xref: /linux/fs/f2fs/super.c (revision bfd5bb6f90af092aa345b15cd78143956a13c2a8)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29 
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39 
40 static struct kmem_cache *f2fs_inode_cachep;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 char *fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_KVMALLOC]	= "kvmalloc",
47 	[FAULT_PAGE_ALLOC]	= "page alloc",
48 	[FAULT_PAGE_GET]	= "page get",
49 	[FAULT_ALLOC_BIO]	= "alloc bio",
50 	[FAULT_ALLOC_NID]	= "alloc nid",
51 	[FAULT_ORPHAN]		= "orphan",
52 	[FAULT_BLOCK]		= "no more block",
53 	[FAULT_DIR_DEPTH]	= "too big dir depth",
54 	[FAULT_EVICT_INODE]	= "evict_inode fail",
55 	[FAULT_TRUNCATE]	= "truncate fail",
56 	[FAULT_IO]		= "IO error",
57 	[FAULT_CHECKPOINT]	= "checkpoint error",
58 };
59 
60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
61 						unsigned int rate)
62 {
63 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64 
65 	if (rate) {
66 		atomic_set(&ffi->inject_ops, 0);
67 		ffi->inject_rate = rate;
68 		ffi->inject_type = (1 << FAULT_MAX) - 1;
69 	} else {
70 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
71 	}
72 }
73 #endif
74 
75 /* f2fs-wide shrinker description */
76 static struct shrinker f2fs_shrinker_info = {
77 	.scan_objects = f2fs_shrink_scan,
78 	.count_objects = f2fs_shrink_count,
79 	.seeks = DEFAULT_SEEKS,
80 };
81 
82 enum {
83 	Opt_gc_background,
84 	Opt_disable_roll_forward,
85 	Opt_norecovery,
86 	Opt_discard,
87 	Opt_nodiscard,
88 	Opt_noheap,
89 	Opt_heap,
90 	Opt_user_xattr,
91 	Opt_nouser_xattr,
92 	Opt_acl,
93 	Opt_noacl,
94 	Opt_active_logs,
95 	Opt_disable_ext_identify,
96 	Opt_inline_xattr,
97 	Opt_noinline_xattr,
98 	Opt_inline_xattr_size,
99 	Opt_inline_data,
100 	Opt_inline_dentry,
101 	Opt_noinline_dentry,
102 	Opt_flush_merge,
103 	Opt_noflush_merge,
104 	Opt_nobarrier,
105 	Opt_fastboot,
106 	Opt_extent_cache,
107 	Opt_noextent_cache,
108 	Opt_noinline_data,
109 	Opt_data_flush,
110 	Opt_reserve_root,
111 	Opt_resgid,
112 	Opt_resuid,
113 	Opt_mode,
114 	Opt_io_size_bits,
115 	Opt_fault_injection,
116 	Opt_lazytime,
117 	Opt_nolazytime,
118 	Opt_quota,
119 	Opt_noquota,
120 	Opt_usrquota,
121 	Opt_grpquota,
122 	Opt_prjquota,
123 	Opt_usrjquota,
124 	Opt_grpjquota,
125 	Opt_prjjquota,
126 	Opt_offusrjquota,
127 	Opt_offgrpjquota,
128 	Opt_offprjjquota,
129 	Opt_jqfmt_vfsold,
130 	Opt_jqfmt_vfsv0,
131 	Opt_jqfmt_vfsv1,
132 	Opt_whint,
133 	Opt_alloc,
134 	Opt_fsync,
135 	Opt_test_dummy_encryption,
136 	Opt_err,
137 };
138 
139 static match_table_t f2fs_tokens = {
140 	{Opt_gc_background, "background_gc=%s"},
141 	{Opt_disable_roll_forward, "disable_roll_forward"},
142 	{Opt_norecovery, "norecovery"},
143 	{Opt_discard, "discard"},
144 	{Opt_nodiscard, "nodiscard"},
145 	{Opt_noheap, "no_heap"},
146 	{Opt_heap, "heap"},
147 	{Opt_user_xattr, "user_xattr"},
148 	{Opt_nouser_xattr, "nouser_xattr"},
149 	{Opt_acl, "acl"},
150 	{Opt_noacl, "noacl"},
151 	{Opt_active_logs, "active_logs=%u"},
152 	{Opt_disable_ext_identify, "disable_ext_identify"},
153 	{Opt_inline_xattr, "inline_xattr"},
154 	{Opt_noinline_xattr, "noinline_xattr"},
155 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
156 	{Opt_inline_data, "inline_data"},
157 	{Opt_inline_dentry, "inline_dentry"},
158 	{Opt_noinline_dentry, "noinline_dentry"},
159 	{Opt_flush_merge, "flush_merge"},
160 	{Opt_noflush_merge, "noflush_merge"},
161 	{Opt_nobarrier, "nobarrier"},
162 	{Opt_fastboot, "fastboot"},
163 	{Opt_extent_cache, "extent_cache"},
164 	{Opt_noextent_cache, "noextent_cache"},
165 	{Opt_noinline_data, "noinline_data"},
166 	{Opt_data_flush, "data_flush"},
167 	{Opt_reserve_root, "reserve_root=%u"},
168 	{Opt_resgid, "resgid=%u"},
169 	{Opt_resuid, "resuid=%u"},
170 	{Opt_mode, "mode=%s"},
171 	{Opt_io_size_bits, "io_bits=%u"},
172 	{Opt_fault_injection, "fault_injection=%u"},
173 	{Opt_lazytime, "lazytime"},
174 	{Opt_nolazytime, "nolazytime"},
175 	{Opt_quota, "quota"},
176 	{Opt_noquota, "noquota"},
177 	{Opt_usrquota, "usrquota"},
178 	{Opt_grpquota, "grpquota"},
179 	{Opt_prjquota, "prjquota"},
180 	{Opt_usrjquota, "usrjquota=%s"},
181 	{Opt_grpjquota, "grpjquota=%s"},
182 	{Opt_prjjquota, "prjjquota=%s"},
183 	{Opt_offusrjquota, "usrjquota="},
184 	{Opt_offgrpjquota, "grpjquota="},
185 	{Opt_offprjjquota, "prjjquota="},
186 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
187 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
188 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
189 	{Opt_whint, "whint_mode=%s"},
190 	{Opt_alloc, "alloc_mode=%s"},
191 	{Opt_fsync, "fsync_mode=%s"},
192 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
193 	{Opt_err, NULL},
194 };
195 
196 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
197 {
198 	struct va_format vaf;
199 	va_list args;
200 
201 	va_start(args, fmt);
202 	vaf.fmt = fmt;
203 	vaf.va = &args;
204 	printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
205 	va_end(args);
206 }
207 
208 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
209 {
210 	block_t limit = (sbi->user_block_count << 1) / 1000;
211 
212 	/* limit is 0.2% */
213 	if (test_opt(sbi, RESERVE_ROOT) &&
214 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
215 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
216 		f2fs_msg(sbi->sb, KERN_INFO,
217 			"Reduce reserved blocks for root = %u",
218 			F2FS_OPTION(sbi).root_reserved_blocks);
219 	}
220 	if (!test_opt(sbi, RESERVE_ROOT) &&
221 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
222 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
223 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
224 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
225 		f2fs_msg(sbi->sb, KERN_INFO,
226 			"Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
227 				from_kuid_munged(&init_user_ns,
228 					F2FS_OPTION(sbi).s_resuid),
229 				from_kgid_munged(&init_user_ns,
230 					F2FS_OPTION(sbi).s_resgid));
231 }
232 
233 static void init_once(void *foo)
234 {
235 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
236 
237 	inode_init_once(&fi->vfs_inode);
238 }
239 
240 #ifdef CONFIG_QUOTA
241 static const char * const quotatypes[] = INITQFNAMES;
242 #define QTYPE2NAME(t) (quotatypes[t])
243 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
244 							substring_t *args)
245 {
246 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
247 	char *qname;
248 	int ret = -EINVAL;
249 
250 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
251 		f2fs_msg(sb, KERN_ERR,
252 			"Cannot change journaled "
253 			"quota options when quota turned on");
254 		return -EINVAL;
255 	}
256 	if (f2fs_sb_has_quota_ino(sb)) {
257 		f2fs_msg(sb, KERN_INFO,
258 			"QUOTA feature is enabled, so ignore qf_name");
259 		return 0;
260 	}
261 
262 	qname = match_strdup(args);
263 	if (!qname) {
264 		f2fs_msg(sb, KERN_ERR,
265 			"Not enough memory for storing quotafile name");
266 		return -EINVAL;
267 	}
268 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
269 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
270 			ret = 0;
271 		else
272 			f2fs_msg(sb, KERN_ERR,
273 				 "%s quota file already specified",
274 				 QTYPE2NAME(qtype));
275 		goto errout;
276 	}
277 	if (strchr(qname, '/')) {
278 		f2fs_msg(sb, KERN_ERR,
279 			"quotafile must be on filesystem root");
280 		goto errout;
281 	}
282 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
283 	set_opt(sbi, QUOTA);
284 	return 0;
285 errout:
286 	kfree(qname);
287 	return ret;
288 }
289 
290 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
291 {
292 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
293 
294 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
295 		f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
296 			" when quota turned on");
297 		return -EINVAL;
298 	}
299 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
300 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
301 	return 0;
302 }
303 
304 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
305 {
306 	/*
307 	 * We do the test below only for project quotas. 'usrquota' and
308 	 * 'grpquota' mount options are allowed even without quota feature
309 	 * to support legacy quotas in quota files.
310 	 */
311 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
312 		f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
313 			 "Cannot enable project quota enforcement.");
314 		return -1;
315 	}
316 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
317 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
318 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
319 		if (test_opt(sbi, USRQUOTA) &&
320 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
321 			clear_opt(sbi, USRQUOTA);
322 
323 		if (test_opt(sbi, GRPQUOTA) &&
324 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
325 			clear_opt(sbi, GRPQUOTA);
326 
327 		if (test_opt(sbi, PRJQUOTA) &&
328 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
329 			clear_opt(sbi, PRJQUOTA);
330 
331 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
332 				test_opt(sbi, PRJQUOTA)) {
333 			f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
334 					"format mixing");
335 			return -1;
336 		}
337 
338 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
339 			f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
340 					"not specified");
341 			return -1;
342 		}
343 	}
344 
345 	if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
346 		f2fs_msg(sbi->sb, KERN_INFO,
347 			"QUOTA feature is enabled, so ignore jquota_fmt");
348 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
349 	}
350 	if (f2fs_sb_has_quota_ino(sbi->sb) && f2fs_readonly(sbi->sb)) {
351 		f2fs_msg(sbi->sb, KERN_INFO,
352 			 "Filesystem with quota feature cannot be mounted RDWR "
353 			 "without CONFIG_QUOTA");
354 		return -1;
355 	}
356 	return 0;
357 }
358 #endif
359 
360 static int parse_options(struct super_block *sb, char *options)
361 {
362 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
363 	struct request_queue *q;
364 	substring_t args[MAX_OPT_ARGS];
365 	char *p, *name;
366 	int arg = 0;
367 	kuid_t uid;
368 	kgid_t gid;
369 #ifdef CONFIG_QUOTA
370 	int ret;
371 #endif
372 
373 	if (!options)
374 		return 0;
375 
376 	while ((p = strsep(&options, ",")) != NULL) {
377 		int token;
378 		if (!*p)
379 			continue;
380 		/*
381 		 * Initialize args struct so we know whether arg was
382 		 * found; some options take optional arguments.
