1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "xattr.h" 31 #include "gc.h" 32 #include "trace.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/f2fs.h> 36 37 static struct kmem_cache *f2fs_inode_cachep; 38 39 #ifdef CONFIG_F2FS_FAULT_INJECTION 40 41 const char *f2fs_fault_name[FAULT_MAX] = { 42 [FAULT_KMALLOC] = "kmalloc", 43 [FAULT_KVMALLOC] = "kvmalloc", 44 [FAULT_PAGE_ALLOC] = "page alloc", 45 [FAULT_PAGE_GET] = "page get", 46 [FAULT_ALLOC_BIO] = "alloc bio", 47 [FAULT_ALLOC_NID] = "alloc nid", 48 [FAULT_ORPHAN] = "orphan", 49 [FAULT_BLOCK] = "no more block", 50 [FAULT_DIR_DEPTH] = "too big dir depth", 51 [FAULT_EVICT_INODE] = "evict_inode fail", 52 [FAULT_TRUNCATE] = "truncate fail", 53 [FAULT_READ_IO] = "read IO error", 54 [FAULT_CHECKPOINT] = "checkpoint error", 55 [FAULT_DISCARD] = "discard error", 56 [FAULT_WRITE_IO] = "write IO error", 57 }; 58 59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 60 unsigned int type) 61 { 62 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 63 64 if (rate) { 65 atomic_set(&ffi->inject_ops, 0); 66 ffi->inject_rate = rate; 67 } 68 69 if (type) 70 ffi->inject_type = type; 71 72 if (!rate && !type) 73 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 74 } 75 #endif 76 77 /* f2fs-wide shrinker description */ 78 static struct shrinker f2fs_shrinker_info = { 79 .scan_objects = f2fs_shrink_scan, 80 .count_objects = f2fs_shrink_count, 81 .seeks = DEFAULT_SEEKS, 82 }; 83 84 enum { 85 Opt_gc_background, 86 Opt_disable_roll_forward, 87 Opt_norecovery, 88 Opt_discard, 89 Opt_nodiscard, 90 Opt_noheap, 91 Opt_heap, 92 Opt_user_xattr, 93 Opt_nouser_xattr, 94 Opt_acl, 95 Opt_noacl, 96 Opt_active_logs, 97 Opt_disable_ext_identify, 98 Opt_inline_xattr, 99 Opt_noinline_xattr, 100 Opt_inline_xattr_size, 101 Opt_inline_data, 102 Opt_inline_dentry, 103 Opt_noinline_dentry, 104 Opt_flush_merge, 105 Opt_noflush_merge, 106 Opt_nobarrier, 107 Opt_fastboot, 108 Opt_extent_cache, 109 Opt_noextent_cache, 110 Opt_noinline_data, 111 Opt_data_flush, 112 Opt_reserve_root, 113 Opt_resgid, 114 Opt_resuid, 115 Opt_mode, 116 Opt_io_size_bits, 117 Opt_fault_injection, 118 Opt_fault_type, 119 Opt_lazytime, 120 Opt_nolazytime, 121 Opt_quota, 122 Opt_noquota, 123 Opt_usrquota, 124 Opt_grpquota, 125 Opt_prjquota, 126 Opt_usrjquota, 127 Opt_grpjquota, 128 Opt_prjjquota, 129 Opt_offusrjquota, 130 Opt_offgrpjquota, 131 Opt_offprjjquota, 132 Opt_jqfmt_vfsold, 133 Opt_jqfmt_vfsv0, 134 Opt_jqfmt_vfsv1, 135 Opt_whint, 136 Opt_alloc, 137 Opt_fsync, 138 Opt_test_dummy_encryption, 139 Opt_checkpoint_disable, 140 Opt_checkpoint_disable_cap, 141 Opt_checkpoint_disable_cap_perc, 142 Opt_checkpoint_enable, 143 Opt_err, 144 }; 145 146 static match_table_t f2fs_tokens = { 147 {Opt_gc_background, "background_gc=%s"}, 148 {Opt_disable_roll_forward, "disable_roll_forward"}, 149 {Opt_norecovery, "norecovery"}, 150 {Opt_discard, "discard"}, 151 {Opt_nodiscard, "nodiscard"}, 152 {Opt_noheap, "no_heap"}, 153 {Opt_heap, "heap"}, 154 {Opt_user_xattr, "user_xattr"}, 155 {Opt_nouser_xattr, "nouser_xattr"}, 156 {Opt_acl, "acl"}, 157 {Opt_noacl, "noacl"}, 158 {Opt_active_logs, "active_logs=%u"}, 159 {Opt_disable_ext_identify, "disable_ext_identify"}, 160 {Opt_inline_xattr, "inline_xattr"}, 161 {Opt_noinline_xattr, "noinline_xattr"}, 162 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 163 {Opt_inline_data, "inline_data"}, 164 {Opt_inline_dentry, "inline_dentry"}, 165 {Opt_noinline_dentry, "noinline_dentry"}, 166 {Opt_flush_merge, "flush_merge"}, 167 {Opt_noflush_merge, "noflush_merge"}, 168 {Opt_nobarrier, "nobarrier"}, 169 {Opt_fastboot, "fastboot"}, 170 {Opt_extent_cache, "extent_cache"}, 171 {Opt_noextent_cache, "noextent_cache"}, 172 {Opt_noinline_data, "noinline_data"}, 173 {Opt_data_flush, "data_flush"}, 174 {Opt_reserve_root, "reserve_root=%u"}, 175 {Opt_resgid, "resgid=%u"}, 176 {Opt_resuid, "resuid=%u"}, 177 {Opt_mode, "mode=%s"}, 178 {Opt_io_size_bits, "io_bits=%u"}, 179 {Opt_fault_injection, "fault_injection=%u"}, 180 {Opt_fault_type, "fault_type=%u"}, 181 {Opt_lazytime, "lazytime"}, 182 {Opt_nolazytime, "nolazytime"}, 183 {Opt_quota, "quota"}, 184 {Opt_noquota, "noquota"}, 185 {Opt_usrquota, "usrquota"}, 186 {Opt_grpquota, "grpquota"}, 187 {Opt_prjquota, "prjquota"}, 188 {Opt_usrjquota, "usrjquota=%s"}, 189 {Opt_grpjquota, "grpjquota=%s"}, 190 {Opt_prjjquota, "prjjquota=%s"}, 191 {Opt_offusrjquota, "usrjquota="}, 192 {Opt_offgrpjquota, "grpjquota="}, 193 {Opt_offprjjquota, "prjjquota="}, 194 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 195 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 196 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 197 {Opt_whint, "whint_mode=%s"}, 198 {Opt_alloc, "alloc_mode=%s"}, 199 {Opt_fsync, "fsync_mode=%s"}, 200 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 201 {Opt_checkpoint_disable, "checkpoint=disable"}, 202 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 203 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 204 {Opt_checkpoint_enable, "checkpoint=enable"}, 205 {Opt_err, NULL}, 206 }; 207 208 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 209 { 210 struct va_format vaf; 211 va_list args; 212 int level; 213 214 va_start(args, fmt); 215 216 level = printk_get_level(fmt); 217 vaf.fmt = printk_skip_level(fmt); 218 vaf.va = &args; 219 printk("%c%cF2FS-fs (%s): %pV\n", 220 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 221 222 va_end(args); 223 } 224 225 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 226 { 227 block_t limit = min((sbi->user_block_count << 1) / 1000, 228 sbi->user_block_count - sbi->reserved_blocks); 229 230 /* limit is 0.2% */ 231 if (test_opt(sbi, RESERVE_ROOT) && 232 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 233 F2FS_OPTION(sbi).root_reserved_blocks = limit; 234 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 235 F2FS_OPTION(sbi).root_reserved_blocks); 236 } 237 if (!test_opt(sbi, RESERVE_ROOT) && 238 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 239 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 240 !gid_eq(F2FS_OPTION(sbi).s_resgid, 241 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 242 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 243 from_kuid_munged(&init_user_ns, 244 F2FS_OPTION(sbi).s_resuid), 245 from_kgid_munged(&init_user_ns, 246 F2FS_OPTION(sbi).s_resgid)); 247 } 248 249 static void init_once(void *foo) 250 { 251 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 252 253 inode_init_once(&fi->vfs_inode); 254 } 255 256 #ifdef CONFIG_QUOTA 257 static const char * const quotatypes[] = INITQFNAMES; 258 #define QTYPE2NAME(t) (quotatypes[t]) 259 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 260 substring_t *args) 261 { 262 struct f2fs_sb_info *sbi = F2FS_SB(sb); 263 char *qname; 264 int ret = -EINVAL; 265 266 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 267 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 268 return -EINVAL; 269 } 270 if (f2fs_sb_has_quota_ino(sbi)) { 271 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 272 return 0; 273 } 274 275 qname = match_strdup(args); 276 if (!qname) { 277 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 278 return -ENOMEM; 279 } 280 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 281 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 282 ret = 0; 283 else 284 f2fs_err(sbi, "%s quota file already specified", 285 QTYPE2NAME(qtype)); 286 goto errout; 287 } 288 if (strchr(qname, '/')) { 289 f2fs_err(sbi, "quotafile must be on filesystem root"); 290 goto errout; 291 } 292 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 293 set_opt(sbi, QUOTA); 294 return 0; 295 errout: 296 kvfree(qname); 297 return ret; 298 } 299 300 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 301 { 302 struct f2fs_sb_info *sbi = F2FS_SB(sb); 303 304 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 305 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 306 return -EINVAL; 307 } 308 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 309 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 310 return 0; 311 } 312 313 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 314 { 315 /* 316 * We do the test below only for project quotas. 'usrquota' and 317 * 'grpquota' mount options are allowed even without quota feature 318 * to support legacy quotas in quota files. 319 */ 320 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 321 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 322 return -1; 323 } 324 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 325 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 326 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 327 if (test_opt(sbi, USRQUOTA) && 328 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 329 clear_opt(sbi, USRQUOTA); 330 331 if (test_opt(sbi, GRPQUOTA) && 332 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 333 clear_opt(sbi, GRPQUOTA); 334 335 if (test_opt(sbi, PRJQUOTA) && 336 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 337 clear_opt(sbi, PRJQUOTA); 338 339 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 340 test_opt(sbi, PRJQUOTA)) { 341 f2fs_err(sbi, "old and new quota format mixing"); 342 return -1; 343 } 344 345 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 346 f2fs_err(sbi, "journaled quota format not specified"); 347 return -1; 348 } 349 } 350 351 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 352 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 353 F2FS_OPTION(sbi).s_jquota_fmt = 0; 354 } 355 return 0; 356 } 357 #endif 358 359 static int parse_options(struct super_block *sb, char *options) 360 { 361 struct f2fs_sb_info *sbi = F2FS_SB(sb); 362 substring_t args[MAX_OPT_ARGS]; 363 char *p, *name; 364 int arg = 0; 365 kuid_t uid; 366 kgid_t gid; 367 #ifdef CONFIG_QUOTA 368 int ret; 369 #endif 370 371 if (!options) 372 return 0; 373 374 while ((p = strsep(&options, ",")) != NULL) { 375 int token; 376 if (!*p) 377 continue; 378 /* 379 * Initialize args struct so we know whether arg was 380 * found; some options take optional arguments. 381 */ 382 args[0].to = args[0].from = NULL; 383 token = match_token(p, f2fs_tokens, args); 384 385 switch (token) { 386 case Opt_gc_background: 387 name = match_strdup(&args[0]); 388 389 if (!name) 390 return -ENOMEM; 391 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 392 set_opt(sbi, BG_GC); 393 clear_opt(sbi, FORCE_FG_GC); 394 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 395 clear_opt(sbi, BG_GC); 396 clear_opt(sbi, FORCE_FG_GC); 397 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 398 set_opt(sbi, BG_GC); 399 set_opt(sbi, FORCE_FG_GC); 400 } else { 401 kvfree(name); 402 return -EINVAL; 403 } 404 kvfree(name); 405 break; 406 case Opt_disable_roll_forward: 407 set_opt(sbi, DISABLE_ROLL_FORWARD); 408 break; 409 case Opt_norecovery: 410 /* this option mounts f2fs with ro */ 411 set_opt(sbi, DISABLE_ROLL_FORWARD); 412 if (!f2fs_readonly(sb)) 413 return -EINVAL; 414 break; 415 case Opt_discard: 416 set_opt(sbi, DISCARD); 417 break; 418 case Opt_nodiscard: 419 if (f2fs_sb_has_blkzoned(sbi)) { 420 f2fs_warn(sbi, "discard is required for zoned block devices"); 421 return -EINVAL; 422 } 423 clear_opt(sbi, DISCARD); 424 break; 425 case Opt_noheap: 426 set_opt(sbi, NOHEAP); 427 break; 428 case Opt_heap: 429 clear_opt(sbi, NOHEAP); 430 break; 431 #ifdef CONFIG_F2FS_FS_XATTR 432 case Opt_user_xattr: 433 set_opt(sbi, XATTR_USER); 434 break; 435 case Opt_nouser_xattr: 436 clear_opt(sbi, XATTR_USER); 437 break; 438 case Opt_inline_xattr: 439 set_opt(sbi, INLINE_XATTR); 440 break; 441 case Opt_noinline_xattr: 442 clear_opt(sbi, INLINE_XATTR); 443 break; 444 case Opt_inline_xattr_size: 445 if (args->from && match_int(args, &arg)) 446 return -EINVAL; 447 set_opt(sbi, INLINE_XATTR_SIZE); 448 F2FS_OPTION(sbi).inline_xattr_size = arg; 449 break; 450 #else 451 case Opt_user_xattr: 452 f2fs_info(sbi, "user_xattr options not supported"); 453 break; 454 case Opt_nouser_xattr: 455 f2fs_info(sbi, "nouser_xattr options not supported"); 456 break; 457 case Opt_inline_xattr: 458 f2fs_info(sbi, "inline_xattr options not supported"); 459 break; 460 case Opt_noinline_xattr: 461 f2fs_info(sbi, "noinline_xattr options not supported"); 462 break; 463 #endif 464 #ifdef CONFIG_F2FS_FS_POSIX_ACL 465 case Opt_acl: 466 set_opt(sbi, POSIX_ACL); 467 break; 468 case Opt_noacl: 469 clear_opt(sbi, POSIX_ACL); 470 break; 471 #else 472 case Opt_acl: 473 f2fs_info(sbi, "acl options not supported"); 474 break; 475 case Opt_noacl: 476 f2fs_info(sbi, "noacl options not supported"); 477 break; 478 #endif 479 case Opt_active_logs: 480 if (args->from && match_int(args, &arg)) 481 return -EINVAL; 482 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 483 return -EINVAL; 484 F2FS_OPTION(sbi).active_logs = arg; 485 break; 486 case Opt_disable_ext_identify: 487 set_opt(sbi, DISABLE_EXT_IDENTIFY); 488 break; 489 case Opt_inline_data: 490 set_opt(sbi, INLINE_DATA); 491 break; 492 case Opt_inline_dentry: 493 set_opt(sbi, INLINE_DENTRY); 494 break; 495 case Opt_noinline_dentry: 496 clear_opt(sbi, INLINE_DENTRY); 497 break; 498 case Opt_flush_merge: 499 set_opt(sbi, FLUSH_MERGE); 500 break; 