1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 #include <linux/zstd.h> 29 #include <linux/lz4.h> 30 31 #include "f2fs.h" 32 #include "node.h" 33 #include "segment.h" 34 #include "xattr.h" 35 #include "gc.h" 36 #include "iostat.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/f2fs.h> 40 41 static struct kmem_cache *f2fs_inode_cachep; 42 43 #ifdef CONFIG_F2FS_FAULT_INJECTION 44 45 const char *f2fs_fault_name[FAULT_MAX] = { 46 [FAULT_KMALLOC] = "kmalloc", 47 [FAULT_KVMALLOC] = "kvmalloc", 48 [FAULT_PAGE_ALLOC] = "page alloc", 49 [FAULT_PAGE_GET] = "page get", 50 [FAULT_ALLOC_NID] = "alloc nid", 51 [FAULT_ORPHAN] = "orphan", 52 [FAULT_BLOCK] = "no more block", 53 [FAULT_DIR_DEPTH] = "too big dir depth", 54 [FAULT_EVICT_INODE] = "evict_inode fail", 55 [FAULT_TRUNCATE] = "truncate fail", 56 [FAULT_READ_IO] = "read IO error", 57 [FAULT_CHECKPOINT] = "checkpoint error", 58 [FAULT_DISCARD] = "discard error", 59 [FAULT_WRITE_IO] = "write IO error", 60 [FAULT_SLAB_ALLOC] = "slab alloc", 61 [FAULT_DQUOT_INIT] = "dquot initialize", 62 [FAULT_LOCK_OP] = "lock_op", 63 [FAULT_BLKADDR_VALIDITY] = "invalid blkaddr", 64 [FAULT_BLKADDR_CONSISTENCE] = "inconsistent blkaddr", 65 [FAULT_NO_SEGMENT] = "no free segment", 66 }; 67 68 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 69 unsigned long type) 70 { 71 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 72 73 if (rate) { 74 if (rate > INT_MAX) 75 return -EINVAL; 76 atomic_set(&ffi->inject_ops, 0); 77 ffi->inject_rate = (int)rate; 78 } 79 80 if (type) { 81 if (type >= BIT(FAULT_MAX)) 82 return -EINVAL; 83 ffi->inject_type = (unsigned int)type; 84 } 85 86 if (!rate && !type) 87 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 88 else 89 f2fs_info(sbi, 90 "build fault injection attr: rate: %lu, type: 0x%lx", 91 rate, type); 92 return 0; 93 } 94 #endif 95 96 /* f2fs-wide shrinker description */ 97 static struct shrinker *f2fs_shrinker_info; 98 99 static int __init f2fs_init_shrinker(void) 100 { 101 f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker"); 102 if (!f2fs_shrinker_info) 103 return -ENOMEM; 104 105 f2fs_shrinker_info->count_objects = f2fs_shrink_count; 106 f2fs_shrinker_info->scan_objects = f2fs_shrink_scan; 107 108 shrinker_register(f2fs_shrinker_info); 109 110 return 0; 111 } 112 113 static void f2fs_exit_shrinker(void) 114 { 115 shrinker_free(f2fs_shrinker_info); 116 } 117 118 enum { 119 Opt_gc_background, 120 Opt_disable_roll_forward, 121 Opt_norecovery, 122 Opt_discard, 123 Opt_nodiscard, 124 Opt_noheap, 125 Opt_heap, 126 Opt_user_xattr, 127 Opt_nouser_xattr, 128 Opt_acl, 129 Opt_noacl, 130 Opt_active_logs, 131 Opt_disable_ext_identify, 132 Opt_inline_xattr, 133 Opt_noinline_xattr, 134 Opt_inline_xattr_size, 135 Opt_inline_data, 136 Opt_inline_dentry, 137 Opt_noinline_dentry, 138 Opt_flush_merge, 139 Opt_noflush_merge, 140 Opt_barrier, 141 Opt_nobarrier, 142 Opt_fastboot, 143 Opt_extent_cache, 144 Opt_noextent_cache, 145 Opt_noinline_data, 146 Opt_data_flush, 147 Opt_reserve_root, 148 Opt_resgid, 149 Opt_resuid, 150 Opt_mode, 151 Opt_fault_injection, 152 Opt_fault_type, 153 Opt_lazytime, 154 Opt_nolazytime, 155 Opt_quota, 156 Opt_noquota, 157 Opt_usrquota, 158 Opt_grpquota, 159 Opt_prjquota, 160 Opt_usrjquota, 161 Opt_grpjquota, 162 Opt_prjjquota, 163 Opt_offusrjquota, 164 Opt_offgrpjquota, 165 Opt_offprjjquota, 166 Opt_jqfmt_vfsold, 167 Opt_jqfmt_vfsv0, 168 Opt_jqfmt_vfsv1, 169 Opt_alloc, 170 Opt_fsync, 171 Opt_test_dummy_encryption, 172 Opt_inlinecrypt, 173 Opt_checkpoint_disable, 174 Opt_checkpoint_disable_cap, 175 Opt_checkpoint_disable_cap_perc, 176 Opt_checkpoint_enable, 177 Opt_checkpoint_merge, 178 Opt_nocheckpoint_merge, 179 Opt_compress_algorithm, 180 Opt_compress_log_size, 181 Opt_compress_extension, 182 Opt_nocompress_extension, 183 Opt_compress_chksum, 184 Opt_compress_mode, 185 Opt_compress_cache, 186 Opt_atgc, 187 Opt_gc_merge, 188 Opt_nogc_merge, 189 Opt_discard_unit, 190 Opt_memory_mode, 191 Opt_age_extent_cache, 192 Opt_errors, 193 Opt_err, 194 }; 195 196 static match_table_t f2fs_tokens = { 197 {Opt_gc_background, "background_gc=%s"}, 198 {Opt_disable_roll_forward, "disable_roll_forward"}, 199 {Opt_norecovery, "norecovery"}, 200 {Opt_discard, "discard"}, 201 {Opt_nodiscard, "nodiscard"}, 202 {Opt_noheap, "no_heap"}, 203 {Opt_heap, "heap"}, 204 {Opt_user_xattr, "user_xattr"}, 205 {Opt_nouser_xattr, "nouser_xattr"}, 206 {Opt_acl, "acl"}, 207 {Opt_noacl, "noacl"}, 208 {Opt_active_logs, "active_logs=%u"}, 209 {Opt_disable_ext_identify, "disable_ext_identify"}, 210 {Opt_inline_xattr, "inline_xattr"}, 211 {Opt_noinline_xattr, "noinline_xattr"}, 212 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 213 {Opt_inline_data, "inline_data"}, 214 {Opt_inline_dentry, "inline_dentry"}, 215 {Opt_noinline_dentry, "noinline_dentry"}, 216 {Opt_flush_merge, "flush_merge"}, 217 {Opt_noflush_merge, "noflush_merge"}, 218 {Opt_barrier, "barrier"}, 219 {Opt_nobarrier, "nobarrier"}, 220 {Opt_fastboot, "fastboot"}, 221 {Opt_extent_cache, "extent_cache"}, 222 {Opt_noextent_cache, "noextent_cache"}, 223 {Opt_noinline_data, "noinline_data"}, 224 {Opt_data_flush, "data_flush"}, 225 {Opt_reserve_root, "reserve_root=%u"}, 226 {Opt_resgid, "resgid=%u"}, 227 {Opt_resuid, "resuid=%u"}, 228 {Opt_mode, "mode=%s"}, 229 {Opt_fault_injection, "fault_injection=%u"}, 230 {Opt_fault_type, "fault_type=%u"}, 231 {Opt_lazytime, "lazytime"}, 232 {Opt_nolazytime, "nolazytime"}, 233 {Opt_quota, "quota"}, 234 {Opt_noquota, "noquota"}, 235 {Opt_usrquota, "usrquota"}, 236 {Opt_grpquota, "grpquota"}, 237 {Opt_prjquota, "prjquota"}, 238 {Opt_usrjquota, "usrjquota=%s"}, 239 {Opt_grpjquota, "grpjquota=%s"}, 240 {Opt_prjjquota, "prjjquota=%s"}, 241 {Opt_offusrjquota, "usrjquota="}, 242 {Opt_offgrpjquota, "grpjquota="}, 243 {Opt_offprjjquota, "prjjquota="}, 244 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 245 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 246 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 247 {Opt_alloc, "alloc_mode=%s"}, 248 {Opt_fsync, "fsync_mode=%s"}, 249 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 250 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 251 {Opt_inlinecrypt, "inlinecrypt"}, 252 {Opt_checkpoint_disable, "checkpoint=disable"}, 253 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 254 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 255 {Opt_checkpoint_enable, "checkpoint=enable"}, 256 {Opt_checkpoint_merge, "checkpoint_merge"}, 257 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 258 {Opt_compress_algorithm, "compress_algorithm=%s"}, 259 {Opt_compress_log_size, "compress_log_size=%u"}, 260 {Opt_compress_extension, "compress_extension=%s"}, 261 {Opt_nocompress_extension, "nocompress_extension=%s"}, 262 {Opt_compress_chksum, "compress_chksum"}, 263 {Opt_compress_mode, "compress_mode=%s"}, 264 {Opt_compress_cache, "compress_cache"}, 265 {Opt_atgc, "atgc"}, 266 {Opt_gc_merge, "gc_merge"}, 267 {Opt_nogc_merge, "nogc_merge"}, 268 {Opt_discard_unit, "discard_unit=%s"}, 269 {Opt_memory_mode, "memory=%s"}, 270 {Opt_age_extent_cache, "age_extent_cache"}, 271 {Opt_errors, "errors=%s"}, 272 {Opt_err, NULL}, 273 }; 274 275 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, 276 const char *fmt, ...) 277 { 278 struct va_format vaf; 279 va_list args; 280 int level; 281 282 va_start(args, fmt); 283 284 level = printk_get_level(fmt); 285 vaf.fmt = printk_skip_level(fmt); 286 vaf.va = &args; 287 if (limit_rate) 288 printk_ratelimited("%c%cF2FS-fs (%s): %pV\n", 289 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 290 else 291 printk("%c%cF2FS-fs (%s): %pV\n", 292 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 293 294 va_end(args); 295 } 296 297 #if IS_ENABLED(CONFIG_UNICODE) 298 static const struct f2fs_sb_encodings { 299 __u16 magic; 300 char *name; 301 unsigned int version; 302 } f2fs_sb_encoding_map[] = { 303 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 304 }; 305 306 static const struct f2fs_sb_encodings * 307 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 308 { 309 __u16 magic = le16_to_cpu(sb->s_encoding); 310 int i; 311 312 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 313 if (magic == f2fs_sb_encoding_map[i].magic) 314 return &f2fs_sb_encoding_map[i]; 315 316 return NULL; 317 } 318 319 struct kmem_cache *f2fs_cf_name_slab; 320 static int __init f2fs_create_casefold_cache(void) 321 { 322 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 323 F2FS_NAME_LEN); 324 return f2fs_cf_name_slab ? 0 : -ENOMEM; 325 } 326 327 static void f2fs_destroy_casefold_cache(void) 328 { 329 kmem_cache_destroy(f2fs_cf_name_slab); 330 } 331 #else 332 static int __init f2fs_create_casefold_cache(void) { return 0; } 333 static void f2fs_destroy_casefold_cache(void) { } 334 #endif 335 336 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 337 { 338 block_t limit = min((sbi->user_block_count >> 3), 339 sbi->user_block_count - sbi->reserved_blocks); 340 341 /* limit is 12.5% */ 342 if (test_opt(sbi, RESERVE_ROOT) && 343 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 344 F2FS_OPTION(sbi).root_reserved_blocks = limit; 345 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 346 F2FS_OPTION(sbi).root_reserved_blocks); 347 } 348 if (!test_opt(sbi, RESERVE_ROOT) && 349 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 350 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 351 !gid_eq(F2FS_OPTION(sbi).s_resgid, 352 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 353 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 354 from_kuid_munged(&init_user_ns, 355 F2FS_OPTION(sbi).s_resuid), 356 from_kgid_munged(&init_user_ns, 357 F2FS_OPTION(sbi).s_resgid)); 358 } 359 360 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 361 { 362 if (!F2FS_OPTION(sbi).unusable_cap_perc) 363 return; 364 365 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 366 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 367 else 368 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 369 F2FS_OPTION(sbi).unusable_cap_perc; 370 371 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 372 F2FS_OPTION(sbi).unusable_cap, 373 F2FS_OPTION(sbi).unusable_cap_perc); 374 } 375 376 static void init_once(void *foo) 377 { 378 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 379 380 inode_init_once(&fi->vfs_inode); 381 } 382 383 #ifdef CONFIG_QUOTA 384 static const char * const quotatypes[] = INITQFNAMES; 385 #define QTYPE2NAME(t) (quotatypes[t]) 386 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 387 substring_t *args) 388 { 389 struct f2fs_sb_info *sbi = F2FS_SB(sb); 390 char *qname; 391 int ret = -EINVAL; 392 393 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 394 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 395 return -EINVAL; 396 } 397 if (f2fs_sb_has_quota_ino(sbi)) { 398 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 399 return 0; 400 } 401 402 qname = match_strdup(args); 403 if (!qname) { 404 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 405 return -ENOMEM; 406 } 407 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 408 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 409 ret = 0; 410 else 411 f2fs_err(sbi, "%s quota file already specified", 412 QTYPE2NAME(qtype)); 413 goto errout; 414 } 415 if (strchr(qname, '/')) { 416 f2fs_err(sbi, "quotafile must be on filesystem root"); 417 goto errout; 418 } 419 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 420 set_opt(sbi, QUOTA); 421 return 0; 422 errout: 423 kfree(qname); 424 return ret; 425 } 426 427 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 428 { 429 struct f2fs_sb_info *sbi = F2FS_SB(sb); 430 431 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 432 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 433 return -EINVAL; 434 } 435 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 436 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 437 return 0; 438 } 439 440 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 441 { 442 /* 443 * We do the test below only for project quotas. 'usrquota' and 444 * 'grpquota' mount options are allowed even without quota feature 445 * to support legacy quotas in quota files. 446 */ 447 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 448 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 449 return -1; 450 } 451 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 452 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 453 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 454 if (test_opt(sbi, USRQUOTA) && 455 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 456 clear_opt(sbi, USRQUOTA); 457 458 if (test_opt(sbi, GRPQUOTA) && 459 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 460 clear_opt(sbi, GRPQUOTA); 461 462 if (test_opt(sbi, PRJQUOTA) && 463 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 464 clear_opt(sbi, PRJQUOTA); 465 466 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 467 test_opt(sbi, PRJQUOTA)) { 468 f2fs_err(sbi, "old and new quota format mixing"); 469 return -1; 470 } 471 472 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 473 f2fs_err(sbi, "journaled quota format not specified"); 474 return -1; 475 } 476 } 477 478 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 479 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 480 F2FS_OPTION(sbi).s_jquota_fmt = 0; 481 } 482 return 0; 483 } 484 #endif 485 486 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 487 const char *opt, 488 const substring_t *arg, 489 bool is_remount) 490 { 491 struct f2fs_sb_info *sbi = F2FS_SB(sb); 492 struct fs_parameter param = { 493 .type = fs_value_is_string, 494 .string = arg->from ? arg->from : "", 495 }; 496 struct fscrypt_dummy_policy *policy = 497 &F2FS_OPTION(sbi).dummy_enc_policy; 498 int err; 499 500 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 501 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 502 return -EINVAL; 503 } 504 505 if (!f2fs_sb_has_encrypt(sbi)) { 506 f2fs_err(sbi, "Encrypt feature is off"); 507 return -EINVAL; 508 } 509 510 /* 511 * This mount option is just for testing, and it's not worthwhile to 512 * implement the extra complexity (e.g. RCU protection) that would be 513 * needed to allow it to be set or changed during remount. We do allow 514 * it to be specified during remount, but only if there is no change. 515 */ 516 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 517 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 518 return -EINVAL; 519 } 520 521 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 522 if (err) { 523 if (err == -EEXIST) 524 f2fs_warn(sbi, 525 "Can't change test_dummy_encryption on remount"); 526 else if (err == -EINVAL) 527 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 528 opt); 529 else 530 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 531 opt, err); 532 return -EINVAL; 533 } 534 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 535 return 0; 536 } 537 538 #ifdef CONFIG_F2FS_FS_COMPRESSION 539 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, 540 const char *new_ext, bool is_ext) 541 { 542 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 543 int ext_cnt; 544 int i; 545 546 if (is_ext) { 547 ext = F2FS_OPTION(sbi).extensions; 548 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 549 } else { 550 ext = F2FS_OPTION(sbi).noextensions; 551 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 552 } 553 554 for (i = 0; i < ext_cnt; i++) { 555 if (!strcasecmp(new_ext, ext[i])) 556 return true; 557 } 558 559 return false; 560 } 561 562 /* 563 * 1. The same extension name cannot not appear in both compress and non-compress extension 564 * at the same time. 565 * 2. If the compress extension specifies all files, the types specified by the non-compress 566 * extension will be treated as special cases and will not be compressed. 567 * 3. Don't allow the non-compress extension specifies all files. 568 */ 569 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 570 { 571 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 572 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 573 int ext_cnt, noext_cnt, index = 0, no_index = 0; 574 575 ext = F2FS_OPTION(sbi).extensions; 576 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 577 noext = F2FS_OPTION(sbi).noextensions; 578 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 579 580 if (!noext_cnt) 581 return 0; 582 583 for (no_index = 0; no_index < noext_cnt; no_index++) { 584 if (!strcasecmp("*", noext[no_index])) { 585 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 586 return -EINVAL; 587 } 588 for (index = 0; index < ext_cnt; index++) { 589 if (!strcasecmp(ext[index], noext[no_index])) { 590 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 591 ext[index]); 592 return -EINVAL; 593 } 594 } 595 } 596 return 0; 597 } 598 599 #ifdef CONFIG_F2FS_FS_LZ4 600 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 601 { 602 #ifdef CONFIG_F2FS_FS_LZ4HC 603 unsigned int level; 604 605 if (strlen(str) == 3) { 606 F2FS_OPTION(sbi).compress_level = 0; 607 return 0; 608 } 609 610 str += 3; 611 612 if (str[0] != ':') { 613 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 614 return -EINVAL; 615 } 616 if (kstrtouint(str + 1, 10, &level)) 617 return -EINVAL; 618 619 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 620 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 621 return -EINVAL; 622 } 623 624 F2FS_OPTION(sbi).compress_level = level; 625 return 0; 626 #else 627 if (strlen(str) == 3) { 628 F2FS_OPTION(sbi).compress_level = 0; 629 return 0; 630 } 631 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 632 return -EINVAL; 633 #endif 634 } 635 #endif 636 637 #ifdef CONFIG_F2FS_FS_ZSTD 638 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 639 { 640 int level; 641 int len = 4; 642 643 if (strlen(str) == len) { 644 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 645 return 0; 646 } 647 648 str += len; 649 650 if (str[0] != ':') { 651 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 652 return -EINVAL; 653 } 654 if (kstrtoint(str + 1, 10, &level)) 655 return -EINVAL; 656 657 /* f2fs does not support negative compress level now */ 658 if (level < 0) { 659 f2fs_info(sbi, "do not support negative compress level: %d", level); 660 return -ERANGE; 661 } 662 663 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 664 f2fs_info(sbi, "invalid zstd compress level: %d", level); 665 return -EINVAL; 666 } 667 668 F2FS_OPTION(sbi).compress_level = level; 669 return 0; 670 } 671 #endif 672 #endif 673 674 static int parse_options(struct super_block *sb, char *options, bool is_remount) 675 { 676 struct f2fs_sb_info *sbi = F2FS_SB(sb); 677 substring_t args[MAX_OPT_ARGS]; 678 #ifdef CONFIG_F2FS_FS_COMPRESSION 679 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 680 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 681 int ext_cnt, noext_cnt; 682 #endif 683 char *p, *name; 684 int arg = 0; 685 kuid_t uid; 686 kgid_t gid; 687 int ret; 688 689 if (!options) 690 goto default_check; 691 692 while ((p = strsep(&options, ",")) != NULL) { 693 int token; 694 695 if (!