1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/f2fs.h> 36 37 static struct proc_dir_entry *f2fs_proc_root; 38 static struct kmem_cache *f2fs_inode_cachep; 39 static struct kset *f2fs_kset; 40 41 enum { 42 Opt_gc_background, 43 Opt_disable_roll_forward, 44 Opt_discard, 45 Opt_noheap, 46 Opt_user_xattr, 47 Opt_nouser_xattr, 48 Opt_acl, 49 Opt_noacl, 50 Opt_active_logs, 51 Opt_disable_ext_identify, 52 Opt_inline_xattr, 53 Opt_inline_data, 54 Opt_inline_dentry, 55 Opt_flush_merge, 56 Opt_nobarrier, 57 Opt_fastboot, 58 Opt_err, 59 }; 60 61 static match_table_t f2fs_tokens = { 62 {Opt_gc_background, "background_gc=%s"}, 63 {Opt_disable_roll_forward, "disable_roll_forward"}, 64 {Opt_discard, "discard"}, 65 {Opt_noheap, "no_heap"}, 66 {Opt_user_xattr, "user_xattr"}, 67 {Opt_nouser_xattr, "nouser_xattr"}, 68 {Opt_acl, "acl"}, 69 {Opt_noacl, "noacl"}, 70 {Opt_active_logs, "active_logs=%u"}, 71 {Opt_disable_ext_identify, "disable_ext_identify"}, 72 {Opt_inline_xattr, "inline_xattr"}, 73 {Opt_inline_data, "inline_data"}, 74 {Opt_inline_dentry, "inline_dentry"}, 75 {Opt_flush_merge, "flush_merge"}, 76 {Opt_nobarrier, "nobarrier"}, 77 {Opt_fastboot, "fastboot"}, 78 {Opt_err, NULL}, 79 }; 80 81 /* Sysfs support for f2fs */ 82 enum { 83 GC_THREAD, /* struct f2fs_gc_thread */ 84 SM_INFO, /* struct f2fs_sm_info */ 85 NM_INFO, /* struct f2fs_nm_info */ 86 F2FS_SBI, /* struct f2fs_sb_info */ 87 }; 88 89 struct f2fs_attr { 90 struct attribute attr; 91 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 92 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 93 const char *, size_t); 94 int struct_type; 95 int offset; 96 }; 97 98 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 99 { 100 if (struct_type == GC_THREAD) 101 return (unsigned char *)sbi->gc_thread; 102 else if (struct_type == SM_INFO) 103 return (unsigned char *)SM_I(sbi); 104 else if (struct_type == NM_INFO) 105 return (unsigned char *)NM_I(sbi); 106 else if (struct_type == F2FS_SBI) 107 return (unsigned char *)sbi; 108 return NULL; 109 } 110 111 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 112 struct f2fs_sb_info *sbi, char *buf) 113 { 114 unsigned char *ptr = NULL; 115 unsigned int *ui; 116 117 ptr = __struct_ptr(sbi, a->struct_type); 118 if (!ptr) 119 return -EINVAL; 120 121 ui = (unsigned int *)(ptr + a->offset); 122 123 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 124 } 125 126 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 127 struct f2fs_sb_info *sbi, 128 const char *buf, size_t count) 129 { 130 unsigned char *ptr; 131 unsigned long t; 132 unsigned int *ui; 133 ssize_t ret; 134 135 ptr = __struct_ptr(sbi, a->struct_type); 136 if (!ptr) 137 return -EINVAL; 138 139 ui = (unsigned int *)(ptr + a->offset); 140 141 ret = kstrtoul(skip_spaces(buf), 0, &t); 142 if (ret < 0) 143 return ret; 144 *ui = t; 145 return count; 146 } 147 148 static ssize_t f2fs_attr_show(struct kobject *kobj, 149 struct attribute *attr, char *buf) 150 { 151 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 152 s_kobj); 153 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 154 155 return a->show ? a->show(a, sbi, buf) : 0; 156 } 157 158 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 159 const char *buf, size_t len) 160 { 161 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 162 s_kobj); 163 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 164 165 return a->store ? a->store(a, sbi, buf, len) : 0; 166 } 167 168 static void f2fs_sb_release(struct kobject *kobj) 169 { 170 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 171 s_kobj); 172 complete(&sbi->s_kobj_unregister); 173 } 174 175 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 176 static struct f2fs_attr f2fs_attr_##_name = { \ 177 .attr = {.name = __stringify(_name), .mode = _mode }, \ 178 .show = _show, \ 179 .store = _store, \ 180 .struct_type = _struct_type, \ 181 .offset = _offset \ 182 } 183 184 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 185 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 186 f2fs_sbi_show, f2fs_sbi_store, \ 187 offsetof(struct struct_name, elname)) 188 189 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 190 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 191 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 192 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 