xref: /linux/fs/f2fs/super.c (revision 6f87359e8bcaf88381b9c9c038929e0e6872d308)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct kmem_cache *f2fs_inode_cachep;
39 
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 
42 const char *f2fs_fault_name[FAULT_MAX] = {
43 	[FAULT_KMALLOC]		= "kmalloc",
44 	[FAULT_KVMALLOC]	= "kvmalloc",
45 	[FAULT_PAGE_ALLOC]	= "page alloc",
46 	[FAULT_PAGE_GET]	= "page get",
47 	[FAULT_ALLOC_BIO]	= "alloc bio",
48 	[FAULT_ALLOC_NID]	= "alloc nid",
49 	[FAULT_ORPHAN]		= "orphan",
50 	[FAULT_BLOCK]		= "no more block",
51 	[FAULT_DIR_DEPTH]	= "too big dir depth",
52 	[FAULT_EVICT_INODE]	= "evict_inode fail",
53 	[FAULT_TRUNCATE]	= "truncate fail",
54 	[FAULT_READ_IO]		= "read IO error",
55 	[FAULT_CHECKPOINT]	= "checkpoint error",
56 	[FAULT_DISCARD]		= "discard error",
57 	[FAULT_WRITE_IO]	= "write IO error",
58 };
59 
60 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
61 							unsigned int type)
62 {
63 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64 
65 	if (rate) {
66 		atomic_set(&ffi->inject_ops, 0);
67 		ffi->inject_rate = rate;
68 	}
69 
70 	if (type)
71 		ffi->inject_type = type;
72 
73 	if (!rate && !type)
74 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
75 }
76 #endif
77 
78 /* f2fs-wide shrinker description */
79 static struct shrinker f2fs_shrinker_info = {
80 	.scan_objects = f2fs_shrink_scan,
81 	.count_objects = f2fs_shrink_count,
82 	.seeks = DEFAULT_SEEKS,
83 };
84 
85 enum {
86 	Opt_gc_background,
87 	Opt_disable_roll_forward,
88 	Opt_norecovery,
89 	Opt_discard,
90 	Opt_nodiscard,
91 	Opt_noheap,
92 	Opt_heap,
93 	Opt_user_xattr,
94 	Opt_nouser_xattr,
95 	Opt_acl,
96 	Opt_noacl,
97 	Opt_active_logs,
98 	Opt_disable_ext_identify,
99 	Opt_inline_xattr,
100 	Opt_noinline_xattr,
101 	Opt_inline_xattr_size,
102 	Opt_inline_data,
103 	Opt_inline_dentry,
104 	Opt_noinline_dentry,
105 	Opt_flush_merge,
106 	Opt_noflush_merge,
107 	Opt_nobarrier,
108 	Opt_fastboot,
109 	Opt_extent_cache,
110 	Opt_noextent_cache,
111 	Opt_noinline_data,
112 	Opt_data_flush,
113 	Opt_reserve_root,
114 	Opt_resgid,
115 	Opt_resuid,
116 	Opt_mode,
117 	Opt_io_size_bits,
118 	Opt_fault_injection,
119 	Opt_fault_type,
120 	Opt_lazytime,
121 	Opt_nolazytime,
122 	Opt_quota,
123 	Opt_noquota,
124 	Opt_usrquota,
125 	Opt_grpquota,
126 	Opt_prjquota,
127 	Opt_usrjquota,
128 	Opt_grpjquota,
129 	Opt_prjjquota,
130 	Opt_offusrjquota,
131 	Opt_offgrpjquota,
132 	Opt_offprjjquota,
133 	Opt_jqfmt_vfsold,
134 	Opt_jqfmt_vfsv0,
135 	Opt_jqfmt_vfsv1,
136 	Opt_whint,
137 	Opt_alloc,
138 	Opt_fsync,
139 	Opt_test_dummy_encryption,
140 	Opt_checkpoint_disable,
141 	Opt_checkpoint_disable_cap,
142 	Opt_checkpoint_disable_cap_perc,
143 	Opt_checkpoint_enable,
144 	Opt_compress_algorithm,
145 	Opt_compress_log_size,
146 	Opt_compress_extension,
147 	Opt_err,
148 };
149 
150 static match_table_t f2fs_tokens = {
151 	{Opt_gc_background, "background_gc=%s"},
152 	{Opt_disable_roll_forward, "disable_roll_forward"},
153 	{Opt_norecovery, "norecovery"},
154 	{Opt_discard, "discard"},
155 	{Opt_nodiscard, "nodiscard"},
156 	{Opt_noheap, "no_heap"},
157 	{Opt_heap, "heap"},
158 	{Opt_user_xattr, "user_xattr"},
159 	{Opt_nouser_xattr, "nouser_xattr"},
160 	{Opt_acl, "acl"},
161 	{Opt_noacl, "noacl"},
162 	{Opt_active_logs, "active_logs=%u"},
163 	{Opt_disable_ext_identify, "disable_ext_identify"},
164 	{Opt_inline_xattr, "inline_xattr"},
165 	{Opt_noinline_xattr, "noinline_xattr"},
166 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
167 	{Opt_inline_data, "inline_data"},
168 	{Opt_inline_dentry, "inline_dentry"},
169 	{Opt_noinline_dentry, "noinline_dentry"},
170 	{Opt_flush_merge, "flush_merge"},
171 	{Opt_noflush_merge, "noflush_merge"},
172 	{Opt_nobarrier, "nobarrier"},
173 	{Opt_fastboot, "fastboot"},
174 	{Opt_extent_cache, "extent_cache"},
175 	{Opt_noextent_cache, "noextent_cache"},
176 	{Opt_noinline_data, "noinline_data"},
177 	{Opt_data_flush, "data_flush"},
178 	{Opt_reserve_root, "reserve_root=%u"},
179 	{Opt_resgid, "resgid=%u"},
180 	{Opt_resuid, "resuid=%u"},
181 	{Opt_mode, "mode=%s"},
182 	{Opt_io_size_bits, "io_bits=%u"},
183 	{Opt_fault_injection, "fault_injection=%u"},
184 	{Opt_fault_type, "fault_type=%u"},
185 	{Opt_lazytime, "lazytime"},
186 	{Opt_nolazytime, "nolazytime"},
187 	{Opt_quota, "quota"},
188 	{Opt_noquota, "noquota"},
189 	{Opt_usrquota, "usrquota"},
190 	{Opt_grpquota, "grpquota"},
191 	{Opt_prjquota, "prjquota"},
192 	{Opt_usrjquota, "usrjquota=%s"},
193 	{Opt_grpjquota, "grpjquota=%s"},
194 	{Opt_prjjquota, "prjjquota=%s"},
195 	{Opt_offusrjquota, "usrjquota="},
196 	{Opt_offgrpjquota, "grpjquota="},
197 	{Opt_offprjjquota, "prjjquota="},
198 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
199 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
200 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
201 	{Opt_whint, "whint_mode=%s"},
202 	{Opt_alloc, "alloc_mode=%s"},
203 	{Opt_fsync, "fsync_mode=%s"},
204 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
205 	{Opt_checkpoint_disable, "checkpoint=disable"},
206 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
207 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
208 	{Opt_checkpoint_enable, "checkpoint=enable"},
209 	{Opt_compress_algorithm, "compress_algorithm=%s"},
210 	{Opt_compress_log_size, "compress_log_size=%u"},
211 	{Opt_compress_extension, "compress_extension=%s"},
212 	{Opt_err, NULL},
213 };
214 
215 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
216 {
217 	struct va_format vaf;
218 	va_list args;
219 	int level;
220 
221 	va_start(args, fmt);
222 
223 	level = printk_get_level(fmt);
224 	vaf.fmt = printk_skip_level(fmt);
225 	vaf.va = &args;
226 	printk("%c%cF2FS-fs (%s): %pV\n",
227 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
228 
229 	va_end(args);
230 }
231 
232 #ifdef CONFIG_UNICODE
233 static const struct f2fs_sb_encodings {
234 	__u16 magic;
235 	char *name;
236 	char *version;
237 } f2fs_sb_encoding_map[] = {
238 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
239 };
240 
241 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
242 				 const struct f2fs_sb_encodings **encoding,
243 				 __u16 *flags)
244 {
245 	__u16 magic = le16_to_cpu(sb->s_encoding);
246 	int i;
247 
248 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
249 		if (magic == f2fs_sb_encoding_map[i].magic)
250 			break;
251 
252 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
253 		return -EINVAL;
254 
255 	*encoding = &f2fs_sb_encoding_map[i];
256 	*flags = le16_to_cpu(sb->s_encoding_flags);
257 
258 	return 0;
259 }
260 #endif
261 
262 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
263 {
264 	block_t limit = min((sbi->user_block_count << 1) / 1000,
265 			sbi->user_block_count - sbi->reserved_blocks);
266 
267 	/* limit is 0.2% */
268 	if (test_opt(sbi, RESERVE_ROOT) &&
269 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
270 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
271 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
272 			  F2FS_OPTION(sbi).root_reserved_blocks);
273 	}
274 	if (!test_opt(sbi, RESERVE_ROOT) &&
275 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
276 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
277 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
278 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
279 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
280 			  from_kuid_munged(&init_user_ns,
281 					   F2FS_OPTION(sbi).s_resuid),
282 			  from_kgid_munged(&init_user_ns,
283 					   F2FS_OPTION(sbi).s_resgid));
284 }
285 
286 static void init_once(void *foo)
287 {
288 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
289 
290 	inode_init_once(&fi->vfs_inode);
291 }
292 
293 #ifdef CONFIG_QUOTA
294 static const char * const quotatypes[] = INITQFNAMES;
295 #define QTYPE2NAME(t) (quotatypes[t])
296 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
297 							substring_t *args)
298 {
299 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
300 	char *qname;
301 	int ret = -EINVAL;
302 
303 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
304 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
305 		return -EINVAL;
306 	}
307 	if (f2fs_sb_has_quota_ino(sbi)) {
308 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
309 		return 0;
310 	}
311 
312 	qname = match_strdup(args);
313 	if (!qname) {
314 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
315 		return -ENOMEM;
316 	}
317 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
318 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
319 			ret = 0;
320 		else
321 			f2fs_err(sbi, "%s quota file already specified",
322 				 QTYPE2NAME(qtype));
323 		goto errout;
324 	}
325 	if (strchr(qname, '/')) {
326 		f2fs_err(sbi, "quotafile must be on filesystem root");
327 		goto errout;
328 	}
329 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
330 	set_opt(sbi, QUOTA);
331 	return 0;
332 errout:
333 	kvfree(qname);
334 	return ret;
335 }
336 
337 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
338 {
339 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
340 
341 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
342 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
343 		return -EINVAL;
344 	}
345 	kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
346 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
347 	return 0;
348 }
349 
350 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
351 {
352 	/*
353 	 * We do the test below only for project quotas. 'usrquota' and
354 	 * 'grpquota' mount options are allowed even without quota feature
355 	 * to support legacy quotas in quota files.
356 	 */
357 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
358 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
359 		return -1;
360 	}
361 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
362 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
363 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
364 		if (test_opt(sbi, USRQUOTA) &&
365 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
366 			clear_opt(sbi, USRQUOTA);
367 
368 		if (test_opt(sbi, GRPQUOTA) &&
369 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
370 			clear_opt(sbi, GRPQUOTA);
371 
372 		if (test_opt(sbi, PRJQUOTA) &&
373 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
374 			clear_opt(sbi, PRJQUOTA);
375 
376 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
377 				test_opt(sbi, PRJQUOTA)) {
378 			f2fs_err(sbi, "old and new quota format mixing");
379 			return -1;
380 		}
381 
382 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
383 			f2fs_err(sbi, "journaled quota format not specified");
384 			return -1;
385 		}
386 	}
387 
388 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
389 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
390 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
391 	}
392 	return 0;
393 }
394 #endif
395 
396 static int parse_options(struct super_block *sb, char *options)
397 {
398 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
399 	substring_t args[MAX_OPT_ARGS];
400 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
401 	char *p, *name;
402 	int arg = 0, ext_cnt;
403 	kuid_t uid;
404 	kgid_t gid;
405 #ifdef CONFIG_QUOTA
406 	int ret;
407 #endif
408 
409 	if (!options)
410 		return 0;
411 
412 	while ((p = strsep(&options, ",")) != NULL) {
413 		int token;
414 		if (!*p)
415 			continue;
416 		/*
417 		 * Initialize args struct so we know whether arg was
418 		 * found; some options take optional arguments.