501 case Opt_noflush_merge: 502 clear_opt(sbi, FLUSH_MERGE); 503 break; 504 case Opt_nobarrier: 505 set_opt(sbi, NOBARRIER); 506 break; 507 case Opt_fastboot: 508 set_opt(sbi, FASTBOOT); 509 break; 510 case Opt_extent_cache: 511 set_opt(sbi, EXTENT_CACHE); 512 break; 513 case Opt_noextent_cache: 514 clear_opt(sbi, EXTENT_CACHE); 515 break; 516 case Opt_noinline_data: 517 clear_opt(sbi, INLINE_DATA); 518 break; 519 case Opt_data_flush: 520 set_opt(sbi, DATA_FLUSH); 521 break; 522 case Opt_reserve_root: 523 if (args->from && match_int(args, &arg)) 524 return -EINVAL; 525 if (test_opt(sbi, RESERVE_ROOT)) { 526 f2fs_info(sbi, "Preserve previous reserve_root=%u", 527 F2FS_OPTION(sbi).root_reserved_blocks); 528 } else { 529 F2FS_OPTION(sbi).root_reserved_blocks = arg; 530 set_opt(sbi, RESERVE_ROOT); 531 } 532 break; 533 case Opt_resuid: 534 if (args->from && match_int(args, &arg)) 535 return -EINVAL; 536 uid = make_kuid(current_user_ns(), arg); 537 if (!uid_valid(uid)) { 538 f2fs_err(sbi, "Invalid uid value %d", arg); 539 return -EINVAL; 540 } 541 F2FS_OPTION(sbi).s_resuid = uid; 542 break; 543 case Opt_resgid: 544 if (args->from && match_int(args, &arg)) 545 return -EINVAL; 546 gid = make_kgid(current_user_ns(), arg); 547 if (!gid_valid(gid)) { 548 f2fs_err(sbi, "Invalid gid value %d", arg); 549 return -EINVAL; 550 } 551 F2FS_OPTION(sbi).s_resgid = gid; 552 break; 553 case Opt_mode: 554 name = match_strdup(&args[0]); 555 556 if (!name) 557 return -ENOMEM; 558 if (strlen(name) == 8 && 559 !strncmp(name, "adaptive", 8)) { 560 if (f2fs_sb_has_blkzoned(sbi)) { 561 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 562 kvfree(name); 563 return -EINVAL; 564 } 565 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 566 } else if (strlen(name) == 3 && 567 !strncmp(name, "lfs", 3)) { 568 set_opt_mode(sbi, F2FS_MOUNT_LFS); 569 } else { 570 kvfree(name); 571 return -EINVAL; 572 } 573 kvfree(name); 574 break; 575 case Opt_io_size_bits: 576 if (args->from && match_int(args, &arg)) 577 return -EINVAL; 578 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 579 f2fs_warn(sbi, "Not support %d, larger than %d", 580 1 << arg, BIO_MAX_PAGES); 581 return -EINVAL; 582 } 583 F2FS_OPTION(sbi).write_io_size_bits = arg; 584 break; 585 #ifdef CONFIG_F2FS_FAULT_INJECTION 586 case Opt_fault_injection: 587 if (args->from && match_int(args, &arg)) 588 return -EINVAL; 589 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 590 set_opt(sbi, FAULT_INJECTION); 591 break; 592 593 case Opt_fault_type: 594 if (args->from && match_int(args, &arg)) 595 return -EINVAL; 596 f2fs_build_fault_attr(sbi, 0, arg); 597 set_opt(sbi, FAULT_INJECTION); 598 break; 599 #else 600 case Opt_fault_injection: 601 f2fs_info(sbi, "fault_injection options not supported"); 602 break; 603 604 case Opt_fault_type: 605 f2fs_info(sbi, "fault_type options not supported"); 606 break; 607 #endif 608 case Opt_lazytime: 609 sb->s_flags |= SB_LAZYTIME; 610 break; 611 case Opt_nolazytime: 612 sb->s_flags &= ~SB_LAZYTIME; 613 break; 614 #ifdef CONFIG_QUOTA 615 case Opt_quota: 616 case Opt_usrquota: 617 set_opt(sbi, USRQUOTA); 618 break; 619 case Opt_grpquota: 620 set_opt(sbi, GRPQUOTA); 621 break; 622 case Opt_prjquota: 623 set_opt(sbi, PRJQUOTA); 624 break; 625 case Opt_usrjquota: 626 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 627 if (ret) 628 return ret; 629 break; 630 case Opt_grpjquota: 631 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 632 if (ret) 633 return ret; 634 break; 635 case Opt_prjjquota: 636 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 637 if (ret) 638 return ret; 639 break; 640 case Opt_offusrjquota: 641 ret = f2fs_clear_qf_name(sb, USRQUOTA); 642 if (ret) 643 return ret; 644 break; 645 case Opt_offgrpjquota: 646 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 647 if (ret) 648 return ret; 649 break; 650 case Opt_offprjjquota: 651 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 652 if (ret) 653 return ret; 654 break; 655 case Opt_jqfmt_vfsold: 656 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 657 break; 658 case Opt_jqfmt_vfsv0: 659 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 660 break; 661 case Opt_jqfmt_vfsv1: 662 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 663 break; 664 case Opt_noquota: 665 clear_opt(sbi, QUOTA); 666 clear_opt(sbi, USRQUOTA); 667 clear_opt(sbi, GRPQUOTA); 668 clear_opt(sbi, PRJQUOTA); 669 break; 670 #else 671 case Opt_quota: 672 case Opt_usrquota: 673 case Opt_grpquota: 674 case Opt_prjquota: 675 case Opt_usrjquota: 676 case Opt_grpjquota: 677 case Opt_prjjquota: 678 case Opt_offusrjquota: 679 case Opt_offgrpjquota: 680 case Opt_offprjjquota: 681 case Opt_jqfmt_vfsold: 682 case Opt_jqfmt_vfsv0: 683 case Opt_jqfmt_vfsv1: 684 case Opt_noquota: 685 f2fs_info(sbi, "quota operations not supported"); 686 break; 687 #endif 688 case Opt_whint: 689 name = match_strdup(&args[0]); 690 if (!name) 691 return -ENOMEM; 692 if (strlen(name) == 10 && 693 !strncmp(name, "user-based", 10)) { 694 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 695 } else if (strlen(name) == 3 && 696 !strncmp(name, "off", 3)) { 697 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 698 } else if (strlen(name) == 8 && 699 !strncmp(name, "fs-based", 8)) { 700 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 701 } else { 702 kvfree(name); 703 return -EINVAL; 704 } 705 kvfree(name); 706 break; 707 case Opt_alloc: 708 name = match_strdup(&args[0]); 709 if (!name) 710 return -ENOMEM; 711 712 if (strlen(name) == 7 && 713 !strncmp(name, "default", 7)) { 714 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 715 } else if (strlen(name) == 5 && 716 !strncmp(name, "reuse", 5)) { 717 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 718 } else { 719 kvfree(name); 720 return -EINVAL; 721 } 722 kvfree(name); 723 break; 724 case Opt_fsync: 725 name = match_strdup(&args[0]); 726 if (!name) 727 return -ENOMEM; 728 if (strlen(name) == 5 && 729 !strncmp(name, "posix", 5)) { 730 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 731 } else if (strlen(name) == 6 && 732 !strncmp(name, "strict", 6)) { 733 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 734 } else if (strlen(name) == 9 && 735 !strncmp(name, "nobarrier", 9)) { 736 F2FS_OPTION(sbi).fsync_mode = 737 FSYNC_MODE_NOBARRIER; 738 } else { 739 kvfree(name); 740 return -EINVAL; 741 } 742 kvfree(name); 743 break; 744 case Opt_test_dummy_encryption: 745 #ifdef CONFIG_FS_ENCRYPTION 746 if (!f2fs_sb_has_encrypt(sbi)) { 747 f2fs_err(sbi, "Encrypt feature is off"); 748 return -EINVAL; 749 } 750 751 F2FS_OPTION(sbi).test_dummy_encryption = true; 752 f2fs_info(sbi, "Test dummy encryption mode enabled"); 753 #else 754 f2fs_info(sbi, "Test dummy encryption mount option ignored"); 755 #endif 756 break; 757 case Opt_checkpoint_disable_cap_perc: 758 if (args->from && match_int(args, &arg)) 759 return -EINVAL; 760 if (arg < 0 || arg > 100) 761 return -EINVAL; 762 if (arg == 100) 763 F2FS_OPTION(sbi).unusable_cap = 764 sbi->user_block_count; 765 else 766 F2FS_OPTION(sbi).unusable_cap = 767 (sbi->user_block_count / 100) * arg; 768 set_opt(sbi, DISABLE_CHECKPOINT); 769 break; 770 case Opt_checkpoint_disable_cap: 771 if (args->from && match_int(args, &arg)) 772 return -EINVAL; 773 F2FS_OPTION(sbi).unusable_cap = arg; 774 set_opt(sbi, DISABLE_CHECKPOINT); 775 break; 776 case Opt_checkpoint_disable: 777 set_opt(sbi, DISABLE_CHECKPOINT); 778 break; 779 case Opt_checkpoint_enable: 780 clear_opt(sbi, DISABLE_CHECKPOINT); 781 break; 782 default: 783 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 784 p); 785 return -EINVAL; 786 } 787 } 788 #ifdef CONFIG_QUOTA 789 if (f2fs_check_quota_options(sbi)) 790 return -EINVAL; 791 #else 792 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 793 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 794 return -EINVAL; 795 } 796 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 797 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 798 return -EINVAL; 799 } 800 #endif 801 802 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 803 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 804 F2FS_IO_SIZE_KB(sbi)); 805 return -EINVAL; 806 } 807 808 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 809 int min_size, max_size; 810 811 if (!f2fs_sb_has_extra_attr(sbi) || 812 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 813 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 814 return -EINVAL; 815 } 816 if (!test_opt(sbi, INLINE_XATTR)) { 817 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 818 return -EINVAL; 819 } 820 821 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 822 max_size = MAX_INLINE_XATTR_SIZE; 823 824 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 825 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 826 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 827 min_size, max_size); 828 return -EINVAL; 829 } 830 } 831 832 if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) { 833 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n"); 834 return -EINVAL; 835 } 836 837 /* Not pass down write hints if the number of active logs is lesser 838 * than NR_CURSEG_TYPE. 839 */ 840 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 841 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 842 return 0; 843 } 844 845 static struct inode *f2fs_alloc_inode(struct super_block *sb) 846 { 847 struct f2fs_inode_info *fi; 848 849 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 850 if (!fi) 851 return NULL; 852 853 init_once((void *) fi); 854 855 /* Initialize f2fs-specific inode info */ 856 atomic_set(&fi->dirty_pages, 0); 857 init_rwsem(&fi->i_sem); 858 INIT_LIST_HEAD(&fi->dirty_list); 859 INIT_LIST_HEAD(&fi->gdirty_list); 860 INIT_LIST_HEAD(&fi->inmem_ilist); 861 INIT_LIST_HEAD(&fi->inmem_pages); 862 mutex_init(&fi->inmem_lock); 863 init_rwsem(&fi->i_gc_rwsem[READ]); 864 init_rwsem(&fi->i_gc_rwsem[WRITE]); 865 init_rwsem(&fi->i_mmap_sem); 866 init_rwsem(&fi->i_xattr_sem); 867 868 /* Will be used by directory only */ 869 fi->i_dir_level = F2FS_SB(sb)->dir_level; 870 871 return &fi->vfs_inode; 872 } 873 874 static int f2fs_drop_inode(struct inode *inode) 875 { 876 int ret; 877 /* 878 * This is to avoid a deadlock condition like below. 879 * writeback_single_inode(inode) 880 * - f2fs_write_data_page 881 * - f2fs_gc -> iput -> evict 882 * - inode_wait_for_writeback(inode) 883 */ 884 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 885 if (!inode->i_nlink && !is_bad_inode(inode)) { 886 /* to avoid evict_inode call simultaneously */ 887 atomic_inc(&inode->i_count); 888 spin_unlock(&inode->i_lock); 889 890 /* some remained atomic pages should discarded */ 891 if (f2fs_is_atomic_file(inode)) 892 f2fs_drop_inmem_pages(inode); 893 894 /* should remain fi->extent_tree for writepage */ 895 f2fs_destroy_extent_node(inode); 896 897 sb_start_intwrite(inode->i_sb); 898 f2fs_i_size_write(inode, 0); 899 900 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 901 inode, NULL, 0, DATA); 902 truncate_inode_pages_final(inode->i_mapping); 903 904 if (F2FS_HAS_BLOCKS(inode)) 905 f2fs_truncate(inode); 906 907 sb_end_intwrite(inode->i_sb); 908 909 spin_lock(&inode->i_lock); 910 atomic_dec(&inode->i_count); 911 } 912 trace_f2fs_drop_inode(inode, 0); 913 return 0; 914 } 915 ret = generic_drop_inode(inode); 916 if (!ret) 917 ret = fscrypt_drop_inode(inode); 918 trace_f2fs_drop_inode(inode, ret); 919 return ret; 920 } 921 922 int f2fs_inode_dirtied(struct inode *inode, bool sync) 923 { 924 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 925 int ret = 0; 926 927 spin_lock(&sbi->inode_lock[DIRTY_META]); 928 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 929 ret = 1; 930 } else { 931 set_inode_flag(inode, FI_DIRTY_INODE); 932 stat_inc_dirty_inode(sbi, DIRTY_META); 933 } 934 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 935 list_add_tail(&F2FS_I(inode)->gdirty_list, 936 &sbi->inode_list[DIRTY_META]); 937 inc_page_count(sbi, F2FS_DIRTY_IMETA); 938 } 939 spin_unlock(&sbi->inode_lock[DIRTY_META]); 940 return ret; 941 } 942 943 void f2fs_inode_synced(struct inode *inode) 944 { 945 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 946 947 spin_lock(&sbi->inode_lock[DIRTY_META]); 948 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 949 spin_unlock(&sbi->inode_lock[DIRTY_META]); 950 return; 951 } 952 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 953 list_del_init(&F2FS_I(inode)->gdirty_list); 954 dec_page_count(sbi, F2FS_DIRTY_IMETA); 955 } 956 clear_inode_flag(inode, FI_DIRTY_INODE); 957 clear_inode_flag(inode, FI_AUTO_RECOVER); 958 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 959 spin_unlock(&sbi->inode_lock[DIRTY_META]); 960 } 961 962 /* 963 * f2fs_dirty_inode() is called from __mark_inode_dirty() 964 * 965 * We should call set_dirty_inode to write the dirty inode through write_inode. 