*p) 696 continue; 697 /* 698 * Initialize args struct so we know whether arg was 699 * found; some options take optional arguments. 700 */ 701 args[0].to = args[0].from = NULL; 702 token = match_token(p, f2fs_tokens, args); 703 704 switch (token) { 705 case Opt_gc_background: 706 name = match_strdup(&args[0]); 707 708 if (!name) 709 return -ENOMEM; 710 if (!strcmp(name, "on")) { 711 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 712 } else if (!strcmp(name, "off")) { 713 if (f2fs_sb_has_blkzoned(sbi)) { 714 f2fs_warn(sbi, "zoned devices need bggc"); 715 kfree(name); 716 return -EINVAL; 717 } 718 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 719 } else if (!strcmp(name, "sync")) { 720 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 721 } else { 722 kfree(name); 723 return -EINVAL; 724 } 725 kfree(name); 726 break; 727 case Opt_disable_roll_forward: 728 set_opt(sbi, DISABLE_ROLL_FORWARD); 729 break; 730 case Opt_norecovery: 731 /* this option mounts f2fs with ro */ 732 set_opt(sbi, NORECOVERY); 733 if (!f2fs_readonly(sb)) 734 return -EINVAL; 735 break; 736 case Opt_discard: 737 if (!f2fs_hw_support_discard(sbi)) { 738 f2fs_warn(sbi, "device does not support discard"); 739 break; 740 } 741 set_opt(sbi, DISCARD); 742 break; 743 case Opt_nodiscard: 744 if (f2fs_hw_should_discard(sbi)) { 745 f2fs_warn(sbi, "discard is required for zoned block devices"); 746 return -EINVAL; 747 } 748 clear_opt(sbi, DISCARD); 749 break; 750 case Opt_noheap: 751 case Opt_heap: 752 f2fs_warn(sbi, "heap/no_heap options were deprecated"); 753 break; 754 #ifdef CONFIG_F2FS_FS_XATTR 755 case Opt_user_xattr: 756 set_opt(sbi, XATTR_USER); 757 break; 758 case Opt_nouser_xattr: 759 clear_opt(sbi, XATTR_USER); 760 break; 761 case Opt_inline_xattr: 762 set_opt(sbi, INLINE_XATTR); 763 break; 764 case Opt_noinline_xattr: 765 clear_opt(sbi, INLINE_XATTR); 766 break; 767 case Opt_inline_xattr_size: 768 if (args->from && match_int(args, &arg)) 769 return -EINVAL; 770 set_opt(sbi, INLINE_XATTR_SIZE); 771 F2FS_OPTION(sbi).inline_xattr_size = arg; 772 break; 773 #else 774 case Opt_user_xattr: 775 f2fs_info(sbi, "user_xattr options not supported"); 776 break; 777 case Opt_nouser_xattr: 778 f2fs_info(sbi, "nouser_xattr options not supported"); 779 break; 780 case Opt_inline_xattr: 781 f2fs_info(sbi, "inline_xattr options not supported"); 782 break; 783 case Opt_noinline_xattr: 784 f2fs_info(sbi, "noinline_xattr options not supported"); 785 break; 786 #endif 787 #ifdef CONFIG_F2FS_FS_POSIX_ACL 788 case Opt_acl: 789 set_opt(sbi, POSIX_ACL); 790 break; 791 case Opt_noacl: 792 clear_opt(sbi, POSIX_ACL); 793 break; 794 #else 795 case Opt_acl: 796 f2fs_info(sbi, "acl options not supported"); 797 break; 798 case Opt_noacl: 799 f2fs_info(sbi, "noacl options not supported"); 800 break; 801 #endif 802 case Opt_active_logs: 803 if (args->from && match_int(args, &arg)) 804 return -EINVAL; 805 if (arg != 2 && arg != 4 && 806 arg != NR_CURSEG_PERSIST_TYPE) 807 return -EINVAL; 808 F2FS_OPTION(sbi).active_logs = arg; 809 break; 810 case Opt_disable_ext_identify: 811 set_opt(sbi, DISABLE_EXT_IDENTIFY); 812 break; 813 case Opt_inline_data: 814 set_opt(sbi, INLINE_DATA); 815 break; 816 case Opt_inline_dentry: 817 set_opt(sbi, INLINE_DENTRY); 818 break; 819 case Opt_noinline_dentry: 820 clear_opt(sbi, INLINE_DENTRY); 821 break; 822 case Opt_flush_merge: 823 set_opt(sbi, FLUSH_MERGE); 824 break; 825 case Opt_noflush_merge: 826 clear_opt(sbi, FLUSH_MERGE); 827 break; 828 case Opt_nobarrier: 829 set_opt(sbi, NOBARRIER); 830 break; 831 case Opt_barrier: 832 clear_opt(sbi, NOBARRIER); 833 break; 834 case Opt_fastboot: 835 set_opt(sbi, FASTBOOT); 836 break; 837 case Opt_extent_cache: 838 set_opt(sbi, READ_EXTENT_CACHE); 839 break; 840 case Opt_noextent_cache: 841 if (F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_DEVICE_ALIAS)) { 842 f2fs_err(sbi, "device aliasing requires extent cache"); 843 return -EINVAL; 844 } 845 clear_opt(sbi, READ_EXTENT_CACHE); 846 break; 847 case Opt_noinline_data: 848 clear_opt(sbi, INLINE_DATA); 849 break; 850 case Opt_data_flush: 851 set_opt(sbi, DATA_FLUSH); 852 break; 853 case Opt_reserve_root: 854 if (args->from && match_int(args, &arg)) 855 return -EINVAL; 856 if (test_opt(sbi, RESERVE_ROOT)) { 857 f2fs_info(sbi, "Preserve previous reserve_root=%u", 858 F2FS_OPTION(sbi).root_reserved_blocks); 859 } else { 860 F2FS_OPTION(sbi).root_reserved_blocks = arg; 861 set_opt(sbi, RESERVE_ROOT); 862 } 863 break; 864 case Opt_resuid: 865 if (args->from && match_int(args, &arg)) 866 return -EINVAL; 867 uid = make_kuid(current_user_ns(), arg); 868 if (!uid_valid(uid)) { 869 f2fs_err(sbi, "Invalid uid value %d", arg); 870 return -EINVAL; 871 } 872 F2FS_OPTION(sbi).s_resuid = uid; 873 break; 874 case Opt_resgid: 875 if (args->from && match_int(args, &arg)) 876 return -EINVAL; 877 gid = make_kgid(current_user_ns(), arg); 878 if (!gid_valid(gid)) { 879 f2fs_err(sbi, "Invalid gid value %d", arg); 880 return -EINVAL; 881 } 882 F2FS_OPTION(sbi).s_resgid = gid; 883 break; 884 case Opt_mode: 885 name = match_strdup(&args[0]); 886 887 if (!name) 888 return -ENOMEM; 889 if (!strcmp(name, "adaptive")) { 890 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 891 } else if (!strcmp(name, "lfs")) { 892 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 893 } else if (!strcmp(name, "fragment:segment")) { 894 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 895 } else if (!strcmp(name, "fragment:block")) { 896 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 897 } else { 898 kfree(name); 899 return -EINVAL; 900 } 901 kfree(name); 902 break; 903 #ifdef CONFIG_F2FS_FAULT_INJECTION 904 case Opt_fault_injection: 905 if (args->from && match_int(args, &arg)) 906 return -EINVAL; 907 if (f2fs_build_fault_attr(sbi, arg, 908 F2FS_ALL_FAULT_TYPE)) 909 return -EINVAL; 910 set_opt(sbi, FAULT_INJECTION); 911 break; 912 913 case Opt_fault_type: 914 if (args->from && match_int(args, &arg)) 915 return -EINVAL; 916 if (f2fs_build_fault_attr(sbi, 0, arg)) 917 return -EINVAL; 918 set_opt(sbi, FAULT_INJECTION); 919 break; 920 #else 921 case Opt_fault_injection: 922 f2fs_info(sbi, "fault_injection options not supported"); 923 break; 924 925 case Opt_fault_type: 926 f2fs_info(sbi, "fault_type options not supported"); 927 break; 928 #endif 929 case Opt_lazytime: 930 sb->s_flags |= SB_LAZYTIME; 931 break; 932 case Opt_nolazytime: 933 sb->s_flags &= ~SB_LAZYTIME; 934 break; 935 #ifdef CONFIG_QUOTA 936 case Opt_quota: 937 case Opt_usrquota: 938 set_opt(sbi, USRQUOTA); 939 break; 940 case Opt_grpquota: 941 set_opt(sbi, GRPQUOTA); 942 break; 943 case Opt_prjquota: 944 set_opt(sbi, PRJQUOTA); 945 break; 946 case Opt_usrjquota: 947 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 948 if (ret) 949 return ret; 950 break; 951 case Opt_grpjquota: 952 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 953 if (ret) 954 return ret; 955 break; 956 case Opt_prjjquota: 957 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 958 if (ret) 959 return ret; 960 break; 961 case Opt_offusrjquota: 962 ret = f2fs_clear_qf_name(sb, USRQUOTA); 963 if (ret) 964 return ret; 965 break; 966 case Opt_offgrpjquota: 967 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 968 if (ret) 969 return ret; 970 break; 971 case Opt_offprjjquota: 972 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 973 if (ret) 974 return ret; 975 break; 976 case Opt_jqfmt_vfsold: 977 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 978 break; 979 case Opt_jqfmt_vfsv0: 980 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 981 break; 982 case Opt_jqfmt_vfsv1: 983 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 984 break; 985 case Opt_noquota: 986 clear_opt(sbi, QUOTA); 987 clear_opt(sbi, USRQUOTA); 988 clear_opt(sbi, GRPQUOTA); 989 clear_opt(sbi, PRJQUOTA); 990 break; 991 #else 992 case Opt_quota: 993 case Opt_usrquota: 994 case Opt_grpquota: 995 case Opt_prjquota: 996 case Opt_usrjquota: 997 case Opt_grpjquota: 998 case Opt_prjjquota: 999 case Opt_offusrjquota: 1000 case Opt_offgrpjquota: 1001 case Opt_offprjjquota: 1002 case Opt_jqfmt_vfsold: 1003 case Opt_jqfmt_vfsv0: 1004 case Opt_jqfmt_vfsv1: 1005 case Opt_noquota: 1006 f2fs_info(sbi, "quota operations not supported"); 1007 break; 1008 #endif 1009 case Opt_alloc: 1010 name = match_strdup(&args[0]); 1011 if (!name) 1012 return -ENOMEM; 1013 1014 if (!strcmp(name, "default")) { 1015 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1016 } else if (!strcmp(name, "reuse")) { 1017 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 1018 } else { 1019 kfree(name); 1020 return -EINVAL; 1021 } 1022 kfree(name); 1023 break; 1024 case Opt_fsync: 1025 name = match_strdup(&args[0]); 1026 if (!name) 1027 return -ENOMEM; 1028 if (!strcmp(name, "posix")) { 1029 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1030 } else if (!strcmp(name, "strict")) { 1031 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1032 } else if (!strcmp(name, "nobarrier")) { 1033 F2FS_OPTION(sbi).fsync_mode = 1034 FSYNC_MODE_NOBARRIER; 1035 } else { 1036 kfree(name); 1037 return -EINVAL; 1038 } 1039 kfree(name); 1040 break; 1041 case Opt_test_dummy_encryption: 1042 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1043 is_remount); 1044 if (ret) 1045 return ret; 1046 break; 1047 case Opt_inlinecrypt: 1048 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1049 sb->s_flags |= SB_INLINECRYPT; 1050 #else 1051 f2fs_info(sbi, "inline encryption not supported"); 1052 #endif 1053 break; 1054 case Opt_checkpoint_disable_cap_perc: 1055 if (args->from && match_int(args, &arg)) 1056 return -EINVAL; 1057 if (arg < 0 || arg > 100) 1058 return -EINVAL; 1059 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1060 set_opt(sbi, DISABLE_CHECKPOINT); 1061 break; 1062 case Opt_checkpoint_disable_cap: 1063 if (args->from && match_int(args, &arg)) 1064 return -EINVAL; 1065 F2FS_OPTION(sbi).unusable_cap = arg; 1066 set_opt(sbi, DISABLE_CHECKPOINT); 1067 break; 1068 case Opt_checkpoint_disable: 1069 set_opt(sbi, DISABLE_CHECKPOINT); 1070 break; 1071 case Opt_checkpoint_enable: 1072 clear_opt(sbi, DISABLE_CHECKPOINT); 1073 break; 1074 case Opt_checkpoint_merge: 1075 set_opt(sbi, MERGE_CHECKPOINT); 1076 break; 1077 case Opt_nocheckpoint_merge: 1078 clear_opt(sbi, MERGE_CHECKPOINT); 1079 break; 1080 #ifdef CONFIG_F2FS_FS_COMPRESSION 1081 case Opt_compress_algorithm: 1082 if (!f2fs_sb_has_compression(sbi)) { 1083 f2fs_info(sbi, "Image doesn't support compression"); 1084 break; 1085 } 1086 name = match_strdup(&args[0]); 1087 if (!name) 1088 return -ENOMEM; 1089 if (!strcmp(name, "lzo")) { 1090 #ifdef CONFIG_F2FS_FS_LZO 1091 F2FS_OPTION(sbi).compress_level = 0; 1092 F2FS_OPTION(sbi).compress_algorithm = 1093 COMPRESS_LZO; 1094 #else 1095 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1096 #endif 1097 } else if (!strncmp(name, "lz4", 3)) { 1098 #ifdef CONFIG_F2FS_FS_LZ4 1099 ret = f2fs_set_lz4hc_level(sbi, name); 1100 if (ret) { 1101 kfree(name); 1102 return -EINVAL; 1103 } 1104 F2FS_OPTION(sbi).compress_algorithm = 1105 COMPRESS_LZ4; 1106 #else 1107 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1108 #endif 1109 } else if (!strncmp(name, "zstd", 4)) { 1110 #ifdef CONFIG_F2FS_FS_ZSTD 1111 ret = f2fs_set_zstd_level(sbi, name); 1112 if (ret) { 1113 kfree(name); 1114 return -EINVAL; 1115 } 1116 F2FS_OPTION(sbi).compress_algorithm = 1117 COMPRESS_ZSTD; 1118 #else 1119 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1120 #endif 1121 } else if (!strcmp(name, "lzo-rle")) { 1122 #ifdef CONFIG_F2FS_FS_LZORLE 1123 F2FS_OPTION(sbi).compress_level = 0; 1124 F2FS_OPTION(sbi).compress_algorithm = 1125 COMPRESS_LZORLE; 1126 #else 1127 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1128 #endif 1129 } else { 1130 kfree(name); 1131 return -EINVAL; 1132 } 1133 kfree(name); 1134 break; 1135 case Opt_compress_log_size: 1136 if (!f2fs_sb_has_compression(sbi)) { 1137 f2fs_info(sbi, "Image doesn't support compression"); 1138 break; 1139 } 1140 if (args->from && match_int(args, &arg)) 1141 return -EINVAL; 1142 if (arg < MIN_COMPRESS_LOG_SIZE || 1143 arg > MAX_COMPRESS_LOG_SIZE) { 1144 f2fs_err(sbi, 1145 "Compress cluster log size is out of range"); 1146 return -EINVAL; 1147 } 1148 F2FS_OPTION(sbi).compress_log_size = arg; 1149 break; 1150 case Opt_compress_extension: 1151 if (!f2fs_sb_has_compression(sbi)) { 1152 f2fs_info(sbi, "Image doesn't support compression"); 1153 break; 1154 } 1155 name = match_strdup(&args[0]); 1156 if (!name) 1157 return -ENOMEM; 1158 1159 ext = F2FS_OPTION(sbi).extensions; 1160 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1161 1162 if (strlen(name) >= F2FS_EXTENSION_LEN || 1163 ext_cnt >= COMPRESS_EXT_NUM) { 1164 f2fs_err(sbi, 1165 "invalid extension length/number"); 1166 kfree(name); 1167 return -EINVAL; 1168 } 1169 1170 if (is_compress_extension_exist(sbi, name, true)) { 1171 kfree(name); 1172 break; 1173 } 1174 1175 ret = strscpy(ext[ext_cnt], name); 1176 if (ret < 0) { 1177 kfree(name); 1178 return ret; 1179 } 1180 F2FS_OPTION(sbi).compress_ext_cnt++; 1181 kfree(name); 1182 break; 1183 case Opt_nocompress_extension: 1184 if (!f2fs_sb_has_compression(sbi)) { 1185 f2fs_info(sbi, "Image doesn't support compression"); 1186 break; 1187 } 1188 name = match_strdup(&args[0]); 1189 if (!name) 1190 return -ENOMEM; 1191 1192 noext = F2FS_OPTION(sbi).noextensions; 1193 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1194 1195 if (strlen(name) >= F2FS_EXTENSION_LEN || 1196 noext_cnt >= COMPRESS_EXT_NUM) { 1197 f2fs_err(sbi, 1198 "invalid extension length/number"); 1199 kfree(name); 1200 return -EINVAL; 1201 } 1202 1203 if (is_compress_extension_exist(sbi, name, false)) { 1204 kfree(name); 1205 break; 1206 } 1207 1208 ret = strscpy(noext[noext_cnt], name); 1209 if (ret < 0) { 1210 kfree(name); 1211 return ret; 1212 } 1213 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1214 kfree(name); 1215 break; 1216 case Opt_compress_chksum: 1217 if (!f2fs_sb_has_compression(sbi)) { 1218 f2fs_info(sbi, "Image doesn't support compression"); 1219 break; 1220 } 1221 F2FS_OPTION(sbi).compress_chksum = true; 1222 break; 1223 case Opt_compress_mode: 1224 if (!f2fs_sb_has_compression(sbi)) { 1225 f2fs_info(sbi, "Image doesn't support compression"); 1226 break; 1227 } 1228 name = match_strdup(&args[0]); 1229 if (!name) 1230 return -ENOMEM; 1231 if (!strcmp(name, "fs")) { 1232 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1233 } else if (!strcmp(name, "user")) { 1234 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1235 } else { 1236 kfree(name); 1237 return -EINVAL; 1238 } 1239 kfree(name); 1240 break; 1241 case Opt_compress_cache: 1242 if (!f2fs_sb_has_compression(sbi)) { 1243 f2fs_info(sbi, "Image doesn't support compression"); 1244 break; 1245 } 1246 set_opt(sbi, COMPRESS_CACHE); 1247 break; 1248 #else 1249 case Opt_compress_algorithm: 1250 case Opt_compress_log_size: 1251 case Opt_compress_extension: 1252 case Opt_nocompress_extension: 1253 case Opt_compress_chksum: 1254 case Opt_compress_mode: 1255 case Opt_compress_cache: 1256 f2fs_info(sbi, "compression options not supported"); 1257 break; 1258 #endif 1259 case Opt_atgc: 1260 set_opt(sbi, ATGC); 1261 break; 1262 case Opt_gc_merge: 1263 set_opt(sbi, GC_MERGE); 1264 break; 1265 case Opt_nogc_merge: 1266 clear_opt(sbi, GC_MERGE); 1267 break; 1268 case Opt_discard_unit: 1269 name = match_strdup(&args[0]); 1270 if (!name) 1271 return -ENOMEM; 1272 if (!strcmp(name, "block")) { 1273 F2FS_OPTION(sbi).discard_unit = 1274 DISCARD_UNIT_BLOCK; 1275 } else if (!strcmp(name, "segment")) { 1276 F2FS_OPTION(sbi).discard_unit = 1277 DISCARD_UNIT_SEGMENT; 1278 } else if (!strcmp(name, "section")) { 1279 F2FS_OPTION(sbi).discard_unit = 1280 DISCARD_UNIT_SECTION; 1281 } else { 1282 kfree(name); 1283 return -EINVAL; 1284 } 1285 kfree(name); 1286 break; 1287 case Opt_memory_mode: 1288 name = match_strdup(&args[0]); 1289 if (!name) 1290 return -ENOMEM; 1291 if (!strcmp(name, "normal")) { 1292 F2FS_OPTION(sbi).memory_mode = 1293 MEMORY_MODE_NORMAL; 1294 } else if (!strcmp(name, "low")) { 1295 F2FS_OPTION(sbi).memory_mode = 1296 MEMORY_MODE_LOW; 1297 } else { 1298 kfree(name); 1299 return -EINVAL; 1300 } 1301 kfree(name); 1302 break; 1303 case Opt_age_extent_cache: 1304 set_opt(sbi, AGE_EXTENT_CACHE); 1305 break; 1306 case Opt_errors: 1307 name = match_strdup(&args[0]); 1308 if (!name) 1309 return -ENOMEM; 1310 if (!strcmp(name, "remount-ro")) { 1311 F2FS_OPTION(sbi).errors = 1312 MOUNT_ERRORS_READONLY; 1313 } else if (!strcmp(name, "continue")) { 1314 F2FS_OPTION(sbi).errors = 1315 MOUNT_ERRORS_CONTINUE; 1316 } else if (!strcmp(name, "panic")) { 1317 F2FS_OPTION(sbi).errors = 1318 MOUNT_ERRORS_PANIC; 1319 } else { 1320 kfree(name); 1321 return -EINVAL; 1322 } 1323 kfree(name); 1324 break; 1325 default: 1326 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1327 p); 1328 return -EINVAL; 1329 } 1330 } 1331 default_check: 1332 #ifdef CONFIG_QUOTA 1333 if (f2fs_check_quota_options(sbi)) 1334 return -EINVAL; 1335 #else 1336 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1337 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1338 return -EINVAL; 1339 } 1340 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1341 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1342 return -EINVAL; 1343 } 1344 #endif 1345 1346 if (!IS_ENABLED(CONFIG_UNICODE) && f2fs_sb_has_casefold(sbi)) { 1347 f2fs_err(sbi, 1348 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1349 return -EINVAL; 1350 } 1351 1352 /* 1353 * The BLKZONED feature indicates that the drive was formatted with 1354 * zone alignment optimization. This is optional for host-aware 1355 * devices, but mandatory for host-managed zoned block devices. 