419 		 */
420 		args[0].to = args[0].from = NULL;
421 		token = match_token(p, f2fs_tokens, args);
422 
423 		switch (token) {
424 		case Opt_gc_background:
425 			name = match_strdup(&args[0]);
426 
427 			if (!name)
428 				return -ENOMEM;
429 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
430 				set_opt(sbi, BG_GC);
431 				clear_opt(sbi, FORCE_FG_GC);
432 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
433 				clear_opt(sbi, BG_GC);
434 				clear_opt(sbi, FORCE_FG_GC);
435 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
436 				set_opt(sbi, BG_GC);
437 				set_opt(sbi, FORCE_FG_GC);
438 			} else {
439 				kvfree(name);
440 				return -EINVAL;
441 			}
442 			kvfree(name);
443 			break;
444 		case Opt_disable_roll_forward:
445 			set_opt(sbi, DISABLE_ROLL_FORWARD);
446 			break;
447 		case Opt_norecovery:
448 			/* this option mounts f2fs with ro */
449 			set_opt(sbi, DISABLE_ROLL_FORWARD);
450 			if (!f2fs_readonly(sb))
451 				return -EINVAL;
452 			break;
453 		case Opt_discard:
454 			set_opt(sbi, DISCARD);
455 			break;
456 		case Opt_nodiscard:
457 			if (f2fs_sb_has_blkzoned(sbi)) {
458 				f2fs_warn(sbi, "discard is required for zoned block devices");
459 				return -EINVAL;
460 			}
461 			clear_opt(sbi, DISCARD);
462 			break;
463 		case Opt_noheap:
464 			set_opt(sbi, NOHEAP);
465 			break;
466 		case Opt_heap:
467 			clear_opt(sbi, NOHEAP);
468 			break;
469 #ifdef CONFIG_F2FS_FS_XATTR
470 		case Opt_user_xattr:
471 			set_opt(sbi, XATTR_USER);
472 			break;
473 		case Opt_nouser_xattr:
474 			clear_opt(sbi, XATTR_USER);
475 			break;
476 		case Opt_inline_xattr:
477 			set_opt(sbi, INLINE_XATTR);
478 			break;
479 		case Opt_noinline_xattr:
480 			clear_opt(sbi, INLINE_XATTR);
481 			break;
482 		case Opt_inline_xattr_size:
483 			if (args->from && match_int(args, &arg))
484 				return -EINVAL;
485 			set_opt(sbi, INLINE_XATTR_SIZE);
486 			F2FS_OPTION(sbi).inline_xattr_size = arg;
487 			break;
488 #else
489 		case Opt_user_xattr:
490 			f2fs_info(sbi, "user_xattr options not supported");
491 			break;
492 		case Opt_nouser_xattr:
493 			f2fs_info(sbi, "nouser_xattr options not supported");
494 			break;
495 		case Opt_inline_xattr:
496 			f2fs_info(sbi, "inline_xattr options not supported");
497 			break;
498 		case Opt_noinline_xattr:
499 			f2fs_info(sbi, "noinline_xattr options not supported");
500 			break;
501 #endif
502 #ifdef CONFIG_F2FS_FS_POSIX_ACL
503 		case Opt_acl:
504 			set_opt(sbi, POSIX_ACL);
505 			break;
506 		case Opt_noacl:
507 			clear_opt(sbi, POSIX_ACL);
508 			break;
509 #else
510 		case Opt_acl:
511 			f2fs_info(sbi, "acl options not supported");
512 			break;
513 		case Opt_noacl:
514 			f2fs_info(sbi, "noacl options not supported");
515 			break;
516 #endif
517 		case Opt_active_logs:
518 			if (args->from && match_int(args, &arg))
519 				return -EINVAL;
520 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
521 				return -EINVAL;
522 			F2FS_OPTION(sbi).active_logs = arg;
523 			break;
524 		case Opt_disable_ext_identify:
525 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
526 			break;
527 		case Opt_inline_data:
528 			set_opt(sbi, INLINE_DATA);
529 			break;
530 		case Opt_inline_dentry:
531 			set_opt(sbi, INLINE_DENTRY);
532 			break;
533 		case Opt_noinline_dentry:
534 			clear_opt(sbi, INLINE_DENTRY);
535 			break;
536 		case Opt_flush_merge:
537 			set_opt(sbi, FLUSH_MERGE);
538 			break;
539 		case Opt_noflush_merge:
540 			clear_opt(sbi, FLUSH_MERGE);
541 			break;
542 		case Opt_nobarrier:
543 			set_opt(sbi, NOBARRIER);
544 			break;
545 		case Opt_fastboot:
546 			set_opt(sbi, FASTBOOT);
547 			break;
548 		case Opt_extent_cache:
549 			set_opt(sbi, EXTENT_CACHE);
550 			break;
551 		case Opt_noextent_cache:
552 			clear_opt(sbi, EXTENT_CACHE);
553 			break;
554 		case Opt_noinline_data:
555 			clear_opt(sbi, INLINE_DATA);
556 			break;
557 		case Opt_data_flush:
558 			set_opt(sbi, DATA_FLUSH);
559 			break;
560 		case Opt_reserve_root:
561 			if (args->from && match_int(args, &arg))
562 				return -EINVAL;
563 			if (test_opt(sbi, RESERVE_ROOT)) {
564 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
565 					  F2FS_OPTION(sbi).root_reserved_blocks);
566 			} else {
567 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
568 				set_opt(sbi, RESERVE_ROOT);
569 			}
570 			break;
571 		case Opt_resuid:
572 			if (args->from && match_int(args, &arg))
573 				return -EINVAL;
574 			uid = make_kuid(current_user_ns(), arg);
575 			if (!uid_valid(uid)) {
576 				f2fs_err(sbi, "Invalid uid value %d", arg);
577 				return -EINVAL;
578 			}
579 			F2FS_OPTION(sbi).s_resuid = uid;
580 			break;
581 		case Opt_resgid:
582 			if (args->from && match_int(args, &arg))
583 				return -EINVAL;
584 			gid = make_kgid(current_user_ns(), arg);
585 			if (!gid_valid(gid)) {
586 				f2fs_err(sbi, "Invalid gid value %d", arg);
587 				return -EINVAL;
588 			}
589 			F2FS_OPTION(sbi).s_resgid = gid;
590 			break;
591 		case Opt_mode:
592 			name = match_strdup(&args[0]);
593 
594 			if (!name)
595 				return -ENOMEM;
596 			if (strlen(name) == 8 &&
597 					!strncmp(name, "adaptive", 8)) {
598 				if (f2fs_sb_has_blkzoned(sbi)) {
599 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
600 					kvfree(name);
601 					return -EINVAL;
602 				}
603 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
604 			} else if (strlen(name) == 3 &&
605 					!strncmp(name, "lfs", 3)) {
606 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
607 			} else {
608 				kvfree(name);
609 				return -EINVAL;
610 			}
611 			kvfree(name);
612 			break;
613 		case Opt_io_size_bits:
614 			if (args->from && match_int(args, &arg))
615 				return -EINVAL;
616 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
617 				f2fs_warn(sbi, "Not support %d, larger than %d",
618 					  1 << arg, BIO_MAX_PAGES);
619 				return -EINVAL;
620 			}
621 			F2FS_OPTION(sbi).write_io_size_bits = arg;
622 			break;
623 #ifdef CONFIG_F2FS_FAULT_INJECTION
624 		case Opt_fault_injection:
625 			if (args->from && match_int(args, &arg))
626 				return -EINVAL;
627 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
628 			set_opt(sbi, FAULT_INJECTION);
629 			break;
630 
631 		case Opt_fault_type:
632 			if (args->from && match_int(args, &arg))
633 				return -EINVAL;
634 			f2fs_build_fault_attr(sbi, 0, arg);
635 			set_opt(sbi, FAULT_INJECTION);
636 			break;
637 #else
638 		case Opt_fault_injection:
639 			f2fs_info(sbi, "fault_injection options not supported");
640 			break;
641 
642 		case Opt_fault_type:
643 			f2fs_info(sbi, "fault_type options not supported");
644 			break;
645 #endif
646 		case Opt_lazytime:
647 			sb->s_flags |= SB_LAZYTIME;
648 			break;
649 		case Opt_nolazytime:
650 			sb->s_flags &= ~SB_LAZYTIME;
651 			break;
652 #ifdef CONFIG_QUOTA
653 		case Opt_quota:
654 		case Opt_usrquota:
655 			set_opt(sbi, USRQUOTA);
656 			break;
657 		case Opt_grpquota:
658 			set_opt(sbi, GRPQUOTA);
659 			break;
660 		case Opt_prjquota:
661 			set_opt(sbi, PRJQUOTA);
662 			break;
663 		case Opt_usrjquota:
664 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
665 			if (ret)
666 				return ret;
667 			break;
668 		case Opt_grpjquota:
669 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
670 			if (ret)
671 				return ret;
672 			break;
673 		case Opt_prjjquota:
674 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
675 			if (ret)
676 				return ret;
677 			break;
678 		case Opt_offusrjquota:
679 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
680 			if (ret)
681 				return ret;
682 			break;
683 		case Opt_offgrpjquota:
684 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
685 			if (ret)
686 				return ret;
687 			break;
688 		case Opt_offprjjquota:
689 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
690 			if (ret)
691 				return ret;
692 			break;
693 		case Opt_jqfmt_vfsold:
694 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
695 			break;
696 		case Opt_jqfmt_vfsv0:
697 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
698 			break;
699 		case Opt_jqfmt_vfsv1:
700 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
701 			break;
702 		case Opt_noquota:
703 			clear_opt(sbi, QUOTA);
704 			clear_opt(sbi, USRQUOTA);
705 			clear_opt(sbi, GRPQUOTA);
706 			clear_opt(sbi, PRJQUOTA);
707 			break;
708 #else
709 		case Opt_quota:
710 		case Opt_usrquota:
711 		case Opt_grpquota:
712 		case Opt_prjquota:
713 		case Opt_usrjquota:
714 		case Opt_grpjquota:
715 		case Opt_prjjquota:
716 		case Opt_offusrjquota:
717 		case Opt_offgrpjquota:
718 		case Opt_offprjjquota:
719 		case Opt_jqfmt_vfsold:
720 		case Opt_jqfmt_vfsv0:
721 		case Opt_jqfmt_vfsv1:
722 		case Opt_noquota:
723 			f2fs_info(sbi, "quota operations not supported");
724 			break;
725 #endif
726 		case Opt_whint:
727 			name = match_strdup(&args[0]);
728 			if (!name)
729 				return -ENOMEM;
730 			if (strlen(name) == 10 &&
731 					!strncmp(name, "user-based", 10)) {
732 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
733 			} else if (strlen(name) == 3 &&
734 					!strncmp(name, "off", 3)) {
735 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
736 			} else if (strlen(name) == 8 &&
737 					!strncmp(name, "fs-based", 8)) {
738 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
739 			} else {
740 				kvfree(name);
741 				return -EINVAL;
742 			}
743 			kvfree(name);
744 			break;
745 		case Opt_alloc:
746 			name = match_strdup(&args[0]);
747 			if (!name)
748 				return -ENOMEM;
749 
750 			if (strlen(name) == 7 &&
751 					!strncmp(name, "default", 7)) {
752 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
753 			} else if (strlen(name) == 5 &&
754 					!strncmp(name, "reuse", 5)) {
755 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
756 			} else {
757 				kvfree(name);
758 				return -EINVAL;
759 			}
760 			kvfree(name);
761 			break;
762 		case Opt_fsync:
763 			name = match_strdup(&args[0]);
764 			if (!name)
765 				return -ENOMEM;
766 			if (strlen(name) == 5 &&
767 					!strncmp(name, "posix", 5)) {
768 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
769 			} else if (strlen(name) == 6 &&
770 					!strncmp(name, "strict", 6)) {
771 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
772 			} else if (strlen(name) == 9 &&
773 					!strncmp(name, "nobarrier", 9)) {
774 				F2FS_OPTION(sbi).fsync_mode =
775 							FSYNC_MODE_NOBARRIER;
776 			} else {
777 				kvfree(name);
778 				return -EINVAL;
779 			}
780 			kvfree(name);
781 			break;
782 		case Opt_test_dummy_encryption:
783 #ifdef CONFIG_FS_ENCRYPTION
784 			if (!f2fs_sb_has_encrypt(sbi)) {
785 				f2fs_err(sbi, "Encrypt feature is off");
786 				return -EINVAL;
787 			}
788 
789 			F2FS_OPTION(sbi).test_dummy_encryption = true;
790 			f2fs_info(sbi, "Test dummy encryption mode enabled");
791 #else
792 			f2fs_info(sbi, "Test dummy encryption mount option ignored");
793 #endif
794 			break;
795 		case Opt_checkpoint_disable_cap_perc:
796 			if (args->from && match_int(args, &arg))
797 				return -EINVAL;
798 			if (arg < 0 || arg > 100)
799 				return -EINVAL;
800 			if (arg == 100)
801 				F2FS_OPTION(sbi).unusable_cap =
802 					sbi->user_block_count;
803 			else
804 				F2FS_OPTION(sbi).unusable_cap =
805 					(sbi->user_block_count / 100) *	arg;
806 			set_opt(sbi, DISABLE_CHECKPOINT);
807 			break;
808 		case Opt_checkpoint_disable_cap:
809 			if (args->from && match_int(args, &arg))
810 				return -EINVAL;