966 */ 967 static void f2fs_dirty_inode(struct inode *inode, int flags) 968 { 969 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 970 971 if (inode->i_ino == F2FS_NODE_INO(sbi) || 972 inode->i_ino == F2FS_META_INO(sbi)) 973 return; 974 975 if (flags == I_DIRTY_TIME) 976 return; 977 978 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 979 clear_inode_flag(inode, FI_AUTO_RECOVER); 980 981 f2fs_inode_dirtied(inode, false); 982 } 983 984 static void f2fs_free_inode(struct inode *inode) 985 { 986 fscrypt_free_inode(inode); 987 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 988 } 989 990 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 991 { 992 percpu_counter_destroy(&sbi->alloc_valid_block_count); 993 percpu_counter_destroy(&sbi->total_valid_inode_count); 994 } 995 996 static void destroy_device_list(struct f2fs_sb_info *sbi) 997 { 998 int i; 999 1000 for (i = 0; i < sbi->s_ndevs; i++) { 1001 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1002 #ifdef CONFIG_BLK_DEV_ZONED 1003 kvfree(FDEV(i).blkz_seq); 1004 #endif 1005 } 1006 kvfree(sbi->devs); 1007 } 1008 1009 static void f2fs_put_super(struct super_block *sb) 1010 { 1011 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1012 int i; 1013 bool dropped; 1014 1015 f2fs_quota_off_umount(sb); 1016 1017 /* prevent remaining shrinker jobs */ 1018 mutex_lock(&sbi->umount_mutex); 1019 1020 /* 1021 * We don't need to do checkpoint when superblock is clean. 1022 * But, the previous checkpoint was not done by umount, it needs to do 1023 * clean checkpoint again. 1024 */ 1025 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1026 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1027 struct cp_control cpc = { 1028 .reason = CP_UMOUNT, 1029 }; 1030 f2fs_write_checkpoint(sbi, &cpc); 1031 } 1032 1033 /* be sure to wait for any on-going discard commands */ 1034 dropped = f2fs_issue_discard_timeout(sbi); 1035 1036 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1037 !sbi->discard_blks && !dropped) { 1038 struct cp_control cpc = { 1039 .reason = CP_UMOUNT | CP_TRIMMED, 1040 }; 1041 f2fs_write_checkpoint(sbi, &cpc); 1042 } 1043 1044 /* 1045 * normally superblock is clean, so we need to release this. 1046 * In addition, EIO will skip do checkpoint, we need this as well. 1047 */ 1048 f2fs_release_ino_entry(sbi, true); 1049 1050 f2fs_leave_shrinker(sbi); 1051 mutex_unlock(&sbi->umount_mutex); 1052 1053 /* our cp_error case, we can wait for any writeback page */ 1054 f2fs_flush_merged_writes(sbi); 1055 1056 f2fs_wait_on_all_pages_writeback(sbi); 1057 1058 f2fs_bug_on(sbi, sbi->fsync_node_num); 1059 1060 iput(sbi->node_inode); 1061 sbi->node_inode = NULL; 1062 1063 iput(sbi->meta_inode); 1064 sbi->meta_inode = NULL; 1065 1066 /* 1067 * iput() can update stat information, if f2fs_write_checkpoint() 1068 * above failed with error. 1069 */ 1070 f2fs_destroy_stats(sbi); 1071 1072 /* destroy f2fs internal modules */ 1073 f2fs_destroy_node_manager(sbi); 1074 f2fs_destroy_segment_manager(sbi); 1075 1076 kvfree(sbi->ckpt); 1077 1078 f2fs_unregister_sysfs(sbi); 1079 1080 sb->s_fs_info = NULL; 1081 if (sbi->s_chksum_driver) 1082 crypto_free_shash(sbi->s_chksum_driver); 1083 kvfree(sbi->raw_super); 1084 1085 destroy_device_list(sbi); 1086 mempool_destroy(sbi->write_io_dummy); 1087 #ifdef CONFIG_QUOTA 1088 for (i = 0; i < MAXQUOTAS; i++) 1089 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1090 #endif 1091 destroy_percpu_info(sbi); 1092 for (i = 0; i < NR_PAGE_TYPE; i++) 1093 kvfree(sbi->write_io[i]); 1094 kvfree(sbi); 1095 } 1096 1097 int f2fs_sync_fs(struct super_block *sb, int sync) 1098 { 1099 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1100 int err = 0; 1101 1102 if (unlikely(f2fs_cp_error(sbi))) 1103 return 0; 1104 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1105 return 0; 1106 1107 trace_f2fs_sync_fs(sb, sync); 1108 1109 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1110 return -EAGAIN; 1111 1112 if (sync) { 1113 struct cp_control cpc; 1114 1115 cpc.reason = __get_cp_reason(sbi); 1116 1117 mutex_lock(&sbi->gc_mutex); 1118 err = f2fs_write_checkpoint(sbi, &cpc); 1119 mutex_unlock(&sbi->gc_mutex); 1120 } 1121 f2fs_trace_ios(NULL, 1); 1122 1123 return err; 1124 } 1125 1126 static int f2fs_freeze(struct super_block *sb) 1127 { 1128 if (f2fs_readonly(sb)) 1129 return 0; 1130 1131 /* IO error happened before */ 1132 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1133 return -EIO; 1134 1135 /* must be clean, since sync_filesystem() was already called */ 1136 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1137 return -EINVAL; 1138 return 0; 1139 } 1140 1141 static int f2fs_unfreeze(struct super_block *sb) 1142 { 1143 return 0; 1144 } 1145 1146 #ifdef CONFIG_QUOTA 1147 static int f2fs_statfs_project(struct super_block *sb, 1148 kprojid_t projid, struct kstatfs *buf) 1149 { 1150 struct kqid qid; 1151 struct dquot *dquot; 1152 u64 limit; 1153 u64 curblock; 1154 1155 qid = make_kqid_projid(projid); 1156 dquot = dqget(sb, qid); 1157 if (IS_ERR(dquot)) 1158 return PTR_ERR(dquot); 1159 spin_lock(&dquot->dq_dqb_lock); 1160 1161 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 1162 dquot->dq_dqb.dqb_bsoftlimit : 1163 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 1164 if (limit && buf->f_blocks > limit) { 1165 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1166 buf->f_blocks = limit; 1167 buf->f_bfree = buf->f_bavail = 1168 (buf->f_blocks > curblock) ? 1169 (buf->f_blocks - curblock) : 0; 1170 } 1171 1172 limit = dquot->dq_dqb.dqb_isoftlimit ? 1173 dquot->dq_dqb.dqb_isoftlimit : 1174 dquot->dq_dqb.dqb_ihardlimit; 1175 if (limit && buf->f_files > limit) { 1176 buf->f_files = limit; 1177 buf->f_ffree = 1178 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1179 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1180 } 1181 1182 spin_unlock(&dquot->dq_dqb_lock); 1183 dqput(dquot); 1184 return 0; 1185 } 1186 #endif 1187 1188 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1189 { 1190 struct super_block *sb = dentry->d_sb; 1191 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1192 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1193 block_t total_count, user_block_count, start_count; 1194 u64 avail_node_count; 1195 1196 total_count = le64_to_cpu(sbi->raw_super->block_count); 1197 user_block_count = sbi->user_block_count; 1198 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1199 buf->f_type = F2FS_SUPER_MAGIC; 1200 buf->f_bsize = sbi->blocksize; 1201 1202 buf->f_blocks = total_count - start_count; 1203 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1204 sbi->current_reserved_blocks; 1205 1206 spin_lock(&sbi->stat_lock); 1207 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1208 buf->f_bfree = 0; 1209 else 1210 buf->f_bfree -= sbi->unusable_block_count; 1211 spin_unlock(&sbi->stat_lock); 1212 1213 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1214 buf->f_bavail = buf->f_bfree - 1215 F2FS_OPTION(sbi).root_reserved_blocks; 1216 else 1217 buf->f_bavail = 0; 1218 1219 avail_node_count = sbi->total_node_count - sbi->nquota_files - 1220 F2FS_RESERVED_NODE_NUM; 1221 1222 if (avail_node_count > user_block_count) { 1223 buf->f_files = user_block_count; 1224 buf->f_ffree = buf->f_bavail; 1225 } else { 1226 buf->f_files = avail_node_count; 1227 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1228 buf->f_bavail); 1229 } 1230 1231 buf->f_namelen = F2FS_NAME_LEN; 1232 buf->f_fsid.val[0] = (u32)id; 1233 buf->f_fsid.val[1] = (u32)(id >> 32); 1234 1235 #ifdef CONFIG_QUOTA 1236 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1237 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1238 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1239 } 1240 #endif 1241 return 0; 1242 } 1243 1244 static inline void f2fs_show_quota_options(struct seq_file *seq, 1245 struct super_block *sb) 1246 { 1247 #ifdef CONFIG_QUOTA 1248 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1249 1250 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1251 char *fmtname = ""; 1252 1253 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1254 case QFMT_VFS_OLD: 1255 fmtname = "vfsold"; 1256 break; 1257 case QFMT_VFS_V0: 1258 fmtname = "vfsv0"; 1259 break; 1260 case QFMT_VFS_V1: 1261 fmtname = "vfsv1"; 1262 break; 1263 } 1264 seq_printf(seq, ",jqfmt=%s", fmtname); 1265 } 1266 1267 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1268 seq_show_option(seq, "usrjquota", 1269 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1270 1271 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1272 seq_show_option(seq, "grpjquota", 1273 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1274 1275 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1276 seq_show_option(seq, "prjjquota", 1277 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1278 #endif 1279 } 1280 1281 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1282 { 1283 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1284 1285 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 1286 if (test_opt(sbi, FORCE_FG_GC)) 1287 seq_printf(seq, ",background_gc=%s", "sync"); 1288 else 1289 seq_printf(seq, ",background_gc=%s", "on"); 1290 } else { 1291 seq_printf(seq, ",background_gc=%s", "off"); 1292 } 1293 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1294 seq_puts(seq, ",disable_roll_forward"); 1295 if (test_opt(sbi, DISCARD)) 1296 seq_puts(seq, ",discard"); 1297 else 1298 seq_puts(seq, ",nodiscard"); 1299 if (test_opt(sbi, NOHEAP)) 1300 seq_puts(seq, ",no_heap"); 1301 else 1302 seq_puts(seq, ",heap"); 1303 #ifdef CONFIG_F2FS_FS_XATTR 1304 if (test_opt(sbi, XATTR_USER)) 1305 seq_puts(seq, ",user_xattr"); 1306 else 1307 seq_puts(seq, ",nouser_xattr"); 1308 if (test_opt(sbi, INLINE_XATTR)) 1309 seq_puts(seq, ",inline_xattr"); 1310 else 1311 seq_puts(seq, ",noinline_xattr"); 1312 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1313 seq_printf(seq, ",inline_xattr_size=%u", 1314 F2FS_OPTION(sbi).inline_xattr_size); 1315 #endif 1316 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1317 if (test_opt(sbi, POSIX_ACL)) 1318 seq_puts(seq, ",acl"); 1319 else 1320 seq_puts(seq, ",noacl"); 1321 #endif 1322 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1323 seq_puts(seq, ",disable_ext_identify"); 1324 if (test_opt(sbi, INLINE_DATA)) 1325 seq_puts(seq, ",inline_data"); 1326 else 1327 seq_puts(seq, ",noinline_data"); 1328 if (test_opt(sbi, INLINE_DENTRY)) 1329 seq_puts(seq, ",inline_dentry"); 1330 else 1331 seq_puts(seq, ",noinline_dentry"); 1332 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1333 seq_puts(seq, ",flush_merge"); 1334 if (test_opt(sbi, NOBARRIER)) 1335 seq_puts(seq, ",nobarrier"); 1336 if (test_opt(sbi, FASTBOOT)) 1337 seq_puts(seq, ",fastboot"); 1338 if (test_opt(sbi, EXTENT_CACHE)) 1339 seq_puts(seq, ",extent_cache"); 1340 else 1341 seq_puts(seq, ",noextent_cache"); 1342 if (test_opt(sbi, DATA_FLUSH)) 1343 seq_puts(seq, ",data_flush"); 1344 1345 seq_puts(seq, ",mode="); 1346 if (test_opt(sbi, ADAPTIVE)) 1347 seq_puts(seq, "adaptive"); 1348 else if (test_opt(sbi, LFS)) 1349 seq_puts(seq, "lfs"); 1350 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1351 if (test_opt(sbi, RESERVE_ROOT)) 1352 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1353 F2FS_OPTION(sbi).root_reserved_blocks, 1354 from_kuid_munged(&init_user_ns, 1355 F2FS_OPTION(sbi).s_resuid), 1356 from_kgid_munged(&init_user_ns, 1357 F2FS_OPTION(sbi).s_resgid)); 1358 if (F2FS_IO_SIZE_BITS(sbi)) 1359 seq_printf(seq, ",io_bits=%u", 1360 F2FS_OPTION(sbi).write_io_size_bits); 1361 #ifdef CONFIG_F2FS_FAULT_INJECTION 1362 if (test_opt(sbi, FAULT_INJECTION)) { 1363 seq_printf(seq, ",fault_injection=%u", 1364 F2FS_OPTION(sbi).fault_info.inject_rate); 1365 seq_printf(seq, ",fault_type=%u", 1366 F2FS_OPTION(sbi).fault_info.inject_type); 1367 } 1368 #endif 1369 #ifdef CONFIG_QUOTA 1370 if (test_opt(sbi, QUOTA)) 1371 seq_puts(seq, ",quota"); 1372 if (test_opt(sbi, USRQUOTA)) 1373 seq_puts(seq, ",usrquota"); 1374 if (test_opt(sbi, GRPQUOTA)) 1375 seq_puts(seq, ",grpquota"); 1376 if (test_opt(sbi, PRJQUOTA)) 1377 seq_puts(seq, ",prjquota"); 1378 #endif 1379 f2fs_show_quota_options(seq, sbi->sb); 1380 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1381 seq_printf(seq, ",whint_mode=%s", "user-based"); 1382 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1383 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1384 #ifdef CONFIG_FS_ENCRYPTION 1385 if (F2FS_OPTION(sbi).test_dummy_encryption) 1386 seq_puts(seq, ",test_dummy_encryption"); 1387 #endif 1388 1389 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1390 seq_printf(seq, ",alloc_mode=%s", "default"); 1391 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1392 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1393 1394 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1395 seq_printf(seq, ",checkpoint=disable:%u", 1396 F2FS_OPTION(sbi).unusable_cap); 1397 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1398 seq_printf(seq, ",fsync_mode=%s", "posix"); 1399 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1400 seq_printf(seq, ",fsync_mode=%s", "strict"); 1401 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1402 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1403 return 0; 1404 } 1405 1406 static void default_options(struct f2fs_sb_info *sbi) 1407 { 1408 /* init some FS parameters */ 1409 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1410 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1411 