1356 */ 1357 if (f2fs_sb_has_blkzoned(sbi)) { 1358 #ifdef CONFIG_BLK_DEV_ZONED 1359 if (F2FS_OPTION(sbi).discard_unit != 1360 DISCARD_UNIT_SECTION) { 1361 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1362 F2FS_OPTION(sbi).discard_unit = 1363 DISCARD_UNIT_SECTION; 1364 } 1365 1366 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { 1367 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1368 return -EINVAL; 1369 } 1370 #else 1371 f2fs_err(sbi, "Zoned block device support is not enabled"); 1372 return -EINVAL; 1373 #endif 1374 } 1375 1376 #ifdef CONFIG_F2FS_FS_COMPRESSION 1377 if (f2fs_test_compress_extension(sbi)) { 1378 f2fs_err(sbi, "invalid compress or nocompress extension"); 1379 return -EINVAL; 1380 } 1381 #endif 1382 1383 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1384 int min_size, max_size; 1385 1386 if (!f2fs_sb_has_extra_attr(sbi) || 1387 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1388 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1389 return -EINVAL; 1390 } 1391 if (!test_opt(sbi, INLINE_XATTR)) { 1392 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1393 return -EINVAL; 1394 } 1395 1396 min_size = MIN_INLINE_XATTR_SIZE; 1397 max_size = MAX_INLINE_XATTR_SIZE; 1398 1399 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1400 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1401 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1402 min_size, max_size); 1403 return -EINVAL; 1404 } 1405 } 1406 1407 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1408 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1409 return -EINVAL; 1410 } 1411 1412 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1413 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1414 return -EINVAL; 1415 } 1416 1417 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1418 f2fs_err(sbi, "Allow to mount readonly mode only"); 1419 return -EROFS; 1420 } 1421 return 0; 1422 } 1423 1424 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1425 { 1426 struct f2fs_inode_info *fi; 1427 1428 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1429 return NULL; 1430 1431 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1432 if (!fi) 1433 return NULL; 1434 1435 init_once((void *) fi); 1436 1437 /* Initialize f2fs-specific inode info */ 1438 atomic_set(&fi->dirty_pages, 0); 1439 atomic_set(&fi->i_compr_blocks, 0); 1440 init_f2fs_rwsem(&fi->i_sem); 1441 spin_lock_init(&fi->i_size_lock); 1442 INIT_LIST_HEAD(&fi->dirty_list); 1443 INIT_LIST_HEAD(&fi->gdirty_list); 1444 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1445 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1446 init_f2fs_rwsem(&fi->i_xattr_sem); 1447 1448 /* Will be used by directory only */ 1449 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1450 1451 return &fi->vfs_inode; 1452 } 1453 1454 static int f2fs_drop_inode(struct inode *inode) 1455 { 1456 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1457 int ret; 1458 1459 /* 1460 * during filesystem shutdown, if checkpoint is disabled, 1461 * drop useless meta/node dirty pages. 1462 */ 1463 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1464 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1465 inode->i_ino == F2FS_META_INO(sbi)) { 1466 trace_f2fs_drop_inode(inode, 1); 1467 return 1; 1468 } 1469 } 1470 1471 /* 1472 * This is to avoid a deadlock condition like below. 1473 * writeback_single_inode(inode) 1474 * - f2fs_write_data_page 1475 * - f2fs_gc -> iput -> evict 1476 * - inode_wait_for_writeback(inode) 1477 */ 1478 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1479 if (!inode->i_nlink && !is_bad_inode(inode)) { 1480 /* to avoid evict_inode call simultaneously */ 1481 atomic_inc(&inode->i_count); 1482 spin_unlock(&inode->i_lock); 1483 1484 /* should remain fi->extent_tree for writepage */ 1485 f2fs_destroy_extent_node(inode); 1486 1487 sb_start_intwrite(inode->i_sb); 1488 f2fs_i_size_write(inode, 0); 1489 1490 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1491 inode, NULL, 0, DATA); 1492 truncate_inode_pages_final(inode->i_mapping); 1493 1494 if (F2FS_HAS_BLOCKS(inode)) 1495 f2fs_truncate(inode); 1496 1497 sb_end_intwrite(inode->i_sb); 1498 1499 spin_lock(&inode->i_lock); 1500 atomic_dec(&inode->i_count); 1501 } 1502 trace_f2fs_drop_inode(inode, 0); 1503 return 0; 1504 } 1505 ret = generic_drop_inode(inode); 1506 if (!ret) 1507 ret = fscrypt_drop_inode(inode); 1508 trace_f2fs_drop_inode(inode, ret); 1509 return ret; 1510 } 1511 1512 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1513 { 1514 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1515 int ret = 0; 1516 1517 spin_lock(&sbi->inode_lock[DIRTY_META]); 1518 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1519 ret = 1; 1520 } else { 1521 set_inode_flag(inode, FI_DIRTY_INODE); 1522 stat_inc_dirty_inode(sbi, DIRTY_META); 1523 } 1524 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1525 list_add_tail(&F2FS_I(inode)->gdirty_list, 1526 &sbi->inode_list[DIRTY_META]); 1527 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1528 } 1529 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1530 return ret; 1531 } 1532 1533 void f2fs_inode_synced(struct inode *inode) 1534 { 1535 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1536 1537 spin_lock(&sbi->inode_lock[DIRTY_META]); 1538 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1539 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1540 return; 1541 } 1542 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1543 list_del_init(&F2FS_I(inode)->gdirty_list); 1544 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1545 } 1546 clear_inode_flag(inode, FI_DIRTY_INODE); 1547 clear_inode_flag(inode, FI_AUTO_RECOVER); 1548 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1549 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1550 } 1551 1552 /* 1553 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1554 * 1555 * We should call set_dirty_inode to write the dirty inode through write_inode. 1556 */ 1557 static void f2fs_dirty_inode(struct inode *inode, int flags) 1558 { 1559 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1560 1561 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1562 inode->i_ino == F2FS_META_INO(sbi)) 1563 return; 1564 1565 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1566 clear_inode_flag(inode, FI_AUTO_RECOVER); 1567 1568 f2fs_inode_dirtied(inode, false); 1569 } 1570 1571 static void f2fs_free_inode(struct inode *inode) 1572 { 1573 fscrypt_free_inode(inode); 1574 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1575 } 1576 1577 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1578 { 1579 percpu_counter_destroy(&sbi->total_valid_inode_count); 1580 percpu_counter_destroy(&sbi->rf_node_block_count); 1581 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1582 } 1583 1584 static void destroy_device_list(struct f2fs_sb_info *sbi) 1585 { 1586 int i; 1587 1588 for (i = 0; i < sbi->s_ndevs; i++) { 1589 if (i > 0) 1590 bdev_fput(FDEV(i).bdev_file); 1591 #ifdef CONFIG_BLK_DEV_ZONED 1592 kvfree(FDEV(i).blkz_seq); 1593 #endif 1594 } 1595 kvfree(sbi->devs); 1596 } 1597 1598 static void f2fs_put_super(struct super_block *sb) 1599 { 1600 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1601 int i; 1602 int err = 0; 1603 bool done; 1604 1605 /* unregister procfs/sysfs entries in advance to avoid race case */ 1606 f2fs_unregister_sysfs(sbi); 1607 1608 f2fs_quota_off_umount(sb); 1609 1610 /* prevent remaining shrinker jobs */ 1611 mutex_lock(&sbi->umount_mutex); 1612 1613 /* 1614 * flush all issued checkpoints and stop checkpoint issue thread. 1615 * after then, all checkpoints should be done by each process context. 1616 */ 1617 f2fs_stop_ckpt_thread(sbi); 1618 1619 /* 1620 * We don't need to do checkpoint when superblock is clean. 1621 * But, the previous checkpoint was not done by umount, it needs to do 1622 * clean checkpoint again. 1623 */ 1624 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1625 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1626 struct cp_control cpc = { 1627 .reason = CP_UMOUNT, 1628 }; 1629 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1630 err = f2fs_write_checkpoint(sbi, &cpc); 1631 } 1632 1633 /* be sure to wait for any on-going discard commands */ 1634 done = f2fs_issue_discard_timeout(sbi); 1635 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1636 struct cp_control cpc = { 1637 .reason = CP_UMOUNT | CP_TRIMMED, 1638 }; 1639 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1640 err = f2fs_write_checkpoint(sbi, &cpc); 1641 } 1642 1643 /* 1644 * normally superblock is clean, so we need to release this. 1645 * In addition, EIO will skip do checkpoint, we need this as well. 1646 */ 1647 f2fs_release_ino_entry(sbi, true); 1648 1649 f2fs_leave_shrinker(sbi); 1650 mutex_unlock(&sbi->umount_mutex); 1651 1652 /* our cp_error case, we can wait for any writeback page */ 1653 f2fs_flush_merged_writes(sbi); 1654 1655 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1656 1657 if (err || f2fs_cp_error(sbi)) { 1658 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1659 truncate_inode_pages_final(META_MAPPING(sbi)); 1660 } 1661 1662 for (i = 0; i < NR_COUNT_TYPE; i++) { 1663 if (!get_pages(sbi, i)) 1664 continue; 1665 f2fs_err(sbi, "detect filesystem reference count leak during " 1666 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1667 f2fs_bug_on(sbi, 1); 1668 } 1669 1670 f2fs_bug_on(sbi, sbi->fsync_node_num); 1671 1672 f2fs_destroy_compress_inode(sbi); 1673 1674 iput(sbi->node_inode); 1675 sbi->node_inode = NULL; 1676 1677 iput(sbi->meta_inode); 1678 sbi->meta_inode = NULL; 1679 1680 /* 1681 * iput() can update stat information, if f2fs_write_checkpoint() 1682 * above failed with error. 1683 */ 1684 f2fs_destroy_stats(sbi); 1685 1686 /* destroy f2fs internal modules */ 1687 f2fs_destroy_node_manager(sbi); 1688 f2fs_destroy_segment_manager(sbi); 1689 1690 /* flush s_error_work before sbi destroy */ 1691 flush_work(&sbi->s_error_work); 1692 1693 f2fs_destroy_post_read_wq(sbi); 1694 1695 kvfree(sbi->ckpt); 1696 1697 kfree(sbi->raw_super); 1698 1699 f2fs_destroy_page_array_cache(sbi); 1700 f2fs_destroy_xattr_caches(sbi); 1701 #ifdef CONFIG_QUOTA 1702 for (i = 0; i < MAXQUOTAS; i++) 1703 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1704 #endif 1705 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1706 destroy_percpu_info(sbi); 1707 f2fs_destroy_iostat(sbi); 1708 for (i = 0; i < NR_PAGE_TYPE; i++) 1709 kvfree(sbi->write_io[i]); 1710 #if IS_ENABLED(CONFIG_UNICODE) 1711 utf8_unload(sb->s_encoding); 1712 #endif 1713 } 1714 1715 int f2fs_sync_fs(struct super_block *sb, int sync) 1716 { 1717 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1718 int err = 0; 1719 1720 if (unlikely(f2fs_cp_error(sbi))) 1721 return 0; 1722 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1723 return 0; 1724 1725 trace_f2fs_sync_fs(sb, sync); 1726 1727 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1728 return -EAGAIN; 1729 1730 if (sync) { 1731 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1732 err = f2fs_issue_checkpoint(sbi); 1733 } 1734 1735 return err; 1736 } 1737 1738 static int f2fs_freeze(struct super_block *sb) 1739 { 1740 if (f2fs_readonly(sb)) 1741 return 0; 1742 1743 /* IO error happened before */ 1744 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1745 return -EIO; 1746 1747 /* must be clean, since sync_filesystem() was already called */ 1748 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1749 return -EINVAL; 1750 1751 /* Let's flush checkpoints and stop the thread. */ 1752 f2fs_flush_ckpt_thread(F2FS_SB(sb)); 1753 1754 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1755 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1756 return 0; 1757 } 1758 1759 static int f2fs_unfreeze(struct super_block *sb) 1760 { 1761 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1762 1763 /* 1764 * It will update discard_max_bytes of mounted lvm device to zero 1765 * after creating snapshot on this lvm device, let's drop all 1766 * remained discards. 1767 * We don't need to disable real-time discard because discard_max_bytes 1768 * will recover after removal of snapshot. 1769 */ 1770 if (test_opt(sbi, DISCARD) && !f2fs_hw_support_discard(sbi)) 1771 f2fs_issue_discard_timeout(sbi); 1772 1773 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1774 return 0; 1775 } 1776 1777 #ifdef CONFIG_QUOTA 1778 static int f2fs_statfs_project(struct super_block *sb, 1779 kprojid_t projid, struct kstatfs *buf) 1780 { 1781 struct kqid qid; 1782 struct dquot *dquot; 1783 u64 limit; 1784 u64 curblock; 1785 1786 qid = make_kqid_projid(projid); 1787 dquot = dqget(sb, qid); 1788 if (IS_ERR(dquot)) 1789 return PTR_ERR(dquot); 1790 spin_lock(&dquot->dq_dqb_lock); 1791 1792 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1793 dquot->dq_dqb.dqb_bhardlimit); 1794 if (limit) 1795 limit >>= sb->s_blocksize_bits; 1796 1797 if (limit && buf->f_blocks > limit) { 1798 curblock = (dquot->dq_dqb.dqb_curspace + 1799 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1800 buf->f_blocks = limit; 1801 buf->f_bfree = buf->f_bavail = 1802 (buf->f_blocks > curblock) ? 1803 (buf->f_blocks - curblock) : 0; 1804 } 1805 1806 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1807 dquot->dq_dqb.dqb_ihardlimit); 1808 1809 if (limit && buf->f_files > limit) { 1810 buf->f_files = limit; 1811 buf->f_ffree = 1812 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1813 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1814 } 1815 1816 spin_unlock(&dquot->dq_dqb_lock); 1817 dqput(dquot); 1818 return 0; 1819 } 1820 #endif 1821 1822 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1823 { 1824 struct super_block *sb = dentry->d_sb; 1825 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1826 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1827 block_t total_count, user_block_count, start_count; 1828 u64 avail_node_count; 1829 unsigned int total_valid_node_count; 1830 1831 total_count = le64_to_cpu(sbi->raw_super->block_count); 1832 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1833 buf->f_type = F2FS_SUPER_MAGIC; 1834 buf->f_bsize = sbi->blocksize; 1835 1836 buf->f_blocks = total_count - start_count; 1837 1838 spin_lock(&sbi->stat_lock); 1839 1840 user_block_count = sbi->user_block_count; 1841 total_valid_node_count = valid_node_count(sbi); 1842 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1843 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1844 sbi->current_reserved_blocks; 1845 1846 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1847 buf->f_bfree = 0; 1848 else 1849 buf->f_bfree -= sbi->unusable_block_count; 1850 spin_unlock(&sbi->stat_lock); 1851 1852 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1853 buf->f_bavail = buf->f_bfree - 1854 F2FS_OPTION(sbi).root_reserved_blocks; 1855 else 1856 buf->f_bavail = 0; 1857 1858 if (avail_node_count > user_block_count) { 1859 buf->f_files = user_block_count; 1860 buf->f_ffree = buf->f_bavail; 1861 } else { 1862 buf->f_files = avail_node_count; 1863 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1864 buf->f_bavail); 1865 } 1866 1867 buf->f_namelen = F2FS_NAME_LEN; 1868 buf->f_fsid = u64_to_fsid(id); 1869 1870 #ifdef CONFIG_QUOTA 1871 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1872 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1873 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1874 } 1875 #endif 1876 return 0; 1877 } 1878 1879 static inline void f2fs_show_quota_options(struct seq_file *seq, 1880 struct super_block *sb) 1881 { 1882 #ifdef CONFIG_QUOTA 1883 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1884 1885 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1886 char *fmtname = ""; 1887 1888 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1889 case QFMT_VFS_OLD: 1890 fmtname = "vfsold"; 1891 break; 1892 case QFMT_VFS_V0: 1893 fmtname = "vfsv0"; 1894 break; 1895 case QFMT_VFS_V1: 1896 fmtname = "vfsv1"; 1897 break; 1898 } 1899 seq_printf(seq, ",jqfmt=%s", fmtname); 1900 } 1901 1902 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1903 seq_show_option(seq, "usrjquota", 1904 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1905 1906 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1907 seq_show_option(seq, "grpjquota", 1908 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1909 1910 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1911 seq_show_option(seq, "prjjquota", 1912 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1913 #endif 1914 } 1915 1916 #ifdef CONFIG_F2FS_FS_COMPRESSION 1917 static inline void f2fs_show_compress_options(struct seq_file *seq, 1918 struct super_block *sb) 1919 { 1920 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1921 char *algtype = ""; 1922 int i; 1923 1924 if (!f2fs_sb_has_compression(sbi)) 1925 return; 1926 1927 switch (F2FS_OPTION(sbi).compress_algorithm) { 1928 case COMPRESS_LZO: 1929 algtype = "lzo"; 1930 break; 1931 case COMPRESS_LZ4: 1932 algtype = "lz4"; 1933 break; 1934 case COMPRESS_ZSTD: 1935 algtype = "zstd"; 1936 break; 1937 case COMPRESS_LZORLE: 1938 algtype = "lzo-rle"; 1939 break; 1940 } 1941 seq_printf(seq, ",compress_algorithm=%s", algtype); 1942 1943 if (F2FS_OPTION(sbi).compress_level) 1944 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1945 1946 seq_printf(seq, ",compress_log_size=%u", 1947 F2FS_OPTION(sbi).compress_log_size); 1948 1949 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1950 seq_printf(seq, ",compress_extension=%s", 1951 F2FS_OPTION(sbi).extensions[i]); 1952 } 1953 1954 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1955 seq_printf(seq, ",nocompress_extension=%s", 1956 F2FS_OPTION(sbi).noextensions[i]); 1957 } 1958 1959 if (F2FS_OPTION(sbi).compress_chksum) 1960 seq_puts(seq, ",compress_chksum"); 1961 1962 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1963 seq_printf(seq, ",compress_mode=%s", "fs"); 1964 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1965 seq_printf(seq, ",compress_mode=%s", "user"); 1966 1967 if (test_opt(sbi, COMPRESS_CACHE)) 1968 seq_puts(seq, ",compress_cache"); 1969 } 1970 #endif 1971 1972 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1973 { 1974 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1975 1976 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1977 seq_printf(seq, ",background_gc=%s", "sync"); 1978 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1979 seq_printf(seq, ",background_gc=%s", "on"); 1980 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1981 seq_printf(seq, ",background_gc=%s", "off"); 1982 1983 if (test_opt(sbi, GC_MERGE)) 1984 seq_puts(seq, ",gc_merge"); 1985 else 1986 seq_puts(seq, ",nogc_merge"); 1987 1988 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1989 seq_puts(seq, ",disable_roll_forward"); 1990 if (test_opt(sbi, NORECOVERY)) 1991 seq_puts(seq, ",norecovery"); 1992 if (test_opt(sbi, DISCARD)) { 1993 seq_puts(seq, ",discard"); 1994 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 1995 seq_printf(seq, ",discard_unit=%s", "block"); 1996 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 1997 seq_printf(seq, ",discard_unit=%s", "segment"); 1998 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 1999 seq_printf(seq, ",discard_unit=%s", "section"); 2000 } else { 2001 seq_puts(seq, ",nodiscard"); 2002 } 2003 #ifdef CONFIG_F2FS_FS_XATTR 2004 if (test_opt(sbi, XATTR_USER)) 2005 seq_puts(seq, ",user_xattr"); 2006 else 2007 seq_puts(seq, ",nouser_xattr"); 2008 if (test_opt(sbi, INLINE_XATTR)) 2009 seq_puts(seq, ",inline_xattr"); 2010 else 2011 seq_puts(seq, ",noinline_xattr"); 2012 if (test_opt(sbi, INLINE_XATTR_SIZE)) 2013 seq_printf(seq, ",inline_xattr_size=%u", 2014 F2FS_OPTION(sbi).inline_xattr_size); 2015 #endif 2016 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2017 if (test_opt(sbi, POSIX_ACL)) 2018 seq_puts(seq, ",acl"); 2019 else 2020 seq_puts(seq, ",noacl"); 2021 #endif 2022 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 2023 seq_puts(seq, ",disable_ext_identify"); 2024 if (test_opt(sbi, INLINE_DATA)) 2025 seq_puts(seq, ",inline_data"); 2026 else 2027 seq_puts(seq, ",noinline_data"); 2028 if (test_opt(sbi, INLINE_DENTRY)) 2029 seq_puts(seq, ",inline_dentry"); 2030 else 2031 seq_puts(seq, ",noinline_dentry"); 2032 if (test_opt(sbi, FLUSH_MERGE)) 2033 seq_puts(seq, ",flush_merge"); 2034 else 2035 seq_puts(seq, ",noflush_merge"); 2036 if (test_opt(sbi, NOBARRIER)) 2037 seq_puts(seq, ",nobarrier"); 2038 else 2039 seq_puts(seq, ",barrier"); 2040 if (test_opt(sbi, FASTBOOT)) 2041 seq_puts(seq, ",fastboot"); 2042 if (test_opt(sbi, READ_EXTENT_CACHE)) 2043 seq_puts(seq, ",extent_cache"); 2044 else 2045 seq_puts(seq, ",noextent_cache"); 2046 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2047 seq_puts(seq, ",age_extent_cache"); 2048 if (test_opt(sbi, DATA_FLUSH)) 2049 seq_puts(seq, ",data_flush"); 2050 2051 seq_puts(seq, ",mode="); 2052 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2053 seq_puts(seq, "adaptive"); 2054 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2055 seq_puts(seq, "lfs"); 2056 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2057 seq_puts(seq, "fragment:segment"); 2058 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2059 seq_puts(seq, "fragment:block"); 2060 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2061 if (test_opt(sbi, RESERVE_ROOT)) 2062 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2063 F2FS_OPTION(sbi).root_reserved_blocks, 2064 from_kuid_munged(&init_user_ns, 2065 F2FS_OPTION(sbi).s_resuid), 2066 from_kgid_munged(&init_user_ns, 2067 F2FS_OPTION(sbi).s_resgid)); 2068 #ifdef CONFIG_F2FS_FAULT_INJECTION 2069 if (test_opt(sbi, FAULT_INJECTION)) { 2070 seq_printf(seq, ",fault_injection=%u", 2071 F2FS_OPTION(sbi).fault_info.inject_rate); 2072 seq_printf(seq, ",fault_type=%u", 2073 F2FS_OPTION(sbi).fault_info.inject_type); 2074 } 2075 #endif 2076 #ifdef CONFIG_QUOTA 2077 if (test_opt(sbi, QUOTA)) 2078 seq_puts(seq, ",quota"); 2079 if (test_opt(sbi, USRQUOTA)) 2080 seq_puts(seq, ",usrquota"); 2081 if (test_opt(sbi, GRPQUOTA)) 2082 seq_puts(seq, ",grpquota"); 2083 if (test_opt(sbi, PRJQUOTA)) 2084 seq_puts(seq, ",prjquota"); 2085 #endif 2086 f2fs_show_quota_options(seq, sbi->sb); 2087 2088 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2089 2090 if (sbi->sb->s_flags & SB_INLINECRYPT) 2091 seq_puts(seq, ",inlinecrypt"); 2092 2093 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2094 seq_printf(seq, ",alloc_mode=%s", "default"); 2095 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2096 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2097 2098 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2099 seq_printf(seq, ",checkpoint=disable:%u", 2100 F2FS_OPTION(sbi).unusable_cap); 2101 if (test_opt(sbi, MERGE_CHECKPOINT)) 2102 seq_puts(seq, ",checkpoint_merge"); 2103 else 2104 seq_puts(seq, ",nocheckpoint_merge"); 2105 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2106 seq_printf(seq, ",fsync_mode=%s", "posix"); 2107 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2108 seq_printf(seq, ",fsync_mode=%s", "strict"); 2109 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2110 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2111 2112 #ifdef CONFIG_F2FS_FS_COMPRESSION 2113 f2fs_show_compress_options(seq, sbi->sb); 2114 #endif 2115 2116 if (test_opt(sbi, ATGC)) 2117 seq_puts(seq, ",atgc"); 2118 2119 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2120 seq_printf(seq, ",memory=%s", "normal"); 2121 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2122 seq_printf(seq, ",memory=%s", "low"); 2123 2124 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2125 seq_printf(seq, ",errors=%s", "remount-ro"); 2126 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2127 seq_printf(seq, ",errors=%s", "continue"); 2128 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2129 seq_printf(seq, ",errors=%s", "panic"); 2130 2131 return 0; 2132 } 2133 2134 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2135 { 2136 /* init some FS parameters */ 2137 if (!remount) { 2138 set_opt(sbi, READ_EXTENT_CACHE); 2139 clear_opt(sbi, DISABLE_CHECKPOINT); 2140 2141 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2142 set_opt(sbi, DISCARD); 2143 2144 if (f2fs_sb_has_blkzoned(sbi)) 2145 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2146 else 2147 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2148 } 2149 2150 if (f2fs_sb_has_readonly(sbi)) 2151 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2152 else 2153 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2154 2155 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2156 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2157 SMALL_VOLUME_SEGMENTS) 2158 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2159 else 2160 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2161 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2162 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2163 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2164 if (f2fs_sb_has_compression(sbi)) { 2165 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2166 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2167 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2168 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2169 } 2170 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2171 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2172 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2173 2174 set_opt(sbi, INLINE_XATTR); 2175 set_opt(sbi, INLINE_DATA); 2176 set_opt(sbi, INLINE_DENTRY); 2177 set_opt(sbi, MERGE_CHECKPOINT); 2178 F2FS_OPTION(sbi).unusable_cap = 0; 2179 sbi->sb->s_flags |= SB_LAZYTIME; 2180 if (!f2fs_is_readonly(sbi)) 2181 set_opt(sbi, FLUSH_MERGE); 2182 if (f2fs_sb_has_blkzoned(sbi)) 2183 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2184 else 2185 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2186 2187 #ifdef CONFIG_F2FS_FS_XATTR 2188 set_opt(sbi, XATTR_USER); 2189 #endif 2190 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2191 set_opt(sbi, POSIX_ACL); 2192 #endif 2193 2194 f2fs_build_fault_attr(sbi, 0, 0); 2195 } 2196 2197 #ifdef CONFIG_QUOTA 2198 static int f2fs_enable_quotas(struct super_block *sb); 2199 #endif 2200 2201 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2202 { 2203 unsigned int s_flags = sbi->sb->s_flags; 2204 struct cp_control cpc; 2205 unsigned int gc_mode = sbi->gc_mode; 2206 int err = 0; 2207 int ret; 2208 block_t unusable; 2209 2210 if (s_flags & SB_RDONLY) { 2211 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2212 return -EINVAL; 2213 } 2214 sbi->sb->s_flags |= SB_ACTIVE; 2215 2216 /* check if we need more GC first */ 2217 unusable = f2fs_get_unusable_blocks(sbi); 2218 if (!f2fs_disable_cp_again(sbi, unusable)) 2219 goto skip_gc; 2220 2221 f2fs_update_time(sbi, DISABLE_TIME); 2222 2223 sbi->gc_mode = GC_URGENT_HIGH; 2224 2225 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2226 struct f2fs_gc_control gc_control = { 2227 .victim_segno = NULL_SEGNO, 2228 .init_gc_type = FG_GC, 2229 .should_migrate_blocks = false, 2230 .err_gc_skipped = true, 2231 .no_bg_gc = true, 2232 .nr_free_secs = 1 }; 2233 2234 f2fs_down_write(&sbi->gc_lock); 2235 stat_inc_gc_call_count(sbi, FOREGROUND); 2236 err = f2fs_gc(sbi, &gc_control); 2237 if (err == -ENODATA) { 2238 err = 0; 2239 break; 2240 } 2241 if (err && err != -EAGAIN) 2242 break; 2243 } 2244 2245 ret = sync_filesystem(sbi->sb); 2246 if (ret || err) { 2247 err = ret ? ret : err; 2248 goto restore_flag; 2249 } 2250 2251 unusable = f2fs_get_unusable_blocks(sbi); 2252 if (f2fs_disable_cp_again(sbi, unusable)) { 2253 err = -EAGAIN; 2254 goto restore_flag; 2255 } 2256 2257 skip_gc: 2258 f2fs_down_write(&sbi->gc_lock); 2259 cpc.reason = CP_PAUSE; 2260 set_sbi_flag(sbi, SBI_CP_DISABLED); 2261 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2262 err = f2fs_write_checkpoint(sbi, &cpc); 2263 if (err) 2264 goto out_unlock; 2265 2266 spin_lock(&sbi->stat_lock); 2267 sbi->unusable_block_count = unusable; 2268 spin_unlock(&sbi->stat_lock); 2269 2270 out_unlock: 2271 f2fs_up_write(&sbi->gc_lock); 2272 restore_flag: 2273 sbi->gc_mode = gc_mode; 2274 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2275 return err; 2276 } 2277 2278 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2279 { 2280 int retry = DEFAULT_RETRY_IO_COUNT; 2281 2282 /* we should flush all the data to keep data consistency */ 2283 do { 2284 sync_inodes_sb(sbi->sb); 2285 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2286 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2287 2288 if (unlikely(retry < 0)) 2289 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2290 2291 f2fs_down_write(&sbi->gc_lock); 2292 f2fs_dirty_to_prefree(sbi); 2293 2294 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2295 set_sbi_flag(sbi, SBI_IS_DIRTY); 2296 f2fs_up_write(&sbi->gc_lock); 2297 2298 f2fs_sync_fs(sbi->sb, 1); 2299 2300 /* Let's ensure there's no pending checkpoint anymore */ 2301 f2fs_flush_ckpt_thread(sbi); 2302 } 2303 2304 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2305 { 2306 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2307 struct f2fs_mount_info org_mount_opt; 2308 unsigned long old_sb_flags; 2309 int err; 2310 bool need_restart_gc = false, need_stop_gc = false; 2311 bool need_restart_flush = false, need_stop_flush = false; 2312 bool need_restart_discard = false, need_stop_discard = false; 2313 bool need_enable_checkpoint = false, need_disable_checkpoint = false; 2314 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2315 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2316 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2317 bool no_atgc = !test_opt(sbi, ATGC); 2318 bool no_discard = !test_opt(sbi, DISCARD); 2319 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2320 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2321 #ifdef CONFIG_QUOTA 2322 int i, j; 2323 #endif 2324 2325 /* 2326 * Save the old mount options in case we 2327 * need to restore them. 2328 */ 2329 org_mount_opt = sbi->mount_opt; 2330 old_sb_flags = sb->s_flags; 2331 2332 #ifdef CONFIG_QUOTA 2333 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2334 for (i = 0; i < MAXQUOTAS; i++) { 2335 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2336 org_mount_opt.s_qf_names[i] = 2337 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2338 GFP_KERNEL); 2339 if (!org_mount_opt.s_qf_names[i]) { 2340 for (j = 0; j < i; j++) 2341 kfree(org_mount_opt.s_qf_names[j]); 2342 return -ENOMEM; 2343 } 2344 } else { 2345 org_mount_opt.s_qf_names[i] = NULL; 2346 } 2347 } 2348 #endif 2349 2350 /* recover superblocks we couldn't write due to previous RO mount */ 2351 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2352 err = f2fs_commit_super(sbi, false); 2353 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2354 err); 2355 if (!err) 2356 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2357 } 2358 2359 default_options(sbi, true); 2360 2361 /* parse mount options */ 2362 err = parse_options(sb, data, true); 2363 if (err) 2364 goto restore_opts; 2365 2366 #ifdef CONFIG_BLK_DEV_ZONED 2367 if (f2fs_sb_has_blkzoned(sbi) && 2368 sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 2369 f2fs_err(sbi, 2370 "zoned: max open zones %u is too small, need at least %u open zones", 2371 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 2372 err = -EINVAL; 2373 goto restore_opts; 2374 } 2375 #endif 2376 2377 /* flush outstanding errors before changing fs state */ 2378 flush_work(&sbi->s_error_work); 2379 2380 /* 2381 * Previous and new state of filesystem is RO, 2382 * so skip checking GC and FLUSH_MERGE conditions. 2383 */ 2384 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2385 goto skip; 2386 2387 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2388 err = -EROFS; 2389 goto restore_opts; 2390 } 2391 2392 #ifdef CONFIG_QUOTA 2393 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2394 err = dquot_suspend(sb, -1); 2395 if (err < 0) 2396 goto restore_opts; 2397 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2398 /* dquot_resume needs RW */ 2399 sb->s_flags &= ~SB_RDONLY; 2400 if (sb_any_quota_suspended(sb)) { 2401 dquot_resume(sb, -1); 2402 } else if (f2fs_sb_has_quota_ino(sbi)) { 2403 err = f2fs_enable_quotas(sb); 2404 if (err) 2405 goto restore_opts; 2406 } 2407 } 2408 #endif 2409 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2410 err = -EINVAL; 2411 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2412 goto restore_opts; 2413 } 2414 2415 /* disallow enable atgc dynamically */ 2416 if (no_atgc == !!test_opt(sbi, ATGC)) { 2417 err = -EINVAL; 2418 f2fs_warn(sbi, "switch atgc option is not allowed"); 2419 goto restore_opts; 2420 } 2421 2422 /* disallow enable/disable extent_cache dynamically */ 2423 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2424 err = -EINVAL; 2425 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2426 goto restore_opts; 2427 } 2428 /* disallow enable/disable age extent_cache dynamically */ 2429 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2430 err = -EINVAL; 2431 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2432 goto restore_opts; 2433 } 2434 2435 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2436 err = -EINVAL; 2437 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2438 goto restore_opts; 2439 } 2440 2441 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2442 err = -EINVAL; 2443 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2444 goto restore_opts; 2445 } 2446 2447 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2448 err = -EINVAL; 2449 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2450 goto restore_opts; 2451 } 2452 2453 /* 2454 * We stop the GC thread if FS is mounted as RO 2455 * or if background_gc = off is passed in mount 2456 * option. Also sync the filesystem. 2457 */ 2458 if ((*flags & SB_RDONLY) || 2459 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2460 !test_opt(sbi, GC_MERGE))) { 2461 if (sbi->gc_thread) { 2462 f2fs_stop_gc_thread(sbi); 2463 need_restart_gc = true; 2464 } 2465 } else if (!sbi->gc_thread) { 2466 err = f2fs_start_gc_thread(sbi); 2467 if (err) 2468 goto restore_opts; 2469 need_stop_gc = true; 2470 } 2471 2472 if (*flags & SB_RDONLY) { 2473 sync_inodes_sb(sb); 2474 2475 set_sbi_flag(sbi, SBI_IS_DIRTY); 2476 set_sbi_flag(sbi, SBI_IS_CLOSE); 2477 f2fs_sync_fs(sb, 1); 2478 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2479 } 2480 2481 /* 2482 * We stop issue flush thread if FS is mounted as RO 2483 * or if flush_merge is not passed in mount option. 2484 */ 2485 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2486 clear_opt(sbi, FLUSH_MERGE); 2487 f2fs_destroy_flush_cmd_control(sbi, false); 2488 need_restart_flush = true; 2489 } else { 2490 err = f2fs_create_flush_cmd_control(sbi); 2491 if (err) 2492 goto restore_gc; 2493 need_stop_flush = true; 2494 } 2495 2496 if (no_discard == !!test_opt(sbi, DISCARD)) { 2497 if (test_opt(sbi, DISCARD)) { 2498 err = f2fs_start_discard_thread(sbi); 2499 if (err) 2500 goto restore_flush; 2501 need_stop_discard = true; 2502 } else { 2503 f2fs_stop_discard_thread(sbi); 2504 f2fs_issue_discard_timeout(sbi); 2505 need_restart_discard = true; 2506 } 2507 } 2508 2509 adjust_unusable_cap_perc(sbi); 2510 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2511 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2512 err = f2fs_disable_checkpoint(sbi); 2513 if (err) 2514 goto restore_discard; 2515 need_enable_checkpoint = true; 2516 } else { 2517 f2fs_enable_checkpoint(sbi); 2518 need_disable_checkpoint = true; 2519 } 2520 } 2521 2522 /* 2523 * Place this routine at the end, since a new checkpoint would be 2524 * triggered while remount and we need to take care of it before 2525 * returning from remount. 2526 */ 2527 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2528 !test_opt(sbi, MERGE_CHECKPOINT)) { 2529 f2fs_stop_ckpt_thread(sbi); 2530 } else { 2531 /* Flush if the prevous checkpoint, if exists. */ 2532 f2fs_flush_ckpt_thread(sbi); 2533 2534 err = f2fs_start_ckpt_thread(sbi); 2535 if (err) { 2536 f2fs_err(sbi, 2537 "Failed to start F2FS issue_checkpoint_thread (%d)", 2538 err); 2539 goto restore_checkpoint; 2540 } 2541 } 2542 2543 skip: 2544 #ifdef CONFIG_QUOTA 2545 /* Release old quota file names */ 2546 for (i = 0; i < MAXQUOTAS; i++) 2547 kfree(org_mount_opt.s_qf_names[i]); 2548 #endif 2549 /* Update the POSIXACL Flag */ 2550 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2551 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2552 2553 limit_reserve_root(sbi); 2554 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2555 return 0; 2556 restore_checkpoint: 2557 if (need_enable_checkpoint) { 2558 f2fs_enable_checkpoint(sbi); 2559 } else if (need_disable_checkpoint) { 2560 if (f2fs_disable_checkpoint(sbi)) 2561 f2fs_warn(sbi, "checkpoint has not been disabled"); 2562 } 2563 restore_discard: 2564 if (need_restart_discard) { 2565 if (f2fs_start_discard_thread(sbi)) 2566 f2fs_warn(sbi, "discard has been stopped"); 2567 } else if (need_stop_discard) { 2568 f2fs_stop_discard_thread(sbi); 2569 } 2570 restore_flush: 2571 if (need_restart_flush) { 2572 if (f2fs_create_flush_cmd_control(sbi)) 2573 f2fs_warn(sbi, "background flush thread has stopped"); 2574 } else if (need_stop_flush) { 2575 clear_opt(sbi, FLUSH_MERGE); 2576 f2fs_destroy_flush_cmd_control(sbi, false); 2577 } 2578 restore_gc: 2579 if (need_restart_gc) { 2580 if (f2fs_start_gc_thread(sbi)) 2581 f2fs_warn(sbi, "background gc thread has stopped"); 2582 } else if (need_stop_gc) { 2583 f2fs_stop_gc_thread(sbi); 2584 } 2585 restore_opts: 2586 #ifdef CONFIG_QUOTA 2587 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2588 for (i = 0; i < MAXQUOTAS; i++) { 2589 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2590 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2591 } 2592 #endif 2593 sbi->mount_opt = org_mount_opt; 2594 sb->s_flags = old_sb_flags; 2595 return err; 2596 } 2597 2598 static void f2fs_shutdown(struct super_block *sb) 2599 { 2600 f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false); 2601 } 2602 2603 #ifdef CONFIG_QUOTA 2604 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2605 { 2606 /* need to recovery orphan */ 2607 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2608 return true; 2609 /* need to recovery data */ 2610 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2611 return false; 2612 if (test_opt(sbi, NORECOVERY)) 2613 return false; 2614 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2615 } 2616 2617 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2618 { 2619 bool readonly = f2fs_readonly(sbi->sb); 2620 2621 if (!f2fs_need_recovery(sbi)) 2622 return false; 2623 2624 /* it doesn't need to check f2fs_sb_has_readonly() */ 2625 if (f2fs_hw_is_readonly(sbi)) 2626 return false; 2627 2628 if (readonly) { 2629 sbi->sb->s_flags &= ~SB_RDONLY; 2630 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2631 } 2632 2633 /* 2634 * Turn on quotas which were not enabled for read-only mounts if 2635 * filesystem has quota feature, so that they are updated correctly. 