1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 #include <linux/zstd.h> 29 #include <linux/lz4.h> 30 31 #include "f2fs.h" 32 #include "node.h" 33 #include "segment.h" 34 #include "xattr.h" 35 #include "gc.h" 36 #include "iostat.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/f2fs.h> 40 41 static struct kmem_cache *f2fs_inode_cachep; 42 43 #ifdef CONFIG_F2FS_FAULT_INJECTION 44 45 const char *f2fs_fault_name[FAULT_MAX] = { 46 [FAULT_KMALLOC] = "kmalloc", 47 [FAULT_KVMALLOC] = "kvmalloc", 48 [FAULT_PAGE_ALLOC] = "page alloc", 49 [FAULT_PAGE_GET] = "page get", 50 [FAULT_ALLOC_NID] = "alloc nid", 51 [FAULT_ORPHAN] = "orphan", 52 [FAULT_BLOCK] = "no more block", 53 [FAULT_DIR_DEPTH] = "too big dir depth", 54 [FAULT_EVICT_INODE] = "evict_inode fail", 55 [FAULT_TRUNCATE] = "truncate fail", 56 [FAULT_READ_IO] = "read IO error", 57 [FAULT_CHECKPOINT] = "checkpoint error", 58 [FAULT_DISCARD] = "discard error", 59 [FAULT_WRITE_IO] = "write IO error", 60 [FAULT_SLAB_ALLOC] = "slab alloc", 61 [FAULT_DQUOT_INIT] = "dquot initialize", 62 [FAULT_LOCK_OP] = "lock_op", 63 [FAULT_BLKADDR_VALIDITY] = "invalid blkaddr", 64 [FAULT_BLKADDR_CONSISTENCE] = "inconsistent blkaddr", 65 [FAULT_NO_SEGMENT] = "no free segment", 66 }; 67 68 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 69 unsigned long type) 70 { 71 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 72 73 if (rate) { 74 if (rate > INT_MAX) 75 return -EINVAL; 76 atomic_set(&ffi->inject_ops, 0); 77 ffi->inject_rate = (int)rate; 78 } 79 80 if (type) { 81 if (type >= BIT(FAULT_MAX)) 82 return -EINVAL; 83 ffi->inject_type = (unsigned int)type; 84 } 85 86 if (!rate && !type) 87 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 88 else 89 f2fs_info(sbi, 90 "build fault injection attr: rate: %lu, type: 0x%lx", 91 rate, type); 92 return 0; 93 } 94 #endif 95 96 /* f2fs-wide shrinker description */ 97 static struct shrinker *f2fs_shrinker_info; 98 99 static int __init f2fs_init_shrinker(void) 100 { 101 f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker"); 102 if (!f2fs_shrinker_info) 103 return -ENOMEM; 104 105 f2fs_shrinker_info->count_objects = f2fs_shrink_count; 106 f2fs_shrinker_info->scan_objects = f2fs_shrink_scan; 107 108 shrinker_register(f2fs_shrinker_info); 109 110 return 0; 111 } 112 113 static void f2fs_exit_shrinker(void) 114 { 115 shrinker_free(f2fs_shrinker_info); 116 } 117 118 enum { 119 Opt_gc_background, 120 Opt_disable_roll_forward, 121 Opt_norecovery, 122 Opt_discard, 123 Opt_nodiscard, 124 Opt_noheap, 125 Opt_heap, 126 Opt_user_xattr, 127 Opt_nouser_xattr, 128 Opt_acl, 129 Opt_noacl, 130 Opt_active_logs, 131 Opt_disable_ext_identify, 132 Opt_inline_xattr, 133 Opt_noinline_xattr, 134 Opt_inline_xattr_size, 135 Opt_inline_data, 136 Opt_inline_dentry, 137 Opt_noinline_dentry, 138 Opt_flush_merge, 139 Opt_noflush_merge, 140 Opt_barrier, 141 Opt_nobarrier, 142 Opt_fastboot, 143 Opt_extent_cache, 144 Opt_noextent_cache, 145 Opt_noinline_data, 146 Opt_data_flush, 147 Opt_reserve_root, 148 Opt_resgid, 149 Opt_resuid, 150 Opt_mode, 151 Opt_fault_injection, 152 Opt_fault_type, 153 Opt_lazytime, 154 Opt_nolazytime, 155 Opt_quota, 156 Opt_noquota, 157 Opt_usrquota, 158 Opt_grpquota, 159 Opt_prjquota, 160 Opt_usrjquota, 161 Opt_grpjquota, 162 Opt_prjjquota, 163 Opt_offusrjquota, 164 Opt_offgrpjquota, 165 Opt_offprjjquota, 166 Opt_jqfmt_vfsold, 167 Opt_jqfmt_vfsv0, 168 Opt_jqfmt_vfsv1, 169 Opt_alloc, 170 Opt_fsync, 171 Opt_test_dummy_encryption, 172 Opt_inlinecrypt, 173 Opt_checkpoint_disable, 174 Opt_checkpoint_disable_cap, 175 Opt_checkpoint_disable_cap_perc, 176 Opt_checkpoint_enable, 177 Opt_checkpoint_merge, 178 Opt_nocheckpoint_merge, 179 Opt_compress_algorithm, 180 Opt_compress_log_size, 181 Opt_compress_extension, 182 Opt_nocompress_extension, 183 Opt_compress_chksum, 184 Opt_compress_mode, 185 Opt_compress_cache, 186 Opt_atgc, 187 Opt_gc_merge, 188 Opt_nogc_merge, 189 Opt_discard_unit, 190 Opt_memory_mode, 191 Opt_age_extent_cache, 192 Opt_errors, 193 Opt_err, 194 }; 195 196 static match_table_t f2fs_tokens = { 197 {Opt_gc_background, "background_gc=%s"}, 198 {Opt_disable_roll_forward, "disable_roll_forward"}, 199 {Opt_norecovery, "norecovery"}, 200 {Opt_discard, "discard"}, 201 {Opt_nodiscard, "nodiscard"}, 202 {Opt_noheap, "no_heap"}, 203 {Opt_heap, "heap"}, 204 {Opt_user_xattr, "user_xattr"}, 205 {Opt_nouser_xattr, "nouser_xattr"}, 206 {Opt_acl, "acl"}, 207 {Opt_noacl, "noacl"}, 208 {Opt_active_logs, "active_logs=%u"}, 209 {Opt_disable_ext_identify, "disable_ext_identify"}, 210 {Opt_inline_xattr, "inline_xattr"}, 211 {Opt_noinline_xattr, "noinline_xattr"}, 212 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 213 {Opt_inline_data, "inline_data"}, 214 {Opt_inline_dentry, "inline_dentry"}, 215 {Opt_noinline_dentry, "noinline_dentry"}, 216 {Opt_flush_merge, "flush_merge"}, 217 {Opt_noflush_merge, "noflush_merge"}, 218 {Opt_barrier, "barrier"}, 219 {Opt_nobarrier, "nobarrier"}, 220 {Opt_fastboot, "fastboot"}, 221 {Opt_extent_cache, "extent_cache"}, 222 {Opt_noextent_cache, "noextent_cache"}, 223 {Opt_noinline_data, "noinline_data"}, 224 {Opt_data_flush, "data_flush"}, 225 {Opt_reserve_root, "reserve_root=%u"}, 226 {Opt_resgid, "resgid=%u"}, 227 {Opt_resuid, "resuid=%u"}, 228 {Opt_mode, "mode=%s"}, 229 {Opt_fault_injection, "fault_injection=%u"}, 230 {Opt_fault_type, "fault_type=%u"}, 231 {Opt_lazytime, "lazytime"}, 232 {Opt_nolazytime, "nolazytime"}, 233 {Opt_quota, "quota"}, 234 {Opt_noquota, "noquota"}, 235 {Opt_usrquota, "usrquota"}, 236 {Opt_grpquota, "grpquota"}, 237 {Opt_prjquota, "prjquota"}, 238 {Opt_usrjquota, "usrjquota=%s"}, 239 {Opt_grpjquota, "grpjquota=%s"}, 240 {Opt_prjjquota, "prjjquota=%s"}, 241 {Opt_offusrjquota, "usrjquota="}, 242 {Opt_offgrpjquota, "grpjquota="}, 243 {Opt_offprjjquota, "prjjquota="}, 244 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 245 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 246 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 247 {Opt_alloc, "alloc_mode=%s"}, 248 {Opt_fsync, "fsync_mode=%s"}, 249 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 250 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 251 {Opt_inlinecrypt, "inlinecrypt"}, 252 {Opt_checkpoint_disable, "checkpoint=disable"}, 253 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 254 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 255 {Opt_checkpoint_enable, "checkpoint=enable"}, 256 {Opt_checkpoint_merge, "checkpoint_merge"}, 257 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 258 {Opt_compress_algorithm, "compress_algorithm=%s"}, 259 {Opt_compress_log_size, "compress_log_size=%u"}, 260 {Opt_compress_extension, "compress_extension=%s"}, 261 {Opt_nocompress_extension, "nocompress_extension=%s"}, 262 {Opt_compress_chksum, "compress_chksum"}, 263 {Opt_compress_mode, "compress_mode=%s"}, 264 {Opt_compress_cache, "compress_cache"}, 265 {Opt_atgc, "atgc"}, 266 {Opt_gc_merge, "gc_merge"}, 267 {Opt_nogc_merge, "nogc_merge"}, 268 {Opt_discard_unit, "discard_unit=%s"}, 269 {Opt_memory_mode, "memory=%s"}, 270 {Opt_age_extent_cache, "age_extent_cache"}, 271 {Opt_errors, "errors=%s"}, 272 {Opt_err, NULL}, 273 }; 274 275 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, 276 const char *fmt, ...) 277 { 278 struct va_format vaf; 279 va_list args; 280 int level; 281 282 va_start(args, fmt); 283 284 level = printk_get_level(fmt); 285 vaf.fmt = printk_skip_level(fmt); 286 vaf.va = &args; 287 if (limit_rate) 288 printk_ratelimited("%c%cF2FS-fs (%s): %pV\n", 289 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 290 else 291 printk("%c%cF2FS-fs (%s): %pV\n", 292 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 293 294 va_end(args); 295 } 296 297 #if IS_ENABLED(CONFIG_UNICODE) 298 static const struct f2fs_sb_encodings { 299 __u16 magic; 300 char *name; 301 unsigned int version; 302 } f2fs_sb_encoding_map[] = { 303 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 304 }; 305 306 static const struct f2fs_sb_encodings * 307 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 308 { 309 __u16 magic = le16_to_cpu(sb->s_encoding); 310 int i; 311 312 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 313 if (magic == f2fs_sb_encoding_map[i].magic) 314 return &f2fs_sb_encoding_map[i]; 315 316 return NULL; 317 } 318 319 struct kmem_cache *f2fs_cf_name_slab; 320 static int __init f2fs_create_casefold_cache(void) 321 { 322 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 323 F2FS_NAME_LEN); 324 return f2fs_cf_name_slab ? 0 : -ENOMEM; 325 } 326 327 static void f2fs_destroy_casefold_cache(void) 328 { 329 kmem_cache_destroy(f2fs_cf_name_slab); 330 } 331 #else 332 static int __init f2fs_create_casefold_cache(void) { return 0; } 333 static void f2fs_destroy_casefold_cache(void) { } 334 #endif 335 336 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 337 { 338 block_t limit = min((sbi->user_block_count >> 3), 339 sbi->user_block_count - sbi->reserved_blocks); 340 341 /* limit is 12.5% */ 342 if (test_opt(sbi, RESERVE_ROOT) && 343 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 344 F2FS_OPTION(sbi).root_reserved_blocks = limit; 345 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 346 F2FS_OPTION(sbi).root_reserved_blocks); 347 } 348 if (!test_opt(sbi, RESERVE_ROOT) && 349 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 350 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 351 !gid_eq(F2FS_OPTION(sbi).s_resgid, 352 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 353 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 354 from_kuid_munged(&init_user_ns, 355 F2FS_OPTION(sbi).s_resuid), 356 from_kgid_munged(&init_user_ns, 357 F2FS_OPTION(sbi).s_resgid)); 358 } 359 360 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 361 { 362 if (!F2FS_OPTION(sbi).unusable_cap_perc) 363 return; 364 365 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 366 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 367 else 368 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 369 F2FS_OPTION(sbi).unusable_cap_perc; 370 371 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 372 F2FS_OPTION(sbi).unusable_cap, 373 F2FS_OPTION(sbi).unusable_cap_perc); 374 } 375 376 static void init_once(void *foo) 377 { 378 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 379 380 inode_init_once(&fi->vfs_inode); 381 } 382 383 #ifdef CONFIG_QUOTA 384 static const char * const quotatypes[] = INITQFNAMES; 385 #define QTYPE2NAME(t) (quotatypes[t]) 386 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 387 substring_t *args) 388 { 389 struct f2fs_sb_info *sbi = F2FS_SB(sb); 390 char *qname; 391 int ret = -EINVAL; 392 393 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 394 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 395 return -EINVAL; 396 } 397 if (f2fs_sb_has_quota_ino(sbi)) { 398 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 399 return 0; 400 } 401 402 qname = match_strdup(args); 403 if (!qname) { 404 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 405 return -ENOMEM; 406 } 407 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 408 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 409 ret = 0; 410 else 411 f2fs_err(sbi, "%s quota file already specified", 412 QTYPE2NAME(qtype)); 413 goto errout; 414 } 415 if (strchr(qname, '/')) { 416 f2fs_err(sbi, "quotafile must be on filesystem root"); 417 goto errout; 418 } 419 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 420 set_opt(sbi, QUOTA); 421 return 0; 422 errout: 423 kfree(qname); 424 return ret; 425 } 426 427 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 428 { 429 struct f2fs_sb_info *sbi = F2FS_SB(sb); 430 431 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 432 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 433 return -EINVAL; 434 } 435 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 436 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 437 return 0; 438 } 439 440 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 441 { 442 /* 443 * We do the test below only for project quotas. 'usrquota' and 444 * 'grpquota' mount options are allowed even without quota feature 445 * to support legacy quotas in quota files. 446 */ 447 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 448 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 449 return -1; 450 } 451 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 452 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 453 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 454 if (test_opt(sbi, USRQUOTA) && 455 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 456 clear_opt(sbi, USRQUOTA); 457 458 if (test_opt(sbi, GRPQUOTA) && 459 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 460 clear_opt(sbi, GRPQUOTA); 461 462 if (test_opt(sbi, PRJQUOTA) && 463 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 464 clear_opt(sbi, PRJQUOTA); 465 466 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 467 test_opt(sbi, PRJQUOTA)) { 468 f2fs_err(sbi, "old and new quota format mixing"); 469 return -1; 470 } 471 472 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 473 f2fs_err(sbi, "journaled quota format not specified"); 474 return -1; 475 } 476 } 477 478 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 479 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 480 F2FS_OPTION(sbi).s_jquota_fmt = 0; 481 } 482 return 0; 483 } 484 #endif 485 486 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 487 const char *opt, 488 const substring_t *arg, 489 bool is_remount) 490 { 491 struct f2fs_sb_info *sbi = F2FS_SB(sb); 492 struct fs_parameter param = { 493 .type = fs_value_is_string, 494 .string = arg->from ? arg->from : "", 495 }; 496 struct fscrypt_dummy_policy *policy = 497 &F2FS_OPTION(sbi).dummy_enc_policy; 498 int err; 499 500 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 501 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 502 return -EINVAL; 503 } 504 505 if (!f2fs_sb_has_encrypt(sbi)) { 506 f2fs_err(sbi, "Encrypt feature is off"); 507 return -EINVAL; 508 } 509 510 /* 511 * This mount option is just for testing, and it's not worthwhile to 512 * implement the extra complexity (e.g. RCU protection) that would be 513 * needed to allow it to be set or changed during remount. We do allow 514 * it to be specified during remount, but only if there is no change. 515 */ 516 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 517 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 518 return -EINVAL; 519 } 520 521 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 522 if (err) { 523 if (err == -EEXIST) 524 f2fs_warn(sbi, 525 "Can't change test_dummy_encryption on remount"); 526 else if (err == -EINVAL) 527 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 528 opt); 529 else 530 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 531 opt, err); 532 return -EINVAL; 533 } 534 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 535 return 0; 536 } 537 538 #ifdef CONFIG_F2FS_FS_COMPRESSION 539 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, 540 const char *new_ext, bool is_ext) 541 { 542 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 543 int ext_cnt; 544 int i; 545 546 if (is_ext) { 547 ext = F2FS_OPTION(sbi).extensions; 548 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 549 } else { 550 ext = F2FS_OPTION(sbi).noextensions; 551 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 552 } 553 554 for (i = 0; i < ext_cnt; i++) { 555 if (!strcasecmp(new_ext, ext[i])) 556 return true; 557 } 558 559 return false; 560 } 561 562 /* 563 * 1. The same extension name cannot not appear in both compress and non-compress extension 564 * at the same time. 565 * 2. If the compress extension specifies all files, the types specified by the non-compress 566 * extension will be treated as special cases and will not be compressed. 567 * 3. Don't allow the non-compress extension specifies all files. 568 */ 569 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 570 { 571 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 572 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 573 int ext_cnt, noext_cnt, index = 0, no_index = 0; 574 575 ext = F2FS_OPTION(sbi).extensions; 576 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 577 noext = F2FS_OPTION(sbi).noextensions; 578 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 579 580 if (!noext_cnt) 581 return 0; 582 583 for (no_index = 0; no_index < noext_cnt; no_index++) { 584 if (!strcasecmp("*", noext[no_index])) { 585 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 586 return -EINVAL; 587 } 588 for (index = 0; index < ext_cnt; index++) { 589 if (!strcasecmp(ext[index], noext[no_index])) { 590 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 591 ext[index]); 592 return -EINVAL; 593 } 594 } 595 } 596 return 0; 597 } 598 599 #ifdef CONFIG_F2FS_FS_LZ4 600 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 601 { 602 #ifdef CONFIG_F2FS_FS_LZ4HC 603 unsigned int level; 604 605 if (strlen(str) == 3) { 606 F2FS_OPTION(sbi).compress_level = 0; 607 return 0; 608 } 609 610 str += 3; 611 612 if (str[0] != ':') { 613 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 614 return -EINVAL; 615 } 616 if (kstrtouint(str + 1, 10, &level)) 617 return -EINVAL; 618 619 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 620 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 621 return -EINVAL; 622 } 623 624 F2FS_OPTION(sbi).compress_level = level; 625 return 0; 626 #else 627 if (strlen(str) == 3) { 628 F2FS_OPTION(sbi).compress_level = 0; 629 return 0; 630 } 631 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 632 return -EINVAL; 633 #endif 634 } 635 #endif 636 637 #ifdef CONFIG_F2FS_FS_ZSTD 638 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 639 { 640 int level; 641 int len = 4; 642 643 if (strlen(str) == len) { 644 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 645 return 0; 646 } 647 648 str += len; 649 650 if (str[0] != ':') { 651 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 652 return -EINVAL; 653 } 654 if (kstrtoint(str + 1, 10, &level)) 655 return -EINVAL; 656 657 /* f2fs does not support negative compress level now */ 658 if (level < 0) { 659 f2fs_info(sbi, "do not support negative compress level: %d", level); 660 return -ERANGE; 661 } 662 663 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 664 f2fs_info(sbi, "invalid zstd compress level: %d", level); 665 return -EINVAL; 666 } 667 668 F2FS_OPTION(sbi).compress_level = level; 669 return 0; 670 } 671 #endif 672 #endif 673 674 static int parse_options(struct super_block *sb, char *options, bool is_remount) 675 { 676 struct f2fs_sb_info *sbi = F2FS_SB(sb); 677 substring_t args[MAX_OPT_ARGS]; 678 #ifdef CONFIG_F2FS_FS_COMPRESSION 679 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 680 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 681 int ext_cnt, noext_cnt; 682 #endif 683 char *p, *name; 684 int arg = 0; 685 kuid_t uid; 686 kgid_t gid; 687 int ret; 688 689 if (!options) 690 goto default_check; 691 692 while ((p = strsep(&options, ",")) != NULL) { 693 int token; 694 695 if (!