383 		 */
384 		args[0].to = args[0].from = NULL;
385 		token = match_token(p, f2fs_tokens, args);
386 
387 		switch (token) {
388 		case Opt_gc_background:
389 			name = match_strdup(&args[0]);
390 
391 			if (!name)
392 				return -ENOMEM;
393 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394 				set_opt(sbi, BG_GC);
395 				clear_opt(sbi, FORCE_FG_GC);
396 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397 				clear_opt(sbi, BG_GC);
398 				clear_opt(sbi, FORCE_FG_GC);
399 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400 				set_opt(sbi, BG_GC);
401 				set_opt(sbi, FORCE_FG_GC);
402 			} else {
403 				kfree(name);
404 				return -EINVAL;
405 			}
406 			kfree(name);
407 			break;
408 		case Opt_disable_roll_forward:
409 			set_opt(sbi, DISABLE_ROLL_FORWARD);
410 			break;
411 		case Opt_norecovery:
412 			/* this option mounts f2fs with ro */
413 			set_opt(sbi, DISABLE_ROLL_FORWARD);
414 			if (!f2fs_readonly(sb))
415 				return -EINVAL;
416 			break;
417 		case Opt_discard:
418 			q = bdev_get_queue(sb->s_bdev);
419 			if (blk_queue_discard(q)) {
420 				set_opt(sbi, DISCARD);
421 			} else if (!f2fs_sb_has_blkzoned(sb)) {
422 				f2fs_msg(sb, KERN_WARNING,
423 					"mounting with \"discard\" option, but "
424 					"the device does not support discard");
425 			}
426 			break;
427 		case Opt_nodiscard:
428 			if (f2fs_sb_has_blkzoned(sb)) {
429 				f2fs_msg(sb, KERN_WARNING,
430 					"discard is required for zoned block devices");
431 				return -EINVAL;
432 			}
433 			clear_opt(sbi, DISCARD);
434 			break;
435 		case Opt_noheap:
436 			set_opt(sbi, NOHEAP);
437 			break;
438 		case Opt_heap:
439 			clear_opt(sbi, NOHEAP);
440 			break;
441 #ifdef CONFIG_F2FS_FS_XATTR
442 		case Opt_user_xattr:
443 			set_opt(sbi, XATTR_USER);
444 			break;
445 		case Opt_nouser_xattr:
446 			clear_opt(sbi, XATTR_USER);
447 			break;
448 		case Opt_inline_xattr:
449 			set_opt(sbi, INLINE_XATTR);
450 			break;
451 		case Opt_noinline_xattr:
452 			clear_opt(sbi, INLINE_XATTR);
453 			break;
454 		case Opt_inline_xattr_size:
455 			if (args->from && match_int(args, &arg))
456 				return -EINVAL;
457 			set_opt(sbi, INLINE_XATTR_SIZE);
458 			F2FS_OPTION(sbi).inline_xattr_size = arg;
459 			break;
460 #else
461 		case Opt_user_xattr:
462 			f2fs_msg(sb, KERN_INFO,
463 				"user_xattr options not supported");
464 			break;
465 		case Opt_nouser_xattr:
466 			f2fs_msg(sb, KERN_INFO,
467 				"nouser_xattr options not supported");
468 			break;
469 		case Opt_inline_xattr:
470 			f2fs_msg(sb, KERN_INFO,
471 				"inline_xattr options not supported");
472 			break;
473 		case Opt_noinline_xattr:
474 			f2fs_msg(sb, KERN_INFO,
475 				"noinline_xattr options not supported");
476 			break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479 		case Opt_acl:
480 			set_opt(sbi, POSIX_ACL);
481 			break;
482 		case Opt_noacl:
483 			clear_opt(sbi, POSIX_ACL);
484 			break;
485 #else
486 		case Opt_acl:
487 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
488 			break;
489 		case Opt_noacl:
490 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491 			break;
492 #endif
493 		case Opt_active_logs:
494 			if (args->from && match_int(args, &arg))
495 				return -EINVAL;
496 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497 				return -EINVAL;
498 			F2FS_OPTION(sbi).active_logs = arg;
499 			break;
500 		case Opt_disable_ext_identify:
501 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
502 			break;
503 		case Opt_inline_data:
504 			set_opt(sbi, INLINE_DATA);
505 			break;
506 		case Opt_inline_dentry:
507 			set_opt(sbi, INLINE_DENTRY);
508 			break;
509 		case Opt_noinline_dentry:
510 			clear_opt(sbi, INLINE_DENTRY);
511 			break;
512 		case Opt_flush_merge:
513 			set_opt(sbi, FLUSH_MERGE);
514 			break;
515 		case Opt_noflush_merge:
516 			clear_opt(sbi, FLUSH_MERGE);
517 			break;
518 		case Opt_nobarrier:
519 			set_opt(sbi, NOBARRIER);
520 			break;
521 		case Opt_fastboot:
522 			set_opt(sbi, FASTBOOT);
523 			break;
524 		case Opt_extent_cache:
525 			set_opt(sbi, EXTENT_CACHE);
526 			break;
527 		case Opt_noextent_cache:
528 			clear_opt(sbi, EXTENT_CACHE);
529 			break;
530 		case Opt_noinline_data:
531 			clear_opt(sbi, INLINE_DATA);
532 			break;
533 		case Opt_data_flush:
534 			set_opt(sbi, DATA_FLUSH);
535 			break;
536 		case Opt_reserve_root:
537 			if (args->from && match_int(args, &arg))
538 				return -EINVAL;
539 			if (test_opt(sbi, RESERVE_ROOT)) {
540 				f2fs_msg(sb, KERN_INFO,
541 					"Preserve previous reserve_root=%u",
542 					F2FS_OPTION(sbi).root_reserved_blocks);
543 			} else {
544 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
545 				set_opt(sbi, RESERVE_ROOT);
546 			}
547 			break;
548 		case Opt_resuid:
549 			if (args->from && match_int(args, &arg))
550 				return -EINVAL;
551 			uid = make_kuid(current_user_ns(), arg);
552 			if (!uid_valid(uid)) {
553 				f2fs_msg(sb, KERN_ERR,
554 					"Invalid uid value %d", arg);
555 				return -EINVAL;
556 			}
557 			F2FS_OPTION(sbi).s_resuid = uid;
558 			break;
559 		case Opt_resgid:
560 			if (args->from && match_int(args, &arg))
561 				return -EINVAL;
562 			gid = make_kgid(current_user_ns(), arg);
563 			if (!gid_valid(gid)) {
564 				f2fs_msg(sb, KERN_ERR,
565 					"Invalid gid value %d", arg);
566 				return -EINVAL;
567 			}
568 			F2FS_OPTION(sbi).s_resgid = gid;
569 			break;
570 		case Opt_mode:
571 			name = match_strdup(&args[0]);
572 
573 			if (!name)
574 				return -ENOMEM;
575 			if (strlen(name) == 8 &&
576 					!strncmp(name, "adaptive", 8)) {
577 				if (f2fs_sb_has_blkzoned(sb)) {
578 					f2fs_msg(sb, KERN_WARNING,
579 						 "adaptive mode is not allowed with "
580 						 "zoned block device feature");
581 					kfree(name);
582 					return -EINVAL;
583 				}
584 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
585 			} else if (strlen(name) == 3 &&
586 					!strncmp(name, "lfs", 3)) {
587 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
588 			} else {
589 				kfree(name);
590 				return -EINVAL;
591 			}
592 			kfree(name);
593 			break;
594 		case Opt_io_size_bits:
595 			if (args->from && match_int(args, &arg))
596 				return -EINVAL;
597 			if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
598 				f2fs_msg(sb, KERN_WARNING,
599 					"Not support %d, larger than %d",
600 					1 << arg, BIO_MAX_PAGES);
601 				return -EINVAL;
602 			}
603 			F2FS_OPTION(sbi).write_io_size_bits = arg;
604 			break;
605 		case Opt_fault_injection:
606 			if (args->from && match_int(args, &arg))
607 				return -EINVAL;
608 #ifdef CONFIG_F2FS_FAULT_INJECTION
609 			f2fs_build_fault_attr(sbi, arg);
610 			set_opt(sbi, FAULT_INJECTION);
611 #else
612 			f2fs_msg(sb, KERN_INFO,
613 				"FAULT_INJECTION was not selected");
614 #endif
615 			break;
616 		case Opt_lazytime:
617 			sb->s_flags |= SB_LAZYTIME;
618 			break;
619 		case Opt_nolazytime:
620 			sb->s_flags &= ~SB_LAZYTIME;
621 			break;
622 #ifdef CONFIG_QUOTA
623 		case Opt_quota:
624 		case Opt_usrquota:
625 			set_opt(sbi, USRQUOTA);
626 			break;
627 		case Opt_grpquota:
628 			set_opt(sbi, GRPQUOTA);
629 			break;
630 		case Opt_prjquota:
631 			set_opt(sbi, PRJQUOTA);
632 			break;
633 		case Opt_usrjquota:
634 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
635 			if (ret)
636 				return ret;
637 			break;
638 		case Opt_grpjquota:
639 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
640 			if (ret)
641 				return ret;
642 			break;
643 		case Opt_prjjquota:
644 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
645 			if (ret)
646 				return ret;
647 			break;
648 		case Opt_offusrjquota:
649 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
650 			if (ret)
651 				return ret;
652 			break;
653 		case Opt_offgrpjquota:
654 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
655 			if (ret)
656 				return ret;
657 			break;
658 		case Opt_offprjjquota:
659 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
660 			if (ret)
661 				return ret;
662 			break;
663 		case Opt_jqfmt_vfsold:
664 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
665 			break;
666 		case Opt_jqfmt_vfsv0:
667 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
668 			break;
669 		case Opt_jqfmt_vfsv1:
670 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
671 			break;
672 		case Opt_noquota:
673 			clear_opt(sbi, QUOTA);
674 			clear_opt(sbi, USRQUOTA);
675 			clear_opt(sbi, GRPQUOTA);
676 			clear_opt(sbi, PRJQUOTA);
677 			break;
678 #else
679 		case Opt_quota:
680 		case Opt_usrquota:
681 		case Opt_grpquota:
682 		case Opt_prjquota:
683 		case Opt_usrjquota:
684 		case Opt_grpjquota:
685 		case Opt_prjjquota:
686 		case Opt_offusrjquota:
687 		case Opt_offgrpjquota:
688 		case Opt_offprjjquota:
689 		case Opt_jqfmt_vfsold:
690 		case Opt_jqfmt_vfsv0:
691 		case Opt_jqfmt_vfsv1:
692 		case Opt_noquota:
693 			f2fs_msg(sb, KERN_INFO,
694 					"quota operations not supported");
695 			break;
696 #endif
697 		case Opt_whint:
698 			name = match_strdup(&args[0]);
699 			if (!name)
700 				return -ENOMEM;
701 			if (strlen(name) == 10 &&
702 					!strncmp(name, "user-based", 10)) {
703 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
704 			} else if (strlen(name) == 3 &&
705 					!strncmp(name, "off", 3)) {
706 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
707 			} else if (strlen(name) == 8 &&
708 					!strncmp(name, "fs-based", 8)) {
709 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
710 			} else {
711 				kfree(name);
712 				return -EINVAL;
713 			}
714 			kfree(name);
715 			break;
716 		case Opt_alloc:
717 			name = match_strdup(&args[0]);
718 			if (!name)
719 				return -ENOMEM;
720 
721 			if (strlen(name) == 7 &&
722 					!strncmp(name, "default", 7)) {
723 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
724 			} else if (strlen(name) == 5 &&
725 					!strncmp(name, "reuse", 5)) {
726 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
727 			} else {
728 				kfree(name);
729 				return -EINVAL;
730 			}
731 			kfree(name);
732 			break;
733 		case Opt_fsync:
734 			name = match_strdup(&args[0]);
735 			if (!name)
736 				return -ENOMEM;
737 			if (strlen(name) == 5 &&
738 					!strncmp(name, "posix", 5)) {
739 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
740 			} else if (strlen(name) == 6 &&
741 					!strncmp(name, "strict", 6)) {
742 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
743 			} else if (strlen(name) == 9 &&
744 					!strncmp(name, "nobarrier", 9)) {
745 				F2FS_OPTION(sbi).fsync_mode =
746 							FSYNC_MODE_NOBARRIER;
747 			} else {
748 				kfree(name);
749 				return -EINVAL;
750 			}
751 			kfree(name);
752 			break;
753 		case Opt_test_dummy_encryption:
754 #ifdef CONFIG_F2FS_FS_ENCRYPTION
755 			if (!f2fs_sb_has_encrypt(sb)) {
756 				f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
757 				return -EINVAL;
758 			}
759 
760 			F2FS_OPTION(sbi).test_dummy_encryption = true;
761 			f2fs_msg(sb, KERN_INFO,
762 					"Test dummy encryption mode enabled");
763 #else
764 			f2fs_msg(sb, KERN_INFO,
765 					"Test dummy encryption mount option ignored");
766 #endif
767 			break;
768 		default:
769 			f2fs_msg(sb, KERN_ERR,
770 				"Unrecognized mount option \"%s\" or missing value",
771 				p);
772 			return -EINVAL;
773 		}
774 	}
775 #ifdef CONFIG_QUOTA
776 	if (f2fs_check_quota_options(sbi))
777 		return -EINVAL;
778 #endif
779 
780 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
781 		f2fs_msg(sb, KERN_ERR,
782 				"Should set mode=lfs with %uKB-sized IO",
783 				F2FS_IO_SIZE_KB(sbi));
784 		return -EINVAL;
785 	}
786 
787 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
788 		if (!f2fs_sb_has_extra_attr(sb) ||
789 			!f2fs_sb_has_flexible_inline_xattr(sb)) {
790 			f2fs_msg(sb, KERN_ERR,
791 					"extra_attr or flexible_inline_xattr "
792 					"feature is off");
793 			return -EINVAL;
794 		}
795 		if (!test_opt(sbi, INLINE_XATTR)) {
796 			f2fs_msg(sb, KERN_ERR,
797 					"inline_xattr_size option should be "
798 					"set with inline_xattr option");
799 			return -EINVAL;
800 		}
801 		if (!F2FS_OPTION(sbi).inline_xattr_size ||
802 			F2FS_OPTION(sbi).inline_xattr_size >=
803 					DEF_ADDRS_PER_INODE -
804 					F2FS_TOTAL_EXTRA_ATTR_SIZE -
805 					DEF_INLINE_RESERVED_SIZE -
806 					DEF_MIN_INLINE_SIZE) {
807 			f2fs_msg(sb, KERN_ERR,
808 					"inline xattr size is out of range");
809 			return -EINVAL;
810 		}
811 	}
812 
813 	/* Not pass down write hints if the number of active logs is lesser
814 	 * than NR_CURSEG_TYPE.