2636 */ 2637 return f2fs_enable_quota_files(sbi, readonly); 2638 } 2639 2640 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2641 bool quota_enabled) 2642 { 2643 if (quota_enabled) 2644 f2fs_quota_off_umount(sbi->sb); 2645 2646 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2647 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2648 sbi->sb->s_flags |= SB_RDONLY; 2649 } 2650 } 2651 2652 /* Read data from quotafile */ 2653 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2654 size_t len, loff_t off) 2655 { 2656 struct inode *inode = sb_dqopt(sb)->files[type]; 2657 struct address_space *mapping = inode->i_mapping; 2658 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2659 int offset = off & (sb->s_blocksize - 1); 2660 int tocopy; 2661 size_t toread; 2662 loff_t i_size = i_size_read(inode); 2663 struct page *page; 2664 2665 if (off > i_size) 2666 return 0; 2667 2668 if (off + len > i_size) 2669 len = i_size - off; 2670 toread = len; 2671 while (toread > 0) { 2672 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2673 repeat: 2674 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2675 if (IS_ERR(page)) { 2676 if (PTR_ERR(page) == -ENOMEM) { 2677 memalloc_retry_wait(GFP_NOFS); 2678 goto repeat; 2679 } 2680 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2681 return PTR_ERR(page); 2682 } 2683 2684 lock_page(page); 2685 2686 if (unlikely(page->mapping != mapping)) { 2687 f2fs_put_page(page, 1); 2688 goto repeat; 2689 } 2690 if (unlikely(!PageUptodate(page))) { 2691 f2fs_put_page(page, 1); 2692 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2693 return -EIO; 2694 } 2695 2696 memcpy_from_page(data, page, offset, tocopy); 2697 f2fs_put_page(page, 1); 2698 2699 offset = 0; 2700 toread -= tocopy; 2701 data += tocopy; 2702 blkidx++; 2703 } 2704 return len; 2705 } 2706 2707 /* Write to quotafile */ 2708 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2709 const char *data, size_t len, loff_t off) 2710 { 2711 struct inode *inode = sb_dqopt(sb)->files[type]; 2712 struct address_space *mapping = inode->i_mapping; 2713 const struct address_space_operations *a_ops = mapping->a_ops; 2714 int offset = off & (sb->s_blocksize - 1); 2715 size_t towrite = len; 2716 struct folio *folio; 2717 void *fsdata = NULL; 2718 int err = 0; 2719 int tocopy; 2720 2721 while (towrite > 0) { 2722 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2723 towrite); 2724 retry: 2725 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2726 &folio, &fsdata); 2727 if (unlikely(err)) { 2728 if (err == -ENOMEM) { 2729 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2730 goto retry; 2731 } 2732 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2733 break; 2734 } 2735 2736 memcpy_to_folio(folio, offset_in_folio(folio, off), data, tocopy); 2737 2738 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2739 folio, fsdata); 2740 offset = 0; 2741 towrite -= tocopy; 2742 off += tocopy; 2743 data += tocopy; 2744 cond_resched(); 2745 } 2746 2747 if (len == towrite) 2748 return err; 2749 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2750 f2fs_mark_inode_dirty_sync(inode, false); 2751 return len - towrite; 2752 } 2753 2754 int f2fs_dquot_initialize(struct inode *inode) 2755 { 2756 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2757 return -ESRCH; 2758 2759 return dquot_initialize(inode); 2760 } 2761 2762 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode) 2763 { 2764 return F2FS_I(inode)->i_dquot; 2765 } 2766 2767 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2768 { 2769 return &F2FS_I(inode)->i_reserved_quota; 2770 } 2771 2772 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2773 { 2774 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2775 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2776 return 0; 2777 } 2778 2779 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2780 F2FS_OPTION(sbi).s_jquota_fmt, type); 2781 } 2782 2783 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2784 { 2785 int enabled = 0; 2786 int i, err; 2787 2788 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2789 err = f2fs_enable_quotas(sbi->sb); 2790 if (err) { 2791 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2792 return 0; 2793 } 2794 return 1; 2795 } 2796 2797 for (i = 0; i < MAXQUOTAS; i++) { 2798 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2799 err = f2fs_quota_on_mount(sbi, i); 2800 if (!err) { 2801 enabled = 1; 2802 continue; 2803 } 2804 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2805 err, i); 2806 } 2807 } 2808 return enabled; 2809 } 2810 2811 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2812 unsigned int flags) 2813 { 2814 struct inode *qf_inode; 2815 unsigned long qf_inum; 2816 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2817 int err; 2818 2819 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2820 2821 qf_inum = f2fs_qf_ino(sb, type); 2822 if (!qf_inum) 2823 return -EPERM; 2824 2825 qf_inode = f2fs_iget(sb, qf_inum); 2826 if (IS_ERR(qf_inode)) { 2827 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2828 return PTR_ERR(qf_inode); 2829 } 2830 2831 /* Don't account quota for quota files to avoid recursion */ 2832 inode_lock(qf_inode); 2833 qf_inode->i_flags |= S_NOQUOTA; 2834 2835 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2836 F2FS_I(qf_inode)->i_flags |= qf_flag; 2837 f2fs_set_inode_flags(qf_inode); 2838 } 2839 inode_unlock(qf_inode); 2840 2841 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2842 iput(qf_inode); 2843 return err; 2844 } 2845 2846 static int f2fs_enable_quotas(struct super_block *sb) 2847 { 2848 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2849 int type, err = 0; 2850 unsigned long qf_inum; 2851 bool quota_mopt[MAXQUOTAS] = { 2852 test_opt(sbi, USRQUOTA), 2853 test_opt(sbi, GRPQUOTA), 2854 test_opt(sbi, PRJQUOTA), 2855 }; 2856 2857 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2858 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2859 return 0; 2860 } 2861 2862 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2863 2864 for (type = 0; type < MAXQUOTAS; type++) { 2865 qf_inum = f2fs_qf_ino(sb, type); 2866 if (qf_inum) { 2867 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2868 DQUOT_USAGE_ENABLED | 2869 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2870 if (err) { 2871 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2872 type, err); 2873 for (type--; type >= 0; type--) 2874 dquot_quota_off(sb, type); 2875 set_sbi_flag(F2FS_SB(sb), 2876 SBI_QUOTA_NEED_REPAIR); 2877 return err; 2878 } 2879 } 2880 } 2881 return 0; 2882 } 2883 2884 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2885 { 2886 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2887 struct address_space *mapping = dqopt->files[type]->i_mapping; 2888 int ret = 0; 2889 2890 ret = dquot_writeback_dquots(sbi->sb, type); 2891 if (ret) 2892 goto out; 2893 2894 ret = filemap_fdatawrite(mapping); 2895 if (ret) 2896 goto out; 2897 2898 /* if we are using journalled quota */ 2899 if (is_journalled_quota(sbi)) 2900 goto out; 2901 2902 ret = filemap_fdatawait(mapping); 2903 2904 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2905 out: 2906 if (ret) 2907 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2908 return ret; 2909 } 2910 2911 int f2fs_quota_sync(struct super_block *sb, int type) 2912 { 2913 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2914 struct quota_info *dqopt = sb_dqopt(sb); 2915 int cnt; 2916 int ret = 0; 2917 2918 /* 2919 * Now when everything is written we can discard the pagecache so 2920 * that userspace sees the changes. 2921 */ 2922 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2923 2924 if (type != -1 && cnt != type) 2925 continue; 2926 2927 if (!sb_has_quota_active(sb, cnt)) 2928 continue; 2929 2930 if (!f2fs_sb_has_quota_ino(sbi)) 2931 inode_lock(dqopt->files[cnt]); 2932 2933 /* 2934 * do_quotactl 2935 * f2fs_quota_sync 2936 * f2fs_down_read(quota_sem) 2937 * dquot_writeback_dquots() 2938 * f2fs_dquot_commit 2939 * block_operation 2940 * f2fs_down_read(quota_sem) 2941 */ 2942 f2fs_lock_op(sbi); 2943 f2fs_down_read(&sbi->quota_sem); 2944 2945 ret = f2fs_quota_sync_file(sbi, cnt); 2946 2947 f2fs_up_read(&sbi->quota_sem); 2948 f2fs_unlock_op(sbi); 2949 2950 if (!f2fs_sb_has_quota_ino(sbi)) 2951 inode_unlock(dqopt->files[cnt]); 2952 2953 if (ret) 2954 break; 2955 } 2956 return ret; 2957 } 2958 2959 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2960 const struct path *path) 2961 { 2962 struct inode *inode; 2963 int err; 2964 2965 /* if quota sysfile exists, deny enabling quota with specific file */ 2966 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2967 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2968 return -EBUSY; 2969 } 2970 2971 if (path->dentry->d_sb != sb) 2972 return -EXDEV; 2973 2974 err = f2fs_quota_sync(sb, type); 2975 if (err) 2976 return err; 2977 2978 inode = d_inode(path->dentry); 2979 2980 err = filemap_fdatawrite(inode->i_mapping); 2981 if (err) 2982 return err; 2983 2984 err = filemap_fdatawait(inode->i_mapping); 2985 if (err) 2986 return err; 2987 2988 err = dquot_quota_on(sb, type, format_id, path); 2989 if (err) 2990 return err; 2991 2992 inode_lock(inode); 2993 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 2994 f2fs_set_inode_flags(inode); 2995 inode_unlock(inode); 2996 f2fs_mark_inode_dirty_sync(inode, false); 2997 2998 return 0; 2999 } 3000 3001 static int __f2fs_quota_off(struct super_block *sb, int type) 3002 { 3003 struct inode *inode = sb_dqopt(sb)->files[type]; 3004 int err; 3005 3006 if (!inode || !igrab(inode)) 3007 return dquot_quota_off(sb, type); 3008 3009 err = f2fs_quota_sync(sb, type); 3010 if (err) 3011 goto out_put; 3012 3013 err = dquot_quota_off(sb, type); 3014 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 3015 goto out_put; 3016 3017 inode_lock(inode); 3018 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 3019 f2fs_set_inode_flags(inode); 3020 inode_unlock(inode); 3021 f2fs_mark_inode_dirty_sync(inode, false); 3022 out_put: 3023 iput(inode); 3024 return err; 3025 } 3026 3027 static int f2fs_quota_off(struct super_block *sb, int type) 3028 { 3029 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3030 int err; 3031 3032 err = __f2fs_quota_off(sb, type); 3033 3034 /* 3035 * quotactl can shutdown journalled quota, result in inconsistence 3036 * between quota record and fs data by following updates, tag the 3037 * flag to let fsck be aware of it. 3038 */ 3039 if (is_journalled_quota(sbi)) 3040 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3041 return err; 3042 } 3043 3044 void f2fs_quota_off_umount(struct super_block *sb) 3045 { 3046 int type; 3047 int err; 3048 3049 for (type = 0; type < MAXQUOTAS; type++) { 3050 err = __f2fs_quota_off(sb, type); 3051 if (err) { 3052 int ret = dquot_quota_off(sb, type); 3053 3054 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3055 type, err, ret); 3056 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3057 } 3058 } 3059 /* 3060 * In case of checkpoint=disable, we must flush quota blocks. 3061 * This can cause NULL exception for node_inode in end_io, since 3062 * put_super already dropped it. 3063 */ 3064 sync_filesystem(sb); 3065 } 3066 3067 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3068 { 3069 struct quota_info *dqopt = sb_dqopt(sb); 3070 int type; 3071 3072 for (type = 0; type < MAXQUOTAS; type++) { 3073 if (!dqopt->files[type]) 3074 continue; 3075 f2fs_inode_synced(dqopt->files[type]); 3076 } 3077 } 3078 3079 static int f2fs_dquot_commit(struct dquot *dquot) 3080 { 3081 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3082 int ret; 3083 3084 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3085 ret = dquot_commit(dquot); 3086 if (ret < 0) 3087 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3088 f2fs_up_read(&sbi->quota_sem); 3089 return ret; 3090 } 3091 3092 static int f2fs_dquot_acquire(struct dquot *dquot) 3093 { 3094 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3095 int ret; 3096 3097 f2fs_down_read(&sbi->quota_sem); 3098 ret = dquot_acquire(dquot); 3099 if (ret < 0) 3100 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3101 f2fs_up_read(&sbi->quota_sem); 3102 return ret; 3103 } 3104 3105 static int f2fs_dquot_release(struct dquot *dquot) 3106 { 3107 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3108 int ret = dquot_release(dquot); 3109 3110 if (ret < 0) 3111 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3112 return ret; 3113 } 3114 3115 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3116 { 3117 struct super_block *sb = dquot->dq_sb; 3118 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3119 int ret = dquot_mark_dquot_dirty(dquot); 3120 3121 /* if we are using journalled quota */ 3122 if (is_journalled_quota(sbi)) 3123 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3124 3125 return ret; 3126 } 3127 3128 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3129 { 3130 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3131 int ret = dquot_commit_info(sb, type); 3132 3133 if (ret < 0) 3134 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3135 return ret; 3136 } 3137 3138 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3139 { 3140 *projid = F2FS_I(inode)->i_projid; 3141 return 0; 3142 } 3143 3144 static const struct dquot_operations f2fs_quota_operations = { 3145 .get_reserved_space = f2fs_get_reserved_space, 3146 .write_dquot = f2fs_dquot_commit, 3147 .acquire_dquot = f2fs_dquot_acquire, 3148 .release_dquot = f2fs_dquot_release, 3149 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3150 .write_info = f2fs_dquot_commit_info, 3151 .alloc_dquot = dquot_alloc, 3152 .destroy_dquot = dquot_destroy, 3153 .get_projid = f2fs_get_projid, 3154 .get_next_id = dquot_get_next_id, 3155 }; 3156 3157 static const struct quotactl_ops f2fs_quotactl_ops = { 3158 .quota_on = f2fs_quota_on, 3159 .quota_off = f2fs_quota_off, 3160 .quota_sync = f2fs_quota_sync, 3161 .get_state = dquot_get_state, 3162 .set_info = dquot_set_dqinfo, 3163 .get_dqblk = dquot_get_dqblk, 3164 .set_dqblk = dquot_set_dqblk, 3165 .get_nextdqblk = dquot_get_next_dqblk, 3166 }; 3167 #else 3168 int f2fs_dquot_initialize(struct inode *inode) 3169 { 3170 return 0; 3171 } 3172 3173 int f2fs_quota_sync(struct super_block *sb, int type) 3174 { 3175 return 0; 3176 } 3177 3178 void f2fs_quota_off_umount(struct super_block *sb) 3179 { 3180 } 3181 #endif 3182 3183 static const struct super_operations f2fs_sops = { 3184 .alloc_inode = f2fs_alloc_inode, 3185 .free_inode = f2fs_free_inode, 3186 .drop_inode = f2fs_drop_inode, 3187 .write_inode = f2fs_write_inode, 3188 .dirty_inode = f2fs_dirty_inode, 3189 .show_options = f2fs_show_options, 3190 #ifdef CONFIG_QUOTA 3191 .quota_read = f2fs_quota_read, 3192 .quota_write = f2fs_quota_write, 3193 .get_dquots = f2fs_get_dquots, 3194 #endif 3195 .evict_inode = f2fs_evict_inode, 3196 .put_super = f2fs_put_super, 3197 .sync_fs = f2fs_sync_fs, 3198 .freeze_fs = f2fs_freeze, 3199 .unfreeze_fs = f2fs_unfreeze, 3200 .statfs = f2fs_statfs, 3201 .remount_fs = f2fs_remount, 3202 .shutdown = f2fs_shutdown, 3203 }; 3204 3205 #ifdef CONFIG_FS_ENCRYPTION 3206 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3207 { 3208 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3209 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3210 ctx, len, NULL); 3211 } 3212 3213 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3214 void *fs_data) 3215 { 3216 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3217 3218 /* 3219 * Encrypting the root directory is not allowed because fsck 3220 * expects lost+found directory to exist and remain unencrypted 3221 * if LOST_FOUND feature is enabled. 3222 * 3223 */ 3224 if (f2fs_sb_has_lost_found(sbi) && 3225 inode->i_ino == F2FS_ROOT_INO(sbi)) 3226 return -EPERM; 3227 3228 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3229 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3230 ctx, len, fs_data, XATTR_CREATE); 3231 } 3232 3233 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3234 { 3235 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3236 } 3237 3238 static bool f2fs_has_stable_inodes(struct super_block *sb) 3239 { 3240 return true; 3241 } 3242 3243 static struct block_device **f2fs_get_devices(struct super_block *sb, 3244 unsigned int *num_devs) 3245 { 3246 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3247 struct block_device **devs; 3248 int i; 3249 3250 if (!f2fs_is_multi_device(sbi)) 3251 return NULL; 3252 3253 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3254 if (!devs) 3255 return ERR_PTR(-ENOMEM); 3256 3257 for (i = 0; i < sbi->s_ndevs; i++) 3258 devs[i] = FDEV(i).bdev; 3259 *num_devs = sbi->s_ndevs; 3260 return devs; 3261 } 3262 3263 static const struct fscrypt_operations f2fs_cryptops = { 3264 .needs_bounce_pages = 1, 3265 .has_32bit_inodes = 1, 3266 .supports_subblock_data_units = 1, 3267 .legacy_key_prefix = "f2fs:", 3268 .get_context = f2fs_get_context, 3269 .set_context = f2fs_set_context, 3270 .get_dummy_policy = f2fs_get_dummy_policy, 3271 .empty_dir = f2fs_empty_dir, 3272 .has_stable_inodes = f2fs_has_stable_inodes, 3273 .get_devices = f2fs_get_devices, 3274 }; 3275 #endif 3276 3277 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3278 u64 ino, u32 generation) 3279 { 3280 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3281 struct inode *inode; 3282 3283 if (f2fs_check_nid_range(sbi, ino)) 3284 return ERR_PTR(-ESTALE); 3285 3286 /* 3287 * f2fs_iget isn't quite right if the inode is currently unallocated! 