*p) 696 continue; 697 /* 698 * Initialize args struct so we know whether arg was 699 * found; some options take optional arguments. 700 */ 701 args[0].to = args[0].from = NULL; 702 token = match_token(p, f2fs_tokens, args); 703 704 switch (token) { 705 case Opt_gc_background: 706 name = match_strdup(&args[0]); 707 708 if (!name) 709 return -ENOMEM; 710 if (!strcmp(name, "on")) { 711 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 712 } else if (!strcmp(name, "off")) { 713 if (f2fs_sb_has_blkzoned(sbi)) { 714 f2fs_warn(sbi, "zoned devices need bggc"); 715 kfree(name); 716 return -EINVAL; 717 } 718 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 719 } else if (!strcmp(name, "sync")) { 720 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 721 } else { 722 kfree(name); 723 return -EINVAL; 724 } 725 kfree(name); 726 break; 727 case Opt_disable_roll_forward: 728 set_opt(sbi, DISABLE_ROLL_FORWARD); 729 break; 730 case Opt_norecovery: 731 /* this option mounts f2fs with ro */ 732 set_opt(sbi, NORECOVERY); 733 if (!f2fs_readonly(sb)) 734 return -EINVAL; 735 break; 736 case Opt_discard: 737 if (!f2fs_hw_support_discard(sbi)) { 738 f2fs_warn(sbi, "device does not support discard"); 739 break; 740 } 741 set_opt(sbi, DISCARD); 742 break; 743 case Opt_nodiscard: 744 if (f2fs_hw_should_discard(sbi)) { 745 f2fs_warn(sbi, "discard is required for zoned block devices"); 746 return -EINVAL; 747 } 748 clear_opt(sbi, DISCARD); 749 break; 750 case Opt_noheap: 751 case Opt_heap: 752 f2fs_warn(sbi, "heap/no_heap options were deprecated"); 753 break; 754 #ifdef CONFIG_F2FS_FS_XATTR 755 case Opt_user_xattr: 756 set_opt(sbi, XATTR_USER); 757 break; 758 case Opt_nouser_xattr: 759 clear_opt(sbi, XATTR_USER); 760 break; 761 case Opt_inline_xattr: 762 set_opt(sbi, INLINE_XATTR); 763 break; 764 case Opt_noinline_xattr: 765 clear_opt(sbi, INLINE_XATTR); 766 break; 767 case Opt_inline_xattr_size: 768 if (args->from && match_int(args, &arg)) 769 return -EINVAL; 770 set_opt(sbi, INLINE_XATTR_SIZE); 771 F2FS_OPTION(sbi).inline_xattr_size = arg; 772 break; 773 #else 774 case Opt_user_xattr: 775 f2fs_info(sbi, "user_xattr options not supported"); 776 break; 777 case Opt_nouser_xattr: 778 f2fs_info(sbi, "nouser_xattr options not supported"); 779 break; 780 case Opt_inline_xattr: 781 f2fs_info(sbi, "inline_xattr options not supported"); 782 break; 783 case Opt_noinline_xattr: 784 f2fs_info(sbi, "noinline_xattr options not supported"); 785 break; 786 #endif 787 #ifdef CONFIG_F2FS_FS_POSIX_ACL 788 case Opt_acl: 789 set_opt(sbi, POSIX_ACL); 790 break; 791 case Opt_noacl: 792 clear_opt(sbi, POSIX_ACL); 793 break; 794 #else 795 case Opt_acl: 796 f2fs_info(sbi, "acl options not supported"); 797 break; 798 case Opt_noacl: 799 f2fs_info(sbi, "noacl options not supported"); 800 break; 801 #endif 802 case Opt_active_logs: 803 if (args->from && match_int(args, &arg)) 804 return -EINVAL; 805 if (arg != 2 && arg != 4 && 806 arg != NR_CURSEG_PERSIST_TYPE) 807 return -EINVAL; 808 F2FS_OPTION(sbi).active_logs = arg; 809 break; 810 case Opt_disable_ext_identify: 811 set_opt(sbi, DISABLE_EXT_IDENTIFY); 812 break; 813 case Opt_inline_data: 814 set_opt(sbi, INLINE_DATA); 815 break; 816 case Opt_inline_dentry: 817 set_opt(sbi, INLINE_DENTRY); 818 break; 819 case Opt_noinline_dentry: 820 clear_opt(sbi, INLINE_DENTRY); 821 break; 822 case Opt_flush_merge: 823 set_opt(sbi, FLUSH_MERGE); 824 break; 825 case Opt_noflush_merge: 826 clear_opt(sbi, FLUSH_MERGE); 827 break; 828 case Opt_nobarrier: 829 set_opt(sbi, NOBARRIER); 830 break; 831 case Opt_barrier: 832 clear_opt(sbi, NOBARRIER); 833 break; 834 case Opt_fastboot: 835 set_opt(sbi, FASTBOOT); 836 break; 837 case Opt_extent_cache: 838 set_opt(sbi, READ_EXTENT_CACHE); 839 break; 840 case Opt_noextent_cache: 841 if (F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_DEVICE_ALIAS)) { 842 f2fs_err(sbi, "device aliasing requires extent cache"); 843 return -EINVAL; 844 } 845 clear_opt(sbi, READ_EXTENT_CACHE); 846 break; 847 case Opt_noinline_data: 848 clear_opt(sbi, INLINE_DATA); 849 break; 850 case Opt_data_flush: 851 set_opt(sbi, DATA_FLUSH); 852 break; 853 case Opt_reserve_root: 854 if (args->from && match_int(args, &arg)) 855 return -EINVAL; 856 if (test_opt(sbi, RESERVE_ROOT)) { 857 f2fs_info(sbi, "Preserve previous reserve_root=%u", 858 F2FS_OPTION(sbi).root_reserved_blocks); 859 } else { 860 F2FS_OPTION(sbi).root_reserved_blocks = arg; 861 set_opt(sbi, RESERVE_ROOT); 862 } 863 break; 864 case Opt_resuid: 865 if (args->from && match_int(args, &arg)) 866 return -EINVAL; 867 uid = make_kuid(current_user_ns(), arg); 868 if (!uid_valid(uid)) { 869 f2fs_err(sbi, "Invalid uid value %d", arg); 870 return -EINVAL; 871 } 872 F2FS_OPTION(sbi).s_resuid = uid; 873 break; 874 case Opt_resgid: 875 if (args->from && match_int(args, &arg)) 876 return -EINVAL; 877 gid = make_kgid(current_user_ns(), arg); 878 if (!gid_valid(gid)) { 879 f2fs_err(sbi, "Invalid gid value %d", arg); 880 return -EINVAL; 881 } 882 F2FS_OPTION(sbi).s_resgid = gid; 883 break; 884 case Opt_mode: 885 name = match_strdup(&args[0]); 886 887 if (!name) 888 return -ENOMEM; 889 if (!strcmp(name, "adaptive")) { 890 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 891 } else if (!strcmp(name, "lfs")) { 892 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 893 } else if (!strcmp(name, "fragment:segment")) { 894 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 895 } else if (!strcmp(name, "fragment:block")) { 896 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 897 } else { 898 kfree(name); 899 return -EINVAL; 900 } 901 kfree(name); 902 break; 903 #ifdef CONFIG_F2FS_FAULT_INJECTION 904 case Opt_fault_injection: 905 if (args->from && match_int(args, &arg)) 906 return -EINVAL; 907 if (f2fs_build_fault_attr(sbi, arg, 908 F2FS_ALL_FAULT_TYPE)) 909 return -EINVAL; 910 set_opt(sbi, FAULT_INJECTION); 911 break; 912 913 case Opt_fault_type: 914 if (args->from && match_int(args, &arg)) 915 return -EINVAL; 916 if (f2fs_build_fault_attr(sbi, 0, arg)) 917 return -EINVAL; 918 set_opt(sbi, FAULT_INJECTION); 919 break; 920 #else 921 case Opt_fault_injection: 922 f2fs_info(sbi, "fault_injection options not supported"); 923 break; 924 925 case Opt_fault_type: 926 f2fs_info(sbi, "fault_type options not supported"); 927 break; 928 #endif 929 case Opt_lazytime: 930 sb->s_flags |= SB_LAZYTIME; 931 break; 932 case Opt_nolazytime: 933 sb->s_flags &= ~SB_LAZYTIME; 934 break; 935 #ifdef CONFIG_QUOTA 936 case Opt_quota: 937 case Opt_usrquota: 938 set_opt(sbi, USRQUOTA); 939 break; 940 case Opt_grpquota: 941 set_opt(sbi, GRPQUOTA); 942 break; 943 case Opt_prjquota: 944 set_opt(sbi, PRJQUOTA); 945 break; 946 case Opt_usrjquota: 947 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 948 if (ret) 949 return ret; 950 break; 951 case Opt_grpjquota: 952 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 953 if (ret) 954 return ret; 955 break; 956 case Opt_prjjquota: 957 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 958 if (ret) 959 return ret; 960 break; 961 case Opt_offusrjquota: 962 ret = f2fs_clear_qf_name(sb, USRQUOTA); 963 if (ret) 964 return ret; 965 break; 966 case Opt_offgrpjquota: 967 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 968 if (ret) 969 return ret; 970 break; 971 case Opt_offprjjquota: 972 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 973 if (ret) 974 return ret; 975 break; 976 case Opt_jqfmt_vfsold: 977 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 978 break; 979 case Opt_jqfmt_vfsv0: 980 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 981 break; 982 case Opt_jqfmt_vfsv1: 983 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 984 break; 985 case Opt_noquota: 986 clear_opt(sbi, QUOTA); 987 clear_opt(sbi, USRQUOTA); 988 clear_opt(sbi, GRPQUOTA); 989 clear_opt(sbi, PRJQUOTA); 990 break; 991 #else 992 case Opt_quota: 993 case Opt_usrquota: 994 case Opt_grpquota: 995 case Opt_prjquota: 996 case Opt_usrjquota: 997 case Opt_grpjquota: 998 case Opt_prjjquota: 999 case Opt_offusrjquota: 1000 case Opt_offgrpjquota: 1001 case Opt_offprjjquota: 1002 case Opt_jqfmt_vfsold: 1003 case Opt_jqfmt_vfsv0: 1004 case Opt_jqfmt_vfsv1: 1005 case Opt_noquota: 1006 f2fs_info(sbi, "quota operations not supported"); 1007 break; 1008 #endif 1009 case Opt_alloc: 1010 name = match_strdup(&args[0]); 1011 if (!name) 1012 return -ENOMEM; 1013 1014 if (!strcmp(name, "default")) { 1015 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1016 } else if (!strcmp(name, "reuse")) { 1017 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 1018 } else { 1019 kfree(name); 1020 return -EINVAL; 1021 } 1022 kfree(name); 1023 break; 1024 case Opt_fsync: 1025 name = match_strdup(&args[0]); 1026 if (!name) 1027 return -ENOMEM; 1028 if (!strcmp(name, "posix")) { 1029 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1030 } else if (!strcmp(name, "strict")) { 1031 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1032 } else if (!strcmp(name, "nobarrier")) { 1033 F2FS_OPTION(sbi).fsync_mode = 1034 FSYNC_MODE_NOBARRIER; 1035 } else { 1036 kfree(name); 1037 return -EINVAL; 1038 } 1039 kfree(name); 1040 break; 1041 case Opt_test_dummy_encryption: 1042 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1043 is_remount); 1044 if (ret) 1045 return ret; 1046 break; 1047 case Opt_inlinecrypt: 1048 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1049 sb->s_flags |= SB_INLINECRYPT; 1050 #else 1051 f2fs_info(sbi, "inline encryption not supported"); 1052 #endif 1053 break; 1054 case Opt_checkpoint_disable_cap_perc: 1055 if (args->from && match_int(args, &arg)) 1056 return -EINVAL; 1057 if (arg < 0 || arg > 100) 1058 return -EINVAL; 1059 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1060 set_opt(sbi, DISABLE_CHECKPOINT); 1061 break; 1062 case Opt_checkpoint_disable_cap: 1063 if (args->from && match_int(args, &arg)) 1064 return -EINVAL; 1065 F2FS_OPTION(sbi).unusable_cap = arg; 1066 set_opt(sbi, DISABLE_CHECKPOINT); 1067 break; 1068 case Opt_checkpoint_disable: 1069 set_opt(sbi, DISABLE_CHECKPOINT); 1070 break; 1071 case Opt_checkpoint_enable: 1072 clear_opt(sbi, DISABLE_CHECKPOINT); 1073 break; 1074 case Opt_checkpoint_merge: 1075 set_opt(sbi, MERGE_CHECKPOINT); 1076 break; 1077 case Opt_nocheckpoint_merge: 1078 clear_opt(sbi, MERGE_CHECKPOINT); 1079 break; 1080 #ifdef CONFIG_F2FS_FS_COMPRESSION 1081 case Opt_compress_algorithm: 1082 if (!f2fs_sb_has_compression(sbi)) { 1083 f2fs_info(sbi, "Image doesn't support compression"); 1084 break; 1085 } 1086 name = match_strdup(&args[0]); 1087 if (!name) 1088 return -ENOMEM; 1089 if (!strcmp(name, "lzo")) { 1090 #ifdef CONFIG_F2FS_FS_LZO 1091 F2FS_OPTION(sbi).compress_level = 0; 1092 F2FS_OPTION(sbi).compress_algorithm = 1093 COMPRESS_LZO; 1094 #else 1095 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1096 #endif 1097 } else if (!strncmp(name, "lz4", 3)) { 1098 #ifdef CONFIG_F2FS_FS_LZ4 1099 ret = f2fs_set_lz4hc_level(sbi, name); 1100 if (ret) { 1101 kfree(name); 1102 return -EINVAL; 1103 } 1104 F2FS_OPTION(sbi).compress_algorithm = 1105 COMPRESS_LZ4; 1106 #else 1107 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1108 #endif 1109 } else if (!strncmp(name, "zstd", 4)) { 1110 #ifdef CONFIG_F2FS_FS_ZSTD 1111 ret = f2fs_set_zstd_level(sbi, name); 1112 if (ret) { 1113 kfree(name); 1114 return -EINVAL; 1115 } 1116 F2FS_OPTION(sbi).compress_algorithm = 1117 COMPRESS_ZSTD; 1118 #else 1119 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1120 #endif 1121 } else if (!strcmp(name, "lzo-rle")) { 1122 #ifdef CONFIG_F2FS_FS_LZORLE 1123 F2FS_OPTION(sbi).compress_level = 0; 1124 F2FS_OPTION(sbi).compress_algorithm = 1125 COMPRESS_LZORLE; 1126 #else 1127 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1128 #endif 1129 } else { 1130 kfree(name); 1131 return -EINVAL; 1132 } 1133 kfree(name); 1134 break; 1135 case Opt_compress_log_size: 1136 if (!f2fs_sb_has_compression(sbi)) { 1137 f2fs_info(sbi, "Image doesn't support compression"); 1138 break; 1139 } 1140 if (args->from && match_int(args, &arg)) 1141 return -EINVAL; 1142 if (arg < MIN_COMPRESS_LOG_SIZE || 1143 arg > MAX_COMPRESS_LOG_SIZE) { 1144 f2fs_err(sbi, 1145 "Compress cluster log size is out of range"); 1146 return -EINVAL; 1147 } 1148 F2FS_OPTION(sbi).compress_log_size = arg; 1149 break; 1150 case Opt_compress_extension: 1151 if (!f2fs_sb_has_compression(sbi)) { 1152 f2fs_info(sbi, "Image doesn't support compression"); 1153 break; 1154 } 1155 name = match_strdup(&args[0]); 1156 if (!name) 1157 return -ENOMEM; 1158 1159 ext = F2FS_OPTION(sbi).extensions; 1160 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1161 1162 if (strlen(name) >= F2FS_EXTENSION_LEN || 1163 ext_cnt >= COMPRESS_EXT_NUM) { 1164 f2fs_err(sbi, 1165 "invalid extension length/number"); 1166 kfree(name); 1167 return -EINVAL; 1168 } 1169 1170 if (is_compress_extension_exist(sbi, name, true)) { 1171 kfree(name); 1172 break; 1173 } 1174 1175 ret = strscpy(ext[ext_cnt], name); 1176 if (ret < 0) { 1177 kfree(name); 1178 return ret; 1179 } 1180 F2FS_OPTION(sbi).compress_ext_cnt++; 1181 kfree(name); 1182 break; 1183 case Opt_nocompress_extension: 1184 if (!f2fs_sb_has_compression(sbi)) { 1185 f2fs_info(sbi, "Image doesn't support compression"); 1186 break; 1187 } 1188 name = match_strdup(&args[0]); 1189 if (!name) 1190 return -ENOMEM; 1191 1192 noext = F2FS_OPTION(sbi).noextensions; 1193 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1194 1195 if (strlen(name) >= F2FS_EXTENSION_LEN || 1196 noext_cnt >= COMPRESS_EXT_NUM) { 1197 f2fs_err(sbi, 1198 "invalid extension length/number"); 1199 kfree(name); 1200 return -EINVAL; 1201 } 1202 1203 if (is_compress_extension_exist(sbi, name, false)) { 1204 kfree(name); 1205 break; 1206 } 1207 1208 ret = strscpy(noext[noext_cnt], name); 1209 if (ret < 0) { 1210 kfree(name); 1211 return ret; 1212 } 1213 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1214 kfree(name); 1215 break; 1216 case Opt_compress_chksum: 1217 if (!f2fs_sb_has_compression(sbi)) { 1218 f2fs_info(sbi, "Image doesn't support compression"); 1219 break; 1220 } 1221 F2FS_OPTION(sbi).compress_chksum = true; 1222 break; 1223 case Opt_compress_mode: 1224 if (!f2fs_sb_has_compression(sbi)) { 1225 f2fs_info(sbi, "Image doesn't support compression"); 1226 break; 1227 } 1228 name = match_strdup(&args[0]); 1229 if (!name) 1230 return -ENOMEM; 1231 if (!strcmp(name, "fs")) { 1232 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1233 } else if (!strcmp(name, "user")) { 1234 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1235 } else { 1236 kfree(name); 1237 return -EINVAL; 1238 } 1239 kfree(name); 1240 break; 1241 case Opt_compress_cache: 1242 if (!f2fs_sb_has_compression(sbi)) { 1243 f2fs_info(sbi, "Image doesn't support compression"); 1244 break; 1245 } 1246 set_opt(sbi, COMPRESS_CACHE); 1247 break; 1248 #else 1249 case Opt_compress_algorithm: 1250 case Opt_compress_log_size: 1251 case Opt_compress_extension: 1252 case Opt_nocompress_extension: 1253 case Opt_compress_chksum: 1254 case Opt_compress_mode: 1255 case Opt_compress_cache: 1256 f2fs_info(sbi, "compression options not supported"); 1257 break; 1258 #endif 1259 case Opt_atgc: 1260 set_opt(sbi, ATGC); 1261 break; 1262 case Opt_gc_merge: 1263 set_opt(sbi, GC_MERGE); 1264 break; 1265 case Opt_nogc_merge: 1266 clear_opt(sbi, GC_MERGE); 1267 break; 1268 case Opt_discard_unit: 1269 name = match_strdup(&args[0]); 1270 if (!name) 1271 return -ENOMEM; 1272 if (!strcmp(name, "block")) { 1273 F2FS_OPTION(sbi).discard_unit = 1274 DISCARD_UNIT_BLOCK; 1275 } else if (!strcmp(name, "segment")) { 1276 F2FS_OPTION(sbi).discard_unit = 1277 DISCARD_UNIT_SEGMENT; 1278 } else if (!strcmp(name, "section")) { 1279 F2FS_OPTION(sbi).discard_unit = 1280 DISCARD_UNIT_SECTION; 1281 } else { 1282 kfree(name); 1283 return -EINVAL; 1284 } 1285 kfree(name); 1286 break; 1287 case Opt_memory_mode: 1288 name = match_strdup(&args[0]); 1289 if (!name) 1290 return -ENOMEM; 1291 if (!strcmp(name, "normal")) { 1292 F2FS_OPTION(sbi).memory_mode = 1293 MEMORY_MODE_NORMAL; 1294 } else if (!strcmp(name, "low")) { 1295 F2FS_OPTION(sbi).memory_mode = 1296 MEMORY_MODE_LOW; 1297 } else { 1298 kfree(name); 1299 return -EINVAL; 1300 } 1301 kfree(name); 1302 break; 1303 case Opt_age_extent_cache: 1304 set_opt(sbi, AGE_EXTENT_CACHE); 1305 break; 1306 case Opt_errors: 1307 name = match_strdup(&args[0]); 1308 if (!name) 1309 return -ENOMEM; 1310 if (!strcmp(name, "remount-ro")) { 1311 F2FS_OPTION(sbi).errors = 1312 MOUNT_ERRORS_READONLY; 1313 } else if (!strcmp(name, "continue")) { 1314 F2FS_OPTION(sbi).errors = 1315 MOUNT_ERRORS_CONTINUE; 1316 } else if (!strcmp(name, "panic")) { 1317 F2FS_OPTION(sbi).errors = 1318 MOUNT_ERRORS_PANIC; 1319 } else { 1320 kfree(name); 1321 return -EINVAL; 1322 } 1323 kfree(name); 1324 break; 1325 default: 1326 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1327 p); 1328 return -EINVAL; 1329 } 1330 } 1331 default_check: 1332 #ifdef CONFIG_QUOTA 1333 if (f2fs_check_quota_options(sbi)) 1334 return -EINVAL; 1335 #else 1336 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1337 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1338 return -EINVAL; 1339 } 1340 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1341 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1342 return -EINVAL; 1343 } 1344 #endif 1345 1346 if (!IS_ENABLED(CONFIG_UNICODE) && f2fs_sb_has_casefold(sbi)) { 1347 f2fs_err(sbi, 1348 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1349 return -EINVAL; 1350 } 1351 1352 /* 1353 * The BLKZONED feature indicates that the drive was formatted with 1354 * zone alignment optimization. This is optional for host-aware 1355 * devices, but mandatory for host-managed zoned block devices. 