193 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 194 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 195 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 196 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 197 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 198 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 199 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 200 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 201 202 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 203 static struct attribute *f2fs_attrs[] = { 204 ATTR_LIST(gc_min_sleep_time), 205 ATTR_LIST(gc_max_sleep_time), 206 ATTR_LIST(gc_no_gc_sleep_time), 207 ATTR_LIST(gc_idle), 208 ATTR_LIST(reclaim_segments), 209 ATTR_LIST(max_small_discards), 210 ATTR_LIST(ipu_policy), 211 ATTR_LIST(min_ipu_util), 212 ATTR_LIST(min_fsync_blocks), 213 ATTR_LIST(max_victim_search), 214 ATTR_LIST(dir_level), 215 ATTR_LIST(ram_thresh), 216 NULL, 217 }; 218 219 static const struct sysfs_ops f2fs_attr_ops = { 220 .show = f2fs_attr_show, 221 .store = f2fs_attr_store, 222 }; 223 224 static struct kobj_type f2fs_ktype = { 225 .default_attrs = f2fs_attrs, 226 .sysfs_ops = &f2fs_attr_ops, 227 .release = f2fs_sb_release, 228 }; 229 230 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 231 { 232 struct va_format vaf; 233 va_list args; 234 235 va_start(args, fmt); 236 vaf.fmt = fmt; 237 vaf.va = &args; 238 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 239 va_end(args); 240 } 241 242 static void init_once(void *foo) 243 { 244 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 245 246 inode_init_once(&fi->vfs_inode); 247 } 248 249 static int parse_options(struct super_block *sb, char *options) 250 { 251 struct f2fs_sb_info *sbi = F2FS_SB(sb); 252 substring_t args[MAX_OPT_ARGS]; 253 char *p, *name; 254 int arg = 0; 255 256 if (!options) 257 return 0; 258 259 while ((p = strsep(&options, ",")) != NULL) { 260 int token; 261 if (!*p) 262 continue; 263 /* 264 * Initialize args struct so we know whether arg was 265 * found; some options take optional arguments. 266 */ 267 args[0].to = args[0].from = NULL; 268 token = match_token(p, f2fs_tokens, args); 269 270 switch (token) { 271 case Opt_gc_background: 272 name = match_strdup(&args[0]); 273 274 if (!name) 275 return -ENOMEM; 276 if (strlen(name) == 2 && !strncmp(name, "on", 2)) 277 set_opt(sbi, BG_GC); 278 else if (strlen(name) == 3 && !strncmp(name, "off", 3)) 279 clear_opt(sbi, BG_GC); 280 else { 281 kfree(name); 282 return -EINVAL; 283 } 284 kfree(name); 285 break; 286 case Opt_disable_roll_forward: 287 set_opt(sbi, DISABLE_ROLL_FORWARD); 288 break; 289 case Opt_discard: 290 set_opt(sbi, DISCARD); 291 break; 292 case Opt_noheap: 293 set_opt(sbi, NOHEAP); 294 break; 295 #ifdef CONFIG_F2FS_FS_XATTR 296 case Opt_user_xattr: 297 set_opt(sbi, XATTR_USER); 298 break; 299 case Opt_nouser_xattr: 300 clear_opt(sbi, XATTR_USER); 301 break; 302 case Opt_inline_xattr: 303 set_opt(sbi, INLINE_XATTR); 304 break; 305 #else 306 case Opt_user_xattr: 307 f2fs_msg(sb, KERN_INFO, 308 "user_xattr options not supported"); 309 break; 310 case Opt_nouser_xattr: 311 f2fs_msg(sb, KERN_INFO, 312 "nouser_xattr options not supported"); 313 break; 314 case Opt_inline_xattr: 315 f2fs_msg(sb, KERN_INFO, 316 "inline_xattr options not supported"); 317 break; 318 #endif 319 #ifdef CONFIG_F2FS_FS_POSIX_ACL 320 case Opt_acl: 321 set_opt(sbi, POSIX_ACL); 322 break; 323 case Opt_noacl: 324 clear_opt(sbi, POSIX_ACL); 325 break; 326 #else 327 case Opt_acl: 328 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 329 break; 330 case Opt_noacl: 331 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 332 break; 333 #endif 334 case Opt_active_logs: 335 if (args->from && match_int(args, &arg)) 336 return -EINVAL; 337 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 338 return -EINVAL; 339 sbi->active_logs = arg; 340 break; 341 case Opt_disable_ext_identify: 342 set_opt(sbi, DISABLE_EXT_IDENTIFY); 343 break; 344 case Opt_inline_data: 345 set_opt(sbi, INLINE_DATA); 346 break; 347 case Opt_inline_dentry: 348 set_opt(sbi, INLINE_DENTRY); 349 break; 350 case Opt_flush_merge: 351 set_opt(sbi, FLUSH_MERGE); 352 break; 353 case Opt_nobarrier: 354 set_opt(sbi, NOBARRIER); 355 break; 356 case Opt_fastboot: 357 set_opt(sbi, FASTBOOT); 