1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/buffer_head.h> 15 #include <linux/kthread.h> 16 #include <linux/parser.h> 17 #include <linux/mount.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/random.h> 21 #include <linux/exportfs.h> 22 #include <linux/blkdev.h> 23 #include <linux/quotaops.h> 24 #include <linux/f2fs_fs.h> 25 #include <linux/sysfs.h> 26 #include <linux/quota.h> 27 #include <linux/unicode.h> 28 #include <linux/part_stat.h> 29 #include <linux/zstd.h> 30 #include <linux/lz4.h> 31 32 #include "f2fs.h" 33 #include "node.h" 34 #include "segment.h" 35 #include "xattr.h" 36 #include "gc.h" 37 #include "iostat.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/f2fs.h> 41 42 static struct kmem_cache *f2fs_inode_cachep; 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 46 const char *f2fs_fault_name[FAULT_MAX] = { 47 [FAULT_KMALLOC] = "kmalloc", 48 [FAULT_KVMALLOC] = "kvmalloc", 49 [FAULT_PAGE_ALLOC] = "page alloc", 50 [FAULT_PAGE_GET] = "page get", 51 [FAULT_ALLOC_NID] = "alloc nid", 52 [FAULT_ORPHAN] = "orphan", 53 [FAULT_BLOCK] = "no more block", 54 [FAULT_DIR_DEPTH] = "too big dir depth", 55 [FAULT_EVICT_INODE] = "evict_inode fail", 56 [FAULT_TRUNCATE] = "truncate fail", 57 [FAULT_READ_IO] = "read IO error", 58 [FAULT_CHECKPOINT] = "checkpoint error", 59 [FAULT_DISCARD] = "discard error", 60 [FAULT_WRITE_IO] = "write IO error", 61 [FAULT_SLAB_ALLOC] = "slab alloc", 62 [FAULT_DQUOT_INIT] = "dquot initialize", 63 [FAULT_LOCK_OP] = "lock_op", 64 [FAULT_BLKADDR_VALIDITY] = "invalid blkaddr", 65 [FAULT_BLKADDR_CONSISTENCE] = "inconsistent blkaddr", 66 [FAULT_NO_SEGMENT] = "no free segment", 67 }; 68 69 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 70 unsigned long type) 71 { 72 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 73 74 if (rate) { 75 if (rate > INT_MAX) 76 return -EINVAL; 77 atomic_set(&ffi->inject_ops, 0); 78 ffi->inject_rate = (int)rate; 79 } 80 81 if (type) { 82 if (type >= BIT(FAULT_MAX)) 83 return -EINVAL; 84 ffi->inject_type = (unsigned int)type; 85 } 86 87 if (!rate && !type) 88 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 89 else 90 f2fs_info(sbi, 91 "build fault injection attr: rate: %lu, type: 0x%lx", 92 rate, type); 93 return 0; 94 } 95 #endif 96 97 /* f2fs-wide shrinker description */ 98 static struct shrinker *f2fs_shrinker_info; 99 100 static int __init f2fs_init_shrinker(void) 101 { 102 f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker"); 103 if (!f2fs_shrinker_info) 104 return -ENOMEM; 105 106 f2fs_shrinker_info->count_objects = f2fs_shrink_count; 107 f2fs_shrinker_info->scan_objects = f2fs_shrink_scan; 108 109 shrinker_register(f2fs_shrinker_info); 110 111 return 0; 112 } 113 114 static void f2fs_exit_shrinker(void) 115 { 116 shrinker_free(f2fs_shrinker_info); 117 } 118 119 enum { 120 Opt_gc_background, 121 Opt_disable_roll_forward, 122 Opt_norecovery, 123 Opt_discard, 124 Opt_nodiscard, 125 Opt_noheap, 126 Opt_heap, 127 Opt_user_xattr, 128 Opt_nouser_xattr, 129 Opt_acl, 130 Opt_noacl, 131 Opt_active_logs, 132 Opt_disable_ext_identify, 133 Opt_inline_xattr, 134 Opt_noinline_xattr, 135 Opt_inline_xattr_size, 136 Opt_inline_data, 137 Opt_inline_dentry, 138 Opt_noinline_dentry, 139 Opt_flush_merge, 140 Opt_noflush_merge, 141 Opt_barrier, 142 Opt_nobarrier, 143 Opt_fastboot, 144 Opt_extent_cache, 145 Opt_noextent_cache, 146 Opt_noinline_data, 147 Opt_data_flush, 148 Opt_reserve_root, 149 Opt_resgid, 150 Opt_resuid, 151 Opt_mode, 152 Opt_fault_injection, 153 Opt_fault_type, 154 Opt_lazytime, 155 Opt_nolazytime, 156 Opt_quota, 157 Opt_noquota, 158 Opt_usrquota, 159 Opt_grpquota, 160 Opt_prjquota, 161 Opt_usrjquota, 162 Opt_grpjquota, 163 Opt_prjjquota, 164 Opt_offusrjquota, 165 Opt_offgrpjquota, 166 Opt_offprjjquota, 167 Opt_jqfmt_vfsold, 168 Opt_jqfmt_vfsv0, 169 Opt_jqfmt_vfsv1, 170 Opt_alloc, 171 Opt_fsync, 172 Opt_test_dummy_encryption, 173 Opt_inlinecrypt, 174 Opt_checkpoint_disable, 175 Opt_checkpoint_disable_cap, 176 Opt_checkpoint_disable_cap_perc, 177 Opt_checkpoint_enable, 178 Opt_checkpoint_merge, 179 Opt_nocheckpoint_merge, 180 Opt_compress_algorithm, 181 Opt_compress_log_size, 182 Opt_compress_extension, 183 Opt_nocompress_extension, 184 Opt_compress_chksum, 185 Opt_compress_mode, 186 Opt_compress_cache, 187 Opt_atgc, 188 Opt_gc_merge, 189 Opt_nogc_merge, 190 Opt_discard_unit, 191 Opt_memory_mode, 192 Opt_age_extent_cache, 193 Opt_errors, 194 Opt_err, 195 }; 196 197 static match_table_t f2fs_tokens = { 198 {Opt_gc_background, "background_gc=%s"}, 199 {Opt_disable_roll_forward, "disable_roll_forward"}, 200 {Opt_norecovery, "norecovery"}, 201 {Opt_discard, "discard"}, 202 {Opt_nodiscard, "nodiscard"}, 203 {Opt_noheap, "no_heap"}, 204 {Opt_heap, "heap"}, 205 {Opt_user_xattr, "user_xattr"}, 206 {Opt_nouser_xattr, "nouser_xattr"}, 207 {Opt_acl, "acl"}, 208 {Opt_noacl, "noacl"}, 209 {Opt_active_logs, "active_logs=%u"}, 210 {Opt_disable_ext_identify, "disable_ext_identify"}, 211 {Opt_inline_xattr, "inline_xattr"}, 212 {Opt_noinline_xattr, "noinline_xattr"}, 213 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 214 {Opt_inline_data, "inline_data"}, 215 {Opt_inline_dentry, "inline_dentry"}, 216 {Opt_noinline_dentry, "noinline_dentry"}, 217 {Opt_flush_merge, "flush_merge"}, 218 {Opt_noflush_merge, "noflush_merge"}, 219 {Opt_barrier, "barrier"}, 220 {Opt_nobarrier, "nobarrier"}, 221 {Opt_fastboot, "fastboot"}, 222 {Opt_extent_cache, "extent_cache"}, 223 {Opt_noextent_cache, "noextent_cache"}, 224 {Opt_noinline_data, "noinline_data"}, 225 {Opt_data_flush, "data_flush"}, 226 {Opt_reserve_root, "reserve_root=%u"}, 227 {Opt_resgid, "resgid=%u"}, 228 {Opt_resuid, "resuid=%u"}, 229 {Opt_mode, "mode=%s"}, 230 {Opt_fault_injection, "fault_injection=%u"}, 231 {Opt_fault_type, "fault_type=%u"}, 232 {Opt_lazytime, "lazytime"}, 233 {Opt_nolazytime, "nolazytime"}, 234 {Opt_quota, "quota"}, 235 {Opt_noquota, "noquota"}, 236 {Opt_usrquota, "usrquota"}, 237 {Opt_grpquota, "grpquota"}, 238 {Opt_prjquota, "prjquota"}, 239 {Opt_usrjquota, "usrjquota=%s"}, 240 {Opt_grpjquota, "grpjquota=%s"}, 241 {Opt_prjjquota, "prjjquota=%s"}, 242 {Opt_offusrjquota, "usrjquota="}, 243 {Opt_offgrpjquota, "grpjquota="}, 244 {Opt_offprjjquota, "prjjquota="}, 245 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 246 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 247 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 248 {Opt_alloc, "alloc_mode=%s"}, 249 {Opt_fsync, "fsync_mode=%s"}, 250 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 251 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 252 {Opt_inlinecrypt, "inlinecrypt"}, 253 {Opt_checkpoint_disable, "checkpoint=disable"}, 254 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 255 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 256 {Opt_checkpoint_enable, "checkpoint=enable"}, 257 {Opt_checkpoint_merge, "checkpoint_merge"}, 258 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 259 {Opt_compress_algorithm, "compress_algorithm=%s"}, 260 {Opt_compress_log_size, "compress_log_size=%u"}, 261 {Opt_compress_extension, "compress_extension=%s"}, 262 {Opt_nocompress_extension, "nocompress_extension=%s"}, 263 {Opt_compress_chksum, "compress_chksum"}, 264 {Opt_compress_mode, "compress_mode=%s"}, 265 {Opt_compress_cache, "compress_cache"}, 266 {Opt_atgc, "atgc"}, 267 {Opt_gc_merge, "gc_merge"}, 268 {Opt_nogc_merge, "nogc_merge"}, 269 {Opt_discard_unit, "discard_unit=%s"}, 270 {Opt_memory_mode, "memory=%s"}, 271 {Opt_age_extent_cache, "age_extent_cache"}, 272 {Opt_errors, "errors=%s"}, 273 {Opt_err, NULL}, 274 }; 275 276 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, 277 const char *fmt, ...) 278 { 279 struct va_format vaf; 280 va_list args; 281 int level; 282 283 va_start(args, fmt); 284 285 level = printk_get_level(fmt); 286 vaf.fmt = printk_skip_level(fmt); 287 vaf.va = &args; 288 if (limit_rate) 289 printk_ratelimited("%c%cF2FS-fs (%s): %pV\n", 290 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 291 else 292 printk("%c%cF2FS-fs (%s): %pV\n", 293 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 294 295 va_end(args); 296 } 297 298 #if IS_ENABLED(CONFIG_UNICODE) 299 static const struct f2fs_sb_encodings { 300 __u16 magic; 301 char *name; 302 unsigned int version; 303 } f2fs_sb_encoding_map[] = { 304 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 305 }; 306 307 static const struct f2fs_sb_encodings * 308 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 309 { 310 __u16 magic = le16_to_cpu(sb->s_encoding); 311 int i; 312 313 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 314 if (magic == f2fs_sb_encoding_map[i].magic) 315 return &f2fs_sb_encoding_map[i]; 316 317 return NULL; 318 } 319 320 struct kmem_cache *f2fs_cf_name_slab; 321 static int __init f2fs_create_casefold_cache(void) 322 { 323 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 324 F2FS_NAME_LEN); 325 return f2fs_cf_name_slab ? 0 : -ENOMEM; 326 } 327 328 static void f2fs_destroy_casefold_cache(void) 329 { 330 kmem_cache_destroy(f2fs_cf_name_slab); 331 } 332 #else 333 static int __init f2fs_create_casefold_cache(void) { return 0; } 334 static void f2fs_destroy_casefold_cache(void) { } 335 #endif 336 337 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 338 { 339 block_t limit = min((sbi->user_block_count >> 3), 340 sbi->user_block_count - sbi->reserved_blocks); 341 342 /* limit is 12.5% */ 343 if (test_opt(sbi, RESERVE_ROOT) && 344 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 345 F2FS_OPTION(sbi).root_reserved_blocks = limit; 346 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 347 F2FS_OPTION(sbi).root_reserved_blocks); 348 } 349 if (!test_opt(sbi, RESERVE_ROOT) && 350 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 351 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 352 !gid_eq(F2FS_OPTION(sbi).s_resgid, 353 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 354 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 355 from_kuid_munged(&init_user_ns, 356 F2FS_OPTION(sbi).s_resuid), 357 from_kgid_munged(&init_user_ns, 358 F2FS_OPTION(sbi).s_resgid)); 359 } 360 361 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 362 { 363 if (!F2FS_OPTION(sbi).unusable_cap_perc) 364 return; 365 366 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 367 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 368 else 369 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 370 F2FS_OPTION(sbi).unusable_cap_perc; 371 372 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 373 F2FS_OPTION(sbi).unusable_cap, 374 F2FS_OPTION(sbi).unusable_cap_perc); 375 } 376 377 static void init_once(void *foo) 378 { 379 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 380 381 inode_init_once(&fi->vfs_inode); 382 } 383 384 #ifdef CONFIG_QUOTA 385 static const char * const quotatypes[] = INITQFNAMES; 386 #define QTYPE2NAME(t) (quotatypes[t]) 387 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 388 substring_t *args) 389 { 390 struct f2fs_sb_info *sbi = F2FS_SB(sb); 391 char *qname; 392 int ret = -EINVAL; 393 394 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 395 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 396 return -EINVAL; 397 } 398 if (f2fs_sb_has_quota_ino(sbi)) { 399 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 400 return 0; 401 } 402 403 qname = match_strdup(args); 404 if (!qname) { 405 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 406 return -ENOMEM; 407 } 408 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 409 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 410 ret = 0; 411 else 412 f2fs_err(sbi, "%s quota file already specified", 413 QTYPE2NAME(qtype)); 414 goto errout; 415 } 416 if (strchr(qname, '/')) { 417 f2fs_err(sbi, "quotafile must be on filesystem root"); 418 goto errout; 419 } 420 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 421 set_opt(sbi, QUOTA); 422 return 0; 423 errout: 424 kfree(qname); 425 return ret; 426 } 427 428 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 429 { 430 struct f2fs_sb_info *sbi = F2FS_SB(sb); 431 432 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 433 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 434 return -EINVAL; 435 } 436 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 437 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 438 return 0; 439 } 440 441 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 442 { 443 /* 444 * We do the test below only for project quotas. 'usrquota' and 445 * 'grpquota' mount options are allowed even without quota feature 446 * to support legacy quotas in quota files. 447 */ 448 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 449 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 450 return -1; 451 } 452 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 453 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 454 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 455 if (test_opt(sbi, USRQUOTA) && 456 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 457 clear_opt(sbi, USRQUOTA); 458 459 if (test_opt(sbi, GRPQUOTA) && 460 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 461 clear_opt(sbi, GRPQUOTA); 462 463 if (test_opt(sbi, PRJQUOTA) && 464 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 465 clear_opt(sbi, PRJQUOTA); 466 467 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 468 test_opt(sbi, PRJQUOTA)) { 469 f2fs_err(sbi, "old and new quota format mixing"); 470 return -1; 471 } 472 473 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 474 f2fs_err(sbi, "journaled quota format not specified"); 475 return -1; 476 } 477 } 478 479 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 480 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 481 F2FS_OPTION(sbi).s_jquota_fmt = 0; 482 } 483 return 0; 484 } 485 #endif 486 487 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 488 const char *opt, 489 const substring_t *arg, 490 bool is_remount) 491 { 492 struct f2fs_sb_info *sbi = F2FS_SB(sb); 493 struct fs_parameter param = { 494 .type = fs_value_is_string, 495 .string = arg->from ? arg->from : "", 496 }; 497 struct fscrypt_dummy_policy *policy = 498 &F2FS_OPTION(sbi).dummy_enc_policy; 499 int err; 500 501 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 502 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 503 return -EINVAL; 504 } 505 506 if (!f2fs_sb_has_encrypt(sbi)) { 507 f2fs_err(sbi, "Encrypt feature is off"); 508 return -EINVAL; 509 } 510 511 /* 512 * This mount option is just for testing, and it's not worthwhile to 513 * implement the extra complexity (e.g. RCU protection) that would be 514 * needed to allow it to be set or changed during remount. We do allow 515 * it to be specified during remount, but only if there is no change. 516 */ 517 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 518 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 519 return -EINVAL; 520 } 521 522 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 523 if (err) { 524 if (err == -EEXIST) 525 f2fs_warn(sbi, 526 "Can't change test_dummy_encryption on remount"); 527 else if (err == -EINVAL) 528 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 529 opt); 530 else 531 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 532 opt, err); 533 return -EINVAL; 534 } 535 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 536 return 0; 537 } 538 539 #ifdef CONFIG_F2FS_FS_COMPRESSION 540 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, 541 const char *new_ext, bool is_ext) 542 { 543 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 544 int ext_cnt; 545 int i; 546 547 if (is_ext) { 548 ext = F2FS_OPTION(sbi).extensions; 549 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 550 } else { 551 ext = F2FS_OPTION(sbi).noextensions; 552 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 553 } 554 555 for (i = 0; i < ext_cnt; i++) { 556 if (!strcasecmp(new_ext, ext[i])) 557 return true; 558 } 559 560 return false; 561 } 562 563 /* 564 * 1. The same extension name cannot not appear in both compress and non-compress extension 565 * at the same time. 566 * 2. If the compress extension specifies all files, the types specified by the non-compress 567 * extension will be treated as special cases and will not be compressed. 568 * 3. Don't allow the non-compress extension specifies all files. 569 */ 570 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 571 { 572 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 573 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 574 int ext_cnt, noext_cnt, index = 0, no_index = 0; 575 576 ext = F2FS_OPTION(sbi).extensions; 577 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 578 noext = F2FS_OPTION(sbi).noextensions; 579 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 580 581 if (!noext_cnt) 582 return 0; 583 584 for (no_index = 0; no_index < noext_cnt; no_index++) { 585 if (!strcasecmp("*", noext[no_index])) { 586 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 587 return -EINVAL; 588 } 589 for (index = 0; index < ext_cnt; index++) { 590 if (!strcasecmp(ext[index], noext[no_index])) { 591 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 592 ext[index]); 593 return -EINVAL; 594 } 595 } 596 } 597 return 0; 598 } 599 600 #ifdef CONFIG_F2FS_FS_LZ4 601 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 602 { 603 #ifdef CONFIG_F2FS_FS_LZ4HC 604 unsigned int level; 605 606 if (strlen(str) == 3) { 607 F2FS_OPTION(sbi).compress_level = 0; 608 return 0; 609 } 610 611 str += 3; 612 613 if (str[0] != ':') { 614 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 615 return -EINVAL; 616 } 617 if (kstrtouint(str + 1, 10, &level)) 618 return -EINVAL; 619 620 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 621 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 622 return -EINVAL; 623 } 624 625 F2FS_OPTION(sbi).compress_level = level; 626 return 0; 627 #else 628 if (strlen(str) == 3) { 629 F2FS_OPTION(sbi).compress_level = 0; 630 return 0; 631 } 632 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 633 return -EINVAL; 634 #endif 635 } 636 #endif 637 638 #ifdef CONFIG_F2FS_FS_ZSTD 639 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 640 { 641 int level; 642 int len = 4; 643 644 if (strlen(str) == len) { 645 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 646 return 0; 647 } 648 649 str += len; 650 651 if (str[0] != ':') { 652 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 653 return -EINVAL; 654 } 655 if (kstrtoint(str + 1, 10, &level)) 656 return -EINVAL; 657 658 /* f2fs does not support negative compress level now */ 659 if (level < 0) { 660 f2fs_info(sbi, "do not support negative compress level: %d", level); 661 return -ERANGE; 662 } 663 664 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 665 f2fs_info(sbi, "invalid zstd compress level: %d", level); 666 return -EINVAL; 667 } 668 669 F2FS_OPTION(sbi).compress_level = level; 670 return 0; 671 } 672 #endif 673 #endif 674 675 static int parse_options(struct super_block *sb, char *options, bool is_remount) 676 { 677 struct f2fs_sb_info *sbi = F2FS_SB(sb); 678 substring_t args[MAX_OPT_ARGS]; 679 #ifdef CONFIG_F2FS_FS_COMPRESSION 680 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 681 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 682 int ext_cnt, noext_cnt; 683 #endif 684 char *p, *name; 685 int arg = 0; 686 kuid_t uid; 687 kgid_t gid; 688 int ret; 689 690 if (!options) 691 goto default_check; 692 693 while ((p = strsep(&options, ",")) != NULL) { 694 int token; 695 696 if (!