1356 */ 1357 if (f2fs_sb_has_blkzoned(sbi)) { 1358 #ifdef CONFIG_BLK_DEV_ZONED 1359 if (F2FS_OPTION(sbi).discard_unit != 1360 DISCARD_UNIT_SECTION) { 1361 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1362 F2FS_OPTION(sbi).discard_unit = 1363 DISCARD_UNIT_SECTION; 1364 } 1365 1366 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { 1367 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1368 return -EINVAL; 1369 } 1370 #else 1371 f2fs_err(sbi, "Zoned block device support is not enabled"); 1372 return -EINVAL; 1373 #endif 1374 } 1375 1376 #ifdef CONFIG_F2FS_FS_COMPRESSION 1377 if (f2fs_test_compress_extension(sbi)) { 1378 f2fs_err(sbi, "invalid compress or nocompress extension"); 1379 return -EINVAL; 1380 } 1381 #endif 1382 1383 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1384 int min_size, max_size; 1385 1386 if (!f2fs_sb_has_extra_attr(sbi) || 1387 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1388 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1389 return -EINVAL; 1390 } 1391 if (!test_opt(sbi, INLINE_XATTR)) { 1392 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1393 return -EINVAL; 1394 } 1395 1396 min_size = MIN_INLINE_XATTR_SIZE; 1397 max_size = MAX_INLINE_XATTR_SIZE; 1398 1399 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1400 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1401 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1402 min_size, max_size); 1403 return -EINVAL; 1404 } 1405 } 1406 1407 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1408 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1409 return -EINVAL; 1410 } 1411 1412 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1413 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1414 return -EINVAL; 1415 } 1416 1417 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1418 f2fs_err(sbi, "Allow to mount readonly mode only"); 1419 return -EROFS; 1420 } 1421 return 0; 1422 } 1423 1424 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1425 { 1426 struct f2fs_inode_info *fi; 1427 1428 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1429 return NULL; 1430 1431 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1432 if (!fi) 1433 return NULL; 1434 1435 init_once((void *) fi); 1436 1437 /* Initialize f2fs-specific inode info */ 1438 atomic_set(&fi->dirty_pages, 0); 1439 atomic_set(&fi->i_compr_blocks, 0); 1440 init_f2fs_rwsem(&fi->i_sem); 1441 spin_lock_init(&fi->i_size_lock); 1442 INIT_LIST_HEAD(&fi->dirty_list); 1443 INIT_LIST_HEAD(&fi->gdirty_list); 1444 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1445 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1446 init_f2fs_rwsem(&fi->i_xattr_sem); 1447 1448 /* Will be used by directory only */ 1449 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1450 1451 return &fi->vfs_inode; 1452 } 1453 1454 static int f2fs_drop_inode(struct inode *inode) 1455 { 1456 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1457 int ret; 1458 1459 /* 1460 * during filesystem shutdown, if checkpoint is disabled, 1461 * drop useless meta/node dirty pages. 1462 */ 1463 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1464 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1465 inode->i_ino == F2FS_META_INO(sbi)) { 1466 trace_f2fs_drop_inode(inode, 1); 1467 return 1; 1468 } 1469 } 1470 1471 /* 1472 * This is to avoid a deadlock condition like below. 1473 * writeback_single_inode(inode) 1474 * - f2fs_write_data_page 1475 * - f2fs_gc -> iput -> evict 1476 * - inode_wait_for_writeback(inode) 1477 */ 1478 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1479 if (!inode->i_nlink && !is_bad_inode(inode)) { 1480 /* to avoid evict_inode call simultaneously */ 1481 atomic_inc(&inode->i_count); 1482 spin_unlock(&inode->i_lock); 1483 1484 /* should remain fi->extent_tree for writepage */ 1485 f2fs_destroy_extent_node(inode); 1486 1487 sb_start_intwrite(inode->i_sb); 1488 f2fs_i_size_write(inode, 0); 1489 1490 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1491 inode, NULL, 0, DATA); 1492 truncate_inode_pages_final(inode->i_mapping); 1493 1494 if (F2FS_HAS_BLOCKS(inode)) 1495 f2fs_truncate(inode); 1496 1497 sb_end_intwrite(inode->i_sb); 1498 1499 spin_lock(&inode->i_lock); 1500 atomic_dec(&inode->i_count); 1501 } 1502 trace_f2fs_drop_inode(inode, 0); 1503 return 0; 1504 } 1505 ret = generic_drop_inode(inode); 1506 if (!ret) 1507 ret = fscrypt_drop_inode(inode); 1508 trace_f2fs_drop_inode(inode, ret); 1509 return ret; 1510 } 1511 1512 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1513 { 1514 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1515 int ret = 0; 1516 1517 spin_lock(&sbi->inode_lock[DIRTY_META]); 1518 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1519 ret = 1; 1520 } else { 1521 set_inode_flag(inode, FI_DIRTY_INODE); 1522 stat_inc_dirty_inode(sbi, DIRTY_META); 1523 } 1524 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1525 list_add_tail(&F2FS_I(inode)->gdirty_list, 1526 &sbi->inode_list[DIRTY_META]); 1527 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1528 } 1529 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1530 return ret; 1531 } 1532 1533 void f2fs_inode_synced(struct inode *inode) 1534 { 1535 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1536 1537 spin_lock(&sbi->inode_lock[DIRTY_META]); 1538 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1539 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1540 return; 1541 } 1542 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1543 list_del_init(&F2FS_I(inode)->gdirty_list); 1544 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1545 } 1546 clear_inode_flag(inode, FI_DIRTY_INODE); 1547 clear_inode_flag(inode, FI_AUTO_RECOVER); 1548 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1549 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1550 } 1551 1552 /* 1553 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1554 * 1555 * We should call set_dirty_inode to write the dirty inode through write_inode. 1556 */ 1557 static void f2fs_dirty_inode(struct inode *inode, int flags) 1558 { 1559 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1560 1561 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1562 inode->i_ino == F2FS_META_INO(sbi)) 1563 return; 1564 1565 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1566 clear_inode_flag(inode, FI_AUTO_RECOVER); 1567 1568 f2fs_inode_dirtied(inode, false); 1569 } 1570 1571 static void f2fs_free_inode(struct inode *inode) 1572 { 1573 fscrypt_free_inode(inode); 1574 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1575 } 1576 1577 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1578 { 1579 percpu_counter_destroy(&sbi->total_valid_inode_count); 1580 percpu_counter_destroy(&sbi->rf_node_block_count); 1581 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1582 } 1583 1584 static void destroy_device_list(struct f2fs_sb_info *sbi) 1585 { 1586 int i; 1587 1588 for (i = 0; i < sbi->s_ndevs; i++) { 1589 if (i > 0) 1590 bdev_fput(FDEV(i).bdev_file); 1591 #ifdef CONFIG_BLK_DEV_ZONED 1592 kvfree(FDEV(i).blkz_seq); 1593 #endif 1594 } 1595 kvfree(sbi->devs); 1596 } 1597 1598 static void f2fs_put_super(struct super_block *sb) 1599 { 1600 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1601 int i; 1602 int err = 0; 1603 bool done; 1604 1605 /* unregister procfs/sysfs entries in advance to avoid race case */ 1606 f2fs_unregister_sysfs(sbi); 1607 1608 f2fs_quota_off_umount(sb); 1609 1610 /* prevent remaining shrinker jobs */ 1611 mutex_lock(&sbi->umount_mutex); 1612 1613 /* 1614 * flush all issued checkpoints and stop checkpoint issue thread. 1615 * after then, all checkpoints should be done by each process context. 1616 */ 1617 f2fs_stop_ckpt_thread(sbi); 1618 1619 /* 1620 * We don't need to do checkpoint when superblock is clean. 1621 * But, the previous checkpoint was not done by umount, it needs to do 1622 * clean checkpoint again. 1623 */ 1624 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1625 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1626 struct cp_control cpc = { 1627 .reason = CP_UMOUNT, 1628 }; 1629 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1630 err = f2fs_write_checkpoint(sbi, &cpc); 1631 } 1632 1633 /* be sure to wait for any on-going discard commands */ 1634 done = f2fs_issue_discard_timeout(sbi); 1635 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1636 struct cp_control cpc = { 1637 .reason = CP_UMOUNT | CP_TRIMMED, 1638 }; 1639 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1640 err = f2fs_write_checkpoint(sbi, &cpc); 1641 } 1642 1643 /* 1644 * normally superblock is clean, so we need to release this. 1645 * In addition, EIO will skip do checkpoint, we need this as well. 1646 */ 1647 f2fs_release_ino_entry(sbi, true); 1648 1649 f2fs_leave_shrinker(sbi); 1650 mutex_unlock(&sbi->umount_mutex); 1651 1652 /* our cp_error case, we can wait for any writeback page */ 1653 f2fs_flush_merged_writes(sbi); 1654 1655 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1656 1657 if (err || f2fs_cp_error(sbi)) { 1658 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1659 truncate_inode_pages_final(META_MAPPING(sbi)); 1660 } 1661 1662 for (i = 0; i < NR_COUNT_TYPE; i++) { 1663 if (!get_pages(sbi, i)) 1664 continue; 1665 f2fs_err(sbi, "detect filesystem reference count leak during " 1666 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1667 f2fs_bug_on(sbi, 1); 1668 } 1669 1670 f2fs_bug_on(sbi, sbi->fsync_node_num); 1671 1672 f2fs_destroy_compress_inode(sbi); 1673 1674 iput(sbi->node_inode); 1675 sbi->node_inode = NULL; 1676 1677 iput(sbi->meta_inode); 1678 sbi->meta_inode = NULL; 1679 1680 /* 1681 * iput() can update stat information, if f2fs_write_checkpoint() 1682 * above failed with error. 1683 */ 1684 f2fs_destroy_stats(sbi); 1685 1686 /* destroy f2fs internal modules */ 1687 f2fs_destroy_node_manager(sbi); 1688 f2fs_destroy_segment_manager(sbi); 1689 1690 /* flush s_error_work before sbi destroy */ 1691 flush_work(&sbi->s_error_work); 1692 1693 f2fs_destroy_post_read_wq(sbi); 1694 1695 kvfree(sbi->ckpt); 1696 1697 if (sbi->s_chksum_driver) 1698 crypto_free_shash(sbi->s_chksum_driver); 1699 kfree(sbi->raw_super); 1700 1701 f2fs_destroy_page_array_cache(sbi); 1702 f2fs_destroy_xattr_caches(sbi); 1703 #ifdef CONFIG_QUOTA 1704 for (i = 0; i < MAXQUOTAS; i++) 1705 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1706 #endif 1707 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1708 destroy_percpu_info(sbi); 1709 f2fs_destroy_iostat(sbi); 1710 for (i = 0; i < NR_PAGE_TYPE; i++) 1711 kvfree(sbi->write_io[i]); 1712 #if IS_ENABLED(CONFIG_UNICODE) 1713 utf8_unload(sb->s_encoding); 1714 #endif 1715 } 1716 1717 int f2fs_sync_fs(struct super_block *sb, int sync) 1718 { 1719 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1720 int err = 0; 1721 1722 if (unlikely(f2fs_cp_error(sbi))) 1723 return 0; 1724 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1725 return 0; 1726 1727 trace_f2fs_sync_fs(sb, sync); 1728 1729 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1730 return -EAGAIN; 1731 1732 if (sync) { 1733 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1734 err = f2fs_issue_checkpoint(sbi); 1735 } 1736 1737 return err; 1738 } 1739 1740 static int f2fs_freeze(struct super_block *sb) 1741 { 1742 if (f2fs_readonly(sb)) 1743 return 0; 1744 1745 /* IO error happened before */ 1746 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1747 return -EIO; 1748 1749 /* must be clean, since sync_filesystem() was already called */ 1750 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1751 return -EINVAL; 1752 1753 /* Let's flush checkpoints and stop the thread. */ 1754 f2fs_flush_ckpt_thread(F2FS_SB(sb)); 1755 1756 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1757 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1758 return 0; 1759 } 1760 1761 static int f2fs_unfreeze(struct super_block *sb) 1762 { 1763 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1764 1765 /* 1766 * It will update discard_max_bytes of mounted lvm device to zero 1767 * after creating snapshot on this lvm device, let's drop all 1768 * remained discards. 1769 * We don't need to disable real-time discard because discard_max_bytes 1770 * will recover after removal of snapshot. 1771 */ 1772 if (test_opt(sbi, DISCARD) && !f2fs_hw_support_discard(sbi)) 1773 f2fs_issue_discard_timeout(sbi); 1774 1775 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1776 return 0; 1777 } 1778 1779 #ifdef CONFIG_QUOTA 1780 static int f2fs_statfs_project(struct super_block *sb, 1781 kprojid_t projid, struct kstatfs *buf) 1782 { 1783 struct kqid qid; 1784 struct dquot *dquot; 1785 u64 limit; 1786 u64 curblock; 1787 1788 qid = make_kqid_projid(projid); 1789 dquot = dqget(sb, qid); 1790 if (IS_ERR(dquot)) 1791 return PTR_ERR(dquot); 1792 spin_lock(&dquot->dq_dqb_lock); 1793 1794 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1795 dquot->dq_dqb.dqb_bhardlimit); 1796 if (limit) 1797 limit >>= sb->s_blocksize_bits; 1798 1799 if (limit && buf->f_blocks > limit) { 1800 curblock = (dquot->dq_dqb.dqb_curspace + 1801 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1802 buf->f_blocks = limit; 1803 buf->f_bfree = buf->f_bavail = 1804 (buf->f_blocks > curblock) ? 1805 (buf->f_blocks - curblock) : 0; 1806 } 1807 1808 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1809 dquot->dq_dqb.dqb_ihardlimit); 1810 1811 if (limit && buf->f_files > limit) { 1812 buf->f_files = limit; 1813 buf->f_ffree = 1814 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1815 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1816 } 1817 1818 spin_unlock(&dquot->dq_dqb_lock); 1819 dqput(dquot); 1820 return 0; 1821 } 1822 #endif 1823 1824 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1825 { 1826 struct super_block *sb = dentry->d_sb; 1827 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1828 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1829 block_t total_count, user_block_count, start_count; 1830 u64 avail_node_count; 1831 unsigned int total_valid_node_count; 1832 1833 total_count = le64_to_cpu(sbi->raw_super->block_count); 1834 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1835 buf->f_type = F2FS_SUPER_MAGIC; 1836 buf->f_bsize = sbi->blocksize; 1837 1838 buf->f_blocks = total_count - start_count; 1839 1840 spin_lock(&sbi->stat_lock); 1841 1842 user_block_count = sbi->user_block_count; 1843 total_valid_node_count = valid_node_count(sbi); 1844 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1845 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1846 sbi->current_reserved_blocks; 1847 1848 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1849 buf->f_bfree = 0; 1850 else 1851 buf->f_bfree -= sbi->unusable_block_count; 1852 spin_unlock(&sbi->stat_lock); 1853 1854 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1855 buf->f_bavail = buf->f_bfree - 1856 F2FS_OPTION(sbi).root_reserved_blocks; 1857 else 1858 buf->f_bavail = 0; 1859 1860 if (avail_node_count > user_block_count) { 1861 buf->f_files = user_block_count; 1862 buf->f_ffree = buf->f_bavail; 1863 } else { 1864 buf->f_files = avail_node_count; 1865 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1866 buf->f_bavail); 1867 } 1868 1869 buf->f_namelen = F2FS_NAME_LEN; 1870 buf->f_fsid = u64_to_fsid(id); 1871 1872 #ifdef CONFIG_QUOTA 1873 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1874 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1875 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1876 } 1877 #endif 1878 return 0; 1879 } 1880 1881 static inline void f2fs_show_quota_options(struct seq_file *seq, 1882 struct super_block *sb) 1883 { 1884 #ifdef CONFIG_QUOTA 1885 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1886 1887 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1888 char *fmtname = ""; 1889 1890 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1891 case QFMT_VFS_OLD: 1892 fmtname = "vfsold"; 1893 break; 1894 case QFMT_VFS_V0: 1895 fmtname = "vfsv0"; 1896 break; 1897 case QFMT_VFS_V1: 1898 fmtname = "vfsv1"; 1899 break; 1900 } 1901 seq_printf(seq, ",jqfmt=%s", fmtname); 1902 } 1903 1904 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1905 seq_show_option(seq, "usrjquota", 1906 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1907 1908 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1909 seq_show_option(seq, "grpjquota", 1910 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1911 1912 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1913 seq_show_option(seq, "prjjquota", 1914 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1915 #endif 1916 } 1917 1918 #ifdef CONFIG_F2FS_FS_COMPRESSION 1919 static inline void f2fs_show_compress_options(struct seq_file *seq, 1920 struct super_block *sb) 1921 { 1922 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1923 char *algtype = ""; 1924 int i; 1925 1926 if (!f2fs_sb_has_compression(sbi)) 1927 return; 1928 1929 switch (F2FS_OPTION(sbi).compress_algorithm) { 1930 case COMPRESS_LZO: 1931 algtype = "lzo"; 1932 break; 1933 case COMPRESS_LZ4: 1934 algtype = "lz4"; 1935 break; 1936 case COMPRESS_ZSTD: 1937 algtype = "zstd"; 1938 break; 1939 case COMPRESS_LZORLE: 1940 algtype = "lzo-rle"; 1941 break; 1942 } 1943 seq_printf(seq, ",compress_algorithm=%s", algtype); 1944 1945 if (F2FS_OPTION(sbi).compress_level) 1946 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1947 1948 seq_printf(seq, ",compress_log_size=%u", 1949 F2FS_OPTION(sbi).compress_log_size); 1950 1951 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1952 seq_printf(seq, ",compress_extension=%s", 1953 F2FS_OPTION(sbi).extensions[i]); 1954 } 1955 1956 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1957 seq_printf(seq, ",nocompress_extension=%s", 1958 F2FS_OPTION(sbi).noextensions[i]); 1959 } 1960 1961 if (F2FS_OPTION(sbi).compress_chksum) 1962 seq_puts(seq, ",compress_chksum"); 1963 1964 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1965 seq_printf(seq, ",compress_mode=%s", "fs"); 1966 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1967 seq_printf(seq, ",compress_mode=%s", "user"); 1968 1969 if (test_opt(sbi, COMPRESS_CACHE)) 1970 seq_puts(seq, ",compress_cache"); 1971 } 1972 #endif 1973 1974 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1975 { 1976 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1977 1978 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1979 seq_printf(seq, ",background_gc=%s", "sync"); 1980 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1981 seq_printf(seq, ",background_gc=%s", "on"); 1982 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1983 seq_printf(seq, ",background_gc=%s", "off"); 1984 1985 if (test_opt(sbi, GC_MERGE)) 1986 seq_puts(seq, ",gc_merge"); 1987 else 1988 seq_puts(seq, ",nogc_merge"); 1989 1990 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1991 seq_puts(seq, ",disable_roll_forward"); 1992 if (test_opt(sbi, NORECOVERY)) 1993 seq_puts(seq, ",norecovery"); 1994 if (test_opt(sbi, DISCARD)) { 1995 seq_puts(seq, ",discard"); 1996 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 1997 seq_printf(seq, ",discard_unit=%s", "block"); 1998 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 1999 seq_printf(seq, ",discard_unit=%s", "segment"); 2000 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2001 seq_printf(seq, ",discard_unit=%s", "section"); 2002 } else { 2003 seq_puts(seq, ",nodiscard"); 2004 } 2005 #ifdef CONFIG_F2FS_FS_XATTR 2006 if (test_opt(sbi, XATTR_USER)) 2007 seq_puts(seq, ",user_xattr"); 2008 else 2009 seq_puts(seq, ",nouser_xattr"); 2010 if (test_opt(sbi, INLINE_XATTR)) 2011 seq_puts(seq, ",inline_xattr"); 2012 else 2013 seq_puts(seq, ",noinline_xattr"); 