358 break; 359 default: 360 f2fs_msg(sb, KERN_ERR, 361 "Unrecognized mount option \"%s\" or missing value", 362 p); 363 return -EINVAL; 364 } 365 } 366 return 0; 367 } 368 369 static struct inode *f2fs_alloc_inode(struct super_block *sb) 370 { 371 struct f2fs_inode_info *fi; 372 373 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 374 if (!fi) 375 return NULL; 376 377 init_once((void *) fi); 378 379 /* Initialize f2fs-specific inode info */ 380 fi->vfs_inode.i_version = 1; 381 atomic_set(&fi->dirty_pages, 0); 382 fi->i_current_depth = 1; 383 fi->i_advise = 0; 384 rwlock_init(&fi->ext.ext_lock); 385 init_rwsem(&fi->i_sem); 386 INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS); 387 INIT_LIST_HEAD(&fi->inmem_pages); 388 mutex_init(&fi->inmem_lock); 389 390 set_inode_flag(fi, FI_NEW_INODE); 391 392 if (test_opt(F2FS_SB(sb), INLINE_XATTR)) 393 set_inode_flag(fi, FI_INLINE_XATTR); 394 395 /* Will be used by directory only */ 396 fi->i_dir_level = F2FS_SB(sb)->dir_level; 397 398 return &fi->vfs_inode; 399 } 400 401 static int f2fs_drop_inode(struct inode *inode) 402 { 403 /* 404 * This is to avoid a deadlock condition like below. 405 * writeback_single_inode(inode) 406 * - f2fs_write_data_page 407 * - f2fs_gc -> iput -> evict 408 * - inode_wait_for_writeback(inode) 409 */ 410 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) 411 return 0; 412 return generic_drop_inode(inode); 413 } 414 415 /* 416 * f2fs_dirty_inode() is called from __mark_inode_dirty() 417 * 418 * We should call set_dirty_inode to write the dirty inode through write_inode. 419 */ 420 static void f2fs_dirty_inode(struct inode *inode, int flags) 421 { 422 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 423 } 424 425 static void f2fs_i_callback(struct rcu_head *head) 426 { 427 struct inode *inode = container_of(head, struct inode, i_rcu); 428 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 429 } 430 431 static void f2fs_destroy_inode(struct inode *inode) 432 { 433 call_rcu(&inode->i_rcu, f2fs_i_callback); 434 } 435 436 static void f2fs_put_super(struct super_block *sb) 437 { 438 struct f2fs_sb_info *sbi = F2FS_SB(sb); 439 440 if (sbi->s_proc) { 441 remove_proc_entry("segment_info", sbi->s_proc); 442 remove_proc_entry(sb->s_id, f2fs_proc_root); 443 } 444 kobject_del(&sbi->s_kobj); 445 446 f2fs_destroy_stats(sbi); 447 stop_gc_thread(sbi); 448 449 /* We don't need to do checkpoint when it's clean */ 450 if (sbi->s_dirty) { 451 struct cp_control cpc = { 452 .reason = CP_UMOUNT, 453 }; 454 write_checkpoint(sbi, &cpc); 455 } 456 457 /* 458 * normally superblock is clean, so we need to release this. 459 * In addition, EIO will skip do checkpoint, we need this as well. 460 */ 461 release_dirty_inode(sbi); 462 release_discard_addrs(sbi); 463 464 iput(sbi->node_inode); 465 iput(sbi->meta_inode); 466 467 /* destroy f2fs internal modules */ 468 destroy_node_manager(sbi); 469 destroy_segment_manager(sbi); 470 471 kfree(sbi->ckpt); 472 kobject_put(&sbi->s_kobj); 473 wait_for_completion(&sbi->s_kobj_unregister); 474 475 sb->s_fs_info = NULL; 476 brelse(sbi->raw_super_buf); 477 kfree(sbi); 478 } 479 480 int f2fs_sync_fs(struct super_block *sb, int sync) 481 { 482 struct f2fs_sb_info *sbi = F2FS_SB(sb); 483 484 trace_f2fs_sync_fs(sb, sync); 485 486 if (sync) { 487 struct cp_control cpc; 488 489 cpc.reason = test_opt(sbi, FASTBOOT) ? CP_UMOUNT : CP_SYNC; 490 mutex_lock(&sbi->gc_mutex); 491 write_checkpoint(sbi, &cpc); 492 mutex_unlock(&sbi->gc_mutex); 493 } else { 494 f2fs_balance_fs(sbi); 495 } 496 497 return 0; 498 } 499 500 static int f2fs_freeze(struct super_block *sb) 501 { 502 int err; 503 504 if (f2fs_readonly(sb)) 505 return 0; 506 507 err = f2fs_sync_fs(sb, 1); 508 return err; 509 } 510 511 static int f2fs_unfreeze(struct super_block *sb) 512 { 513 return 0; 514 } 515 516 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 517 { 518 struct super_block *sb = dentry->d_sb; 519 struct f2fs_sb_info *sbi = F2FS_SB(sb); 520 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 521 block_t total_count, user_block_count, start_count, ovp_count; 522 523 total_count = le64_to_cpu(sbi->raw_super->block_count); 524 user_block_count = sbi->user_block_count; 525 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 526 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 