*p) 697 continue; 698 /* 699 * Initialize args struct so we know whether arg was 700 * found; some options take optional arguments. 701 */ 702 args[0].to = args[0].from = NULL; 703 token = match_token(p, f2fs_tokens, args); 704 705 switch (token) { 706 case Opt_gc_background: 707 name = match_strdup(&args[0]); 708 709 if (!name) 710 return -ENOMEM; 711 if (!strcmp(name, "on")) { 712 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 713 } else if (!strcmp(name, "off")) { 714 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 715 } else if (!strcmp(name, "sync")) { 716 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 717 } else { 718 kfree(name); 719 return -EINVAL; 720 } 721 kfree(name); 722 break; 723 case Opt_disable_roll_forward: 724 set_opt(sbi, DISABLE_ROLL_FORWARD); 725 break; 726 case Opt_norecovery: 727 /* this option mounts f2fs with ro */ 728 set_opt(sbi, NORECOVERY); 729 if (!f2fs_readonly(sb)) 730 return -EINVAL; 731 break; 732 case Opt_discard: 733 if (!f2fs_hw_support_discard(sbi)) { 734 f2fs_warn(sbi, "device does not support discard"); 735 break; 736 } 737 set_opt(sbi, DISCARD); 738 break; 739 case Opt_nodiscard: 740 if (f2fs_hw_should_discard(sbi)) { 741 f2fs_warn(sbi, "discard is required for zoned block devices"); 742 return -EINVAL; 743 } 744 clear_opt(sbi, DISCARD); 745 break; 746 case Opt_noheap: 747 case Opt_heap: 748 f2fs_warn(sbi, "heap/no_heap options were deprecated"); 749 break; 750 #ifdef CONFIG_F2FS_FS_XATTR 751 case Opt_user_xattr: 752 set_opt(sbi, XATTR_USER); 753 break; 754 case Opt_nouser_xattr: 755 clear_opt(sbi, XATTR_USER); 756 break; 757 case Opt_inline_xattr: 758 set_opt(sbi, INLINE_XATTR); 759 break; 760 case Opt_noinline_xattr: 761 clear_opt(sbi, INLINE_XATTR); 762 break; 763 case Opt_inline_xattr_size: 764 if (args->from && match_int(args, &arg)) 765 return -EINVAL; 766 set_opt(sbi, INLINE_XATTR_SIZE); 767 F2FS_OPTION(sbi).inline_xattr_size = arg; 768 break; 769 #else 770 case Opt_user_xattr: 771 f2fs_info(sbi, "user_xattr options not supported"); 772 break; 773 case Opt_nouser_xattr: 774 f2fs_info(sbi, "nouser_xattr options not supported"); 775 break; 776 case Opt_inline_xattr: 777 f2fs_info(sbi, "inline_xattr options not supported"); 778 break; 779 case Opt_noinline_xattr: 780 f2fs_info(sbi, "noinline_xattr options not supported"); 781 break; 782 #endif 783 #ifdef CONFIG_F2FS_FS_POSIX_ACL 784 case Opt_acl: 785 set_opt(sbi, POSIX_ACL); 786 break; 787 case Opt_noacl: 788 clear_opt(sbi, POSIX_ACL); 789 break; 790 #else 791 case Opt_acl: 792 f2fs_info(sbi, "acl options not supported"); 793 break; 794 case Opt_noacl: 795 f2fs_info(sbi, "noacl options not supported"); 796 break; 797 #endif 798 case Opt_active_logs: 799 if (args->from && match_int(args, &arg)) 800 return -EINVAL; 801 if (arg != 2 && arg != 4 && 802 arg != NR_CURSEG_PERSIST_TYPE) 803 return -EINVAL; 804 F2FS_OPTION(sbi).active_logs = arg; 805 break; 806 case Opt_disable_ext_identify: 807 set_opt(sbi, DISABLE_EXT_IDENTIFY); 808 break; 809 case Opt_inline_data: 810 set_opt(sbi, INLINE_DATA); 811 break; 812 case Opt_inline_dentry: 813 set_opt(sbi, INLINE_DENTRY); 814 break; 815 case Opt_noinline_dentry: 816 clear_opt(sbi, INLINE_DENTRY); 817 break; 818 case Opt_flush_merge: 819 set_opt(sbi, FLUSH_MERGE); 820 break; 821 case Opt_noflush_merge: 822 clear_opt(sbi, FLUSH_MERGE); 823 break; 824 case Opt_nobarrier: 825 set_opt(sbi, NOBARRIER); 826 break; 827 case Opt_barrier: 828 clear_opt(sbi, NOBARRIER); 829 break; 830 case Opt_fastboot: 831 set_opt(sbi, FASTBOOT); 832 break; 833 case Opt_extent_cache: 834 set_opt(sbi, READ_EXTENT_CACHE); 835 break; 836 case Opt_noextent_cache: 837 clear_opt(sbi, READ_EXTENT_CACHE); 838 break; 839 case Opt_noinline_data: 840 clear_opt(sbi, INLINE_DATA); 841 break; 842 case Opt_data_flush: 843 set_opt(sbi, DATA_FLUSH); 844 break; 845 case Opt_reserve_root: 846 if (args->from && match_int(args, &arg)) 847 return -EINVAL; 848 if (test_opt(sbi, RESERVE_ROOT)) { 849 f2fs_info(sbi, "Preserve previous reserve_root=%u", 850 F2FS_OPTION(sbi).root_reserved_blocks); 851 } else { 852 F2FS_OPTION(sbi).root_reserved_blocks = arg; 853 set_opt(sbi, RESERVE_ROOT); 854 } 855 break; 856 case Opt_resuid: 857 if (args->from && match_int(args, &arg)) 858 return -EINVAL; 859 uid = make_kuid(current_user_ns(), arg); 860 if (!uid_valid(uid)) { 861 f2fs_err(sbi, "Invalid uid value %d", arg); 862 return -EINVAL; 863 } 864 F2FS_OPTION(sbi).s_resuid = uid; 865 break; 866 case Opt_resgid: 867 if (args->from && match_int(args, &arg)) 868 return -EINVAL; 869 gid = make_kgid(current_user_ns(), arg); 870 if (!gid_valid(gid)) { 871 f2fs_err(sbi, "Invalid gid value %d", arg); 872 return -EINVAL; 873 } 874 F2FS_OPTION(sbi).s_resgid = gid; 875 break; 876 case Opt_mode: 877 name = match_strdup(&args[0]); 878 879 if (!name) 880 return -ENOMEM; 881 if (!strcmp(name, "adaptive")) { 882 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 883 } else if (!strcmp(name, "lfs")) { 884 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 885 } else if (!strcmp(name, "fragment:segment")) { 886 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 887 } else if (!strcmp(name, "fragment:block")) { 888 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 889 } else { 890 kfree(name); 891 return -EINVAL; 892 } 893 kfree(name); 894 break; 895 #ifdef CONFIG_F2FS_FAULT_INJECTION 896 case Opt_fault_injection: 897 if (args->from && match_int(args, &arg)) 898 return -EINVAL; 899 if (f2fs_build_fault_attr(sbi, arg, 900 F2FS_ALL_FAULT_TYPE)) 901 return -EINVAL; 902 set_opt(sbi, FAULT_INJECTION); 903 break; 904 905 case Opt_fault_type: 906 if (args->from && match_int(args, &arg)) 907 return -EINVAL; 908 if (f2fs_build_fault_attr(sbi, 0, arg)) 909 return -EINVAL; 910 set_opt(sbi, FAULT_INJECTION); 911 break; 912 #else 913 case Opt_fault_injection: 914 f2fs_info(sbi, "fault_injection options not supported"); 915 break; 916 917 case Opt_fault_type: 918 f2fs_info(sbi, "fault_type options not supported"); 919 break; 920 #endif 921 case Opt_lazytime: 922 sb->s_flags |= SB_LAZYTIME; 923 break; 924 case Opt_nolazytime: 925 sb->s_flags &= ~SB_LAZYTIME; 926 break; 927 #ifdef CONFIG_QUOTA 928 case Opt_quota: 929 case Opt_usrquota: 930 set_opt(sbi, USRQUOTA); 931 break; 932 case Opt_grpquota: 933 set_opt(sbi, GRPQUOTA); 934 break; 935 case Opt_prjquota: 936 set_opt(sbi, PRJQUOTA); 937 break; 938 case Opt_usrjquota: 939 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 940 if (ret) 941 return ret; 942 break; 943 case Opt_grpjquota: 944 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 945 if (ret) 946 return ret; 947 break; 948 case Opt_prjjquota: 949 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 950 if (ret) 951 return ret; 952 break; 953 case Opt_offusrjquota: 954 ret = f2fs_clear_qf_name(sb, USRQUOTA); 955 if (ret) 956 return ret; 957 break; 958 case Opt_offgrpjquota: 959 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 960 if (ret) 961 return ret; 962 break; 963 case Opt_offprjjquota: 964 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 965 if (ret) 966 return ret; 967 break; 968 case Opt_jqfmt_vfsold: 969 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 970 break; 971 case Opt_jqfmt_vfsv0: 972 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 973 break; 974 case Opt_jqfmt_vfsv1: 975 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 976 break; 977 case Opt_noquota: 978 clear_opt(sbi, QUOTA); 979 clear_opt(sbi, USRQUOTA); 980 clear_opt(sbi, GRPQUOTA); 981 clear_opt(sbi, PRJQUOTA); 982 break; 983 #else 984 case Opt_quota: 985 case Opt_usrquota: 986 case Opt_grpquota: 987 case Opt_prjquota: 988 case Opt_usrjquota: 989 case Opt_grpjquota: 990 case Opt_prjjquota: 991 case Opt_offusrjquota: 992 case Opt_offgrpjquota: 993 case Opt_offprjjquota: 994 case Opt_jqfmt_vfsold: 995 case Opt_jqfmt_vfsv0: 996 case Opt_jqfmt_vfsv1: 997 case Opt_noquota: 998 f2fs_info(sbi, "quota operations not supported"); 999 break; 1000 #endif 1001 case Opt_alloc: 1002 name = match_strdup(&args[0]); 1003 if (!name) 1004 return -ENOMEM; 1005 1006 if (!strcmp(name, "default")) { 1007 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1008 } else if (!strcmp(name, "reuse")) { 1009 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 1010 } else { 1011 kfree(name); 1012 return -EINVAL; 1013 } 1014 kfree(name); 1015 break; 1016 case Opt_fsync: 1017 name = match_strdup(&args[0]); 1018 if (!name) 1019 return -ENOMEM; 1020 if (!strcmp(name, "posix")) { 1021 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1022 } else if (!strcmp(name, "strict")) { 1023 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1024 } else if (!strcmp(name, "nobarrier")) { 1025 F2FS_OPTION(sbi).fsync_mode = 1026 FSYNC_MODE_NOBARRIER; 1027 } else { 1028 kfree(name); 1029 return -EINVAL; 1030 } 1031 kfree(name); 1032 break; 1033 case Opt_test_dummy_encryption: 1034 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1035 is_remount); 1036 if (ret) 1037 return ret; 1038 break; 1039 case Opt_inlinecrypt: 1040 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1041 sb->s_flags |= SB_INLINECRYPT; 1042 #else 1043 f2fs_info(sbi, "inline encryption not supported"); 1044 #endif 1045 break; 1046 case Opt_checkpoint_disable_cap_perc: 1047 if (args->from && match_int(args, &arg)) 1048 return -EINVAL; 1049 if (arg < 0 || arg > 100) 1050 return -EINVAL; 1051 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1052 set_opt(sbi, DISABLE_CHECKPOINT); 1053 break; 1054 case Opt_checkpoint_disable_cap: 1055 if (args->from && match_int(args, &arg)) 1056 return -EINVAL; 1057 F2FS_OPTION(sbi).unusable_cap = arg; 1058 set_opt(sbi, DISABLE_CHECKPOINT); 1059 break; 1060 case Opt_checkpoint_disable: 1061 set_opt(sbi, DISABLE_CHECKPOINT); 1062 break; 1063 case Opt_checkpoint_enable: 1064 clear_opt(sbi, DISABLE_CHECKPOINT); 1065 break; 1066 case Opt_checkpoint_merge: 1067 set_opt(sbi, MERGE_CHECKPOINT); 1068 break; 1069 case Opt_nocheckpoint_merge: 1070 clear_opt(sbi, MERGE_CHECKPOINT); 1071 break; 1072 #ifdef CONFIG_F2FS_FS_COMPRESSION 1073 case Opt_compress_algorithm: 1074 if (!f2fs_sb_has_compression(sbi)) { 1075 f2fs_info(sbi, "Image doesn't support compression"); 1076 break; 1077 } 1078 name = match_strdup(&args[0]); 1079 if (!name) 1080 return -ENOMEM; 1081 if (!strcmp(name, "lzo")) { 1082 #ifdef CONFIG_F2FS_FS_LZO 1083 F2FS_OPTION(sbi).compress_level = 0; 1084 F2FS_OPTION(sbi).compress_algorithm = 1085 COMPRESS_LZO; 1086 #else 1087 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1088 #endif 1089 } else if (!strncmp(name, "lz4", 3)) { 1090 #ifdef CONFIG_F2FS_FS_LZ4 1091 ret = f2fs_set_lz4hc_level(sbi, name); 1092 if (ret) { 1093 kfree(name); 1094 return -EINVAL; 1095 } 1096 F2FS_OPTION(sbi).compress_algorithm = 1097 COMPRESS_LZ4; 1098 #else 1099 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1100 #endif 1101 } else if (!strncmp(name, "zstd", 4)) { 1102 #ifdef CONFIG_F2FS_FS_ZSTD 1103 ret = f2fs_set_zstd_level(sbi, name); 1104 if (ret) { 1105 kfree(name); 1106 return -EINVAL; 1107 } 1108 F2FS_OPTION(sbi).compress_algorithm = 1109 COMPRESS_ZSTD; 1110 #else 1111 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1112 #endif 1113 } else if (!strcmp(name, "lzo-rle")) { 1114 #ifdef CONFIG_F2FS_FS_LZORLE 1115 F2FS_OPTION(sbi).compress_level = 0; 1116 F2FS_OPTION(sbi).compress_algorithm = 1117 COMPRESS_LZORLE; 1118 #else 1119 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1120 #endif 1121 } else { 1122 kfree(name); 1123 return -EINVAL; 1124 } 1125 kfree(name); 1126 break; 1127 case Opt_compress_log_size: 1128 if (!f2fs_sb_has_compression(sbi)) { 1129 f2fs_info(sbi, "Image doesn't support compression"); 1130 break; 1131 } 1132 if (args->from && match_int(args, &arg)) 1133 return -EINVAL; 1134 if (arg < MIN_COMPRESS_LOG_SIZE || 1135 arg > MAX_COMPRESS_LOG_SIZE) { 1136 f2fs_err(sbi, 1137 "Compress cluster log size is out of range"); 1138 return -EINVAL; 1139 } 1140 F2FS_OPTION(sbi).compress_log_size = arg; 1141 break; 1142 case Opt_compress_extension: 1143 if (!f2fs_sb_has_compression(sbi)) { 1144 f2fs_info(sbi, "Image doesn't support compression"); 1145 break; 1146 } 1147 name = match_strdup(&args[0]); 1148 if (!name) 1149 return -ENOMEM; 1150 1151 ext = F2FS_OPTION(sbi).extensions; 1152 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1153 1154 if (strlen(name) >= F2FS_EXTENSION_LEN || 1155 ext_cnt >= COMPRESS_EXT_NUM) { 1156 f2fs_err(sbi, 1157 "invalid extension length/number"); 1158 kfree(name); 1159 return -EINVAL; 1160 } 1161 1162 if (is_compress_extension_exist(sbi, name, true)) { 1163 kfree(name); 1164 break; 1165 } 1166 1167 strcpy(ext[ext_cnt], name); 1168 F2FS_OPTION(sbi).compress_ext_cnt++; 1169 kfree(name); 1170 break; 1171 case Opt_nocompress_extension: 1172 if (!f2fs_sb_has_compression(sbi)) { 1173 f2fs_info(sbi, "Image doesn't support compression"); 1174 break; 1175 } 1176 name = match_strdup(&args[0]); 1177 if (!name) 1178 return -ENOMEM; 1179 1180 noext = F2FS_OPTION(sbi).noextensions; 1181 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1182 1183 if (strlen(name) >= F2FS_EXTENSION_LEN || 1184 noext_cnt >= COMPRESS_EXT_NUM) { 1185 f2fs_err(sbi, 1186 "invalid extension length/number"); 1187 kfree(name); 1188 return -EINVAL; 1189 } 1190 1191 if (is_compress_extension_exist(sbi, name, false)) { 1192 kfree(name); 1193 break; 1194 } 1195 1196 strcpy(noext[noext_cnt], name); 1197 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1198 kfree(name); 1199 break; 1200 case Opt_compress_chksum: 1201 if (!f2fs_sb_has_compression(sbi)) { 1202 f2fs_info(sbi, "Image doesn't support compression"); 1203 break; 1204 } 1205 F2FS_OPTION(sbi).compress_chksum = true; 1206 break; 1207 case Opt_compress_mode: 1208 if (!f2fs_sb_has_compression(sbi)) { 1209 f2fs_info(sbi, "Image doesn't support compression"); 1210 break; 1211 } 1212 name = match_strdup(&args[0]); 1213 if (!name) 1214 return -ENOMEM; 1215 if (!strcmp(name, "fs")) { 1216 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1217 } else if (!strcmp(name, "user")) { 1218 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1219 } else { 1220 kfree(name); 1221 return -EINVAL; 1222 } 1223 kfree(name); 1224 break; 1225 case Opt_compress_cache: 1226 if (!f2fs_sb_has_compression(sbi)) { 1227 f2fs_info(sbi, "Image doesn't support compression"); 1228 break; 1229 } 1230 set_opt(sbi, COMPRESS_CACHE); 1231 break; 1232 #else 1233 case Opt_compress_algorithm: 1234 case Opt_compress_log_size: 1235 case Opt_compress_extension: 1236 case Opt_nocompress_extension: 1237 case Opt_compress_chksum: 1238 case Opt_compress_mode: 1239 case Opt_compress_cache: 1240 f2fs_info(sbi, "compression options not supported"); 1241 break; 1242 #endif 1243 case Opt_atgc: 1244 set_opt(sbi, ATGC); 1245 break; 1246 case Opt_gc_merge: 1247 set_opt(sbi, GC_MERGE); 1248 break; 1249 case Opt_nogc_merge: 1250 clear_opt(sbi, GC_MERGE); 1251 break; 1252 case Opt_discard_unit: 1253 name = match_strdup(&args[0]); 1254 if (!name) 1255 return -ENOMEM; 1256 if (!strcmp(name, "block")) { 1257 F2FS_OPTION(sbi).discard_unit = 1258 DISCARD_UNIT_BLOCK; 1259 } else if (!strcmp(name, "segment")) { 1260 F2FS_OPTION(sbi).discard_unit = 1261 DISCARD_UNIT_SEGMENT; 1262 } else if (!strcmp(name, "section")) { 1263 F2FS_OPTION(sbi).discard_unit = 1264 DISCARD_UNIT_SECTION; 1265 } else { 1266 kfree(name); 1267 return -EINVAL; 1268 } 1269 kfree(name); 1270 break; 1271 case Opt_memory_mode: 1272 name = match_strdup(&args[0]); 1273 if (!name) 1274 return -ENOMEM; 1275 if (!strcmp(name, "normal")) { 1276 F2FS_OPTION(sbi).memory_mode = 1277 MEMORY_MODE_NORMAL; 1278 } else if (!strcmp(name, "low")) { 1279 F2FS_OPTION(sbi).memory_mode = 1280 MEMORY_MODE_LOW; 1281 } else { 1282 kfree(name); 1283 return -EINVAL; 1284 } 1285 kfree(name); 1286 break; 1287 case Opt_age_extent_cache: 1288 set_opt(sbi, AGE_EXTENT_CACHE); 1289 break; 1290 case Opt_errors: 1291 name = match_strdup(&args[0]); 1292 if (!name) 1293 return -ENOMEM; 1294 if (!strcmp(name, "remount-ro")) { 1295 F2FS_OPTION(sbi).errors = 1296 MOUNT_ERRORS_READONLY; 1297 } else if (!strcmp(name, "continue")) { 1298 F2FS_OPTION(sbi).errors = 1299 MOUNT_ERRORS_CONTINUE; 1300 } else if (!strcmp(name, "panic")) { 1301 F2FS_OPTION(sbi).errors = 1302 MOUNT_ERRORS_PANIC; 1303 } else { 1304 kfree(name); 1305 return -EINVAL; 1306 } 1307 kfree(name); 1308 break; 1309 default: 1310 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1311 p); 1312 return -EINVAL; 1313 } 1314 } 1315 default_check: 1316 #ifdef CONFIG_QUOTA 1317 if (f2fs_check_quota_options(sbi)) 1318 return -EINVAL; 1319 #else 1320 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1321 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1322 return -EINVAL; 1323 } 1324 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1325 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1326 return -EINVAL; 1327 } 1328 #endif 1329 #if !IS_ENABLED(CONFIG_UNICODE) 1330 if (f2fs_sb_has_casefold(sbi)) { 1331 f2fs_err(sbi, 1332 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1333 return -EINVAL; 1334 } 1335 #endif 1336 /* 1337 * The BLKZONED feature indicates that the drive was formatted with 1338 * zone alignment optimization. This is optional for host-aware 1339 * devices, but mandatory for host-managed zoned block devices. 