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1412 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1413 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1414 F2FS_OPTION(sbi).test_dummy_encryption = false; 1415 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1416 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1417 1418 set_opt(sbi, BG_GC); 1419 set_opt(sbi, INLINE_XATTR); 1420 set_opt(sbi, INLINE_DATA); 1421 set_opt(sbi, INLINE_DENTRY); 1422 set_opt(sbi, EXTENT_CACHE); 1423 set_opt(sbi, NOHEAP); 1424 clear_opt(sbi, DISABLE_CHECKPOINT); 1425 F2FS_OPTION(sbi).unusable_cap = 0; 1426 sbi->sb->s_flags |= SB_LAZYTIME; 1427 set_opt(sbi, FLUSH_MERGE); 1428 set_opt(sbi, DISCARD); 1429 if (f2fs_sb_has_blkzoned(sbi)) 1430 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1431 else 1432 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1433 1434 #ifdef CONFIG_F2FS_FS_XATTR 1435 set_opt(sbi, XATTR_USER); 1436 #endif 1437 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1438 set_opt(sbi, POSIX_ACL); 1439 #endif 1440 1441 f2fs_build_fault_attr(sbi, 0, 0); 1442 } 1443 1444 #ifdef CONFIG_QUOTA 1445 static int f2fs_enable_quotas(struct super_block *sb); 1446 #endif 1447 1448 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1449 { 1450 unsigned int s_flags = sbi->sb->s_flags; 1451 struct cp_control cpc; 1452 int err = 0; 1453 int ret; 1454 block_t unusable; 1455 1456 if (s_flags & SB_RDONLY) { 1457 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 1458 return -EINVAL; 1459 } 1460 sbi->sb->s_flags |= SB_ACTIVE; 1461 1462 f2fs_update_time(sbi, DISABLE_TIME); 1463 1464 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1465 mutex_lock(&sbi->gc_mutex); 1466 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1467 if (err == -ENODATA) { 1468 err = 0; 1469 break; 1470 } 1471 if (err && err != -EAGAIN) 1472 break; 1473 } 1474 1475 ret = sync_filesystem(sbi->sb); 1476 if (ret || err) { 1477 err = ret ? ret: err; 1478 goto restore_flag; 1479 } 1480 1481 unusable = f2fs_get_unusable_blocks(sbi); 1482 if (f2fs_disable_cp_again(sbi, unusable)) { 1483 err = -EAGAIN; 1484 goto restore_flag; 1485 } 1486 1487 mutex_lock(&sbi->gc_mutex); 1488 cpc.reason = CP_PAUSE; 1489 set_sbi_flag(sbi, SBI_CP_DISABLED); 1490 err = f2fs_write_checkpoint(sbi, &cpc); 1491 if (err) 1492 goto out_unlock; 1493 1494 spin_lock(&sbi->stat_lock); 1495 sbi->unusable_block_count = unusable; 1496 spin_unlock(&sbi->stat_lock); 1497 1498 out_unlock: 1499 mutex_unlock(&sbi->gc_mutex); 1500 restore_flag: 1501 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1502 return err; 1503 } 1504 1505 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1506 { 1507 mutex_lock(&sbi->gc_mutex); 1508 f2fs_dirty_to_prefree(sbi); 1509 1510 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1511 set_sbi_flag(sbi, SBI_IS_DIRTY); 1512 mutex_unlock(&sbi->gc_mutex); 1513 1514 f2fs_sync_fs(sbi->sb, 1); 1515 } 1516 1517 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1518 { 1519 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1520 struct f2fs_mount_info org_mount_opt; 1521 unsigned long old_sb_flags; 1522 int err; 1523 bool need_restart_gc = false; 1524 bool need_stop_gc = false; 1525 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1526 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1527 bool checkpoint_changed; 1528 #ifdef CONFIG_QUOTA 1529 int i, j; 1530 #endif 1531 1532 /* 1533 * Save the old mount options in case we 1534 * need to restore them. 1535 */ 1536 org_mount_opt = sbi->mount_opt; 1537 old_sb_flags = sb->s_flags; 1538 1539 #ifdef CONFIG_QUOTA 1540 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1541 for (i = 0; i < MAXQUOTAS; i++) { 1542 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1543 org_mount_opt.s_qf_names[i] = 1544 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1545 GFP_KERNEL); 1546 if (!org_mount_opt.s_qf_names[i]) { 1547 for (j = 0; j < i; j++) 1548 kvfree(org_mount_opt.s_qf_names[j]); 1549 return -ENOMEM; 1550 } 1551 } else { 1552 org_mount_opt.s_qf_names[i] = NULL; 1553 } 1554 } 1555 #endif 1556 1557 /* recover superblocks we couldn't write due to previous RO mount */ 1558 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1559 err = f2fs_commit_super(sbi, false); 1560 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 1561 err); 1562 if (!err) 1563 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1564 } 1565 1566 default_options(sbi); 1567 1568 /* parse mount options */ 1569 err = parse_options(sb, data); 1570 if (err) 1571 goto restore_opts; 1572 checkpoint_changed = 1573 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1574 1575 /* 1576 * Previous and new state of filesystem is RO, 1577 * so skip checking GC and FLUSH_MERGE conditions. 1578 */ 1579 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1580 goto skip; 1581 1582 #ifdef CONFIG_QUOTA 1583 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1584 err = dquot_suspend(sb, -1); 1585 if (err < 0) 1586 goto restore_opts; 1587 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1588 /* dquot_resume needs RW */ 1589 sb->s_flags &= ~SB_RDONLY; 1590 if (sb_any_quota_suspended(sb)) { 1591 dquot_resume(sb, -1); 1592 } else if (f2fs_sb_has_quota_ino(sbi)) { 1593 err = f2fs_enable_quotas(sb); 1594 if (err) 1595 goto restore_opts; 1596 } 1597 } 1598 #endif 1599 /* disallow enable/disable extent_cache dynamically */ 1600 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1601 err = -EINVAL; 1602 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 1603 goto restore_opts; 1604 } 1605 1606 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1607 err = -EINVAL; 1608 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 1609 goto restore_opts; 1610 } 1611 1612 /* 1613 * We stop the GC thread if FS is mounted as RO 1614 * or if background_gc = off is passed in mount 1615 * option. Also sync the filesystem. 1616 */ 1617 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) { 1618 if (sbi->gc_thread) { 1619 f2fs_stop_gc_thread(sbi); 1620 need_restart_gc = true; 1621 } 1622 } else if (!sbi->gc_thread) { 1623 err = f2fs_start_gc_thread(sbi); 1624 if (err) 1625 goto restore_opts; 1626 need_stop_gc = true; 1627 } 1628 1629 if (*flags & SB_RDONLY || 1630 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1631 writeback_inodes_sb(sb, WB_REASON_SYNC); 1632 sync_inodes_sb(sb); 1633 1634 set_sbi_flag(sbi, SBI_IS_DIRTY); 1635 set_sbi_flag(sbi, SBI_IS_CLOSE); 1636 f2fs_sync_fs(sb, 1); 1637 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1638 } 1639 1640 if (checkpoint_changed) { 1641 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1642 err = f2fs_disable_checkpoint(sbi); 1643 if (err) 1644 goto restore_gc; 1645 } else { 1646 f2fs_enable_checkpoint(sbi); 1647 } 1648 } 1649 1650 /* 1651 * We stop issue flush thread if FS is mounted as RO 1652 * or if flush_merge is not passed in mount option. 1653 */ 1654 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1655 clear_opt(sbi, FLUSH_MERGE); 1656 f2fs_destroy_flush_cmd_control(sbi, false); 1657 } else { 1658 err = f2fs_create_flush_cmd_control(sbi); 1659 if (err) 1660 goto restore_gc; 1661 } 1662 skip: 1663 #ifdef CONFIG_QUOTA 1664 /* Release old quota file names */ 1665 for (i = 0; i < MAXQUOTAS; i++) 1666 kvfree(org_mount_opt.s_qf_names[i]); 1667 #endif 1668 /* Update the POSIXACL Flag */ 1669 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1670 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1671 1672 limit_reserve_root(sbi); 1673 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 1674 return 0; 1675 restore_gc: 1676 if (need_restart_gc) { 1677 if (f2fs_start_gc_thread(sbi)) 1678 f2fs_warn(sbi, "background gc thread has stopped"); 1679 } else if (need_stop_gc) { 1680 f2fs_stop_gc_thread(sbi); 1681 } 1682 restore_opts: 1683 #ifdef CONFIG_QUOTA 1684 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1685 for (i = 0; i < MAXQUOTAS; i++) { 1686 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1687 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1688 } 1689 #endif 1690 sbi->mount_opt = org_mount_opt; 1691 sb->s_flags = old_sb_flags; 1692 return err; 1693 } 1694 1695 #ifdef CONFIG_QUOTA 1696 /* Read data from quotafile */ 1697 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1698 size_t len, loff_t off) 1699 { 1700 struct inode *inode = sb_dqopt(sb)->files[type]; 1701 struct address_space *mapping = inode->i_mapping; 1702 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1703 int offset = off & (sb->s_blocksize - 1); 1704 int tocopy; 1705 size_t toread; 1706 loff_t i_size = i_size_read(inode); 1707 struct page *page; 1708 char *kaddr; 1709 1710 if (off > i_size) 1711 return 0; 1712 1713 if (off + len > i_size) 1714 len = i_size - off; 1715 toread = len; 1716 while (toread > 0) { 1717 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1718 repeat: 1719 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1720 if (IS_ERR(page)) { 1721 if (PTR_ERR(page) == -ENOMEM) { 1722 congestion_wait(BLK_RW_ASYNC, HZ/50); 1723 goto repeat; 1724 } 1725 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1726 return PTR_ERR(page); 1727 } 1728 1729 lock_page(page); 1730 1731 if (unlikely(page->mapping != mapping)) { 1732 f2fs_put_page(page, 1); 1733 goto repeat; 1734 } 1735 if (unlikely(!PageUptodate(page))) { 1736 f2fs_put_page(page, 1); 1737 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1738 return -EIO; 1739 } 1740 1741 kaddr = kmap_atomic(page); 1742 memcpy(data, kaddr + offset, tocopy); 1743 kunmap_atomic(kaddr); 1744 f2fs_put_page(page, 1); 1745 1746 offset = 0; 1747 toread -= tocopy; 1748 data += tocopy; 1749 blkidx++; 1750 } 1751 return len; 1752 } 1753 1754 /* Write to quotafile */ 1755 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1756 const char *data, size_t len, loff_t off) 1757 { 1758 struct inode *inode = sb_dqopt(sb)->files[type]; 1759 struct address_space *mapping = inode->i_mapping; 1760 const struct address_space_operations *a_ops = mapping->a_ops; 1761 int offset = off & (sb->s_blocksize - 1); 1762 size_t towrite = len; 1763 struct page *page; 1764 char *kaddr; 1765 int err = 0; 1766 int tocopy; 1767 1768 while (towrite > 0) { 1769 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1770 towrite); 1771 retry: 1772 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1773 &page, NULL); 1774 if (unlikely(err)) { 1775 if (err == -ENOMEM) { 1776 congestion_wait(BLK_RW_ASYNC, HZ/50); 1777 goto retry; 1778 } 1779 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1780 break; 1781 } 1782 1783 kaddr = kmap_atomic(page); 1784 memcpy(kaddr + offset, data, tocopy); 1785 kunmap_atomic(kaddr); 1786 flush_dcache_page(page); 1787 1788 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1789 page, NULL); 1790 offset = 0; 1791 towrite -= tocopy; 1792 off += tocopy; 1793 data += tocopy; 1794 cond_resched(); 1795 } 1796 1797 if (len == towrite) 1798 return err; 1799 inode->i_mtime = inode->i_ctime = current_time(inode); 1800 f2fs_mark_inode_dirty_sync(inode, false); 1801 return len - towrite; 1802 } 1803 1804 static struct dquot **f2fs_get_dquots(struct inode *inode) 1805 { 1806 return F2FS_I(inode)->i_dquot; 1807 } 1808 1809 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1810 { 1811 return &F2FS_I(inode)->i_reserved_quota; 1812 } 1813 1814 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1815 { 1816 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 1817 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 1818 return 0; 1819 } 1820 1821 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 1822 F2FS_OPTION(sbi).s_jquota_fmt, type); 1823 } 1824 1825 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 1826 { 1827 int enabled = 0; 1828 int i, err; 1829 1830 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 1831 err = f2fs_enable_quotas(sbi->sb); 1832 if (err) { 1833 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 1834 return 0; 1835 } 1836 return 1; 1837 } 1838 1839 for (i = 0; i < MAXQUOTAS; i++) { 1840 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1841 err = f2fs_quota_on_mount(sbi, i); 1842 if (!err) { 1843 enabled = 1; 1844 continue; 1845 } 1846 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 1847 err, i); 1848 } 1849 } 1850 return enabled; 1851 } 1852 1853 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 1854 unsigned int flags) 1855 { 1856 struct inode *qf_inode; 1857 unsigned long qf_inum; 1858 int err; 1859 1860 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 1861 1862 qf_inum = f2fs_qf_ino(sb, type); 1863 if (!qf_inum) 1864 return -EPERM; 1865 1866 qf_inode = f2fs_iget(sb, qf_inum); 1867 if (IS_ERR(qf_inode)) { 1868 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 1869 return PTR_ERR(qf_inode); 1870 } 1871 1872 /* Don't account quota for quota files to avoid recursion */ 1873 qf_inode->i_flags |= S_NOQUOTA; 1874 err = dquot_enable(qf_inode, type, format_id, flags); 1875 iput(qf_inode); 1876 return err; 1877 } 1878 1879 static int f2fs_enable_quotas(struct super_block *sb) 1880 { 1881 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1882 int type, err = 0; 1883 unsigned long qf_inum; 1884 bool quota_mopt[MAXQUOTAS] = { 1885 test_opt(sbi, USRQUOTA), 1886 test_opt(sbi, GRPQUOTA), 1887 test_opt(sbi, PRJQUOTA), 1888 }; 1889 1890 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 1891 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 1892 return 0; 1893 } 1894 1895 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 1896 1897 for (type = 0; type < MAXQUOTAS; type++) { 1898 qf_inum = f2fs_qf_ino(sb, type); 1899 if (qf_inum) { 1900 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 1901 DQUOT_USAGE_ENABLED | 1902 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 1903 if (err) { 1904 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 1905 type, err); 1906 for (type--; type >= 0; type--) 1907 dquot_quota_off(sb, type); 1908 set_sbi_flag(F2FS_SB(sb), 1909 SBI_QUOTA_NEED_REPAIR); 1910 return err; 1911 } 1912 } 1913 } 1914 return 0; 1915 } 1916 1917 int f2fs_quota_sync(struct super_block *sb, int type) 1918 { 1919 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1920 struct quota_info *dqopt = sb_dqopt(sb); 1921 int cnt; 1922 int ret; 1923 1924 /* 1925 * do_quotactl 1926 * f2fs_quota_sync 1927 * down_read(quota_sem) 1928 * dquot_writeback_dquots() 1929 * f2fs_dquot_commit 1930 * block_operation 1931 * down_read(quota_sem) 1932 */ 1933 f2fs_lock_op(sbi); 1934 1935 down_read(&sbi->quota_sem); 1936 ret = dquot_writeback_dquots(sb, type); 1937 if (ret) 1938 goto out; 1939 1940 /* 1941 * Now when everything is written we can discard the pagecache so 1942 * that userspace sees the changes. 