527 buf->f_type = F2FS_SUPER_MAGIC; 528 buf->f_bsize = sbi->blocksize; 529 530 buf->f_blocks = total_count - start_count; 531 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; 532 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 533 534 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 535 buf->f_ffree = buf->f_files - valid_inode_count(sbi); 536 537 buf->f_namelen = F2FS_NAME_LEN; 538 buf->f_fsid.val[0] = (u32)id; 539 buf->f_fsid.val[1] = (u32)(id >> 32); 540 541 return 0; 542 } 543 544 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 545 { 546 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 547 548 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) 549 seq_printf(seq, ",background_gc=%s", "on"); 550 else 551 seq_printf(seq, ",background_gc=%s", "off"); 552 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 553 seq_puts(seq, ",disable_roll_forward"); 554 if (test_opt(sbi, DISCARD)) 555 seq_puts(seq, ",discard"); 556 if (test_opt(sbi, NOHEAP)) 557 seq_puts(seq, ",no_heap_alloc"); 558 #ifdef CONFIG_F2FS_FS_XATTR 559 if (test_opt(sbi, XATTR_USER)) 560 seq_puts(seq, ",user_xattr"); 561 else 562 seq_puts(seq, ",nouser_xattr"); 563 if (test_opt(sbi, INLINE_XATTR)) 564 seq_puts(seq, ",inline_xattr"); 565 #endif 566 #ifdef CONFIG_F2FS_FS_POSIX_ACL 567 if (test_opt(sbi, POSIX_ACL)) 568 seq_puts(seq, ",acl"); 569 else 570 seq_puts(seq, ",noacl"); 571 #endif 572 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 573 seq_puts(seq, ",disable_ext_identify"); 574 if (test_opt(sbi, INLINE_DATA)) 575 seq_puts(seq, ",inline_data"); 576 if (test_opt(sbi, INLINE_DENTRY)) 577 seq_puts(seq, ",inline_dentry"); 578 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 579 seq_puts(seq, ",flush_merge"); 580 if (test_opt(sbi, NOBARRIER)) 581 seq_puts(seq, ",nobarrier"); 582 if (test_opt(sbi, FASTBOOT)) 583 seq_puts(seq, ",fastboot"); 584 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 585 586 return 0; 587 } 588 589 static int segment_info_seq_show(struct seq_file *seq, void *offset) 590 { 591 struct super_block *sb = seq->private; 592 struct f2fs_sb_info *sbi = F2FS_SB(sb); 593 unsigned int total_segs = 594 le32_to_cpu(sbi->raw_super->segment_count_main); 595 int i; 596 597 seq_puts(seq, "format: segment_type|valid_blocks\n" 598 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 599 600 for (i = 0; i < total_segs; i++) { 601 struct seg_entry *se = get_seg_entry(sbi, i); 602 603 if ((i % 10) == 0) 604 seq_printf(seq, "%-5d", i); 605 seq_printf(seq, "%d|%-3u", se->type, 606 get_valid_blocks(sbi, i, 1)); 607 if ((i % 10) == 9 || i == (total_segs - 1)) 608 seq_putc(seq, '\n'); 609 else 610 seq_putc(seq, ' '); 611 } 612 613 return 0; 614 } 615 616 static int segment_info_open_fs(struct inode *inode, struct file *file) 617 { 618 return single_open(file, segment_info_seq_show, PDE_DATA(inode)); 619 } 620 621 static const struct file_operations f2fs_seq_segment_info_fops = { 622 .owner = THIS_MODULE, 623 .open = segment_info_open_fs, 624 .read = seq_read, 625 .llseek = seq_lseek, 626 .release = single_release, 627 }; 628 629 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 630 { 631 struct f2fs_sb_info *sbi = F2FS_SB(sb); 632 struct f2fs_mount_info org_mount_opt; 633 int err, active_logs; 634 bool need_restart_gc = false; 635 bool need_stop_gc = false; 636 637 sync_filesystem(sb); 638 639 /* 640 * Save the old mount options in case we 641 * need to restore them. 642 */ 643 org_mount_opt = sbi->mount_opt; 644 active_logs = sbi->active_logs; 645 646 sbi->mount_opt.opt = 0; 647 sbi->active_logs = NR_CURSEG_TYPE; 648 649 /* parse mount options */ 650 err = parse_options(sb, data); 651 if (err) 652 goto restore_opts; 653 654 /* 655 * Previous and new state of filesystem is RO, 656 * so skip checking GC and FLUSH_MERGE conditions. 657 */ 658 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 659 goto skip; 660 661 /* 662 * We stop the GC thread if FS is mounted as RO 663 * or if background_gc = off is passed in mount 664 * option. Also sync the filesystem. 665 */ 666 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 667 if (sbi->gc_thread) { 668 stop_gc_thread(sbi); 669 f2fs_sync_fs(sb, 1); 670 need_restart_gc = true; 671 } 672 } else if (!sbi->gc_thread) { 673 err = start_gc_thread(sbi); 674 if (err) 675 goto restore_opts; 676 need_stop_gc = true; 677 } 678 679 /* 680 * We stop issue flush thread if FS is mounted as RO 681 * or if flush_merge is not passed in mount option. 