1340 */ 1341 if (f2fs_sb_has_blkzoned(sbi)) { 1342 #ifdef CONFIG_BLK_DEV_ZONED 1343 if (F2FS_OPTION(sbi).discard_unit != 1344 DISCARD_UNIT_SECTION) { 1345 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1346 F2FS_OPTION(sbi).discard_unit = 1347 DISCARD_UNIT_SECTION; 1348 } 1349 1350 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { 1351 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1352 return -EINVAL; 1353 } 1354 #else 1355 f2fs_err(sbi, "Zoned block device support is not enabled"); 1356 return -EINVAL; 1357 #endif 1358 } 1359 1360 #ifdef CONFIG_F2FS_FS_COMPRESSION 1361 if (f2fs_test_compress_extension(sbi)) { 1362 f2fs_err(sbi, "invalid compress or nocompress extension"); 1363 return -EINVAL; 1364 } 1365 #endif 1366 1367 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1368 int min_size, max_size; 1369 1370 if (!f2fs_sb_has_extra_attr(sbi) || 1371 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1372 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1373 return -EINVAL; 1374 } 1375 if (!test_opt(sbi, INLINE_XATTR)) { 1376 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1377 return -EINVAL; 1378 } 1379 1380 min_size = MIN_INLINE_XATTR_SIZE; 1381 max_size = MAX_INLINE_XATTR_SIZE; 1382 1383 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1384 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1385 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1386 min_size, max_size); 1387 return -EINVAL; 1388 } 1389 } 1390 1391 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1392 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1393 return -EINVAL; 1394 } 1395 1396 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1397 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1398 return -EINVAL; 1399 } 1400 1401 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1402 f2fs_err(sbi, "Allow to mount readonly mode only"); 1403 return -EROFS; 1404 } 1405 return 0; 1406 } 1407 1408 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1409 { 1410 struct f2fs_inode_info *fi; 1411 1412 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1413 return NULL; 1414 1415 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1416 if (!fi) 1417 return NULL; 1418 1419 init_once((void *) fi); 1420 1421 /* Initialize f2fs-specific inode info */ 1422 atomic_set(&fi->dirty_pages, 0); 1423 atomic_set(&fi->i_compr_blocks, 0); 1424 init_f2fs_rwsem(&fi->i_sem); 1425 spin_lock_init(&fi->i_size_lock); 1426 INIT_LIST_HEAD(&fi->dirty_list); 1427 INIT_LIST_HEAD(&fi->gdirty_list); 1428 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1429 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1430 init_f2fs_rwsem(&fi->i_xattr_sem); 1431 1432 /* Will be used by directory only */ 1433 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1434 1435 return &fi->vfs_inode; 1436 } 1437 1438 static int f2fs_drop_inode(struct inode *inode) 1439 { 1440 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1441 int ret; 1442 1443 /* 1444 * during filesystem shutdown, if checkpoint is disabled, 1445 * drop useless meta/node dirty pages. 1446 */ 1447 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1448 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1449 inode->i_ino == F2FS_META_INO(sbi)) { 1450 trace_f2fs_drop_inode(inode, 1); 1451 return 1; 1452 } 1453 } 1454 1455 /* 1456 * This is to avoid a deadlock condition like below. 1457 * writeback_single_inode(inode) 1458 * - f2fs_write_data_page 1459 * - f2fs_gc -> iput -> evict 1460 * - inode_wait_for_writeback(inode) 1461 */ 1462 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1463 if (!inode->i_nlink && !is_bad_inode(inode)) { 1464 /* to avoid evict_inode call simultaneously */ 1465 atomic_inc(&inode->i_count); 1466 spin_unlock(&inode->i_lock); 1467 1468 /* should remain fi->extent_tree for writepage */ 1469 f2fs_destroy_extent_node(inode); 1470 1471 sb_start_intwrite(inode->i_sb); 1472 f2fs_i_size_write(inode, 0); 1473 1474 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1475 inode, NULL, 0, DATA); 1476 truncate_inode_pages_final(inode->i_mapping); 1477 1478 if (F2FS_HAS_BLOCKS(inode)) 1479 f2fs_truncate(inode); 1480 1481 sb_end_intwrite(inode->i_sb); 1482 1483 spin_lock(&inode->i_lock); 1484 atomic_dec(&inode->i_count); 1485 } 1486 trace_f2fs_drop_inode(inode, 0); 1487 return 0; 1488 } 1489 ret = generic_drop_inode(inode); 1490 if (!ret) 1491 ret = fscrypt_drop_inode(inode); 1492 trace_f2fs_drop_inode(inode, ret); 1493 return ret; 1494 } 1495 1496 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1497 { 1498 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1499 int ret = 0; 1500 1501 spin_lock(&sbi->inode_lock[DIRTY_META]); 1502 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1503 ret = 1; 1504 } else { 1505 set_inode_flag(inode, FI_DIRTY_INODE); 1506 stat_inc_dirty_inode(sbi, DIRTY_META); 1507 } 1508 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1509 list_add_tail(&F2FS_I(inode)->gdirty_list, 1510 &sbi->inode_list[DIRTY_META]); 1511 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1512 } 1513 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1514 return ret; 1515 } 1516 1517 void f2fs_inode_synced(struct inode *inode) 1518 { 1519 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1520 1521 spin_lock(&sbi->inode_lock[DIRTY_META]); 1522 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1523 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1524 return; 1525 } 1526 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1527 list_del_init(&F2FS_I(inode)->gdirty_list); 1528 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1529 } 1530 clear_inode_flag(inode, FI_DIRTY_INODE); 1531 clear_inode_flag(inode, FI_AUTO_RECOVER); 1532 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1533 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1534 } 1535 1536 /* 1537 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1538 * 1539 * We should call set_dirty_inode to write the dirty inode through write_inode. 1540 */ 1541 static void f2fs_dirty_inode(struct inode *inode, int flags) 1542 { 1543 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1544 1545 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1546 inode->i_ino == F2FS_META_INO(sbi)) 1547 return; 1548 1549 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1550 clear_inode_flag(inode, FI_AUTO_RECOVER); 1551 1552 f2fs_inode_dirtied(inode, false); 1553 } 1554 1555 static void f2fs_free_inode(struct inode *inode) 1556 { 1557 fscrypt_free_inode(inode); 1558 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1559 } 1560 1561 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1562 { 1563 percpu_counter_destroy(&sbi->total_valid_inode_count); 1564 percpu_counter_destroy(&sbi->rf_node_block_count); 1565 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1566 } 1567 1568 static void destroy_device_list(struct f2fs_sb_info *sbi) 1569 { 1570 int i; 1571 1572 for (i = 0; i < sbi->s_ndevs; i++) { 1573 if (i > 0) 1574 bdev_fput(FDEV(i).bdev_file); 1575 #ifdef CONFIG_BLK_DEV_ZONED 1576 kvfree(FDEV(i).blkz_seq); 1577 #endif 1578 } 1579 kvfree(sbi->devs); 1580 } 1581 1582 static void f2fs_put_super(struct super_block *sb) 1583 { 1584 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1585 int i; 1586 int err = 0; 1587 bool done; 1588 1589 /* unregister procfs/sysfs entries in advance to avoid race case */ 1590 f2fs_unregister_sysfs(sbi); 1591 1592 f2fs_quota_off_umount(sb); 1593 1594 /* prevent remaining shrinker jobs */ 1595 mutex_lock(&sbi->umount_mutex); 1596 1597 /* 1598 * flush all issued checkpoints and stop checkpoint issue thread. 1599 * after then, all checkpoints should be done by each process context. 1600 */ 1601 f2fs_stop_ckpt_thread(sbi); 1602 1603 /* 1604 * We don't need to do checkpoint when superblock is clean. 1605 * But, the previous checkpoint was not done by umount, it needs to do 1606 * clean checkpoint again. 1607 */ 1608 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1609 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1610 struct cp_control cpc = { 1611 .reason = CP_UMOUNT, 1612 }; 1613 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1614 err = f2fs_write_checkpoint(sbi, &cpc); 1615 } 1616 1617 /* be sure to wait for any on-going discard commands */ 1618 done = f2fs_issue_discard_timeout(sbi); 1619 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1620 struct cp_control cpc = { 1621 .reason = CP_UMOUNT | CP_TRIMMED, 1622 }; 1623 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1624 err = f2fs_write_checkpoint(sbi, &cpc); 1625 } 1626 1627 /* 1628 * normally superblock is clean, so we need to release this. 1629 * In addition, EIO will skip do checkpoint, we need this as well. 1630 */ 1631 f2fs_release_ino_entry(sbi, true); 1632 1633 f2fs_leave_shrinker(sbi); 1634 mutex_unlock(&sbi->umount_mutex); 1635 1636 /* our cp_error case, we can wait for any writeback page */ 1637 f2fs_flush_merged_writes(sbi); 1638 1639 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1640 1641 if (err || f2fs_cp_error(sbi)) { 1642 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1643 truncate_inode_pages_final(META_MAPPING(sbi)); 1644 } 1645 1646 for (i = 0; i < NR_COUNT_TYPE; i++) { 1647 if (!get_pages(sbi, i)) 1648 continue; 1649 f2fs_err(sbi, "detect filesystem reference count leak during " 1650 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1651 f2fs_bug_on(sbi, 1); 1652 } 1653 1654 f2fs_bug_on(sbi, sbi->fsync_node_num); 1655 1656 f2fs_destroy_compress_inode(sbi); 1657 1658 iput(sbi->node_inode); 1659 sbi->node_inode = NULL; 1660 1661 iput(sbi->meta_inode); 1662 sbi->meta_inode = NULL; 1663 1664 /* 1665 * iput() can update stat information, if f2fs_write_checkpoint() 1666 * above failed with error. 1667 */ 1668 f2fs_destroy_stats(sbi); 1669 1670 /* destroy f2fs internal modules */ 1671 f2fs_destroy_node_manager(sbi); 1672 f2fs_destroy_segment_manager(sbi); 1673 1674 /* flush s_error_work before sbi destroy */ 1675 flush_work(&sbi->s_error_work); 1676 1677 f2fs_destroy_post_read_wq(sbi); 1678 1679 kvfree(sbi->ckpt); 1680 1681 if (sbi->s_chksum_driver) 1682 crypto_free_shash(sbi->s_chksum_driver); 1683 kfree(sbi->raw_super); 1684 1685 f2fs_destroy_page_array_cache(sbi); 1686 f2fs_destroy_xattr_caches(sbi); 1687 #ifdef CONFIG_QUOTA 1688 for (i = 0; i < MAXQUOTAS; i++) 1689 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1690 #endif 1691 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1692 destroy_percpu_info(sbi); 1693 f2fs_destroy_iostat(sbi); 1694 for (i = 0; i < NR_PAGE_TYPE; i++) 1695 kvfree(sbi->write_io[i]); 1696 #if IS_ENABLED(CONFIG_UNICODE) 1697 utf8_unload(sb->s_encoding); 1698 #endif 1699 } 1700 1701 int f2fs_sync_fs(struct super_block *sb, int sync) 1702 { 1703 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1704 int err = 0; 1705 1706 if (unlikely(f2fs_cp_error(sbi))) 1707 return 0; 1708 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1709 return 0; 1710 1711 trace_f2fs_sync_fs(sb, sync); 1712 1713 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1714 return -EAGAIN; 1715 1716 if (sync) { 1717 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1718 err = f2fs_issue_checkpoint(sbi); 1719 } 1720 1721 return err; 1722 } 1723 1724 static int f2fs_freeze(struct super_block *sb) 1725 { 1726 if (f2fs_readonly(sb)) 1727 return 0; 1728 1729 /* IO error happened before */ 1730 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1731 return -EIO; 1732 1733 /* must be clean, since sync_filesystem() was already called */ 1734 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1735 return -EINVAL; 1736 1737 /* Let's flush checkpoints and stop the thread. */ 1738 f2fs_flush_ckpt_thread(F2FS_SB(sb)); 1739 1740 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1741 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1742 return 0; 1743 } 1744 1745 static int f2fs_unfreeze(struct super_block *sb) 1746 { 1747 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1748 return 0; 1749 } 1750 1751 #ifdef CONFIG_QUOTA 1752 static int f2fs_statfs_project(struct super_block *sb, 1753 kprojid_t projid, struct kstatfs *buf) 1754 { 1755 struct kqid qid; 1756 struct dquot *dquot; 1757 u64 limit; 1758 u64 curblock; 1759 1760 qid = make_kqid_projid(projid); 1761 dquot = dqget(sb, qid); 1762 if (IS_ERR(dquot)) 1763 return PTR_ERR(dquot); 1764 spin_lock(&dquot->dq_dqb_lock); 1765 1766 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1767 dquot->dq_dqb.dqb_bhardlimit); 1768 if (limit) 1769 limit >>= sb->s_blocksize_bits; 1770 1771 if (limit && buf->f_blocks > limit) { 1772 curblock = (dquot->dq_dqb.dqb_curspace + 1773 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1774 buf->f_blocks = limit; 1775 buf->f_bfree = buf->f_bavail = 1776 (buf->f_blocks > curblock) ? 1777 (buf->f_blocks - curblock) : 0; 1778 } 1779 1780 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1781 dquot->dq_dqb.dqb_ihardlimit); 1782 1783 if (limit && buf->f_files > limit) { 1784 buf->f_files = limit; 1785 buf->f_ffree = 1786 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1787 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1788 } 1789 1790 spin_unlock(&dquot->dq_dqb_lock); 1791 dqput(dquot); 1792 return 0; 1793 } 1794 #endif 1795 1796 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1797 { 1798 struct super_block *sb = dentry->d_sb; 1799 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1800 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1801 block_t total_count, user_block_count, start_count; 1802 u64 avail_node_count; 1803 unsigned int total_valid_node_count; 1804 1805 total_count = le64_to_cpu(sbi->raw_super->block_count); 1806 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1807 buf->f_type = F2FS_SUPER_MAGIC; 1808 buf->f_bsize = sbi->blocksize; 1809 1810 buf->f_blocks = total_count - start_count; 1811 1812 spin_lock(&sbi->stat_lock); 1813 1814 user_block_count = sbi->user_block_count; 1815 total_valid_node_count = valid_node_count(sbi); 1816 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1817 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1818 sbi->current_reserved_blocks; 1819 1820 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1821 buf->f_bfree = 0; 1822 else 1823 buf->f_bfree -= sbi->unusable_block_count; 1824 spin_unlock(&sbi->stat_lock); 1825 1826 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1827 buf->f_bavail = buf->f_bfree - 1828 F2FS_OPTION(sbi).root_reserved_blocks; 1829 else 1830 buf->f_bavail = 0; 1831 1832 if (avail_node_count > user_block_count) { 1833 buf->f_files = user_block_count; 1834 buf->f_ffree = buf->f_bavail; 1835 } else { 1836 buf->f_files = avail_node_count; 1837 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1838 buf->f_bavail); 1839 } 1840 1841 buf->f_namelen = F2FS_NAME_LEN; 1842 buf->f_fsid = u64_to_fsid(id); 1843 1844 #ifdef CONFIG_QUOTA 1845 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1846 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1847 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1848 } 1849 #endif 1850 return 0; 1851 } 1852 1853 static inline void f2fs_show_quota_options(struct seq_file *seq, 1854 struct super_block *sb) 1855 { 1856 #ifdef CONFIG_QUOTA 1857 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1858 1859 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1860 char *fmtname = ""; 1861 1862 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1863 case QFMT_VFS_OLD: 1864 fmtname = "vfsold"; 1865 break; 1866 case QFMT_VFS_V0: 1867 fmtname = "vfsv0"; 1868 break; 1869 case QFMT_VFS_V1: 1870 fmtname = "vfsv1"; 1871 break; 1872 } 1873 seq_printf(seq, ",jqfmt=%s", fmtname); 1874 } 1875 1876 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1877 seq_show_option(seq, "usrjquota", 1878 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1879 1880 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1881 seq_show_option(seq, "grpjquota", 1882 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1883 1884 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1885 seq_show_option(seq, "prjjquota", 1886 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1887 #endif 1888 } 1889 1890 #ifdef CONFIG_F2FS_FS_COMPRESSION 1891 static inline void f2fs_show_compress_options(struct seq_file *seq, 1892 struct super_block *sb) 1893 { 1894 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1895 char *algtype = ""; 1896 int i; 1897 1898 if (!f2fs_sb_has_compression(sbi)) 1899 return; 1900 1901 switch (F2FS_OPTION(sbi).compress_algorithm) { 1902 case COMPRESS_LZO: 1903 algtype = "lzo"; 1904 break; 1905 case COMPRESS_LZ4: 1906 algtype = "lz4"; 1907 break; 1908 case COMPRESS_ZSTD: 1909 algtype = "zstd"; 1910 break; 1911 case COMPRESS_LZORLE: 1912 algtype = "lzo-rle"; 1913 break; 1914 } 1915 seq_printf(seq, ",compress_algorithm=%s", algtype); 1916 1917 if (F2FS_OPTION(sbi).compress_level) 1918 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1919 1920 seq_printf(seq, ",compress_log_size=%u", 1921 F2FS_OPTION(sbi).compress_log_size); 1922 1923 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1924 seq_printf(seq, ",compress_extension=%s", 1925 F2FS_OPTION(sbi).extensions[i]); 1926 } 1927 1928 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1929 seq_printf(seq, ",nocompress_extension=%s", 1930 F2FS_OPTION(sbi).noextensions[i]); 1931 } 1932 1933 if (F2FS_OPTION(sbi).compress_chksum) 1934 seq_puts(seq, ",compress_chksum"); 1935 1936 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1937 seq_printf(seq, ",compress_mode=%s", "fs"); 1938 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1939 seq_printf(seq, ",compress_mode=%s", "user"); 1940 1941 if (test_opt(sbi, COMPRESS_CACHE)) 1942 seq_puts(seq, ",compress_cache"); 1943 } 1944 #endif 1945 1946 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1947 { 1948 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1949 1950 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1951 seq_printf(seq, ",background_gc=%s", "sync"); 1952 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1953 seq_printf(seq, ",background_gc=%s", "on"); 1954 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1955 seq_printf(seq, ",background_gc=%s", "off"); 1956 1957 if (test_opt(sbi, GC_MERGE)) 1958 seq_puts(seq, ",gc_merge"); 1959 else 1960 seq_puts(seq, ",nogc_merge"); 1961 1962 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1963 seq_puts(seq, ",disable_roll_forward"); 1964 if (test_opt(sbi, NORECOVERY)) 1965 seq_puts(seq, ",norecovery"); 1966 if (test_opt(sbi, DISCARD)) { 1967 seq_puts(seq, ",discard"); 1968 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 1969 seq_printf(seq, ",discard_unit=%s", "block"); 1970 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 1971 seq_printf(seq, ",discard_unit=%s", "segment"); 1972 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 1973 