811 			F2FS_OPTION(sbi).unusable_cap = arg;
812 			set_opt(sbi, DISABLE_CHECKPOINT);
813 			break;
814 		case Opt_checkpoint_disable:
815 			set_opt(sbi, DISABLE_CHECKPOINT);
816 			break;
817 		case Opt_checkpoint_enable:
818 			clear_opt(sbi, DISABLE_CHECKPOINT);
819 			break;
820 		case Opt_compress_algorithm:
821 			if (!f2fs_sb_has_compression(sbi)) {
822 				f2fs_err(sbi, "Compression feature if off");
823 				return -EINVAL;
824 			}
825 			name = match_strdup(&args[0]);
826 			if (!name)
827 				return -ENOMEM;
828 			if (strlen(name) == 3 && !strcmp(name, "lzo")) {
829 				F2FS_OPTION(sbi).compress_algorithm =
830 								COMPRESS_LZO;
831 			} else if (strlen(name) == 3 &&
832 					!strcmp(name, "lz4")) {
833 				F2FS_OPTION(sbi).compress_algorithm =
834 								COMPRESS_LZ4;
835 			} else {
836 				kfree(name);
837 				return -EINVAL;
838 			}
839 			kfree(name);
840 			break;
841 		case Opt_compress_log_size:
842 			if (!f2fs_sb_has_compression(sbi)) {
843 				f2fs_err(sbi, "Compression feature is off");
844 				return -EINVAL;
845 			}
846 			if (args->from && match_int(args, &arg))
847 				return -EINVAL;
848 			if (arg < MIN_COMPRESS_LOG_SIZE ||
849 				arg > MAX_COMPRESS_LOG_SIZE) {
850 				f2fs_err(sbi,
851 					"Compress cluster log size is out of range");
852 				return -EINVAL;
853 			}
854 			F2FS_OPTION(sbi).compress_log_size = arg;
855 			break;
856 		case Opt_compress_extension:
857 			if (!f2fs_sb_has_compression(sbi)) {
858 				f2fs_err(sbi, "Compression feature is off");
859 				return -EINVAL;
860 			}
861 			name = match_strdup(&args[0]);
862 			if (!name)
863 				return -ENOMEM;
864 
865 			ext = F2FS_OPTION(sbi).extensions;
866 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
867 
868 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
869 				ext_cnt >= COMPRESS_EXT_NUM) {
870 				f2fs_err(sbi,
871 					"invalid extension length/number");
872 				kfree(name);
873 				return -EINVAL;
874 			}
875 
876 			strcpy(ext[ext_cnt], name);
877 			F2FS_OPTION(sbi).compress_ext_cnt++;
878 			kfree(name);
879 			break;
880 		default:
881 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
882 				 p);
883 			return -EINVAL;
884 		}
885 	}
886 #ifdef CONFIG_QUOTA
887 	if (f2fs_check_quota_options(sbi))
888 		return -EINVAL;
889 #else
890 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
891 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
892 		return -EINVAL;
893 	}
894 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
895 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
896 		return -EINVAL;
897 	}
898 #endif
899 #ifndef CONFIG_UNICODE
900 	if (f2fs_sb_has_casefold(sbi)) {
901 		f2fs_err(sbi,
902 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
903 		return -EINVAL;
904 	}
905 #endif
906 
907 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
908 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
909 			 F2FS_IO_SIZE_KB(sbi));
910 		return -EINVAL;
911 	}
912 
913 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
914 		int min_size, max_size;
915 
916 		if (!f2fs_sb_has_extra_attr(sbi) ||
917 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
918 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
919 			return -EINVAL;
920 		}
921 		if (!test_opt(sbi, INLINE_XATTR)) {
922 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
923 			return -EINVAL;
924 		}
925 
926 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
927 		max_size = MAX_INLINE_XATTR_SIZE;
928 
929 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
930 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
931 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
932 				 min_size, max_size);
933 			return -EINVAL;
934 		}
935 	}
936 
937 	if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
938 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
939 		return -EINVAL;
940 	}
941 
942 	/* Not pass down write hints if the number of active logs is lesser
943 	 * than NR_CURSEG_TYPE.
944 	 */
945 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
946 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
947 	return 0;
948 }
949 
950 static struct inode *f2fs_alloc_inode(struct super_block *sb)
951 {
952 	struct f2fs_inode_info *fi;
953 
954 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
955 	if (!fi)
956 		return NULL;
957 
958 	init_once((void *) fi);
959 
960 	/* Initialize f2fs-specific inode info */
961 	atomic_set(&fi->dirty_pages, 0);
962 	init_rwsem(&fi->i_sem);
963 	INIT_LIST_HEAD(&fi->dirty_list);
964 	INIT_LIST_HEAD(&fi->gdirty_list);
965 	INIT_LIST_HEAD(&fi->inmem_ilist);
966 	INIT_LIST_HEAD(&fi->inmem_pages);
967 	mutex_init(&fi->inmem_lock);
968 	init_rwsem(&fi->i_gc_rwsem[READ]);
969 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
970 	init_rwsem(&fi->i_mmap_sem);
971 	init_rwsem(&fi->i_xattr_sem);
972 
973 	/* Will be used by directory only */
974 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
975 
976 	return &fi->vfs_inode;
977 }
978 
979 static int f2fs_drop_inode(struct inode *inode)
980 {
981 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
982 	int ret;
983 
984 	/*
985 	 * during filesystem shutdown, if checkpoint is disabled,
986 	 * drop useless meta/node dirty pages.
987 	 */
988 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
989 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
990 			inode->i_ino == F2FS_META_INO(sbi)) {
991 			trace_f2fs_drop_inode(inode, 1);
992 			return 1;
993 		}
994 	}
995 
996 	/*
997 	 * This is to avoid a deadlock condition like below.
998 	 * writeback_single_inode(inode)
999 	 *  - f2fs_write_data_page
1000 	 *    - f2fs_gc -> iput -> evict
1001 	 *       - inode_wait_for_writeback(inode)
1002 	 */
1003 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1004 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1005 			/* to avoid evict_inode call simultaneously */
1006 			atomic_inc(&inode->i_count);
1007 			spin_unlock(&inode->i_lock);
1008 
1009 			/* some remained atomic pages should discarded */
1010 			if (f2fs_is_atomic_file(inode))
1011 				f2fs_drop_inmem_pages(inode);
1012 
1013 			/* should remain fi->extent_tree for writepage */
1014 			f2fs_destroy_extent_node(inode);
1015 
1016 			sb_start_intwrite(inode->i_sb);
1017 			f2fs_i_size_write(inode, 0);
1018 
1019 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1020 					inode, NULL, 0, DATA);
1021 			truncate_inode_pages_final(inode->i_mapping);
1022 
1023 			if (F2FS_HAS_BLOCKS(inode))
1024 				f2fs_truncate(inode);
1025 
1026 			sb_end_intwrite(inode->i_sb);
1027 
1028 			spin_lock(&inode->i_lock);
1029 			atomic_dec(&inode->i_count);
1030 		}
1031 		trace_f2fs_drop_inode(inode, 0);
1032 		return 0;
1033 	}
1034 	ret = generic_drop_inode(inode);
1035 	if (!ret)
1036 		ret = fscrypt_drop_inode(inode);
1037 	trace_f2fs_drop_inode(inode, ret);
1038 	return ret;
1039 }
1040 
1041 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1042 {
1043 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1044 	int ret = 0;
1045 
1046 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1047 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1048 		ret = 1;
1049 	} else {
1050 		set_inode_flag(inode, FI_DIRTY_INODE);
1051 		stat_inc_dirty_inode(sbi, DIRTY_META);
1052 	}
1053 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1054 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1055 				&sbi->inode_list[DIRTY_META]);
1056 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1057 	}
1058 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1059 	return ret;
1060 }
1061 
1062 void f2fs_inode_synced(struct inode *inode)
1063 {
1064 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1065 
1066 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1067 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1068 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1069 		return;
1070 	}
1071 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1072 		list_del_init(&F2FS_I(inode)->gdirty_list);
1073 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1074 	}
1075 	clear_inode_flag(inode, FI_DIRTY_INODE);
1076 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1077 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1078 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1079 }
1080 
1081 /*
1082  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1083  *
1084  * We should call set_dirty_inode to write the dirty inode through write_inode.
1085  */
1086 static void f2fs_dirty_inode(struct inode *inode, int flags)
1087 {
1088 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1089 
1090 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1091 			inode->i_ino == F2FS_META_INO(sbi))
1092 		return;
1093 
1094 	if (flags == I_DIRTY_TIME)
1095 		return;
1096 
1097 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1098 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1099 
1100 	f2fs_inode_dirtied(inode, false);
1101 }
1102 
1103 static void f2fs_free_inode(struct inode *inode)
1104 {
1105 	fscrypt_free_inode(inode);
1106 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1107 }
1108 
1109 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1110 {
1111 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1112 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1113 }
1114 
1115 static void destroy_device_list(struct f2fs_sb_info *sbi)
1116 {
1117 	int i;
1118 
1119 	for (i = 0; i < sbi->s_ndevs; i++) {
1120 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1121 #ifdef CONFIG_BLK_DEV_ZONED
1122 		kvfree(FDEV(i).blkz_seq);
1123 #endif
1124 	}
1125 	kvfree(sbi->devs);
1126 }
1127 
1128 static void f2fs_put_super(struct super_block *sb)
1129 {
1130 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1131 	int i;
1132 	bool dropped;
1133 
1134 	f2fs_quota_off_umount(sb);
1135 
1136 	/* prevent remaining shrinker jobs */
1137 	mutex_lock(&sbi->umount_mutex);
1138 
1139 	/*
1140 	 * We don't need to do checkpoint when superblock is clean.
1141 	 * But, the previous checkpoint was not done by umount, it needs to do
1142 	 * clean checkpoint again.
1143 	 */
1144 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1145 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1146 		struct cp_control cpc = {
1147 			.reason = CP_UMOUNT,
1148 		};
1149 		f2fs_write_checkpoint(sbi, &cpc);
1150 	}
1151 
1152 	/* be sure to wait for any on-going discard commands */
1153 	dropped = f2fs_issue_discard_timeout(sbi);
1154 
1155 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1156 					!sbi->discard_blks && !dropped) {
1157 		struct cp_control cpc = {
1158 			.reason = CP_UMOUNT | CP_TRIMMED,
1159 		};
1160 		f2fs_write_checkpoint(sbi, &cpc);
1161 	}
1162 
1163 	/*
1164 	 * normally superblock is clean, so we need to release this.
1165 	 * In addition, EIO will skip do checkpoint, we need this as well.
1166 	 */
1167 	f2fs_release_ino_entry(sbi, true);
1168 
1169 	f2fs_leave_shrinker(sbi);
1170 	mutex_unlock(&sbi->umount_mutex);
1171 
1172 	/* our cp_error case, we can wait for any writeback page */
1173 	f2fs_flush_merged_writes(sbi);
1174 
1175 	f2fs_wait_on_all_pages_writeback(sbi);
1176 
1177 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1178 
1179 	iput(sbi->node_inode);
1180 	sbi->node_inode = NULL;
1181 
1182 	iput(sbi->meta_inode);
1183 	sbi->meta_inode = NULL;
1184 
1185 	/*
1186 	 * iput() can update stat information, if f2fs_write_checkpoint()
1187 	 * above failed with error.