682 */ 683 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 684 destroy_flush_cmd_control(sbi); 685 } else if (!SM_I(sbi)->cmd_control_info) { 686 err = create_flush_cmd_control(sbi); 687 if (err) 688 goto restore_gc; 689 } 690 skip: 691 /* Update the POSIXACL Flag */ 692 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 693 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 694 return 0; 695 restore_gc: 696 if (need_restart_gc) { 697 if (start_gc_thread(sbi)) 698 f2fs_msg(sbi->sb, KERN_WARNING, 699 "background gc thread has stopped"); 700 } else if (need_stop_gc) { 701 stop_gc_thread(sbi); 702 } 703 restore_opts: 704 sbi->mount_opt = org_mount_opt; 705 sbi->active_logs = active_logs; 706 return err; 707 } 708 709 static struct super_operations f2fs_sops = { 710 .alloc_inode = f2fs_alloc_inode, 711 .drop_inode = f2fs_drop_inode, 712 .destroy_inode = f2fs_destroy_inode, 713 .write_inode = f2fs_write_inode, 714 .dirty_inode = f2fs_dirty_inode, 715 .show_options = f2fs_show_options, 716 .evict_inode = f2fs_evict_inode, 717 .put_super = f2fs_put_super, 718 .sync_fs = f2fs_sync_fs, 719 .freeze_fs = f2fs_freeze, 720 .unfreeze_fs = f2fs_unfreeze, 721 .statfs = f2fs_statfs, 722 .remount_fs = f2fs_remount, 723 }; 724 725 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 726 u64 ino, u32 generation) 727 { 728 struct f2fs_sb_info *sbi = F2FS_SB(sb); 729 struct inode *inode; 730 731 if (check_nid_range(sbi, ino)) 732 return ERR_PTR(-ESTALE); 733 734 /* 735 * f2fs_iget isn't quite right if the inode is currently unallocated! 736 * However f2fs_iget currently does appropriate checks to handle stale 737 * inodes so everything is OK. 738 */ 739 inode = f2fs_iget(sb, ino); 740 if (IS_ERR(inode)) 741 return ERR_CAST(inode); 742 if (unlikely(generation && inode->i_generation != generation)) { 743 /* we didn't find the right inode.. */ 744 iput(inode); 745 return ERR_PTR(-ESTALE); 746 } 747 return inode; 748 } 749 750 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 751 int fh_len, int fh_type) 752 { 753 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 754 f2fs_nfs_get_inode); 755 } 756 757 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 758 int fh_len, int fh_type) 759 { 760 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 761 f2fs_nfs_get_inode); 762 } 763 764 static const struct export_operations f2fs_export_ops = { 765 .fh_to_dentry = f2fs_fh_to_dentry, 766 .fh_to_parent = f2fs_fh_to_parent, 767 .get_parent = f2fs_get_parent, 768 }; 769 770 static loff_t max_file_size(unsigned bits) 771 { 772 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 773 loff_t leaf_count = ADDRS_PER_BLOCK; 774 775 /* two direct node blocks */ 776 result += (leaf_count * 2); 777 778 /* two indirect node blocks */ 779 leaf_count *= NIDS_PER_BLOCK; 780 result += (leaf_count * 2); 781 782 /* one double indirect node block */ 783 leaf_count *= NIDS_PER_BLOCK; 784 result += leaf_count; 785 786 result <<= bits; 787 return result; 788 } 789 790 static int sanity_check_raw_super(struct super_block *sb, 791 struct f2fs_super_block *raw_super) 792 { 793 unsigned int blocksize; 794 795 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 796 f2fs_msg(sb, KERN_INFO, 797 "Magic Mismatch, valid(0x%x) - read(0x%x)", 798 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 799 return 1; 800 } 801 802 /* Currently, support only 4KB page cache size */ 803 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) { 804 f2fs_msg(sb, KERN_INFO, 805 "Invalid page_cache_size (%lu), supports only 4KB\n", 806 PAGE_CACHE_SIZE); 807 return 1; 808 } 809 810 /* Currently, support only 4KB block size */ 811 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 812 if (blocksize != F2FS_BLKSIZE) { 813 f2fs_msg(sb, KERN_INFO, 814 "Invalid blocksize (%u), supports only 4KB\n", 815 blocksize); 816 return 1; 817 } 818 819 /* Currently, support 512/1024/2048/4096 bytes sector size */ 820 if (le32_to_cpu(raw_super->log_sectorsize) > 821 F2FS_MAX_LOG_SECTOR_SIZE || 822 le32_to_cpu(raw_super->log_sectorsize) < 823 F2FS_MIN_LOG_SECTOR_SIZE) { 824 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 825 le32_to_cpu(raw_super->log_sectorsize)); 