seq_printf(seq, ",discard_unit=%s", "section"); 1974 } else { 1975 seq_puts(seq, ",nodiscard"); 1976 } 1977 #ifdef CONFIG_F2FS_FS_XATTR 1978 if (test_opt(sbi, XATTR_USER)) 1979 seq_puts(seq, ",user_xattr"); 1980 else 1981 seq_puts(seq, ",nouser_xattr"); 1982 if (test_opt(sbi, INLINE_XATTR)) 1983 seq_puts(seq, ",inline_xattr"); 1984 else 1985 seq_puts(seq, ",noinline_xattr"); 1986 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1987 seq_printf(seq, ",inline_xattr_size=%u", 1988 F2FS_OPTION(sbi).inline_xattr_size); 1989 #endif 1990 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1991 if (test_opt(sbi, POSIX_ACL)) 1992 seq_puts(seq, ",acl"); 1993 else 1994 seq_puts(seq, ",noacl"); 1995 #endif 1996 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1997 seq_puts(seq, ",disable_ext_identify"); 1998 if (test_opt(sbi, INLINE_DATA)) 1999 seq_puts(seq, ",inline_data"); 2000 else 2001 seq_puts(seq, ",noinline_data"); 2002 if (test_opt(sbi, INLINE_DENTRY)) 2003 seq_puts(seq, ",inline_dentry"); 2004 else 2005 seq_puts(seq, ",noinline_dentry"); 2006 if (test_opt(sbi, FLUSH_MERGE)) 2007 seq_puts(seq, ",flush_merge"); 2008 else 2009 seq_puts(seq, ",noflush_merge"); 2010 if (test_opt(sbi, NOBARRIER)) 2011 seq_puts(seq, ",nobarrier"); 2012 else 2013 seq_puts(seq, ",barrier"); 2014 if (test_opt(sbi, FASTBOOT)) 2015 seq_puts(seq, ",fastboot"); 2016 if (test_opt(sbi, READ_EXTENT_CACHE)) 2017 seq_puts(seq, ",extent_cache"); 2018 else 2019 seq_puts(seq, ",noextent_cache"); 2020 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2021 seq_puts(seq, ",age_extent_cache"); 2022 if (test_opt(sbi, DATA_FLUSH)) 2023 seq_puts(seq, ",data_flush"); 2024 2025 seq_puts(seq, ",mode="); 2026 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2027 seq_puts(seq, "adaptive"); 2028 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2029 seq_puts(seq, "lfs"); 2030 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2031 seq_puts(seq, "fragment:segment"); 2032 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2033 seq_puts(seq, "fragment:block"); 2034 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2035 if (test_opt(sbi, RESERVE_ROOT)) 2036 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2037 F2FS_OPTION(sbi).root_reserved_blocks, 2038 from_kuid_munged(&init_user_ns, 2039 F2FS_OPTION(sbi).s_resuid), 2040 from_kgid_munged(&init_user_ns, 2041 F2FS_OPTION(sbi).s_resgid)); 2042 #ifdef CONFIG_F2FS_FAULT_INJECTION 2043 if (test_opt(sbi, FAULT_INJECTION)) { 2044 seq_printf(seq, ",fault_injection=%u", 2045 F2FS_OPTION(sbi).fault_info.inject_rate); 2046 seq_printf(seq, ",fault_type=%u", 2047 F2FS_OPTION(sbi).fault_info.inject_type); 2048 } 2049 #endif 2050 #ifdef CONFIG_QUOTA 2051 if (test_opt(sbi, QUOTA)) 2052 seq_puts(seq, ",quota"); 2053 if (test_opt(sbi, USRQUOTA)) 2054 seq_puts(seq, ",usrquota"); 2055 if (test_opt(sbi, GRPQUOTA)) 2056 seq_puts(seq, ",grpquota"); 2057 if (test_opt(sbi, PRJQUOTA)) 2058 seq_puts(seq, ",prjquota"); 2059 #endif 2060 f2fs_show_quota_options(seq, sbi->sb); 2061 2062 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2063 2064 if (sbi->sb->s_flags & SB_INLINECRYPT) 2065 seq_puts(seq, ",inlinecrypt"); 2066 2067 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2068 seq_printf(seq, ",alloc_mode=%s", "default"); 2069 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2070 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2071 2072 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2073 seq_printf(seq, ",checkpoint=disable:%u", 2074 F2FS_OPTION(sbi).unusable_cap); 2075 if (test_opt(sbi, MERGE_CHECKPOINT)) 2076 seq_puts(seq, ",checkpoint_merge"); 2077 else 2078 seq_puts(seq, ",nocheckpoint_merge"); 2079 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2080 seq_printf(seq, ",fsync_mode=%s", "posix"); 2081 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2082 seq_printf(seq, ",fsync_mode=%s", "strict"); 2083 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2084 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2085 2086 #ifdef CONFIG_F2FS_FS_COMPRESSION 2087 f2fs_show_compress_options(seq, sbi->sb); 2088 #endif 2089 2090 if (test_opt(sbi, ATGC)) 2091 seq_puts(seq, ",atgc"); 2092 2093 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2094 seq_printf(seq, ",memory=%s", "normal"); 2095 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2096 seq_printf(seq, ",memory=%s", "low"); 2097 2098 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2099 seq_printf(seq, ",errors=%s", "remount-ro"); 2100 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2101 seq_printf(seq, ",errors=%s", "continue"); 2102 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2103 seq_printf(seq, ",errors=%s", "panic"); 2104 2105 return 0; 2106 } 2107 2108 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2109 { 2110 /* init some FS parameters */ 2111 if (!remount) { 2112 set_opt(sbi, READ_EXTENT_CACHE); 2113 clear_opt(sbi, DISABLE_CHECKPOINT); 2114 2115 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2116 set_opt(sbi, DISCARD); 2117 2118 if (f2fs_sb_has_blkzoned(sbi)) 2119 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2120 else 2121 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2122 } 2123 2124 if (f2fs_sb_has_readonly(sbi)) 2125 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2126 else 2127 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2128 2129 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2130 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2131 SMALL_VOLUME_SEGMENTS) 2132 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2133 else 2134 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2135 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2136 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2137 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2138 if (f2fs_sb_has_compression(sbi)) { 2139 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2140 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2141 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2142 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2143 } 2144 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2145 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2146 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2147 2148 set_opt(sbi, INLINE_XATTR); 2149 set_opt(sbi, INLINE_DATA); 2150 set_opt(sbi, INLINE_DENTRY); 2151 set_opt(sbi, MERGE_CHECKPOINT); 2152 F2FS_OPTION(sbi).unusable_cap = 0; 2153 sbi->sb->s_flags |= SB_LAZYTIME; 2154 if (!f2fs_is_readonly(sbi)) 2155 set_opt(sbi, FLUSH_MERGE); 2156 if (f2fs_sb_has_blkzoned(sbi)) 2157 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2158 else 2159 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2160 2161 #ifdef CONFIG_F2FS_FS_XATTR 2162 set_opt(sbi, XATTR_USER); 2163 #endif 2164 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2165 set_opt(sbi, POSIX_ACL); 2166 #endif 2167 2168 f2fs_build_fault_attr(sbi, 0, 0); 2169 } 2170 2171 #ifdef CONFIG_QUOTA 2172 static int f2fs_enable_quotas(struct super_block *sb); 2173 #endif 2174 2175 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2176 { 2177 unsigned int s_flags = sbi->sb->s_flags; 2178 struct cp_control cpc; 2179 unsigned int gc_mode = sbi->gc_mode; 2180 int err = 0; 2181 int ret; 2182 block_t unusable; 2183 2184 if (s_flags & SB_RDONLY) { 2185 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2186 return -EINVAL; 2187 } 2188 sbi->sb->s_flags |= SB_ACTIVE; 2189 2190 /* check if we need more GC first */ 2191 unusable = f2fs_get_unusable_blocks(sbi); 2192 if (!f2fs_disable_cp_again(sbi, unusable)) 2193 goto skip_gc; 2194 2195 f2fs_update_time(sbi, DISABLE_TIME); 2196 2197 sbi->gc_mode = GC_URGENT_HIGH; 2198 2199 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2200 struct f2fs_gc_control gc_control = { 2201 .victim_segno = NULL_SEGNO, 2202 .init_gc_type = FG_GC, 2203 .should_migrate_blocks = false, 2204 .err_gc_skipped = true, 2205 .no_bg_gc = true, 2206 .nr_free_secs = 1 }; 2207 2208 f2fs_down_write(&sbi->gc_lock); 2209 stat_inc_gc_call_count(sbi, FOREGROUND); 2210 err = f2fs_gc(sbi, &gc_control); 2211 if (err == -ENODATA) { 2212 err = 0; 2213 break; 2214 } 2215 if (err && err != -EAGAIN) 2216 break; 2217 } 2218 2219 ret = sync_filesystem(sbi->sb); 2220 if (ret || err) { 2221 err = ret ? ret : err; 2222 goto restore_flag; 2223 } 2224 2225 unusable = f2fs_get_unusable_blocks(sbi); 2226 if (f2fs_disable_cp_again(sbi, unusable)) { 2227 err = -EAGAIN; 2228 goto restore_flag; 2229 } 2230 2231 skip_gc: 2232 f2fs_down_write(&sbi->gc_lock); 2233 cpc.reason = CP_PAUSE; 2234 set_sbi_flag(sbi, SBI_CP_DISABLED); 2235 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2236 err = f2fs_write_checkpoint(sbi, &cpc); 2237 if (err) 2238 goto out_unlock; 2239 2240 spin_lock(&sbi->stat_lock); 2241 sbi->unusable_block_count = unusable; 2242 spin_unlock(&sbi->stat_lock); 2243 2244 out_unlock: 2245 f2fs_up_write(&sbi->gc_lock); 2246 restore_flag: 2247 sbi->gc_mode = gc_mode; 2248 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2249 return err; 2250 } 2251 2252 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2253 { 2254 int retry = DEFAULT_RETRY_IO_COUNT; 2255 2256 /* we should flush all the data to keep data consistency */ 2257 do { 2258 sync_inodes_sb(sbi->sb); 2259 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2260 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2261 2262 if (unlikely(retry < 0)) 2263 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2264 2265 f2fs_down_write(&sbi->gc_lock); 2266 f2fs_dirty_to_prefree(sbi); 2267 2268 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2269 set_sbi_flag(sbi, SBI_IS_DIRTY); 2270 f2fs_up_write(&sbi->gc_lock); 2271 2272 f2fs_sync_fs(sbi->sb, 1); 2273 2274 /* Let's ensure there's no pending checkpoint anymore */ 2275 f2fs_flush_ckpt_thread(sbi); 2276 } 2277 2278 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2279 { 2280 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2281 struct f2fs_mount_info org_mount_opt; 2282 unsigned long old_sb_flags; 2283 int err; 2284 bool need_restart_gc = false, need_stop_gc = false; 2285 bool need_restart_flush = false, need_stop_flush = false; 2286 bool need_restart_discard = false, need_stop_discard = false; 2287 bool need_enable_checkpoint = false, need_disable_checkpoint = false; 2288 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2289 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2290 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2291 bool no_atgc = !test_opt(sbi, ATGC); 2292 bool no_discard = !test_opt(sbi, DISCARD); 2293 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2294 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2295 #ifdef CONFIG_QUOTA 2296 int i, j; 2297 #endif 2298 2299 /* 2300 * Save the old mount options in case we 2301 * need to restore them. 2302 */ 2303 org_mount_opt = sbi->mount_opt; 2304 old_sb_flags = sb->s_flags; 2305 2306 #ifdef CONFIG_QUOTA 2307 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2308 for (i = 0; i < MAXQUOTAS; i++) { 2309 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2310 org_mount_opt.s_qf_names[i] = 2311 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2312 GFP_KERNEL); 2313 if (!org_mount_opt.s_qf_names[i]) { 2314 for (j = 0; j < i; j++) 2315 kfree(org_mount_opt.s_qf_names[j]); 2316 return -ENOMEM; 2317 } 2318 } else { 2319 org_mount_opt.s_qf_names[i] = NULL; 2320 } 2321 } 2322 #endif 2323 2324 /* recover superblocks we couldn't write due to previous RO mount */ 2325 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2326 err = f2fs_commit_super(sbi, false); 2327 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2328 err); 2329 if (!err) 2330 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2331 } 2332 2333 default_options(sbi, true); 2334 2335 /* parse mount options */ 2336 err = parse_options(sb, data, true); 2337 if (err) 2338 goto restore_opts; 2339 2340 #ifdef CONFIG_BLK_DEV_ZONED 2341 if (f2fs_sb_has_blkzoned(sbi) && 2342 sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 2343 f2fs_err(sbi, 2344 "zoned: max open zones %u is too small, need at least %u open zones", 2345 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 2346 err = -EINVAL; 2347 goto restore_opts; 2348 } 2349 #endif 2350 2351 /* flush outstanding errors before changing fs state */ 2352 flush_work(&sbi->s_error_work); 2353 2354 /* 2355 * Previous and new state of filesystem is RO, 2356 * so skip checking GC and FLUSH_MERGE conditions. 2357 */ 2358 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2359 goto skip; 2360 2361 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2362 err = -EROFS; 2363 goto restore_opts; 2364 } 2365 2366 #ifdef CONFIG_QUOTA 2367 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2368 err = dquot_suspend(sb, -1); 2369 if (err < 0) 2370 goto restore_opts; 2371 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2372 /* dquot_resume needs RW */ 2373 sb->s_flags &= ~SB_RDONLY; 2374 if (sb_any_quota_suspended(sb)) { 2375 dquot_resume(sb, -1); 2376 } else if (f2fs_sb_has_quota_ino(sbi)) { 2377 err = f2fs_enable_quotas(sb); 2378 if (err) 2379 goto restore_opts; 2380 } 2381 } 2382 #endif 2383 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2384 err = -EINVAL; 2385 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2386 goto restore_opts; 2387 } 2388 2389 /* disallow enable atgc dynamically */ 2390 if (no_atgc == !!test_opt(sbi, ATGC)) { 2391 err = -EINVAL; 2392 f2fs_warn(sbi, "switch atgc option is not allowed"); 2393 goto restore_opts; 2394 } 2395 2396 /* disallow enable/disable extent_cache dynamically */ 2397 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2398 err = -EINVAL; 2399 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2400 goto restore_opts; 2401 } 2402 /* disallow enable/disable age extent_cache dynamically */ 2403 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2404 err = -EINVAL; 2405 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2406 goto restore_opts; 2407 } 2408 2409 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2410 err = -EINVAL; 2411 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2412 goto restore_opts; 2413 } 2414 2415 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2416 err = -EINVAL; 2417 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2418 goto restore_opts; 2419 } 2420 2421 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2422 err = -EINVAL; 2423 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2424 goto restore_opts; 2425 } 2426 2427 /* 2428 * We stop the GC thread if FS is mounted as RO 2429 * or if background_gc = off is passed in mount 2430 * option. Also sync the filesystem. 2431 */ 2432 if ((*flags & SB_RDONLY) || 2433 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2434 !test_opt(sbi, GC_MERGE))) { 2435 if (sbi->gc_thread) { 2436 f2fs_stop_gc_thread(sbi); 2437 need_restart_gc = true; 2438 } 2439 } else if (!sbi->gc_thread) { 2440 err = f2fs_start_gc_thread(sbi); 2441 if (err) 2442 goto restore_opts; 2443 need_stop_gc = true; 2444 } 2445 2446 if (*flags & SB_RDONLY) { 2447 sync_inodes_sb(sb); 2448 2449 set_sbi_flag(sbi, SBI_IS_DIRTY); 2450 set_sbi_flag(sbi, SBI_IS_CLOSE); 2451 f2fs_sync_fs(sb, 1); 2452 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2453 } 2454 2455 /* 2456 * We stop issue flush thread if FS is mounted as RO 2457 * or if flush_merge is not passed in mount option. 2458 */ 2459 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2460 clear_opt(sbi, FLUSH_MERGE); 2461 f2fs_destroy_flush_cmd_control(sbi, false); 2462 need_restart_flush = true; 2463 } else { 2464 err = f2fs_create_flush_cmd_control(sbi); 2465 if (err) 2466 goto restore_gc; 2467 need_stop_flush = true; 2468 } 2469 2470 if (no_discard == !!test_opt(sbi, DISCARD)) { 2471 if (test_opt(sbi, DISCARD)) { 2472 err = f2fs_start_discard_thread(sbi); 2473 if (err) 2474 goto restore_flush; 2475 need_stop_discard = true; 2476 } else { 2477 f2fs_stop_discard_thread(sbi); 2478 f2fs_issue_discard_timeout(sbi); 2479 need_restart_discard = true; 2480 } 2481 } 2482 2483 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2484 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2485 err = f2fs_disable_checkpoint(sbi); 2486 if (err) 2487 goto restore_discard; 2488 need_enable_checkpoint = true; 2489 } else { 2490 f2fs_enable_checkpoint(sbi); 2491 need_disable_checkpoint = true; 2492 } 2493 } 2494 2495 /* 2496 * Place this routine at the end, since a new checkpoint would be 2497 * triggered while remount and we need to take care of it before 2498 * returning from remount. 2499 */ 2500 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2501 !test_opt(sbi, MERGE_CHECKPOINT)) { 2502 f2fs_stop_ckpt_thread(sbi); 2503 } else { 2504 /* Flush if the prevous checkpoint, if exists. */ 2505 f2fs_flush_ckpt_thread(sbi); 2506 2507 err = f2fs_start_ckpt_thread(sbi); 2508 if (err) { 2509 f2fs_err(sbi, 2510 "Failed to start F2FS issue_checkpoint_thread (%d)", 2511 err); 2512 goto restore_checkpoint; 2513 } 2514 } 2515 2516 skip: 2517 #ifdef CONFIG_QUOTA 2518 /* Release old quota file names */ 2519 for (i = 0; i < MAXQUOTAS; i++) 2520 kfree(org_mount_opt.s_qf_names[i]); 2521 #endif 2522 /* Update the POSIXACL Flag */ 2523 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2524 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2525 2526 limit_reserve_root(sbi); 2527 adjust_unusable_cap_perc(sbi); 2528 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2529 return 0; 2530 restore_checkpoint: 2531 if (need_enable_checkpoint) { 2532 f2fs_enable_checkpoint(sbi); 2533 } else if (need_disable_checkpoint) { 2534 if (f2fs_disable_checkpoint(sbi)) 2535 f2fs_warn(sbi, "checkpoint has not been disabled"); 2536 } 2537 restore_discard: 2538 if (need_restart_discard) { 2539 if (f2fs_start_discard_thread(sbi)) 2540 f2fs_warn(sbi, "discard has been stopped"); 2541 } else if (need_stop_discard) { 2542 f2fs_stop_discard_thread(sbi); 2543 } 2544 restore_flush: 2545 if (need_restart_flush) { 2546 if (f2fs_create_flush_cmd_control(sbi)) 2547 f2fs_warn(sbi, "background flush thread has stopped"); 2548 } else if (need_stop_flush) { 2549 clear_opt(sbi, FLUSH_MERGE); 2550 f2fs_destroy_flush_cmd_control(sbi, false); 2551 } 2552 restore_gc: 2553 if (need_restart_gc) { 2554 if (f2fs_start_gc_thread(sbi)) 2555 f2fs_warn(sbi, "background gc thread has stopped"); 2556 } else if (need_stop_gc) { 2557 f2fs_stop_gc_thread(sbi); 2558 } 2559 restore_opts: 2560 #ifdef CONFIG_QUOTA 2561 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2562 for (i = 0; i < MAXQUOTAS; i++) { 2563 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2564 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2565 } 2566 #endif 2567 sbi->mount_opt = org_mount_opt; 2568 sb->s_flags = old_sb_flags; 2569 return err; 2570 } 2571 2572 static void f2fs_shutdown(struct super_block *sb) 2573 { 2574 f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false); 2575 } 2576 2577 #ifdef CONFIG_QUOTA 2578 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2579 { 2580 /* need to recovery orphan */ 2581 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2582 return true; 2583 /* need to recovery data */ 2584 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2585 return false; 2586 if (test_opt(sbi, NORECOVERY)) 2587 return false; 2588 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2589 } 2590 2591 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2592 { 2593 bool readonly = f2fs_readonly(sbi->sb); 2594 2595 if (!f2fs_need_recovery(sbi)) 2596 return false; 2597 2598 /* it doesn't need to check f2fs_sb_has_readonly() */ 2599 if (f2fs_hw_is_readonly(sbi)) 2600 return false; 2601 2602 if (readonly) { 2603 sbi->sb->s_flags &= ~SB_RDONLY; 2604 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2605 } 2606 2607 /* 2608 * Turn on quotas which were not enabled for read-only mounts if 2609 * filesystem has quota feature, so that they are updated correctly. 