1188 	 */
1189 	f2fs_destroy_stats(sbi);
1190 
1191 	/* destroy f2fs internal modules */
1192 	f2fs_destroy_node_manager(sbi);
1193 	f2fs_destroy_segment_manager(sbi);
1194 
1195 	f2fs_destroy_post_read_wq(sbi);
1196 
1197 	kvfree(sbi->ckpt);
1198 
1199 	f2fs_unregister_sysfs(sbi);
1200 
1201 	sb->s_fs_info = NULL;
1202 	if (sbi->s_chksum_driver)
1203 		crypto_free_shash(sbi->s_chksum_driver);
1204 	kvfree(sbi->raw_super);
1205 
1206 	destroy_device_list(sbi);
1207 	mempool_destroy(sbi->write_io_dummy);
1208 #ifdef CONFIG_QUOTA
1209 	for (i = 0; i < MAXQUOTAS; i++)
1210 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1211 #endif
1212 	destroy_percpu_info(sbi);
1213 	for (i = 0; i < NR_PAGE_TYPE; i++)
1214 		kvfree(sbi->write_io[i]);
1215 #ifdef CONFIG_UNICODE
1216 	utf8_unload(sbi->s_encoding);
1217 #endif
1218 	kvfree(sbi);
1219 }
1220 
1221 int f2fs_sync_fs(struct super_block *sb, int sync)
1222 {
1223 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1224 	int err = 0;
1225 
1226 	if (unlikely(f2fs_cp_error(sbi)))
1227 		return 0;
1228 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1229 		return 0;
1230 
1231 	trace_f2fs_sync_fs(sb, sync);
1232 
1233 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1234 		return -EAGAIN;
1235 
1236 	if (sync) {
1237 		struct cp_control cpc;
1238 
1239 		cpc.reason = __get_cp_reason(sbi);
1240 
1241 		down_write(&sbi->gc_lock);
1242 		err = f2fs_write_checkpoint(sbi, &cpc);
1243 		up_write(&sbi->gc_lock);
1244 	}
1245 	f2fs_trace_ios(NULL, 1);
1246 
1247 	return err;
1248 }
1249 
1250 static int f2fs_freeze(struct super_block *sb)
1251 {
1252 	if (f2fs_readonly(sb))
1253 		return 0;
1254 
1255 	/* IO error happened before */
1256 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1257 		return -EIO;
1258 
1259 	/* must be clean, since sync_filesystem() was already called */
1260 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1261 		return -EINVAL;
1262 	return 0;
1263 }
1264 
1265 static int f2fs_unfreeze(struct super_block *sb)
1266 {
1267 	return 0;
1268 }
1269 
1270 #ifdef CONFIG_QUOTA
1271 static int f2fs_statfs_project(struct super_block *sb,
1272 				kprojid_t projid, struct kstatfs *buf)
1273 {
1274 	struct kqid qid;
1275 	struct dquot *dquot;
1276 	u64 limit;
1277 	u64 curblock;
1278 
1279 	qid = make_kqid_projid(projid);
1280 	dquot = dqget(sb, qid);
1281 	if (IS_ERR(dquot))
1282 		return PTR_ERR(dquot);
1283 	spin_lock(&dquot->dq_dqb_lock);
1284 
1285 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1286 					dquot->dq_dqb.dqb_bhardlimit);
1287 	if (limit)
1288 		limit >>= sb->s_blocksize_bits;
1289 
1290 	if (limit && buf->f_blocks > limit) {
1291 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1292 		buf->f_blocks = limit;
1293 		buf->f_bfree = buf->f_bavail =
1294 			(buf->f_blocks > curblock) ?
1295 			 (buf->f_blocks - curblock) : 0;
1296 	}
1297 
1298 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1299 					dquot->dq_dqb.dqb_ihardlimit);
1300 
1301 	if (limit && buf->f_files > limit) {
1302 		buf->f_files = limit;
1303 		buf->f_ffree =
1304 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1305 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1306 	}
1307 
1308 	spin_unlock(&dquot->dq_dqb_lock);
1309 	dqput(dquot);
1310 	return 0;
1311 }
1312 #endif
1313 
1314 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1315 {
1316 	struct super_block *sb = dentry->d_sb;
1317 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1318 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1319 	block_t total_count, user_block_count, start_count;
1320 	u64 avail_node_count;
1321 
1322 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1323 	user_block_count = sbi->user_block_count;
1324 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1325 	buf->f_type = F2FS_SUPER_MAGIC;
1326 	buf->f_bsize = sbi->blocksize;
1327 
1328 	buf->f_blocks = total_count - start_count;
1329 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1330 						sbi->current_reserved_blocks;
1331 
1332 	spin_lock(&sbi->stat_lock);
1333 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1334 		buf->f_bfree = 0;
1335 	else
1336 		buf->f_bfree -= sbi->unusable_block_count;
1337 	spin_unlock(&sbi->stat_lock);
1338 
1339 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1340 		buf->f_bavail = buf->f_bfree -
1341 				F2FS_OPTION(sbi).root_reserved_blocks;
1342 	else
1343 		buf->f_bavail = 0;
1344 
1345 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1346 
1347 	if (avail_node_count > user_block_count) {
1348 		buf->f_files = user_block_count;
1349 		buf->f_ffree = buf->f_bavail;
1350 	} else {
1351 		buf->f_files = avail_node_count;
1352 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1353 					buf->f_bavail);
1354 	}
1355 
1356 	buf->f_namelen = F2FS_NAME_LEN;
1357 	buf->f_fsid.val[0] = (u32)id;
1358 	buf->f_fsid.val[1] = (u32)(id >> 32);
1359 
1360 #ifdef CONFIG_QUOTA
1361 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1362 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1363 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1364 	}
1365 #endif
1366 	return 0;
1367 }
1368 
1369 static inline void f2fs_show_quota_options(struct seq_file *seq,
1370 					   struct super_block *sb)
1371 {
1372 #ifdef CONFIG_QUOTA
1373 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1374 
1375 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1376 		char *fmtname = "";
1377 
1378 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1379 		case QFMT_VFS_OLD:
1380 			fmtname = "vfsold";
1381 			break;
1382 		case QFMT_VFS_V0:
1383 			fmtname = "vfsv0";
1384 			break;
1385 		case QFMT_VFS_V1:
1386 			fmtname = "vfsv1";
1387 			break;
1388 		}
1389 		seq_printf(seq, ",jqfmt=%s", fmtname);
1390 	}
1391 
1392 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1393 		seq_show_option(seq, "usrjquota",
1394 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1395 
1396 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1397 		seq_show_option(seq, "grpjquota",
1398 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1399 
1400 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1401 		seq_show_option(seq, "prjjquota",
1402 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1403 #endif
1404 }
1405 
1406 static inline void f2fs_show_compress_options(struct seq_file *seq,
1407 							struct super_block *sb)
1408 {
1409 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1410 	char *algtype = "";
1411 	int i;
1412 
1413 	if (!f2fs_sb_has_compression(sbi))
1414 		return;
1415 
1416 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1417 	case COMPRESS_LZO:
1418 		algtype = "lzo";
1419 		break;
1420 	case COMPRESS_LZ4:
1421 		algtype = "lz4";
1422 		break;
1423 	}
1424 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1425 
1426 	seq_printf(seq, ",compress_log_size=%u",
1427 			F2FS_OPTION(sbi).compress_log_size);
1428 
1429 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1430 		seq_printf(seq, ",compress_extension=%s",
1431 			F2FS_OPTION(sbi).extensions[i]);
1432 	}
1433 }
1434 
1435 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1436 {
1437 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1438 
1439 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1440 		if (test_opt(sbi, FORCE_FG_GC))
1441 			seq_printf(seq, ",background_gc=%s", "sync");
1442 		else
1443 			seq_printf(seq, ",background_gc=%s", "on");
1444 	} else {
1445 		seq_printf(seq, ",background_gc=%s", "off");
1446 	}
1447 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1448 		seq_puts(seq, ",disable_roll_forward");
1449 	if (test_opt(sbi, DISCARD))
1450 		seq_puts(seq, ",discard");
1451 	else
1452 		seq_puts(seq, ",nodiscard");
1453 	if (test_opt(sbi, NOHEAP))
1454 		seq_puts(seq, ",no_heap");
1455 	else
1456 		seq_puts(seq, ",heap");
1457 #ifdef CONFIG_F2FS_FS_XATTR
1458 	if (test_opt(sbi, XATTR_USER))
1459 		seq_puts(seq, ",user_xattr");
1460 	else
1461 		seq_puts(seq, ",nouser_xattr");
1462 	if (test_opt(sbi, INLINE_XATTR))
1463 		seq_puts(seq, ",inline_xattr");
1464 	else
1465 		seq_puts(seq, ",noinline_xattr");
1466 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1467 		seq_printf(seq, ",inline_xattr_size=%u",
1468 					F2FS_OPTION(sbi).inline_xattr_size);
1469 #endif
1470 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1471 	if (test_opt(sbi, POSIX_ACL))
1472 		seq_puts(seq, ",acl");
1473 	else
1474 		seq_puts(seq, ",noacl");
1475 #endif
1476 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1477 		seq_puts(seq, ",disable_ext_identify");
1478 	if (test_opt(sbi, INLINE_DATA))
1479 		seq_puts(seq, ",inline_data");
1480 	else
1481 		seq_puts(seq, ",noinline_data");
1482 	if (test_opt(sbi, INLINE_DENTRY))
1483 		seq_puts(seq, ",inline_dentry");
1484 	else
1485 		seq_puts(seq, ",noinline_dentry");
1486 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1487 		seq_puts(seq, ",flush_merge");
1488 	if (test_opt(sbi, NOBARRIER))
1489 		seq_puts(seq, ",nobarrier");
1490 	if (test_opt(sbi, FASTBOOT))
1491 		seq_puts(seq, ",fastboot");
1492 	if (test_opt(sbi, EXTENT_CACHE))
1493 		seq_puts(seq, ",extent_cache");
1494 	else
1495 		seq_puts(seq, ",noextent_cache");
1496 	if (test_opt(sbi, DATA_FLUSH))
1497 		seq_puts(seq, ",data_flush");
1498 
1499 	seq_puts(seq, ",mode=");
1500 	if (test_opt(sbi, ADAPTIVE))
1501 		seq_puts(seq, "adaptive");
1502 	else if (test_opt(sbi, LFS))
1503 		seq_puts(seq, "lfs");
1504 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1505 	if (test_opt(sbi, RESERVE_ROOT))
1506 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1507 				F2FS_OPTION(sbi).root_reserved_blocks,
1508 				from_kuid_munged(&init_user_ns,
1509 					F2FS_OPTION(sbi).s_resuid),
1510 				from_kgid_munged(&init_user_ns,
1511 					F2FS_OPTION(sbi).s_resgid));
1512 	if (F2FS_IO_SIZE_BITS(sbi))
1513 		seq_printf(seq, ",io_bits=%u",
1514 				F2FS_OPTION(sbi).write_io_size_bits);
1515 #ifdef CONFIG_F2FS_FAULT_INJECTION
1516 	if (test_opt(sbi, FAULT_INJECTION)) {
1517 		seq_printf(seq, ",fault_injection=%u",
1518 				F2FS_OPTION(sbi).fault_info.inject_rate);
1519 		seq_printf(seq, ",fault_type=%u",
1520 				F2FS_OPTION(sbi).fault_info.inject_type);
1521 	}
1522 #endif
1523 #ifdef CONFIG_QUOTA
1524 	if (test_opt(sbi, QUOTA))
1525 		seq_puts(seq, ",quota");
1526 	if (test_opt(sbi, USRQUOTA))
1527 		seq_puts(seq, ",usrquota");
1528 	if (test_opt(sbi, GRPQUOTA))
1529 		seq_puts(seq, ",grpquota");
1530 	if (test_opt(sbi, PRJQUOTA))
1531 		seq_puts(seq, ",prjquota");
1532 #endif
1533 	f2fs_show_quota_options(seq, sbi->sb);
1534 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1535 		seq_printf(seq, ",whint_mode=%s", "user-based");
1536 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1537 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1538 #ifdef CONFIG_FS_ENCRYPTION
1539 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1540 		seq_puts(seq, ",test_dummy_encryption");
1541 #endif
1542 
1543 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1544 		seq_printf(seq, ",alloc_mode=%s", "default");
1545 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1546 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1547 
1548 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1549 		seq_printf(seq, ",checkpoint=disable:%u",
1550 				F2FS_OPTION(sbi).unusable_cap);
1551 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1552 		seq_printf(seq, ",fsync_mode=%s", "posix");
1553 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1554 		seq_printf(seq, ",fsync_mode=%s", "strict");
1555 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1556 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1557 
1558 	f2fs_show_compress_options(seq, sbi->sb);
1559 	return 0;
1560 }
1561 
1562 static void default_options(struct f2fs_sb_info *sbi)
1563 {
1564 	/* init some FS parameters */
1565 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1566 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1567 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1568 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1569 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1570 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1571 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1572 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1573 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZO;
1574 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1575 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1576 
1577 	set_opt(sbi, BG_GC);
1578 	set_opt(sbi, INLINE_XATTR);
1579 	set_opt(sbi, INLINE_DATA);
1580 	set_opt(sbi, INLINE_DENTRY);
1581 	set_opt(sbi, EXTENT_CACHE);
1582 	set_opt(sbi, NOHEAP);
1583 	clear_opt(sbi, DISABLE_CHECKPOINT);
1584 	F2FS_OPTION(sbi).unusable_cap = 0;
1585 	sbi->sb->s_flags |= SB_LAZYTIME;
1586 	set_opt(sbi, FLUSH_MERGE);
1587 	set_opt(sbi, DISCARD);
1588 	if (f2fs_sb_has_blkzoned(sbi))
1589 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1590 	else
1591 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1592 
1593 #ifdef CONFIG_F2FS_FS_XATTR
1594 	set_opt(sbi, XATTR_USER);
1595 #endif
1596 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1597 	set_opt(sbi, POSIX_ACL);
1598 #endif
1599 
1600 	f2fs_build_fault_attr(sbi, 0, 0);
1601 }
1602 
1603 #ifdef CONFIG_QUOTA
1604 static int f2fs_enable_quotas(struct super_block *sb);
1605 #endif
1606 
1607 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1608 {
1609 	unsigned int s_flags = sbi->sb->s_flags;
1610 	struct cp_control cpc;
1611 	int err = 0;
1612 	int ret;
1613 	block_t unusable;
1614 
1615 	if (s_flags & SB_RDONLY) {
1616 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1617 		return -EINVAL;
1618 	}
1619 	sbi->sb->s_flags |= SB_ACTIVE;
1620 
1621 	f2fs_update_time(sbi, DISABLE_TIME);
1622 
1623 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1624 		down_write(&sbi->gc_lock);
1625 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1626 		if (err == -ENODATA) {
1627 			err = 0;
1628 			break;
1629 		}
1630 		if (err && err != -EAGAIN)
1631 			break;
1632 	}
1633 
1634 	ret = sync_filesystem(sbi->sb);
1635 	if (ret || err) {
1636 		err = ret ? ret: err;
1637 		goto restore_flag;
1638 	}
1639 
1640 	unusable = f2fs_get_unusable_blocks(sbi);
1641 	if (f2fs_disable_cp_again(sbi, unusable)) {
1642 		err = -EAGAIN;
1643 		goto restore_flag;
1644 	}
1645 
1646 	down_write(&sbi->gc_lock);
1647 	cpc.reason = CP_PAUSE;
1648 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1649 	err = f2fs_write_checkpoint(sbi, &cpc);
1650 	if (err)
1651 		goto out_unlock;
1652 
1653 	spin_lock(&sbi->stat_lock);
1654 	sbi->unusable_block_count = unusable;
1655 	spin_unlock(&sbi->stat_lock);
1656 
1657 out_unlock:
1658 	up_write(&sbi->gc_lock);
1659 restore_flag:
1660 	sbi->sb->s_flags = s_flags;	/* Restore MS_RDONLY status */
1661 	return err;
1662 }
1663 
1664 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1665 {
1666 	down_write(&sbi->gc_lock);
1667 	f2fs_dirty_to_prefree(sbi);
1668 
1669 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1670 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1671 	up_write(&sbi->gc_lock);
1672 
1673 	f2fs_sync_fs(sbi->sb, 1);
1674 }
1675 
1676 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1677 {
1678 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1679 	struct f2fs_mount_info org_mount_opt;
1680 	unsigned long old_sb_flags;
1681 	int err;
1682 	bool need_restart_gc = false;
1683 	bool need_stop_gc = false;
1684 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1685 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1686 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1687 	bool checkpoint_changed;
1688 #ifdef CONFIG_QUOTA
1689 	int i, j;
1690 #endif
1691 
1692 	/*
1693 	 * Save the old mount options in case we
1694 	 * need to restore them.