826 return 1; 827 } 828 if (le32_to_cpu(raw_super->log_sectors_per_block) + 829 le32_to_cpu(raw_super->log_sectorsize) != 830 F2FS_MAX_LOG_SECTOR_SIZE) { 831 f2fs_msg(sb, KERN_INFO, 832 "Invalid log sectors per block(%u) log sectorsize(%u)", 833 le32_to_cpu(raw_super->log_sectors_per_block), 834 le32_to_cpu(raw_super->log_sectorsize)); 835 return 1; 836 } 837 return 0; 838 } 839 840 static int sanity_check_ckpt(struct f2fs_sb_info *sbi) 841 { 842 unsigned int total, fsmeta; 843 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 844 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 845 846 total = le32_to_cpu(raw_super->segment_count); 847 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 848 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 849 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 850 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 851 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 852 853 if (unlikely(fsmeta >= total)) 854 return 1; 855 856 if (unlikely(f2fs_cp_error(sbi))) { 857 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 858 return 1; 859 } 860 return 0; 861 } 862 863 static void init_sb_info(struct f2fs_sb_info *sbi) 864 { 865 struct f2fs_super_block *raw_super = sbi->raw_super; 866 int i; 867 868 sbi->log_sectors_per_block = 869 le32_to_cpu(raw_super->log_sectors_per_block); 870 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 871 sbi->blocksize = 1 << sbi->log_blocksize; 872 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 873 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 874 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 875 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 876 sbi->total_sections = le32_to_cpu(raw_super->section_count); 877 sbi->total_node_count = 878 (le32_to_cpu(raw_super->segment_count_nat) / 2) 879 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 880 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 881 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 882 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 883 sbi->cur_victim_sec = NULL_SECNO; 884 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 885 886 for (i = 0; i < NR_COUNT_TYPE; i++) 887 atomic_set(&sbi->nr_pages[i], 0); 888 889 sbi->dir_level = DEF_DIR_LEVEL; 890 sbi->need_fsck = false; 891 } 892 893 /* 894 * Read f2fs raw super block. 895 * Because we have two copies of super block, so read the first one at first, 896 * if the first one is invalid, move to read the second one. 897 */ 898 static int read_raw_super_block(struct super_block *sb, 899 struct f2fs_super_block **raw_super, 900 struct buffer_head **raw_super_buf) 901 { 902 int block = 0; 903 904 retry: 905 *raw_super_buf = sb_bread(sb, block); 906 if (!*raw_super_buf) { 907 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 908 block + 1); 909 if (block == 0) { 910 block++; 911 goto retry; 912 } else { 913 return -EIO; 914 } 915 } 916 917 *raw_super = (struct f2fs_super_block *) 918 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET); 919 920 /* sanity checking of raw super */ 921 if (sanity_check_raw_super(sb, *raw_super)) { 922 brelse(*raw_super_buf); 923 f2fs_msg(sb, KERN_ERR, 924 "Can't find valid F2FS filesystem in %dth superblock", 925 block + 1); 926 if (block == 0) { 927 block++; 928 goto retry; 929 } else { 930 return -EINVAL; 931 } 932 } 933 934 return 0; 935 } 936 937 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 938 { 939 struct f2fs_sb_info *sbi; 940 struct f2fs_super_block *raw_super = NULL; 941 struct buffer_head *raw_super_buf; 942 struct inode *root; 943 long err = -EINVAL; 944 bool retry = true; 945 int i; 946 947 try_onemore: 948 /* allocate memory for f2fs-specific super block info */ 949 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 950 if (!sbi) 951 return -ENOMEM; 952 953 /* set a block size */ 954 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 955 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 956 goto free_sbi; 957 } 958 959 err = read_raw_super_block(sb, &raw_super, &raw_super_buf); 960 if (err) 961 goto free_sbi; 962 963 sb->s_fs_info = sbi; 964 /* init some FS parameters */ 965 sbi->active_logs = NR_CURSEG_TYPE; 966 967 set_opt(sbi, BG_GC); 968 969 #ifdef CONFIG_F2FS_FS_XATTR 970 set_opt(sbi, XATTR_USER); 971 #endif 