2610 */ 2611 return f2fs_enable_quota_files(sbi, readonly); 2612 } 2613 2614 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2615 bool quota_enabled) 2616 { 2617 if (quota_enabled) 2618 f2fs_quota_off_umount(sbi->sb); 2619 2620 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2621 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2622 sbi->sb->s_flags |= SB_RDONLY; 2623 } 2624 } 2625 2626 /* Read data from quotafile */ 2627 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2628 size_t len, loff_t off) 2629 { 2630 struct inode *inode = sb_dqopt(sb)->files[type]; 2631 struct address_space *mapping = inode->i_mapping; 2632 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2633 int offset = off & (sb->s_blocksize - 1); 2634 int tocopy; 2635 size_t toread; 2636 loff_t i_size = i_size_read(inode); 2637 struct page *page; 2638 2639 if (off > i_size) 2640 return 0; 2641 2642 if (off + len > i_size) 2643 len = i_size - off; 2644 toread = len; 2645 while (toread > 0) { 2646 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2647 repeat: 2648 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2649 if (IS_ERR(page)) { 2650 if (PTR_ERR(page) == -ENOMEM) { 2651 memalloc_retry_wait(GFP_NOFS); 2652 goto repeat; 2653 } 2654 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2655 return PTR_ERR(page); 2656 } 2657 2658 lock_page(page); 2659 2660 if (unlikely(page->mapping != mapping)) { 2661 f2fs_put_page(page, 1); 2662 goto repeat; 2663 } 2664 if (unlikely(!PageUptodate(page))) { 2665 f2fs_put_page(page, 1); 2666 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2667 return -EIO; 2668 } 2669 2670 memcpy_from_page(data, page, offset, tocopy); 2671 f2fs_put_page(page, 1); 2672 2673 offset = 0; 2674 toread -= tocopy; 2675 data += tocopy; 2676 blkidx++; 2677 } 2678 return len; 2679 } 2680 2681 /* Write to quotafile */ 2682 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2683 const char *data, size_t len, loff_t off) 2684 { 2685 struct inode *inode = sb_dqopt(sb)->files[type]; 2686 struct address_space *mapping = inode->i_mapping; 2687 const struct address_space_operations *a_ops = mapping->a_ops; 2688 int offset = off & (sb->s_blocksize - 1); 2689 size_t towrite = len; 2690 struct page *page; 2691 void *fsdata = NULL; 2692 int err = 0; 2693 int tocopy; 2694 2695 while (towrite > 0) { 2696 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2697 towrite); 2698 retry: 2699 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2700 &page, &fsdata); 2701 if (unlikely(err)) { 2702 if (err == -ENOMEM) { 2703 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2704 goto retry; 2705 } 2706 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2707 break; 2708 } 2709 2710 memcpy_to_page(page, offset, data, tocopy); 2711 2712 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2713 page, fsdata); 2714 offset = 0; 2715 towrite -= tocopy; 2716 off += tocopy; 2717 data += tocopy; 2718 cond_resched(); 2719 } 2720 2721 if (len == towrite) 2722 return err; 2723 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2724 f2fs_mark_inode_dirty_sync(inode, false); 2725 return len - towrite; 2726 } 2727 2728 int f2fs_dquot_initialize(struct inode *inode) 2729 { 2730 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2731 return -ESRCH; 2732 2733 return dquot_initialize(inode); 2734 } 2735 2736 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode) 2737 { 2738 return F2FS_I(inode)->i_dquot; 2739 } 2740 2741 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2742 { 2743 return &F2FS_I(inode)->i_reserved_quota; 2744 } 2745 2746 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2747 { 2748 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2749 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2750 return 0; 2751 } 2752 2753 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2754 F2FS_OPTION(sbi).s_jquota_fmt, type); 2755 } 2756 2757 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2758 { 2759 int enabled = 0; 2760 int i, err; 2761 2762 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2763 err = f2fs_enable_quotas(sbi->sb); 2764 if (err) { 2765 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2766 return 0; 2767 } 2768 return 1; 2769 } 2770 2771 for (i = 0; i < MAXQUOTAS; i++) { 2772 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2773 err = f2fs_quota_on_mount(sbi, i); 2774 if (!err) { 2775 enabled = 1; 2776 continue; 2777 } 2778 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2779 err, i); 2780 } 2781 } 2782 return enabled; 2783 } 2784 2785 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2786 unsigned int flags) 2787 { 2788 struct inode *qf_inode; 2789 unsigned long qf_inum; 2790 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2791 int err; 2792 2793 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2794 2795 qf_inum = f2fs_qf_ino(sb, type); 2796 if (!qf_inum) 2797 return -EPERM; 2798 2799 qf_inode = f2fs_iget(sb, qf_inum); 2800 if (IS_ERR(qf_inode)) { 2801 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2802 return PTR_ERR(qf_inode); 2803 } 2804 2805 /* Don't account quota for quota files to avoid recursion */ 2806 inode_lock(qf_inode); 2807 qf_inode->i_flags |= S_NOQUOTA; 2808 2809 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2810 F2FS_I(qf_inode)->i_flags |= qf_flag; 2811 f2fs_set_inode_flags(qf_inode); 2812 } 2813 inode_unlock(qf_inode); 2814 2815 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2816 iput(qf_inode); 2817 return err; 2818 } 2819 2820 static int f2fs_enable_quotas(struct super_block *sb) 2821 { 2822 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2823 int type, err = 0; 2824 unsigned long qf_inum; 2825 bool quota_mopt[MAXQUOTAS] = { 2826 test_opt(sbi, USRQUOTA), 2827 test_opt(sbi, GRPQUOTA), 2828 test_opt(sbi, PRJQUOTA), 2829 }; 2830 2831 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2832 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2833 return 0; 2834 } 2835 2836 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2837 2838 for (type = 0; type < MAXQUOTAS; type++) { 2839 qf_inum = f2fs_qf_ino(sb, type); 2840 if (qf_inum) { 2841 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2842 DQUOT_USAGE_ENABLED | 2843 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2844 if (err) { 2845 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2846 type, err); 2847 for (type--; type >= 0; type--) 2848 dquot_quota_off(sb, type); 2849 set_sbi_flag(F2FS_SB(sb), 2850 SBI_QUOTA_NEED_REPAIR); 2851 return err; 2852 } 2853 } 2854 } 2855 return 0; 2856 } 2857 2858 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2859 { 2860 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2861 struct address_space *mapping = dqopt->files[type]->i_mapping; 2862 int ret = 0; 2863 2864 ret = dquot_writeback_dquots(sbi->sb, type); 2865 if (ret) 2866 goto out; 2867 2868 ret = filemap_fdatawrite(mapping); 2869 if (ret) 2870 goto out; 2871 2872 /* if we are using journalled quota */ 2873 if (is_journalled_quota(sbi)) 2874 goto out; 2875 2876 ret = filemap_fdatawait(mapping); 2877 2878 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2879 out: 2880 if (ret) 2881 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2882 return ret; 2883 } 2884 2885 int f2fs_quota_sync(struct super_block *sb, int type) 2886 { 2887 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2888 struct quota_info *dqopt = sb_dqopt(sb); 2889 int cnt; 2890 int ret = 0; 2891 2892 /* 2893 * Now when everything is written we can discard the pagecache so 2894 * that userspace sees the changes. 2895 */ 2896 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2897 2898 if (type != -1 && cnt != type) 2899 continue; 2900 2901 if (!sb_has_quota_active(sb, cnt)) 2902 continue; 2903 2904 if (!f2fs_sb_has_quota_ino(sbi)) 2905 inode_lock(dqopt->files[cnt]); 2906 2907 /* 2908 * do_quotactl 2909 * f2fs_quota_sync 2910 * f2fs_down_read(quota_sem) 2911 * dquot_writeback_dquots() 2912 * f2fs_dquot_commit 2913 * block_operation 2914 * f2fs_down_read(quota_sem) 2915 */ 2916 f2fs_lock_op(sbi); 2917 f2fs_down_read(&sbi->quota_sem); 2918 2919 ret = f2fs_quota_sync_file(sbi, cnt); 2920 2921 f2fs_up_read(&sbi->quota_sem); 2922 f2fs_unlock_op(sbi); 2923 2924 if (!f2fs_sb_has_quota_ino(sbi)) 2925 inode_unlock(dqopt->files[cnt]); 2926 2927 if (ret) 2928 break; 2929 } 2930 return ret; 2931 } 2932 2933 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2934 const struct path *path) 2935 { 2936 struct inode *inode; 2937 int err; 2938 2939 /* if quota sysfile exists, deny enabling quota with specific file */ 2940 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2941 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2942 return -EBUSY; 2943 } 2944 2945 if (path->dentry->d_sb != sb) 2946 return -EXDEV; 2947 2948 err = f2fs_quota_sync(sb, type); 2949 if (err) 2950 return err; 2951 2952 inode = d_inode(path->dentry); 2953 2954 err = filemap_fdatawrite(inode->i_mapping); 2955 if (err) 2956 return err; 2957 2958 err = filemap_fdatawait(inode->i_mapping); 2959 if (err) 2960 return err; 2961 2962 err = dquot_quota_on(sb, type, format_id, path); 2963 if (err) 2964 return err; 2965 2966 inode_lock(inode); 2967 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 2968 f2fs_set_inode_flags(inode); 2969 inode_unlock(inode); 2970 f2fs_mark_inode_dirty_sync(inode, false); 2971 2972 return 0; 2973 } 2974 2975 static int __f2fs_quota_off(struct super_block *sb, int type) 2976 { 2977 struct inode *inode = sb_dqopt(sb)->files[type]; 2978 int err; 2979 2980 if (!inode || !igrab(inode)) 2981 return dquot_quota_off(sb, type); 2982 2983 err = f2fs_quota_sync(sb, type); 2984 if (err) 2985 goto out_put; 2986 2987 err = dquot_quota_off(sb, type); 2988 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2989 goto out_put; 2990 2991 inode_lock(inode); 2992 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 2993 f2fs_set_inode_flags(inode); 2994 inode_unlock(inode); 2995 f2fs_mark_inode_dirty_sync(inode, false); 2996 out_put: 2997 iput(inode); 2998 return err; 2999 } 3000 3001 static int f2fs_quota_off(struct super_block *sb, int type) 3002 { 3003 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3004 int err; 3005 3006 err = __f2fs_quota_off(sb, type); 3007 3008 /* 3009 * quotactl can shutdown journalled quota, result in inconsistence 3010 * between quota record and fs data by following updates, tag the 3011 * flag to let fsck be aware of it. 3012 */ 3013 if (is_journalled_quota(sbi)) 3014 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3015 return err; 3016 } 3017 3018 void f2fs_quota_off_umount(struct super_block *sb) 3019 { 3020 int type; 3021 int err; 3022 3023 for (type = 0; type < MAXQUOTAS; type++) { 3024 err = __f2fs_quota_off(sb, type); 3025 if (err) { 3026 int ret = dquot_quota_off(sb, type); 3027 3028 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3029 type, err, ret); 3030 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3031 } 3032 } 3033 /* 3034 * In case of checkpoint=disable, we must flush quota blocks. 3035 * This can cause NULL exception for node_inode in end_io, since 3036 * put_super already dropped it. 3037 */ 3038 sync_filesystem(sb); 3039 } 3040 3041 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3042 { 3043 struct quota_info *dqopt = sb_dqopt(sb); 3044 int type; 3045 3046 for (type = 0; type < MAXQUOTAS; type++) { 3047 if (!dqopt->files[type]) 3048 continue; 3049 f2fs_inode_synced(dqopt->files[type]); 3050 } 3051 } 3052 3053 static int f2fs_dquot_commit(struct dquot *dquot) 3054 { 3055 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3056 int ret; 3057 3058 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3059 ret = dquot_commit(dquot); 3060 if (ret < 0) 3061 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3062 f2fs_up_read(&sbi->quota_sem); 3063 return ret; 3064 } 3065 3066 static int f2fs_dquot_acquire(struct dquot *dquot) 3067 { 3068 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3069 int ret; 3070 3071 f2fs_down_read(&sbi->quota_sem); 3072 ret = dquot_acquire(dquot); 3073 if (ret < 0) 3074 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3075 f2fs_up_read(&sbi->quota_sem); 3076 return ret; 3077 } 3078 3079 static int f2fs_dquot_release(struct dquot *dquot) 3080 { 3081 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3082 int ret = dquot_release(dquot); 3083 3084 if (ret < 0) 3085 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3086 return ret; 3087 } 3088 3089 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3090 { 3091 struct super_block *sb = dquot->dq_sb; 3092 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3093 int ret = dquot_mark_dquot_dirty(dquot); 3094 3095 /* if we are using journalled quota */ 3096 if (is_journalled_quota(sbi)) 3097 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3098 3099 return ret; 3100 } 3101 3102 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3103 { 3104 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3105 int ret = dquot_commit_info(sb, type); 3106 3107 if (ret < 0) 3108 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3109 return ret; 3110 } 3111 3112 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3113 { 3114 *projid = F2FS_I(inode)->i_projid; 3115 return 0; 3116 } 3117 3118 static const struct dquot_operations f2fs_quota_operations = { 3119 .get_reserved_space = f2fs_get_reserved_space, 3120 .write_dquot = f2fs_dquot_commit, 3121 .acquire_dquot = f2fs_dquot_acquire, 3122 .release_dquot = f2fs_dquot_release, 3123 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3124 .write_info = f2fs_dquot_commit_info, 3125 .alloc_dquot = dquot_alloc, 3126 .destroy_dquot = dquot_destroy, 3127 .get_projid = f2fs_get_projid, 3128 .get_next_id = dquot_get_next_id, 3129 }; 3130 3131 static const struct quotactl_ops f2fs_quotactl_ops = { 3132 .quota_on = f2fs_quota_on, 3133 .quota_off = f2fs_quota_off, 3134 .quota_sync = f2fs_quota_sync, 3135 .get_state = dquot_get_state, 3136 .set_info = dquot_set_dqinfo, 3137 .get_dqblk = dquot_get_dqblk, 3138 .set_dqblk = dquot_set_dqblk, 3139 .get_nextdqblk = dquot_get_next_dqblk, 3140 }; 3141 #else 3142 int f2fs_dquot_initialize(struct inode *inode) 3143 { 3144 return 0; 3145 } 3146 3147 int f2fs_quota_sync(struct super_block *sb, int type) 3148 { 3149 return 0; 3150 } 3151 3152 void f2fs_quota_off_umount(struct super_block *sb) 3153 { 3154 } 3155 #endif 3156 3157 static const struct super_operations f2fs_sops = { 3158 .alloc_inode = f2fs_alloc_inode, 3159 .free_inode = f2fs_free_inode, 3160 .drop_inode = f2fs_drop_inode, 3161 .write_inode = f2fs_write_inode, 3162 .dirty_inode = f2fs_dirty_inode, 3163 .show_options = f2fs_show_options, 3164 #ifdef CONFIG_QUOTA 3165 .quota_read = f2fs_quota_read, 3166 .quota_write = f2fs_quota_write, 3167 .get_dquots = f2fs_get_dquots, 3168 #endif 3169 .evict_inode = f2fs_evict_inode, 3170 .put_super = f2fs_put_super, 3171 .sync_fs = f2fs_sync_fs, 3172 .freeze_fs = f2fs_freeze, 3173 .unfreeze_fs = f2fs_unfreeze, 3174 .statfs = f2fs_statfs, 3175 .remount_fs = f2fs_remount, 3176 .shutdown = f2fs_shutdown, 3177 }; 3178 3179 #ifdef CONFIG_FS_ENCRYPTION 3180 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3181 { 3182 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3183 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3184 ctx, len, NULL); 3185 } 3186 3187 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3188 void *fs_data) 3189 { 3190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3191 3192 /* 3193 * Encrypting the root directory is not allowed because fsck 3194 * expects lost+found directory to exist and remain unencrypted 3195 * if LOST_FOUND feature is enabled. 3196 * 3197 */ 3198 if (f2fs_sb_has_lost_found(sbi) && 3199 inode->i_ino == F2FS_ROOT_INO(sbi)) 3200 return -EPERM; 3201 3202 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3203 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3204 ctx, len, fs_data, XATTR_CREATE); 3205 } 3206 3207 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3208 { 3209 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3210 } 3211 3212 static bool f2fs_has_stable_inodes(struct super_block *sb) 3213 { 3214 return true; 3215 } 3216 3217 static struct block_device **f2fs_get_devices(struct super_block *sb, 3218 unsigned int *num_devs) 3219 { 3220 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3221 struct block_device **devs; 3222 int i; 3223 3224 if (!f2fs_is_multi_device(sbi)) 3225 return NULL; 3226 3227 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3228 if (!devs) 3229 return ERR_PTR(-ENOMEM); 3230 3231 for (i = 0; i < sbi->s_ndevs; i++) 3232 devs[i] = FDEV(i).bdev; 3233 *num_devs = sbi->s_ndevs; 3234 return devs; 3235 } 3236 3237 static const struct fscrypt_operations f2fs_cryptops = { 3238 .needs_bounce_pages = 1, 3239 .has_32bit_inodes = 1, 3240 .supports_subblock_data_units = 1, 3241 .legacy_key_prefix = "f2fs:", 3242 .get_context = f2fs_get_context, 3243 .set_context = f2fs_set_context, 3244 .get_dummy_policy = f2fs_get_dummy_policy, 3245 .empty_dir = f2fs_empty_dir, 3246 .has_stable_inodes = f2fs_has_stable_inodes, 3247 .get_devices = f2fs_get_devices, 3248 }; 3249 #endif 3250 3251 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3252 u64 ino, u32 generation) 3253 { 3254 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3255 struct inode *inode; 3256 3257 if (f2fs_check_nid_range(sbi, ino)) 3258 return ERR_PTR(-ESTALE); 3259 3260 /* 3261 * f2fs_iget isn't quite right if the inode is currently unallocated! 