1695 	 */
1696 	org_mount_opt = sbi->mount_opt;
1697 	old_sb_flags = sb->s_flags;
1698 
1699 #ifdef CONFIG_QUOTA
1700 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1701 	for (i = 0; i < MAXQUOTAS; i++) {
1702 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1703 			org_mount_opt.s_qf_names[i] =
1704 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1705 				GFP_KERNEL);
1706 			if (!org_mount_opt.s_qf_names[i]) {
1707 				for (j = 0; j < i; j++)
1708 					kvfree(org_mount_opt.s_qf_names[j]);
1709 				return -ENOMEM;
1710 			}
1711 		} else {
1712 			org_mount_opt.s_qf_names[i] = NULL;
1713 		}
1714 	}
1715 #endif
1716 
1717 	/* recover superblocks we couldn't write due to previous RO mount */
1718 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1719 		err = f2fs_commit_super(sbi, false);
1720 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1721 			  err);
1722 		if (!err)
1723 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1724 	}
1725 
1726 	default_options(sbi);
1727 
1728 	/* parse mount options */
1729 	err = parse_options(sb, data);
1730 	if (err)
1731 		goto restore_opts;
1732 	checkpoint_changed =
1733 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1734 
1735 	/*
1736 	 * Previous and new state of filesystem is RO,
1737 	 * so skip checking GC and FLUSH_MERGE conditions.
1738 	 */
1739 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1740 		goto skip;
1741 
1742 #ifdef CONFIG_QUOTA
1743 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1744 		err = dquot_suspend(sb, -1);
1745 		if (err < 0)
1746 			goto restore_opts;
1747 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1748 		/* dquot_resume needs RW */
1749 		sb->s_flags &= ~SB_RDONLY;
1750 		if (sb_any_quota_suspended(sb)) {
1751 			dquot_resume(sb, -1);
1752 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1753 			err = f2fs_enable_quotas(sb);
1754 			if (err)
1755 				goto restore_opts;
1756 		}
1757 	}
1758 #endif
1759 	/* disallow enable/disable extent_cache dynamically */
1760 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1761 		err = -EINVAL;
1762 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1763 		goto restore_opts;
1764 	}
1765 
1766 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1767 		err = -EINVAL;
1768 		f2fs_warn(sbi, "switch io_bits option is not allowed");
1769 		goto restore_opts;
1770 	}
1771 
1772 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1773 		err = -EINVAL;
1774 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1775 		goto restore_opts;
1776 	}
1777 
1778 	/*
1779 	 * We stop the GC thread if FS is mounted as RO
1780 	 * or if background_gc = off is passed in mount
1781 	 * option. Also sync the filesystem.
1782 	 */
1783 	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1784 		if (sbi->gc_thread) {
1785 			f2fs_stop_gc_thread(sbi);
1786 			need_restart_gc = true;
1787 		}
1788 	} else if (!sbi->gc_thread) {
1789 		err = f2fs_start_gc_thread(sbi);
1790 		if (err)
1791 			goto restore_opts;
1792 		need_stop_gc = true;
1793 	}
1794 
1795 	if (*flags & SB_RDONLY ||
1796 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1797 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1798 		sync_inodes_sb(sb);
1799 
1800 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1801 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1802 		f2fs_sync_fs(sb, 1);
1803 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1804 	}
1805 
1806 	if (checkpoint_changed) {
1807 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1808 			err = f2fs_disable_checkpoint(sbi);
1809 			if (err)
1810 				goto restore_gc;
1811 		} else {
1812 			f2fs_enable_checkpoint(sbi);
1813 		}
1814 	}
1815 
1816 	/*
1817 	 * We stop issue flush thread if FS is mounted as RO
1818 	 * or if flush_merge is not passed in mount option.
1819 	 */
1820 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1821 		clear_opt(sbi, FLUSH_MERGE);
1822 		f2fs_destroy_flush_cmd_control(sbi, false);
1823 	} else {
1824 		err = f2fs_create_flush_cmd_control(sbi);
1825 		if (err)
1826 			goto restore_gc;
1827 	}
1828 skip:
1829 #ifdef CONFIG_QUOTA
1830 	/* Release old quota file names */
1831 	for (i = 0; i < MAXQUOTAS; i++)
1832 		kvfree(org_mount_opt.s_qf_names[i]);
1833 #endif
1834 	/* Update the POSIXACL Flag */
1835 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1836 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1837 
1838 	limit_reserve_root(sbi);
1839 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1840 	return 0;
1841 restore_gc:
1842 	if (need_restart_gc) {
1843 		if (f2fs_start_gc_thread(sbi))
1844 			f2fs_warn(sbi, "background gc thread has stopped");
1845 	} else if (need_stop_gc) {
1846 		f2fs_stop_gc_thread(sbi);
1847 	}
1848 restore_opts:
1849 #ifdef CONFIG_QUOTA
1850 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1851 	for (i = 0; i < MAXQUOTAS; i++) {
1852 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1853 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1854 	}
1855 #endif
1856 	sbi->mount_opt = org_mount_opt;
1857 	sb->s_flags = old_sb_flags;
1858 	return err;
1859 }
1860 
1861 #ifdef CONFIG_QUOTA
1862 /* Read data from quotafile */
1863 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1864 			       size_t len, loff_t off)
1865 {
1866 	struct inode *inode = sb_dqopt(sb)->files[type];
1867 	struct address_space *mapping = inode->i_mapping;
1868 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1869 	int offset = off & (sb->s_blocksize - 1);
1870 	int tocopy;
1871 	size_t toread;
1872 	loff_t i_size = i_size_read(inode);
1873 	struct page *page;
1874 	char *kaddr;
1875 
1876 	if (off > i_size)
1877 		return 0;
1878 
1879 	if (off + len > i_size)
1880 		len = i_size - off;
1881 	toread = len;
1882 	while (toread > 0) {
1883 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1884 repeat:
1885 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1886 		if (IS_ERR(page)) {
1887 			if (PTR_ERR(page) == -ENOMEM) {
1888 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1889 				goto repeat;
1890 			}
1891 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1892 			return PTR_ERR(page);
1893 		}
1894 
1895 		lock_page(page);
1896 
1897 		if (unlikely(page->mapping != mapping)) {
1898 			f2fs_put_page(page, 1);
1899 			goto repeat;
1900 		}
1901 		if (unlikely(!PageUptodate(page))) {
1902 			f2fs_put_page(page, 1);
1903 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1904 			return -EIO;
1905 		}
1906 
1907 		kaddr = kmap_atomic(page);
1908 		memcpy(data, kaddr + offset, tocopy);
1909 		kunmap_atomic(kaddr);
1910 		f2fs_put_page(page, 1);
1911 
1912 		offset = 0;
1913 		toread -= tocopy;
1914 		data += tocopy;
1915 		blkidx++;
1916 	}
1917 	return len;
1918 }
1919 
1920 /* Write to quotafile */
1921 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1922 				const char *data, size_t len, loff_t off)
1923 {
1924 	struct inode *inode = sb_dqopt(sb)->files[type];
1925 	struct address_space *mapping = inode->i_mapping;
1926 	const struct address_space_operations *a_ops = mapping->a_ops;
1927 	int offset = off & (sb->s_blocksize - 1);
1928 	size_t towrite = len;
1929 	struct page *page;
1930 	char *kaddr;
1931 	int err = 0;
1932 	int tocopy;
1933 
1934 	while (towrite > 0) {
1935 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1936 								towrite);
1937 retry:
1938 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1939 							&page, NULL);
1940 		if (unlikely(err)) {
1941 			if (err == -ENOMEM) {
1942 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1943 				goto retry;
1944 			}
1945 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1946 			break;
1947 		}
1948 
1949 		kaddr = kmap_atomic(page);
1950 		memcpy(kaddr + offset, data, tocopy);
1951 		kunmap_atomic(kaddr);
1952 		flush_dcache_page(page);
1953 
1954 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1955 						page, NULL);
1956 		offset = 0;
1957 		towrite -= tocopy;
1958 		off += tocopy;
1959 		data += tocopy;
1960 		cond_resched();
1961 	}
1962 
1963 	if (len == towrite)
1964 		return err;
1965 	inode->i_mtime = inode->i_ctime = current_time(inode);
1966 	f2fs_mark_inode_dirty_sync(inode, false);
1967 	return len - towrite;
1968 }
1969 
1970 static struct dquot **f2fs_get_dquots(struct inode *inode)
1971 {
1972 	return F2FS_I(inode)->i_dquot;
1973 }
1974 
1975 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1976 {
1977 	return &F2FS_I(inode)->i_reserved_quota;
1978 }
1979 
1980 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1981 {
1982 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1983 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
1984 		return 0;
1985 	}
1986 
1987 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1988 					F2FS_OPTION(sbi).s_jquota_fmt, type);
1989 }
1990 
1991 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1992 {
1993 	int enabled = 0;
1994 	int i, err;
1995 
1996 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
1997 		err = f2fs_enable_quotas(sbi->sb);
1998 		if (err) {
1999 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2000 			return 0;
2001 		}
2002 		return 1;
2003 	}
2004 
2005 	for (i = 0; i < MAXQUOTAS; i++) {
2006 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2007 			err = f2fs_quota_on_mount(sbi, i);
2008 			if (!err) {
2009 				enabled = 1;
2010 				continue;
2011 			}
2012 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2013 				 err, i);
2014 		}
2015 	}
2016 	return enabled;
2017 }
2018 
2019 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2020 			     unsigned int flags)
2021 {
2022 	struct inode *qf_inode;
2023 	unsigned long qf_inum;
2024 	int err;
2025 
2026 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2027 
2028 	qf_inum = f2fs_qf_ino(sb, type);
2029 	if (!qf_inum)
2030 		return -EPERM;
2031 
2032 	qf_inode = f2fs_iget(sb, qf_inum);
2033 	if (IS_ERR(qf_inode)) {
2034 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2035 		return PTR_ERR(qf_inode);
2036 	}
2037 
2038 	/* Don't account quota for quota files to avoid recursion */
2039 	qf_inode->i_flags |= S_NOQUOTA;
2040 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2041 	iput(qf_inode);
2042 	return err;
2043 }
2044 
2045 static int f2fs_enable_quotas(struct super_block *sb)
2046 {
2047 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2048 	int type, err = 0;
2049 	unsigned long qf_inum;
2050 	bool quota_mopt[MAXQUOTAS] = {
2051 		test_opt(sbi, USRQUOTA),
2052 		test_opt(sbi, GRPQUOTA),
2053 		test_opt(sbi, PRJQUOTA),
2054 	};
2055 
2056 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2057 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2058 		return 0;
2059 	}
2060 
2061 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2062 
2063 	for (type = 0; type < MAXQUOTAS; type++) {
2064 		qf_inum = f2fs_qf_ino(sb, type);
2065 		if (qf_inum) {
2066 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2067 				DQUOT_USAGE_ENABLED |
2068 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2069 			if (err) {
2070 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2071 					 type, err);
2072 				for (type--; type >= 0; type--)
2073 					dquot_quota_off(sb, type);
2074 				set_sbi_flag(F2FS_SB(sb),
2075 						SBI_QUOTA_NEED_REPAIR);
2076 				return err;
2077 			}
2078 		}
2079 	}
2080 	return 0;
2081 }
2082 
2083 int f2fs_quota_sync(struct super_block *sb, int type)
2084 {
2085 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2086 	struct quota_info *dqopt = sb_dqopt(sb);
2087 	int cnt;
2088 	int ret;
2089 
2090 	/*
2091 	 * do_quotactl
2092 	 *  f2fs_quota_sync
2093 	 *  down_read(quota_sem)
2094 	 *  dquot_writeback_dquots()
2095 	 *  f2fs_dquot_commit
2096 	 *                            block_operation
2097 	 *                            down_read(quota_sem)
2098 	 */
2099 	f2fs_lock_op(sbi);
2100 
2101 	down_read(&sbi->quota_sem);
2102 	ret = dquot_writeback_dquots(sb, type);
2103 	if (ret)
2104 		goto out;
2105 
2106 	/*
2107 	 * Now when everything is written we can discard the pagecache so
2108 	 * that userspace sees the changes.