972 #ifdef CONFIG_F2FS_FS_POSIX_ACL 973 set_opt(sbi, POSIX_ACL); 974 #endif 975 /* parse mount options */ 976 err = parse_options(sb, (char *)data); 977 if (err) 978 goto free_sb_buf; 979 980 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize)); 981 sb->s_max_links = F2FS_LINK_MAX; 982 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 983 984 sb->s_op = &f2fs_sops; 985 sb->s_xattr = f2fs_xattr_handlers; 986 sb->s_export_op = &f2fs_export_ops; 987 sb->s_magic = F2FS_SUPER_MAGIC; 988 sb->s_time_gran = 1; 989 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 990 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 991 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 992 993 /* init f2fs-specific super block info */ 994 sbi->sb = sb; 995 sbi->raw_super = raw_super; 996 sbi->raw_super_buf = raw_super_buf; 997 mutex_init(&sbi->gc_mutex); 998 mutex_init(&sbi->writepages); 999 mutex_init(&sbi->cp_mutex); 1000 init_rwsem(&sbi->node_write); 1001 sbi->por_doing = false; 1002 spin_lock_init(&sbi->stat_lock); 1003 1004 init_rwsem(&sbi->read_io.io_rwsem); 1005 sbi->read_io.sbi = sbi; 1006 sbi->read_io.bio = NULL; 1007 for (i = 0; i < NR_PAGE_TYPE; i++) { 1008 init_rwsem(&sbi->write_io[i].io_rwsem); 1009 sbi->write_io[i].sbi = sbi; 1010 sbi->write_io[i].bio = NULL; 1011 } 1012 1013 init_rwsem(&sbi->cp_rwsem); 1014 init_waitqueue_head(&sbi->cp_wait); 1015 init_sb_info(sbi); 1016 1017 /* get an inode for meta space */ 1018 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1019 if (IS_ERR(sbi->meta_inode)) { 1020 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1021 err = PTR_ERR(sbi->meta_inode); 1022 goto free_sb_buf; 1023 } 1024 1025 err = get_valid_checkpoint(sbi); 1026 if (err) { 1027 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1028 goto free_meta_inode; 1029 } 1030 1031 /* sanity checking of checkpoint */ 1032 err = -EINVAL; 1033 if (sanity_check_ckpt(sbi)) { 1034 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint"); 1035 goto free_cp; 1036 } 1037 1038 sbi->total_valid_node_count = 1039 le32_to_cpu(sbi->ckpt->valid_node_count); 1040 sbi->total_valid_inode_count = 1041 le32_to_cpu(sbi->ckpt->valid_inode_count); 1042 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1043 sbi->total_valid_block_count = 1044 le64_to_cpu(sbi->ckpt->valid_block_count); 1045 sbi->last_valid_block_count = sbi->total_valid_block_count; 1046 sbi->alloc_valid_block_count = 0; 1047 INIT_LIST_HEAD(&sbi->dir_inode_list); 1048 spin_lock_init(&sbi->dir_inode_lock); 1049 1050 init_ino_entry_info(sbi); 1051 1052 /* setup f2fs internal modules */ 1053 err = build_segment_manager(sbi); 1054 if (err) { 1055 f2fs_msg(sb, KERN_ERR, 1056 "Failed to initialize F2FS segment manager"); 1057 goto free_sm; 1058 } 1059 err = build_node_manager(sbi); 1060 if (err) { 1061 f2fs_msg(sb, KERN_ERR, 1062 "Failed to initialize F2FS node manager"); 1063 goto free_nm; 1064 } 1065 1066 build_gc_manager(sbi); 1067 1068 /* get an inode for node space */ 1069 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1070 if (IS_ERR(sbi->node_inode)) { 1071 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1072 err = PTR_ERR(sbi->node_inode); 1073 goto free_nm; 1074 } 1075 1076 /* if there are nt orphan nodes free them */ 1077 recover_orphan_inodes(sbi); 1078 1079 /* read root inode and dentry */ 1080 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1081 if (IS_ERR(root)) { 1082 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1083 err = PTR_ERR(root); 1084 goto free_node_inode; 1085 } 1086 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1087 iput(root); 1088 err = -EINVAL; 1089 goto free_node_inode; 1090 } 1091 1092 sb->s_root = d_make_root(root); /* allocate root dentry */ 1093 if (!sb->s_root) { 1094 err = -ENOMEM; 1095 goto free_root_inode; 1096 } 1097 1098 err = f2fs_build_stats(sbi); 1099 if (err) 1100 goto free_root_inode; 1101 1102 if (f2fs_proc_root) 1103 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1104 1105 if (sbi->s_proc) 1106 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1107 &f2fs_seq_segment_info_fops, sb); 1108 1109 if (test_opt(sbi, DISCARD)) { 1110 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1111 if (!blk_queue_discard(q)) 1112 f2fs_msg(sb, KERN_WARNING, 1113 "mounting with \"discard\" option, but " 1114 "the device does not support discard"); 1115 } 1116 1117 sbi->s_kobj.kset = f2fs_kset; 1118 init_completion(&sbi->s_kobj_unregister); 1119 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1120 "%s", sb->s_id); 1121 if (err) 1122 goto free_proc; 1123 1124 if (!retry) 1125 sbi->need_fsck = true; 1126 1127 /* recover fsynced data */ 1128 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1129 err = recover_fsync_data(sbi); 1130 if (err) { 1131 f2fs_msg(sb, KERN_ERR, 1132 "Cannot recover all fsync data errno=%ld", err); 1133 goto free_kobj; 1134 } 1135 } 1136 1137 /* 1138 * If filesystem is not mounted as read-only then 1139 * do start the gc_thread. 