2014 if (test_opt(sbi, INLINE_XATTR_SIZE)) 2015 seq_printf(seq, ",inline_xattr_size=%u", 2016 F2FS_OPTION(sbi).inline_xattr_size); 2017 #endif 2018 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2019 if (test_opt(sbi, POSIX_ACL)) 2020 seq_puts(seq, ",acl"); 2021 else 2022 seq_puts(seq, ",noacl"); 2023 #endif 2024 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 2025 seq_puts(seq, ",disable_ext_identify"); 2026 if (test_opt(sbi, INLINE_DATA)) 2027 seq_puts(seq, ",inline_data"); 2028 else 2029 seq_puts(seq, ",noinline_data"); 2030 if (test_opt(sbi, INLINE_DENTRY)) 2031 seq_puts(seq, ",inline_dentry"); 2032 else 2033 seq_puts(seq, ",noinline_dentry"); 2034 if (test_opt(sbi, FLUSH_MERGE)) 2035 seq_puts(seq, ",flush_merge"); 2036 else 2037 seq_puts(seq, ",noflush_merge"); 2038 if (test_opt(sbi, NOBARRIER)) 2039 seq_puts(seq, ",nobarrier"); 2040 else 2041 seq_puts(seq, ",barrier"); 2042 if (test_opt(sbi, FASTBOOT)) 2043 seq_puts(seq, ",fastboot"); 2044 if (test_opt(sbi, READ_EXTENT_CACHE)) 2045 seq_puts(seq, ",extent_cache"); 2046 else 2047 seq_puts(seq, ",noextent_cache"); 2048 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2049 seq_puts(seq, ",age_extent_cache"); 2050 if (test_opt(sbi, DATA_FLUSH)) 2051 seq_puts(seq, ",data_flush"); 2052 2053 seq_puts(seq, ",mode="); 2054 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2055 seq_puts(seq, "adaptive"); 2056 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2057 seq_puts(seq, "lfs"); 2058 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2059 seq_puts(seq, "fragment:segment"); 2060 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2061 seq_puts(seq, "fragment:block"); 2062 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2063 if (test_opt(sbi, RESERVE_ROOT)) 2064 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2065 F2FS_OPTION(sbi).root_reserved_blocks, 2066 from_kuid_munged(&init_user_ns, 2067 F2FS_OPTION(sbi).s_resuid), 2068 from_kgid_munged(&init_user_ns, 2069 F2FS_OPTION(sbi).s_resgid)); 2070 #ifdef CONFIG_F2FS_FAULT_INJECTION 2071 if (test_opt(sbi, FAULT_INJECTION)) { 2072 seq_printf(seq, ",fault_injection=%u", 2073 F2FS_OPTION(sbi).fault_info.inject_rate); 2074 seq_printf(seq, ",fault_type=%u", 2075 F2FS_OPTION(sbi).fault_info.inject_type); 2076 } 2077 #endif 2078 #ifdef CONFIG_QUOTA 2079 if (test_opt(sbi, QUOTA)) 2080 seq_puts(seq, ",quota"); 2081 if (test_opt(sbi, USRQUOTA)) 2082 seq_puts(seq, ",usrquota"); 2083 if (test_opt(sbi, GRPQUOTA)) 2084 seq_puts(seq, ",grpquota"); 2085 if (test_opt(sbi, PRJQUOTA)) 2086 seq_puts(seq, ",prjquota"); 2087 #endif 2088 f2fs_show_quota_options(seq, sbi->sb); 2089 2090 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2091 2092 if (sbi->sb->s_flags & SB_INLINECRYPT) 2093 seq_puts(seq, ",inlinecrypt"); 2094 2095 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2096 seq_printf(seq, ",alloc_mode=%s", "default"); 2097 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2098 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2099 2100 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2101 seq_printf(seq, ",checkpoint=disable:%u", 2102 F2FS_OPTION(sbi).unusable_cap); 2103 if (test_opt(sbi, MERGE_CHECKPOINT)) 2104 seq_puts(seq, ",checkpoint_merge"); 2105 else 2106 seq_puts(seq, ",nocheckpoint_merge"); 2107 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2108 seq_printf(seq, ",fsync_mode=%s", "posix"); 2109 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2110 seq_printf(seq, ",fsync_mode=%s", "strict"); 2111 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2112 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2113 2114 #ifdef CONFIG_F2FS_FS_COMPRESSION 2115 f2fs_show_compress_options(seq, sbi->sb); 2116 #endif 2117 2118 if (test_opt(sbi, ATGC)) 2119 seq_puts(seq, ",atgc"); 2120 2121 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2122 seq_printf(seq, ",memory=%s", "normal"); 2123 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2124 seq_printf(seq, ",memory=%s", "low"); 2125 2126 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2127 seq_printf(seq, ",errors=%s", "remount-ro"); 2128 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2129 seq_printf(seq, ",errors=%s", "continue"); 2130 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2131 seq_printf(seq, ",errors=%s", "panic"); 2132 2133 return 0; 2134 } 2135 2136 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2137 { 2138 /* init some FS parameters */ 2139 if (!remount) { 2140 set_opt(sbi, READ_EXTENT_CACHE); 2141 clear_opt(sbi, DISABLE_CHECKPOINT); 2142 2143 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2144 set_opt(sbi, DISCARD); 2145 2146 if (f2fs_sb_has_blkzoned(sbi)) 2147 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2148 else 2149 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2150 } 2151 2152 if (f2fs_sb_has_readonly(sbi)) 2153 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2154 else 2155 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2156 2157 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2158 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2159 SMALL_VOLUME_SEGMENTS) 2160 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2161 else 2162 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2163 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2164 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2165 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2166 if (f2fs_sb_has_compression(sbi)) { 2167 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2168 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2169 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2170 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2171 } 2172 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2173 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2174 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2175 2176 set_opt(sbi, INLINE_XATTR); 2177 set_opt(sbi, INLINE_DATA); 2178 set_opt(sbi, INLINE_DENTRY); 2179 set_opt(sbi, MERGE_CHECKPOINT); 2180 F2FS_OPTION(sbi).unusable_cap = 0; 2181 sbi->sb->s_flags |= SB_LAZYTIME; 2182 if (!f2fs_is_readonly(sbi)) 2183 set_opt(sbi, FLUSH_MERGE); 2184 if (f2fs_sb_has_blkzoned(sbi)) 2185 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2186 else 2187 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2188 2189 #ifdef CONFIG_F2FS_FS_XATTR 2190 set_opt(sbi, XATTR_USER); 2191 #endif 2192 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2193 set_opt(sbi, POSIX_ACL); 2194 #endif 2195 2196 f2fs_build_fault_attr(sbi, 0, 0); 2197 } 2198 2199 #ifdef CONFIG_QUOTA 2200 static int f2fs_enable_quotas(struct super_block *sb); 2201 #endif 2202 2203 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2204 { 2205 unsigned int s_flags = sbi->sb->s_flags; 2206 struct cp_control cpc; 2207 unsigned int gc_mode = sbi->gc_mode; 2208 int err = 0; 2209 int ret; 2210 block_t unusable; 2211 2212 if (s_flags & SB_RDONLY) { 2213 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2214 return -EINVAL; 2215 } 2216 sbi->sb->s_flags |= SB_ACTIVE; 2217 2218 /* check if we need more GC first */ 2219 unusable = f2fs_get_unusable_blocks(sbi); 2220 if (!f2fs_disable_cp_again(sbi, unusable)) 2221 goto skip_gc; 2222 2223 f2fs_update_time(sbi, DISABLE_TIME); 2224 2225 sbi->gc_mode = GC_URGENT_HIGH; 2226 2227 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2228 struct f2fs_gc_control gc_control = { 2229 .victim_segno = NULL_SEGNO, 2230 .init_gc_type = FG_GC, 2231 .should_migrate_blocks = false, 2232 .err_gc_skipped = true, 2233 .no_bg_gc = true, 2234 .nr_free_secs = 1 }; 2235 2236 f2fs_down_write(&sbi->gc_lock); 2237 stat_inc_gc_call_count(sbi, FOREGROUND); 2238 err = f2fs_gc(sbi, &gc_control); 2239 if (err == -ENODATA) { 2240 err = 0; 2241 break; 2242 } 2243 if (err && err != -EAGAIN) 2244 break; 2245 } 2246 2247 ret = sync_filesystem(sbi->sb); 2248 if (ret || err) { 2249 err = ret ? ret : err; 2250 goto restore_flag; 2251 } 2252 2253 unusable = f2fs_get_unusable_blocks(sbi); 2254 if (f2fs_disable_cp_again(sbi, unusable)) { 2255 err = -EAGAIN; 2256 goto restore_flag; 2257 } 2258 2259 skip_gc: 2260 f2fs_down_write(&sbi->gc_lock); 2261 cpc.reason = CP_PAUSE; 2262 set_sbi_flag(sbi, SBI_CP_DISABLED); 2263 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2264 err = f2fs_write_checkpoint(sbi, &cpc); 2265 if (err) 2266 goto out_unlock; 2267 2268 spin_lock(&sbi->stat_lock); 2269 sbi->unusable_block_count = unusable; 2270 spin_unlock(&sbi->stat_lock); 2271 2272 out_unlock: 2273 f2fs_up_write(&sbi->gc_lock); 2274 restore_flag: 2275 sbi->gc_mode = gc_mode; 2276 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2277 return err; 2278 } 2279 2280 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2281 { 2282 int retry = DEFAULT_RETRY_IO_COUNT; 2283 2284 /* we should flush all the data to keep data consistency */ 2285 do { 2286 sync_inodes_sb(sbi->sb); 2287 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2288 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2289 2290 if (unlikely(retry < 0)) 2291 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2292 2293 f2fs_down_write(&sbi->gc_lock); 2294 f2fs_dirty_to_prefree(sbi); 2295 2296 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2297 set_sbi_flag(sbi, SBI_IS_DIRTY); 2298 f2fs_up_write(&sbi->gc_lock); 2299 2300 f2fs_sync_fs(sbi->sb, 1); 2301 2302 /* Let's ensure there's no pending checkpoint anymore */ 2303 f2fs_flush_ckpt_thread(sbi); 2304 } 2305 2306 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2307 { 2308 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2309 struct f2fs_mount_info org_mount_opt; 2310 unsigned long old_sb_flags; 2311 int err; 2312 bool need_restart_gc = false, need_stop_gc = false; 2313 bool need_restart_flush = false, need_stop_flush = false; 2314 bool need_restart_discard = false, need_stop_discard = false; 2315 bool need_enable_checkpoint = false, need_disable_checkpoint = false; 2316 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2317 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2318 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2319 bool no_atgc = !test_opt(sbi, ATGC); 2320 bool no_discard = !test_opt(sbi, DISCARD); 2321 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2322 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2323 #ifdef CONFIG_QUOTA 2324 int i, j; 2325 #endif 2326 2327 /* 2328 * Save the old mount options in case we 2329 * need to restore them. 2330 */ 2331 org_mount_opt = sbi->mount_opt; 2332 old_sb_flags = sb->s_flags; 2333 2334 #ifdef CONFIG_QUOTA 2335 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2336 for (i = 0; i < MAXQUOTAS; i++) { 2337 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2338 org_mount_opt.s_qf_names[i] = 2339 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2340 GFP_KERNEL); 2341 if (!org_mount_opt.s_qf_names[i]) { 2342 for (j = 0; j < i; j++) 2343 kfree(org_mount_opt.s_qf_names[j]); 2344 return -ENOMEM; 2345 } 2346 } else { 2347 org_mount_opt.s_qf_names[i] = NULL; 2348 } 2349 } 2350 #endif 2351 2352 /* recover superblocks we couldn't write due to previous RO mount */ 2353 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2354 err = f2fs_commit_super(sbi, false); 2355 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2356 err); 2357 if (!err) 2358 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2359 } 2360 2361 default_options(sbi, true); 2362 2363 /* parse mount options */ 2364 err = parse_options(sb, data, true); 2365 if (err) 2366 goto restore_opts; 2367 2368 #ifdef CONFIG_BLK_DEV_ZONED 2369 if (f2fs_sb_has_blkzoned(sbi) && 2370 sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 2371 f2fs_err(sbi, 2372 "zoned: max open zones %u is too small, need at least %u open zones", 2373 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 2374 err = -EINVAL; 2375 goto restore_opts; 2376 } 2377 #endif 2378 2379 /* flush outstanding errors before changing fs state */ 2380 flush_work(&sbi->s_error_work); 2381 2382 /* 2383 * Previous and new state of filesystem is RO, 2384 * so skip checking GC and FLUSH_MERGE conditions. 2385 */ 2386 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2387 goto skip; 2388 2389 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2390 err = -EROFS; 2391 goto restore_opts; 2392 } 2393 2394 #ifdef CONFIG_QUOTA 2395 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2396 err = dquot_suspend(sb, -1); 2397 if (err < 0) 2398 goto restore_opts; 2399 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2400 /* dquot_resume needs RW */ 2401 sb->s_flags &= ~SB_RDONLY; 2402 if (sb_any_quota_suspended(sb)) { 2403 dquot_resume(sb, -1); 2404 } else if (f2fs_sb_has_quota_ino(sbi)) { 2405 err = f2fs_enable_quotas(sb); 2406 if (err) 2407 goto restore_opts; 2408 } 2409 } 2410 #endif 2411 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2412 err = -EINVAL; 2413 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2414 goto restore_opts; 2415 } 2416 2417 /* disallow enable atgc dynamically */ 2418 if (no_atgc == !!test_opt(sbi, ATGC)) { 2419 err = -EINVAL; 2420 f2fs_warn(sbi, "switch atgc option is not allowed"); 2421 goto restore_opts; 2422 } 2423 2424 /* disallow enable/disable extent_cache dynamically */ 2425 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2426 err = -EINVAL; 2427 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2428 goto restore_opts; 2429 } 2430 /* disallow enable/disable age extent_cache dynamically */ 2431 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2432 err = -EINVAL; 2433 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2434 goto restore_opts; 2435 } 2436 2437 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2438 err = -EINVAL; 2439 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2440 goto restore_opts; 2441 } 2442 2443 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2444 err = -EINVAL; 2445 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2446 goto restore_opts; 2447 } 2448 2449 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2450 err = -EINVAL; 2451 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2452 goto restore_opts; 2453 } 2454 2455 /* 2456 * We stop the GC thread if FS is mounted as RO 2457 * or if background_gc = off is passed in mount 2458 * option. Also sync the filesystem. 2459 */ 2460 if ((*flags & SB_RDONLY) || 2461 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2462 !test_opt(sbi, GC_MERGE))) { 2463 if (sbi->gc_thread) { 2464 f2fs_stop_gc_thread(sbi); 2465 need_restart_gc = true; 2466 } 2467 } else if (!sbi->gc_thread) { 2468 err = f2fs_start_gc_thread(sbi); 2469 if (err) 2470 goto restore_opts; 2471 need_stop_gc = true; 2472 } 2473 2474 if (*flags & SB_RDONLY) { 2475 sync_inodes_sb(sb); 2476 2477 set_sbi_flag(sbi, SBI_IS_DIRTY); 2478 set_sbi_flag(sbi, SBI_IS_CLOSE); 2479 f2fs_sync_fs(sb, 1); 2480 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2481 } 2482 2483 /* 2484 * We stop issue flush thread if FS is mounted as RO 2485 * or if flush_merge is not passed in mount option. 2486 */ 2487 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2488 clear_opt(sbi, FLUSH_MERGE); 2489 f2fs_destroy_flush_cmd_control(sbi, false); 2490 need_restart_flush = true; 2491 } else { 2492 err = f2fs_create_flush_cmd_control(sbi); 2493 if (err) 2494 goto restore_gc; 2495 need_stop_flush = true; 2496 } 2497 2498 if (no_discard == !!test_opt(sbi, DISCARD)) { 2499 if (test_opt(sbi, DISCARD)) { 2500 err = f2fs_start_discard_thread(sbi); 2501 if (err) 2502 goto restore_flush; 2503 need_stop_discard = true; 2504 } else { 2505 f2fs_stop_discard_thread(sbi); 2506 f2fs_issue_discard_timeout(sbi); 2507 need_restart_discard = true; 2508 } 2509 } 2510 2511 adjust_unusable_cap_perc(sbi); 2512 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2513 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2514 err = f2fs_disable_checkpoint(sbi); 2515 if (err) 2516 goto restore_discard; 2517 need_enable_checkpoint = true; 2518 } else { 2519 f2fs_enable_checkpoint(sbi); 2520 need_disable_checkpoint = true; 2521 } 2522 } 2523 2524 /* 2525 * Place this routine at the end, since a new checkpoint would be 2526 * triggered while remount and we need to take care of it before 2527 * returning from remount. 2528 */ 2529 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2530 !test_opt(sbi, MERGE_CHECKPOINT)) { 2531 f2fs_stop_ckpt_thread(sbi); 2532 } else { 2533 /* Flush if the prevous checkpoint, if exists. */ 2534 f2fs_flush_ckpt_thread(sbi); 2535 2536 err = f2fs_start_ckpt_thread(sbi); 2537 if (err) { 2538 f2fs_err(sbi, 2539 "Failed to start F2FS issue_checkpoint_thread (%d)", 2540 err); 2541 goto restore_checkpoint; 2542 } 2543 } 2544 2545 skip: 2546 #ifdef CONFIG_QUOTA 2547 /* Release old quota file names */ 2548 for (i = 0; i < MAXQUOTAS; i++) 2549 kfree(org_mount_opt.s_qf_names[i]); 2550 #endif 2551 /* Update the POSIXACL Flag */ 2552 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2553 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2554 2555 limit_reserve_root(sbi); 2556 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2557 return 0; 2558 restore_checkpoint: 2559 if (need_enable_checkpoint) { 2560 f2fs_enable_checkpoint(sbi); 2561 } else if (need_disable_checkpoint) { 2562 if (f2fs_disable_checkpoint(sbi)) 2563 f2fs_warn(sbi, "checkpoint has not been disabled"); 2564 } 2565 restore_discard: 2566 if (need_restart_discard) { 2567 if (f2fs_start_discard_thread(sbi)) 2568 f2fs_warn(sbi, "discard has been stopped"); 2569 } else if (need_stop_discard) { 2570 f2fs_stop_discard_thread(sbi); 2571 } 2572 restore_flush: 2573 if (need_restart_flush) { 2574 if (f2fs_create_flush_cmd_control(sbi)) 2575 f2fs_warn(sbi, "background flush thread has stopped"); 2576 } else if (need_stop_flush) { 2577 clear_opt(sbi, FLUSH_MERGE); 2578 f2fs_destroy_flush_cmd_control(sbi, false); 2579 } 2580 restore_gc: 2581 if (need_restart_gc) { 2582 if (f2fs_start_gc_thread(sbi)) 2583 f2fs_warn(sbi, "background gc thread has stopped"); 2584 } else if (need_stop_gc) { 2585 f2fs_stop_gc_thread(sbi); 2586 } 2587 restore_opts: 2588 #ifdef CONFIG_QUOTA 2589 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2590 for (i = 0; i < MAXQUOTAS; i++) { 2591 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2592 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2593 } 2594 #endif 2595 sbi->mount_opt = org_mount_opt; 2596 sb->s_flags = old_sb_flags; 2597 return err; 2598 } 2599 2600 static void f2fs_shutdown(struct super_block *sb) 2601 { 2602 f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false); 2603 } 2604 2605 #ifdef CONFIG_QUOTA 2606 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2607 { 2608 /* need to recovery orphan */ 2609 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2610 return true; 2611 /* need to recovery data */ 2612 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2613 return false; 2614 if (test_opt(sbi, NORECOVERY)) 2615 return false; 2616 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2617 } 2618 2619 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2620 { 2621 bool readonly = f2fs_readonly(sbi->sb); 2622 2623 if (!f2fs_need_recovery(sbi)) 2624 return false; 2625 2626 /* it doesn't need to check f2fs_sb_has_readonly() */ 2627 if (f2fs_hw_is_readonly(sbi)) 2628 return false; 2629 2630 if (readonly) { 2631 sbi->sb->s_flags &= ~SB_RDONLY; 2632 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2633 } 2634 2635 /* 2636 * Turn on quotas which were not enabled for read-only mounts if 2637 * filesystem has quota feature, so that they are updated correctly. 