2109 	 */
2110 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2111 		struct address_space *mapping;
2112 
2113 		if (type != -1 && cnt != type)
2114 			continue;
2115 		if (!sb_has_quota_active(sb, cnt))
2116 			continue;
2117 
2118 		mapping = dqopt->files[cnt]->i_mapping;
2119 
2120 		ret = filemap_fdatawrite(mapping);
2121 		if (ret)
2122 			goto out;
2123 
2124 		/* if we are using journalled quota */
2125 		if (is_journalled_quota(sbi))
2126 			continue;
2127 
2128 		ret = filemap_fdatawait(mapping);
2129 		if (ret)
2130 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2131 
2132 		inode_lock(dqopt->files[cnt]);
2133 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2134 		inode_unlock(dqopt->files[cnt]);
2135 	}
2136 out:
2137 	if (ret)
2138 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2139 	up_read(&sbi->quota_sem);
2140 	f2fs_unlock_op(sbi);
2141 	return ret;
2142 }
2143 
2144 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2145 							const struct path *path)
2146 {
2147 	struct inode *inode;
2148 	int err;
2149 
2150 	/* if quota sysfile exists, deny enabling quota with specific file */
2151 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2152 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2153 		return -EBUSY;
2154 	}
2155 
2156 	err = f2fs_quota_sync(sb, type);
2157 	if (err)
2158 		return err;
2159 
2160 	err = dquot_quota_on(sb, type, format_id, path);
2161 	if (err)
2162 		return err;
2163 
2164 	inode = d_inode(path->dentry);
2165 
2166 	inode_lock(inode);
2167 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2168 	f2fs_set_inode_flags(inode);
2169 	inode_unlock(inode);
2170 	f2fs_mark_inode_dirty_sync(inode, false);
2171 
2172 	return 0;
2173 }
2174 
2175 static int __f2fs_quota_off(struct super_block *sb, int type)
2176 {
2177 	struct inode *inode = sb_dqopt(sb)->files[type];
2178 	int err;
2179 
2180 	if (!inode || !igrab(inode))
2181 		return dquot_quota_off(sb, type);
2182 
2183 	err = f2fs_quota_sync(sb, type);
2184 	if (err)
2185 		goto out_put;
2186 
2187 	err = dquot_quota_off(sb, type);
2188 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2189 		goto out_put;
2190 
2191 	inode_lock(inode);
2192 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2193 	f2fs_set_inode_flags(inode);
2194 	inode_unlock(inode);
2195 	f2fs_mark_inode_dirty_sync(inode, false);
2196 out_put:
2197 	iput(inode);
2198 	return err;
2199 }
2200 
2201 static int f2fs_quota_off(struct super_block *sb, int type)
2202 {
2203 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2204 	int err;
2205 
2206 	err = __f2fs_quota_off(sb, type);
2207 
2208 	/*
2209 	 * quotactl can shutdown journalled quota, result in inconsistence
2210 	 * between quota record and fs data by following updates, tag the
2211 	 * flag to let fsck be aware of it.
2212 	 */
2213 	if (is_journalled_quota(sbi))
2214 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2215 	return err;
2216 }
2217 
2218 void f2fs_quota_off_umount(struct super_block *sb)
2219 {
2220 	int type;
2221 	int err;
2222 
2223 	for (type = 0; type < MAXQUOTAS; type++) {
2224 		err = __f2fs_quota_off(sb, type);
2225 		if (err) {
2226 			int ret = dquot_quota_off(sb, type);
2227 
2228 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2229 				 type, err, ret);
2230 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2231 		}
2232 	}
2233 	/*
2234 	 * In case of checkpoint=disable, we must flush quota blocks.
2235 	 * This can cause NULL exception for node_inode in end_io, since
2236 	 * put_super already dropped it.
2237 	 */
2238 	sync_filesystem(sb);
2239 }
2240 
2241 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2242 {
2243 	struct quota_info *dqopt = sb_dqopt(sb);
2244 	int type;
2245 
2246 	for (type = 0; type < MAXQUOTAS; type++) {
2247 		if (!dqopt->files[type])
2248 			continue;
2249 		f2fs_inode_synced(dqopt->files[type]);
2250 	}
2251 }
2252 
2253 static int f2fs_dquot_commit(struct dquot *dquot)
2254 {
2255 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2256 	int ret;
2257 
2258 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2259 	ret = dquot_commit(dquot);
2260 	if (ret < 0)
2261 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2262 	up_read(&sbi->quota_sem);
2263 	return ret;
2264 }
2265 
2266 static int f2fs_dquot_acquire(struct dquot *dquot)
2267 {
2268 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2269 	int ret;
2270 
2271 	down_read(&sbi->quota_sem);
2272 	ret = dquot_acquire(dquot);
2273 	if (ret < 0)
2274 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2275 	up_read(&sbi->quota_sem);
2276 	return ret;
2277 }
2278 
2279 static int f2fs_dquot_release(struct dquot *dquot)
2280 {
2281 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2282 	int ret = dquot_release(dquot);
2283 
2284 	if (ret < 0)
2285 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2286 	return ret;
2287 }
2288 
2289 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2290 {
2291 	struct super_block *sb = dquot->dq_sb;
2292 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2293 	int ret = dquot_mark_dquot_dirty(dquot);
2294 
2295 	/* if we are using journalled quota */
2296 	if (is_journalled_quota(sbi))
2297 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2298 
2299 	return ret;
2300 }
2301 
2302 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2303 {
2304 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2305 	int ret = dquot_commit_info(sb, type);
2306 
2307 	if (ret < 0)
2308 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2309 	return ret;
2310 }
2311 
2312 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2313 {
2314 	*projid = F2FS_I(inode)->i_projid;
2315 	return 0;
2316 }
2317 
2318 static const struct dquot_operations f2fs_quota_operations = {
2319 	.get_reserved_space = f2fs_get_reserved_space,
2320 	.write_dquot	= f2fs_dquot_commit,
2321 	.acquire_dquot	= f2fs_dquot_acquire,
2322 	.release_dquot	= f2fs_dquot_release,
2323 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2324 	.write_info	= f2fs_dquot_commit_info,
2325 	.alloc_dquot	= dquot_alloc,
2326 	.destroy_dquot	= dquot_destroy,
2327 	.get_projid	= f2fs_get_projid,
2328 	.get_next_id	= dquot_get_next_id,
2329 };
2330 
2331 static const struct quotactl_ops f2fs_quotactl_ops = {
2332 	.quota_on	= f2fs_quota_on,
2333 	.quota_off	= f2fs_quota_off,
2334 	.quota_sync	= f2fs_quota_sync,
2335 	.get_state	= dquot_get_state,
2336 	.set_info	= dquot_set_dqinfo,
2337 	.get_dqblk	= dquot_get_dqblk,
2338 	.set_dqblk	= dquot_set_dqblk,
2339 	.get_nextdqblk	= dquot_get_next_dqblk,
2340 };
2341 #else
2342 int f2fs_quota_sync(struct super_block *sb, int type)
2343 {
2344 	return 0;
2345 }
2346 
2347 void f2fs_quota_off_umount(struct super_block *sb)
2348 {
2349 }
2350 #endif
2351 
2352 static const struct super_operations f2fs_sops = {
2353 	.alloc_inode	= f2fs_alloc_inode,
2354 	.free_inode	= f2fs_free_inode,
2355 	.drop_inode	= f2fs_drop_inode,
2356 	.write_inode	= f2fs_write_inode,
2357 	.dirty_inode	= f2fs_dirty_inode,
2358 	.show_options	= f2fs_show_options,
2359 #ifdef CONFIG_QUOTA
2360 	.quota_read	= f2fs_quota_read,
2361 	.quota_write	= f2fs_quota_write,
2362 	.get_dquots	= f2fs_get_dquots,
2363 #endif
2364 	.evict_inode	= f2fs_evict_inode,
2365 	.put_super	= f2fs_put_super,
2366 	.sync_fs	= f2fs_sync_fs,
2367 	.freeze_fs	= f2fs_freeze,
2368 	.unfreeze_fs	= f2fs_unfreeze,
2369 	.statfs		= f2fs_statfs,
2370 	.remount_fs	= f2fs_remount,
2371 };
2372 
2373 #ifdef CONFIG_FS_ENCRYPTION
2374 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2375 {
2376 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2377 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2378 				ctx, len, NULL);
2379 }
2380 
2381 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2382 							void *fs_data)
2383 {
2384 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2385 
2386 	/*
2387 	 * Encrypting the root directory is not allowed because fsck
2388 	 * expects lost+found directory to exist and remain unencrypted
2389 	 * if LOST_FOUND feature is enabled.
2390 	 *
2391 	 */
2392 	if (f2fs_sb_has_lost_found(sbi) &&
2393 			inode->i_ino == F2FS_ROOT_INO(sbi))
2394 		return -EPERM;
2395 
2396 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2397 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2398 				ctx, len, fs_data, XATTR_CREATE);
2399 }
2400 
2401 static bool f2fs_dummy_context(struct inode *inode)
2402 {
2403 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2404 }
2405 
2406 static bool f2fs_has_stable_inodes(struct super_block *sb)
2407 {
2408 	return true;
2409 }
2410 
2411 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2412 				       int *ino_bits_ret, int *lblk_bits_ret)
2413 {
2414 	*ino_bits_ret = 8 * sizeof(nid_t);
2415 	*lblk_bits_ret = 8 * sizeof(block_t);
2416 }
2417 
2418 static const struct fscrypt_operations f2fs_cryptops = {
2419 	.key_prefix		= "f2fs:",
2420 	.get_context		= f2fs_get_context,
2421 	.set_context		= f2fs_set_context,
2422 	.dummy_context		= f2fs_dummy_context,
2423 	.empty_dir		= f2fs_empty_dir,
2424 	.max_namelen		= F2FS_NAME_LEN,
2425 	.has_stable_inodes	= f2fs_has_stable_inodes,
2426 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2427 };
2428 #endif
2429 
2430 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2431 		u64 ino, u32 generation)
2432 {
2433 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2434 	struct inode *inode;
2435 
2436 	if (f2fs_check_nid_range(sbi, ino))
2437 		return ERR_PTR(-ESTALE);
2438 
2439 	/*
2440 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2441 	 * However f2fs_iget currently does appropriate checks to handle stale
2442 	 * inodes so everything is OK.
2443 	 */
2444 	inode = f2fs_iget(sb, ino);
2445 	if (IS_ERR(inode))
2446 		return ERR_CAST(inode);
2447 	if (unlikely(generation && inode->i_generation != generation)) {
2448 		/* we didn't find the right inode.. */
2449 		iput(inode);
2450 		return ERR_PTR(-ESTALE);
2451 	}
2452 	return inode;
2453 }
2454 
2455 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2456 		int fh_len, int fh_type)
2457 {
2458 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2459 				    f2fs_nfs_get_inode);
2460 }
2461 
2462 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2463 		int fh_len, int fh_type)
2464 {
2465 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2466 				    f2fs_nfs_get_inode);
2467 }
2468 
2469 static const struct export_operations f2fs_export_ops = {
2470 	.fh_to_dentry = f2fs_fh_to_dentry,
2471 	.fh_to_parent = f2fs_fh_to_parent,
2472 	.get_parent = f2fs_get_parent,
2473 };
2474 
2475 static loff_t max_file_blocks(void)
2476 {
2477 	loff_t result = 0;
2478 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2479 
2480 	/*
2481 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2482 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2483 	 * space in inode.i_addr, it will be more safe to reassign
2484 	 * result as zero.