3262 * However f2fs_iget currently does appropriate checks to handle stale 3263 * inodes so everything is OK. 3264 */ 3265 inode = f2fs_iget(sb, ino); 3266 if (IS_ERR(inode)) 3267 return ERR_CAST(inode); 3268 if (unlikely(generation && inode->i_generation != generation)) { 3269 /* we didn't find the right inode.. */ 3270 iput(inode); 3271 return ERR_PTR(-ESTALE); 3272 } 3273 return inode; 3274 } 3275 3276 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3277 int fh_len, int fh_type) 3278 { 3279 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3280 f2fs_nfs_get_inode); 3281 } 3282 3283 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3284 int fh_len, int fh_type) 3285 { 3286 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3287 f2fs_nfs_get_inode); 3288 } 3289 3290 static const struct export_operations f2fs_export_ops = { 3291 .encode_fh = generic_encode_ino32_fh, 3292 .fh_to_dentry = f2fs_fh_to_dentry, 3293 .fh_to_parent = f2fs_fh_to_parent, 3294 .get_parent = f2fs_get_parent, 3295 }; 3296 3297 loff_t max_file_blocks(struct inode *inode) 3298 { 3299 loff_t result = 0; 3300 loff_t leaf_count; 3301 3302 /* 3303 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3304 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3305 * space in inode.i_addr, it will be more safe to reassign 3306 * result as zero. 3307 */ 3308 3309 if (inode && f2fs_compressed_file(inode)) 3310 leaf_count = ADDRS_PER_BLOCK(inode); 3311 else 3312 leaf_count = DEF_ADDRS_PER_BLOCK; 3313 3314 /* two direct node blocks */ 3315 result += (leaf_count * 2); 3316 3317 /* two indirect node blocks */ 3318 leaf_count *= NIDS_PER_BLOCK; 3319 result += (leaf_count * 2); 3320 3321 /* one double indirect node block */ 3322 leaf_count *= NIDS_PER_BLOCK; 3323 result += leaf_count; 3324 3325 /* 3326 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with 3327 * a 4K crypto data unit, we must restrict the max filesize to what can 3328 * fit within U32_MAX + 1 data units. 3329 */ 3330 3331 result = min(result, (((loff_t)U32_MAX + 1) * 4096) >> F2FS_BLKSIZE_BITS); 3332 3333 return result; 3334 } 3335 3336 static int __f2fs_commit_super(struct buffer_head *bh, 3337 struct f2fs_super_block *super) 3338 { 3339 lock_buffer(bh); 3340 if (super) 3341 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3342 set_buffer_dirty(bh); 3343 unlock_buffer(bh); 3344 3345 /* it's rare case, we can do fua all the time */ 3346 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3347 } 3348 3349 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3350 struct buffer_head *bh) 3351 { 3352 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3353 (bh->b_data + F2FS_SUPER_OFFSET); 3354 struct super_block *sb = sbi->sb; 3355 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3356 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3357 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3358 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3359 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3360 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3361 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3362 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3363 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3364 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3365 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3366 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3367 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3368 u64 main_end_blkaddr = main_blkaddr + 3369 (segment_count_main << log_blocks_per_seg); 3370 u64 seg_end_blkaddr = segment0_blkaddr + 3371 (segment_count << log_blocks_per_seg); 3372 3373 if (segment0_blkaddr != cp_blkaddr) { 3374 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3375 segment0_blkaddr, cp_blkaddr); 3376 return true; 3377 } 3378 3379 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3380 sit_blkaddr) { 3381 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3382 cp_blkaddr, sit_blkaddr, 3383 segment_count_ckpt << log_blocks_per_seg); 3384 return true; 3385 } 3386 3387 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3388 nat_blkaddr) { 3389 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3390 sit_blkaddr, nat_blkaddr, 3391 segment_count_sit << log_blocks_per_seg); 3392 return true; 3393 } 3394 3395 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3396 ssa_blkaddr) { 3397 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3398 nat_blkaddr, ssa_blkaddr, 3399 segment_count_nat << log_blocks_per_seg); 3400 return true; 3401 } 3402 3403 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3404 main_blkaddr) { 3405 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3406 ssa_blkaddr, main_blkaddr, 3407 segment_count_ssa << log_blocks_per_seg); 3408 return true; 3409 } 3410 3411 if (main_end_blkaddr > seg_end_blkaddr) { 3412 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3413 main_blkaddr, seg_end_blkaddr, 3414 segment_count_main << log_blocks_per_seg); 3415 return true; 3416 } else if (main_end_blkaddr < seg_end_blkaddr) { 3417 int err = 0; 3418 char *res; 3419 3420 /* fix in-memory information all the time */ 3421 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3422 segment0_blkaddr) >> log_blocks_per_seg); 3423 3424 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3425 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3426 res = "internally"; 3427 } else { 3428 err = __f2fs_commit_super(bh, NULL); 3429 res = err ? "failed" : "done"; 3430 } 3431 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3432 res, main_blkaddr, seg_end_blkaddr, 3433 segment_count_main << log_blocks_per_seg); 3434 if (err) 3435 return true; 3436 } 3437 return false; 3438 } 3439 3440 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3441 struct buffer_head *bh) 3442 { 3443 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3444 block_t total_sections, blocks_per_seg; 3445 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3446 (bh->b_data + F2FS_SUPER_OFFSET); 3447 size_t crc_offset = 0; 3448 __u32 crc = 0; 3449 3450 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3451 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3452 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3453 return -EINVAL; 3454 } 3455 3456 /* Check checksum_offset and crc in superblock */ 3457 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3458 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3459 if (crc_offset != 3460 offsetof(struct f2fs_super_block, crc)) { 3461 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3462 crc_offset); 3463 return -EFSCORRUPTED; 3464 } 3465 crc = le32_to_cpu(raw_super->crc); 3466 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3467 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3468 return -EFSCORRUPTED; 3469 } 3470 } 3471 3472 /* only support block_size equals to PAGE_SIZE */ 3473 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3474 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3475 le32_to_cpu(raw_super->log_blocksize), 3476 F2FS_BLKSIZE_BITS); 3477 return -EFSCORRUPTED; 3478 } 3479 3480 /* check log blocks per segment */ 3481 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3482 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3483 le32_to_cpu(raw_super->log_blocks_per_seg)); 3484 return -EFSCORRUPTED; 3485 } 3486 3487 /* Currently, support 512/1024/2048/4096/16K bytes sector size */ 3488 if (le32_to_cpu(raw_super->log_sectorsize) > 3489 F2FS_MAX_LOG_SECTOR_SIZE || 3490 le32_to_cpu(raw_super->log_sectorsize) < 3491 F2FS_MIN_LOG_SECTOR_SIZE) { 3492 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3493 le32_to_cpu(raw_super->log_sectorsize)); 3494 return -EFSCORRUPTED; 3495 } 3496 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3497 le32_to_cpu(raw_super->log_sectorsize) != 3498 F2FS_MAX_LOG_SECTOR_SIZE) { 3499 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3500 le32_to_cpu(raw_super->log_sectors_per_block), 3501 le32_to_cpu(raw_super->log_sectorsize)); 3502 return -EFSCORRUPTED; 3503 } 3504 3505 segment_count = le32_to_cpu(raw_super->segment_count); 3506 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3507 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3508 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3509 total_sections = le32_to_cpu(raw_super->section_count); 3510 3511 /* blocks_per_seg should be 512, given the above check */ 3512 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3513 3514 if (segment_count > F2FS_MAX_SEGMENT || 3515 segment_count < F2FS_MIN_SEGMENTS) { 3516 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3517 return -EFSCORRUPTED; 3518 } 3519 3520 if (total_sections > segment_count_main || total_sections < 1 || 3521 segs_per_sec > segment_count || !segs_per_sec) { 3522 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3523 segment_count, total_sections, segs_per_sec); 3524 return -EFSCORRUPTED; 3525 } 3526 3527 if (segment_count_main != total_sections * segs_per_sec) { 3528 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3529 segment_count_main, total_sections, segs_per_sec); 3530 return -EFSCORRUPTED; 3531 } 3532 3533 if ((segment_count / segs_per_sec) < total_sections) { 3534 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3535 segment_count, segs_per_sec, total_sections); 3536 return -EFSCORRUPTED; 3537 } 3538 3539 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3540 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3541 segment_count, le64_to_cpu(raw_super->block_count)); 3542 return -EFSCORRUPTED; 3543 } 3544 3545 if (RDEV(0).path[0]) { 3546 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3547 int i = 1; 3548 3549 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3550 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3551 i++; 3552 } 3553 if (segment_count != dev_seg_count) { 3554 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3555 segment_count, dev_seg_count); 3556 return -EFSCORRUPTED; 3557 } 3558 } else { 3559 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3560 !bdev_is_zoned(sbi->sb->s_bdev)) { 3561 f2fs_info(sbi, "Zoned block device path is missing"); 3562 return -EFSCORRUPTED; 3563 } 3564 } 3565 3566 if (secs_per_zone > total_sections || !secs_per_zone) { 3567 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3568 secs_per_zone, total_sections); 3569 return -EFSCORRUPTED; 3570 } 3571 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3572 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3573 (le32_to_cpu(raw_super->extension_count) + 3574 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3575 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3576 le32_to_cpu(raw_super->extension_count), 3577 raw_super->hot_ext_count, 3578 F2FS_MAX_EXTENSION); 3579 return -EFSCORRUPTED; 3580 } 3581 3582 if (le32_to_cpu(raw_super->cp_payload) >= 3583 (blocks_per_seg - F2FS_CP_PACKS - 3584 NR_CURSEG_PERSIST_TYPE)) { 3585 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3586 le32_to_cpu(raw_super->cp_payload), 3587 blocks_per_seg - F2FS_CP_PACKS - 3588 NR_CURSEG_PERSIST_TYPE); 3589 return -EFSCORRUPTED; 3590 } 3591 3592 /* check reserved ino info */ 3593 if (le32_to_cpu(raw_super->node_ino) != 1 || 3594 le32_to_cpu(raw_super->meta_ino) != 2 || 3595 le32_to_cpu(raw_super->root_ino) != 3) { 3596 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3597 le32_to_cpu(raw_super->node_ino), 3598 le32_to_cpu(raw_super->meta_ino), 3599 le32_to_cpu(raw_super->root_ino)); 3600 return -EFSCORRUPTED; 3601 } 3602 3603 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3604 if (sanity_check_area_boundary(sbi, bh)) 3605 return -EFSCORRUPTED; 3606 3607 return 0; 3608 } 3609 3610 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3611 { 3612 unsigned int total, fsmeta; 3613 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3614 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3615 unsigned int ovp_segments, reserved_segments; 3616 unsigned int main_segs, blocks_per_seg; 3617 unsigned int sit_segs, nat_segs; 3618 unsigned int sit_bitmap_size, nat_bitmap_size; 3619 unsigned int log_blocks_per_seg; 3620 unsigned int segment_count_main; 3621 unsigned int cp_pack_start_sum, cp_payload; 3622 block_t user_block_count, valid_user_blocks; 3623 block_t avail_node_count, valid_node_count; 3624 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3625 int i, j; 3626 3627 total = le32_to_cpu(raw_super->segment_count); 3628 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3629 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3630 fsmeta += sit_segs; 3631 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3632 fsmeta += nat_segs; 3633 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3634 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3635 3636 if (unlikely(fsmeta >= total)) 3637 return 1; 3638 3639 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3640 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3641 3642 if (!f2fs_sb_has_readonly(sbi) && 3643 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3644 ovp_segments == 0 || reserved_segments == 0)) { 3645 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3646 return 1; 3647 } 3648 user_block_count = le64_to_cpu(ckpt->user_block_count); 3649 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3650 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3651 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3652 if (!user_block_count || user_block_count >= 3653 segment_count_main << log_blocks_per_seg) { 3654 f2fs_err(sbi, "Wrong user_block_count: %u", 3655 user_block_count); 3656 return 1; 3657 } 3658 3659 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3660 if (valid_user_blocks > user_block_count) { 3661 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3662 valid_user_blocks, user_block_count); 3663 return 1; 3664 } 3665 3666 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3667 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3668 if (valid_node_count > avail_node_count) { 3669 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3670 valid_node_count, avail_node_count); 3671 return 1; 3672 } 3673 3674 main_segs = le32_to_cpu(raw_super->segment_count_main); 3675 blocks_per_seg = BLKS_PER_SEG(sbi); 3676 3677 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3678 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3679 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3680 return 1; 3681 3682 if (f2fs_sb_has_readonly(sbi)) 3683 goto check_data; 3684 3685 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3686 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3687 le32_to_cpu(ckpt->cur_node_segno[j])) { 3688 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3689 i, j, 3690 le32_to_cpu(ckpt->cur_node_segno[i])); 3691 return 1; 3692 } 3693 } 3694 } 3695 check_data: 3696 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3697 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3698 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3699 return 1; 3700 3701 if (f2fs_sb_has_readonly(sbi)) 3702 goto skip_cross; 3703 3704 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3705 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3706 le32_to_cpu(ckpt->cur_data_segno[j])) { 3707 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3708 i, j, 3709 le32_to_cpu(ckpt->cur_data_segno[i])); 3710 return 1; 3711 } 3712 } 3713 } 3714 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3715 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3716 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3717 le32_to_cpu(ckpt->cur_data_segno[j])) { 3718 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3719 i, j, 3720 le32_to_cpu(ckpt->cur_node_segno[i])); 3721 return 1; 3722 } 3723 } 3724 } 3725 skip_cross: 3726 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3727 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3728 3729 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3730 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3731 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3732 sit_bitmap_size, nat_bitmap_size); 3733 return 1; 3734 } 3735 3736 cp_pack_start_sum = __start_sum_addr(sbi); 3737 cp_payload = __cp_payload(sbi); 3738 if (cp_pack_start_sum < cp_payload + 1 || 3739 cp_pack_start_sum > blocks_per_seg - 1 - 3740 NR_CURSEG_PERSIST_TYPE) { 3741 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3742 cp_pack_start_sum); 3743 return 1; 3744 } 3745 3746 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3747 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3748 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3749 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3750 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3751 le32_to_cpu(ckpt->checksum_offset)); 3752 return 1; 3753 } 3754 3755 nat_blocks = nat_segs << log_blocks_per_seg; 3756 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3757 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3758 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3759 (cp_payload + F2FS_CP_PACKS + 3760 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3761 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3762 cp_payload, nat_bits_blocks); 3763 return 1; 3764 } 3765 3766 if (unlikely(f2fs_cp_error(sbi))) { 3767 f2fs_err(sbi, "A bug case: need to run fsck"); 3768 return 1; 3769 } 3770 return 0; 3771 } 3772 3773 static void init_sb_info(struct f2fs_sb_info *sbi) 3774 { 3775 struct f2fs_super_block *raw_super = sbi->raw_super; 3776 int i; 3777 3778 sbi->log_sectors_per_block = 3779 le32_to_cpu(raw_super->log_sectors_per_block); 3780 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3781 sbi->blocksize = BIT(sbi->log_blocksize); 3782 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3783 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3784 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3785 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3786 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3787 sbi->total_node_count = SEGS_TO_BLKS(sbi, 3788 ((le32_to_cpu(raw_super->segment_count_nat) / 2) * 3789 NAT_ENTRY_PER_BLOCK)); 3790 