2638 */ 2639 return f2fs_enable_quota_files(sbi, readonly); 2640 } 2641 2642 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2643 bool quota_enabled) 2644 { 2645 if (quota_enabled) 2646 f2fs_quota_off_umount(sbi->sb); 2647 2648 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2649 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2650 sbi->sb->s_flags |= SB_RDONLY; 2651 } 2652 } 2653 2654 /* Read data from quotafile */ 2655 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2656 size_t len, loff_t off) 2657 { 2658 struct inode *inode = sb_dqopt(sb)->files[type]; 2659 struct address_space *mapping = inode->i_mapping; 2660 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2661 int offset = off & (sb->s_blocksize - 1); 2662 int tocopy; 2663 size_t toread; 2664 loff_t i_size = i_size_read(inode); 2665 struct page *page; 2666 2667 if (off > i_size) 2668 return 0; 2669 2670 if (off + len > i_size) 2671 len = i_size - off; 2672 toread = len; 2673 while (toread > 0) { 2674 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2675 repeat: 2676 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2677 if (IS_ERR(page)) { 2678 if (PTR_ERR(page) == -ENOMEM) { 2679 memalloc_retry_wait(GFP_NOFS); 2680 goto repeat; 2681 } 2682 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2683 return PTR_ERR(page); 2684 } 2685 2686 lock_page(page); 2687 2688 if (unlikely(page->mapping != mapping)) { 2689 f2fs_put_page(page, 1); 2690 goto repeat; 2691 } 2692 if (unlikely(!PageUptodate(page))) { 2693 f2fs_put_page(page, 1); 2694 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2695 return -EIO; 2696 } 2697 2698 memcpy_from_page(data, page, offset, tocopy); 2699 f2fs_put_page(page, 1); 2700 2701 offset = 0; 2702 toread -= tocopy; 2703 data += tocopy; 2704 blkidx++; 2705 } 2706 return len; 2707 } 2708 2709 /* Write to quotafile */ 2710 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2711 const char *data, size_t len, loff_t off) 2712 { 2713 struct inode *inode = sb_dqopt(sb)->files[type]; 2714 struct address_space *mapping = inode->i_mapping; 2715 const struct address_space_operations *a_ops = mapping->a_ops; 2716 int offset = off & (sb->s_blocksize - 1); 2717 size_t towrite = len; 2718 struct folio *folio; 2719 void *fsdata = NULL; 2720 int err = 0; 2721 int tocopy; 2722 2723 while (towrite > 0) { 2724 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2725 towrite); 2726 retry: 2727 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2728 &folio, &fsdata); 2729 if (unlikely(err)) { 2730 if (err == -ENOMEM) { 2731 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2732 goto retry; 2733 } 2734 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2735 break; 2736 } 2737 2738 memcpy_to_folio(folio, offset_in_folio(folio, off), data, tocopy); 2739 2740 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2741 folio, fsdata); 2742 offset = 0; 2743 towrite -= tocopy; 2744 off += tocopy; 2745 data += tocopy; 2746 cond_resched(); 2747 } 2748 2749 if (len == towrite) 2750 return err; 2751 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2752 f2fs_mark_inode_dirty_sync(inode, false); 2753 return len - towrite; 2754 } 2755 2756 int f2fs_dquot_initialize(struct inode *inode) 2757 { 2758 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2759 return -ESRCH; 2760 2761 return dquot_initialize(inode); 2762 } 2763 2764 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode) 2765 { 2766 return F2FS_I(inode)->i_dquot; 2767 } 2768 2769 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2770 { 2771 return &F2FS_I(inode)->i_reserved_quota; 2772 } 2773 2774 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2775 { 2776 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2777 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2778 return 0; 2779 } 2780 2781 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2782 F2FS_OPTION(sbi).s_jquota_fmt, type); 2783 } 2784 2785 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2786 { 2787 int enabled = 0; 2788 int i, err; 2789 2790 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2791 err = f2fs_enable_quotas(sbi->sb); 2792 if (err) { 2793 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2794 return 0; 2795 } 2796 return 1; 2797 } 2798 2799 for (i = 0; i < MAXQUOTAS; i++) { 2800 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2801 err = f2fs_quota_on_mount(sbi, i); 2802 if (!err) { 2803 enabled = 1; 2804 continue; 2805 } 2806 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2807 err, i); 2808 } 2809 } 2810 return enabled; 2811 } 2812 2813 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2814 unsigned int flags) 2815 { 2816 struct inode *qf_inode; 2817 unsigned long qf_inum; 2818 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2819 int err; 2820 2821 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2822 2823 qf_inum = f2fs_qf_ino(sb, type); 2824 if (!qf_inum) 2825 return -EPERM; 2826 2827 qf_inode = f2fs_iget(sb, qf_inum); 2828 if (IS_ERR(qf_inode)) { 2829 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2830 return PTR_ERR(qf_inode); 2831 } 2832 2833 /* Don't account quota for quota files to avoid recursion */ 2834 inode_lock(qf_inode); 2835 qf_inode->i_flags |= S_NOQUOTA; 2836 2837 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2838 F2FS_I(qf_inode)->i_flags |= qf_flag; 2839 f2fs_set_inode_flags(qf_inode); 2840 } 2841 inode_unlock(qf_inode); 2842 2843 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2844 iput(qf_inode); 2845 return err; 2846 } 2847 2848 static int f2fs_enable_quotas(struct super_block *sb) 2849 { 2850 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2851 int type, err = 0; 2852 unsigned long qf_inum; 2853 bool quota_mopt[MAXQUOTAS] = { 2854 test_opt(sbi, USRQUOTA), 2855 test_opt(sbi, GRPQUOTA), 2856 test_opt(sbi, PRJQUOTA), 2857 }; 2858 2859 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2860 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2861 return 0; 2862 } 2863 2864 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2865 2866 for (type = 0; type < MAXQUOTAS; type++) { 2867 qf_inum = f2fs_qf_ino(sb, type); 2868 if (qf_inum) { 2869 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2870 DQUOT_USAGE_ENABLED | 2871 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2872 if (err) { 2873 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2874 type, err); 2875 for (type--; type >= 0; type--) 2876 dquot_quota_off(sb, type); 2877 set_sbi_flag(F2FS_SB(sb), 2878 SBI_QUOTA_NEED_REPAIR); 2879 return err; 2880 } 2881 } 2882 } 2883 return 0; 2884 } 2885 2886 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2887 { 2888 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2889 struct address_space *mapping = dqopt->files[type]->i_mapping; 2890 int ret = 0; 2891 2892 ret = dquot_writeback_dquots(sbi->sb, type); 2893 if (ret) 2894 goto out; 2895 2896 ret = filemap_fdatawrite(mapping); 2897 if (ret) 2898 goto out; 2899 2900 /* if we are using journalled quota */ 2901 if (is_journalled_quota(sbi)) 2902 goto out; 2903 2904 ret = filemap_fdatawait(mapping); 2905 2906 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2907 out: 2908 if (ret) 2909 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2910 return ret; 2911 } 2912 2913 int f2fs_quota_sync(struct super_block *sb, int type) 2914 { 2915 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2916 struct quota_info *dqopt = sb_dqopt(sb); 2917 int cnt; 2918 int ret = 0; 2919 2920 /* 2921 * Now when everything is written we can discard the pagecache so 2922 * that userspace sees the changes. 2923 */ 2924 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2925 2926 if (type != -1 && cnt != type) 2927 continue; 2928 2929 if (!sb_has_quota_active(sb, cnt)) 2930 continue; 2931 2932 if (!f2fs_sb_has_quota_ino(sbi)) 2933 inode_lock(dqopt->files[cnt]); 2934 2935 /* 2936 * do_quotactl 2937 * f2fs_quota_sync 2938 * f2fs_down_read(quota_sem) 2939 * dquot_writeback_dquots() 2940 * f2fs_dquot_commit 2941 * block_operation 2942 * f2fs_down_read(quota_sem) 2943 */ 2944 f2fs_lock_op(sbi); 2945 f2fs_down_read(&sbi->quota_sem); 2946 2947 ret = f2fs_quota_sync_file(sbi, cnt); 2948 2949 f2fs_up_read(&sbi->quota_sem); 2950 f2fs_unlock_op(sbi); 2951 2952 if (!f2fs_sb_has_quota_ino(sbi)) 2953 inode_unlock(dqopt->files[cnt]); 2954 2955 if (ret) 2956 break; 2957 } 2958 return ret; 2959 } 2960 2961 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2962 const struct path *path) 2963 { 2964 struct inode *inode; 2965 int err; 2966 2967 /* if quota sysfile exists, deny enabling quota with specific file */ 2968 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2969 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2970 return -EBUSY; 2971 } 2972 2973 if (path->dentry->d_sb != sb) 2974 return -EXDEV; 2975 2976 err = f2fs_quota_sync(sb, type); 2977 if (err) 2978 return err; 2979 2980 inode = d_inode(path->dentry); 2981 2982 err = filemap_fdatawrite(inode->i_mapping); 2983 if (err) 2984 return err; 2985 2986 err = filemap_fdatawait(inode->i_mapping); 2987 if (err) 2988 return err; 2989 2990 err = dquot_quota_on(sb, type, format_id, path); 2991 if (err) 2992 return err; 2993 2994 inode_lock(inode); 2995 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 2996 f2fs_set_inode_flags(inode); 2997 inode_unlock(inode); 2998 f2fs_mark_inode_dirty_sync(inode, false); 2999 3000 return 0; 3001 } 3002 3003 static int __f2fs_quota_off(struct super_block *sb, int type) 3004 { 3005 struct inode *inode = sb_dqopt(sb)->files[type]; 3006 int err; 3007 3008 if (!inode || !igrab(inode)) 3009 return dquot_quota_off(sb, type); 3010 3011 err = f2fs_quota_sync(sb, type); 3012 if (err) 3013 goto out_put; 3014 3015 err = dquot_quota_off(sb, type); 3016 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 3017 goto out_put; 3018 3019 inode_lock(inode); 3020 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 3021 f2fs_set_inode_flags(inode); 3022 inode_unlock(inode); 3023 f2fs_mark_inode_dirty_sync(inode, false); 3024 out_put: 3025 iput(inode); 3026 return err; 3027 } 3028 3029 static int f2fs_quota_off(struct super_block *sb, int type) 3030 { 3031 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3032 int err; 3033 3034 err = __f2fs_quota_off(sb, type); 3035 3036 /* 3037 * quotactl can shutdown journalled quota, result in inconsistence 3038 * between quota record and fs data by following updates, tag the 3039 * flag to let fsck be aware of it. 3040 */ 3041 if (is_journalled_quota(sbi)) 3042 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3043 return err; 3044 } 3045 3046 void f2fs_quota_off_umount(struct super_block *sb) 3047 { 3048 int type; 3049 int err; 3050 3051 for (type = 0; type < MAXQUOTAS; type++) { 3052 err = __f2fs_quota_off(sb, type); 3053 if (err) { 3054 int ret = dquot_quota_off(sb, type); 3055 3056 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3057 type, err, ret); 3058 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3059 } 3060 } 3061 /* 3062 * In case of checkpoint=disable, we must flush quota blocks. 3063 * This can cause NULL exception for node_inode in end_io, since 3064 * put_super already dropped it. 3065 */ 3066 sync_filesystem(sb); 3067 } 3068 3069 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3070 { 3071 struct quota_info *dqopt = sb_dqopt(sb); 3072 int type; 3073 3074 for (type = 0; type < MAXQUOTAS; type++) { 3075 if (!dqopt->files[type]) 3076 continue; 3077 f2fs_inode_synced(dqopt->files[type]); 3078 } 3079 } 3080 3081 static int f2fs_dquot_commit(struct dquot *dquot) 3082 { 3083 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3084 int ret; 3085 3086 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3087 ret = dquot_commit(dquot); 3088 if (ret < 0) 3089 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3090 f2fs_up_read(&sbi->quota_sem); 3091 return ret; 3092 } 3093 3094 static int f2fs_dquot_acquire(struct dquot *dquot) 3095 { 3096 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3097 int ret; 3098 3099 f2fs_down_read(&sbi->quota_sem); 3100 ret = dquot_acquire(dquot); 3101 if (ret < 0) 3102 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3103 f2fs_up_read(&sbi->quota_sem); 3104 return ret; 3105 } 3106 3107 static int f2fs_dquot_release(struct dquot *dquot) 3108 { 3109 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3110 int ret = dquot_release(dquot); 3111 3112 if (ret < 0) 3113 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3114 return ret; 3115 } 3116 3117 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3118 { 3119 struct super_block *sb = dquot->dq_sb; 3120 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3121 int ret = dquot_mark_dquot_dirty(dquot); 3122 3123 /* if we are using journalled quota */ 3124 if (is_journalled_quota(sbi)) 3125 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3126 3127 return ret; 3128 } 3129 3130 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3131 { 3132 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3133 int ret = dquot_commit_info(sb, type); 3134 3135 if (ret < 0) 3136 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3137 return ret; 3138 } 3139 3140 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3141 { 3142 *projid = F2FS_I(inode)->i_projid; 3143 return 0; 3144 } 3145 3146 static const struct dquot_operations f2fs_quota_operations = { 3147 .get_reserved_space = f2fs_get_reserved_space, 3148 .write_dquot = f2fs_dquot_commit, 3149 .acquire_dquot = f2fs_dquot_acquire, 3150 .release_dquot = f2fs_dquot_release, 3151 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3152 .write_info = f2fs_dquot_commit_info, 3153 .alloc_dquot = dquot_alloc, 3154 .destroy_dquot = dquot_destroy, 3155 .get_projid = f2fs_get_projid, 3156 .get_next_id = dquot_get_next_id, 3157 }; 3158 3159 static const struct quotactl_ops f2fs_quotactl_ops = { 3160 .quota_on = f2fs_quota_on, 3161 .quota_off = f2fs_quota_off, 3162 .quota_sync = f2fs_quota_sync, 3163 .get_state = dquot_get_state, 3164 .set_info = dquot_set_dqinfo, 3165 .get_dqblk = dquot_get_dqblk, 3166 .set_dqblk = dquot_set_dqblk, 3167 .get_nextdqblk = dquot_get_next_dqblk, 3168 }; 3169 #else 3170 int f2fs_dquot_initialize(struct inode *inode) 3171 { 3172 return 0; 3173 } 3174 3175 int f2fs_quota_sync(struct super_block *sb, int type) 3176 { 3177 return 0; 3178 } 3179 3180 void f2fs_quota_off_umount(struct super_block *sb) 3181 { 3182 } 3183 #endif 3184 3185 static const struct super_operations f2fs_sops = { 3186 .alloc_inode = f2fs_alloc_inode, 3187 .free_inode = f2fs_free_inode, 3188 .drop_inode = f2fs_drop_inode, 3189 .write_inode = f2fs_write_inode, 3190 .dirty_inode = f2fs_dirty_inode, 3191 .show_options = f2fs_show_options, 3192 #ifdef CONFIG_QUOTA 3193 .quota_read = f2fs_quota_read, 3194 .quota_write = f2fs_quota_write, 3195 .get_dquots = f2fs_get_dquots, 3196 #endif 3197 .evict_inode = f2fs_evict_inode, 3198 .put_super = f2fs_put_super, 3199 .sync_fs = f2fs_sync_fs, 3200 .freeze_fs = f2fs_freeze, 3201 .unfreeze_fs = f2fs_unfreeze, 3202 .statfs = f2fs_statfs, 3203 .remount_fs = f2fs_remount, 3204 .shutdown = f2fs_shutdown, 3205 }; 3206 3207 #ifdef CONFIG_FS_ENCRYPTION 3208 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3209 { 3210 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3211 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3212 ctx, len, NULL); 3213 } 3214 3215 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3216 void *fs_data) 3217 { 3218 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3219 3220 /* 3221 * Encrypting the root directory is not allowed because fsck 3222 * expects lost+found directory to exist and remain unencrypted 3223 * if LOST_FOUND feature is enabled. 3224 * 3225 */ 3226 if (f2fs_sb_has_lost_found(sbi) && 3227 inode->i_ino == F2FS_ROOT_INO(sbi)) 3228 return -EPERM; 3229 3230 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3231 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3232 ctx, len, fs_data, XATTR_CREATE); 3233 } 3234 3235 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3236 { 3237 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3238 } 3239 3240 static bool f2fs_has_stable_inodes(struct super_block *sb) 3241 { 3242 return true; 3243 } 3244 3245 static struct block_device **f2fs_get_devices(struct super_block *sb, 3246 unsigned int *num_devs) 3247 { 3248 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3249 struct block_device **devs; 3250 int i; 3251 3252 if (!f2fs_is_multi_device(sbi)) 3253 return NULL; 3254 3255 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3256 if (!devs) 3257 return ERR_PTR(-ENOMEM); 3258 3259 for (i = 0; i < sbi->s_ndevs; i++) 3260 devs[i] = FDEV(i).bdev; 3261 *num_devs = sbi->s_ndevs; 3262 return devs; 3263 } 3264 3265 static const struct fscrypt_operations f2fs_cryptops = { 3266 .needs_bounce_pages = 1, 3267 .has_32bit_inodes = 1, 3268 .supports_subblock_data_units = 1, 3269 .legacy_key_prefix = "f2fs:", 3270 .get_context = f2fs_get_context, 3271 .set_context = f2fs_set_context, 3272 .get_dummy_policy = f2fs_get_dummy_policy, 3273 .empty_dir = f2fs_empty_dir, 3274 .has_stable_inodes = f2fs_has_stable_inodes, 3275 .get_devices = f2fs_get_devices, 3276 }; 3277 #endif 3278 3279 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3280 u64 ino, u32 generation) 3281 { 3282 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3283 struct inode *inode; 3284 3285 if (f2fs_check_nid_range(sbi, ino)) 3286 return ERR_PTR(-ESTALE); 3287 3288 /* 3289 * f2fs_iget isn't quite right if the inode is currently unallocated! 