2485 	 */
2486 
2487 	/* two direct node blocks */
2488 	result += (leaf_count * 2);
2489 
2490 	/* two indirect node blocks */
2491 	leaf_count *= NIDS_PER_BLOCK;
2492 	result += (leaf_count * 2);
2493 
2494 	/* one double indirect node block */
2495 	leaf_count *= NIDS_PER_BLOCK;
2496 	result += leaf_count;
2497 
2498 	return result;
2499 }
2500 
2501 static int __f2fs_commit_super(struct buffer_head *bh,
2502 			struct f2fs_super_block *super)
2503 {
2504 	lock_buffer(bh);
2505 	if (super)
2506 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2507 	set_buffer_dirty(bh);
2508 	unlock_buffer(bh);
2509 
2510 	/* it's rare case, we can do fua all the time */
2511 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2512 }
2513 
2514 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2515 					struct buffer_head *bh)
2516 {
2517 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2518 					(bh->b_data + F2FS_SUPER_OFFSET);
2519 	struct super_block *sb = sbi->sb;
2520 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2521 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2522 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2523 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2524 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2525 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2526 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2527 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2528 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2529 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2530 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2531 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2532 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2533 	u64 main_end_blkaddr = main_blkaddr +
2534 				(segment_count_main << log_blocks_per_seg);
2535 	u64 seg_end_blkaddr = segment0_blkaddr +
2536 				(segment_count << log_blocks_per_seg);
2537 
2538 	if (segment0_blkaddr != cp_blkaddr) {
2539 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2540 			  segment0_blkaddr, cp_blkaddr);
2541 		return true;
2542 	}
2543 
2544 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2545 							sit_blkaddr) {
2546 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2547 			  cp_blkaddr, sit_blkaddr,
2548 			  segment_count_ckpt << log_blocks_per_seg);
2549 		return true;
2550 	}
2551 
2552 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2553 							nat_blkaddr) {
2554 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2555 			  sit_blkaddr, nat_blkaddr,
2556 			  segment_count_sit << log_blocks_per_seg);
2557 		return true;
2558 	}
2559 
2560 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2561 							ssa_blkaddr) {
2562 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2563 			  nat_blkaddr, ssa_blkaddr,
2564 			  segment_count_nat << log_blocks_per_seg);
2565 		return true;
2566 	}
2567 
2568 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2569 							main_blkaddr) {
2570 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2571 			  ssa_blkaddr, main_blkaddr,
2572 			  segment_count_ssa << log_blocks_per_seg);
2573 		return true;
2574 	}
2575 
2576 	if (main_end_blkaddr > seg_end_blkaddr) {
2577 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2578 			  main_blkaddr,
2579 			  segment0_blkaddr +
2580 			  (segment_count << log_blocks_per_seg),
2581 			  segment_count_main << log_blocks_per_seg);
2582 		return true;
2583 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2584 		int err = 0;
2585 		char *res;
2586 
2587 		/* fix in-memory information all the time */
2588 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2589 				segment0_blkaddr) >> log_blocks_per_seg);
2590 
2591 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2592 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2593 			res = "internally";
2594 		} else {
2595 			err = __f2fs_commit_super(bh, NULL);
2596 			res = err ? "failed" : "done";
2597 		}
2598 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2599 			  res, main_blkaddr,
2600 			  segment0_blkaddr +
2601 			  (segment_count << log_blocks_per_seg),
2602 			  segment_count_main << log_blocks_per_seg);
2603 		if (err)
2604 			return true;
2605 	}
2606 	return false;
2607 }
2608 
2609 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2610 				struct buffer_head *bh)
2611 {
2612 	block_t segment_count, segs_per_sec, secs_per_zone;
2613 	block_t total_sections, blocks_per_seg;
2614 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2615 					(bh->b_data + F2FS_SUPER_OFFSET);
2616 	unsigned int blocksize;
2617 	size_t crc_offset = 0;
2618 	__u32 crc = 0;
2619 
2620 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2621 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2622 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2623 		return -EINVAL;
2624 	}
2625 
2626 	/* Check checksum_offset and crc in superblock */
2627 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2628 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2629 		if (crc_offset !=
2630 			offsetof(struct f2fs_super_block, crc)) {
2631 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2632 				  crc_offset);
2633 			return -EFSCORRUPTED;
2634 		}
2635 		crc = le32_to_cpu(raw_super->crc);
2636 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2637 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2638 			return -EFSCORRUPTED;
2639 		}
2640 	}
2641 
2642 	/* Currently, support only 4KB page cache size */
2643 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2644 		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2645 			  PAGE_SIZE);
2646 		return -EFSCORRUPTED;
2647 	}
2648 
2649 	/* Currently, support only 4KB block size */
2650 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2651 	if (blocksize != F2FS_BLKSIZE) {
2652 		f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2653 			  blocksize);
2654 		return -EFSCORRUPTED;
2655 	}
2656 
2657 	/* check log blocks per segment */
2658 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2659 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2660 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2661 		return -EFSCORRUPTED;
2662 	}
2663 
2664 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2665 	if (le32_to_cpu(raw_super->log_sectorsize) >
2666 				F2FS_MAX_LOG_SECTOR_SIZE ||
2667 		le32_to_cpu(raw_super->log_sectorsize) <
2668 				F2FS_MIN_LOG_SECTOR_SIZE) {
2669 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2670 			  le32_to_cpu(raw_super->log_sectorsize));
2671 		return -EFSCORRUPTED;
2672 	}
2673 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2674 		le32_to_cpu(raw_super->log_sectorsize) !=
2675 			F2FS_MAX_LOG_SECTOR_SIZE) {
2676 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2677 			  le32_to_cpu(raw_super->log_sectors_per_block),
2678 			  le32_to_cpu(raw_super->log_sectorsize));
2679 		return -EFSCORRUPTED;
2680 	}
2681 
2682 	segment_count = le32_to_cpu(raw_super->segment_count);
2683 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2684 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2685 	total_sections = le32_to_cpu(raw_super->section_count);
2686 
2687 	/* blocks_per_seg should be 512, given the above check */
2688 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2689 
2690 	if (segment_count > F2FS_MAX_SEGMENT ||
2691 				segment_count < F2FS_MIN_SEGMENTS) {
2692 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2693 		return -EFSCORRUPTED;
2694 	}
2695 
2696 	if (total_sections > segment_count ||
2697 			total_sections < F2FS_MIN_SEGMENTS ||
2698 			segs_per_sec > segment_count || !segs_per_sec) {
2699 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2700 			  segment_count, total_sections, segs_per_sec);
2701 		return -EFSCORRUPTED;
2702 	}
2703 
2704 	if ((segment_count / segs_per_sec) < total_sections) {
2705 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2706 			  segment_count, segs_per_sec, total_sections);
2707 		return -EFSCORRUPTED;
2708 	}
2709 
2710 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2711 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2712 			  segment_count, le64_to_cpu(raw_super->block_count));
2713 		return -EFSCORRUPTED;
2714 	}
2715 
2716 	if (RDEV(0).path[0]) {
2717 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2718 		int i = 1;
2719 
2720 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
2721 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2722 			i++;
2723 		}
2724 		if (segment_count != dev_seg_count) {
2725 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2726 					segment_count, dev_seg_count);
2727 			return -EFSCORRUPTED;
2728 		}
2729 	}
2730 
2731 	if (secs_per_zone > total_sections || !secs_per_zone) {
2732 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2733 			  secs_per_zone, total_sections);
2734 		return -EFSCORRUPTED;
2735 	}
2736 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2737 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2738 			(le32_to_cpu(raw_super->extension_count) +
2739 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2740 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2741 			  le32_to_cpu(raw_super->extension_count),
2742 			  raw_super->hot_ext_count,
2743 			  F2FS_MAX_EXTENSION);
2744 		return -EFSCORRUPTED;
2745 	}
2746 
2747 	if (le32_to_cpu(raw_super->cp_payload) >
2748 				(blocks_per_seg - F2FS_CP_PACKS)) {
2749 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2750 			  le32_to_cpu(raw_super->cp_payload),
2751 			  blocks_per_seg - F2FS_CP_PACKS);
2752 		return -EFSCORRUPTED;
2753 	}
2754 
2755 	/* check reserved ino info */
2756 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2757 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2758 		le32_to_cpu(raw_super->root_ino) != 3) {
2759 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2760 			  le32_to_cpu(raw_super->node_ino),
2761 			  le32_to_cpu(raw_super->meta_ino),
2762 			  le32_to_cpu(raw_super->root_ino));
2763 		return -EFSCORRUPTED;
2764 	}
2765 
2766 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2767 	if (sanity_check_area_boundary(sbi, bh))
2768 		return -EFSCORRUPTED;
2769 
2770 	return 0;
2771 }
2772 
2773 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2774 {
2775 	unsigned int total, fsmeta;
2776 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2777 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2778 	unsigned int ovp_segments, reserved_segments;
2779 	unsigned int main_segs, blocks_per_seg;
2780 	unsigned int sit_segs, nat_segs;
2781 	unsigned int sit_bitmap_size, nat_bitmap_size;
2782 	unsigned int log_blocks_per_seg;
2783 	unsigned int segment_count_main;
2784 	unsigned int cp_pack_start_sum, cp_payload;
2785 	block_t user_block_count, valid_user_blocks;
2786 	block_t avail_node_count, valid_node_count;
2787 	int i, j;
2788 
2789 	total = le32_to_cpu(raw_super->segment_count);
2790 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2791 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2792 	fsmeta += sit_segs;
2793 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2794 	fsmeta += nat_segs;
2795 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2796 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2797 
2798 	if (unlikely(fsmeta >= total))
2799 		return 1;
2800 
2801 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2802 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2803 
2804 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2805 			ovp_segments == 0 || reserved_segments == 0)) {
2806 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2807 		return 1;
2808 	}
2809 
2810 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2811 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2812 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2813 	if (!user_block_count || user_block_count >=
2814 			segment_count_main << log_blocks_per_seg) {
2815 		f2fs_err(sbi, "Wrong user_block_count: %u",
2816 			 user_block_count);
2817 		return 1;
2818 	}
2819 
2820 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2821 	if (valid_user_blocks > user_block_count) {
2822 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2823 			 valid_user_blocks, user_block_count);
2824 		return 1;
2825 	}
2826 
2827 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2828 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2829 	if (valid_node_count > avail_node_count) {
2830 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2831 			 valid_node_count, avail_node_count);
2832 		return 1;
2833 	}
2834 
2835 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2836 	blocks_per_seg = sbi->blocks_per_seg;
2837 
2838 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2839 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2840 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2841 			return 1;
2842 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2843 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2844 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2845 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2846 					 i, j,
2847 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2848 				return 1;
2849 			}
2850 		}
2851 	}
2852 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2853 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2854 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2855 			return 1;
2856 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2857 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2858 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2859 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2860 					 i, j,
2861 					 le32_to_cpu(ckpt->cur_data_segno[i]));
2862 				return 1;
2863 			}
2864 		}
2865 	}
2866 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2867 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2868 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2869 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2870 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
2871 					 i, j,
2872 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2873 				return 1;
2874 			}
2875 		}
2876 	}
2877 
2878 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2879 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2880 
2881 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2882 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2883 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2884 			 sit_bitmap_size, nat_bitmap_size);
2885 		return 1;
2886 	}
2887 
2888 	cp_pack_start_sum = __start_sum_addr(sbi);
2889 	cp_payload = __cp_payload(sbi);
2890 	if (cp_pack_start_sum < cp_payload + 1 ||
2891 		cp_pack_start_sum > blocks_per_seg - 1 -
2892 			NR_CURSEG_TYPE) {
2893 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
2894 			 cp_pack_start_sum);
2895 		return 1;
2896 	}
2897 
2898 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
2899 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
2900 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
2901 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
2902 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
2903 			  le32_to_cpu(ckpt->checksum_offset));
2904 		return 1;
2905 	}
2906 
2907 	if (unlikely(f2fs_cp_error(sbi))) {
2908 		f2fs_err(sbi, "A bug case: need to run fsck");
2909 		return 1;
2910 	}
2911 	return 0;
2912 }
2913 
2914 static void init_sb_info(struct f2fs_sb_info *sbi)
2915 {
2916 	struct f2fs_super_block *raw_super = sbi->raw_super;
2917 	int i;
2918 
2919 	sbi->log_sectors_per_block =
2920 		le32_to_cpu(raw_super->log_sectors_per_block);
2921 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2922 	sbi->blocksize = 1 << sbi->log_blocksize;
2923 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2924 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2925 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2926 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2927 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2928 	sbi->total_node_count =
2929 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2930 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2931 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2932 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2933 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2934 	sbi->cur_victim_sec = NULL_SECNO;
2935 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2936 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2937 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2938 	sbi->migration_granularity = sbi->segs_per_sec;
2939 
2940 	sbi->dir_level = DEF_DIR_LEVEL;
2941 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2942 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2943 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2944 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2945 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2946 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2947 				DEF_UMOUNT_DISCARD_TIMEOUT;
2948 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2949 
2950 	for (i = 0; i < NR_COUNT_TYPE; i++)
2951 		atomic_set(&sbi->nr_pages[i], 0);
2952 
2953 	for (i = 0; i < META; i++)
2954 		atomic_set(&sbi->wb_sync_req[i], 0);
2955 
2956 	INIT_LIST_HEAD(&sbi->s_list);
2957 	mutex_init(&sbi->umount_mutex);
2958 	init_rwsem(&sbi->io_order_lock);
2959 	spin_lock_init(&sbi->cp_lock);
2960 
2961 	sbi->dirty_device = 0;
2962 	spin_lock_init(&sbi->dev_lock);
2963 
2964 	init_rwsem(&sbi->sb_lock);
2965 	init_rwsem(&sbi->pin_sem);
2966 }
2967 
2968 static int init_percpu_info(struct f2fs_sb_info *sbi)
2969 {
2970 	int err;
2971 
2972 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2973 	if (err)
2974 		return err;
2975 
2976 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2977 								GFP_KERNEL);
2978 	if (err)
2979 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
2980 
2981 	return err;
2982 }
2983 
2984 #ifdef CONFIG_BLK_DEV_ZONED
2985 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
2986 			       void *data)
2987 {
2988 	struct f2fs_dev_info *dev = data;
2989 
2990 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
2991 		set_bit(idx, dev->blkz_seq);
2992 	return 0;
2993 }
2994 
2995 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2996 {
2997 	struct block_device *bdev = FDEV(devi).bdev;
2998 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2999 	int ret;
3000 
3001 	if (!f2fs_sb_has_blkzoned(sbi))
3002 		return 0;
3003 
3004 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3005 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3006 		return -EINVAL;
3007 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3008 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3009 				__ilog2_u32(sbi->blocks_per_blkz))
3010 		return -EINVAL;
3011 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3012 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3013 					sbi->log_blocks_per_blkz;
3014 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3015 		FDEV(devi).nr_blkz++;
3016 
3017 	FDEV(devi).blkz_seq = f2fs_kzalloc(sbi,
3018 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3019 					* sizeof(unsigned long),
3020 					GFP_KERNEL);
3021 	if (!FDEV(devi).blkz_seq)
3022 		return -ENOMEM;
3023 
3024 	/* Get block zones type */
3025 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3026 				  &FDEV(devi));
3027 	if (ret < 0)
3028 		return ret;
3029 
3030 	return 0;
3031 }
3032 #endif
3033 
3034 /*
3035  * Read f2fs raw super block.