3288 * However f2fs_iget currently does appropriate checks to handle stale 3289 * inodes so everything is OK. 3290 */ 3291 inode = f2fs_iget(sb, ino); 3292 if (IS_ERR(inode)) 3293 return ERR_CAST(inode); 3294 if (unlikely(generation && inode->i_generation != generation)) { 3295 /* we didn't find the right inode.. */ 3296 iput(inode); 3297 return ERR_PTR(-ESTALE); 3298 } 3299 return inode; 3300 } 3301 3302 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3303 int fh_len, int fh_type) 3304 { 3305 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3306 f2fs_nfs_get_inode); 3307 } 3308 3309 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3310 int fh_len, int fh_type) 3311 { 3312 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3313 f2fs_nfs_get_inode); 3314 } 3315 3316 static const struct export_operations f2fs_export_ops = { 3317 .encode_fh = generic_encode_ino32_fh, 3318 .fh_to_dentry = f2fs_fh_to_dentry, 3319 .fh_to_parent = f2fs_fh_to_parent, 3320 .get_parent = f2fs_get_parent, 3321 }; 3322 3323 loff_t max_file_blocks(struct inode *inode) 3324 { 3325 loff_t result = 0; 3326 loff_t leaf_count; 3327 3328 /* 3329 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3330 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3331 * space in inode.i_addr, it will be more safe to reassign 3332 * result as zero. 3333 */ 3334 3335 if (inode && f2fs_compressed_file(inode)) 3336 leaf_count = ADDRS_PER_BLOCK(inode); 3337 else 3338 leaf_count = DEF_ADDRS_PER_BLOCK; 3339 3340 /* two direct node blocks */ 3341 result += (leaf_count * 2); 3342 3343 /* two indirect node blocks */ 3344 leaf_count *= NIDS_PER_BLOCK; 3345 result += (leaf_count * 2); 3346 3347 /* one double indirect node block */ 3348 leaf_count *= NIDS_PER_BLOCK; 3349 result += leaf_count; 3350 3351 /* 3352 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with 3353 * a 4K crypto data unit, we must restrict the max filesize to what can 3354 * fit within U32_MAX + 1 data units. 3355 */ 3356 3357 result = umin(result, F2FS_BYTES_TO_BLK(((loff_t)U32_MAX + 1) * 4096)); 3358 3359 return result; 3360 } 3361 3362 static int __f2fs_commit_super(struct f2fs_sb_info *sbi, struct folio *folio, 3363 pgoff_t index, bool update) 3364 { 3365 struct bio *bio; 3366 /* it's rare case, we can do fua all the time */ 3367 blk_opf_t opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA; 3368 int ret; 3369 3370 folio_lock(folio); 3371 folio_wait_writeback(folio); 3372 if (update) 3373 memcpy(F2FS_SUPER_BLOCK(folio, index), F2FS_RAW_SUPER(sbi), 3374 sizeof(struct f2fs_super_block)); 3375 folio_mark_dirty(folio); 3376 folio_clear_dirty_for_io(folio); 3377 folio_start_writeback(folio); 3378 folio_unlock(folio); 3379 3380 bio = bio_alloc(sbi->sb->s_bdev, 1, opf, GFP_NOFS); 3381 3382 /* it doesn't need to set crypto context for superblock update */ 3383 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(folio_index(folio)); 3384 3385 if (!bio_add_folio(bio, folio, folio_size(folio), 0)) 3386 f2fs_bug_on(sbi, 1); 3387 3388 ret = submit_bio_wait(bio); 3389 folio_end_writeback(folio); 3390 3391 return ret; 3392 } 3393 3394 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3395 struct folio *folio, pgoff_t index) 3396 { 3397 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index); 3398 struct super_block *sb = sbi->sb; 3399 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3400 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3401 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3402 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3403 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3404 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3405 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3406 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3407 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3408 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3409 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3410 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3411 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3412 u64 main_end_blkaddr = main_blkaddr + 3413 ((u64)segment_count_main << log_blocks_per_seg); 3414 u64 seg_end_blkaddr = segment0_blkaddr + 3415 ((u64)segment_count << log_blocks_per_seg); 3416 3417 if (segment0_blkaddr != cp_blkaddr) { 3418 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3419 segment0_blkaddr, cp_blkaddr); 3420 return true; 3421 } 3422 3423 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3424 sit_blkaddr) { 3425 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3426 cp_blkaddr, sit_blkaddr, 3427 segment_count_ckpt << log_blocks_per_seg); 3428 return true; 3429 } 3430 3431 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3432 nat_blkaddr) { 3433 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3434 sit_blkaddr, nat_blkaddr, 3435 segment_count_sit << log_blocks_per_seg); 3436 return true; 3437 } 3438 3439 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3440 ssa_blkaddr) { 3441 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3442 nat_blkaddr, ssa_blkaddr, 3443 segment_count_nat << log_blocks_per_seg); 3444 return true; 3445 } 3446 3447 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3448 main_blkaddr) { 3449 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3450 ssa_blkaddr, main_blkaddr, 3451 segment_count_ssa << log_blocks_per_seg); 3452 return true; 3453 } 3454 3455 if (main_end_blkaddr > seg_end_blkaddr) { 3456 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3457 main_blkaddr, seg_end_blkaddr, 3458 segment_count_main << log_blocks_per_seg); 3459 return true; 3460 } else if (main_end_blkaddr < seg_end_blkaddr) { 3461 int err = 0; 3462 char *res; 3463 3464 /* fix in-memory information all the time */ 3465 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3466 segment0_blkaddr) >> log_blocks_per_seg); 3467 3468 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3469 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3470 res = "internally"; 3471 } else { 3472 err = __f2fs_commit_super(sbi, folio, index, false); 3473 res = err ? "failed" : "done"; 3474 } 3475 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3476 res, main_blkaddr, seg_end_blkaddr, 3477 segment_count_main << log_blocks_per_seg); 3478 if (err) 3479 return true; 3480 } 3481 return false; 3482 } 3483 3484 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3485 struct folio *folio, pgoff_t index) 3486 { 3487 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3488 block_t total_sections, blocks_per_seg; 3489 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index); 3490 size_t crc_offset = 0; 3491 __u32 crc = 0; 3492 3493 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3494 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3495 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3496 return -EINVAL; 3497 } 3498 3499 /* Check checksum_offset and crc in superblock */ 3500 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3501 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3502 if (crc_offset != 3503 offsetof(struct f2fs_super_block, crc)) { 3504 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3505 crc_offset); 3506 return -EFSCORRUPTED; 3507 } 3508 crc = le32_to_cpu(raw_super->crc); 3509 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3510 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3511 return -EFSCORRUPTED; 3512 } 3513 } 3514 3515 /* only support block_size equals to PAGE_SIZE */ 3516 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3517 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3518 le32_to_cpu(raw_super->log_blocksize), 3519 F2FS_BLKSIZE_BITS); 3520 return -EFSCORRUPTED; 3521 } 3522 3523 /* check log blocks per segment */ 3524 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3525 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3526 le32_to_cpu(raw_super->log_blocks_per_seg)); 3527 return -EFSCORRUPTED; 3528 } 3529 3530 /* Currently, support 512/1024/2048/4096/16K bytes sector size */ 3531 if (le32_to_cpu(raw_super->log_sectorsize) > 3532 F2FS_MAX_LOG_SECTOR_SIZE || 3533 le32_to_cpu(raw_super->log_sectorsize) < 3534 F2FS_MIN_LOG_SECTOR_SIZE) { 3535 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3536 le32_to_cpu(raw_super->log_sectorsize)); 3537 return -EFSCORRUPTED; 3538 } 3539 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3540 le32_to_cpu(raw_super->log_sectorsize) != 3541 F2FS_MAX_LOG_SECTOR_SIZE) { 3542 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3543 le32_to_cpu(raw_super->log_sectors_per_block), 3544 le32_to_cpu(raw_super->log_sectorsize)); 3545 return -EFSCORRUPTED; 3546 } 3547 3548 segment_count = le32_to_cpu(raw_super->segment_count); 3549 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3550 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3551 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3552 total_sections = le32_to_cpu(raw_super->section_count); 3553 3554 /* blocks_per_seg should be 512, given the above check */ 3555 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3556 3557 if (segment_count > F2FS_MAX_SEGMENT || 3558 segment_count < F2FS_MIN_SEGMENTS) { 3559 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3560 return -EFSCORRUPTED; 3561 } 3562 3563 if (total_sections > segment_count_main || total_sections < 1 || 3564 segs_per_sec > segment_count || !segs_per_sec) { 3565 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3566 segment_count, total_sections, segs_per_sec); 3567 return -EFSCORRUPTED; 3568 } 3569 3570 if (segment_count_main != total_sections * segs_per_sec) { 3571 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3572 segment_count_main, total_sections, segs_per_sec); 3573 return -EFSCORRUPTED; 3574 } 3575 3576 if ((segment_count / segs_per_sec) < total_sections) { 3577 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3578 segment_count, segs_per_sec, total_sections); 3579 return -EFSCORRUPTED; 3580 } 3581 3582 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3583 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3584 segment_count, le64_to_cpu(raw_super->block_count)); 3585 return -EFSCORRUPTED; 3586 } 3587 3588 if (RDEV(0).path[0]) { 3589 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3590 int i = 1; 3591 3592 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3593 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3594 i++; 3595 } 3596 if (segment_count != dev_seg_count) { 3597 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3598 segment_count, dev_seg_count); 3599 return -EFSCORRUPTED; 3600 } 3601 } else { 3602 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3603 !bdev_is_zoned(sbi->sb->s_bdev)) { 3604 f2fs_info(sbi, "Zoned block device path is missing"); 3605 return -EFSCORRUPTED; 3606 } 3607 } 3608 3609 if (secs_per_zone > total_sections || !secs_per_zone) { 3610 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3611 secs_per_zone, total_sections); 3612 return -EFSCORRUPTED; 3613 } 3614 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3615 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3616 (le32_to_cpu(raw_super->extension_count) + 3617 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3618 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3619 le32_to_cpu(raw_super->extension_count), 3620 raw_super->hot_ext_count, 3621 F2FS_MAX_EXTENSION); 3622 return -EFSCORRUPTED; 3623 } 3624 3625 if (le32_to_cpu(raw_super->cp_payload) >= 3626 (blocks_per_seg - F2FS_CP_PACKS - 3627 NR_CURSEG_PERSIST_TYPE)) { 3628 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3629 le32_to_cpu(raw_super->cp_payload), 3630 blocks_per_seg - F2FS_CP_PACKS - 3631 NR_CURSEG_PERSIST_TYPE); 3632 return -EFSCORRUPTED; 3633 } 3634 3635 /* check reserved ino info */ 3636 if (le32_to_cpu(raw_super->node_ino) != 1 || 3637 le32_to_cpu(raw_super->meta_ino) != 2 || 3638 le32_to_cpu(raw_super->root_ino) != 3) { 3639 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3640 le32_to_cpu(raw_super->node_ino), 3641 le32_to_cpu(raw_super->meta_ino), 3642 le32_to_cpu(raw_super->root_ino)); 3643 return -EFSCORRUPTED; 3644 } 3645 3646 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3647 if (sanity_check_area_boundary(sbi, folio, index)) 3648 return -EFSCORRUPTED; 3649 3650 return 0; 3651 } 3652 3653 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3654 { 3655 unsigned int total, fsmeta; 3656 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3657 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3658 unsigned int ovp_segments, reserved_segments; 3659 unsigned int main_segs, blocks_per_seg; 3660 unsigned int sit_segs, nat_segs; 3661 unsigned int sit_bitmap_size, nat_bitmap_size; 3662 unsigned int log_blocks_per_seg; 3663 unsigned int segment_count_main; 3664 unsigned int cp_pack_start_sum, cp_payload; 3665 block_t user_block_count, valid_user_blocks; 3666 block_t avail_node_count, valid_node_count; 3667 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3668 int i, j; 3669 3670 total = le32_to_cpu(raw_super->segment_count); 3671 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3672 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3673 fsmeta += sit_segs; 3674 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3675 fsmeta += nat_segs; 3676 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3677 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3678 3679 if (unlikely(fsmeta >= total)) 3680 return 1; 3681 3682 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3683 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3684 3685 if (!f2fs_sb_has_readonly(sbi) && 3686 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3687 ovp_segments == 0 || reserved_segments == 0)) { 3688 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3689 return 1; 3690 } 3691 user_block_count = le64_to_cpu(ckpt->user_block_count); 3692 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3693 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3694 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3695 if (!user_block_count || user_block_count >= 3696 segment_count_main << log_blocks_per_seg) { 3697 f2fs_err(sbi, "Wrong user_block_count: %u", 3698 user_block_count); 3699 return 1; 3700 } 3701 3702 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3703 if (valid_user_blocks > user_block_count) { 3704 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3705 valid_user_blocks, user_block_count); 3706 return 1; 3707 } 3708 3709 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3710 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3711 if (valid_node_count > avail_node_count) { 3712 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3713 valid_node_count, avail_node_count); 3714 return 1; 3715 } 3716 3717 main_segs = le32_to_cpu(raw_super->segment_count_main); 3718 blocks_per_seg = BLKS_PER_SEG(sbi); 3719 3720 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3721 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3722 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3723 return 1; 3724 3725 if (f2fs_sb_has_readonly(sbi)) 3726 goto check_data; 3727 3728 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3729 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3730 le32_to_cpu(ckpt->cur_node_segno[j])) { 3731 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3732 i, j, 3733 le32_to_cpu(ckpt->cur_node_segno[i])); 3734 return 1; 3735 } 3736 } 3737 } 3738 check_data: 3739 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3740 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3741 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3742 return 1; 3743 3744 if (f2fs_sb_has_readonly(sbi)) 3745 goto skip_cross; 3746 3747 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3748 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3749 le32_to_cpu(ckpt->cur_data_segno[j])) { 3750 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3751 i, j, 3752 le32_to_cpu(ckpt->cur_data_segno[i])); 3753 return 1; 3754 } 3755 } 3756 } 3757 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3758 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3759 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3760 le32_to_cpu(ckpt->cur_data_segno[j])) { 3761 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3762 i, j, 3763 le32_to_cpu(ckpt->cur_node_segno[i])); 3764 return 1; 3765 } 3766 } 3767 } 3768 skip_cross: 3769 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3770 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3771 3772 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3773 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3774 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3775 sit_bitmap_size, nat_bitmap_size); 3776 return 1; 3777 } 3778 3779 cp_pack_start_sum = __start_sum_addr(sbi); 3780 cp_payload = __cp_payload(sbi); 3781 if (cp_pack_start_sum < cp_payload + 1 || 3782 cp_pack_start_sum > blocks_per_seg - 1 - 3783 NR_CURSEG_PERSIST_TYPE) { 3784 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3785 cp_pack_start_sum); 3786 return 1; 3787 } 3788 3789 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3790 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3791 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3792 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3793 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3794 le32_to_cpu(ckpt->checksum_offset)); 3795 return 1; 3796 } 3797 3798 nat_blocks = nat_segs << log_blocks_per_seg; 3799 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3800 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3801 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3802 (cp_payload + F2FS_CP_PACKS + 3803 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3804 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3805 cp_payload, nat_bits_blocks); 3806 return 1; 3807 } 3808 3809 if (unlikely(f2fs_cp_error(sbi))) { 3810 f2fs_err(sbi, "A bug case: need to run fsck"); 3811 return 1; 3812 } 3813 return 0; 3814 } 3815 3816 static void init_sb_info(struct f2fs_sb_info *sbi) 3817 { 3818 struct f2fs_super_block *raw_super = sbi->raw_super; 3819 int i; 3820 3821 sbi->log_sectors_per_block = 3822 le32_to_cpu(raw_super->log_sectors_per_block); 3823 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3824 sbi->blocksize = BIT(sbi->log_blocksize); 3825 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3826 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3827 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3828 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3829 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3830 sbi->total_node_count = SEGS_TO_BLKS(sbi, 3831 ((le32_to_cpu(raw_super->segment_count_nat) / 2) * 3832 NAT_ENTRY_PER_BLOCK)); 3833 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3834 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3835 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3836 sbi->cur_victim_sec = NULL_SECNO; 3837 sbi->gc_mode = GC_NORMAL; 3838 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3839 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3840 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3841 sbi->migration_granularity = SEGS_PER_SEC(sbi); 3842 sbi->migration_window_granularity = f2fs_sb_has_blkzoned(sbi) ? 