3290 * However f2fs_iget currently does appropriate checks to handle stale 3291 * inodes so everything is OK. 3292 */ 3293 inode = f2fs_iget(sb, ino); 3294 if (IS_ERR(inode)) 3295 return ERR_CAST(inode); 3296 if (unlikely(generation && inode->i_generation != generation)) { 3297 /* we didn't find the right inode.. */ 3298 iput(inode); 3299 return ERR_PTR(-ESTALE); 3300 } 3301 return inode; 3302 } 3303 3304 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3305 int fh_len, int fh_type) 3306 { 3307 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3308 f2fs_nfs_get_inode); 3309 } 3310 3311 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3312 int fh_len, int fh_type) 3313 { 3314 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3315 f2fs_nfs_get_inode); 3316 } 3317 3318 static const struct export_operations f2fs_export_ops = { 3319 .encode_fh = generic_encode_ino32_fh, 3320 .fh_to_dentry = f2fs_fh_to_dentry, 3321 .fh_to_parent = f2fs_fh_to_parent, 3322 .get_parent = f2fs_get_parent, 3323 }; 3324 3325 loff_t max_file_blocks(struct inode *inode) 3326 { 3327 loff_t result = 0; 3328 loff_t leaf_count; 3329 3330 /* 3331 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3332 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3333 * space in inode.i_addr, it will be more safe to reassign 3334 * result as zero. 3335 */ 3336 3337 if (inode && f2fs_compressed_file(inode)) 3338 leaf_count = ADDRS_PER_BLOCK(inode); 3339 else 3340 leaf_count = DEF_ADDRS_PER_BLOCK; 3341 3342 /* two direct node blocks */ 3343 result += (leaf_count * 2); 3344 3345 /* two indirect node blocks */ 3346 leaf_count *= NIDS_PER_BLOCK; 3347 result += (leaf_count * 2); 3348 3349 /* one double indirect node block */ 3350 leaf_count *= NIDS_PER_BLOCK; 3351 result += leaf_count; 3352 3353 /* 3354 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with 3355 * a 4K crypto data unit, we must restrict the max filesize to what can 3356 * fit within U32_MAX + 1 data units. 3357 */ 3358 3359 result = umin(result, F2FS_BYTES_TO_BLK(((loff_t)U32_MAX + 1) * 4096)); 3360 3361 return result; 3362 } 3363 3364 static int __f2fs_commit_super(struct f2fs_sb_info *sbi, struct folio *folio, 3365 pgoff_t index, bool update) 3366 { 3367 struct bio *bio; 3368 /* it's rare case, we can do fua all the time */ 3369 blk_opf_t opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA; 3370 int ret; 3371 3372 folio_lock(folio); 3373 folio_wait_writeback(folio); 3374 if (update) 3375 memcpy(F2FS_SUPER_BLOCK(folio, index), F2FS_RAW_SUPER(sbi), 3376 sizeof(struct f2fs_super_block)); 3377 folio_mark_dirty(folio); 3378 folio_clear_dirty_for_io(folio); 3379 folio_start_writeback(folio); 3380 folio_unlock(folio); 3381 3382 bio = bio_alloc(sbi->sb->s_bdev, 1, opf, GFP_NOFS); 3383 3384 /* it doesn't need to set crypto context for superblock update */ 3385 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(folio_index(folio)); 3386 3387 if (!bio_add_folio(bio, folio, folio_size(folio), 0)) 3388 f2fs_bug_on(sbi, 1); 3389 3390 ret = submit_bio_wait(bio); 3391 folio_end_writeback(folio); 3392 3393 return ret; 3394 } 3395 3396 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3397 struct folio *folio, pgoff_t index) 3398 { 3399 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index); 3400 struct super_block *sb = sbi->sb; 3401 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3402 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3403 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3404 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3405 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3406 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3407 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3408 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3409 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3410 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3411 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3412 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3413 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3414 u64 main_end_blkaddr = main_blkaddr + 3415 ((u64)segment_count_main << log_blocks_per_seg); 3416 u64 seg_end_blkaddr = segment0_blkaddr + 3417 ((u64)segment_count << log_blocks_per_seg); 3418 3419 if (segment0_blkaddr != cp_blkaddr) { 3420 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3421 segment0_blkaddr, cp_blkaddr); 3422 return true; 3423 } 3424 3425 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3426 sit_blkaddr) { 3427 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3428 cp_blkaddr, sit_blkaddr, 3429 segment_count_ckpt << log_blocks_per_seg); 3430 return true; 3431 } 3432 3433 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3434 nat_blkaddr) { 3435 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3436 sit_blkaddr, nat_blkaddr, 3437 segment_count_sit << log_blocks_per_seg); 3438 return true; 3439 } 3440 3441 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3442 ssa_blkaddr) { 3443 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3444 nat_blkaddr, ssa_blkaddr, 3445 segment_count_nat << log_blocks_per_seg); 3446 return true; 3447 } 3448 3449 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3450 main_blkaddr) { 3451 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3452 ssa_blkaddr, main_blkaddr, 3453 segment_count_ssa << log_blocks_per_seg); 3454 return true; 3455 } 3456 3457 if (main_end_blkaddr > seg_end_blkaddr) { 3458 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3459 main_blkaddr, seg_end_blkaddr, 3460 segment_count_main << log_blocks_per_seg); 3461 return true; 3462 } else if (main_end_blkaddr < seg_end_blkaddr) { 3463 int err = 0; 3464 char *res; 3465 3466 /* fix in-memory information all the time */ 3467 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3468 segment0_blkaddr) >> log_blocks_per_seg); 3469 3470 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3471 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3472 res = "internally"; 3473 } else { 3474 err = __f2fs_commit_super(sbi, folio, index, false); 3475 res = err ? "failed" : "done"; 3476 } 3477 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3478 res, main_blkaddr, seg_end_blkaddr, 3479 segment_count_main << log_blocks_per_seg); 3480 if (err) 3481 return true; 3482 } 3483 return false; 3484 } 3485 3486 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3487 struct folio *folio, pgoff_t index) 3488 { 3489 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3490 block_t total_sections, blocks_per_seg; 3491 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index); 3492 size_t crc_offset = 0; 3493 __u32 crc = 0; 3494 3495 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3496 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3497 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3498 return -EINVAL; 3499 } 3500 3501 /* Check checksum_offset and crc in superblock */ 3502 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3503 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3504 if (crc_offset != 3505 offsetof(struct f2fs_super_block, crc)) { 3506 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3507 crc_offset); 3508 return -EFSCORRUPTED; 3509 } 3510 crc = le32_to_cpu(raw_super->crc); 3511 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3512 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3513 return -EFSCORRUPTED; 3514 } 3515 } 3516 3517 /* only support block_size equals to PAGE_SIZE */ 3518 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3519 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3520 le32_to_cpu(raw_super->log_blocksize), 3521 F2FS_BLKSIZE_BITS); 3522 return -EFSCORRUPTED; 3523 } 3524 3525 /* check log blocks per segment */ 3526 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3527 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3528 le32_to_cpu(raw_super->log_blocks_per_seg)); 3529 return -EFSCORRUPTED; 3530 } 3531 3532 /* Currently, support 512/1024/2048/4096/16K bytes sector size */ 3533 if (le32_to_cpu(raw_super->log_sectorsize) > 3534 F2FS_MAX_LOG_SECTOR_SIZE || 3535 le32_to_cpu(raw_super->log_sectorsize) < 3536 F2FS_MIN_LOG_SECTOR_SIZE) { 3537 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3538 le32_to_cpu(raw_super->log_sectorsize)); 3539 return -EFSCORRUPTED; 3540 } 3541 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3542 le32_to_cpu(raw_super->log_sectorsize) != 3543 F2FS_MAX_LOG_SECTOR_SIZE) { 3544 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3545 le32_to_cpu(raw_super->log_sectors_per_block), 3546 le32_to_cpu(raw_super->log_sectorsize)); 3547 return -EFSCORRUPTED; 3548 } 3549 3550 segment_count = le32_to_cpu(raw_super->segment_count); 3551 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3552 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3553 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3554 total_sections = le32_to_cpu(raw_super->section_count); 3555 3556 /* blocks_per_seg should be 512, given the above check */ 3557 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3558 3559 if (segment_count > F2FS_MAX_SEGMENT || 3560 segment_count < F2FS_MIN_SEGMENTS) { 3561 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3562 return -EFSCORRUPTED; 3563 } 3564 3565 if (total_sections > segment_count_main || total_sections < 1 || 3566 segs_per_sec > segment_count || !segs_per_sec) { 3567 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3568 segment_count, total_sections, segs_per_sec); 3569 return -EFSCORRUPTED; 3570 } 3571 3572 if (segment_count_main != total_sections * segs_per_sec) { 3573 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3574 segment_count_main, total_sections, segs_per_sec); 3575 return -EFSCORRUPTED; 3576 } 3577 3578 if ((segment_count / segs_per_sec) < total_sections) { 3579 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3580 segment_count, segs_per_sec, total_sections); 3581 return -EFSCORRUPTED; 3582 } 3583 3584 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3585 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3586 segment_count, le64_to_cpu(raw_super->block_count)); 3587 return -EFSCORRUPTED; 3588 } 3589 3590 if (RDEV(0).path[0]) { 3591 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3592 int i = 1; 3593 3594 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3595 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3596 i++; 3597 } 3598 if (segment_count != dev_seg_count) { 3599 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3600 segment_count, dev_seg_count); 3601 return -EFSCORRUPTED; 3602 } 3603 } else { 3604 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3605 !bdev_is_zoned(sbi->sb->s_bdev)) { 3606 f2fs_info(sbi, "Zoned block device path is missing"); 3607 return -EFSCORRUPTED; 3608 } 3609 } 3610 3611 if (secs_per_zone > total_sections || !secs_per_zone) { 3612 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3613 secs_per_zone, total_sections); 3614 return -EFSCORRUPTED; 3615 } 3616 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3617 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3618 (le32_to_cpu(raw_super->extension_count) + 3619 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3620 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3621 le32_to_cpu(raw_super->extension_count), 3622 raw_super->hot_ext_count, 3623 F2FS_MAX_EXTENSION); 3624 return -EFSCORRUPTED; 3625 } 3626 3627 if (le32_to_cpu(raw_super->cp_payload) >= 3628 (blocks_per_seg - F2FS_CP_PACKS - 3629 NR_CURSEG_PERSIST_TYPE)) { 3630 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3631 le32_to_cpu(raw_super->cp_payload), 3632 blocks_per_seg - F2FS_CP_PACKS - 3633 NR_CURSEG_PERSIST_TYPE); 3634 return -EFSCORRUPTED; 3635 } 3636 3637 /* check reserved ino info */ 3638 if (le32_to_cpu(raw_super->node_ino) != 1 || 3639 le32_to_cpu(raw_super->meta_ino) != 2 || 3640 le32_to_cpu(raw_super->root_ino) != 3) { 3641 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3642 le32_to_cpu(raw_super->node_ino), 3643 le32_to_cpu(raw_super->meta_ino), 3644 le32_to_cpu(raw_super->root_ino)); 3645 return -EFSCORRUPTED; 3646 } 3647 3648 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3649 if (sanity_check_area_boundary(sbi, folio, index)) 3650 return -EFSCORRUPTED; 3651 3652 return 0; 3653 } 3654 3655 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3656 { 3657 unsigned int total, fsmeta; 3658 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3659 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3660 unsigned int ovp_segments, reserved_segments; 3661 unsigned int main_segs, blocks_per_seg; 3662 unsigned int sit_segs, nat_segs; 3663 unsigned int sit_bitmap_size, nat_bitmap_size; 3664 unsigned int log_blocks_per_seg; 3665 unsigned int segment_count_main; 3666 unsigned int cp_pack_start_sum, cp_payload; 3667 block_t user_block_count, valid_user_blocks; 3668 block_t avail_node_count, valid_node_count; 3669 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3670 int i, j; 3671 3672 total = le32_to_cpu(raw_super->segment_count); 3673 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3674 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3675 fsmeta += sit_segs; 3676 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3677 fsmeta += nat_segs; 3678 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3679 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3680 3681 if (unlikely(fsmeta >= total)) 3682 return 1; 3683 3684 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3685 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3686 3687 if (!f2fs_sb_has_readonly(sbi) && 3688 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3689 ovp_segments == 0 || reserved_segments == 0)) { 3690 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3691 return 1; 3692 } 3693 user_block_count = le64_to_cpu(ckpt->user_block_count); 3694 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3695 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3696 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3697 if (!user_block_count || user_block_count >= 3698 segment_count_main << log_blocks_per_seg) { 3699 f2fs_err(sbi, "Wrong user_block_count: %u", 3700 user_block_count); 3701 return 1; 3702 } 3703 3704 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3705 if (valid_user_blocks > user_block_count) { 3706 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3707 valid_user_blocks, user_block_count); 3708 return 1; 3709 } 3710 3711 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3712 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3713 if (valid_node_count > avail_node_count) { 3714 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3715 valid_node_count, avail_node_count); 3716 return 1; 3717 } 3718 3719 main_segs = le32_to_cpu(raw_super->segment_count_main); 3720 blocks_per_seg = BLKS_PER_SEG(sbi); 3721 3722 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3723 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3724 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3725 return 1; 3726 3727 if (f2fs_sb_has_readonly(sbi)) 3728 goto check_data; 3729 3730 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3731 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3732 le32_to_cpu(ckpt->cur_node_segno[j])) { 3733 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3734 i, j, 3735 le32_to_cpu(ckpt->cur_node_segno[i])); 3736 return 1; 3737 } 3738 } 3739 } 3740 check_data: 3741 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3742 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3743 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3744 return 1; 3745 3746 if (f2fs_sb_has_readonly(sbi)) 3747 goto skip_cross; 3748 3749 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3750 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3751 le32_to_cpu(ckpt->cur_data_segno[j])) { 3752 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3753 i, j, 3754 le32_to_cpu(ckpt->cur_data_segno[i])); 3755 return 1; 3756 } 3757 } 3758 } 3759 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3760 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3761 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3762 le32_to_cpu(ckpt->cur_data_segno[j])) { 3763 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3764 i, j, 3765 le32_to_cpu(ckpt->cur_node_segno[i])); 3766 return 1; 3767 } 3768 } 3769 } 3770 skip_cross: 3771 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3772 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3773 3774 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3775 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3776 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3777 sit_bitmap_size, nat_bitmap_size); 3778 return 1; 3779 } 3780 3781 cp_pack_start_sum = __start_sum_addr(sbi); 3782 cp_payload = __cp_payload(sbi); 3783 if (cp_pack_start_sum < cp_payload + 1 || 3784 cp_pack_start_sum > blocks_per_seg - 1 - 3785 NR_CURSEG_PERSIST_TYPE) { 3786 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3787 cp_pack_start_sum); 3788 return 1; 3789 } 3790 3791 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3792 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3793 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3794 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3795 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3796 le32_to_cpu(ckpt->checksum_offset)); 3797 return 1; 3798 } 3799 3800 nat_blocks = nat_segs << log_blocks_per_seg; 3801 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3802 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3803 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3804 (cp_payload + F2FS_CP_PACKS + 3805 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3806 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3807 cp_payload, nat_bits_blocks); 3808 return 1; 3809 } 3810 3811 if (unlikely(f2fs_cp_error(sbi))) { 3812 f2fs_err(sbi, "A bug case: need to run fsck"); 3813 return 1; 3814 } 3815 return 0; 3816 } 3817 3818 static void init_sb_info(struct f2fs_sb_info *sbi) 3819 { 3820 struct f2fs_super_block *raw_super = sbi->raw_super; 3821 int i; 3822 3823 sbi->log_sectors_per_block = 3824 le32_to_cpu(raw_super->log_sectors_per_block); 3825 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3826 sbi->blocksize = BIT(sbi->log_blocksize); 3827 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3828 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3829 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3830 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3831 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3832 sbi->total_node_count = SEGS_TO_BLKS(sbi, 3833 ((le32_to_cpu(raw_super->segment_count_nat) / 2) * 3834 NAT_ENTRY_PER_BLOCK)); 3835 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3836 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3837 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3838 sbi->cur_victim_sec = NULL_SECNO; 3839 sbi->gc_mode = GC_NORMAL; 3840 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3841 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3842 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3843 sbi->migration_granularity = SEGS_PER_SEC(sbi); 3844 sbi->migration_window_granularity = f2fs_sb_has_blkzoned(sbi) ? 