815 	 */
816 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
817 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
818 	return 0;
819 }
820 
821 static struct inode *f2fs_alloc_inode(struct super_block *sb)
822 {
823 	struct f2fs_inode_info *fi;
824 
825 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
826 	if (!fi)
827 		return NULL;
828 
829 	init_once((void *) fi);
830 
831 	/* Initialize f2fs-specific inode info */
832 	atomic_set(&fi->dirty_pages, 0);
833 	init_rwsem(&fi->i_sem);
834 	INIT_LIST_HEAD(&fi->dirty_list);
835 	INIT_LIST_HEAD(&fi->gdirty_list);
836 	INIT_LIST_HEAD(&fi->inmem_ilist);
837 	INIT_LIST_HEAD(&fi->inmem_pages);
838 	mutex_init(&fi->inmem_lock);
839 	init_rwsem(&fi->i_gc_rwsem[READ]);
840 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
841 	init_rwsem(&fi->i_mmap_sem);
842 	init_rwsem(&fi->i_xattr_sem);
843 
844 	/* Will be used by directory only */
845 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
846 
847 	return &fi->vfs_inode;
848 }
849 
850 static int f2fs_drop_inode(struct inode *inode)
851 {
852 	int ret;
853 	/*
854 	 * This is to avoid a deadlock condition like below.
855 	 * writeback_single_inode(inode)
856 	 *  - f2fs_write_data_page
857 	 *    - f2fs_gc -> iput -> evict
858 	 *       - inode_wait_for_writeback(inode)
859 	 */
860 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
861 		if (!inode->i_nlink && !is_bad_inode(inode)) {
862 			/* to avoid evict_inode call simultaneously */
863 			atomic_inc(&inode->i_count);
864 			spin_unlock(&inode->i_lock);
865 
866 			/* some remained atomic pages should discarded */
867 			if (f2fs_is_atomic_file(inode))
868 				f2fs_drop_inmem_pages(inode);
869 
870 			/* should remain fi->extent_tree for writepage */
871 			f2fs_destroy_extent_node(inode);
872 
873 			sb_start_intwrite(inode->i_sb);
874 			f2fs_i_size_write(inode, 0);
875 
876 			if (F2FS_HAS_BLOCKS(inode))
877 				f2fs_truncate(inode);
878 
879 			sb_end_intwrite(inode->i_sb);
880 
881 			spin_lock(&inode->i_lock);
882 			atomic_dec(&inode->i_count);
883 		}
884 		trace_f2fs_drop_inode(inode, 0);
885 		return 0;
886 	}
887 	ret = generic_drop_inode(inode);
888 	trace_f2fs_drop_inode(inode, ret);
889 	return ret;
890 }
891 
892 int f2fs_inode_dirtied(struct inode *inode, bool sync)
893 {
894 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
895 	int ret = 0;
896 
897 	spin_lock(&sbi->inode_lock[DIRTY_META]);
898 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
899 		ret = 1;
900 	} else {
901 		set_inode_flag(inode, FI_DIRTY_INODE);
902 		stat_inc_dirty_inode(sbi, DIRTY_META);
903 	}
904 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
905 		list_add_tail(&F2FS_I(inode)->gdirty_list,
906 				&sbi->inode_list[DIRTY_META]);
907 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
908 	}
909 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
910 	return ret;
911 }
912 
913 void f2fs_inode_synced(struct inode *inode)
914 {
915 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
916 
917 	spin_lock(&sbi->inode_lock[DIRTY_META]);
918 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
919 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
920 		return;
921 	}
922 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
923 		list_del_init(&F2FS_I(inode)->gdirty_list);
924 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
925 	}
926 	clear_inode_flag(inode, FI_DIRTY_INODE);
927 	clear_inode_flag(inode, FI_AUTO_RECOVER);
928 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
929 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
930 }
931 
932 /*
933  * f2fs_dirty_inode() is called from __mark_inode_dirty()
934  *
935  * We should call set_dirty_inode to write the dirty inode through write_inode.
936  */
937 static void f2fs_dirty_inode(struct inode *inode, int flags)
938 {
939 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
940 
941 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
942 			inode->i_ino == F2FS_META_INO(sbi))
943 		return;
944 
945 	if (flags == I_DIRTY_TIME)
946 		return;
947 
948 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
949 		clear_inode_flag(inode, FI_AUTO_RECOVER);
950 
951 	f2fs_inode_dirtied(inode, false);
952 }
953 
954 static void f2fs_i_callback(struct rcu_head *head)
955 {
956 	struct inode *inode = container_of(head, struct inode, i_rcu);
957 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
958 }
959 
960 static void f2fs_destroy_inode(struct inode *inode)
961 {
962 	call_rcu(&inode->i_rcu, f2fs_i_callback);
963 }
964 
965 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
966 {
967 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
968 	percpu_counter_destroy(&sbi->total_valid_inode_count);
969 }
970 
971 static void destroy_device_list(struct f2fs_sb_info *sbi)
972 {
973 	int i;
974 
975 	for (i = 0; i < sbi->s_ndevs; i++) {
976 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
977 #ifdef CONFIG_BLK_DEV_ZONED
978 		kfree(FDEV(i).blkz_type);
979 #endif
980 	}
981 	kfree(sbi->devs);
982 }
983 
984 static void f2fs_put_super(struct super_block *sb)
985 {
986 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
987 	int i;
988 	bool dropped;
989 
990 	f2fs_quota_off_umount(sb);
991 
992 	/* prevent remaining shrinker jobs */
993 	mutex_lock(&sbi->umount_mutex);
994 
995 	/*
996 	 * We don't need to do checkpoint when superblock is clean.
997 	 * But, the previous checkpoint was not done by umount, it needs to do
998 	 * clean checkpoint again.
999 	 */
1000 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1001 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1002 		struct cp_control cpc = {
1003 			.reason = CP_UMOUNT,
1004 		};
1005 		f2fs_write_checkpoint(sbi, &cpc);
1006 	}
1007 
1008 	/* be sure to wait for any on-going discard commands */
1009 	dropped = f2fs_wait_discard_bios(sbi);
1010 
1011 	if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
1012 		struct cp_control cpc = {
1013 			.reason = CP_UMOUNT | CP_TRIMMED,
1014 		};
1015 		f2fs_write_checkpoint(sbi, &cpc);
1016 	}
1017 
1018 	/* f2fs_write_checkpoint can update stat informaion */
1019 	f2fs_destroy_stats(sbi);
1020 
1021 	/*
1022 	 * normally superblock is clean, so we need to release this.
1023 	 * In addition, EIO will skip do checkpoint, we need this as well.
1024 	 */
1025 	f2fs_release_ino_entry(sbi, true);
1026 
1027 	f2fs_leave_shrinker(sbi);
1028 	mutex_unlock(&sbi->umount_mutex);
1029 
1030 	/* our cp_error case, we can wait for any writeback page */
1031 	f2fs_flush_merged_writes(sbi);
1032 
1033 	iput(sbi->node_inode);
1034 	iput(sbi->meta_inode);
1035 
1036 	/* destroy f2fs internal modules */
1037 	f2fs_destroy_node_manager(sbi);
1038 	f2fs_destroy_segment_manager(sbi);
1039 
1040 	kfree(sbi->ckpt);
1041 
1042 	f2fs_unregister_sysfs(sbi);
1043 
1044 	sb->s_fs_info = NULL;
1045 	if (sbi->s_chksum_driver)
1046 		crypto_free_shash(sbi->s_chksum_driver);
1047 	kfree(sbi->raw_super);
1048 
1049 	destroy_device_list(sbi);
1050 	mempool_destroy(sbi->write_io_dummy);
1051 #ifdef CONFIG_QUOTA
1052 	for (i = 0; i < MAXQUOTAS; i++)
1053 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1054 #endif
1055 	destroy_percpu_info(sbi);
1056 	for (i = 0; i < NR_PAGE_TYPE; i++)
1057 		kfree(sbi->write_io[i]);
1058 	kfree(sbi);
1059 }
1060 
1061 int f2fs_sync_fs(struct super_block *sb, int sync)
1062 {
1063 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1064 	int err = 0;
1065 
1066 	if (unlikely(f2fs_cp_error(sbi)))
1067 		return 0;
1068 
1069 	trace_f2fs_sync_fs(sb, sync);
1070 
1071 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1072 		return -EAGAIN;
1073 
1074 	if (sync) {
1075 		struct cp_control cpc;
1076 
1077 		cpc.reason = __get_cp_reason(sbi);
1078 
1079 		mutex_lock(&sbi->gc_mutex);
1080 		err = f2fs_write_checkpoint(sbi, &cpc);
1081 		mutex_unlock(&sbi->gc_mutex);
1082 	}
1083 	f2fs_trace_ios(NULL, 1);
1084 
1085 	return err;
1086 }
1087 
1088 static int f2fs_freeze(struct super_block *sb)
1089 {
1090 	if (f2fs_readonly(sb))
1091 		return 0;
1092 
1093 	/* IO error happened before */
1094 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1095 		return -EIO;
1096 
1097 	/* must be clean, since sync_filesystem() was already called */
1098 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1099 		return -EINVAL;
1100 	return 0;
1101 }
1102 
1103 static int f2fs_unfreeze(struct super_block *sb)
1104 {
1105 	return 0;
1106 }
1107 
1108 #ifdef CONFIG_QUOTA
1109 static int f2fs_statfs_project(struct super_block *sb,
1110 				kprojid_t projid, struct kstatfs *buf)
1111 {
1112 	struct kqid qid;
1113 	struct dquot *dquot;
1114 	u64 limit;
1115 	u64 curblock;
1116 
1117 	qid = make_kqid_projid(projid);
1118 	dquot = dqget(sb, qid);
1119 	if (IS_ERR(dquot))
1120 		return PTR_ERR(dquot);
1121 	spin_lock(&dq_data_lock);
1122 
1123 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1124 		 dquot->dq_dqb.dqb_bsoftlimit :
1125 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1126 	if (limit && buf->f_blocks > limit) {
1127 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1128 		buf->f_blocks = limit;
1129 		buf->f_bfree = buf->f_bavail =
1130 			(buf->f_blocks > curblock) ?
1131 			 (buf->f_blocks - curblock) : 0;
1132 	}
1133 
1134 	limit = dquot->dq_dqb.dqb_isoftlimit ?