3843 DEF_MIGRATION_WINDOW_GRANULARITY_ZONED : SEGS_PER_SEC(sbi); 3844 sbi->seq_file_ra_mul = MIN_RA_MUL; 3845 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3846 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3847 spin_lock_init(&sbi->gc_remaining_trials_lock); 3848 atomic64_set(&sbi->current_atomic_write, 0); 3849 3850 sbi->dir_level = DEF_DIR_LEVEL; 3851 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3852 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3853 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3854 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3855 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3856 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3857 DEF_UMOUNT_DISCARD_TIMEOUT; 3858 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3859 3860 for (i = 0; i < NR_COUNT_TYPE; i++) 3861 atomic_set(&sbi->nr_pages[i], 0); 3862 3863 for (i = 0; i < META; i++) 3864 atomic_set(&sbi->wb_sync_req[i], 0); 3865 3866 INIT_LIST_HEAD(&sbi->s_list); 3867 mutex_init(&sbi->umount_mutex); 3868 init_f2fs_rwsem(&sbi->io_order_lock); 3869 spin_lock_init(&sbi->cp_lock); 3870 3871 sbi->dirty_device = 0; 3872 spin_lock_init(&sbi->dev_lock); 3873 3874 init_f2fs_rwsem(&sbi->sb_lock); 3875 init_f2fs_rwsem(&sbi->pin_sem); 3876 } 3877 3878 static int init_percpu_info(struct f2fs_sb_info *sbi) 3879 { 3880 int err; 3881 3882 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3883 if (err) 3884 return err; 3885 3886 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3887 if (err) 3888 goto err_valid_block; 3889 3890 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3891 GFP_KERNEL); 3892 if (err) 3893 goto err_node_block; 3894 return 0; 3895 3896 err_node_block: 3897 percpu_counter_destroy(&sbi->rf_node_block_count); 3898 err_valid_block: 3899 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3900 return err; 3901 } 3902 3903 #ifdef CONFIG_BLK_DEV_ZONED 3904 3905 struct f2fs_report_zones_args { 3906 struct f2fs_sb_info *sbi; 3907 struct f2fs_dev_info *dev; 3908 }; 3909 3910 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3911 void *data) 3912 { 3913 struct f2fs_report_zones_args *rz_args = data; 3914 block_t unusable_blocks = (zone->len - zone->capacity) >> 3915 F2FS_LOG_SECTORS_PER_BLOCK; 3916 3917 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3918 return 0; 3919 3920 set_bit(idx, rz_args->dev->blkz_seq); 3921 if (!rz_args->sbi->unusable_blocks_per_sec) { 3922 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3923 return 0; 3924 } 3925 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3926 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3927 return -EINVAL; 3928 } 3929 return 0; 3930 } 3931 3932 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3933 { 3934 struct block_device *bdev = FDEV(devi).bdev; 3935 sector_t nr_sectors = bdev_nr_sectors(bdev); 3936 struct f2fs_report_zones_args rep_zone_arg; 3937 u64 zone_sectors; 3938 unsigned int max_open_zones; 3939 int ret; 3940 3941 if (!f2fs_sb_has_blkzoned(sbi)) 3942 return 0; 3943 3944 if (bdev_is_zoned(FDEV(devi).bdev)) { 3945 max_open_zones = bdev_max_open_zones(bdev); 3946 if (max_open_zones && (max_open_zones < sbi->max_open_zones)) 3947 sbi->max_open_zones = max_open_zones; 3948 if (sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 3949 f2fs_err(sbi, 3950 "zoned: max open zones %u is too small, need at least %u open zones", 3951 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 3952 return -EINVAL; 3953 } 3954 } 3955 3956 zone_sectors = bdev_zone_sectors(bdev); 3957 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3958 SECTOR_TO_BLOCK(zone_sectors)) 3959 return -EINVAL; 3960 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3961 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 3962 sbi->blocks_per_blkz); 3963 if (nr_sectors & (zone_sectors - 1)) 3964 FDEV(devi).nr_blkz++; 3965 3966 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3967 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3968 * sizeof(unsigned long), 3969 GFP_KERNEL); 3970 if (!FDEV(devi).blkz_seq) 3971 return -ENOMEM; 3972 3973 rep_zone_arg.sbi = sbi; 3974 rep_zone_arg.dev = &FDEV(devi); 3975 3976 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3977 &rep_zone_arg); 3978 if (ret < 0) 3979 return ret; 3980 return 0; 3981 } 3982 #endif 3983 3984 /* 3985 * Read f2fs raw super block. 3986 * Because we have two copies of super block, so read both of them 3987 * to get the first valid one. If any one of them is broken, we pass 3988 * them recovery flag back to the caller. 3989 */ 3990 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3991 struct f2fs_super_block **raw_super, 3992 int *valid_super_block, int *recovery) 3993 { 3994 struct super_block *sb = sbi->sb; 3995 int block; 3996 struct folio *folio; 3997 struct f2fs_super_block *super; 3998 int err = 0; 3999 4000 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 4001 if (!super) 4002 return -ENOMEM; 4003 4004 for (block = 0; block < 2; block++) { 4005 folio = read_mapping_folio(sb->s_bdev->bd_mapping, block, NULL); 4006 if (IS_ERR(folio)) { 4007 f2fs_err(sbi, "Unable to read %dth superblock", 4008 block + 1); 4009 err = PTR_ERR(folio); 4010 *recovery = 1; 4011 continue; 4012 } 4013 4014 /* sanity checking of raw super */ 4015 err = sanity_check_raw_super(sbi, folio, block); 4016 if (err) { 4017 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 4018 block + 1); 4019 folio_put(folio); 4020 *recovery = 1; 4021 continue; 4022 } 4023 4024 if (!*raw_super) { 4025 memcpy(super, F2FS_SUPER_BLOCK(folio, block), 4026 sizeof(*super)); 4027 *valid_super_block = block; 4028 *raw_super = super; 4029 } 4030 folio_put(folio); 4031 } 4032 4033 /* No valid superblock */ 4034 if (!*raw_super) 4035 kfree(super); 4036 else 4037 err = 0; 4038 4039 return err; 4040 } 4041 4042 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 4043 { 4044 struct folio *folio; 4045 pgoff_t index; 4046 __u32 crc = 0; 4047 int err; 4048 4049 if ((recover && f2fs_readonly(sbi->sb)) || 4050 f2fs_hw_is_readonly(sbi)) { 4051 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 4052 return -EROFS; 4053 } 4054 4055 /* we should update superblock crc here */ 4056 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 4057 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 4058 offsetof(struct f2fs_super_block, crc)); 4059 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 4060 } 4061 4062 /* write back-up superblock first */ 4063 index = sbi->valid_super_block ? 0 : 1; 4064 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL); 4065 if (IS_ERR(folio)) 4066 return PTR_ERR(folio); 4067 err = __f2fs_commit_super(sbi, folio, index, true); 4068 folio_put(folio); 4069 4070 /* if we are in recovery path, skip writing valid superblock */ 4071 if (recover || err) 4072 return err; 4073 4074 /* write current valid superblock */ 4075 index = sbi->valid_super_block; 4076 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL); 4077 if (IS_ERR(folio)) 4078 return PTR_ERR(folio); 4079 err = __f2fs_commit_super(sbi, folio, index, true); 4080 folio_put(folio); 4081 return err; 4082 } 4083 4084 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 4085 { 4086 unsigned long flags; 4087 4088 spin_lock_irqsave(&sbi->error_lock, flags); 4089 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4090 sbi->stop_reason[reason]++; 4091 spin_unlock_irqrestore(&sbi->error_lock, flags); 4092 } 4093 4094 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4095 { 4096 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4097 unsigned long flags; 4098 int err; 4099 4100 f2fs_down_write(&sbi->sb_lock); 4101 4102 spin_lock_irqsave(&sbi->error_lock, flags); 4103 if (sbi->error_dirty) { 4104 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4105 MAX_F2FS_ERRORS); 4106 sbi->error_dirty = false; 4107 } 4108 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4109 spin_unlock_irqrestore(&sbi->error_lock, flags); 4110 4111 err = f2fs_commit_super(sbi, false); 4112 4113 f2fs_up_write(&sbi->sb_lock); 4114 if (err) 4115 f2fs_err_ratelimited(sbi, 4116 "f2fs_commit_super fails to record stop_reason, err:%d", 4117 err); 4118 } 4119 4120 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4121 { 4122 unsigned long flags; 4123 4124 spin_lock_irqsave(&sbi->error_lock, flags); 4125 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4126 set_bit(flag, (unsigned long *)sbi->errors); 4127 sbi->error_dirty = true; 4128 } 4129 spin_unlock_irqrestore(&sbi->error_lock, flags); 4130 } 4131 4132 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4133 { 4134 unsigned long flags; 4135 bool need_update = false; 4136 4137 spin_lock_irqsave(&sbi->error_lock, flags); 4138 if (sbi->error_dirty) { 4139 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4140 MAX_F2FS_ERRORS); 4141 sbi->error_dirty = false; 4142 need_update = true; 4143 } 4144 spin_unlock_irqrestore(&sbi->error_lock, flags); 4145 4146 return need_update; 4147 } 4148 4149 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4150 { 4151 int err; 4152 4153 f2fs_down_write(&sbi->sb_lock); 4154 4155 if (!f2fs_update_errors(sbi)) 4156 goto out_unlock; 4157 4158 err = f2fs_commit_super(sbi, false); 4159 if (err) 4160 f2fs_err_ratelimited(sbi, 4161 "f2fs_commit_super fails to record errors:%u, err:%d", 4162 error, err); 4163 out_unlock: 4164 f2fs_up_write(&sbi->sb_lock); 4165 } 4166 4167 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4168 { 4169 f2fs_save_errors(sbi, error); 4170 f2fs_record_errors(sbi, error); 4171 } 4172 4173 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4174 { 4175 f2fs_save_errors(sbi, error); 4176 4177 if (!sbi->error_dirty) 4178 return; 4179 if (!test_bit(error, (unsigned long *)sbi->errors)) 4180 return; 4181 schedule_work(&sbi->s_error_work); 4182 } 4183 4184 static bool system_going_down(void) 4185 { 4186 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4187 || system_state == SYSTEM_RESTART; 4188 } 4189 4190 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason) 4191 { 4192 struct super_block *sb = sbi->sb; 4193 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4194 bool continue_fs = !shutdown && 4195 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4196 4197 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4198 4199 if (!f2fs_hw_is_readonly(sbi)) { 4200 save_stop_reason(sbi, reason); 4201 4202 /* 4203 * always create an asynchronous task to record stop_reason 4204 * in order to avoid potential deadlock when running into 4205 * f2fs_record_stop_reason() synchronously. 4206 */ 4207 schedule_work(&sbi->s_error_work); 4208 } 4209 4210 /* 4211 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4212 * could panic during 'reboot -f' as the underlying device got already 4213 * disabled. 4214 */ 4215 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4216 !shutdown && !system_going_down() && 4217 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4218 panic("F2FS-fs (device %s): panic forced after error\n", 4219 sb->s_id); 4220 4221 if (shutdown) 4222 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4223 4224 /* 4225 * Continue filesystem operators if errors=continue. Should not set 4226 * RO by shutdown, since RO bypasses thaw_super which can hang the 4227 * system. 4228 */ 4229 if (continue_fs || f2fs_readonly(sb) || shutdown) { 4230 f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason); 4231 return; 4232 } 4233 4234 f2fs_warn(sbi, "Remounting filesystem read-only"); 4235 4236 /* 4237 * We have already set CP_ERROR_FLAG flag to stop all updates 4238 * to filesystem, so it doesn't need to set SB_RDONLY flag here 4239 * because the flag should be set covered w/ sb->s_umount semaphore 4240 * via remount procedure, otherwise, it will confuse code like 4241 * freeze_super() which will lead to deadlocks and other problems. 4242 */ 4243 } 4244 4245 static void f2fs_record_error_work(struct work_struct *work) 4246 { 4247 struct f2fs_sb_info *sbi = container_of(work, 4248 struct f2fs_sb_info, s_error_work); 4249 4250 f2fs_record_stop_reason(sbi); 4251 } 4252 4253 static inline unsigned int get_first_zoned_segno(struct f2fs_sb_info *sbi) 4254 { 4255 int devi; 4256 4257 for (devi = 0; devi < sbi->s_ndevs; devi++) 4258 if (bdev_is_zoned(FDEV(devi).bdev)) 4259 return GET_SEGNO(sbi, FDEV(devi).start_blk); 4260 return 0; 4261 } 4262 4263 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4264 { 4265 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4266 unsigned int max_devices = MAX_DEVICES; 4267 unsigned int logical_blksize; 4268 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4269 int i; 4270 4271 /* Initialize single device information */ 4272 if (!RDEV(0).path[0]) { 4273 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4274 return 0; 4275 max_devices = 1; 4276 } 4277 4278 /* 4279 * Initialize multiple devices information, or single 4280 * zoned block device information. 4281 */ 4282 sbi->devs = f2fs_kzalloc(sbi, 4283 array_size(max_devices, 4284 sizeof(struct f2fs_dev_info)), 4285 GFP_KERNEL); 4286 if (!sbi->devs) 4287 return -ENOMEM; 4288 4289 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4290 sbi->aligned_blksize = true; 4291 #ifdef CONFIG_BLK_DEV_ZONED 4292 sbi->max_open_zones = UINT_MAX; 4293 sbi->blkzone_alloc_policy = BLKZONE_ALLOC_PRIOR_SEQ; 4294 #endif 4295 4296 for (i = 0; i < max_devices; i++) { 4297 if (i == 0) 4298 FDEV(0).bdev_file = sbi->sb->s_bdev_file; 4299 else if (!RDEV(i).path[0]) 4300 break; 4301 4302 if (max_devices > 1) { 4303 /* Multi-device mount */ 4304 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4305 FDEV(i).total_segments = 4306 le32_to_cpu(RDEV(i).total_segments); 4307 if (i == 0) { 4308 FDEV(i).start_blk = 0; 4309 FDEV(i).end_blk = FDEV(i).start_blk + 4310 SEGS_TO_BLKS(sbi, 4311 FDEV(i).total_segments) - 1 + 4312 le32_to_cpu(raw_super->segment0_blkaddr); 4313 } else { 4314 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4315 FDEV(i).end_blk = FDEV(i).start_blk + 4316 SEGS_TO_BLKS(sbi, 4317 FDEV(i).total_segments) - 1; 4318 FDEV(i).bdev_file = bdev_file_open_by_path( 4319 FDEV(i).path, mode, sbi->sb, NULL); 4320 } 4321 } 4322 if (IS_ERR(FDEV(i).bdev_file)) 4323 return PTR_ERR(FDEV(i).bdev_file); 4324 4325 FDEV(i).bdev = file_bdev(FDEV(i).bdev_file); 4326 /* to release errored devices */ 4327 sbi->s_ndevs = i + 1; 4328 4329 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4330 sbi->aligned_blksize = false; 4331 4332 #ifdef CONFIG_BLK_DEV_ZONED 4333 if (bdev_is_zoned(FDEV(i).bdev)) { 4334 if (!f2fs_sb_has_blkzoned(sbi)) { 4335 f2fs_err(sbi, "Zoned block device feature not enabled"); 4336 return -EINVAL; 4337 } 4338 if (init_blkz_info(sbi, i)) { 4339 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4340 return -EINVAL; 4341 } 4342 if (max_devices == 1) 4343 break; 4344 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)", 4345 i, FDEV(i).path, 4346 FDEV(i).total_segments, 4347 FDEV(i).start_blk, FDEV(i).end_blk); 4348 continue; 4349 } 4350 #endif 4351 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4352 i, FDEV(i).path, 4353 FDEV(i).total_segments, 4354 FDEV(i).start_blk, FDEV(i).end_blk); 4355 } 4356 return 0; 4357 } 4358 4359 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4360 { 4361 #if IS_ENABLED(CONFIG_UNICODE) 4362 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4363 const struct f2fs_sb_encodings *encoding_info; 4364 struct unicode_map *encoding; 4365 __u16 encoding_flags; 4366 4367 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4368 if (!encoding_info) { 4369 f2fs_err(sbi, 4370 "Encoding requested by superblock is unknown"); 4371 return -EINVAL; 4372 } 4373 4374 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4375 encoding = utf8_load(encoding_info->version); 4376 if (IS_ERR(encoding)) { 4377 f2fs_err(sbi, 4378 "can't mount with superblock charset: %s-%u.%u.