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3791 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3792 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3793 sbi->cur_victim_sec = NULL_SECNO; 3794 sbi->gc_mode = GC_NORMAL; 3795 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3796 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3797 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3798 sbi->migration_granularity = SEGS_PER_SEC(sbi); 3799 sbi->seq_file_ra_mul = MIN_RA_MUL; 3800 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3801 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3802 spin_lock_init(&sbi->gc_remaining_trials_lock); 3803 atomic64_set(&sbi->current_atomic_write, 0); 3804 3805 sbi->dir_level = DEF_DIR_LEVEL; 3806 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3807 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3808 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3809 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3810 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3811 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3812 DEF_UMOUNT_DISCARD_TIMEOUT; 3813 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3814 3815 for (i = 0; i < NR_COUNT_TYPE; i++) 3816 atomic_set(&sbi->nr_pages[i], 0); 3817 3818 for (i = 0; i < META; i++) 3819 atomic_set(&sbi->wb_sync_req[i], 0); 3820 3821 INIT_LIST_HEAD(&sbi->s_list); 3822 mutex_init(&sbi->umount_mutex); 3823 init_f2fs_rwsem(&sbi->io_order_lock); 3824 spin_lock_init(&sbi->cp_lock); 3825 3826 sbi->dirty_device = 0; 3827 spin_lock_init(&sbi->dev_lock); 3828 3829 init_f2fs_rwsem(&sbi->sb_lock); 3830 init_f2fs_rwsem(&sbi->pin_sem); 3831 } 3832 3833 static int init_percpu_info(struct f2fs_sb_info *sbi) 3834 { 3835 int err; 3836 3837 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3838 if (err) 3839 return err; 3840 3841 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3842 if (err) 3843 goto err_valid_block; 3844 3845 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3846 GFP_KERNEL); 3847 if (err) 3848 goto err_node_block; 3849 return 0; 3850 3851 err_node_block: 3852 percpu_counter_destroy(&sbi->rf_node_block_count); 3853 err_valid_block: 3854 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3855 return err; 3856 } 3857 3858 #ifdef CONFIG_BLK_DEV_ZONED 3859 3860 struct f2fs_report_zones_args { 3861 struct f2fs_sb_info *sbi; 3862 struct f2fs_dev_info *dev; 3863 }; 3864 3865 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3866 void *data) 3867 { 3868 struct f2fs_report_zones_args *rz_args = data; 3869 block_t unusable_blocks = (zone->len - zone->capacity) >> 3870 F2FS_LOG_SECTORS_PER_BLOCK; 3871 3872 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3873 return 0; 3874 3875 set_bit(idx, rz_args->dev->blkz_seq); 3876 if (!rz_args->sbi->unusable_blocks_per_sec) { 3877 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3878 return 0; 3879 } 3880 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3881 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3882 return -EINVAL; 3883 } 3884 return 0; 3885 } 3886 3887 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3888 { 3889 struct block_device *bdev = FDEV(devi).bdev; 3890 sector_t nr_sectors = bdev_nr_sectors(bdev); 3891 struct f2fs_report_zones_args rep_zone_arg; 3892 u64 zone_sectors; 3893 unsigned int max_open_zones; 3894 int ret; 3895 3896 if (!f2fs_sb_has_blkzoned(sbi)) 3897 return 0; 3898 3899 if (bdev_is_zoned(FDEV(devi).bdev)) { 3900 max_open_zones = bdev_max_open_zones(bdev); 3901 if (max_open_zones && (max_open_zones < sbi->max_open_zones)) 3902 sbi->max_open_zones = max_open_zones; 3903 if (sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 3904 f2fs_err(sbi, 3905 "zoned: max open zones %u is too small, need at least %u open zones", 3906 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 3907 return -EINVAL; 3908 } 3909 } 3910 3911 zone_sectors = bdev_zone_sectors(bdev); 3912 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3913 SECTOR_TO_BLOCK(zone_sectors)) 3914 return -EINVAL; 3915 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3916 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 3917 sbi->blocks_per_blkz); 3918 if (nr_sectors & (zone_sectors - 1)) 3919 FDEV(devi).nr_blkz++; 3920 3921 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3922 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3923 * sizeof(unsigned long), 3924 GFP_KERNEL); 3925 if (!FDEV(devi).blkz_seq) 3926 return -ENOMEM; 3927 3928 rep_zone_arg.sbi = sbi; 3929 rep_zone_arg.dev = &FDEV(devi); 3930 3931 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3932 &rep_zone_arg); 3933 if (ret < 0) 3934 return ret; 3935 return 0; 3936 } 3937 #endif 3938 3939 /* 3940 * Read f2fs raw super block. 3941 * Because we have two copies of super block, so read both of them 3942 * to get the first valid one. If any one of them is broken, we pass 3943 * them recovery flag back to the caller. 3944 */ 3945 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3946 struct f2fs_super_block **raw_super, 3947 int *valid_super_block, int *recovery) 3948 { 3949 struct super_block *sb = sbi->sb; 3950 int block; 3951 struct buffer_head *bh; 3952 struct f2fs_super_block *super; 3953 int err = 0; 3954 3955 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3956 if (!super) 3957 return -ENOMEM; 3958 3959 for (block = 0; block < 2; block++) { 3960 bh = sb_bread(sb, block); 3961 if (!bh) { 3962 f2fs_err(sbi, "Unable to read %dth superblock", 3963 block + 1); 3964 err = -EIO; 3965 *recovery = 1; 3966 continue; 3967 } 3968 3969 /* sanity checking of raw super */ 3970 err = sanity_check_raw_super(sbi, bh); 3971 if (err) { 3972 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3973 block + 1); 3974 brelse(bh); 3975 *recovery = 1; 3976 continue; 3977 } 3978 3979 if (!*raw_super) { 3980 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3981 sizeof(*super)); 3982 *valid_super_block = block; 3983 *raw_super = super; 3984 } 3985 brelse(bh); 3986 } 3987 3988 /* No valid superblock */ 3989 if (!*raw_super) 3990 kfree(super); 3991 else 3992 err = 0; 3993 3994 return err; 3995 } 3996 3997 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3998 { 3999 struct buffer_head *bh; 4000 __u32 crc = 0; 4001 int err; 4002 4003 if ((recover && f2fs_readonly(sbi->sb)) || 4004 f2fs_hw_is_readonly(sbi)) { 4005 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 4006 return -EROFS; 4007 } 4008 4009 /* we should update superblock crc here */ 4010 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 4011 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 4012 offsetof(struct f2fs_super_block, crc)); 4013 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 4014 } 4015 4016 /* write back-up superblock first */ 4017 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 4018 if (!bh) 4019 return -EIO; 4020 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4021 brelse(bh); 4022 4023 /* if we are in recovery path, skip writing valid superblock */ 4024 if (recover || err) 4025 return err; 4026 4027 /* write current valid superblock */ 4028 bh = sb_bread(sbi->sb, sbi->valid_super_block); 4029 if (!bh) 4030 return -EIO; 4031 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4032 brelse(bh); 4033 return err; 4034 } 4035 4036 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 4037 { 4038 unsigned long flags; 4039 4040 spin_lock_irqsave(&sbi->error_lock, flags); 4041 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4042 sbi->stop_reason[reason]++; 4043 spin_unlock_irqrestore(&sbi->error_lock, flags); 4044 } 4045 4046 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4047 { 4048 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4049 unsigned long flags; 4050 int err; 4051 4052 f2fs_down_write(&sbi->sb_lock); 4053 4054 spin_lock_irqsave(&sbi->error_lock, flags); 4055 if (sbi->error_dirty) { 4056 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4057 MAX_F2FS_ERRORS); 4058 sbi->error_dirty = false; 4059 } 4060 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4061 spin_unlock_irqrestore(&sbi->error_lock, flags); 4062 4063 err = f2fs_commit_super(sbi, false); 4064 4065 f2fs_up_write(&sbi->sb_lock); 4066 if (err) 4067 f2fs_err_ratelimited(sbi, 4068 "f2fs_commit_super fails to record stop_reason, err:%d", 4069 err); 4070 } 4071 4072 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4073 { 4074 unsigned long flags; 4075 4076 spin_lock_irqsave(&sbi->error_lock, flags); 4077 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4078 set_bit(flag, (unsigned long *)sbi->errors); 4079 sbi->error_dirty = true; 4080 } 4081 spin_unlock_irqrestore(&sbi->error_lock, flags); 4082 } 4083 4084 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4085 { 4086 unsigned long flags; 4087 bool need_update = false; 4088 4089 spin_lock_irqsave(&sbi->error_lock, flags); 4090 if (sbi->error_dirty) { 4091 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4092 MAX_F2FS_ERRORS); 4093 sbi->error_dirty = false; 4094 need_update = true; 4095 } 4096 spin_unlock_irqrestore(&sbi->error_lock, flags); 4097 4098 return need_update; 4099 } 4100 4101 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4102 { 4103 int err; 4104 4105 f2fs_down_write(&sbi->sb_lock); 4106 4107 if (!f2fs_update_errors(sbi)) 4108 goto out_unlock; 4109 4110 err = f2fs_commit_super(sbi, false); 4111 if (err) 4112 f2fs_err_ratelimited(sbi, 4113 "f2fs_commit_super fails to record errors:%u, err:%d", 4114 error, err); 4115 out_unlock: 4116 f2fs_up_write(&sbi->sb_lock); 4117 } 4118 4119 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4120 { 4121 f2fs_save_errors(sbi, error); 4122 f2fs_record_errors(sbi, error); 4123 } 4124 4125 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4126 { 4127 f2fs_save_errors(sbi, error); 4128 4129 if (!sbi->error_dirty) 4130 return; 4131 if (!test_bit(error, (unsigned long *)sbi->errors)) 4132 return; 4133 schedule_work(&sbi->s_error_work); 4134 } 4135 4136 static bool system_going_down(void) 4137 { 4138 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4139 || system_state == SYSTEM_RESTART; 4140 } 4141 4142 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 4143 bool irq_context) 4144 { 4145 struct super_block *sb = sbi->sb; 4146 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4147 bool continue_fs = !shutdown && 4148 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4149 4150 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4151 4152 if (!f2fs_hw_is_readonly(sbi)) { 4153 save_stop_reason(sbi, reason); 4154 4155 if (irq_context && !shutdown) 4156 schedule_work(&sbi->s_error_work); 4157 else 4158 f2fs_record_stop_reason(sbi); 4159 } 4160 4161 /* 4162 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4163 * could panic during 'reboot -f' as the underlying device got already 4164 * disabled. 4165 */ 4166 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4167 !shutdown && !system_going_down() && 4168 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4169 panic("F2FS-fs (device %s): panic forced after error\n", 4170 sb->s_id); 4171 4172 if (shutdown) 4173 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4174 4175 /* 4176 * Continue filesystem operators if errors=continue. Should not set 4177 * RO by shutdown, since RO bypasses thaw_super which can hang the 4178 * system. 4179 */ 4180 if (continue_fs || f2fs_readonly(sb) || shutdown) { 4181 f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason); 4182 return; 4183 } 4184 4185 f2fs_warn(sbi, "Remounting filesystem read-only"); 4186 /* 4187 * Make sure updated value of ->s_mount_flags will be visible before 4188 * ->s_flags update 4189 */ 4190 smp_wmb(); 4191 sb->s_flags |= SB_RDONLY; 4192 } 4193 4194 static void f2fs_record_error_work(struct work_struct *work) 4195 { 4196 struct f2fs_sb_info *sbi = container_of(work, 4197 struct f2fs_sb_info, s_error_work); 4198 4199 f2fs_record_stop_reason(sbi); 4200 } 4201 4202 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4203 { 4204 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4205 unsigned int max_devices = MAX_DEVICES; 4206 unsigned int logical_blksize; 4207 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4208 int i; 4209 4210 /* Initialize single device information */ 4211 if (!RDEV(0).path[0]) { 4212 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4213 return 0; 4214 max_devices = 1; 4215 } 4216 4217 /* 4218 * Initialize multiple devices information, or single 4219 * zoned block device information. 4220 */ 4221 sbi->devs = f2fs_kzalloc(sbi, 4222 array_size(max_devices, 4223 sizeof(struct f2fs_dev_info)), 4224 GFP_KERNEL); 4225 if (!sbi->devs) 4226 return -ENOMEM; 4227 4228 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4229 sbi->aligned_blksize = true; 4230 #ifdef CONFIG_BLK_DEV_ZONED 4231 sbi->max_open_zones = UINT_MAX; 4232 #endif 4233 4234 for (i = 0; i < max_devices; i++) { 4235 if (i == 0) 4236 FDEV(0).bdev_file = sbi->sb->s_bdev_file; 4237 else if (!RDEV(i).path[0]) 4238 break; 4239 4240 if (max_devices > 1) { 4241 /* Multi-device mount */ 4242 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4243 FDEV(i).total_segments = 4244 le32_to_cpu(RDEV(i).total_segments); 4245 if (i == 0) { 4246 FDEV(i).start_blk = 0; 4247 FDEV(i).end_blk = FDEV(i).start_blk + 4248 SEGS_TO_BLKS(sbi, 4249 FDEV(i).total_segments) - 1 + 4250 le32_to_cpu(raw_super->segment0_blkaddr); 4251 } else { 4252 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4253 FDEV(i).end_blk = FDEV(i).start_blk + 4254 SEGS_TO_BLKS(sbi, 4255 FDEV(i).total_segments) - 1; 4256 FDEV(i).bdev_file = bdev_file_open_by_path( 4257 FDEV(i).path, mode, sbi->sb, NULL); 4258 } 4259 } 4260 if (IS_ERR(FDEV(i).bdev_file)) 4261 return PTR_ERR(FDEV(i).bdev_file); 4262 4263 FDEV(i).bdev = file_bdev(FDEV(i).bdev_file); 4264 /* to release errored devices */ 4265 sbi->s_ndevs = i + 1; 4266 4267 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4268 sbi->aligned_blksize = false; 4269 4270 #ifdef CONFIG_BLK_DEV_ZONED 4271 if (bdev_is_zoned(FDEV(i).bdev)) { 4272 if (!f2fs_sb_has_blkzoned(sbi)) { 4273 f2fs_err(sbi, "Zoned block device feature not enabled"); 4274 return -EINVAL; 4275 } 4276 if (init_blkz_info(sbi, i)) { 4277 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4278 return -EINVAL; 4279 } 4280 if (max_devices == 1) 4281 break; 4282 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)", 4283 i, FDEV(i).path, 4284 FDEV(i).total_segments, 4285 FDEV(i).start_blk, FDEV(i).end_blk); 4286 continue; 4287 } 4288 #endif 4289 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4290 i, FDEV(i).path, 4291 FDEV(i).total_segments, 4292 FDEV(i).start_blk, FDEV(i).end_blk); 4293 } 4294 return 0; 4295 } 4296 4297 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4298 { 4299 #if IS_ENABLED(CONFIG_UNICODE) 4300 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4301 const struct f2fs_sb_encodings *encoding_info; 4302 struct unicode_map *encoding; 4303 __u16 encoding_flags; 4304 4305 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4306 if (!encoding_info) { 4307 f2fs_err(sbi, 4308 "Encoding requested by superblock is unknown"); 4309 return -EINVAL; 4310 } 4311 4312 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4313 encoding = utf8_load(encoding_info->version); 4314 if (IS_ERR(encoding)) { 4315 f2fs_err(sbi, 4316 "can't mount with superblock charset: %s-%u.%u.%u " 4317 "not supported by the kernel. flags: 0x%x.", 4318 encoding_info->name, 4319 unicode_major(encoding_info->version), 4320 unicode_minor(encoding_info->version), 4321 unicode_rev(encoding_info->version), 4322 encoding_flags); 4323 return PTR_ERR(encoding); 4324 } 4325 f2fs_info(sbi, "Using encoding defined by superblock: " 4326 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4327 unicode_major(encoding_info->version), 4328 unicode_minor(encoding_info->version), 4329 unicode_rev(encoding_info->version), 4330 encoding_flags); 4331 4332 sbi->sb->s_encoding = encoding; 4333 sbi->sb->s_encoding_flags = encoding_flags; 4334 } 4335 #else 4336 if (f2fs_sb_has_casefold(sbi)) { 4337 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4338 return -EINVAL; 4339 } 4340 #endif 4341 return 0; 4342 } 4343 4344 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4345 { 4346 /* adjust parameters according to the volume size */ 4347 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4348 if (f2fs_block_unit_discard(sbi)) 4349 SM_I(sbi)->dcc_info->discard_granularity = 4350 MIN_DISCARD_GRANULARITY; 4351 if (!f2fs_lfs_mode(sbi)) 4352 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4353 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4354 } 4355 4356 sbi->readdir_ra = true; 4357 } 4358 4359 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4360 { 4361 struct f2fs_sb_info *sbi; 4362 struct f2fs_super_block *raw_super; 4363 struct inode *root; 4364 int err; 4365 bool skip_recovery = false, need_fsck = false; 4366 char *options = NULL; 4367 int recovery, i, valid_super_block; 4368 struct curseg_info *seg_i; 4369 int retry_cnt = 1; 4370 #ifdef CONFIG_QUOTA 4371 bool quota_enabled = false; 4372 #endif 4373 4374 try_onemore: 4375 err = -EINVAL; 4376 raw_super = NULL; 4377 valid_super_block = -1; 4378 recovery = 0; 4379 4380 /* allocate memory for f2fs-specific super block info */ 4381 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4382 if (!sbi) 4383 return -ENOMEM; 4384 4385 sbi->sb = sb; 4386 4387 /* initialize locks within allocated memory */ 4388 init_f2fs_rwsem(&sbi->gc_lock); 4389 mutex_init(&sbi->writepages); 4390 init_f2fs_rwsem(&sbi->cp_global_sem); 4391 init_f2fs_rwsem(&sbi->node_write); 4392 init_f2fs_rwsem(&sbi->node_change); 4393 spin_lock_init(&sbi->stat_lock); 4394 init_f2fs_rwsem(&sbi->cp_rwsem); 4395 init_f2fs_rwsem(&sbi->quota_sem); 4396 init_waitqueue_head(&sbi->cp_wait); 4397 spin_lock_init(&sbi->error_lock); 4398 4399 for (i = 0; i < NR_INODE_TYPE; i++) { 4400 INIT_LIST_HEAD(&sbi->inode_list[i]); 4401 spin_lock_init(&sbi->inode_lock[i]); 4402 } 4403 mutex_init(&sbi->flush_lock); 4404 4405 /* Load the checksum driver */ 4406 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4407 if (IS_ERR(sbi->s_chksum_driver)) { 4408 f2fs_err(sbi, "Cannot load crc32 driver."); 4409 err = PTR_ERR(sbi->s_chksum_driver); 4410 sbi->s_chksum_driver = NULL; 4411 goto free_sbi; 4412 } 4413 4414 /* set a block size */ 4415 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4416 f2fs_err(sbi, "unable to set blocksize"); 4417 goto free_sbi; 4418 } 4419 4420 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4421 &recovery); 