1135 		dquot->dq_dqb.dqb_isoftlimit :
1136 		dquot->dq_dqb.dqb_ihardlimit;
1137 	if (limit && buf->f_files > limit) {
1138 		buf->f_files = limit;
1139 		buf->f_ffree =
1140 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1141 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1142 	}
1143 
1144 	spin_unlock(&dq_data_lock);
1145 	dqput(dquot);
1146 	return 0;
1147 }
1148 #endif
1149 
1150 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1151 {
1152 	struct super_block *sb = dentry->d_sb;
1153 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1154 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1155 	block_t total_count, user_block_count, start_count;
1156 	u64 avail_node_count;
1157 
1158 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1159 	user_block_count = sbi->user_block_count;
1160 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1161 	buf->f_type = F2FS_SUPER_MAGIC;
1162 	buf->f_bsize = sbi->blocksize;
1163 
1164 	buf->f_blocks = total_count - start_count;
1165 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1166 						sbi->current_reserved_blocks;
1167 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1168 		buf->f_bavail = buf->f_bfree -
1169 				F2FS_OPTION(sbi).root_reserved_blocks;
1170 	else
1171 		buf->f_bavail = 0;
1172 
1173 	avail_node_count = sbi->total_node_count - sbi->nquota_files -
1174 						F2FS_RESERVED_NODE_NUM;
1175 
1176 	if (avail_node_count > user_block_count) {
1177 		buf->f_files = user_block_count;
1178 		buf->f_ffree = buf->f_bavail;
1179 	} else {
1180 		buf->f_files = avail_node_count;
1181 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1182 					buf->f_bavail);
1183 	}
1184 
1185 	buf->f_namelen = F2FS_NAME_LEN;
1186 	buf->f_fsid.val[0] = (u32)id;
1187 	buf->f_fsid.val[1] = (u32)(id >> 32);
1188 
1189 #ifdef CONFIG_QUOTA
1190 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1191 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1192 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1193 	}
1194 #endif
1195 	return 0;
1196 }
1197 
1198 static inline void f2fs_show_quota_options(struct seq_file *seq,
1199 					   struct super_block *sb)
1200 {
1201 #ifdef CONFIG_QUOTA
1202 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1203 
1204 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1205 		char *fmtname = "";
1206 
1207 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1208 		case QFMT_VFS_OLD:
1209 			fmtname = "vfsold";
1210 			break;
1211 		case QFMT_VFS_V0:
1212 			fmtname = "vfsv0";
1213 			break;
1214 		case QFMT_VFS_V1:
1215 			fmtname = "vfsv1";
1216 			break;
1217 		}
1218 		seq_printf(seq, ",jqfmt=%s", fmtname);
1219 	}
1220 
1221 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1222 		seq_show_option(seq, "usrjquota",
1223 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1224 
1225 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1226 		seq_show_option(seq, "grpjquota",
1227 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1228 
1229 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1230 		seq_show_option(seq, "prjjquota",
1231 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1232 #endif
1233 }
1234 
1235 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1236 {
1237 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1238 
1239 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1240 		if (test_opt(sbi, FORCE_FG_GC))
1241 			seq_printf(seq, ",background_gc=%s", "sync");
1242 		else
1243 			seq_printf(seq, ",background_gc=%s", "on");
1244 	} else {
1245 		seq_printf(seq, ",background_gc=%s", "off");
1246 	}
1247 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1248 		seq_puts(seq, ",disable_roll_forward");
1249 	if (test_opt(sbi, DISCARD))
1250 		seq_puts(seq, ",discard");
1251 	if (test_opt(sbi, NOHEAP))
1252 		seq_puts(seq, ",no_heap");
1253 	else
1254 		seq_puts(seq, ",heap");
1255 #ifdef CONFIG_F2FS_FS_XATTR
1256 	if (test_opt(sbi, XATTR_USER))
1257 		seq_puts(seq, ",user_xattr");
1258 	else
1259 		seq_puts(seq, ",nouser_xattr");
1260 	if (test_opt(sbi, INLINE_XATTR))
1261 		seq_puts(seq, ",inline_xattr");
1262 	else
1263 		seq_puts(seq, ",noinline_xattr");
1264 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1265 		seq_printf(seq, ",inline_xattr_size=%u",
1266 					F2FS_OPTION(sbi).inline_xattr_size);
1267 #endif
1268 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1269 	if (test_opt(sbi, POSIX_ACL))
1270 		seq_puts(seq, ",acl");
1271 	else
1272 		seq_puts(seq, ",noacl");
1273 #endif
1274 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1275 		seq_puts(seq, ",disable_ext_identify");
1276 	if (test_opt(sbi, INLINE_DATA))
1277 		seq_puts(seq, ",inline_data");
1278 	else
1279 		seq_puts(seq, ",noinline_data");
1280 	if (test_opt(sbi, INLINE_DENTRY))
1281 		seq_puts(seq, ",inline_dentry");
1282 	else
1283 		seq_puts(seq, ",noinline_dentry");
1284 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1285 		seq_puts(seq, ",flush_merge");
1286 	if (test_opt(sbi, NOBARRIER))
1287 		seq_puts(seq, ",nobarrier");
1288 	if (test_opt(sbi, FASTBOOT))
1289 		seq_puts(seq, ",fastboot");
1290 	if (test_opt(sbi, EXTENT_CACHE))
1291 		seq_puts(seq, ",extent_cache");
1292 	else
1293 		seq_puts(seq, ",noextent_cache");
1294 	if (test_opt(sbi, DATA_FLUSH))
1295 		seq_puts(seq, ",data_flush");
1296 
1297 	seq_puts(seq, ",mode=");
1298 	if (test_opt(sbi, ADAPTIVE))
1299 		seq_puts(seq, "adaptive");
1300 	else if (test_opt(sbi, LFS))
1301 		seq_puts(seq, "lfs");
1302 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1303 	if (test_opt(sbi, RESERVE_ROOT))
1304 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1305 				F2FS_OPTION(sbi).root_reserved_blocks,
1306 				from_kuid_munged(&init_user_ns,
1307 					F2FS_OPTION(sbi).s_resuid),
1308 				from_kgid_munged(&init_user_ns,
1309 					F2FS_OPTION(sbi).s_resgid));
1310 	if (F2FS_IO_SIZE_BITS(sbi))
1311 		seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1312 #ifdef CONFIG_F2FS_FAULT_INJECTION
1313 	if (test_opt(sbi, FAULT_INJECTION))
1314 		seq_printf(seq, ",fault_injection=%u",
1315 				F2FS_OPTION(sbi).fault_info.inject_rate);
1316 #endif
1317 #ifdef CONFIG_QUOTA
1318 	if (test_opt(sbi, QUOTA))
1319 		seq_puts(seq, ",quota");
1320 	if (test_opt(sbi, USRQUOTA))
1321 		seq_puts(seq, ",usrquota");
1322 	if (test_opt(sbi, GRPQUOTA))
1323 		seq_puts(seq, ",grpquota");
1324 	if (test_opt(sbi, PRJQUOTA))
1325 		seq_puts(seq, ",prjquota");
1326 #endif
1327 	f2fs_show_quota_options(seq, sbi->sb);
1328 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1329 		seq_printf(seq, ",whint_mode=%s", "user-based");
1330 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1331 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1332 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1333 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1334 		seq_puts(seq, ",test_dummy_encryption");
1335 #endif
1336 
1337 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1338 		seq_printf(seq, ",alloc_mode=%s", "default");
1339 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1340 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1341 
1342 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1343 		seq_printf(seq, ",fsync_mode=%s", "posix");
1344 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1345 		seq_printf(seq, ",fsync_mode=%s", "strict");
1346 	return 0;
1347 }
1348 
1349 static void default_options(struct f2fs_sb_info *sbi)
1350 {
1351 	/* init some FS parameters */
1352 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1353 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1354 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1355 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1356 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1357 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1358 	sbi->readdir_ra = 1;
1359 
1360 	set_opt(sbi, BG_GC);
1361 	set_opt(sbi, INLINE_XATTR);
1362 	set_opt(sbi, INLINE_DATA);
1363 	set_opt(sbi, INLINE_DENTRY);
1364 	set_opt(sbi, EXTENT_CACHE);
1365 	set_opt(sbi, NOHEAP);
1366 	sbi->sb->s_flags |= SB_LAZYTIME;
1367 	set_opt(sbi, FLUSH_MERGE);
1368 	if (f2fs_sb_has_blkzoned(sbi->sb)) {
1369 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1370 		set_opt(sbi, DISCARD);
1371 	} else {
1372 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1373 	}
1374 
1375 #ifdef CONFIG_F2FS_FS_XATTR
1376 	set_opt(sbi, XATTR_USER);
1377 #endif
1378 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1379 	set_opt(sbi, POSIX_ACL);
1380 #endif
1381 
1382 #ifdef CONFIG_F2FS_FAULT_INJECTION
1383 	f2fs_build_fault_attr(sbi, 0);
1384 #endif
1385 }
1386 
1387 #ifdef CONFIG_QUOTA
1388 static int f2fs_enable_quotas(struct super_block *sb);
1389 #endif
1390 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1391 {
1392 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1393 	struct f2fs_mount_info org_mount_opt;
1394 	unsigned long old_sb_flags;
1395 	int err;
1396 	bool need_restart_gc = false;
1397 	bool need_stop_gc = false;
1398 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1399 #ifdef CONFIG_QUOTA
1400 	int i, j;
1401 #endif
1402 
1403 	/*
1404 	 * Save the old mount options in case we
1405 	 * need to restore them.
1406 	 */
1407 	org_mount_opt = sbi->mount_opt;
1408 	old_sb_flags = sb->s_flags;
1409 
1410 #ifdef CONFIG_QUOTA
1411 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1412 	for (i = 0; i < MAXQUOTAS; i++) {
1413 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1414 			org_mount_opt.s_qf_names[i] =
1415 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1416 				GFP_KERNEL);
1417 			if (!org_mount_opt.s_qf_names[i]) {
1418 				for (j = 0; j < i; j++)
1419 					kfree(org_mount_opt.s_qf_names[j]);
1420 				return -ENOMEM;
1421 			}
1422 		} else {
1423 			org_mount_opt.s_qf_names[i] = NULL;
1424 		}
1425 	}
1426 #endif
1427 
1428 	/* recover superblocks we couldn't write due to previous RO mount */
1429 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1430 		err = f2fs_commit_super(sbi, false);
1431 		f2fs_msg(sb, KERN_INFO,
1432 			"Try to recover all the superblocks, ret: %d", err);
1433 		if (!err)
1434 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1435 	}
1436 
1437 	default_options(sbi);
1438 
1439 	/* parse mount options */
1440 	err = parse_options(sb, data);
1441 	if (err)
1442 		goto restore_opts;
1443 
1444 	/*
1445 	 * Previous and new state of filesystem is RO,
1446 	 * so skip checking GC and FLUSH_MERGE conditions.
1447 	 */
1448 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1449 		goto skip;
1450 
1451 #ifdef CONFIG_QUOTA
1452 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1453 		err = dquot_suspend(sb, -1);
1454 		if (err < 0)
1455 			goto restore_opts;
1456 	} else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1457 		/* dquot_resume needs RW */
1458 		sb->s_flags &= ~SB_RDONLY;
1459 		if (sb_any_quota_suspended(sb)) {
1460 			dquot_resume(sb, -1);
1461 		} else if (f2fs_sb_has_quota_ino(sb)) {
1462 			err = f2fs_enable_quotas(sb);
1463 			if (err)
1464 				goto restore_opts;
1465 		}
1466 	}
1467 #endif
1468 	/* disallow enable/disable extent_cache dynamically */
1469 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1470 		err = -EINVAL;
1471 		f2fs_msg(sbi->sb, KERN_WARNING,
1472 				"switch extent_cache option is not allowed");
1473 		goto restore_opts;
1474 	}
1475 
1476 	/*
1477 	 * We stop the GC thread if FS is mounted as RO
1478 	 * or if background_gc = off is passed in mount
1479 	 * option. Also sync the filesystem.
1480 	 */
1481 	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1482 		if (sbi->gc_thread) {
1483 			f2fs_stop_gc_thread(sbi);
1484 			need_restart_gc = true;
1485 		}
1486 	} else if (!sbi->gc_thread) {
1487 		err = f2fs_start_gc_thread(sbi);
1488 		if (err)
1489 			goto restore_opts;
1490 		need_stop_gc = true;
1491 	}
1492 
1493 	if (*flags & SB_RDONLY ||
1494 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1495 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1496 		sync_inodes_sb(sb);
1497 
1498 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1499 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1500 		f2fs_sync_fs(sb, 1);
1501 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1502 	}
1503 
1504 	/*
1505 	 * We stop issue flush thread if FS is mounted as RO
1506 	 * or if flush_merge is not passed in mount option.