1140 */ 1141 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 1142 /* After POR, we can run background GC thread.*/ 1143 err = start_gc_thread(sbi); 1144 if (err) 1145 goto free_kobj; 1146 } 1147 return 0; 1148 1149 free_kobj: 1150 kobject_del(&sbi->s_kobj); 1151 free_proc: 1152 if (sbi->s_proc) { 1153 remove_proc_entry("segment_info", sbi->s_proc); 1154 remove_proc_entry(sb->s_id, f2fs_proc_root); 1155 } 1156 f2fs_destroy_stats(sbi); 1157 free_root_inode: 1158 dput(sb->s_root); 1159 sb->s_root = NULL; 1160 free_node_inode: 1161 iput(sbi->node_inode); 1162 free_nm: 1163 destroy_node_manager(sbi); 1164 free_sm: 1165 destroy_segment_manager(sbi); 1166 free_cp: 1167 kfree(sbi->ckpt); 1168 free_meta_inode: 1169 make_bad_inode(sbi->meta_inode); 1170 iput(sbi->meta_inode); 1171 free_sb_buf: 1172 brelse(raw_super_buf); 1173 free_sbi: 1174 kfree(sbi); 1175 1176 /* give only one another chance */ 1177 if (retry) { 1178 retry = 0; 1179 shrink_dcache_sb(sb); 1180 goto try_onemore; 1181 } 1182 return err; 1183 } 1184 1185 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1186 const char *dev_name, void *data) 1187 { 1188 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1189 } 1190 1191 static struct file_system_type f2fs_fs_type = { 1192 .owner = THIS_MODULE, 1193 .name = "f2fs", 1194 .mount = f2fs_mount, 1195 .kill_sb = kill_block_super, 1196 .fs_flags = FS_REQUIRES_DEV, 1197 }; 1198 MODULE_ALIAS_FS("f2fs"); 1199 1200 static int __init init_inodecache(void) 1201 { 1202 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache", 1203 sizeof(struct f2fs_inode_info)); 1204 if (!f2fs_inode_cachep) 1205 return -ENOMEM; 1206 return 0; 1207 } 1208 1209 static void destroy_inodecache(void) 1210 { 1211 /* 1212 * Make sure all delayed rcu free inodes are flushed before we 1213 * destroy cache. 1214 */ 1215 rcu_barrier(); 1216 kmem_cache_destroy(f2fs_inode_cachep); 1217 } 1218 1219 static int __init init_f2fs_fs(void) 1220 { 1221 int err; 1222 1223 err = init_inodecache(); 1224 if (err) 1225 goto fail; 1226 err = create_node_manager_caches(); 1227 if (err) 1228 goto free_inodecache; 1229 err = create_segment_manager_caches(); 1230 if (err) 1231 goto free_node_manager_caches; 1232 err = create_gc_caches(); 1233 if (err) 1234 goto free_segment_manager_caches; 1235 err = create_checkpoint_caches(); 1236 if (err) 1237 goto free_gc_caches; 1238 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1239 if (!f2fs_kset) { 1240 err = -ENOMEM; 1241 goto free_checkpoint_caches; 1242 } 1243 err = register_filesystem(&f2fs_fs_type); 1244 if (err) 1245 goto free_kset; 1246 f2fs_create_root_stats(); 1247 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 1248 return 0; 1249 1250 free_kset: 1251 kset_unregister(f2fs_kset); 1252 free_checkpoint_caches: 1253 destroy_checkpoint_caches(); 1254 free_gc_caches: 1255 destroy_gc_caches(); 1256 free_segment_manager_caches: 1257 destroy_segment_manager_caches(); 1258 free_node_manager_caches: 1259 destroy_node_manager_caches(); 1260 free_inodecache: 1261 destroy_inodecache(); 1262 fail: 1263 return err; 1264 } 1265 1266 static void __exit exit_f2fs_fs(void) 1267 { 1268 remove_proc_entry("fs/f2fs", NULL); 1269 f2fs_destroy_root_stats(); 1270 unregister_filesystem(&f2fs_fs_type); 1271 destroy_checkpoint_caches(); 1272 destroy_gc_caches(); 1273 destroy_segment_manager_caches(); 1274 destroy_node_manager_caches(); 1275 destroy_inodecache(); 1276 kset_unregister(f2fs_kset); 1277 } 1278 1279 module_init(init_f2fs_fs) 1280 module_exit(exit_f2fs_fs) 1281 1282 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 1283 MODULE_DESCRIPTION("Flash Friendly File System"); 1284 MODULE_LICENSE("GPL"); 1285