1943 */ 1944 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 1945 struct address_space *mapping; 1946 1947 if (type != -1 && cnt != type) 1948 continue; 1949 if (!sb_has_quota_active(sb, cnt)) 1950 continue; 1951 1952 mapping = dqopt->files[cnt]->i_mapping; 1953 1954 ret = filemap_fdatawrite(mapping); 1955 if (ret) 1956 goto out; 1957 1958 /* if we are using journalled quota */ 1959 if (is_journalled_quota(sbi)) 1960 continue; 1961 1962 ret = filemap_fdatawait(mapping); 1963 if (ret) 1964 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1965 1966 inode_lock(dqopt->files[cnt]); 1967 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 1968 inode_unlock(dqopt->files[cnt]); 1969 } 1970 out: 1971 if (ret) 1972 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1973 up_read(&sbi->quota_sem); 1974 f2fs_unlock_op(sbi); 1975 return ret; 1976 } 1977 1978 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 1979 const struct path *path) 1980 { 1981 struct inode *inode; 1982 int err; 1983 1984 err = f2fs_quota_sync(sb, type); 1985 if (err) 1986 return err; 1987 1988 err = dquot_quota_on(sb, type, format_id, path); 1989 if (err) 1990 return err; 1991 1992 inode = d_inode(path->dentry); 1993 1994 inode_lock(inode); 1995 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 1996 f2fs_set_inode_flags(inode); 1997 inode_unlock(inode); 1998 f2fs_mark_inode_dirty_sync(inode, false); 1999 2000 return 0; 2001 } 2002 2003 static int f2fs_quota_off(struct super_block *sb, int type) 2004 { 2005 struct inode *inode = sb_dqopt(sb)->files[type]; 2006 int err; 2007 2008 if (!inode || !igrab(inode)) 2009 return dquot_quota_off(sb, type); 2010 2011 err = f2fs_quota_sync(sb, type); 2012 if (err) 2013 goto out_put; 2014 2015 err = dquot_quota_off(sb, type); 2016 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2017 goto out_put; 2018 2019 inode_lock(inode); 2020 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2021 f2fs_set_inode_flags(inode); 2022 inode_unlock(inode); 2023 f2fs_mark_inode_dirty_sync(inode, false); 2024 out_put: 2025 iput(inode); 2026 return err; 2027 } 2028 2029 void f2fs_quota_off_umount(struct super_block *sb) 2030 { 2031 int type; 2032 int err; 2033 2034 for (type = 0; type < MAXQUOTAS; type++) { 2035 err = f2fs_quota_off(sb, type); 2036 if (err) { 2037 int ret = dquot_quota_off(sb, type); 2038 2039 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2040 type, err, ret); 2041 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2042 } 2043 } 2044 /* 2045 * In case of checkpoint=disable, we must flush quota blocks. 2046 * This can cause NULL exception for node_inode in end_io, since 2047 * put_super already dropped it. 2048 */ 2049 sync_filesystem(sb); 2050 } 2051 2052 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2053 { 2054 struct quota_info *dqopt = sb_dqopt(sb); 2055 int type; 2056 2057 for (type = 0; type < MAXQUOTAS; type++) { 2058 if (!dqopt->files[type]) 2059 continue; 2060 f2fs_inode_synced(dqopt->files[type]); 2061 } 2062 } 2063 2064 static int f2fs_dquot_commit(struct dquot *dquot) 2065 { 2066 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2067 int ret; 2068 2069 down_read(&sbi->quota_sem); 2070 ret = dquot_commit(dquot); 2071 if (ret < 0) 2072 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2073 up_read(&sbi->quota_sem); 2074 return ret; 2075 } 2076 2077 static int f2fs_dquot_acquire(struct dquot *dquot) 2078 { 2079 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2080 int ret; 2081 2082 down_read(&sbi->quota_sem); 2083 ret = dquot_acquire(dquot); 2084 if (ret < 0) 2085 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2086 up_read(&sbi->quota_sem); 2087 return ret; 2088 } 2089 2090 static int f2fs_dquot_release(struct dquot *dquot) 2091 { 2092 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2093 int ret; 2094 2095 down_read(&sbi->quota_sem); 2096 ret = dquot_release(dquot); 2097 if (ret < 0) 2098 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2099 up_read(&sbi->quota_sem); 2100 return ret; 2101 } 2102 2103 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2104 { 2105 struct super_block *sb = dquot->dq_sb; 2106 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2107 int ret; 2108 2109 down_read(&sbi->quota_sem); 2110 ret = dquot_mark_dquot_dirty(dquot); 2111 2112 /* if we are using journalled quota */ 2113 if (is_journalled_quota(sbi)) 2114 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2115 2116 up_read(&sbi->quota_sem); 2117 return ret; 2118 } 2119 2120 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2121 { 2122 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2123 int ret; 2124 2125 down_read(&sbi->quota_sem); 2126 ret = dquot_commit_info(sb, type); 2127 if (ret < 0) 2128 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2129 up_read(&sbi->quota_sem); 2130 return ret; 2131 } 2132 2133 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2134 { 2135 *projid = F2FS_I(inode)->i_projid; 2136 return 0; 2137 } 2138 2139 static const struct dquot_operations f2fs_quota_operations = { 2140 .get_reserved_space = f2fs_get_reserved_space, 2141 .write_dquot = f2fs_dquot_commit, 2142 .acquire_dquot = f2fs_dquot_acquire, 2143 .release_dquot = f2fs_dquot_release, 2144 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2145 .write_info = f2fs_dquot_commit_info, 2146 .alloc_dquot = dquot_alloc, 2147 .destroy_dquot = dquot_destroy, 2148 .get_projid = f2fs_get_projid, 2149 .get_next_id = dquot_get_next_id, 2150 }; 2151 2152 static const struct quotactl_ops f2fs_quotactl_ops = { 2153 .quota_on = f2fs_quota_on, 2154 .quota_off = f2fs_quota_off, 2155 .quota_sync = f2fs_quota_sync, 2156 .get_state = dquot_get_state, 2157 .set_info = dquot_set_dqinfo, 2158 .get_dqblk = dquot_get_dqblk, 2159 .set_dqblk = dquot_set_dqblk, 2160 .get_nextdqblk = dquot_get_next_dqblk, 2161 }; 2162 #else 2163 int f2fs_quota_sync(struct super_block *sb, int type) 2164 { 2165 return 0; 2166 } 2167 2168 void f2fs_quota_off_umount(struct super_block *sb) 2169 { 2170 } 2171 #endif 2172 2173 static const struct super_operations f2fs_sops = { 2174 .alloc_inode = f2fs_alloc_inode, 2175 .free_inode = f2fs_free_inode, 2176 .drop_inode = f2fs_drop_inode, 2177 .write_inode = f2fs_write_inode, 2178 .dirty_inode = f2fs_dirty_inode, 2179 .show_options = f2fs_show_options, 2180 #ifdef CONFIG_QUOTA 2181 .quota_read = f2fs_quota_read, 2182 .quota_write = f2fs_quota_write, 2183 .get_dquots = f2fs_get_dquots, 2184 #endif 2185 .evict_inode = f2fs_evict_inode, 2186 .put_super = f2fs_put_super, 2187 .sync_fs = f2fs_sync_fs, 2188 .freeze_fs = f2fs_freeze, 2189 .unfreeze_fs = f2fs_unfreeze, 2190 .statfs = f2fs_statfs, 2191 .remount_fs = f2fs_remount, 2192 }; 2193 2194 #ifdef CONFIG_FS_ENCRYPTION 2195 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2196 { 2197 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2198 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2199 ctx, len, NULL); 2200 } 2201 2202 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2203 void *fs_data) 2204 { 2205 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2206 2207 /* 2208 * Encrypting the root directory is not allowed because fsck 2209 * expects lost+found directory to exist and remain unencrypted 2210 * if LOST_FOUND feature is enabled. 2211 * 2212 */ 2213 if (f2fs_sb_has_lost_found(sbi) && 2214 inode->i_ino == F2FS_ROOT_INO(sbi)) 2215 return -EPERM; 2216 2217 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2218 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2219 ctx, len, fs_data, XATTR_CREATE); 2220 } 2221 2222 static bool f2fs_dummy_context(struct inode *inode) 2223 { 2224 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 2225 } 2226 2227 static const struct fscrypt_operations f2fs_cryptops = { 2228 .key_prefix = "f2fs:", 2229 .get_context = f2fs_get_context, 2230 .set_context = f2fs_set_context, 2231 .dummy_context = f2fs_dummy_context, 2232 .empty_dir = f2fs_empty_dir, 2233 .max_namelen = F2FS_NAME_LEN, 2234 }; 2235 #endif 2236 2237 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2238 u64 ino, u32 generation) 2239 { 2240 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2241 struct inode *inode; 2242 2243 if (f2fs_check_nid_range(sbi, ino)) 2244 return ERR_PTR(-ESTALE); 2245 2246 /* 2247 * f2fs_iget isn't quite right if the inode is currently unallocated! 2248 * However f2fs_iget currently does appropriate checks to handle stale 2249 * inodes so everything is OK. 2250 */ 2251 inode = f2fs_iget(sb, ino); 2252 if (IS_ERR(inode)) 2253 return ERR_CAST(inode); 2254 if (unlikely(generation && inode->i_generation != generation)) { 2255 /* we didn't find the right inode.. */ 2256 iput(inode); 2257 return ERR_PTR(-ESTALE); 2258 } 2259 return inode; 2260 } 2261 2262 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2263 int fh_len, int fh_type) 2264 { 2265 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2266 f2fs_nfs_get_inode); 2267 } 2268 2269 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2270 int fh_len, int fh_type) 2271 { 2272 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2273 f2fs_nfs_get_inode); 2274 } 2275 2276 static const struct export_operations f2fs_export_ops = { 2277 .fh_to_dentry = f2fs_fh_to_dentry, 2278 .fh_to_parent = f2fs_fh_to_parent, 2279 .get_parent = f2fs_get_parent, 2280 }; 2281 2282 static loff_t max_file_blocks(void) 2283 { 2284 loff_t result = 0; 2285 loff_t leaf_count = DEF_ADDRS_PER_BLOCK; 2286 2287 /* 2288 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2289 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2290 * space in inode.i_addr, it will be more safe to reassign 2291 * result as zero. 2292 */ 2293 2294 /* two direct node blocks */ 2295 result += (leaf_count * 2); 2296 2297 /* two indirect node blocks */ 2298 leaf_count *= NIDS_PER_BLOCK; 2299 result += (leaf_count * 2); 2300 2301 /* one double indirect node block */ 2302 leaf_count *= NIDS_PER_BLOCK; 2303 result += leaf_count; 2304 2305 return result; 2306 } 2307 2308 static int __f2fs_commit_super(struct buffer_head *bh, 2309 struct f2fs_super_block *super) 2310 { 2311 lock_buffer(bh); 2312 if (super) 2313 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2314 set_buffer_dirty(bh); 2315 unlock_buffer(bh); 2316 2317 /* it's rare case, we can do fua all the time */ 2318 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2319 } 2320 2321 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2322 struct buffer_head *bh) 2323 { 2324 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2325 (bh->b_data + F2FS_SUPER_OFFSET); 2326 struct super_block *sb = sbi->sb; 2327 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2328 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2329 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2330 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2331 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2332 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2333 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2334 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2335 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2336 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2337 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2338 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2339 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2340 u64 main_end_blkaddr = main_blkaddr + 2341 (segment_count_main << log_blocks_per_seg); 2342 u64 seg_end_blkaddr = segment0_blkaddr + 2343 (segment_count << log_blocks_per_seg); 2344 2345 if (segment0_blkaddr != cp_blkaddr) { 2346 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2347 segment0_blkaddr, cp_blkaddr); 2348 return true; 2349 } 