1507 	 */
1508 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1509 		clear_opt(sbi, FLUSH_MERGE);
1510 		f2fs_destroy_flush_cmd_control(sbi, false);
1511 	} else {
1512 		err = f2fs_create_flush_cmd_control(sbi);
1513 		if (err)
1514 			goto restore_gc;
1515 	}
1516 skip:
1517 #ifdef CONFIG_QUOTA
1518 	/* Release old quota file names */
1519 	for (i = 0; i < MAXQUOTAS; i++)
1520 		kfree(org_mount_opt.s_qf_names[i]);
1521 #endif
1522 	/* Update the POSIXACL Flag */
1523 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1524 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1525 
1526 	limit_reserve_root(sbi);
1527 	return 0;
1528 restore_gc:
1529 	if (need_restart_gc) {
1530 		if (f2fs_start_gc_thread(sbi))
1531 			f2fs_msg(sbi->sb, KERN_WARNING,
1532 				"background gc thread has stopped");
1533 	} else if (need_stop_gc) {
1534 		f2fs_stop_gc_thread(sbi);
1535 	}
1536 restore_opts:
1537 #ifdef CONFIG_QUOTA
1538 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1539 	for (i = 0; i < MAXQUOTAS; i++) {
1540 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1541 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1542 	}
1543 #endif
1544 	sbi->mount_opt = org_mount_opt;
1545 	sb->s_flags = old_sb_flags;
1546 	return err;
1547 }
1548 
1549 #ifdef CONFIG_QUOTA
1550 /* Read data from quotafile */
1551 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1552 			       size_t len, loff_t off)
1553 {
1554 	struct inode *inode = sb_dqopt(sb)->files[type];
1555 	struct address_space *mapping = inode->i_mapping;
1556 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1557 	int offset = off & (sb->s_blocksize - 1);
1558 	int tocopy;
1559 	size_t toread;
1560 	loff_t i_size = i_size_read(inode);
1561 	struct page *page;
1562 	char *kaddr;
1563 
1564 	if (off > i_size)
1565 		return 0;
1566 
1567 	if (off + len > i_size)
1568 		len = i_size - off;
1569 	toread = len;
1570 	while (toread > 0) {
1571 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1572 repeat:
1573 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1574 		if (IS_ERR(page)) {
1575 			if (PTR_ERR(page) == -ENOMEM) {
1576 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1577 				goto repeat;
1578 			}
1579 			return PTR_ERR(page);
1580 		}
1581 
1582 		lock_page(page);
1583 
1584 		if (unlikely(page->mapping != mapping)) {
1585 			f2fs_put_page(page, 1);
1586 			goto repeat;
1587 		}
1588 		if (unlikely(!PageUptodate(page))) {
1589 			f2fs_put_page(page, 1);
1590 			return -EIO;
1591 		}
1592 
1593 		kaddr = kmap_atomic(page);
1594 		memcpy(data, kaddr + offset, tocopy);
1595 		kunmap_atomic(kaddr);
1596 		f2fs_put_page(page, 1);
1597 
1598 		offset = 0;
1599 		toread -= tocopy;
1600 		data += tocopy;
1601 		blkidx++;
1602 	}
1603 	return len;
1604 }
1605 
1606 /* Write to quotafile */
1607 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1608 				const char *data, size_t len, loff_t off)
1609 {
1610 	struct inode *inode = sb_dqopt(sb)->files[type];
1611 	struct address_space *mapping = inode->i_mapping;
1612 	const struct address_space_operations *a_ops = mapping->a_ops;
1613 	int offset = off & (sb->s_blocksize - 1);
1614 	size_t towrite = len;
1615 	struct page *page;
1616 	char *kaddr;
1617 	int err = 0;
1618 	int tocopy;
1619 
1620 	while (towrite > 0) {
1621 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1622 								towrite);
1623 retry:
1624 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1625 							&page, NULL);
1626 		if (unlikely(err)) {
1627 			if (err == -ENOMEM) {
1628 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1629 				goto retry;
1630 			}
1631 			break;
1632 		}
1633 
1634 		kaddr = kmap_atomic(page);
1635 		memcpy(kaddr + offset, data, tocopy);
1636 		kunmap_atomic(kaddr);
1637 		flush_dcache_page(page);
1638 
1639 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1640 						page, NULL);
1641 		offset = 0;
1642 		towrite -= tocopy;
1643 		off += tocopy;
1644 		data += tocopy;
1645 		cond_resched();
1646 	}
1647 
1648 	if (len == towrite)
1649 		return err;
1650 	inode->i_mtime = inode->i_ctime = current_time(inode);
1651 	f2fs_mark_inode_dirty_sync(inode, false);
1652 	return len - towrite;
1653 }
1654 
1655 static struct dquot **f2fs_get_dquots(struct inode *inode)
1656 {
1657 	return F2FS_I(inode)->i_dquot;
1658 }
1659 
1660 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1661 {
1662 	return &F2FS_I(inode)->i_reserved_quota;
1663 }
1664 
1665 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1666 {
1667 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1668 					F2FS_OPTION(sbi).s_jquota_fmt, type);
1669 }
1670 
1671 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1672 {
1673 	int enabled = 0;
1674 	int i, err;
1675 
1676 	if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1677 		err = f2fs_enable_quotas(sbi->sb);
1678 		if (err) {
1679 			f2fs_msg(sbi->sb, KERN_ERR,
1680 					"Cannot turn on quota_ino: %d", err);
1681 			return 0;
1682 		}
1683 		return 1;
1684 	}
1685 
1686 	for (i = 0; i < MAXQUOTAS; i++) {
1687 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1688 			err = f2fs_quota_on_mount(sbi, i);
1689 			if (!err) {
1690 				enabled = 1;
1691 				continue;
1692 			}
1693 			f2fs_msg(sbi->sb, KERN_ERR,
1694 				"Cannot turn on quotas: %d on %d", err, i);
1695 		}
1696 	}
1697 	return enabled;
1698 }
1699 
1700 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1701 			     unsigned int flags)
1702 {
1703 	struct inode *qf_inode;
1704 	unsigned long qf_inum;
1705 	int err;
1706 
1707 	BUG_ON(!f2fs_sb_has_quota_ino(sb));
1708 
1709 	qf_inum = f2fs_qf_ino(sb, type);
1710 	if (!qf_inum)
1711 		return -EPERM;
1712 
1713 	qf_inode = f2fs_iget(sb, qf_inum);
1714 	if (IS_ERR(qf_inode)) {
1715 		f2fs_msg(sb, KERN_ERR,
1716 			"Bad quota inode %u:%lu", type, qf_inum);
1717 		return PTR_ERR(qf_inode);
1718 	}
1719 
1720 	/* Don't account quota for quota files to avoid recursion */
1721 	qf_inode->i_flags |= S_NOQUOTA;
1722 	err = dquot_enable(qf_inode, type, format_id, flags);
1723 	iput(qf_inode);
1724 	return err;
1725 }
1726 
1727 static int f2fs_enable_quotas(struct super_block *sb)
1728 {
1729 	int type, err = 0;
1730 	unsigned long qf_inum;
1731 	bool quota_mopt[MAXQUOTAS] = {
1732 		test_opt(F2FS_SB(sb), USRQUOTA),
1733 		test_opt(F2FS_SB(sb), GRPQUOTA),
1734 		test_opt(F2FS_SB(sb), PRJQUOTA),
1735 	};
1736 
1737 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1738 	for (type = 0; type < MAXQUOTAS; type++) {
1739 		qf_inum = f2fs_qf_ino(sb, type);
1740 		if (qf_inum) {
1741 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1742 				DQUOT_USAGE_ENABLED |
1743 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1744 			if (err) {
1745 				f2fs_msg(sb, KERN_ERR,
1746 					"Failed to enable quota tracking "
1747 					"(type=%d, err=%d). Please run "
1748 					"fsck to fix.", type, err);
1749 				for (type--; type >= 0; type--)
1750 					dquot_quota_off(sb, type);
1751 				return err;
1752 			}
1753 		}
1754 	}
1755 	return 0;
1756 }
1757 
1758 static int f2fs_quota_sync(struct super_block *sb, int type)
1759 {
1760 	struct quota_info *dqopt = sb_dqopt(sb);
1761 	int cnt;
1762 	int ret;
1763 
1764 	ret = dquot_writeback_dquots(sb, type);
1765 	if (ret)
1766 		return ret;
1767 
1768 	/*
1769 	 * Now when everything is written we can discard the pagecache so
1770 	 * that userspace sees the changes.
1771 	 */
1772 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1773 		if (type != -1 && cnt != type)
1774 			continue;
1775 		if (!sb_has_quota_active(sb, cnt))
1776 			continue;
1777 
1778 		ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1779 		if (ret)
1780 			return ret;
1781 
1782 		inode_lock(dqopt->files[cnt]);
1783 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1784 		inode_unlock(dqopt->files[cnt]);
1785 	}
1786 	return 0;
1787 }
1788 
1789 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1790 							const struct path *path)
1791 {
1792 	struct inode *inode;
1793 	int err;
1794 
1795 	err = f2fs_quota_sync(sb, type);
1796 	if (err)
1797 		return err;
1798 
1799 	err = dquot_quota_on(sb, type, format_id, path);
1800 	if (err)
1801 		return err;
1802 
1803 	inode = d_inode(path->dentry);
1804 
1805 	inode_lock(inode);
1806 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
1807 	inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1808 					S_NOATIME | S_IMMUTABLE);
1809 	inode_unlock(inode);
1810 	f2fs_mark_inode_dirty_sync(inode, false);
1811 
1812 	return 0;
1813 }
1814 
1815 static int f2fs_quota_off(struct super_block *sb, int type)
1816 {
1817 	struct inode *inode = sb_dqopt(sb)->files[type];
1818 	int err;
1819 
1820 	if (!inode || !igrab(inode))
1821 		return dquot_quota_off(sb, type);
1822 
1823 	f2fs_quota_sync(sb, type);
1824 
1825 	err = dquot_quota_off(sb, type);
1826 	if (err || f2fs_sb_has_quota_ino(sb))
1827 		goto out_put;
1828 
1829 	inode_lock(inode);
1830 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
1831 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1832 	inode_unlock(inode);
1833 	f2fs_mark_inode_dirty_sync(inode, false);
1834 out_put:
1835 	iput(inode);
1836 	return err;
1837 }
1838 
1839 void f2fs_quota_off_umount(struct super_block *sb)
1840 {
1841 	int type;
1842 
1843 	for (type = 0; type < MAXQUOTAS; type++)
1844 		f2fs_quota_off(sb, type);
1845 }
1846 
1847 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1848 {
1849 	*projid = F2FS_I(inode)->i_projid;
1850 	return 0;
1851 }
1852 
1853 static const struct dquot_operations f2fs_quota_operations = {
1854 	.get_reserved_space = f2fs_get_reserved_space,
1855 	.write_dquot	= dquot_commit,
1856 	.acquire_dquot	= dquot_acquire,
1857 	.release_dquot	= dquot_release,
1858 	.mark_dirty	= dquot_mark_dquot_dirty,
1859 	.write_info	= dquot_commit_info,
1860 	.alloc_dquot	= dquot_alloc,
1861 	.destroy_dquot	= dquot_destroy,
1862 	.get_projid	= f2fs_get_projid,
1863 	.get_next_id	= dquot_get_next_id,
1864 };
1865 
1866 static const struct quotactl_ops f2fs_quotactl_ops = {
1867 	.quota_on	= f2fs_quota_on,
1868 	.quota_off	= f2fs_quota_off,
1869 	.quota_sync	= f2fs_quota_sync,
1870 	.get_state	= dquot_get_state,
1871 	.set_info	= dquot_set_dqinfo,
1872 	.get_dqblk	= dquot_get_dqblk,
1873 	.set_dqblk	= dquot_set_dqblk,
1874 	.get_nextdqblk	= dquot_get_next_dqblk,
1875 };
1876 #else
1877 void f2fs_quota_off_umount(struct super_block *sb)
1878 {
1879 }
1880 #endif
1881 
1882 static const struct super_operations f2fs_sops = {
1883 	.alloc_inode	= f2fs_alloc_inode,
1884 	.drop_inode	= f2fs_drop_inode,
1885 	.destroy_inode	= f2fs_destroy_inode,
1886 	.write_inode	= f2fs_write_inode,
1887 	.dirty_inode	= f2fs_dirty_inode,
1888 	.show_options	= f2fs_show_options,
1889 #ifdef CONFIG_QUOTA
1890 	.quota_read	= f2fs_quota_read,
1891 	.quota_write	= f2fs_quota_write,
1892 	.get_dquots	= f2fs_get_dquots,
1893 #endif
1894 	.evict_inode	= f2fs_evict_inode,
1895 	.put_super	= f2fs_put_super,
1896 	.sync_fs	= f2fs_sync_fs,
1897 	.freeze_fs	= f2fs_freeze,
1898 	.unfreeze_fs	= f2fs_unfreeze,
1899 	.statfs		= f2fs_statfs,
1900 	.remount_fs	= f2fs_remount,
1901 };
1902 
1903 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1904 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1905 {
1906 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1907 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1908 				ctx, len, NULL);
1909 }
1910 
1911 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1912 							void *fs_data)
1913 {
1914 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1915 
1916 	/*
1917 	 * Encrypting the root directory is not allowed because fsck
1918 	 * expects lost+found directory to exist and remain unencrypted
1919 	 * if LOST_FOUND feature is enabled.
1920 	 *
1921 	 */
1922 	if (f2fs_sb_has_lost_found(sbi->sb) &&
1923 			inode->i_ino == F2FS_ROOT_INO(sbi))
1924 		return -EPERM;
1925 
1926 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1927 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1928 				ctx, len, fs_data, XATTR_CREATE);
1929 }
1930 
1931 static bool f2fs_dummy_context(struct inode *inode)
1932 {
1933 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
1934 }
1935 
1936 static const struct fscrypt_operations f2fs_cryptops = {
1937 	.key_prefix	= "f2fs:",
1938 	.get_context	= f2fs_get_context,
1939 	.set_context	= f2fs_set_context,
1940 	.dummy_context	= f2fs_dummy_context,
1941 	.empty_dir	= f2fs_empty_dir,
1942 	.max_namelen	= F2FS_NAME_LEN,
1943 };
1944 #endif
1945 
1946 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1947 		u64 ino, u32 generation)
1948 {
1949 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1950 	struct inode *inode;
1951 
1952 	if (f2fs_check_nid_range(sbi, ino))
1953 		return ERR_PTR(-ESTALE);
1954 
1955 	/*
1956 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1957 	 * However f2fs_iget currently does appropriate checks to handle stale
1958 	 * inodes so everything is OK.
1959 	 */
1960 	inode = f2fs_iget(sb, ino);
1961 	if (IS_ERR(inode))
1962 		return ERR_CAST(inode);
1963 	if (unlikely(generation && inode->i_generation != generation)) {
1964 		/* we didn't find the right inode.. */
1965 		iput(inode);
1966 		return ERR_PTR(-ESTALE);
1967 	}
1968 	return inode;
1969 }
1970 
1971 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1972 		int fh_len, int fh_type)
1973 {
1974 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1975 				    f2fs_nfs_get_inode);
1976 }
1977 
1978 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1979 		int fh_len, int fh_type)
1980 {
1981 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1982 				    f2fs_nfs_get_inode);
1983 }
1984 
1985 static const struct export_operations f2fs_export_ops = {
1986 	.fh_to_dentry = f2fs_fh_to_dentry,
1987 	.fh_to_parent = f2fs_fh_to_parent,
1988 	.get_parent = f2fs_get_parent,
1989 };
1990 
1991 static loff_t max_file_blocks(void)
1992 {
1993 	loff_t result = 0;
1994 	loff_t leaf_count = ADDRS_PER_BLOCK;
1995 
1996 	/*
1997 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1998 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1999 	 * space in inode.i_addr, it will be more safe to reassign
2000 	 * result as zero.