%u " 4379 "not supported by the kernel. flags: 0x%x.", 4380 encoding_info->name, 4381 unicode_major(encoding_info->version), 4382 unicode_minor(encoding_info->version), 4383 unicode_rev(encoding_info->version), 4384 encoding_flags); 4385 return PTR_ERR(encoding); 4386 } 4387 f2fs_info(sbi, "Using encoding defined by superblock: " 4388 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4389 unicode_major(encoding_info->version), 4390 unicode_minor(encoding_info->version), 4391 unicode_rev(encoding_info->version), 4392 encoding_flags); 4393 4394 sbi->sb->s_encoding = encoding; 4395 sbi->sb->s_encoding_flags = encoding_flags; 4396 } 4397 #else 4398 if (f2fs_sb_has_casefold(sbi)) { 4399 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4400 return -EINVAL; 4401 } 4402 #endif 4403 return 0; 4404 } 4405 4406 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4407 { 4408 /* adjust parameters according to the volume size */ 4409 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4410 if (f2fs_block_unit_discard(sbi)) 4411 SM_I(sbi)->dcc_info->discard_granularity = 4412 MIN_DISCARD_GRANULARITY; 4413 if (!f2fs_lfs_mode(sbi)) 4414 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4415 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4416 } 4417 4418 sbi->readdir_ra = true; 4419 } 4420 4421 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4422 { 4423 struct f2fs_sb_info *sbi; 4424 struct f2fs_super_block *raw_super; 4425 struct inode *root; 4426 int err; 4427 bool skip_recovery = false, need_fsck = false; 4428 char *options = NULL; 4429 int recovery, i, valid_super_block; 4430 struct curseg_info *seg_i; 4431 int retry_cnt = 1; 4432 #ifdef CONFIG_QUOTA 4433 bool quota_enabled = false; 4434 #endif 4435 4436 try_onemore: 4437 err = -EINVAL; 4438 raw_super = NULL; 4439 valid_super_block = -1; 4440 recovery = 0; 4441 4442 /* allocate memory for f2fs-specific super block info */ 4443 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4444 if (!sbi) 4445 return -ENOMEM; 4446 4447 sbi->sb = sb; 4448 4449 /* initialize locks within allocated memory */ 4450 init_f2fs_rwsem(&sbi->gc_lock); 4451 mutex_init(&sbi->writepages); 4452 init_f2fs_rwsem(&sbi->cp_global_sem); 4453 init_f2fs_rwsem(&sbi->node_write); 4454 init_f2fs_rwsem(&sbi->node_change); 4455 spin_lock_init(&sbi->stat_lock); 4456 init_f2fs_rwsem(&sbi->cp_rwsem); 4457 init_f2fs_rwsem(&sbi->quota_sem); 4458 init_waitqueue_head(&sbi->cp_wait); 4459 spin_lock_init(&sbi->error_lock); 4460 4461 for (i = 0; i < NR_INODE_TYPE; i++) { 4462 INIT_LIST_HEAD(&sbi->inode_list[i]); 4463 spin_lock_init(&sbi->inode_lock[i]); 4464 } 4465 mutex_init(&sbi->flush_lock); 4466 4467 /* set a block size */ 4468 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4469 f2fs_err(sbi, "unable to set blocksize"); 4470 goto free_sbi; 4471 } 4472 4473 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4474 &recovery); 4475 if (err) 4476 goto free_sbi; 4477 4478 sb->s_fs_info = sbi; 4479 sbi->raw_super = raw_super; 4480 4481 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4482 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4483 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4484 4485 /* precompute checksum seed for metadata */ 4486 if (f2fs_sb_has_inode_chksum(sbi)) 4487 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4488 sizeof(raw_super->uuid)); 4489 4490 default_options(sbi, false); 4491 /* parse mount options */ 4492 options = kstrdup((const char *)data, GFP_KERNEL); 4493 if (data && !options) { 4494 err = -ENOMEM; 4495 goto free_sb_buf; 4496 } 4497 4498 err = parse_options(sb, options, false); 4499 if (err) 4500 goto free_options; 4501 4502 sb->s_maxbytes = max_file_blocks(NULL) << 4503 le32_to_cpu(raw_super->log_blocksize); 4504 sb->s_max_links = F2FS_LINK_MAX; 4505 4506 err = f2fs_setup_casefold(sbi); 4507 if (err) 4508 goto free_options; 4509 4510 #ifdef CONFIG_QUOTA 4511 sb->dq_op = &f2fs_quota_operations; 4512 sb->s_qcop = &f2fs_quotactl_ops; 4513 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4514 4515 if (f2fs_sb_has_quota_ino(sbi)) { 4516 for (i = 0; i < MAXQUOTAS; i++) { 4517 if (f2fs_qf_ino(sbi->sb, i)) 4518 sbi->nquota_files++; 4519 } 4520 } 4521 #endif 4522 4523 sb->s_op = &f2fs_sops; 4524 #ifdef CONFIG_FS_ENCRYPTION 4525 sb->s_cop = &f2fs_cryptops; 4526 #endif 4527 #ifdef CONFIG_FS_VERITY 4528 sb->s_vop = &f2fs_verityops; 4529 #endif 4530 sb->s_xattr = f2fs_xattr_handlers; 4531 sb->s_export_op = &f2fs_export_ops; 4532 sb->s_magic = F2FS_SUPER_MAGIC; 4533 sb->s_time_gran = 1; 4534 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4535 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4536 super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid)); 4537 super_set_sysfs_name_bdev(sb); 4538 sb->s_iflags |= SB_I_CGROUPWB; 4539 4540 /* init f2fs-specific super block info */ 4541 sbi->valid_super_block = valid_super_block; 4542 4543 /* disallow all the data/node/meta page writes */ 4544 set_sbi_flag(sbi, SBI_POR_DOING); 4545 4546 err = f2fs_init_write_merge_io(sbi); 4547 if (err) 4548 goto free_bio_info; 4549 4550 init_sb_info(sbi); 4551 4552 err = f2fs_init_iostat(sbi); 4553 if (err) 4554 goto free_bio_info; 4555 4556 err = init_percpu_info(sbi); 4557 if (err) 4558 goto free_iostat; 4559 4560 /* init per sbi slab cache */ 4561 err = f2fs_init_xattr_caches(sbi); 4562 if (err) 4563 goto free_percpu; 4564 err = f2fs_init_page_array_cache(sbi); 4565 if (err) 4566 goto free_xattr_cache; 4567 4568 /* get an inode for meta space */ 4569 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4570 if (IS_ERR(sbi->meta_inode)) { 4571 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4572 err = PTR_ERR(sbi->meta_inode); 4573 goto free_page_array_cache; 4574 } 4575 4576 err = f2fs_get_valid_checkpoint(sbi); 4577 if (err) { 4578 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4579 goto free_meta_inode; 4580 } 4581 4582 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4583 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4584 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4585 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4586 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4587 } 4588 4589 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4590 set_sbi_flag(sbi, SBI_NEED_FSCK); 4591 4592 /* Initialize device list */ 4593 err = f2fs_scan_devices(sbi); 4594 if (err) { 4595 f2fs_err(sbi, "Failed to find devices"); 4596 goto free_devices; 4597 } 4598 4599 err = f2fs_init_post_read_wq(sbi); 4600 if (err) { 4601 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4602 goto free_devices; 4603 } 4604 4605 sbi->total_valid_node_count = 4606 le32_to_cpu(sbi->ckpt->valid_node_count); 4607 percpu_counter_set(&sbi->total_valid_inode_count, 4608 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4609 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4610 sbi->total_valid_block_count = 4611 le64_to_cpu(sbi->ckpt->valid_block_count); 4612 sbi->last_valid_block_count = sbi->total_valid_block_count; 4613 sbi->reserved_blocks = 0; 4614 sbi->current_reserved_blocks = 0; 4615 limit_reserve_root(sbi); 4616 adjust_unusable_cap_perc(sbi); 4617 4618 f2fs_init_extent_cache_info(sbi); 4619 4620 f2fs_init_ino_entry_info(sbi); 4621 4622 f2fs_init_fsync_node_info(sbi); 4623 4624 /* setup checkpoint request control and start checkpoint issue thread */ 4625 f2fs_init_ckpt_req_control(sbi); 4626 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4627 test_opt(sbi, MERGE_CHECKPOINT)) { 4628 err = f2fs_start_ckpt_thread(sbi); 4629 if (err) { 4630 f2fs_err(sbi, 4631 "Failed to start F2FS issue_checkpoint_thread (%d)", 4632 err); 4633 goto stop_ckpt_thread; 4634 } 4635 } 4636 4637 /* setup f2fs internal modules */ 4638 err = f2fs_build_segment_manager(sbi); 4639 if (err) { 4640 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4641 err); 4642 goto free_sm; 4643 } 4644 err = f2fs_build_node_manager(sbi); 4645 if (err) { 4646 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4647 err); 4648 goto free_nm; 4649 } 4650 4651 /* For write statistics */ 4652 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4653 4654 /* get segno of first zoned block device */ 4655 sbi->first_zoned_segno = get_first_zoned_segno(sbi); 4656 4657 /* Read accumulated write IO statistics if exists */ 4658 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4659 if (__exist_node_summaries(sbi)) 4660 sbi->kbytes_written = 4661 le64_to_cpu(seg_i->journal->info.kbytes_written); 4662 4663 f2fs_build_gc_manager(sbi); 4664 4665 err = f2fs_build_stats(sbi); 4666 if (err) 4667 goto free_nm; 4668 4669 /* get an inode for node space */ 4670 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4671 if (IS_ERR(sbi->node_inode)) { 4672 f2fs_err(sbi, "Failed to read node inode"); 4673 err = PTR_ERR(sbi->node_inode); 4674 goto free_stats; 4675 } 4676 4677 /* read root inode and dentry */ 4678 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4679 if (IS_ERR(root)) { 4680 f2fs_err(sbi, "Failed to read root inode"); 4681 err = PTR_ERR(root); 4682 goto free_node_inode; 4683 } 4684 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4685 !root->i_size || !root->i_nlink) { 4686 iput(root); 4687 err = -EINVAL; 4688 goto free_node_inode; 4689 } 4690 4691 generic_set_sb_d_ops(sb); 4692 sb->s_root = d_make_root(root); /* allocate root dentry */ 4693 if (!sb->s_root) { 4694 err = -ENOMEM; 4695 goto free_node_inode; 4696 } 4697 4698 err = f2fs_init_compress_inode(sbi); 4699 if (err) 4700 goto free_root_inode; 4701 4702 err = f2fs_register_sysfs(sbi); 4703 if (err) 4704 goto free_compress_inode; 4705 4706 #ifdef CONFIG_QUOTA 4707 /* Enable quota usage during mount */ 4708 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4709 err = f2fs_enable_quotas(sb); 4710 if (err) 4711 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4712 } 4713 4714 quota_enabled = f2fs_recover_quota_begin(sbi); 4715 #endif 4716 /* if there are any orphan inodes, free them */ 4717 err = f2fs_recover_orphan_inodes(sbi); 4718 if (err) 4719 goto free_meta; 4720 4721 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4722 goto reset_checkpoint; 4723 4724 /* recover fsynced data */ 4725 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4726 !test_opt(sbi, NORECOVERY)) { 4727 /* 4728 * mount should be failed, when device has readonly mode, and 4729 * previous checkpoint was not done by clean system shutdown. 4730 */ 4731 if (f2fs_hw_is_readonly(sbi)) { 4732 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4733 err = f2fs_recover_fsync_data(sbi, true); 4734 if (err > 0) { 4735 err = -EROFS; 4736 f2fs_err(sbi, "Need to recover fsync data, but " 4737 "write access unavailable, please try " 4738 "mount w/ disable_roll_forward or norecovery"); 4739 } 4740 if (err < 0) 4741 goto free_meta; 4742 } 4743 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4744 goto reset_checkpoint; 4745 } 4746 4747 if (need_fsck) 4748 set_sbi_flag(sbi, SBI_NEED_FSCK); 4749 4750 if (skip_recovery) 4751 goto reset_checkpoint; 4752 4753 err = f2fs_recover_fsync_data(sbi, false); 4754 if (err < 0) { 4755 if (err != -ENOMEM) 4756 skip_recovery = true; 4757 need_fsck = true; 4758 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4759 err); 4760 goto free_meta; 4761 } 4762 } else { 4763 err = f2fs_recover_fsync_data(sbi, true); 4764 4765 if (!f2fs_readonly(sb) && err > 0) { 4766 err = -EINVAL; 4767 f2fs_err(sbi, "Need to recover fsync data"); 4768 goto free_meta; 4769 } 4770 } 4771 4772 #ifdef CONFIG_QUOTA 4773 f2fs_recover_quota_end(sbi, quota_enabled); 4774 #endif 4775 reset_checkpoint: 4776 /* 4777 * If the f2fs is not readonly and fsync data recovery succeeds, 4778 * write pointer consistency of cursegs and other zones are already 4779 * checked and fixed during recovery. However, if recovery fails, 4780 * write pointers are left untouched, and retry-mount should check 4781 * them here. 4782 */ 4783 if (skip_recovery) 4784 err = f2fs_check_and_fix_write_pointer(sbi); 4785 if (err) 4786 goto free_meta; 4787 4788 /* f2fs_recover_fsync_data() cleared this already */ 4789 clear_sbi_flag(sbi, SBI_POR_DOING); 4790 4791 err = f2fs_init_inmem_curseg(sbi); 4792 if (err) 4793 goto sync_free_meta; 4794 4795 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4796 err = f2fs_disable_checkpoint(sbi); 4797 if (err) 4798 goto sync_free_meta; 4799 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4800 f2fs_enable_checkpoint(sbi); 4801 } 4802 4803 /* 4804 * If filesystem is not mounted as read-only then 4805 * do start the gc_thread. 4806 */ 4807 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4808 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4809 /* After POR, we can run background GC thread.*/ 4810 err = f2fs_start_gc_thread(sbi); 4811 if (err) 4812 goto sync_free_meta; 4813 } 4814 kvfree(options); 4815 4816 /* recover broken superblock */ 4817 if (recovery) { 4818 err = f2fs_commit_super(sbi, true); 4819 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4820 sbi->valid_super_block ? 1 : 2, err); 4821 } 4822 4823 f2fs_join_shrinker(sbi); 4824 4825 f2fs_tuning_parameters(sbi); 4826 4827 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4828 cur_cp_version(F2FS_CKPT(sbi))); 4829 f2fs_update_time(sbi, CP_TIME); 4830 f2fs_update_time(sbi, REQ_TIME); 4831 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4832 return 0; 4833 4834 sync_free_meta: 4835 /* safe to flush all the data */ 4836 sync_filesystem(sbi->sb); 4837 retry_cnt = 0; 4838 4839 free_meta: 4840 #ifdef CONFIG_QUOTA 4841 f2fs_truncate_quota_inode_pages(sb); 4842 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4843 f2fs_quota_off_umount(sbi->sb); 4844 #endif 4845 /* 4846 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4847 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4848 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4849 * falls into an infinite loop in f2fs_sync_meta_pages(). 4850 */ 4851 truncate_inode_pages_final(META_MAPPING(sbi)); 4852 /* evict some inodes being cached by GC */ 4853 evict_inodes(sb); 4854 f2fs_unregister_sysfs(sbi); 4855 free_compress_inode: 4856 f2fs_destroy_compress_inode(sbi); 4857 free_root_inode: 4858 dput(sb->s_root); 4859 sb->s_root = NULL; 4860 free_node_inode: 4861 f2fs_release_ino_entry(sbi, true); 4862 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4863 iput(sbi->node_inode); 4864 sbi->node_inode = NULL; 4865 free_stats: 4866 f2fs_destroy_stats(sbi); 4867 free_nm: 4868 /* stop discard thread before destroying node manager */ 4869 f2fs_stop_discard_thread(sbi); 4870 f2fs_destroy_node_manager(sbi); 4871 free_sm: 4872 f2fs_destroy_segment_manager(sbi); 4873 stop_ckpt_thread: 4874 f2fs_stop_ckpt_thread(sbi); 4875 /* flush s_error_work before sbi destroy */ 4876 flush_work(&sbi->s_error_work); 4877 f2fs_destroy_post_read_wq(sbi); 4878 free_devices: 4879 destroy_device_list(sbi); 4880 kvfree(sbi->ckpt); 4881 free_meta_inode: 4882 make_bad_inode(sbi->meta_inode); 4883 iput(sbi->meta_inode); 4884 sbi->meta_inode = NULL; 4885 free_page_array_cache: 4886 f2fs_destroy_page_array_cache(sbi); 4887 free_xattr_cache: 4888 f2fs_destroy_xattr_caches(sbi); 4889 free_percpu: 4890 destroy_percpu_info(sbi); 4891 free_iostat: 4892 f2fs_destroy_iostat(sbi); 4893 free_bio_info: 4894 for (i = 0; i < NR_PAGE_TYPE; i++) 4895 kvfree(sbi->write_io[i]); 4896 4897 #if IS_ENABLED(CONFIG_UNICODE) 4898 utf8_unload(sb->s_encoding); 4899 sb->s_encoding = NULL; 4900 #endif 4901 free_options: 4902 #ifdef CONFIG_QUOTA 4903 for (i = 0; i < MAXQUOTAS; i++) 4904 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4905 #endif 4906 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4907 kvfree(options); 4908 free_sb_buf: 4909 kfree(raw_super); 4910 free_sbi: 4911 kfree(sbi); 4912 sb->s_fs_info = NULL; 4913 4914 /* give only one another chance */ 4915 if (retry_cnt > 0 && skip_recovery) { 4916 retry_cnt--; 4917 shrink_dcache_sb(sb); 4918 goto try_onemore; 4919 } 4920 return err; 4921 } 4922 4923 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4924 const char *dev_name, void *data) 4925 { 4926 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4927 } 4928 4929 static void kill_f2fs_super(struct super_block *sb) 4930 { 4931 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4932 4933 if (sb->s_root) { 4934 set_sbi_flag(sbi, SBI_IS_CLOSE); 4935 f2fs_stop_gc_thread(sbi); 4936 f2fs_stop_discard_thread(sbi); 4937 4938 #ifdef CONFIG_F2FS_FS_COMPRESSION 4939 /* 4940 * latter evict_inode() can bypass checking and invalidating 4941 * compress inode cache. 4942 */ 4943 if (test_opt(sbi, COMPRESS_CACHE)) 4944 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4945 #endif 4946 4947 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4948 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4949 struct cp_control cpc = { 4950 .reason = CP_UMOUNT, 4951 }; 4952 stat_inc_cp_call_count(sbi, TOTAL_CALL); 4953 f2fs_write_checkpoint(sbi, &cpc); 4954 } 4955 4956 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4957 sb->s_flags &= ~SB_RDONLY; 4958 } 4959 kill_block_super(sb); 4960 /* Release block devices last, after fscrypt_destroy_keyring(). */ 4961 if (sbi) { 4962 destroy_device_list(sbi); 4963 kfree(sbi); 4964 sb->s_fs_info = NULL; 4965 } 4966 } 4967 4968 static struct file_system_type f2fs_fs_type = { 4969 .owner = THIS_MODULE, 4970 .name = "f2fs", 4971 .mount = f2fs_mount, 4972 .kill_sb = kill_f2fs_super, 4973 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4974 }; 4975 MODULE_ALIAS_FS("f2fs"); 4976 4977 static int __init init_inodecache(void) 4978 { 4979 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4980 sizeof(struct f2fs_inode_info), 0, 4981 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4982 return f2fs_inode_cachep ? 0 : -ENOMEM; 4983 } 4984 4985 static void destroy_inodecache(void) 4986 { 4987 /* 4988 * Make sure all delayed rcu free inodes are flushed before we 4989 * destroy cache. 4990 */ 4991 rcu_barrier(); 4992 kmem_cache_destroy(f2fs_inode_cachep); 4993 } 4994 4995 static int __init init_f2fs_fs(void) 4996 { 4997 int err; 4998 4999 err = init_inodecache(); 5000 if (err) 5001 goto fail; 5002 err = f2fs_create_node_manager_caches(); 5003 if (err) 5004 goto free_inodecache; 5005 err = f2fs_create_segment_manager_caches(); 5006 if (err) 5007 goto free_node_manager_caches; 5008 err = f2fs_create_checkpoint_caches(); 5009 if (err) 5010 goto free_segment_manager_caches; 5011 err = f2fs_create_recovery_cache(); 5012 if (err) 5013 goto free_checkpoint_caches; 5014 err = f2fs_create_extent_cache(); 5015 if (err) 5016 goto free_recovery_cache; 5017 err = f2fs_create_garbage_collection_cache(); 5018 if (err) 5019 goto free_extent_cache; 5020 err = f2fs_init_sysfs(); 5021 if (err) 5022 goto free_garbage_collection_cache; 5023 err = f2fs_init_shrinker(); 5024 if (err) 5025 goto free_sysfs; 5026 f2fs_create_root_stats(); 5027 err = f2fs_init_post_read_processing(); 5028 if (err) 5029 goto free_root_stats; 5030 err = f2fs_init_iostat_processing(); 5031 if (err) 5032 goto free_post_read; 5033 err = f2fs_init_bio_entry_cache(); 5034 if (err) 5035 goto free_iostat; 5036 err = f2fs_init_bioset(); 5037 if (err) 5038 goto free_bio_entry_cache; 5039 err = f2fs_init_compress_mempool(); 5040 if (err) 5041 goto free_bioset; 5042 err = f2fs_init_compress_cache(); 5043 if (err) 5044 goto free_compress_mempool; 5045 err = f2fs_create_casefold_cache(); 5046 if (err) 5047 goto free_compress_cache; 5048 err = register_filesystem(&f2fs_fs_type); 5049 if (err) 5050 goto free_casefold_cache; 5051 return 0; 5052 free_casefold_cache: 5053 f2fs_destroy_casefold_cache(); 5054 free_compress_cache: 5055 f2fs_destroy_compress_cache(); 5056 free_compress_mempool: 5057 f2fs_destroy_compress_mempool(); 5058 free_bioset: 5059 f2fs_destroy_bioset(); 5060 free_bio_entry_cache: 5061 f2fs_destroy_bio_entry_cache(); 5062 free_iostat: 5063 f2fs_destroy_iostat_processing(); 5064 free_post_read: 5065 f2fs_destroy_post_read_processing(); 5066 free_root_stats: 5067 f2fs_destroy_root_stats(); 5068 f2fs_exit_shrinker(); 5069 free_sysfs: 5070 f2fs_exit_sysfs(); 5071 free_garbage_collection_cache: 5072 f2fs_destroy_garbage_collection_cache(); 5073 free_extent_cache: 5074 f2fs_destroy_extent_cache(); 5075 free_recovery_cache: 5076 f2fs_destroy_recovery_cache(); 5077 free_checkpoint_caches: 5078 f2fs_destroy_checkpoint_caches(); 5079 free_segment_manager_caches: 5080 f2fs_destroy_segment_manager_caches(); 5081 free_node_manager_caches: 5082 f2fs_destroy_node_manager_caches(); 5083 free_inodecache: 5084 destroy_inodecache(); 5085 fail: 5086 return err; 5087 } 5088 5089 static void __exit exit_f2fs_fs(void) 5090 { 5091 unregister_filesystem(&f2fs_fs_type); 5092 f2fs_destroy_casefold_cache(); 5093 f2fs_destroy_compress_cache(); 5094 f2fs_destroy_compress_mempool(); 5095 f2fs_destroy_bioset(); 5096 f2fs_destroy_bio_entry_cache(); 5097 f2fs_destroy_iostat_processing(); 5098 f2fs_destroy_post_read_processing(); 5099 f2fs_destroy_root_stats(); 5100 f2fs_exit_shrinker(); 5101 f2fs_exit_sysfs(); 5102 f2fs_destroy_garbage_collection_cache(); 5103 f2fs_destroy_extent_cache(); 5104 f2fs_destroy_recovery_cache(); 5105 f2fs_destroy_checkpoint_caches(); 5106 f2fs_destroy_segment_manager_caches(); 5107 f2fs_destroy_node_manager_caches(); 5108 destroy_inodecache(); 5109 } 5110 5111 module_init(init_f2fs_fs) 5112 module_exit(exit_f2fs_fs) 5113 5114 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5115 MODULE_DESCRIPTION("Flash Friendly File System"); 5116 MODULE_LICENSE("GPL"); 5117