2350 2351 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2352 sit_blkaddr) { 2353 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2354 cp_blkaddr, sit_blkaddr, 2355 segment_count_ckpt << log_blocks_per_seg); 2356 return true; 2357 } 2358 2359 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2360 nat_blkaddr) { 2361 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2362 sit_blkaddr, nat_blkaddr, 2363 segment_count_sit << log_blocks_per_seg); 2364 return true; 2365 } 2366 2367 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2368 ssa_blkaddr) { 2369 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2370 nat_blkaddr, ssa_blkaddr, 2371 segment_count_nat << log_blocks_per_seg); 2372 return true; 2373 } 2374 2375 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2376 main_blkaddr) { 2377 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2378 ssa_blkaddr, main_blkaddr, 2379 segment_count_ssa << log_blocks_per_seg); 2380 return true; 2381 } 2382 2383 if (main_end_blkaddr > seg_end_blkaddr) { 2384 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2385 main_blkaddr, 2386 segment0_blkaddr + 2387 (segment_count << log_blocks_per_seg), 2388 segment_count_main << log_blocks_per_seg); 2389 return true; 2390 } else if (main_end_blkaddr < seg_end_blkaddr) { 2391 int err = 0; 2392 char *res; 2393 2394 /* fix in-memory information all the time */ 2395 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2396 segment0_blkaddr) >> log_blocks_per_seg); 2397 2398 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2399 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2400 res = "internally"; 2401 } else { 2402 err = __f2fs_commit_super(bh, NULL); 2403 res = err ? "failed" : "done"; 2404 } 2405 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)", 2406 res, main_blkaddr, 2407 segment0_blkaddr + 2408 (segment_count << log_blocks_per_seg), 2409 segment_count_main << log_blocks_per_seg); 2410 if (err) 2411 return true; 2412 } 2413 return false; 2414 } 2415 2416 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2417 struct buffer_head *bh) 2418 { 2419 block_t segment_count, segs_per_sec, secs_per_zone; 2420 block_t total_sections, blocks_per_seg; 2421 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2422 (bh->b_data + F2FS_SUPER_OFFSET); 2423 unsigned int blocksize; 2424 size_t crc_offset = 0; 2425 __u32 crc = 0; 2426 2427 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 2428 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 2429 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2430 return -EINVAL; 2431 } 2432 2433 /* Check checksum_offset and crc in superblock */ 2434 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2435 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2436 if (crc_offset != 2437 offsetof(struct f2fs_super_block, crc)) { 2438 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 2439 crc_offset); 2440 return -EFSCORRUPTED; 2441 } 2442 crc = le32_to_cpu(raw_super->crc); 2443 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2444 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 2445 return -EFSCORRUPTED; 2446 } 2447 } 2448 2449 /* Currently, support only 4KB page cache size */ 2450 if (F2FS_BLKSIZE != PAGE_SIZE) { 2451 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB", 2452 PAGE_SIZE); 2453 return -EFSCORRUPTED; 2454 } 2455 2456 /* Currently, support only 4KB block size */ 2457 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2458 if (blocksize != F2FS_BLKSIZE) { 2459 f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB", 2460 blocksize); 2461 return -EFSCORRUPTED; 2462 } 2463 2464 /* check log blocks per segment */ 2465 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2466 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 2467 le32_to_cpu(raw_super->log_blocks_per_seg)); 2468 return -EFSCORRUPTED; 2469 } 2470 2471 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2472 if (le32_to_cpu(raw_super->log_sectorsize) > 2473 F2FS_MAX_LOG_SECTOR_SIZE || 2474 le32_to_cpu(raw_super->log_sectorsize) < 2475 F2FS_MIN_LOG_SECTOR_SIZE) { 2476 f2fs_info(sbi, "Invalid log sectorsize (%u)", 2477 le32_to_cpu(raw_super->log_sectorsize)); 2478 return -EFSCORRUPTED; 2479 } 2480 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2481 le32_to_cpu(raw_super->log_sectorsize) != 2482 F2FS_MAX_LOG_SECTOR_SIZE) { 2483 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 2484 le32_to_cpu(raw_super->log_sectors_per_block), 2485 le32_to_cpu(raw_super->log_sectorsize)); 2486 return -EFSCORRUPTED; 2487 } 2488 2489 segment_count = le32_to_cpu(raw_super->segment_count); 2490 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2491 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2492 total_sections = le32_to_cpu(raw_super->section_count); 2493 2494 /* blocks_per_seg should be 512, given the above check */ 2495 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2496 2497 if (segment_count > F2FS_MAX_SEGMENT || 2498 segment_count < F2FS_MIN_SEGMENTS) { 2499 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 2500 return -EFSCORRUPTED; 2501 } 2502 2503 if (total_sections > segment_count || 2504 total_sections < F2FS_MIN_SEGMENTS || 2505 segs_per_sec > segment_count || !segs_per_sec) { 2506 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 2507 segment_count, total_sections, segs_per_sec); 2508 return -EFSCORRUPTED; 2509 } 2510 2511 if ((segment_count / segs_per_sec) < total_sections) { 2512 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 2513 segment_count, segs_per_sec, total_sections); 2514 return -EFSCORRUPTED; 2515 } 2516 2517 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2518 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 2519 segment_count, le64_to_cpu(raw_super->block_count)); 2520 return -EFSCORRUPTED; 2521 } 2522 2523 if (secs_per_zone > total_sections || !secs_per_zone) { 2524 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 2525 secs_per_zone, total_sections); 2526 return -EFSCORRUPTED; 2527 } 2528 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2529 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2530 (le32_to_cpu(raw_super->extension_count) + 2531 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2532 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 2533 le32_to_cpu(raw_super->extension_count), 2534 raw_super->hot_ext_count, 2535 F2FS_MAX_EXTENSION); 2536 return -EFSCORRUPTED; 2537 } 2538 2539 if (le32_to_cpu(raw_super->cp_payload) > 2540 (blocks_per_seg - F2FS_CP_PACKS)) { 2541 f2fs_info(sbi, "Insane cp_payload (%u > %u)", 2542 le32_to_cpu(raw_super->cp_payload), 2543 blocks_per_seg - F2FS_CP_PACKS); 2544 return -EFSCORRUPTED; 2545 } 2546 2547 /* check reserved ino info */ 2548 if (le32_to_cpu(raw_super->node_ino) != 1 || 2549 le32_to_cpu(raw_super->meta_ino) != 2 || 2550 le32_to_cpu(raw_super->root_ino) != 3) { 2551 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2552 le32_to_cpu(raw_super->node_ino), 2553 le32_to_cpu(raw_super->meta_ino), 2554 le32_to_cpu(raw_super->root_ino)); 2555 return -EFSCORRUPTED; 2556 } 2557 2558 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2559 if (sanity_check_area_boundary(sbi, bh)) 2560 return -EFSCORRUPTED; 2561 2562 return 0; 2563 } 2564 2565 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2566 { 2567 unsigned int total, fsmeta; 2568 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2569 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2570 unsigned int ovp_segments, reserved_segments; 2571 unsigned int main_segs, blocks_per_seg; 2572 unsigned int sit_segs, nat_segs; 2573 unsigned int sit_bitmap_size, nat_bitmap_size; 2574 unsigned int log_blocks_per_seg; 2575 unsigned int segment_count_main; 2576 unsigned int cp_pack_start_sum, cp_payload; 2577 block_t user_block_count, valid_user_blocks; 2578 block_t avail_node_count, valid_node_count; 2579 int i, j; 2580 2581 total = le32_to_cpu(raw_super->segment_count); 2582 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2583 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 2584 fsmeta += sit_segs; 2585 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 2586 fsmeta += nat_segs; 2587 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2588 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2589 2590 if (unlikely(fsmeta >= total)) 2591 return 1; 2592 2593 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2594 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2595 2596 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2597 ovp_segments == 0 || reserved_segments == 0)) { 2598 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 2599 return 1; 2600 } 2601 2602 user_block_count = le64_to_cpu(ckpt->user_block_count); 2603 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2604 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2605 if (!user_block_count || user_block_count >= 2606 segment_count_main << log_blocks_per_seg) { 2607 f2fs_err(sbi, "Wrong user_block_count: %u", 2608 user_block_count); 2609 return 1; 2610 } 2611 2612 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 2613 if (valid_user_blocks > user_block_count) { 2614 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 2615 valid_user_blocks, user_block_count); 2616 return 1; 2617 } 2618 2619 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 2620 avail_node_count = sbi->total_node_count - sbi->nquota_files - 2621 F2FS_RESERVED_NODE_NUM; 2622 if (valid_node_count > avail_node_count) { 2623 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 2624 valid_node_count, avail_node_count); 2625 return 1; 2626 } 2627 2628 main_segs = le32_to_cpu(raw_super->segment_count_main); 2629 blocks_per_seg = sbi->blocks_per_seg; 2630 2631 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2632 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2633 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2634 return 1; 2635 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 2636 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2637 le32_to_cpu(ckpt->cur_node_segno[j])) { 2638 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 2639 i, j, 2640 le32_to_cpu(ckpt->cur_node_segno[i])); 2641 return 1; 2642 } 2643 } 2644 } 2645 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2646 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2647 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2648 return 1; 2649 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 2650 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 2651 le32_to_cpu(ckpt->cur_data_segno[j])) { 2652 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 2653 i, j, 2654 le32_to_cpu(ckpt->cur_data_segno[i])); 2655 return 1; 2656 } 2657 } 2658 } 2659 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2660 for (j = i; j < NR_CURSEG_DATA_TYPE; j++) { 2661 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2662 le32_to_cpu(ckpt->cur_data_segno[j])) { 2663 f2fs_err(sbi, "Data segment (%u) and Data segment (%u) has the same segno: %u", 2664 i, j, 2665 le32_to_cpu(ckpt->cur_node_segno[i])); 2666 return 1; 2667 } 2668 } 2669 } 2670 2671 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2672 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2673 2674 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 2675 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 2676 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 2677 sit_bitmap_size, nat_bitmap_size); 2678 return 1; 2679 } 2680 2681 cp_pack_start_sum = __start_sum_addr(sbi); 2682 cp_payload = __cp_payload(sbi); 2683 if (cp_pack_start_sum < cp_payload + 1 || 2684 cp_pack_start_sum > blocks_per_seg - 1 - 2685 NR_CURSEG_TYPE) { 2686 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 2687 cp_pack_start_sum); 2688 return 1; 2689 } 2690 2691 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 2692 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 2693 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 2694 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 2695 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 2696 le32_to_cpu(ckpt->checksum_offset)); 2697 return 1; 2698 } 2699 2700 if (unlikely(f2fs_cp_error(sbi))) { 2701 f2fs_err(sbi, "A bug case: need to run fsck"); 2702 return 1; 2703 } 2704 return 0; 2705 } 2706 2707 static void init_sb_info(struct f2fs_sb_info *sbi) 2708 { 2709 struct f2fs_super_block *raw_super = sbi->raw_super; 2710 int i; 2711 2712 sbi->log_sectors_per_block = 2713 le32_to_cpu(raw_super->log_sectors_per_block); 2714 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2715 sbi->blocksize = 1 << sbi->log_blocksize; 2716 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2717 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2718 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2719 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2720 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2721 sbi->total_node_count = 2722 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2723 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2724 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2725 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2726 