4422 if (err) 4423 goto free_sbi; 4424 4425 sb->s_fs_info = sbi; 4426 sbi->raw_super = raw_super; 4427 4428 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4429 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4430 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4431 4432 /* precompute checksum seed for metadata */ 4433 if (f2fs_sb_has_inode_chksum(sbi)) 4434 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4435 sizeof(raw_super->uuid)); 4436 4437 default_options(sbi, false); 4438 /* parse mount options */ 4439 options = kstrdup((const char *)data, GFP_KERNEL); 4440 if (data && !options) { 4441 err = -ENOMEM; 4442 goto free_sb_buf; 4443 } 4444 4445 err = parse_options(sb, options, false); 4446 if (err) 4447 goto free_options; 4448 4449 sb->s_maxbytes = max_file_blocks(NULL) << 4450 le32_to_cpu(raw_super->log_blocksize); 4451 sb->s_max_links = F2FS_LINK_MAX; 4452 4453 err = f2fs_setup_casefold(sbi); 4454 if (err) 4455 goto free_options; 4456 4457 #ifdef CONFIG_QUOTA 4458 sb->dq_op = &f2fs_quota_operations; 4459 sb->s_qcop = &f2fs_quotactl_ops; 4460 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4461 4462 if (f2fs_sb_has_quota_ino(sbi)) { 4463 for (i = 0; i < MAXQUOTAS; i++) { 4464 if (f2fs_qf_ino(sbi->sb, i)) 4465 sbi->nquota_files++; 4466 } 4467 } 4468 #endif 4469 4470 sb->s_op = &f2fs_sops; 4471 #ifdef CONFIG_FS_ENCRYPTION 4472 sb->s_cop = &f2fs_cryptops; 4473 #endif 4474 #ifdef CONFIG_FS_VERITY 4475 sb->s_vop = &f2fs_verityops; 4476 #endif 4477 sb->s_xattr = f2fs_xattr_handlers; 4478 sb->s_export_op = &f2fs_export_ops; 4479 sb->s_magic = F2FS_SUPER_MAGIC; 4480 sb->s_time_gran = 1; 4481 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4482 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4483 super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid)); 4484 sb->s_iflags |= SB_I_CGROUPWB; 4485 4486 /* init f2fs-specific super block info */ 4487 sbi->valid_super_block = valid_super_block; 4488 4489 /* disallow all the data/node/meta page writes */ 4490 set_sbi_flag(sbi, SBI_POR_DOING); 4491 4492 err = f2fs_init_write_merge_io(sbi); 4493 if (err) 4494 goto free_bio_info; 4495 4496 init_sb_info(sbi); 4497 4498 err = f2fs_init_iostat(sbi); 4499 if (err) 4500 goto free_bio_info; 4501 4502 err = init_percpu_info(sbi); 4503 if (err) 4504 goto free_iostat; 4505 4506 /* init per sbi slab cache */ 4507 err = f2fs_init_xattr_caches(sbi); 4508 if (err) 4509 goto free_percpu; 4510 err = f2fs_init_page_array_cache(sbi); 4511 if (err) 4512 goto free_xattr_cache; 4513 4514 /* get an inode for meta space */ 4515 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4516 if (IS_ERR(sbi->meta_inode)) { 4517 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4518 err = PTR_ERR(sbi->meta_inode); 4519 goto free_page_array_cache; 4520 } 4521 4522 err = f2fs_get_valid_checkpoint(sbi); 4523 if (err) { 4524 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4525 goto free_meta_inode; 4526 } 4527 4528 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4529 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4530 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4531 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4532 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4533 } 4534 4535 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4536 set_sbi_flag(sbi, SBI_NEED_FSCK); 4537 4538 /* Initialize device list */ 4539 err = f2fs_scan_devices(sbi); 4540 if (err) { 4541 f2fs_err(sbi, "Failed to find devices"); 4542 goto free_devices; 4543 } 4544 4545 err = f2fs_init_post_read_wq(sbi); 4546 if (err) { 4547 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4548 goto free_devices; 4549 } 4550 4551 sbi->total_valid_node_count = 4552 le32_to_cpu(sbi->ckpt->valid_node_count); 4553 percpu_counter_set(&sbi->total_valid_inode_count, 4554 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4555 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4556 sbi->total_valid_block_count = 4557 le64_to_cpu(sbi->ckpt->valid_block_count); 4558 sbi->last_valid_block_count = sbi->total_valid_block_count; 4559 sbi->reserved_blocks = 0; 4560 sbi->current_reserved_blocks = 0; 4561 limit_reserve_root(sbi); 4562 adjust_unusable_cap_perc(sbi); 4563 4564 f2fs_init_extent_cache_info(sbi); 4565 4566 f2fs_init_ino_entry_info(sbi); 4567 4568 f2fs_init_fsync_node_info(sbi); 4569 4570 /* setup checkpoint request control and start checkpoint issue thread */ 4571 f2fs_init_ckpt_req_control(sbi); 4572 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4573 test_opt(sbi, MERGE_CHECKPOINT)) { 4574 err = f2fs_start_ckpt_thread(sbi); 4575 if (err) { 4576 f2fs_err(sbi, 4577 "Failed to start F2FS issue_checkpoint_thread (%d)", 4578 err); 4579 goto stop_ckpt_thread; 4580 } 4581 } 4582 4583 /* setup f2fs internal modules */ 4584 err = f2fs_build_segment_manager(sbi); 4585 if (err) { 4586 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4587 err); 4588 goto free_sm; 4589 } 4590 err = f2fs_build_node_manager(sbi); 4591 if (err) { 4592 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4593 err); 4594 goto free_nm; 4595 } 4596 4597 /* For write statistics */ 4598 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4599 4600 /* Read accumulated write IO statistics if exists */ 4601 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4602 if (__exist_node_summaries(sbi)) 4603 sbi->kbytes_written = 4604 le64_to_cpu(seg_i->journal->info.kbytes_written); 4605 4606 f2fs_build_gc_manager(sbi); 4607 4608 err = f2fs_build_stats(sbi); 4609 if (err) 4610 goto free_nm; 4611 4612 /* get an inode for node space */ 4613 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4614 if (IS_ERR(sbi->node_inode)) { 4615 f2fs_err(sbi, "Failed to read node inode"); 4616 err = PTR_ERR(sbi->node_inode); 4617 goto free_stats; 4618 } 4619 4620 /* read root inode and dentry */ 4621 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4622 if (IS_ERR(root)) { 4623 f2fs_err(sbi, "Failed to read root inode"); 4624 err = PTR_ERR(root); 4625 goto free_node_inode; 4626 } 4627 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4628 !root->i_size || !root->i_nlink) { 4629 iput(root); 4630 err = -EINVAL; 4631 goto free_node_inode; 4632 } 4633 4634 generic_set_sb_d_ops(sb); 4635 sb->s_root = d_make_root(root); /* allocate root dentry */ 4636 if (!sb->s_root) { 4637 err = -ENOMEM; 4638 goto free_node_inode; 4639 } 4640 4641 err = f2fs_init_compress_inode(sbi); 4642 if (err) 4643 goto free_root_inode; 4644 4645 err = f2fs_register_sysfs(sbi); 4646 if (err) 4647 goto free_compress_inode; 4648 4649 #ifdef CONFIG_QUOTA 4650 /* Enable quota usage during mount */ 4651 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4652 err = f2fs_enable_quotas(sb); 4653 if (err) 4654 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4655 } 4656 4657 quota_enabled = f2fs_recover_quota_begin(sbi); 4658 #endif 4659 /* if there are any orphan inodes, free them */ 4660 err = f2fs_recover_orphan_inodes(sbi); 4661 if (err) 4662 goto free_meta; 4663 4664 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4665 goto reset_checkpoint; 4666 4667 /* recover fsynced data */ 4668 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4669 !test_opt(sbi, NORECOVERY)) { 4670 /* 4671 * mount should be failed, when device has readonly mode, and 4672 * previous checkpoint was not done by clean system shutdown. 4673 */ 4674 if (f2fs_hw_is_readonly(sbi)) { 4675 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4676 err = f2fs_recover_fsync_data(sbi, true); 4677 if (err > 0) { 4678 err = -EROFS; 4679 f2fs_err(sbi, "Need to recover fsync data, but " 4680 "write access unavailable, please try " 4681 "mount w/ disable_roll_forward or norecovery"); 4682 } 4683 if (err < 0) 4684 goto free_meta; 4685 } 4686 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4687 goto reset_checkpoint; 4688 } 4689 4690 if (need_fsck) 4691 set_sbi_flag(sbi, SBI_NEED_FSCK); 4692 4693 if (skip_recovery) 4694 goto reset_checkpoint; 4695 4696 err = f2fs_recover_fsync_data(sbi, false); 4697 if (err < 0) { 4698 if (err != -ENOMEM) 4699 skip_recovery = true; 4700 need_fsck = true; 4701 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4702 err); 4703 goto free_meta; 4704 } 4705 } else { 4706 err = f2fs_recover_fsync_data(sbi, true); 4707 4708 if (!f2fs_readonly(sb) && err > 0) { 4709 err = -EINVAL; 4710 f2fs_err(sbi, "Need to recover fsync data"); 4711 goto free_meta; 4712 } 4713 } 4714 4715 #ifdef CONFIG_QUOTA 4716 f2fs_recover_quota_end(sbi, quota_enabled); 4717 #endif 4718 reset_checkpoint: 4719 /* 4720 * If the f2fs is not readonly and fsync data recovery succeeds, 4721 * check zoned block devices' write pointer consistency. 4722 */ 4723 if (f2fs_sb_has_blkzoned(sbi) && !f2fs_readonly(sb)) { 4724 int err2; 4725 4726 f2fs_notice(sbi, "Checking entire write pointers"); 4727 err2 = f2fs_check_write_pointer(sbi); 4728 if (err2) 4729 err = err2; 4730 } 4731 if (err) 4732 goto free_meta; 4733 4734 err = f2fs_init_inmem_curseg(sbi); 4735 if (err) 4736 goto sync_free_meta; 4737 4738 /* f2fs_recover_fsync_data() cleared this already */ 4739 clear_sbi_flag(sbi, SBI_POR_DOING); 4740 4741 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4742 err = f2fs_disable_checkpoint(sbi); 4743 if (err) 4744 goto sync_free_meta; 4745 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4746 f2fs_enable_checkpoint(sbi); 4747 } 4748 4749 /* 4750 * If filesystem is not mounted as read-only then 4751 * do start the gc_thread. 4752 */ 4753 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4754 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4755 /* After POR, we can run background GC thread.*/ 4756 err = f2fs_start_gc_thread(sbi); 4757 if (err) 4758 goto sync_free_meta; 4759 } 4760 kvfree(options); 4761 4762 /* recover broken superblock */ 4763 if (recovery) { 4764 err = f2fs_commit_super(sbi, true); 4765 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4766 sbi->valid_super_block ? 1 : 2, err); 4767 } 4768 4769 f2fs_join_shrinker(sbi); 4770 4771 f2fs_tuning_parameters(sbi); 4772 4773 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4774 cur_cp_version(F2FS_CKPT(sbi))); 4775 f2fs_update_time(sbi, CP_TIME); 4776 f2fs_update_time(sbi, REQ_TIME); 4777 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4778 return 0; 4779 4780 sync_free_meta: 4781 /* safe to flush all the data */ 4782 sync_filesystem(sbi->sb); 4783 retry_cnt = 0; 4784 4785 free_meta: 4786 #ifdef CONFIG_QUOTA 4787 f2fs_truncate_quota_inode_pages(sb); 4788 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4789 f2fs_quota_off_umount(sbi->sb); 4790 #endif 4791 /* 4792 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4793 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4794 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4795 * falls into an infinite loop in f2fs_sync_meta_pages(). 4796 */ 4797 truncate_inode_pages_final(META_MAPPING(sbi)); 4798 /* evict some inodes being cached by GC */ 4799 evict_inodes(sb); 4800 f2fs_unregister_sysfs(sbi); 4801 free_compress_inode: 4802 f2fs_destroy_compress_inode(sbi); 4803 free_root_inode: 4804 dput(sb->s_root); 4805 sb->s_root = NULL; 4806 free_node_inode: 4807 f2fs_release_ino_entry(sbi, true); 4808 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4809 iput(sbi->node_inode); 4810 sbi->node_inode = NULL; 4811 free_stats: 4812 f2fs_destroy_stats(sbi); 4813 free_nm: 4814 /* stop discard thread before destroying node manager */ 4815 f2fs_stop_discard_thread(sbi); 4816 f2fs_destroy_node_manager(sbi); 4817 free_sm: 4818 f2fs_destroy_segment_manager(sbi); 4819 stop_ckpt_thread: 4820 f2fs_stop_ckpt_thread(sbi); 4821 /* flush s_error_work before sbi destroy */ 4822 flush_work(&sbi->s_error_work); 4823 f2fs_destroy_post_read_wq(sbi); 4824 free_devices: 4825 destroy_device_list(sbi); 4826 kvfree(sbi->ckpt); 4827 free_meta_inode: 4828 make_bad_inode(sbi->meta_inode); 4829 iput(sbi->meta_inode); 4830 sbi->meta_inode = NULL; 4831 free_page_array_cache: 4832 f2fs_destroy_page_array_cache(sbi); 4833 free_xattr_cache: 4834 f2fs_destroy_xattr_caches(sbi); 4835 free_percpu: 4836 destroy_percpu_info(sbi); 4837 free_iostat: 4838 f2fs_destroy_iostat(sbi); 4839 free_bio_info: 4840 for (i = 0; i < NR_PAGE_TYPE; i++) 4841 kvfree(sbi->write_io[i]); 4842 4843 #if IS_ENABLED(CONFIG_UNICODE) 4844 utf8_unload(sb->s_encoding); 4845 sb->s_encoding = NULL; 4846 #endif 4847 free_options: 4848 #ifdef CONFIG_QUOTA 4849 for (i = 0; i < MAXQUOTAS; i++) 4850 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4851 #endif 4852 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4853 kvfree(options); 4854 free_sb_buf: 4855 kfree(raw_super); 4856 free_sbi: 4857 if (sbi->s_chksum_driver) 4858 crypto_free_shash(sbi->s_chksum_driver); 4859 kfree(sbi); 4860 sb->s_fs_info = NULL; 4861 4862 /* give only one another chance */ 4863 if (retry_cnt > 0 && skip_recovery) { 4864 retry_cnt--; 4865 shrink_dcache_sb(sb); 4866 goto try_onemore; 4867 } 4868 return err; 4869 } 4870 4871 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4872 const char *dev_name, void *data) 4873 { 4874 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4875 } 4876 4877 static void kill_f2fs_super(struct super_block *sb) 4878 { 4879 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4880 4881 if (sb->s_root) { 4882 set_sbi_flag(sbi, SBI_IS_CLOSE); 4883 f2fs_stop_gc_thread(sbi); 4884 f2fs_stop_discard_thread(sbi); 4885 4886 #ifdef CONFIG_F2FS_FS_COMPRESSION 4887 /* 4888 * latter evict_inode() can bypass checking and invalidating 4889 * compress inode cache. 4890 */ 4891 if (test_opt(sbi, COMPRESS_CACHE)) 4892 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4893 #endif 4894 4895 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4896 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4897 struct cp_control cpc = { 4898 .reason = CP_UMOUNT, 4899 }; 4900 stat_inc_cp_call_count(sbi, TOTAL_CALL); 4901 f2fs_write_checkpoint(sbi, &cpc); 4902 } 4903 4904 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4905 sb->s_flags &= ~SB_RDONLY; 4906 } 4907 kill_block_super(sb); 4908 /* Release block devices last, after fscrypt_destroy_keyring(). */ 4909 if (sbi) { 4910 destroy_device_list(sbi); 4911 kfree(sbi); 4912 sb->s_fs_info = NULL; 4913 } 4914 } 4915 4916 static struct file_system_type f2fs_fs_type = { 4917 .owner = THIS_MODULE, 4918 .name = "f2fs", 4919 .mount = f2fs_mount, 4920 .kill_sb = kill_f2fs_super, 4921 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4922 }; 4923 MODULE_ALIAS_FS("f2fs"); 4924 4925 static int __init init_inodecache(void) 4926 { 4927 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4928 sizeof(struct f2fs_inode_info), 0, 4929 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4930 return f2fs_inode_cachep ? 0 : -ENOMEM; 4931 } 4932 4933 static void destroy_inodecache(void) 4934 { 4935 /* 4936 * Make sure all delayed rcu free inodes are flushed before we 4937 * destroy cache. 4938 */ 4939 rcu_barrier(); 4940 kmem_cache_destroy(f2fs_inode_cachep); 4941 } 4942 4943 static int __init init_f2fs_fs(void) 4944 { 4945 int err; 4946 4947 err = init_inodecache(); 4948 if (err) 4949 goto fail; 4950 err = f2fs_create_node_manager_caches(); 4951 if (err) 4952 goto free_inodecache; 4953 err = f2fs_create_segment_manager_caches(); 4954 if (err) 4955 goto free_node_manager_caches; 4956 err = f2fs_create_checkpoint_caches(); 4957 if (err) 4958 goto free_segment_manager_caches; 4959 err = f2fs_create_recovery_cache(); 4960 if (err) 4961 goto free_checkpoint_caches; 4962 err = f2fs_create_extent_cache(); 4963 if (err) 4964 goto free_recovery_cache; 4965 err = f2fs_create_garbage_collection_cache(); 4966 if (err) 4967 goto free_extent_cache; 4968 err = f2fs_init_sysfs(); 4969 if (err) 4970 goto free_garbage_collection_cache; 4971 err = f2fs_init_shrinker(); 4972 if (err) 4973 goto free_sysfs; 4974 err = register_filesystem(&f2fs_fs_type); 4975 if (err) 4976 goto free_shrinker; 4977 f2fs_create_root_stats(); 4978 err = f2fs_init_post_read_processing(); 4979 if (err) 4980 goto free_root_stats; 4981 err = f2fs_init_iostat_processing(); 4982 if (err) 4983 goto free_post_read; 4984 err = f2fs_init_bio_entry_cache(); 4985 if (err) 4986 goto free_iostat; 4987 err = f2fs_init_bioset(); 4988 if (err) 4989 goto free_bio_entry_cache; 4990 err = f2fs_init_compress_mempool(); 4991 if (err) 4992 goto free_bioset; 4993 err = f2fs_init_compress_cache(); 4994 if (err) 4995 goto free_compress_mempool; 4996 err = f2fs_create_casefold_cache(); 4997 if (err) 4998 goto free_compress_cache; 4999 return 0; 5000 free_compress_cache: 5001 f2fs_destroy_compress_cache(); 5002 free_compress_mempool: 5003 f2fs_destroy_compress_mempool(); 5004 free_bioset: 5005 f2fs_destroy_bioset(); 5006 free_bio_entry_cache: 5007 f2fs_destroy_bio_entry_cache(); 5008 free_iostat: 5009 f2fs_destroy_iostat_processing(); 5010 free_post_read: 5011 f2fs_destroy_post_read_processing(); 5012 free_root_stats: 5013 f2fs_destroy_root_stats(); 5014 unregister_filesystem(&f2fs_fs_type); 5015 free_shrinker: 5016 f2fs_exit_shrinker(); 5017 free_sysfs: 5018 f2fs_exit_sysfs(); 5019 free_garbage_collection_cache: 5020 f2fs_destroy_garbage_collection_cache(); 5021 free_extent_cache: 5022 f2fs_destroy_extent_cache(); 5023 free_recovery_cache: 5024 f2fs_destroy_recovery_cache(); 5025 free_checkpoint_caches: 5026 f2fs_destroy_checkpoint_caches(); 5027 free_segment_manager_caches: 5028 f2fs_destroy_segment_manager_caches(); 5029 free_node_manager_caches: 5030 f2fs_destroy_node_manager_caches(); 5031 free_inodecache: 5032 destroy_inodecache(); 5033 fail: 5034 return err; 5035 } 5036 5037 static void __exit exit_f2fs_fs(void) 5038 { 5039 f2fs_destroy_casefold_cache(); 5040 f2fs_destroy_compress_cache(); 5041 f2fs_destroy_compress_mempool(); 5042 f2fs_destroy_bioset(); 5043 f2fs_destroy_bio_entry_cache(); 5044 f2fs_destroy_iostat_processing(); 5045 f2fs_destroy_post_read_processing(); 5046 f2fs_destroy_root_stats(); 5047 unregister_filesystem(&f2fs_fs_type); 5048 f2fs_exit_shrinker(); 5049 f2fs_exit_sysfs(); 5050 f2fs_destroy_garbage_collection_cache(); 5051 f2fs_destroy_extent_cache(); 5052 f2fs_destroy_recovery_cache(); 5053 f2fs_destroy_checkpoint_caches(); 5054 f2fs_destroy_segment_manager_caches(); 5055 f2fs_destroy_node_manager_caches(); 5056 destroy_inodecache(); 5057 } 5058 5059 module_init(init_f2fs_fs) 5060 module_exit(exit_f2fs_fs) 5061 5062 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5063 MODULE_DESCRIPTION("Flash Friendly File System"); 5064 MODULE_LICENSE("GPL"); 5065 MODULE_SOFTDEP("pre: crc32"); 5066 5067