2001 	 */
2002 
2003 	/* two direct node blocks */
2004 	result += (leaf_count * 2);
2005 
2006 	/* two indirect node blocks */
2007 	leaf_count *= NIDS_PER_BLOCK;
2008 	result += (leaf_count * 2);
2009 
2010 	/* one double indirect node block */
2011 	leaf_count *= NIDS_PER_BLOCK;
2012 	result += leaf_count;
2013 
2014 	return result;
2015 }
2016 
2017 static int __f2fs_commit_super(struct buffer_head *bh,
2018 			struct f2fs_super_block *super)
2019 {
2020 	lock_buffer(bh);
2021 	if (super)
2022 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2023 	set_buffer_dirty(bh);
2024 	unlock_buffer(bh);
2025 
2026 	/* it's rare case, we can do fua all the time */
2027 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2028 }
2029 
2030 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2031 					struct buffer_head *bh)
2032 {
2033 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2034 					(bh->b_data + F2FS_SUPER_OFFSET);
2035 	struct super_block *sb = sbi->sb;
2036 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2037 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2038 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2039 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2040 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2041 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2042 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2043 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2044 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2045 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2046 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2047 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2048 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2049 	u64 main_end_blkaddr = main_blkaddr +
2050 				(segment_count_main << log_blocks_per_seg);
2051 	u64 seg_end_blkaddr = segment0_blkaddr +
2052 				(segment_count << log_blocks_per_seg);
2053 
2054 	if (segment0_blkaddr != cp_blkaddr) {
2055 		f2fs_msg(sb, KERN_INFO,
2056 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2057 			segment0_blkaddr, cp_blkaddr);
2058 		return true;
2059 	}
2060 
2061 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2062 							sit_blkaddr) {
2063 		f2fs_msg(sb, KERN_INFO,
2064 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2065 			cp_blkaddr, sit_blkaddr,
2066 			segment_count_ckpt << log_blocks_per_seg);
2067 		return true;
2068 	}
2069 
2070 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2071 							nat_blkaddr) {
2072 		f2fs_msg(sb, KERN_INFO,
2073 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2074 			sit_blkaddr, nat_blkaddr,
2075 			segment_count_sit << log_blocks_per_seg);
2076 		return true;
2077 	}
2078 
2079 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2080 							ssa_blkaddr) {
2081 		f2fs_msg(sb, KERN_INFO,
2082 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2083 			nat_blkaddr, ssa_blkaddr,
2084 			segment_count_nat << log_blocks_per_seg);
2085 		return true;
2086 	}
2087 
2088 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2089 							main_blkaddr) {
2090 		f2fs_msg(sb, KERN_INFO,
2091 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2092 			ssa_blkaddr, main_blkaddr,
2093 			segment_count_ssa << log_blocks_per_seg);
2094 		return true;
2095 	}
2096 
2097 	if (main_end_blkaddr > seg_end_blkaddr) {
2098 		f2fs_msg(sb, KERN_INFO,
2099 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2100 			main_blkaddr,
2101 			segment0_blkaddr +
2102 				(segment_count << log_blocks_per_seg),
2103 			segment_count_main << log_blocks_per_seg);
2104 		return true;
2105 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2106 		int err = 0;
2107 		char *res;
2108 
2109 		/* fix in-memory information all the time */
2110 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2111 				segment0_blkaddr) >> log_blocks_per_seg);
2112 
2113 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2114 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2115 			res = "internally";
2116 		} else {
2117 			err = __f2fs_commit_super(bh, NULL);
2118 			res = err ? "failed" : "done";
2119 		}
2120 		f2fs_msg(sb, KERN_INFO,
2121 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
2122 			res, main_blkaddr,
2123 			segment0_blkaddr +
2124 				(segment_count << log_blocks_per_seg),
2125 			segment_count_main << log_blocks_per_seg);
2126 		if (err)
2127 			return true;
2128 	}
2129 	return false;
2130 }
2131 
2132 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2133 				struct buffer_head *bh)
2134 {
2135 	block_t segment_count, segs_per_sec, secs_per_zone;
2136 	block_t total_sections, blocks_per_seg;
2137 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2138 					(bh->b_data + F2FS_SUPER_OFFSET);
2139 	struct super_block *sb = sbi->sb;
2140 	unsigned int blocksize;
2141 
2142 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2143 		f2fs_msg(sb, KERN_INFO,
2144 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
2145 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2146 		return 1;
2147 	}
2148 
2149 	/* Currently, support only 4KB page cache size */
2150 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2151 		f2fs_msg(sb, KERN_INFO,
2152 			"Invalid page_cache_size (%lu), supports only 4KB\n",
2153 			PAGE_SIZE);
2154 		return 1;
2155 	}
2156 
2157 	/* Currently, support only 4KB block size */
2158 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2159 	if (blocksize != F2FS_BLKSIZE) {
2160 		f2fs_msg(sb, KERN_INFO,
2161 			"Invalid blocksize (%u), supports only 4KB\n",
2162 			blocksize);
2163 		return 1;
2164 	}
2165 
2166 	/* check log blocks per segment */
2167 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2168 		f2fs_msg(sb, KERN_INFO,
2169 			"Invalid log blocks per segment (%u)\n",
2170 			le32_to_cpu(raw_super->log_blocks_per_seg));
2171 		return 1;
2172 	}
2173 
2174 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2175 	if (le32_to_cpu(raw_super->log_sectorsize) >
2176 				F2FS_MAX_LOG_SECTOR_SIZE ||
2177 		le32_to_cpu(raw_super->log_sectorsize) <
2178 				F2FS_MIN_LOG_SECTOR_SIZE) {
2179 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2180 			le32_to_cpu(raw_super->log_sectorsize));
2181 		return 1;
2182 	}
2183 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2184 		le32_to_cpu(raw_super->log_sectorsize) !=
2185 			F2FS_MAX_LOG_SECTOR_SIZE) {
2186 		f2fs_msg(sb, KERN_INFO,
2187 			"Invalid log sectors per block(%u) log sectorsize(%u)",
2188 			le32_to_cpu(raw_super->log_sectors_per_block),
2189 			le32_to_cpu(raw_super->log_sectorsize));
2190 		return 1;
2191 	}
2192 
2193 	segment_count = le32_to_cpu(raw_super->segment_count);
2194 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2195 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2196 	total_sections = le32_to_cpu(raw_super->section_count);
2197 
2198 	/* blocks_per_seg should be 512, given the above check */
2199 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2200 
2201 	if (segment_count > F2FS_MAX_SEGMENT ||
2202 				segment_count < F2FS_MIN_SEGMENTS) {
2203 		f2fs_msg(sb, KERN_INFO,
2204 			"Invalid segment count (%u)",
2205 			segment_count);
2206 		return 1;
2207 	}
2208 
2209 	if (total_sections > segment_count ||
2210 			total_sections < F2FS_MIN_SEGMENTS ||
2211 			segs_per_sec > segment_count || !segs_per_sec) {
2212 		f2fs_msg(sb, KERN_INFO,
2213 			"Invalid segment/section count (%u, %u x %u)",
2214 			segment_count, total_sections, segs_per_sec);
2215 		return 1;
2216 	}
2217 
2218 	if ((segment_count / segs_per_sec) < total_sections) {
2219 		f2fs_msg(sb, KERN_INFO,
2220 			"Small segment_count (%u < %u * %u)",
2221 			segment_count, segs_per_sec, total_sections);
2222 		return 1;
2223 	}
2224 
2225 	if (segment_count > (le32_to_cpu(raw_super->block_count) >> 9)) {
2226 		f2fs_msg(sb, KERN_INFO,
2227 			"Wrong segment_count / block_count (%u > %u)",
2228 			segment_count, le32_to_cpu(raw_super->block_count));
2229 		return 1;
2230 	}
2231 
2232 	if (secs_per_zone > total_sections) {
2233 		f2fs_msg(sb, KERN_INFO,
2234 			"Wrong secs_per_zone (%u > %u)",
2235 			secs_per_zone, total_sections);
2236 		return 1;
2237 	}
2238 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2239 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2240 			(le32_to_cpu(raw_super->extension_count) +
2241 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2242 		f2fs_msg(sb, KERN_INFO,
2243 			"Corrupted extension count (%u + %u > %u)",
2244 			le32_to_cpu(raw_super->extension_count),
2245 			raw_super->hot_ext_count,
2246 			F2FS_MAX_EXTENSION);
2247 		return 1;
2248 	}
2249 
2250 	if (le32_to_cpu(raw_super->cp_payload) >
2251 				(blocks_per_seg - F2FS_CP_PACKS)) {
2252 		f2fs_msg(sb, KERN_INFO,
2253 			"Insane cp_payload (%u > %u)",
2254 			le32_to_cpu(raw_super->cp_payload),
2255 			blocks_per_seg - F2FS_CP_PACKS);
2256 		return 1;
2257 	}
2258 
2259 	/* check reserved ino info */
2260 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2261 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2262 		le32_to_cpu(raw_super->root_ino) != 3) {
2263 		f2fs_msg(sb, KERN_INFO,
2264 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2265 			le32_to_cpu(raw_super->node_ino),
2266 			le32_to_cpu(raw_super->meta_ino),
2267 			le32_to_cpu(raw_super->root_ino));
2268 		return 1;
2269 	}
2270 
2271 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2272 	if (sanity_check_area_boundary(sbi, bh))
2273 		return 1;
2274 
2275 	return 0;
2276 }
2277 
2278 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2279 {
2280 	unsigned int total, fsmeta;
2281 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2282 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2283 	unsigned int ovp_segments, reserved_segments;
2284 	unsigned int main_segs, blocks_per_seg;
2285 	int i;
2286 
2287 	total = le32_to_cpu(raw_super->segment_count);
2288 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2289 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2290 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2291 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2292 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2293 
2294 	if (unlikely(fsmeta >= total))
2295 		return 1;
2296 
2297 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2298 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2299 
2300 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2301 			ovp_segments == 0 || reserved_segments == 0)) {
2302 		f2fs_msg(sbi->sb, KERN_ERR,
2303 			"Wrong layout: check mkfs.f2fs version");
2304 		return 1;
2305 	}
2306 
2307 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2308 	blocks_per_seg = sbi->blocks_per_seg;
2309 
2310 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2311 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2312 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2313 			return 1;
2314 	}
2315 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2316 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2317 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2318 			return 1;
2319 	}
2320 
2321 	if (unlikely(f2fs_cp_error(sbi))) {
2322 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2323 		return 1;
2324 	}
2325 	return 0;
2326 }
2327 
2328 static void init_sb_info(struct f2fs_sb_info *sbi)
2329 {
2330 	struct f2fs_super_block *raw_super = sbi->raw_super;
2331 	int i, j;
2332 
2333 	sbi->log_sectors_per_block =
2334 		le32_to_cpu(raw_super->log_sectors_per_block);
2335 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2336 	sbi->blocksize = 1 << sbi->log_blocksize;
2337 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2338 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2339 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2340 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2341 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2342 	sbi->total_node_count =
2343 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2344 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2345 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2346 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2347 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2348 	sbi->cur_victim_sec = NULL_SECNO;
2349 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2350 
2351 	sbi->dir_level = DEF_DIR_LEVEL;
2352 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2353 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2354 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2355 
2356 	for (i = 0; i < NR_COUNT_TYPE; i++)
2357 		atomic_set(&sbi->nr_pages[i], 0);
2358 
2359 	for (i = 0; i < META; i++)
2360 		atomic_set(&sbi->wb_sync_req[i], 0);
2361 
2362 	INIT_LIST_HEAD(&sbi->s_list);
2363 	mutex_init(&sbi->umount_mutex);
2364 	for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2365 		for (j = HOT; j < NR_TEMP_TYPE; j++)
2366 			mutex_init(&sbi->wio_mutex[i][j]);
2367 	init_rwsem(&sbi->io_order_lock);
2368 	spin_lock_init(&sbi->cp_lock);
2369 
2370 	sbi->dirty_device = 0;
2371 	spin_lock_init(&sbi->dev_lock);
2372 
2373 	init_rwsem(&sbi->sb_lock);
2374 }
2375 
2376 static int init_percpu_info(struct f2fs_sb_info *sbi)
2377 {
2378 	int err;
2379 
2380 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2381 	if (err)
2382 		return err;
2383 
2384 	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2385 								GFP_KERNEL);
2386 }
2387 
2388 #ifdef CONFIG_BLK_DEV_ZONED
2389 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2390 {
2391 	struct block_device *bdev = FDEV(devi).bdev;
2392 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2393 	sector_t sector = 0;
2394 	struct blk_zone *zones;
2395 	unsigned int i, nr_zones;
2396 	unsigned int n = 0;
2397 	int err = -EIO;
2398 
2399 	if (!f2fs_sb_has_blkzoned(sbi->sb))
2400 		return 0;
2401 
2402 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2403 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2404 		return -EINVAL;
2405 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2406 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2407 				__ilog2_u32(sbi->blocks_per_blkz))
2408 		return -EINVAL;
2409 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2410 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2411 					sbi->log_blocks_per_blkz;
2412 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2413 		FDEV(devi).nr_blkz++;
2414 
2415 	FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2416 								GFP_KERNEL);
2417 	if (!FDEV(devi).blkz_type)
2418 		return -ENOMEM;
2419 
2420 #define F2FS_REPORT_NR_ZONES   4096
2421 
2422 	zones = f2fs_kzalloc(sbi,
2423 			     array_size(F2FS_REPORT_NR_ZONES,
2424 					sizeof(struct blk_zone)),
2425 			     GFP_KERNEL);
2426 	if (!zones)
2427 		return -ENOMEM;
2428 
2429 	/* Get block zones type */
2430 	while (zones && sector < nr_sectors) {
2431 
2432 		nr_zones = F2FS_REPORT_NR_ZONES;
2433 		err = blkdev_report_zones(bdev, sector,
2434 					  zones, &nr_zones,
2435 					  GFP_KERNEL);
2436 		if (err)
2437 			break;
2438 		if (!nr_zones) {
2439 			err = -EIO;
2440 			break;
2441 		}
2442 
2443 		for (i = 0; i < nr_zones; i++) {
2444 			FDEV(devi).blkz_type[n] = zones[i].type;
2445 			sector += zones[i].len;
2446 			n++;
2447 		}
2448 	}
2449 
2450 	kfree(zones);
2451 
2452 	return err;
2453 }
2454 #endif
2455 
2456 /*
2457  * Read f2fs raw super block.
