->sb); 3592 retry_cnt = 0; 3593 3594 free_meta: 3595 #ifdef CONFIG_QUOTA 3596 f2fs_truncate_quota_inode_pages(sb); 3597 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 3598 f2fs_quota_off_umount(sbi->sb); 3599 #endif 3600 /* 3601 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3602 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3603 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3604 * falls into an infinite loop in f2fs_sync_meta_pages(). 3605 */ 3606 truncate_inode_pages_final(META_MAPPING(sbi)); 3607 /* evict some inodes being cached by GC */ 3608 evict_inodes(sb); 3609 f2fs_unregister_sysfs(sbi); 3610 free_root_inode: 3611 dput(sb->s_root); 3612 sb->s_root = NULL; 3613 free_node_inode: 3614 f2fs_release_ino_entry(sbi, true); 3615 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3616 iput(sbi->node_inode); 3617 sbi->node_inode = NULL; 3618 free_stats: 3619 f2fs_destroy_stats(sbi); 3620 free_nm: 3621 f2fs_destroy_node_manager(sbi); 3622 free_sm: 3623 f2fs_destroy_segment_manager(sbi); 3624 free_devices: 3625 destroy_device_list(sbi); 3626 kvfree(sbi->ckpt); 3627 free_meta_inode: 3628 make_bad_inode(sbi->meta_inode); 3629 iput(sbi->meta_inode); 3630 sbi->meta_inode = NULL; 3631 free_io_dummy: 3632 mempool_destroy(sbi->write_io_dummy); 3633 free_percpu: 3634 destroy_percpu_info(sbi); 3635 free_bio_info: 3636 for (i = 0; i < NR_PAGE_TYPE; i++) 3637 kvfree(sbi->write_io[i]); 3638 3639 #ifdef CONFIG_UNICODE 3640 utf8_unload(sbi->s_encoding); 3641 #endif 3642 free_options: 3643 #ifdef CONFIG_QUOTA 3644 for (i = 0; i < MAXQUOTAS; i++) 3645 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 3646 #endif 3647 kvfree(options); 3648 free_sb_buf: 3649 kvfree(raw_super); 3650 free_sbi: 3651 if (sbi->s_chksum_driver) 3652 crypto_free_shash(sbi->s_chksum_driver); 3653 kvfree(sbi); 3654 3655 /* give only one another chance */ 3656 if (retry_cnt > 0 && skip_recovery) { 3657 retry_cnt--; 3658 shrink_dcache_sb(sb); 3659 goto try_onemore; 3660 } 3661 return err; 3662 } 3663 3664 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3665 const char *dev_name, void *data) 3666 { 3667 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3668 } 3669 3670 static void kill_f2fs_super(struct super_block *sb) 3671 { 3672 if (sb->s_root) { 3673 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3674 3675 set_sbi_flag(sbi, SBI_IS_CLOSE); 3676 f2fs_stop_gc_thread(sbi); 3677 f2fs_stop_discard_thread(sbi); 3678 3679 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 3680 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3681 struct cp_control cpc = { 3682 .reason = CP_UMOUNT, 3683 }; 3684 f2fs_write_checkpoint(sbi, &cpc); 3685 } 3686 3687 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 3688 sb->s_flags &= ~SB_RDONLY; 3689 } 3690 kill_block_super(sb); 3691 } 3692 3693 static struct file_system_type f2fs_fs_type = { 3694 .owner = THIS_MODULE, 3695 .name = "f2fs", 3696 .mount = f2fs_mount, 3697 .kill_sb = kill_f2fs_super, 3698 .fs_flags = FS_REQUIRES_DEV, 3699 }; 3700 MODULE_ALIAS_FS("f2fs"); 3701 3702 static int __init init_inodecache(void) 3703 { 3704 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3705 sizeof(struct f2fs_inode_info), 0, 3706 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3707 if (!f2fs_inode_cachep) 3708 return -ENOMEM; 3709 return 0; 3710 } 3711 3712 static void destroy_inodecache(void) 3713 { 3714 /* 3715 * Make sure all delayed rcu free inodes are flushed before we 3716 * destroy cache. 3717 */ 3718 rcu_barrier(); 3719 kmem_cache_destroy(f2fs_inode_cachep); 3720 } 3721 3722 static int __init init_f2fs_fs(void) 3723 { 3724 int err; 3725 3726 if (PAGE_SIZE != F2FS_BLKSIZE) { 3727 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3728 PAGE_SIZE, F2FS_BLKSIZE); 3729 return -EINVAL; 3730 } 3731 3732 f2fs_build_trace_ios(); 3733 3734 err = init_inodecache(); 3735 if (err) 3736 goto fail; 3737 err = f2fs_create_node_manager_caches(); 3738 if (err) 3739 goto free_inodecache; 3740 err = f2fs_create_segment_manager_caches(); 3741 if (err) 3742 goto free_node_manager_caches; 3743 err = f2fs_create_checkpoint_caches(); 3744 if (err) 3745 goto free_segment_manager_caches; 3746 err = f2fs_create_extent_cache(); 3747 if (err) 3748 goto free_checkpoint_caches; 3749 err = f2fs_init_sysfs(); 3750 if (err) 3751 goto free_extent_cache; 3752 err = register_shrinker(&f2fs_shrinker_info); 3753 if (err) 3754 goto free_sysfs; 3755 err = register_filesystem(&f2fs_fs_type); 3756 if (err) 3757 goto free_shrinker; 3758 f2fs_create_root_stats(); 3759 err = f2fs_init_post_read_processing(); 3760 if (err) 3761 goto free_root_stats; 3762 err = f2fs_init_bio_entry_cache(); 3763 if (err) 3764 goto free_post_read; 3765 return 0; 3766 3767 free_post_read: 3768 f2fs_destroy_post_read_processing(); 3769 free_root_stats: 3770 f2fs_destroy_root_stats(); 3771 unregister_filesystem(&f2fs_fs_type); 3772 free_shrinker: 3773 unregister_shrinker(&f2fs_shrinker_info); 3774 free_sysfs: 3775 f2fs_exit_sysfs(); 3776 free_extent_cache: 3777 f2fs_destroy_extent_cache(); 3778 free_checkpoint_caches: 3779 f2fs_destroy_checkpoint_caches(); 3780 free_segment_manager_caches: 3781 f2fs_destroy_segment_manager_caches(); 3782 free_node_manager_caches: 3783 f2fs_destroy_node_manager_caches(); 3784 free_inodecache: 3785 destroy_inodecache(); 3786 fail: 3787 return err; 3788 } 3789 3790 static void __exit exit_f2fs_fs(void) 3791 { 3792 f2fs_destroy_bio_entry_cache(); 3793 f2fs_destroy_post_read_processing(); 3794 f2fs_destroy_root_stats(); 3795 unregister_filesystem(&f2fs_fs_type); 3796 unregister_shrinker(&f2fs_shrinker_info); 3797 f2fs_exit_sysfs(); 3798 f2fs_destroy_extent_cache(); 3799 f2fs_destroy_checkpoint_caches(); 3800 f2fs_destroy_segment_manager_caches(); 3801 f2fs_destroy_node_manager_caches(); 3802 destroy_inodecache(); 3803 f2fs_destroy_trace_ios(); 3804 } 3805 3806 module_init(init_f2fs_fs) 3807 module_exit(exit_f2fs_fs) 3808 3809 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3810 MODULE_DESCRIPTION("Flash Friendly File System"); 3811 MODULE_LICENSE("GPL"); 3812 3813