3845 DEF_MIGRATION_WINDOW_GRANULARITY_ZONED : SEGS_PER_SEC(sbi); 3846 sbi->seq_file_ra_mul = MIN_RA_MUL; 3847 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3848 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3849 spin_lock_init(&sbi->gc_remaining_trials_lock); 3850 atomic64_set(&sbi->current_atomic_write, 0); 3851 3852 sbi->dir_level = DEF_DIR_LEVEL; 3853 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3854 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3855 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3856 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3857 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3858 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3859 DEF_UMOUNT_DISCARD_TIMEOUT; 3860 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3861 3862 for (i = 0; i < NR_COUNT_TYPE; i++) 3863 atomic_set(&sbi->nr_pages[i], 0); 3864 3865 for (i = 0; i < META; i++) 3866 atomic_set(&sbi->wb_sync_req[i], 0); 3867 3868 INIT_LIST_HEAD(&sbi->s_list); 3869 mutex_init(&sbi->umount_mutex); 3870 init_f2fs_rwsem(&sbi->io_order_lock); 3871 spin_lock_init(&sbi->cp_lock); 3872 3873 sbi->dirty_device = 0; 3874 spin_lock_init(&sbi->dev_lock); 3875 3876 init_f2fs_rwsem(&sbi->sb_lock); 3877 init_f2fs_rwsem(&sbi->pin_sem); 3878 } 3879 3880 static int init_percpu_info(struct f2fs_sb_info *sbi) 3881 { 3882 int err; 3883 3884 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3885 if (err) 3886 return err; 3887 3888 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3889 if (err) 3890 goto err_valid_block; 3891 3892 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3893 GFP_KERNEL); 3894 if (err) 3895 goto err_node_block; 3896 return 0; 3897 3898 err_node_block: 3899 percpu_counter_destroy(&sbi->rf_node_block_count); 3900 err_valid_block: 3901 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3902 return err; 3903 } 3904 3905 #ifdef CONFIG_BLK_DEV_ZONED 3906 3907 struct f2fs_report_zones_args { 3908 struct f2fs_sb_info *sbi; 3909 struct f2fs_dev_info *dev; 3910 }; 3911 3912 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3913 void *data) 3914 { 3915 struct f2fs_report_zones_args *rz_args = data; 3916 block_t unusable_blocks = (zone->len - zone->capacity) >> 3917 F2FS_LOG_SECTORS_PER_BLOCK; 3918 3919 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3920 return 0; 3921 3922 set_bit(idx, rz_args->dev->blkz_seq); 3923 if (!rz_args->sbi->unusable_blocks_per_sec) { 3924 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3925 return 0; 3926 } 3927 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3928 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3929 return -EINVAL; 3930 } 3931 return 0; 3932 } 3933 3934 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3935 { 3936 struct block_device *bdev = FDEV(devi).bdev; 3937 sector_t nr_sectors = bdev_nr_sectors(bdev); 3938 struct f2fs_report_zones_args rep_zone_arg; 3939 u64 zone_sectors; 3940 unsigned int max_open_zones; 3941 int ret; 3942 3943 if (!f2fs_sb_has_blkzoned(sbi)) 3944 return 0; 3945 3946 if (bdev_is_zoned(FDEV(devi).bdev)) { 3947 max_open_zones = bdev_max_open_zones(bdev); 3948 if (max_open_zones && (max_open_zones < sbi->max_open_zones)) 3949 sbi->max_open_zones = max_open_zones; 3950 if (sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 3951 f2fs_err(sbi, 3952 "zoned: max open zones %u is too small, need at least %u open zones", 3953 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 3954 return -EINVAL; 3955 } 3956 } 3957 3958 zone_sectors = bdev_zone_sectors(bdev); 3959 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3960 SECTOR_TO_BLOCK(zone_sectors)) 3961 return -EINVAL; 3962 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3963 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 3964 sbi->blocks_per_blkz); 3965 if (nr_sectors & (zone_sectors - 1)) 3966 FDEV(devi).nr_blkz++; 3967 3968 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3969 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3970 * sizeof(unsigned long), 3971 GFP_KERNEL); 3972 if (!FDEV(devi).blkz_seq) 3973 return -ENOMEM; 3974 3975 rep_zone_arg.sbi = sbi; 3976 rep_zone_arg.dev = &FDEV(devi); 3977 3978 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3979 &rep_zone_arg); 3980 if (ret < 0) 3981 return ret; 3982 return 0; 3983 } 3984 #endif 3985 3986 /* 3987 * Read f2fs raw super block. 3988 * Because we have two copies of super block, so read both of them 3989 * to get the first valid one. If any one of them is broken, we pass 3990 * them recovery flag back to the caller. 3991 */ 3992 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3993 struct f2fs_super_block **raw_super, 3994 int *valid_super_block, int *recovery) 3995 { 3996 struct super_block *sb = sbi->sb; 3997 int block; 3998 struct folio *folio; 3999 struct f2fs_super_block *super; 4000 int err = 0; 4001 4002 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 4003 if (!super) 4004 return -ENOMEM; 4005 4006 for (block = 0; block < 2; block++) { 4007 folio = read_mapping_folio(sb->s_bdev->bd_mapping, block, NULL); 4008 if (IS_ERR(folio)) { 4009 f2fs_err(sbi, "Unable to read %dth superblock", 4010 block + 1); 4011 err = PTR_ERR(folio); 4012 *recovery = 1; 4013 continue; 4014 } 4015 4016 /* sanity checking of raw super */ 4017 err = sanity_check_raw_super(sbi, folio, block); 4018 if (err) { 4019 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 4020 block + 1); 4021 folio_put(folio); 4022 *recovery = 1; 4023 continue; 4024 } 4025 4026 if (!*raw_super) { 4027 memcpy(super, F2FS_SUPER_BLOCK(folio, block), 4028 sizeof(*super)); 4029 *valid_super_block = block; 4030 *raw_super = super; 4031 } 4032 folio_put(folio); 4033 } 4034 4035 /* No valid superblock */ 4036 if (!*raw_super) 4037 kfree(super); 4038 else 4039 err = 0; 4040 4041 return err; 4042 } 4043 4044 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 4045 { 4046 struct folio *folio; 4047 pgoff_t index; 4048 __u32 crc = 0; 4049 int err; 4050 4051 if ((recover && f2fs_readonly(sbi->sb)) || 4052 f2fs_hw_is_readonly(sbi)) { 4053 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 4054 return -EROFS; 4055 } 4056 4057 /* we should update superblock crc here */ 4058 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 4059 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 4060 offsetof(struct f2fs_super_block, crc)); 4061 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 4062 } 4063 4064 /* write back-up superblock first */ 4065 index = sbi->valid_super_block ? 0 : 1; 4066 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL); 4067 if (IS_ERR(folio)) 4068 return PTR_ERR(folio); 4069 err = __f2fs_commit_super(sbi, folio, index, true); 4070 folio_put(folio); 4071 4072 /* if we are in recovery path, skip writing valid superblock */ 4073 if (recover || err) 4074 return err; 4075 4076 /* write current valid superblock */ 4077 index = sbi->valid_super_block; 4078 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL); 4079 if (IS_ERR(folio)) 4080 return PTR_ERR(folio); 4081 err = __f2fs_commit_super(sbi, folio, index, true); 4082 folio_put(folio); 4083 return err; 4084 } 4085 4086 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 4087 { 4088 unsigned long flags; 4089 4090 spin_lock_irqsave(&sbi->error_lock, flags); 4091 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4092 sbi->stop_reason[reason]++; 4093 spin_unlock_irqrestore(&sbi->error_lock, flags); 4094 } 4095 4096 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4097 { 4098 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4099 unsigned long flags; 4100 int err; 4101 4102 f2fs_down_write(&sbi->sb_lock); 4103 4104 spin_lock_irqsave(&sbi->error_lock, flags); 4105 if (sbi->error_dirty) { 4106 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4107 MAX_F2FS_ERRORS); 4108 sbi->error_dirty = false; 4109 } 4110 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4111 spin_unlock_irqrestore(&sbi->error_lock, flags); 4112 4113 err = f2fs_commit_super(sbi, false); 4114 4115 f2fs_up_write(&sbi->sb_lock); 4116 if (err) 4117 f2fs_err_ratelimited(sbi, 4118 "f2fs_commit_super fails to record stop_reason, err:%d", 4119 err); 4120 } 4121 4122 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4123 { 4124 unsigned long flags; 4125 4126 spin_lock_irqsave(&sbi->error_lock, flags); 4127 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4128 set_bit(flag, (unsigned long *)sbi->errors); 4129 sbi->error_dirty = true; 4130 } 4131 spin_unlock_irqrestore(&sbi->error_lock, flags); 4132 } 4133 4134 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4135 { 4136 unsigned long flags; 4137 bool need_update = false; 4138 4139 spin_lock_irqsave(&sbi->error_lock, flags); 4140 if (sbi->error_dirty) { 4141 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4142 MAX_F2FS_ERRORS); 4143 sbi->error_dirty = false; 4144 need_update = true; 4145 } 4146 spin_unlock_irqrestore(&sbi->error_lock, flags); 4147 4148 return need_update; 4149 } 4150 4151 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4152 { 4153 int err; 4154 4155 f2fs_down_write(&sbi->sb_lock); 4156 4157 if (!f2fs_update_errors(sbi)) 4158 goto out_unlock; 4159 4160 err = f2fs_commit_super(sbi, false); 4161 if (err) 4162 f2fs_err_ratelimited(sbi, 4163 "f2fs_commit_super fails to record errors:%u, err:%d", 4164 error, err); 4165 out_unlock: 4166 f2fs_up_write(&sbi->sb_lock); 4167 } 4168 4169 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4170 { 4171 f2fs_save_errors(sbi, error); 4172 f2fs_record_errors(sbi, error); 4173 } 4174 4175 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4176 { 4177 f2fs_save_errors(sbi, error); 4178 4179 if (!sbi->error_dirty) 4180 return; 4181 if (!test_bit(error, (unsigned long *)sbi->errors)) 4182 return; 4183 schedule_work(&sbi->s_error_work); 4184 } 4185 4186 static bool system_going_down(void) 4187 { 4188 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4189 || system_state == SYSTEM_RESTART; 4190 } 4191 4192 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason) 4193 { 4194 struct super_block *sb = sbi->sb; 4195 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4196 bool continue_fs = !shutdown && 4197 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4198 4199 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4200 4201 if (!f2fs_hw_is_readonly(sbi)) { 4202 save_stop_reason(sbi, reason); 4203 4204 /* 4205 * always create an asynchronous task to record stop_reason 4206 * in order to avoid potential deadlock when running into 4207 * f2fs_record_stop_reason() synchronously. 4208 */ 4209 schedule_work(&sbi->s_error_work); 4210 } 4211 4212 /* 4213 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4214 * could panic during 'reboot -f' as the underlying device got already 4215 * disabled. 4216 */ 4217 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4218 !shutdown && !system_going_down() && 4219 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4220 panic("F2FS-fs (device %s): panic forced after error\n", 4221 sb->s_id); 4222 4223 if (shutdown) 4224 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4225 4226 /* 4227 * Continue filesystem operators if errors=continue. Should not set 4228 * RO by shutdown, since RO bypasses thaw_super which can hang the 4229 * system. 4230 */ 4231 if (continue_fs || f2fs_readonly(sb) || shutdown) { 4232 f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason); 4233 return; 4234 } 4235 4236 f2fs_warn(sbi, "Remounting filesystem read-only"); 4237 4238 /* 4239 * We have already set CP_ERROR_FLAG flag to stop all updates 4240 * to filesystem, so it doesn't need to set SB_RDONLY flag here 4241 * because the flag should be set covered w/ sb->s_umount semaphore 4242 * via remount procedure, otherwise, it will confuse code like 4243 * freeze_super() which will lead to deadlocks and other problems. 4244 */ 4245 } 4246 4247 static void f2fs_record_error_work(struct work_struct *work) 4248 { 4249 struct f2fs_sb_info *sbi = container_of(work, 4250 struct f2fs_sb_info, s_error_work); 4251 4252 f2fs_record_stop_reason(sbi); 4253 } 4254 4255 static inline unsigned int get_first_zoned_segno(struct f2fs_sb_info *sbi) 4256 { 4257 int devi; 4258 4259 for (devi = 0; devi < sbi->s_ndevs; devi++) 4260 if (bdev_is_zoned(FDEV(devi).bdev)) 4261 return GET_SEGNO(sbi, FDEV(devi).start_blk); 4262 return 0; 4263 } 4264 4265 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4266 { 4267 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4268 unsigned int max_devices = MAX_DEVICES; 4269 unsigned int logical_blksize; 4270 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4271 int i; 4272 4273 /* Initialize single device information */ 4274 if (!RDEV(0).path[0]) { 4275 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4276 return 0; 4277 max_devices = 1; 4278 } 4279 4280 /* 4281 * Initialize multiple devices information, or single 4282 * zoned block device information. 4283 */ 4284 sbi->devs = f2fs_kzalloc(sbi, 4285 array_size(max_devices, 4286 sizeof(struct f2fs_dev_info)), 4287 GFP_KERNEL); 4288 if (!sbi->devs) 4289 return -ENOMEM; 4290 4291 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4292 sbi->aligned_blksize = true; 4293 #ifdef CONFIG_BLK_DEV_ZONED 4294 sbi->max_open_zones = UINT_MAX; 4295 sbi->blkzone_alloc_policy = BLKZONE_ALLOC_PRIOR_SEQ; 4296 #endif 4297 4298 for (i = 0; i < max_devices; i++) { 4299 if (i == 0) 4300 FDEV(0).bdev_file = sbi->sb->s_bdev_file; 4301 else if (!RDEV(i).path[0]) 4302 break; 4303 4304 if (max_devices > 1) { 4305 /* Multi-device mount */ 4306 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4307 FDEV(i).total_segments = 4308 le32_to_cpu(RDEV(i).total_segments); 4309 if (i == 0) { 4310 FDEV(i).start_blk = 0; 4311 FDEV(i).end_blk = FDEV(i).start_blk + 4312 SEGS_TO_BLKS(sbi, 4313 FDEV(i).total_segments) - 1 + 4314 le32_to_cpu(raw_super->segment0_blkaddr); 4315 } else { 4316 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4317 FDEV(i).end_blk = FDEV(i).start_blk + 4318 SEGS_TO_BLKS(sbi, 4319 FDEV(i).total_segments) - 1; 4320 FDEV(i).bdev_file = bdev_file_open_by_path( 4321 FDEV(i).path, mode, sbi->sb, NULL); 4322 } 4323 } 4324 if (IS_ERR(FDEV(i).bdev_file)) 4325 return PTR_ERR(FDEV(i).bdev_file); 4326 4327 FDEV(i).bdev = file_bdev(FDEV(i).bdev_file); 4328 /* to release errored devices */ 4329 sbi->s_ndevs = i + 1; 4330 4331 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4332 sbi->aligned_blksize = false; 4333 4334 #ifdef CONFIG_BLK_DEV_ZONED 4335 if (bdev_is_zoned(FDEV(i).bdev)) { 4336 if (!f2fs_sb_has_blkzoned(sbi)) { 4337 f2fs_err(sbi, "Zoned block device feature not enabled"); 4338 return -EINVAL; 4339 } 4340 if (init_blkz_info(sbi, i)) { 4341 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4342 return -EINVAL; 4343 } 4344 if (max_devices == 1) 4345 break; 4346 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)", 4347 i, FDEV(i).path, 4348 FDEV(i).total_segments, 4349 FDEV(i).start_blk, FDEV(i).end_blk); 4350 continue; 4351 } 4352 #endif 4353 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4354 i, FDEV(i).path, 4355 FDEV(i).total_segments, 4356 FDEV(i).start_blk, FDEV(i).end_blk); 4357 } 4358 return 0; 4359 } 4360 4361 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4362 { 4363 #if IS_ENABLED(CONFIG_UNICODE) 4364 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4365 const struct f2fs_sb_encodings *encoding_info; 4366 struct unicode_map *encoding; 4367 __u16 encoding_flags; 4368 4369 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4370 if (!encoding_info) { 4371 f2fs_err(sbi, 4372 "Encoding requested by superblock is unknown"); 4373 return -EINVAL; 4374 } 4375 4376 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4377 encoding = utf8_load(encoding_info->version); 4378 if (IS_ERR(encoding)) { 4379 f2fs_err(sbi, 4380 "can't mount with superblock charset: %s-%u.%u.%u " 4381 "not supported by the kernel. flags: 0x%x.", 4382 encoding_info->name, 4383 unicode_major(encoding_info->version), 4384 unicode_minor(encoding_info->version), 4385 unicode_rev(encoding_info->version), 4386 encoding_flags); 4387 return PTR_ERR(encoding); 4388 } 4389 f2fs_info(sbi, "Using encoding defined by superblock: " 4390 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4391 unicode_major(encoding_info->version), 4392 unicode_minor(encoding_info->version), 4393 unicode_rev(encoding_info->version), 4394 encoding_flags); 4395 4396 sbi->sb->s_encoding = encoding; 4397 sbi->sb->s_encoding_flags = encoding_flags; 4398 } 4399 #else 4400 if (f2fs_sb_has_casefold(sbi)) { 4401 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4402 return -EINVAL; 4403 } 4404 #endif 4405 return 0; 4406 } 4407 4408 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4409 { 4410 /* adjust parameters according to the volume size */ 4411 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4412 if (f2fs_block_unit_discard(sbi)) 4413 SM_I(sbi)->dcc_info->discard_granularity = 4414 MIN_DISCARD_GRANULARITY; 4415 if (!f2fs_lfs_mode(sbi)) 4416 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4417 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4418 } 4419 4420 sbi->readdir_ra = true; 4421 } 4422 4423 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4424 { 4425 struct f2fs_sb_info *sbi; 4426 struct f2fs_super_block *raw_super; 4427 struct inode *root; 4428 int err; 4429 bool skip_recovery = false, need_fsck = false; 4430 char *options = NULL; 4431 int recovery, i, valid_super_block; 4432 struct curseg_info *seg_i; 4433 int retry_cnt = 1; 4434 #ifdef CONFIG_QUOTA 4435 bool quota_enabled = false; 4436 #endif 4437 4438 try_onemore: 4439 err = -EINVAL; 4440 raw_super = NULL; 4441 valid_super_block = -1; 4442 recovery = 0; 4443 4444 /* allocate memory for f2fs-specific super block info */ 4445 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4446 if (!sbi) 4447 return -ENOMEM; 4448 4449 sbi->sb = sb; 4450 4451 /* initialize locks within allocated memory */ 4452 init_f2fs_rwsem(&sbi->gc_lock); 4453 mutex_init(&sbi->writepages); 4454 init_f2fs_rwsem(&sbi->cp_global_sem); 4455 init_f2fs_rwsem(&sbi->node_write); 4456 init_f2fs_rwsem(&sbi->node_change); 4457 spin_lock_init(&sbi->stat_lock); 4458 init_f2fs_rwsem(&sbi->cp_rwsem); 4459 init_f2fs_rwsem(&sbi->quota_sem); 4460 init_waitqueue_head(&sbi->cp_wait); 4461 spin_lock_init(&sbi->error_lock); 4462 4463 for (i = 0; i < NR_INODE_TYPE; i++) { 4464 INIT_LIST_HEAD(&sbi->inode_list[i]); 4465 spin_lock_init(&sbi->inode_lock[i]); 4466 } 4467 mutex_init(&sbi->flush_lock); 4468 4469 /* Load the checksum driver */ 4470 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4471 if (IS_ERR(sbi->s_chksum_driver)) { 4472 f2fs_err(sbi, "Cannot load crc32 driver."); 4473 err = PTR_ERR(sbi->s_chksum_driver); 4474 sbi->s_chksum_driver = NULL; 4475 goto free_sbi; 4476 } 4477 4478 /* set a block size */ 4479 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4480 f2fs_err(sbi, "unable to set