2458  * Because we have two copies of super block, so read both of them
2459  * to get the first valid one. If any one of them is broken, we pass
2460  * them recovery flag back to the caller.
2461  */
2462 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2463 			struct f2fs_super_block **raw_super,
2464 			int *valid_super_block, int *recovery)
2465 {
2466 	struct super_block *sb = sbi->sb;
2467 	int block;
2468 	struct buffer_head *bh;
2469 	struct f2fs_super_block *super;
2470 	int err = 0;
2471 
2472 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2473 	if (!super)
2474 		return -ENOMEM;
2475 
2476 	for (block = 0; block < 2; block++) {
2477 		bh = sb_bread(sb, block);
2478 		if (!bh) {
2479 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2480 				block + 1);
2481 			err = -EIO;
2482 			continue;
2483 		}
2484 
2485 		/* sanity checking of raw super */
2486 		if (sanity_check_raw_super(sbi, bh)) {
2487 			f2fs_msg(sb, KERN_ERR,
2488 				"Can't find valid F2FS filesystem in %dth superblock",
2489 				block + 1);
2490 			err = -EINVAL;
2491 			brelse(bh);
2492 			continue;
2493 		}
2494 
2495 		if (!*raw_super) {
2496 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2497 							sizeof(*super));
2498 			*valid_super_block = block;
2499 			*raw_super = super;
2500 		}
2501 		brelse(bh);
2502 	}
2503 
2504 	/* Fail to read any one of the superblocks*/
2505 	if (err < 0)
2506 		*recovery = 1;
2507 
2508 	/* No valid superblock */
2509 	if (!*raw_super)
2510 		kfree(super);
2511 	else
2512 		err = 0;
2513 
2514 	return err;
2515 }
2516 
2517 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2518 {
2519 	struct buffer_head *bh;
2520 	int err;
2521 
2522 	if ((recover && f2fs_readonly(sbi->sb)) ||
2523 				bdev_read_only(sbi->sb->s_bdev)) {
2524 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2525 		return -EROFS;
2526 	}
2527 
2528 	/* write back-up superblock first */
2529 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2530 	if (!bh)
2531 		return -EIO;
2532 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2533 	brelse(bh);
2534 
2535 	/* if we are in recovery path, skip writing valid superblock */
2536 	if (recover || err)
2537 		return err;
2538 
2539 	/* write current valid superblock */
2540 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
2541 	if (!bh)
2542 		return -EIO;
2543 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2544 	brelse(bh);
2545 	return err;
2546 }
2547 
2548 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2549 {
2550 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2551 	unsigned int max_devices = MAX_DEVICES;
2552 	int i;
2553 
2554 	/* Initialize single device information */
2555 	if (!RDEV(0).path[0]) {
2556 		if (!bdev_is_zoned(sbi->sb->s_bdev))
2557 			return 0;
2558 		max_devices = 1;
2559 	}
2560 
2561 	/*
2562 	 * Initialize multiple devices information, or single
2563 	 * zoned block device information.
2564 	 */
2565 	sbi->devs = f2fs_kzalloc(sbi,
2566 				 array_size(max_devices,
2567 					    sizeof(struct f2fs_dev_info)),
2568 				 GFP_KERNEL);
2569 	if (!sbi->devs)
2570 		return -ENOMEM;
2571 
2572 	for (i = 0; i < max_devices; i++) {
2573 
2574 		if (i > 0 && !RDEV(i).path[0])
2575 			break;
2576 
2577 		if (max_devices == 1) {
2578 			/* Single zoned block device mount */
2579 			FDEV(0).bdev =
2580 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2581 					sbi->sb->s_mode, sbi->sb->s_type);
2582 		} else {
2583 			/* Multi-device mount */
2584 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2585 			FDEV(i).total_segments =
2586 				le32_to_cpu(RDEV(i).total_segments);
2587 			if (i == 0) {
2588 				FDEV(i).start_blk = 0;
2589 				FDEV(i).end_blk = FDEV(i).start_blk +
2590 				    (FDEV(i).total_segments <<
2591 				    sbi->log_blocks_per_seg) - 1 +
2592 				    le32_to_cpu(raw_super->segment0_blkaddr);
2593 			} else {
2594 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2595 				FDEV(i).end_blk = FDEV(i).start_blk +
2596 					(FDEV(i).total_segments <<
2597 					sbi->log_blocks_per_seg) - 1;
2598 			}
2599 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2600 					sbi->sb->s_mode, sbi->sb->s_type);
2601 		}
2602 		if (IS_ERR(FDEV(i).bdev))
2603 			return PTR_ERR(FDEV(i).bdev);
2604 
2605 		/* to release errored devices */
2606 		sbi->s_ndevs = i + 1;
2607 
2608 #ifdef CONFIG_BLK_DEV_ZONED
2609 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2610 				!f2fs_sb_has_blkzoned(sbi->sb)) {
2611 			f2fs_msg(sbi->sb, KERN_ERR,
2612 				"Zoned block device feature not enabled\n");
2613 			return -EINVAL;
2614 		}
2615 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2616 			if (init_blkz_info(sbi, i)) {
2617 				f2fs_msg(sbi->sb, KERN_ERR,
2618 					"Failed to initialize F2FS blkzone information");
2619 				return -EINVAL;
2620 			}
2621 			if (max_devices == 1)
2622 				break;
2623 			f2fs_msg(sbi->sb, KERN_INFO,
2624 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2625 				i, FDEV(i).path,
2626 				FDEV(i).total_segments,
2627 				FDEV(i).start_blk, FDEV(i).end_blk,
2628 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2629 				"Host-aware" : "Host-managed");
2630 			continue;
2631 		}
2632 #endif
2633 		f2fs_msg(sbi->sb, KERN_INFO,
2634 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
2635 				i, FDEV(i).path,
2636 				FDEV(i).total_segments,
2637 				FDEV(i).start_blk, FDEV(i).end_blk);
2638 	}
2639 	f2fs_msg(sbi->sb, KERN_INFO,
2640 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2641 	return 0;
2642 }
2643 
2644 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2645 {
2646 	struct f2fs_sm_info *sm_i = SM_I(sbi);
2647 
2648 	/* adjust parameters according to the volume size */
2649 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2650 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2651 		sm_i->dcc_info->discard_granularity = 1;
2652 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2653 	}
2654 }
2655 
2656 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2657 {
2658 	struct f2fs_sb_info *sbi;
2659 	struct f2fs_super_block *raw_super;
2660 	struct inode *root;
2661 	int err;
2662 	bool retry = true, need_fsck = false;
2663 	char *options = NULL;
2664 	int recovery, i, valid_super_block;
2665 	struct curseg_info *seg_i;
2666 
2667 try_onemore:
2668 	err = -EINVAL;
2669 	raw_super = NULL;
2670 	valid_super_block = -1;
2671 	recovery = 0;
2672 
2673 	/* allocate memory for f2fs-specific super block info */
2674 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2675 	if (!sbi)
2676 		return -ENOMEM;
2677 
2678 	sbi->sb = sb;
2679 
2680 	/* Load the checksum driver */
2681 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2682 	if (IS_ERR(sbi->s_chksum_driver)) {
2683 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2684 		err = PTR_ERR(sbi->s_chksum_driver);
2685 		sbi->s_chksum_driver = NULL;
2686 		goto free_sbi;
2687 	}
2688 
2689 	/* set a block size */
2690 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2691 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2692 		goto free_sbi;
2693 	}
2694 
2695 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2696 								&recovery);
2697 	if (err)
2698 		goto free_sbi;
2699 
2700 	sb->s_fs_info = sbi;
2701 	sbi->raw_super = raw_super;
2702 
2703 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2704 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2705 
2706 	/* precompute checksum seed for metadata */
2707 	if (f2fs_sb_has_inode_chksum(sb))
2708 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2709 						sizeof(raw_super->uuid));
2710 
2711 	/*
2712 	 * The BLKZONED feature indicates that the drive was formatted with
2713 	 * zone alignment optimization. This is optional for host-aware
2714 	 * devices, but mandatory for host-managed zoned block devices.
2715 	 */
2716 #ifndef CONFIG_BLK_DEV_ZONED
2717 	if (f2fs_sb_has_blkzoned(sb)) {
2718 		f2fs_msg(sb, KERN_ERR,
2719 			 "Zoned block device support is not enabled\n");
2720 		err = -EOPNOTSUPP;
2721 		goto free_sb_buf;
2722 	}
2723 #endif
2724 	default_options(sbi);
2725 	/* parse mount options */
2726 	options = kstrdup((const char *)data, GFP_KERNEL);
2727 	if (data && !options) {
2728 		err = -ENOMEM;
2729 		goto free_sb_buf;
2730 	}
2731 
2732 	err = parse_options(sb, options);
2733 	if (err)
2734 		goto free_options;
2735 
2736 	sbi->max_file_blocks = max_file_blocks();
2737 	sb->s_maxbytes = sbi->max_file_blocks <<
2738 				le32_to_cpu(raw_super->log_blocksize);
2739 	sb->s_max_links = F2FS_LINK_MAX;
2740 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2741 
2742 #ifdef CONFIG_QUOTA
2743 	sb->dq_op = &f2fs_quota_operations;
2744 	if (f2fs_sb_has_quota_ino(sb))
2745 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
2746 	else
2747 		sb->s_qcop = &f2fs_quotactl_ops;
2748 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2749 
2750 	if (f2fs_sb_has_quota_ino(sbi->sb)) {
2751 		for (i = 0; i < MAXQUOTAS; i++) {
2752 			if (f2fs_qf_ino(sbi->sb, i))
2753 				sbi->nquota_files++;
2754 		}
2755 	}
2756 #endif
2757 
2758 	sb->s_op = &f2fs_sops;
2759 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2760 	sb->s_cop = &f2fs_cryptops;
2761 #endif
2762 	sb->s_xattr = f2fs_xattr_handlers;
2763 	sb->s_export_op = &f2fs_export_ops;
2764 	sb->s_magic = F2FS_SUPER_MAGIC;
2765 	sb->s_time_gran = 1;
2766 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2767 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2768 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2769 	sb->s_iflags |= SB_I_CGROUPWB;
2770 
2771 	/* init f2fs-specific super block info */
2772 	sbi->valid_super_block = valid_super_block;
2773 	mutex_init(&sbi->gc_mutex);
2774 	mutex_init(&sbi->cp_mutex);
2775 	init_rwsem(&sbi->node_write);
2776 	init_rwsem(&sbi->node_change);
2777 
2778 	/* disallow all the data/node/meta page writes */
2779 	set_sbi_flag(sbi, SBI_POR_DOING);
2780 	spin_lock_init(&sbi->stat_lock);
2781 
2782 	/* init iostat info */
2783 	spin_lock_init(&sbi->iostat_lock);
2784 	sbi->iostat_enable = false;
2785 
2786 	for (i = 0; i < NR_PAGE_TYPE; i++) {
2787 		int n = (i == META) ? 1: NR_TEMP_TYPE;
2788 		int j;
2789 
2790 		sbi->write_io[i] =
2791 			f2fs_kmalloc(sbi,
2792 				     array_size(n,
2793 						sizeof(struct f2fs_bio_info)),
2794 				     GFP_KERNEL);
2795 		if (!sbi->write_io[i]) {
2796 			err = -ENOMEM;
2797 			goto free_options;
2798 		}
2799 
2800 		for (j = HOT; j < n; j++) {
2801 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
2802 			sbi->write_io[i][j].sbi = sbi;
2803 			sbi->write_io[i][j].bio = NULL;
2804 			spin_lock_init(&sbi->write_io[i][j].io_lock);
2805 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2806 		}
2807 	}
2808 
2809 	init_rwsem(&sbi->cp_rwsem);
2810 	init_waitqueue_head(&sbi->cp_wait);
2811 	init_sb_info(sbi);
2812 
2813 	err = init_percpu_info(sbi);
2814 	if (err)
2815 		goto free_bio_info;
2816 
2817 	if (F2FS_IO_SIZE(sbi) > 1) {
2818 		sbi->write_io_dummy =
2819 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2820 		if (!sbi->write_io_dummy) {
2821 			err = -ENOMEM;
2822 			goto free_percpu;
2823 		}
2824 	}
2825 
2826 	/* get an inode for meta space */
2827 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2828 	if (IS_ERR(sbi->meta_inode)) {
2829 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2830 		err = PTR_ERR(sbi->meta_inode);
2831 		goto free_io_dummy;
2832 	}
2833 
2834 	err = f2fs_get_valid_checkpoint(sbi);
2835 	if (err) {
2836 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2837 		goto free_meta_inode;
2838 	}
2839 
2840 	/* Initialize device list */
2841 	err = f2fs_scan_devices(sbi);
2842 	if (err) {
2843 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2844 		goto free_devices;
2845 	}
2846 
2847 	sbi->total_valid_node_count =
2848 				le32_to_cpu(sbi->ckpt->valid_node_count);
2849 	percpu_counter_set(&sbi->total_valid_inode_count,
2850 				le32_to_cpu(sbi->ckpt->valid_inode_count));
2851 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2852 	sbi->total_valid_block_count =
2853 				le64_to_cpu(sbi->ckpt->valid_block_count);
2854 	sbi->last_valid_block_count = sbi->total_valid_block_count;
2855 	sbi->reserved_blocks = 0;
2856 	sbi->current_reserved_blocks = 0;
2857 	limit_reserve_root(sbi);
2858 
2859 	for (i = 0; i < NR_INODE_TYPE; i++) {
2860 		INIT_LIST_HEAD(&sbi->inode_list[i]);
2861 		spin_lock_init(&sbi->inode_lock[i]);
2862 	}
2863 
2864 	f2fs_init_extent_cache_info(sbi);
2865 
2866 	f2fs_init_ino_entry_info(sbi);
2867 
2868 	/* setup f2fs internal modules */
2869 	err = f2fs_build_segment_manager(sbi);
2870 	if (err) {
2871 		f2fs_msg(sb, KERN_ERR,
2872 			"Failed to initialize F2FS segment manager");
2873 		goto free_sm;
2874 	}
2875 	err = f2fs_build_node_manager(sbi);
2876 	if (err) {
2877 		f2fs_msg(sb, KERN_ERR,
2878 			"Failed to initialize F2FS node manager");
2879 		goto free_nm;
2880 	}
2881 
2882 	/* For write statistics */
2883 	if (sb->s_bdev->bd_part)
2884 		sbi->sectors_written_start =
2885 			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2886 
2887 	/* Read accumulated write IO statistics if exists */
2888 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2889 	if (__exist_node_summaries(sbi))
2890 		sbi->kbytes_written =
2891 			le64_to_cpu(seg_i->journal->info.kbytes_written);
2892 
2893 	f2fs_build_gc_manager(sbi);
2894 
2895 	/* get an inode for node space */
2896 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2897 	if (IS_ERR(sbi->node_inode)) {
2898 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2899 		err = PTR_ERR(sbi->node_inode);
2900 		goto free_nm;
2901 	}
2902 
2903 	err = f2fs_build_stats(sbi);
2904 	if (err)
2905 		goto free_node_inode;
2906 
2907 	/* read root inode and dentry */
2908 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2909 	if (IS_ERR(root)) {
2910 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2911 		err = PTR_ERR(root);
2912 		goto free_stats;
2913 	}
2914 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2915 		iput(root);
2916 		err = -EINVAL;
2917 		goto free_node_inode;
2918 	}
2919 
2920 	sb->s_root = d_make_root(root); /* allocate root dentry */
2921 	if (!sb->s_root) {
2922 		err = -ENOMEM;
2923 		goto free_root_inode;
2924 	}
2925 
2926 	err = f2fs_register_sysfs(sbi);
2927 	if (err)
2928 		goto free_root_inode;
2929 
2930 #ifdef CONFIG_QUOTA
2931 	/*
2932 	 * Turn on quotas which were not enabled for read-only mounts if
2933 	 * filesystem has quota feature, so that they are updated correctly.