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2727 sbi->cur_victim_sec = NULL_SECNO; 2728 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 2729 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 2730 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2731 sbi->migration_granularity = sbi->segs_per_sec; 2732 2733 sbi->dir_level = DEF_DIR_LEVEL; 2734 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2735 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2736 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 2737 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 2738 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 2739 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 2740 DEF_UMOUNT_DISCARD_TIMEOUT; 2741 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2742 2743 for (i = 0; i < NR_COUNT_TYPE; i++) 2744 atomic_set(&sbi->nr_pages[i], 0); 2745 2746 for (i = 0; i < META; i++) 2747 atomic_set(&sbi->wb_sync_req[i], 0); 2748 2749 INIT_LIST_HEAD(&sbi->s_list); 2750 mutex_init(&sbi->umount_mutex); 2751 init_rwsem(&sbi->io_order_lock); 2752 spin_lock_init(&sbi->cp_lock); 2753 2754 sbi->dirty_device = 0; 2755 spin_lock_init(&sbi->dev_lock); 2756 2757 init_rwsem(&sbi->sb_lock); 2758 } 2759 2760 static int init_percpu_info(struct f2fs_sb_info *sbi) 2761 { 2762 int err; 2763 2764 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2765 if (err) 2766 return err; 2767 2768 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 2769 GFP_KERNEL); 2770 if (err) 2771 percpu_counter_destroy(&sbi->alloc_valid_block_count); 2772 2773 return err; 2774 } 2775 2776 #ifdef CONFIG_BLK_DEV_ZONED 2777 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 2778 { 2779 struct block_device *bdev = FDEV(devi).bdev; 2780 sector_t nr_sectors = bdev->bd_part->nr_sects; 2781 sector_t sector = 0; 2782 struct blk_zone *zones; 2783 unsigned int i, nr_zones; 2784 unsigned int n = 0; 2785 int err = -EIO; 2786 2787 if (!f2fs_sb_has_blkzoned(sbi)) 2788 return 0; 2789 2790 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 2791 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 2792 return -EINVAL; 2793 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 2794 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 2795 __ilog2_u32(sbi->blocks_per_blkz)) 2796 return -EINVAL; 2797 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 2798 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 2799 sbi->log_blocks_per_blkz; 2800 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 2801 FDEV(devi).nr_blkz++; 2802 2803 FDEV(devi).blkz_seq = f2fs_kzalloc(sbi, 2804 BITS_TO_LONGS(FDEV(devi).nr_blkz) 2805 * sizeof(unsigned long), 2806 GFP_KERNEL); 2807 if (!FDEV(devi).blkz_seq) 2808 return -ENOMEM; 2809 2810 #define F2FS_REPORT_NR_ZONES 4096 2811 2812 zones = f2fs_kzalloc(sbi, 2813 array_size(F2FS_REPORT_NR_ZONES, 2814 sizeof(struct blk_zone)), 2815 GFP_KERNEL); 2816 if (!zones) 2817 return -ENOMEM; 2818 2819 /* Get block zones type */ 2820 while (zones && sector < nr_sectors) { 2821 2822 nr_zones = F2FS_REPORT_NR_ZONES; 2823 err = blkdev_report_zones(bdev, sector, zones, &nr_zones); 2824 if (err) 2825 break; 2826 if (!nr_zones) { 2827 err = -EIO; 2828 break; 2829 } 2830 2831 for (i = 0; i < nr_zones; i++) { 2832 if (zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL) 2833 set_bit(n, FDEV(devi).blkz_seq); 2834 sector += zones[i].len; 2835 n++; 2836 } 2837 } 2838 2839 kvfree(zones); 2840 2841 return err; 2842 } 2843 #endif 2844 2845 /* 2846 * Read f2fs raw super block. 2847 * Because we have two copies of super block, so read both of them 2848 * to get the first valid one. If any one of them is broken, we pass 2849 * them recovery flag back to the caller. 2850 */ 2851 static int read_raw_super_block(struct f2fs_sb_info *sbi, 2852 struct f2fs_super_block **raw_super, 2853 int *valid_super_block, int *recovery) 2854 { 2855 struct super_block *sb = sbi->sb; 2856 int block; 2857 struct buffer_head *bh; 2858 struct f2fs_super_block *super; 2859 int err = 0; 2860 2861 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 2862 if (!super) 2863 return -ENOMEM; 2864 2865 for (block = 0; block < 2; block++) { 2866 bh = sb_bread(sb, block); 2867 if (!bh) { 2868 f2fs_err(sbi, "Unable to read %dth superblock", 2869 block + 1); 2870 err = -EIO; 2871 continue; 2872 } 2873 2874 /* sanity checking of raw super */ 2875 err = sanity_check_raw_super(sbi, bh); 2876 if (err) { 2877 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 2878 block + 1); 2879 brelse(bh); 2880 continue; 2881 } 2882 2883 if (!*raw_super) { 2884 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 2885 sizeof(*super)); 2886 *valid_super_block = block; 2887 *raw_super = super; 2888 } 2889 brelse(bh); 2890 } 2891 2892 /* Fail to read any one of the superblocks*/ 2893 if (err < 0) 2894 *recovery = 1; 2895 2896 /* No valid superblock */ 2897 if (!*raw_super) 2898 kvfree(super); 2899 else 2900 err = 0; 2901 2902 return err; 2903 } 2904 2905 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 2906 { 2907 struct buffer_head *bh; 2908 __u32 crc = 0; 2909 int err; 2910 2911 if ((recover && f2fs_readonly(sbi->sb)) || 2912 bdev_read_only(sbi->sb->s_bdev)) { 2913 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2914 return -EROFS; 2915 } 2916 2917 /* we should update superblock crc here */ 2918 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 2919 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 2920 offsetof(struct f2fs_super_block, crc)); 2921 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 2922 } 2923 2924 /* write back-up superblock first */ 2925 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 2926 if (!bh) 2927 return -EIO; 2928 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2929 brelse(bh); 2930 2931 /* if we are in recovery path, skip writing valid superblock */ 2932 if (recover || err) 2933 return err; 2934 2935 /* write current valid superblock */ 2936 bh = sb_bread(sbi->sb, sbi->valid_super_block); 2937 if (!bh) 2938 return -EIO; 2939 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2940 brelse(bh); 2941 return err; 2942 } 2943 2944 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 2945 { 2946 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2947 unsigned int max_devices = MAX_DEVICES; 2948 int i; 2949 2950 /* Initialize single device information */ 2951 if (!RDEV(0).path[0]) { 2952 if (!bdev_is_zoned(sbi->sb->s_bdev)) 2953 return 0; 2954 max_devices = 1; 2955 } 2956 2957 /* 2958 * Initialize multiple devices information, or single 2959 * zoned block device information. 2960 */ 2961 sbi->devs = f2fs_kzalloc(sbi, 2962 array_size(max_devices, 2963 sizeof(struct f2fs_dev_info)), 2964 GFP_KERNEL); 2965 if (!sbi->devs) 2966 return -ENOMEM; 2967 2968 for (i = 0; i < max_devices; i++) { 2969 2970 if (i > 0 && !RDEV(i).path[0]) 2971 break; 2972 2973 if (max_devices == 1) { 2974 /* Single zoned block device mount */ 2975 FDEV(0).bdev = 2976 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 2977 sbi->sb->s_mode, sbi->sb->s_type); 2978 } else { 2979 /* Multi-device mount */ 2980 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 2981 FDEV(i).total_segments = 2982 le32_to_cpu(RDEV(i).total_segments); 2983 if (i == 0) { 2984 FDEV(i).start_blk = 0; 2985 FDEV(i).end_blk = FDEV(i).start_blk + 2986 (FDEV(i).total_segments << 2987 sbi->log_blocks_per_seg) - 1 + 2988 le32_to_cpu(raw_super->segment0_blkaddr); 2989 } else { 2990 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 2991 FDEV(i).end_blk = FDEV(i).start_blk + 2992 (FDEV(i).total_segments << 2993 sbi->log_blocks_per_seg) - 1; 2994 } 2995 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 2996 sbi->sb->s_mode, sbi->sb->s_type); 2997 } 2998 if (IS_ERR(FDEV(i).bdev)) 2999 return PTR_ERR(FDEV(i).bdev); 3000 3001 /* to release errored devices */ 3002 sbi->s_ndevs = i + 1; 3003 3004 #ifdef CONFIG_BLK_DEV_ZONED 3005 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3006 !f2fs_sb_has_blkzoned(sbi)) { 3007 f2fs_err(sbi, "Zoned block device feature not enabled\n"); 3008 return -EINVAL; 3009 } 3010 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3011 if (init_blkz_info(sbi, i)) { 3012 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3013 return -EINVAL; 3014 } 3015 if (max_devices == 1) 3016 break; 3017 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3018 i, FDEV(i).path, 3019 FDEV(i).total_segments, 3020 FDEV(i).start_blk, FDEV(i).end_blk, 3021 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3022 "Host-aware" : "Host-managed"); 3023 continue; 3024 } 3025 #endif 3026 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3027 i, FDEV(i).path, 3028 FDEV(i).total_segments, 3029 FDEV(i).start_blk, FDEV(i).end_blk); 3030 } 3031 f2fs_info(sbi, 3032 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3033 return 0; 3034 } 3035 3036 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3037 { 3038 struct f2fs_sm_info *sm_i = SM_I(sbi); 3039 3040 /* adjust parameters according to the volume size */ 3041 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3042 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3043 sm_i->dcc_info->discard_granularity = 1; 3044 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3045 } 3046 3047 sbi->readdir_ra = 1; 3048 } 3049 3050 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3051 { 3052 struct f2fs_sb_info *sbi; 3053 struct f2fs_super_block *raw_super; 3054 struct inode *root; 3055 int err; 3056 bool skip_recovery = false, need_fsck = false; 3057 char *options = NULL; 3058 int recovery, i, valid_super_block; 3059 struct curseg_info *seg_i; 3060 int retry_cnt = 1; 3061 3062 try_onemore: 3063 err = -EINVAL; 3064 raw_super = NULL; 3065 valid_super_block = -1; 3066 recovery = 0; 3067 3068 /* allocate memory for f2fs-specific super block info */ 3069 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3070 if (!sbi) 3071 return -ENOMEM; 3072 3073 sbi->sb = sb; 3074 3075 /* Load the checksum driver */ 3076 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3077 if (IS_ERR(sbi->s_chksum_driver)) { 3078 f2fs_err(sbi, "Cannot load crc32 driver."); 3079 err = PTR_ERR(sbi->s_chksum_driver); 3080 sbi->s_chksum_driver = NULL; 3081 goto free_sbi; 3082 } 3083 3084 /* set a block size */ 3085 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3086 f2fs_err(sbi, "unable to set blocksize"); 3087 goto free_sbi; 3088 } 3089 3090 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3091 &recovery); 3092 if (err) 3093 goto free_sbi; 3094 3095 sb->s_fs_info = sbi; 3096 sbi->raw_super = raw_super; 3097 3098 /* precompute checksum seed for metadata */ 3099 if (f2fs_sb_has_inode_chksum(sbi)) 3100 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3101 sizeof(raw_super->uuid)); 3102 3103 /* 3104 * The BLKZONED feature indicates that the drive was formatted with 3105 * zone alignment optimization. This is optional for host-aware 3106 * devices, but mandatory for host-managed zoned block devices. 3107 */ 3108 #ifndef CONFIG_BLK_DEV_ZONED 3109 if (f2fs_sb_has_blkzoned(sbi)) { 3110 f2fs_err(sbi, "Zoned block device support is not enabled"); 3111 err = -EOPNOTSUPP; 3112 goto free_sb_buf; 3113 } 3114 #endif 3115 default_options(sbi); 3116 /* parse mount options */ 3117 options = kstrdup((const char *)data, GFP_KERNEL); 3118 if (data && !options) { 3119 err = -ENOMEM; 3120 goto free_sb_buf; 3121 } 3122 3123 err = parse_options(sb, options); 3124 if (err) 3125 goto free_options; 3126 3127 sbi->max_file_blocks = max_file_blocks(); 3128 sb->s_maxbytes = sbi->max_file_blocks << 3129 le32_to_cpu(raw_super->log_blocksize); 3130 sb->s_max_links = F2FS_LINK_MAX; 3131 3132 #ifdef CONFIG_QUOTA 3133 sb->dq_op = &f2fs_quota_operations; 3134 sb->s_qcop = &f2fs_quotactl_ops; 3135 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3136 3137 if (f2fs_sb_has_quota_ino(sbi)) { 3138 for (i = 0; i < MAXQUOTAS; i++) { 3139 if (f2fs_qf_ino(sbi->sb, i)) 3140 sbi->nquota_files++; 3141 } 3142 } 3143 #endif 3144 3145 sb->s_op = &f2fs_sops; 3146 #ifdef CONFIG_FS_ENCRYPTION 3147 sb->s_cop = &f2fs_cryptops; 3148 #endif 3149 #ifdef CONFIG_FS_VERITY 3150 sb->s_vop = &f2fs_verityops; 3151 #endif 3152 sb->s_xattr = f2fs_xattr_handlers; 3153 sb->s_export_op = &f2fs_export_ops; 3154 sb->s_magic = F2FS_SUPER_MAGIC; 3155 sb->s_time_gran = 1; 3156 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3157 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3158 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3159 sb->s_iflags |= SB_I_CGROUPWB; 3160 3161 /* init f2fs-specific super block info */ 3162 sbi->valid_super_block = valid_super_block; 3163 mutex_init(&sbi->gc_mutex); 3164 mutex_init(&sbi->writepages); 3165 mutex_init(&sbi->cp_mutex); 3166 mutex_init(&sbi->resize_mutex); 3167 init_rwsem(&sbi->node_write); 3168 init_rwsem(&sbi->node_change); 3169 3170 /* disallow all the data/node/meta page writes */ 3171 set_sbi_flag(sbi, SBI_POR_DOING); 3172 spin_lock_init(&sbi->stat_lock); 3173 3174 /* init iostat info */ 3175 spin_lock_init(&sbi->iostat_lock); 3176 sbi->iostat_enable = false; 3177 3178 for (i = 0; i < NR_PAGE_TYPE; i++) { 3179 int n = (i == META) ? 