blocksize"); 4481 goto free_sbi; 4482 } 4483 4484 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4485 &recovery); 4486 if (err) 4487 goto free_sbi; 4488 4489 sb->s_fs_info = sbi; 4490 sbi->raw_super = raw_super; 4491 4492 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4493 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4494 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4495 4496 /* precompute checksum seed for metadata */ 4497 if (f2fs_sb_has_inode_chksum(sbi)) 4498 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4499 sizeof(raw_super->uuid)); 4500 4501 default_options(sbi, false); 4502 /* parse mount options */ 4503 options = kstrdup((const char *)data, GFP_KERNEL); 4504 if (data && !options) { 4505 err = -ENOMEM; 4506 goto free_sb_buf; 4507 } 4508 4509 err = parse_options(sb, options, false); 4510 if (err) 4511 goto free_options; 4512 4513 sb->s_maxbytes = max_file_blocks(NULL) << 4514 le32_to_cpu(raw_super->log_blocksize); 4515 sb->s_max_links = F2FS_LINK_MAX; 4516 4517 err = f2fs_setup_casefold(sbi); 4518 if (err) 4519 goto free_options; 4520 4521 #ifdef CONFIG_QUOTA 4522 sb->dq_op = &f2fs_quota_operations; 4523 sb->s_qcop = &f2fs_quotactl_ops; 4524 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4525 4526 if (f2fs_sb_has_quota_ino(sbi)) { 4527 for (i = 0; i < MAXQUOTAS; i++) { 4528 if (f2fs_qf_ino(sbi->sb, i)) 4529 sbi->nquota_files++; 4530 } 4531 } 4532 #endif 4533 4534 sb->s_op = &f2fs_sops; 4535 #ifdef CONFIG_FS_ENCRYPTION 4536 sb->s_cop = &f2fs_cryptops; 4537 #endif 4538 #ifdef CONFIG_FS_VERITY 4539 sb->s_vop = &f2fs_verityops; 4540 #endif 4541 sb->s_xattr = f2fs_xattr_handlers; 4542 sb->s_export_op = &f2fs_export_ops; 4543 sb->s_magic = F2FS_SUPER_MAGIC; 4544 sb->s_time_gran = 1; 4545 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4546 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4547 super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid)); 4548 super_set_sysfs_name_bdev(sb); 4549 sb->s_iflags |= SB_I_CGROUPWB; 4550 4551 /* init f2fs-specific super block info */ 4552 sbi->valid_super_block = valid_super_block; 4553 4554 /* disallow all the data/node/meta page writes */ 4555 set_sbi_flag(sbi, SBI_POR_DOING); 4556 4557 err = f2fs_init_write_merge_io(sbi); 4558 if (err) 4559 goto free_bio_info; 4560 4561 init_sb_info(sbi); 4562 4563 err = f2fs_init_iostat(sbi); 4564 if (err) 4565 goto free_bio_info; 4566 4567 err = init_percpu_info(sbi); 4568 if (err) 4569 goto free_iostat; 4570 4571 /* init per sbi slab cache */ 4572 err = f2fs_init_xattr_caches(sbi); 4573 if (err) 4574 goto free_percpu; 4575 err = f2fs_init_page_array_cache(sbi); 4576 if (err) 4577 goto free_xattr_cache; 4578 4579 /* get an inode for meta space */ 4580 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4581 if (IS_ERR(sbi->meta_inode)) { 4582 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4583 err = PTR_ERR(sbi->meta_inode); 4584 goto free_page_array_cache; 4585 } 4586 4587 err = f2fs_get_valid_checkpoint(sbi); 4588 if (err) { 4589 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4590 goto free_meta_inode; 4591 } 4592 4593 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4594 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4595 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4596 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4597 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4598 } 4599 4600 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4601 set_sbi_flag(sbi, SBI_NEED_FSCK); 4602 4603 /* Initialize device list */ 4604 err = f2fs_scan_devices(sbi); 4605 if (err) { 4606 f2fs_err(sbi, "Failed to find devices"); 4607 goto free_devices; 4608 } 4609 4610 err = f2fs_init_post_read_wq(sbi); 4611 if (err) { 4612 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4613 goto free_devices; 4614 } 4615 4616 sbi->total_valid_node_count = 4617 le32_to_cpu(sbi->ckpt->valid_node_count); 4618 percpu_counter_set(&sbi->total_valid_inode_count, 4619 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4620 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4621 sbi->total_valid_block_count = 4622 le64_to_cpu(sbi->ckpt->valid_block_count); 4623 sbi->last_valid_block_count = sbi->total_valid_block_count; 4624 sbi->reserved_blocks = 0; 4625 sbi->current_reserved_blocks = 0; 4626 limit_reserve_root(sbi); 4627 adjust_unusable_cap_perc(sbi); 4628 4629 f2fs_init_extent_cache_info(sbi); 4630 4631 f2fs_init_ino_entry_info(sbi); 4632 4633 f2fs_init_fsync_node_info(sbi); 4634 4635 /* setup checkpoint request control and start checkpoint issue thread */ 4636 f2fs_init_ckpt_req_control(sbi); 4637 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4638 test_opt(sbi, MERGE_CHECKPOINT)) { 4639 err = f2fs_start_ckpt_thread(sbi); 4640 if (err) { 4641 f2fs_err(sbi, 4642 "Failed to start F2FS issue_checkpoint_thread (%d)", 4643 err); 4644 goto stop_ckpt_thread; 4645 } 4646 } 4647 4648 /* setup f2fs internal modules */ 4649 err = f2fs_build_segment_manager(sbi); 4650 if (err) { 4651 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4652 err); 4653 goto free_sm; 4654 } 4655 err = f2fs_build_node_manager(sbi); 4656 if (err) { 4657 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4658 err); 4659 goto free_nm; 4660 } 4661 4662 /* For write statistics */ 4663 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4664 4665 /* get segno of first zoned block device */ 4666 sbi->first_zoned_segno = get_first_zoned_segno(sbi); 4667 4668 /* Read accumulated write IO statistics if exists */ 4669 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4670 if (__exist_node_summaries(sbi)) 4671 sbi->kbytes_written = 4672 le64_to_cpu(seg_i->journal->info.kbytes_written); 4673 4674 f2fs_build_gc_manager(sbi); 4675 4676 err = f2fs_build_stats(sbi); 4677 if (err) 4678 goto free_nm; 4679 4680 /* get an inode for node space */ 4681 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4682 if (IS_ERR(sbi->node_inode)) { 4683 f2fs_err(sbi, "Failed to read node inode"); 4684 err = PTR_ERR(sbi->node_inode); 4685 goto free_stats; 4686 } 4687 4688 /* read root inode and dentry */ 4689 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4690 if (IS_ERR(root)) { 4691 f2fs_err(sbi, "Failed to read root inode"); 4692 err = PTR_ERR(root); 4693 goto free_node_inode; 4694 } 4695 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4696 !root->i_size || !root->i_nlink) { 4697 iput(root); 4698 err = -EINVAL; 4699 goto free_node_inode; 4700 } 4701 4702 generic_set_sb_d_ops(sb); 4703 sb->s_root = d_make_root(root); /* allocate root dentry */ 4704 if (!sb->s_root) { 4705 err = -ENOMEM; 4706 goto free_node_inode; 4707 } 4708 4709 err = f2fs_init_compress_inode(sbi); 4710 if (err) 4711 goto free_root_inode; 4712 4713 err = f2fs_register_sysfs(sbi); 4714 if (err) 4715 goto free_compress_inode; 4716 4717 #ifdef CONFIG_QUOTA 4718 /* Enable quota usage during mount */ 4719 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4720 err = f2fs_enable_quotas(sb); 4721 if (err) 4722 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4723 } 4724 4725 quota_enabled = f2fs_recover_quota_begin(sbi); 4726 #endif 4727 /* if there are any orphan inodes, free them */ 4728 err = f2fs_recover_orphan_inodes(sbi); 4729 if (err) 4730 goto free_meta; 4731 4732 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4733 goto reset_checkpoint; 4734 4735 /* recover fsynced data */ 4736 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4737 !test_opt(sbi, NORECOVERY)) { 4738 /* 4739 * mount should be failed, when device has readonly mode, and 4740 * previous checkpoint was not done by clean system shutdown. 4741 */ 4742 if (f2fs_hw_is_readonly(sbi)) { 4743 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4744 err = f2fs_recover_fsync_data(sbi, true); 4745 if (err > 0) { 4746 err = -EROFS; 4747 f2fs_err(sbi, "Need to recover fsync data, but " 4748 "write access unavailable, please try " 4749 "mount w/ disable_roll_forward or norecovery"); 4750 } 4751 if (err < 0) 4752 goto free_meta; 4753 } 4754 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4755 goto reset_checkpoint; 4756 } 4757 4758 if (need_fsck) 4759 set_sbi_flag(sbi, SBI_NEED_FSCK); 4760 4761 if (skip_recovery) 4762 goto reset_checkpoint; 4763 4764 err = f2fs_recover_fsync_data(sbi, false); 4765 if (err < 0) { 4766 if (err != -ENOMEM) 4767 skip_recovery = true; 4768 need_fsck = true; 4769 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4770 err); 4771 goto free_meta; 4772 } 4773 } else { 4774 err = f2fs_recover_fsync_data(sbi, true); 4775 4776 if (!f2fs_readonly(sb) && err > 0) { 4777 err = -EINVAL; 4778 f2fs_err(sbi, "Need to recover fsync data"); 4779 goto free_meta; 4780 } 4781 } 4782 4783 #ifdef CONFIG_QUOTA 4784 f2fs_recover_quota_end(sbi, quota_enabled); 4785 #endif 4786 reset_checkpoint: 4787 /* 4788 * If the f2fs is not readonly and fsync data recovery succeeds, 4789 * write pointer consistency of cursegs and other zones are already 4790 * checked and fixed during recovery. However, if recovery fails, 4791 * write pointers are left untouched, and retry-mount should check 4792 * them here. 4793 */ 4794 if (skip_recovery) 4795 err = f2fs_check_and_fix_write_pointer(sbi); 4796 if (err) 4797 goto free_meta; 4798 4799 /* f2fs_recover_fsync_data() cleared this already */ 4800 clear_sbi_flag(sbi, SBI_POR_DOING); 4801 4802 err = f2fs_init_inmem_curseg(sbi); 4803 if (err) 4804 goto sync_free_meta; 4805 4806 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4807 err = f2fs_disable_checkpoint(sbi); 4808 if (err) 4809 goto sync_free_meta; 4810 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4811 f2fs_enable_checkpoint(sbi); 4812 } 4813 4814 /* 4815 * If filesystem is not mounted as read-only then 4816 * do start the gc_thread. 4817 */ 4818 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4819 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4820 /* After POR, we can run background GC thread.*/ 4821 err = f2fs_start_gc_thread(sbi); 4822 if (err) 4823 goto sync_free_meta; 4824 } 4825 kvfree(options); 4826 4827 /* recover broken superblock */ 4828 if (recovery) { 4829 err = f2fs_commit_super(sbi, true); 4830 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4831 sbi->valid_super_block ? 1 : 2, err); 4832 } 4833 4834 f2fs_join_shrinker(sbi); 4835 4836 f2fs_tuning_parameters(sbi); 4837 4838 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4839 cur_cp_version(F2FS_CKPT(sbi))); 4840 f2fs_update_time(sbi, CP_TIME); 4841 f2fs_update_time(sbi, REQ_TIME); 4842 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4843 return 0; 4844 4845 sync_free_meta: 4846 /* safe to flush all the data */ 4847 sync_filesystem(sbi->sb); 4848 retry_cnt = 0; 4849 4850 free_meta: 4851 #ifdef CONFIG_QUOTA 4852 f2fs_truncate_quota_inode_pages(sb); 4853 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4854 f2fs_quota_off_umount(sbi->sb); 4855 #endif 4856 /* 4857 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4858 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4859 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4860 * falls into an infinite loop in f2fs_sync_meta_pages(). 4861 */ 4862 truncate_inode_pages_final(META_MAPPING(sbi)); 4863 /* evict some inodes being cached by GC */ 4864 evict_inodes(sb); 4865 f2fs_unregister_sysfs(sbi); 4866 free_compress_inode: 4867 f2fs_destroy_compress_inode(sbi); 4868 free_root_inode: 4869 dput(sb->s_root); 4870 sb->s_root = NULL; 4871 free_node_inode: 4872 f2fs_release_ino_entry(sbi, true); 4873 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4874 iput(sbi->node_inode); 4875 sbi->node_inode = NULL; 4876 free_stats: 4877 f2fs_destroy_stats(sbi); 4878 free_nm: 4879 /* stop discard thread before destroying node manager */ 4880 f2fs_stop_discard_thread(sbi); 4881 f2fs_destroy_node_manager(sbi); 4882 free_sm: 4883 f2fs_destroy_segment_manager(sbi); 4884 stop_ckpt_thread: 4885 f2fs_stop_ckpt_thread(sbi); 4886 /* flush s_error_work before sbi destroy */ 4887 flush_work(&sbi->s_error_work); 4888 f2fs_destroy_post_read_wq(sbi); 4889 free_devices: 4890 destroy_device_list(sbi); 4891 kvfree(sbi->ckpt); 4892 free_meta_inode: 4893 make_bad_inode(sbi->meta_inode); 4894 iput(sbi->meta_inode); 4895 sbi->meta_inode = NULL; 4896 free_page_array_cache: 4897 f2fs_destroy_page_array_cache(sbi); 4898 free_xattr_cache: 4899 f2fs_destroy_xattr_caches(sbi); 4900 free_percpu: 4901 destroy_percpu_info(sbi); 4902 free_iostat: 4903 f2fs_destroy_iostat(sbi); 4904 free_bio_info: 4905 for (i = 0; i < NR_PAGE_TYPE; i++) 4906 kvfree(sbi->write_io[i]); 4907 4908 #if IS_ENABLED(CONFIG_UNICODE) 4909 utf8_unload(sb->s_encoding); 4910 sb->s_encoding = NULL; 4911 #endif 4912 free_options: 4913 #ifdef CONFIG_QUOTA 4914 for (i = 0; i < MAXQUOTAS; i++) 4915 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4916 #endif 4917 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4918 kvfree(options); 4919 free_sb_buf: 4920 kfree(raw_super); 4921 free_sbi: 4922 if (sbi->s_chksum_driver) 4923 crypto_free_shash(sbi->s_chksum_driver); 4924 kfree(sbi); 4925 sb->s_fs_info = NULL; 4926 4927 /* give only one another chance */ 4928 if (retry_cnt > 0 && skip_recovery) { 4929 retry_cnt--; 4930 shrink_dcache_sb(sb); 4931 goto try_onemore; 4932 } 4933 return err; 4934 } 4935 4936 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4937 const char *dev_name, void *data) 4938 { 4939 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4940 } 4941 4942 static void kill_f2fs_super(struct super_block *sb) 4943 { 4944 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4945 4946 if (sb->s_root) { 4947 set_sbi_flag(sbi, SBI_IS_CLOSE); 4948 f2fs_stop_gc_thread(sbi); 4949 f2fs_stop_discard_thread(sbi); 4950 4951 #ifdef CONFIG_F2FS_FS_COMPRESSION 4952 /* 4953 * latter evict_inode() can bypass checking and invalidating 4954 * compress inode cache. 4955 */ 4956 if (test_opt(sbi, COMPRESS_CACHE)) 4957 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4958 #endif 4959 4960 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4961 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4962 struct cp_control cpc = { 4963 .reason = CP_UMOUNT, 4964 }; 4965 stat_inc_cp_call_count(sbi, TOTAL_CALL); 4966 f2fs_write_checkpoint(sbi, &cpc); 4967 } 4968 4969 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4970 sb->s_flags &= ~SB_RDONLY; 4971 } 4972 kill_block_super(sb); 4973 /* Release block devices last, after fscrypt_destroy_keyring(). */ 4974 if (sbi) { 4975 destroy_device_list(sbi); 4976 kfree(sbi); 4977 sb->s_fs_info = NULL; 4978 } 4979 } 4980 4981 static struct file_system_type f2fs_fs_type = { 4982 .owner = THIS_MODULE, 4983 .name = "f2fs", 4984 .mount = f2fs_mount, 4985 .kill_sb = kill_f2fs_super, 4986 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4987 }; 4988 MODULE_ALIAS_FS("f2fs"); 4989 4990 static int __init init_inodecache(void) 4991 { 4992 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4993 sizeof(struct f2fs_inode_info), 0, 4994 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4995 return f2fs_inode_cachep ? 0 : -ENOMEM; 4996 } 4997 4998 static void destroy_inodecache(void) 4999 { 5000 /* 5001 * Make sure all delayed rcu free inodes are flushed before we 5002 * destroy cache. 5003 */ 5004 rcu_barrier(); 5005 kmem_cache_destroy(f2fs_inode_cachep); 5006 } 5007 5008 static int __init init_f2fs_fs(void) 5009 { 5010 int err; 5011 5012 err = init_inodecache(); 5013 if (err) 5014 goto fail; 5015 err = f2fs_create_node_manager_caches(); 5016 if (err) 5017 goto free_inodecache; 5018 err = f2fs_create_segment_manager_caches(); 5019 if (err) 5020 goto free_node_manager_caches; 5021 err = f2fs_create_checkpoint_caches(); 5022 if (err) 5023 goto free_segment_manager_caches; 5024 err = f2fs_create_recovery_cache(); 5025 if (err) 5026 goto free_checkpoint_caches; 5027 err = f2fs_create_extent_cache(); 5028 if (err) 5029 goto free_recovery_cache; 5030 err = f2fs_create_garbage_collection_cache(); 5031 if (err) 5032 goto free_extent_cache; 5033 err = f2fs_init_sysfs(); 5034 if (err) 5035 goto free_garbage_collection_cache; 5036 err = f2fs_init_shrinker(); 5037 if (err) 5038 goto free_sysfs; 5039 f2fs_create_root_stats(); 5040 err = f2fs_init_post_read_processing(); 5041 if (err) 5042 goto free_root_stats; 5043 err = f2fs_init_iostat_processing(); 5044 if (err) 5045 goto free_post_read; 5046 err = f2fs_init_bio_entry_cache(); 5047 if (err) 5048 goto free_iostat; 5049 err = f2fs_init_bioset(); 5050 if (err) 5051 goto free_bio_entry_cache; 5052 err = f2fs_init_compress_mempool(); 5053 if (err) 5054 goto free_bioset; 5055 err = f2fs_init_compress_cache(); 5056 if (err) 5057 goto free_compress_mempool; 5058 err = f2fs_create_casefold_cache(); 5059 if (err) 5060 goto free_compress_cache; 5061 err = register_filesystem(&f2fs_fs_type); 5062 if (err) 5063 goto free_casefold_cache; 5064 return 0; 5065 free_casefold_cache: 5066 f2fs_destroy_casefold_cache(); 5067 free_compress_cache: 5068 f2fs_destroy_compress_cache(); 5069 free_compress_mempool: 5070 f2fs_destroy_compress_mempool(); 5071 free_bioset: 5072 f2fs_destroy_bioset(); 5073 free_bio_entry_cache: 5074 f2fs_destroy_bio_entry_cache(); 5075 free_iostat: 5076 f2fs_destroy_iostat_processing(); 5077 free_post_read: 5078 f2fs_destroy_post_read_processing(); 5079 free_root_stats: 5080 f2fs_destroy_root_stats(); 5081 f2fs_exit_shrinker(); 5082 free_sysfs: 5083 f2fs_exit_sysfs(); 5084 free_garbage_collection_cache: 5085 f2fs_destroy_garbage_collection_cache(); 5086 free_extent_cache: 5087 f2fs_destroy_extent_cache(); 5088 free_recovery_cache: 5089 f2fs_destroy_recovery_cache(); 5090 free_checkpoint_caches: 5091 f2fs_destroy_checkpoint_caches(); 5092 free_segment_manager_caches: 5093 f2fs_destroy_segment_manager_caches(); 5094 free_node_manager_caches: 5095 f2fs_destroy_node_manager_caches(); 5096 free_inodecache: 5097 destroy_inodecache(); 5098 fail: 5099 return err; 5100 } 5101 5102 static void __exit exit_f2fs_fs(void) 5103 { 5104 unregister_filesystem(&f2fs_fs_type); 5105 f2fs_destroy_casefold_cache(); 5106 f2fs_destroy_compress_cache(); 5107 f2fs_destroy_compress_mempool(); 5108 f2fs_destroy_bioset(); 5109 f2fs_destroy_bio_entry_cache(); 5110 f2fs_destroy_iostat_processing(); 5111 f2fs_destroy_post_read_processing(); 5112 f2fs_destroy_root_stats(); 5113 f2fs_exit_shrinker(); 5114 f2fs_exit_sysfs(); 5115 f2fs_destroy_garbage_collection_cache(); 5116 f2fs_destroy_extent_cache(); 5117 f2fs_destroy_recovery_cache(); 5118 f2fs_destroy_checkpoint_caches(); 5119 f2fs_destroy_segment_manager_caches(); 5120 f2fs_destroy_node_manager_caches(); 5121 destroy_inodecache(); 5122 } 5123 5124 module_init(init_f2fs_fs) 5125 module_exit(exit_f2fs_fs) 5126 5127 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5128 MODULE_DESCRIPTION("Flash Friendly File System"); 5129 MODULE_LICENSE("GPL"); 5130 MODULE_SOFTDEP("pre: crc32"); 5131 5132