2934 	 */
2935 	if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
2936 		err = f2fs_enable_quotas(sb);
2937 		if (err) {
2938 			f2fs_msg(sb, KERN_ERR,
2939 				"Cannot turn on quotas: error %d", err);
2940 			goto free_sysfs;
2941 		}
2942 	}
2943 #endif
2944 	/* if there are nt orphan nodes free them */
2945 	err = f2fs_recover_orphan_inodes(sbi);
2946 	if (err)
2947 		goto free_meta;
2948 
2949 	/* recover fsynced data */
2950 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2951 		/*
2952 		 * mount should be failed, when device has readonly mode, and
2953 		 * previous checkpoint was not done by clean system shutdown.
2954 		 */
2955 		if (bdev_read_only(sb->s_bdev) &&
2956 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2957 			err = -EROFS;
2958 			goto free_meta;
2959 		}
2960 
2961 		if (need_fsck)
2962 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2963 
2964 		if (!retry)
2965 			goto skip_recovery;
2966 
2967 		err = f2fs_recover_fsync_data(sbi, false);
2968 		if (err < 0) {
2969 			need_fsck = true;
2970 			f2fs_msg(sb, KERN_ERR,
2971 				"Cannot recover all fsync data errno=%d", err);
2972 			goto free_meta;
2973 		}
2974 	} else {
2975 		err = f2fs_recover_fsync_data(sbi, true);
2976 
2977 		if (!f2fs_readonly(sb) && err > 0) {
2978 			err = -EINVAL;
2979 			f2fs_msg(sb, KERN_ERR,
2980 				"Need to recover fsync data");
2981 			goto free_meta;
2982 		}
2983 	}
2984 skip_recovery:
2985 	/* f2fs_recover_fsync_data() cleared this already */
2986 	clear_sbi_flag(sbi, SBI_POR_DOING);
2987 
2988 	/*
2989 	 * If filesystem is not mounted as read-only then
2990 	 * do start the gc_thread.
2991 	 */
2992 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2993 		/* After POR, we can run background GC thread.*/
2994 		err = f2fs_start_gc_thread(sbi);
2995 		if (err)
2996 			goto free_meta;
2997 	}
2998 	kfree(options);
2999 
3000 	/* recover broken superblock */
3001 	if (recovery) {
3002 		err = f2fs_commit_super(sbi, true);
3003 		f2fs_msg(sb, KERN_INFO,
3004 			"Try to recover %dth superblock, ret: %d",
3005 			sbi->valid_super_block ? 1 : 2, err);
3006 	}
3007 
3008 	f2fs_join_shrinker(sbi);
3009 
3010 	f2fs_tuning_parameters(sbi);
3011 
3012 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3013 				cur_cp_version(F2FS_CKPT(sbi)));
3014 	f2fs_update_time(sbi, CP_TIME);
3015 	f2fs_update_time(sbi, REQ_TIME);
3016 	return 0;
3017 
3018 free_meta:
3019 #ifdef CONFIG_QUOTA
3020 	if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
3021 		f2fs_quota_off_umount(sbi->sb);
3022 #endif
3023 	f2fs_sync_inode_meta(sbi);
3024 	/*
3025 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3026 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3027 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3028 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3029 	 */
3030 	truncate_inode_pages_final(META_MAPPING(sbi));
3031 #ifdef CONFIG_QUOTA
3032 free_sysfs:
3033 #endif
3034 	f2fs_unregister_sysfs(sbi);
3035 free_root_inode:
3036 	dput(sb->s_root);
3037 	sb->s_root = NULL;
3038 free_stats:
3039 	f2fs_destroy_stats(sbi);
3040 free_node_inode:
3041 	f2fs_release_ino_entry(sbi, true);
3042 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3043 	iput(sbi->node_inode);
3044 free_nm:
3045 	f2fs_destroy_node_manager(sbi);
3046 free_sm:
3047 	f2fs_destroy_segment_manager(sbi);
3048 free_devices:
3049 	destroy_device_list(sbi);
3050 	kfree(sbi->ckpt);
3051 free_meta_inode:
3052 	make_bad_inode(sbi->meta_inode);
3053 	iput(sbi->meta_inode);
3054 free_io_dummy:
3055 	mempool_destroy(sbi->write_io_dummy);
3056 free_percpu:
3057 	destroy_percpu_info(sbi);
3058 free_bio_info:
3059 	for (i = 0; i < NR_PAGE_TYPE; i++)
3060 		kfree(sbi->write_io[i]);
3061 free_options:
3062 #ifdef CONFIG_QUOTA
3063 	for (i = 0; i < MAXQUOTAS; i++)
3064 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3065 #endif
3066 	kfree(options);
3067 free_sb_buf:
3068 	kfree(raw_super);
3069 free_sbi:
3070 	if (sbi->s_chksum_driver)
3071 		crypto_free_shash(sbi->s_chksum_driver);
3072 	kfree(sbi);
3073 
3074 	/* give only one another chance */
3075 	if (retry) {
3076 		retry = false;
3077 		shrink_dcache_sb(sb);
3078 		goto try_onemore;
3079 	}
3080 	return err;
3081 }
3082 
3083 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3084 			const char *dev_name, void *data)
3085 {
3086 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3087 }
3088 
3089 static void kill_f2fs_super(struct super_block *sb)
3090 {
3091 	if (sb->s_root) {
3092 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
3093 		f2fs_stop_gc_thread(F2FS_SB(sb));
3094 		f2fs_stop_discard_thread(F2FS_SB(sb));
3095 	}
3096 	kill_block_super(sb);
3097 }
3098 
3099 static struct file_system_type f2fs_fs_type = {
3100 	.owner		= THIS_MODULE,
3101 	.name		= "f2fs",
3102 	.mount		= f2fs_mount,
3103 	.kill_sb	= kill_f2fs_super,
3104 	.fs_flags	= FS_REQUIRES_DEV,
3105 };
3106 MODULE_ALIAS_FS("f2fs");
3107 
3108 static int __init init_inodecache(void)
3109 {
3110 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3111 			sizeof(struct f2fs_inode_info), 0,
3112 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3113 	if (!f2fs_inode_cachep)
3114 		return -ENOMEM;
3115 	return 0;
3116 }
3117 
3118 static void destroy_inodecache(void)
3119 {
3120 	/*
3121 	 * Make sure all delayed rcu free inodes are flushed before we
3122 	 * destroy cache.
3123 	 */
3124 	rcu_barrier();
3125 	kmem_cache_destroy(f2fs_inode_cachep);
3126 }
3127 
3128 static int __init init_f2fs_fs(void)
3129 {
3130 	int err;
3131 
3132 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3133 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3134 				PAGE_SIZE, F2FS_BLKSIZE);
3135 		return -EINVAL;
3136 	}
3137 
3138 	f2fs_build_trace_ios();
3139 
3140 	err = init_inodecache();
3141 	if (err)
3142 		goto fail;
3143 	err = f2fs_create_node_manager_caches();
3144 	if (err)
3145 		goto free_inodecache;
3146 	err = f2fs_create_segment_manager_caches();
3147 	if (err)
3148 		goto free_node_manager_caches;
3149 	err = f2fs_create_checkpoint_caches();
3150 	if (err)
3151 		goto free_segment_manager_caches;
3152 	err = f2fs_create_extent_cache();
3153 	if (err)
3154 		goto free_checkpoint_caches;
3155 	err = f2fs_init_sysfs();
3156 	if (err)
3157 		goto free_extent_cache;
3158 	err = register_shrinker(&f2fs_shrinker_info);
3159 	if (err)
3160 		goto free_sysfs;
3161 	err = register_filesystem(&f2fs_fs_type);
3162 	if (err)
3163 		goto free_shrinker;
3164 	err = f2fs_create_root_stats();
3165 	if (err)
3166 		goto free_filesystem;
3167 	err = f2fs_init_post_read_processing();
3168 	if (err)
3169 		goto free_root_stats;
3170 	return 0;
3171 
3172 free_root_stats:
3173 	f2fs_destroy_root_stats();
3174 free_filesystem:
3175 	unregister_filesystem(&f2fs_fs_type);
3176 free_shrinker:
3177 	unregister_shrinker(&f2fs_shrinker_info);
3178 free_sysfs:
3179 	f2fs_exit_sysfs();
3180 free_extent_cache:
3181 	f2fs_destroy_extent_cache();
3182 free_checkpoint_caches:
3183 	f2fs_destroy_checkpoint_caches();
3184 free_segment_manager_caches:
3185 	f2fs_destroy_segment_manager_caches();
3186 free_node_manager_caches:
3187 	f2fs_destroy_node_manager_caches();
3188 free_inodecache:
3189 	destroy_inodecache();
3190 fail:
3191 	return err;
3192 }
3193 
3194 static void __exit exit_f2fs_fs(void)
3195 {
3196 	f2fs_destroy_post_read_processing();
3197 	f2fs_destroy_root_stats();
3198 	unregister_filesystem(&f2fs_fs_type);
3199 	unregister_shrinker(&f2fs_shrinker_info);
3200 	f2fs_exit_sysfs();
3201 	f2fs_destroy_extent_cache();
3202 	f2fs_destroy_checkpoint_caches();
3203 	f2fs_destroy_segment_manager_caches();
3204 	f2fs_destroy_node_manager_caches();
3205 	destroy_inodecache();
3206 	f2fs_destroy_trace_ios();
3207 }
3208 
3209 module_init(init_f2fs_fs)
3210 module_exit(exit_f2fs_fs)
3211 
3212 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3213 MODULE_DESCRIPTION("Flash Friendly File System");
3214 MODULE_LICENSE("GPL");
3215 
3216