1: NR_TEMP_TYPE; 3180 int j; 3181 3182 sbi->write_io[i] = 3183 f2fs_kmalloc(sbi, 3184 array_size(n, 3185 sizeof(struct f2fs_bio_info)), 3186 GFP_KERNEL); 3187 if (!sbi->write_io[i]) { 3188 err = -ENOMEM; 3189 goto free_bio_info; 3190 } 3191 3192 for (j = HOT; j < n; j++) { 3193 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3194 sbi->write_io[i][j].sbi = sbi; 3195 sbi->write_io[i][j].bio = NULL; 3196 spin_lock_init(&sbi->write_io[i][j].io_lock); 3197 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3198 } 3199 } 3200 3201 init_rwsem(&sbi->cp_rwsem); 3202 init_rwsem(&sbi->quota_sem); 3203 init_waitqueue_head(&sbi->cp_wait); 3204 init_sb_info(sbi); 3205 3206 err = init_percpu_info(sbi); 3207 if (err) 3208 goto free_bio_info; 3209 3210 if (F2FS_IO_SIZE(sbi) > 1) { 3211 sbi->write_io_dummy = 3212 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3213 if (!sbi->write_io_dummy) { 3214 err = -ENOMEM; 3215 goto free_percpu; 3216 } 3217 } 3218 3219 /* get an inode for meta space */ 3220 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3221 if (IS_ERR(sbi->meta_inode)) { 3222 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 3223 err = PTR_ERR(sbi->meta_inode); 3224 goto free_io_dummy; 3225 } 3226 3227 err = f2fs_get_valid_checkpoint(sbi); 3228 if (err) { 3229 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 3230 goto free_meta_inode; 3231 } 3232 3233 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3234 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3235 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3236 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3237 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3238 } 3239 3240 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 3241 set_sbi_flag(sbi, SBI_NEED_FSCK); 3242 3243 /* Initialize device list */ 3244 err = f2fs_scan_devices(sbi); 3245 if (err) { 3246 f2fs_err(sbi, "Failed to find devices"); 3247 goto free_devices; 3248 } 3249 3250 sbi->total_valid_node_count = 3251 le32_to_cpu(sbi->ckpt->valid_node_count); 3252 percpu_counter_set(&sbi->total_valid_inode_count, 3253 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3254 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3255 sbi->total_valid_block_count = 3256 le64_to_cpu(sbi->ckpt->valid_block_count); 3257 sbi->last_valid_block_count = sbi->total_valid_block_count; 3258 sbi->reserved_blocks = 0; 3259 sbi->current_reserved_blocks = 0; 3260 limit_reserve_root(sbi); 3261 3262 for (i = 0; i < NR_INODE_TYPE; i++) { 3263 INIT_LIST_HEAD(&sbi->inode_list[i]); 3264 spin_lock_init(&sbi->inode_lock[i]); 3265 } 3266 mutex_init(&sbi->flush_lock); 3267 3268 f2fs_init_extent_cache_info(sbi); 3269 3270 f2fs_init_ino_entry_info(sbi); 3271 3272 f2fs_init_fsync_node_info(sbi); 3273 3274 /* setup f2fs internal modules */ 3275 err = f2fs_build_segment_manager(sbi); 3276 if (err) { 3277 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 3278 err); 3279 goto free_sm; 3280 } 3281 err = f2fs_build_node_manager(sbi); 3282 if (err) { 3283 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 3284 err); 3285 goto free_nm; 3286 } 3287 3288 /* For write statistics */ 3289 if (sb->s_bdev->bd_part) 3290 sbi->sectors_written_start = 3291 (u64)part_stat_read(sb->s_bdev->bd_part, 3292 sectors[STAT_WRITE]); 3293 3294 /* Read accumulated write IO statistics if exists */ 3295 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3296 if (__exist_node_summaries(sbi)) 3297 sbi->kbytes_written = 3298 le64_to_cpu(seg_i->journal->info.kbytes_written); 3299 3300 f2fs_build_gc_manager(sbi); 3301 3302 err = f2fs_build_stats(sbi); 3303 if (err) 3304 goto free_nm; 3305 3306 /* get an inode for node space */ 3307 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3308 if (IS_ERR(sbi->node_inode)) { 3309 f2fs_err(sbi, "Failed to read node inode"); 3310 err = PTR_ERR(sbi->node_inode); 3311 goto free_stats; 3312 } 3313 3314 /* read root inode and dentry */ 3315 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3316 if (IS_ERR(root)) { 3317 f2fs_err(sbi, "Failed to read root inode"); 3318 err = PTR_ERR(root); 3319 goto free_node_inode; 3320 } 3321 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3322 !root->i_size || !root->i_nlink) { 3323 iput(root); 3324 err = -EINVAL; 3325 goto free_node_inode; 3326 } 3327 3328 sb->s_root = d_make_root(root); /* allocate root dentry */ 3329 if (!sb->s_root) { 3330 err = -ENOMEM; 3331 goto free_node_inode; 3332 } 3333 3334 err = f2fs_register_sysfs(sbi); 3335 if (err) 3336 goto free_root_inode; 3337 3338 #ifdef CONFIG_QUOTA 3339 /* Enable quota usage during mount */ 3340 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3341 err = f2fs_enable_quotas(sb); 3342 if (err) 3343 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 3344 } 3345 #endif 3346 /* if there are nt orphan nodes free them */ 3347 err = f2fs_recover_orphan_inodes(sbi); 3348 if (err) 3349 goto free_meta; 3350 3351 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3352 goto reset_checkpoint; 3353 3354 /* recover fsynced data */ 3355 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 3356 /* 3357 * mount should be failed, when device has readonly mode, and 3358 * previous checkpoint was not done by clean system shutdown. 3359 */ 3360 if (f2fs_hw_is_readonly(sbi)) { 3361 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3362 err = -EROFS; 3363 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable"); 3364 goto free_meta; 3365 } 3366 f2fs_info(sbi, "write access unavailable, skipping recovery"); 3367 goto reset_checkpoint; 3368 } 3369 3370 if (need_fsck) 3371 set_sbi_flag(sbi, SBI_NEED_FSCK); 3372 3373 if (skip_recovery) 3374 goto reset_checkpoint; 3375 3376 err = f2fs_recover_fsync_data(sbi, false); 3377 if (err < 0) { 3378 if (err != -ENOMEM) 3379 skip_recovery = true; 3380 need_fsck = true; 3381 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 3382 err); 3383 goto free_meta; 3384 } 3385 } else { 3386 err = f2fs_recover_fsync_data(sbi, true); 3387 3388 if (!f2fs_readonly(sb) && err > 0) { 3389 err = -EINVAL; 3390 f2fs_err(sbi, "Need to recover fsync data"); 3391 goto free_meta; 3392 } 3393 } 3394 reset_checkpoint: 3395 /* f2fs_recover_fsync_data() cleared this already */ 3396 clear_sbi_flag(sbi, SBI_POR_DOING); 3397 3398 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3399 err = f2fs_disable_checkpoint(sbi); 3400 if (err) 3401 goto sync_free_meta; 3402 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3403 f2fs_enable_checkpoint(sbi); 3404 } 3405 3406 /* 3407 * If filesystem is not mounted as read-only then 3408 * do start the gc_thread. 3409 */ 3410 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 3411 /* After POR, we can run background GC thread.*/ 3412 err = f2fs_start_gc_thread(sbi); 3413 if (err) 3414 goto sync_free_meta; 3415 } 3416 kvfree(options); 3417 3418 /* recover broken superblock */ 3419 if (recovery) { 3420 err = f2fs_commit_super(sbi, true); 3421 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 3422 sbi->valid_super_block ? 1 : 2, err); 3423 } 3424 3425 f2fs_join_shrinker(sbi); 3426 3427 f2fs_tuning_parameters(sbi); 3428 3429 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 3430 cur_cp_version(F2FS_CKPT(sbi))); 3431 f2fs_update_time(sbi, CP_TIME); 3432 f2fs_update_time(sbi, REQ_TIME); 3433 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3434 return 0; 3435 3436 sync_free_meta: 3437 /* safe to flush all the data */ 3438 sync_filesystem(sbi->sb); 3439 retry_cnt = 0; 3440 3441 free_meta: 3442 #ifdef CONFIG_QUOTA 3443 f2fs_truncate_quota_inode_pages(sb); 3444 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 3445 f2fs_quota_off_umount(sbi->sb); 3446 #endif 3447 /* 3448 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3449 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3450 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3451 * falls into an infinite loop in f2fs_sync_meta_pages(). 3452 */ 3453 truncate_inode_pages_final(META_MAPPING(sbi)); 3454 /* evict some inodes being cached by GC */ 3455 evict_inodes(sb); 3456 f2fs_unregister_sysfs(sbi); 3457 free_root_inode: 3458 dput(sb->s_root); 3459 sb->s_root = NULL; 3460 free_node_inode: 3461 f2fs_release_ino_entry(sbi, true); 3462 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3463 iput(sbi->node_inode); 3464 sbi->node_inode = NULL; 3465 free_stats: 3466 f2fs_destroy_stats(sbi); 3467 free_nm: 3468 f2fs_destroy_node_manager(sbi); 3469 free_sm: 3470 f2fs_destroy_segment_manager(sbi); 3471 free_devices: 3472 destroy_device_list(sbi); 3473 kvfree(sbi->ckpt); 3474 free_meta_inode: 3475 make_bad_inode(sbi->meta_inode); 3476 iput(sbi->meta_inode); 3477 sbi->meta_inode = NULL; 3478 free_io_dummy: 3479 mempool_destroy(sbi->write_io_dummy); 3480 free_percpu: 3481 destroy_percpu_info(sbi); 3482 free_bio_info: 3483 for (i = 0; i < NR_PAGE_TYPE; i++) 3484 kvfree(sbi->write_io[i]); 3485 free_options: 3486 #ifdef CONFIG_QUOTA 3487 for (i = 0; i < MAXQUOTAS; i++) 3488 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 3489 #endif 3490 kvfree(options); 3491 free_sb_buf: 3492 kvfree(raw_super); 3493 free_sbi: 3494 if (sbi->s_chksum_driver) 3495 crypto_free_shash(sbi->s_chksum_driver); 3496 kvfree(sbi); 3497 3498 /* give only one another chance */ 3499 if (retry_cnt > 0 && skip_recovery) { 3500 retry_cnt--; 3501 shrink_dcache_sb(sb); 3502 goto try_onemore; 3503 } 3504 return err; 3505 } 3506 3507 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3508 const char *dev_name, void *data) 3509 { 3510 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3511 } 3512 3513 static void kill_f2fs_super(struct super_block *sb) 3514 { 3515 if (sb->s_root) { 3516 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3517 3518 set_sbi_flag(sbi, SBI_IS_CLOSE); 3519 f2fs_stop_gc_thread(sbi); 3520 f2fs_stop_discard_thread(sbi); 3521 3522 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 3523 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3524 struct cp_control cpc = { 3525 .reason = CP_UMOUNT, 3526 }; 3527 f2fs_write_checkpoint(sbi, &cpc); 3528 } 3529 3530 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 3531 sb->s_flags &= ~SB_RDONLY; 3532 } 3533 kill_block_super(sb); 3534 } 3535 3536 static struct file_system_type f2fs_fs_type = { 3537 .owner = THIS_MODULE, 3538 .name = "f2fs", 3539 .mount = f2fs_mount, 3540 .kill_sb = kill_f2fs_super, 3541 .fs_flags = FS_REQUIRES_DEV, 3542 }; 3543 MODULE_ALIAS_FS("f2fs"); 3544 3545 static int __init init_inodecache(void) 3546 { 3547 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3548 sizeof(struct f2fs_inode_info), 0, 3549 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3550 if (!f2fs_inode_cachep) 3551 return -ENOMEM; 3552 return 0; 3553 } 3554 3555 static void destroy_inodecache(void) 3556 { 3557 /* 3558 * Make sure all delayed rcu free inodes are flushed before we 3559 * destroy cache. 3560 */ 3561 rcu_barrier(); 3562 kmem_cache_destroy(f2fs_inode_cachep); 3563 } 3564 3565 static int __init init_f2fs_fs(void) 3566 { 3567 int err; 3568 3569 if (PAGE_SIZE != F2FS_BLKSIZE) { 3570 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3571 PAGE_SIZE, F2FS_BLKSIZE); 3572 return -EINVAL; 3573 } 3574 3575 f2fs_build_trace_ios(); 3576 3577 err = init_inodecache(); 3578 if (err) 3579 goto fail; 3580 err = f2fs_create_node_manager_caches(); 3581 if (err) 3582 goto free_inodecache; 3583 err = f2fs_create_segment_manager_caches(); 3584 if (err) 3585 goto free_node_manager_caches; 3586 err = f2fs_create_checkpoint_caches(); 3587 if (err) 3588 goto free_segment_manager_caches; 3589 err = f2fs_create_extent_cache(); 3590 if (err) 3591 goto free_checkpoint_caches; 3592 err = f2fs_init_sysfs(); 3593 if (err) 3594 goto free_extent_cache; 3595 err = register_shrinker(&f2fs_shrinker_info); 3596 if (err) 3597 goto free_sysfs; 3598 err = register_filesystem(&f2fs_fs_type); 3599 if (err) 3600 goto free_shrinker; 3601 f2fs_create_root_stats(); 3602 err = f2fs_init_post_read_processing(); 3603 if (err) 3604 goto free_root_stats; 3605 return 0; 3606 3607 free_root_stats: 3608 f2fs_destroy_root_stats(); 3609 unregister_filesystem(&f2fs_fs_type); 3610 free_shrinker: 3611 unregister_shrinker(&f2fs_shrinker_info); 3612 free_sysfs: 3613 f2fs_exit_sysfs(); 3614 free_extent_cache: 3615 f2fs_destroy_extent_cache(); 3616 free_checkpoint_caches: 3617 f2fs_destroy_checkpoint_caches(); 3618 free_segment_manager_caches: 3619 f2fs_destroy_segment_manager_caches(); 3620 free_node_manager_caches: 3621 f2fs_destroy_node_manager_caches(); 3622 free_inodecache: 3623 destroy_inodecache(); 3624 fail: 3625 return err; 3626 } 3627 3628 static void __exit exit_f2fs_fs(void) 3629 { 3630 f2fs_destroy_post_read_processing(); 3631 f2fs_destroy_root_stats(); 3632 unregister_filesystem(&f2fs_fs_type); 3633 unregister_shrinker(&f2fs_shrinker_info); 3634 f2fs_exit_sysfs(); 3635 f2fs_destroy_extent_cache(); 3636 f2fs_destroy_checkpoint_caches(); 3637 f2fs_destroy_segment_manager_caches(); 3638 f2fs_destroy_node_manager_caches(); 3639 destroy_inodecache(); 3640 f2fs_destroy_trace_ios(); 3641 } 3642 3643 module_init(init_f2fs_fs) 3644 module_exit(exit_f2fs_fs) 3645 3646 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3647 MODULE_DESCRIPTION("Flash Friendly File System"); 3648 MODULE_LICENSE("GPL"); 3649 3650