3036  * Because we have two copies of super block, so read both of them
3037  * to get the first valid one. If any one of them is broken, we pass
3038  * them recovery flag back to the caller.
3039  */
3040 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3041 			struct f2fs_super_block **raw_super,
3042 			int *valid_super_block, int *recovery)
3043 {
3044 	struct super_block *sb = sbi->sb;
3045 	int block;
3046 	struct buffer_head *bh;
3047 	struct f2fs_super_block *super;
3048 	int err = 0;
3049 
3050 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3051 	if (!super)
3052 		return -ENOMEM;
3053 
3054 	for (block = 0; block < 2; block++) {
3055 		bh = sb_bread(sb, block);
3056 		if (!bh) {
3057 			f2fs_err(sbi, "Unable to read %dth superblock",
3058 				 block + 1);
3059 			err = -EIO;
3060 			*recovery = 1;
3061 			continue;
3062 		}
3063 
3064 		/* sanity checking of raw super */
3065 		err = sanity_check_raw_super(sbi, bh);
3066 		if (err) {
3067 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3068 				 block + 1);
3069 			brelse(bh);
3070 			*recovery = 1;
3071 			continue;
3072 		}
3073 
3074 		if (!*raw_super) {
3075 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3076 							sizeof(*super));
3077 			*valid_super_block = block;
3078 			*raw_super = super;
3079 		}
3080 		brelse(bh);
3081 	}
3082 
3083 	/* No valid superblock */
3084 	if (!*raw_super)
3085 		kvfree(super);
3086 	else
3087 		err = 0;
3088 
3089 	return err;
3090 }
3091 
3092 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3093 {
3094 	struct buffer_head *bh;
3095 	__u32 crc = 0;
3096 	int err;
3097 
3098 	if ((recover && f2fs_readonly(sbi->sb)) ||
3099 				bdev_read_only(sbi->sb->s_bdev)) {
3100 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3101 		return -EROFS;
3102 	}
3103 
3104 	/* we should update superblock crc here */
3105 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3106 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3107 				offsetof(struct f2fs_super_block, crc));
3108 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3109 	}
3110 
3111 	/* write back-up superblock first */
3112 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3113 	if (!bh)
3114 		return -EIO;
3115 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3116 	brelse(bh);
3117 
3118 	/* if we are in recovery path, skip writing valid superblock */
3119 	if (recover || err)
3120 		return err;
3121 
3122 	/* write current valid superblock */
3123 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3124 	if (!bh)
3125 		return -EIO;
3126 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3127 	brelse(bh);
3128 	return err;
3129 }
3130 
3131 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3132 {
3133 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3134 	unsigned int max_devices = MAX_DEVICES;
3135 	int i;
3136 
3137 	/* Initialize single device information */
3138 	if (!RDEV(0).path[0]) {
3139 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3140 			return 0;
3141 		max_devices = 1;
3142 	}
3143 
3144 	/*
3145 	 * Initialize multiple devices information, or single
3146 	 * zoned block device information.
3147 	 */
3148 	sbi->devs = f2fs_kzalloc(sbi,
3149 				 array_size(max_devices,
3150 					    sizeof(struct f2fs_dev_info)),
3151 				 GFP_KERNEL);
3152 	if (!sbi->devs)
3153 		return -ENOMEM;
3154 
3155 	for (i = 0; i < max_devices; i++) {
3156 
3157 		if (i > 0 && !RDEV(i).path[0])
3158 			break;
3159 
3160 		if (max_devices == 1) {
3161 			/* Single zoned block device mount */
3162 			FDEV(0).bdev =
3163 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3164 					sbi->sb->s_mode, sbi->sb->s_type);
3165 		} else {
3166 			/* Multi-device mount */
3167 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3168 			FDEV(i).total_segments =
3169 				le32_to_cpu(RDEV(i).total_segments);
3170 			if (i == 0) {
3171 				FDEV(i).start_blk = 0;
3172 				FDEV(i).end_blk = FDEV(i).start_blk +
3173 				    (FDEV(i).total_segments <<
3174 				    sbi->log_blocks_per_seg) - 1 +
3175 				    le32_to_cpu(raw_super->segment0_blkaddr);
3176 			} else {
3177 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3178 				FDEV(i).end_blk = FDEV(i).start_blk +
3179 					(FDEV(i).total_segments <<
3180 					sbi->log_blocks_per_seg) - 1;
3181 			}
3182 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3183 					sbi->sb->s_mode, sbi->sb->s_type);
3184 		}
3185 		if (IS_ERR(FDEV(i).bdev))
3186 			return PTR_ERR(FDEV(i).bdev);
3187 
3188 		/* to release errored devices */
3189 		sbi->s_ndevs = i + 1;
3190 
3191 #ifdef CONFIG_BLK_DEV_ZONED
3192 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3193 				!f2fs_sb_has_blkzoned(sbi)) {
3194 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3195 			return -EINVAL;
3196 		}
3197 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3198 			if (init_blkz_info(sbi, i)) {
3199 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3200 				return -EINVAL;
3201 			}
3202 			if (max_devices == 1)
3203 				break;
3204 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3205 				  i, FDEV(i).path,
3206 				  FDEV(i).total_segments,
3207 				  FDEV(i).start_blk, FDEV(i).end_blk,
3208 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3209 				  "Host-aware" : "Host-managed");
3210 			continue;
3211 		}
3212 #endif
3213 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3214 			  i, FDEV(i).path,
3215 			  FDEV(i).total_segments,
3216 			  FDEV(i).start_blk, FDEV(i).end_blk);
3217 	}
3218 	f2fs_info(sbi,
3219 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3220 	return 0;
3221 }
3222 
3223 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3224 {
3225 #ifdef CONFIG_UNICODE
3226 	if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) {
3227 		const struct f2fs_sb_encodings *encoding_info;
3228 		struct unicode_map *encoding;
3229 		__u16 encoding_flags;
3230 
3231 		if (f2fs_sb_has_encrypt(sbi)) {
3232 			f2fs_err(sbi,
3233 				"Can't mount with encoding and encryption");
3234 			return -EINVAL;
3235 		}
3236 
3237 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3238 					  &encoding_flags)) {
3239 			f2fs_err(sbi,
3240 				 "Encoding requested by superblock is unknown");
3241 			return -EINVAL;
3242 		}
3243 
3244 		encoding = utf8_load(encoding_info->version);
3245 		if (IS_ERR(encoding)) {
3246 			f2fs_err(sbi,
3247 				 "can't mount with superblock charset: %s-%s "
3248 				 "not supported by the kernel. flags: 0x%x.",
3249 				 encoding_info->name, encoding_info->version,
3250 				 encoding_flags);
3251 			return PTR_ERR(encoding);
3252 		}
3253 		f2fs_info(sbi, "Using encoding defined by superblock: "
3254 			 "%s-%s with flags 0x%hx", encoding_info->name,
3255 			 encoding_info->version?:"\b", encoding_flags);
3256 
3257 		sbi->s_encoding = encoding;
3258 		sbi->s_encoding_flags = encoding_flags;
3259 		sbi->sb->s_d_op = &f2fs_dentry_ops;
3260 	}
3261 #else
3262 	if (f2fs_sb_has_casefold(sbi)) {
3263 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3264 		return -EINVAL;
3265 	}
3266 #endif
3267 	return 0;
3268 }
3269 
3270 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3271 {
3272 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3273 
3274 	/* adjust parameters according to the volume size */
3275 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3276 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3277 		sm_i->dcc_info->discard_granularity = 1;
3278 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3279 	}
3280 
3281 	sbi->readdir_ra = 1;
3282 }
3283 
3284 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3285 {
3286 	struct f2fs_sb_info *sbi;
3287 	struct f2fs_super_block *raw_super;
3288 	struct inode *root;
3289 	int err;
3290 	bool skip_recovery = false, need_fsck = false;
3291 	char *options = NULL;
3292 	int recovery, i, valid_super_block;
3293 	struct curseg_info *seg_i;
3294 	int retry_cnt = 1;
3295 
3296 try_onemore:
3297 	err = -EINVAL;
3298 	raw_super = NULL;
3299 	valid_super_block = -1;
3300 	recovery = 0;
3301 
3302 	/* allocate memory for f2fs-specific super block info */
3303 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3304 	if (!sbi)
3305 		return -ENOMEM;
3306 
3307 	sbi->sb = sb;
3308 
3309 	/* Load the checksum driver */
3310 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3311 	if (IS_ERR(sbi->s_chksum_driver)) {
3312 		f2fs_err(sbi, "Cannot load crc32 driver.");
3313 		err = PTR_ERR(sbi->s_chksum_driver);
3314 		sbi->s_chksum_driver = NULL;
3315 		goto free_sbi;
3316 	}
3317 
3318 	/* set a block size */
3319 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3320 		f2fs_err(sbi, "unable to set blocksize");
3321 		goto free_sbi;
3322 	}
3323 
3324 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3325 								&recovery);
3326 	if (err)
3327 		goto free_sbi;
3328 
3329 	sb->s_fs_info = sbi;
3330 	sbi->raw_super = raw_super;
3331 
3332 	/* precompute checksum seed for metadata */
3333 	if (f2fs_sb_has_inode_chksum(sbi))
3334 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3335 						sizeof(raw_super->uuid));
3336 
3337 	/*
3338 	 * The BLKZONED feature indicates that the drive was formatted with
3339 	 * zone alignment optimization. This is optional for host-aware
3340 	 * devices, but mandatory for host-managed zoned block devices.
3341 	 */
3342 #ifndef CONFIG_BLK_DEV_ZONED
3343 	if (f2fs_sb_has_blkzoned(sbi)) {
3344 		f2fs_err(sbi, "Zoned block device support is not enabled");
3345 		err = -EOPNOTSUPP;
3346 		goto free_sb_buf;
3347 	}
3348 #endif
3349 	default_options(sbi);
3350 	/* parse mount options */
3351 	options = kstrdup((const char *)data, GFP_KERNEL);
3352 	if (data && !options) {
3353 		err = -ENOMEM;
3354 		goto free_sb_buf;
3355 	}
3356 
3357 	err = parse_options(sb, options);
3358 	if (err)
3359 		goto free_options;
3360 
3361 	sbi->max_file_blocks = max_file_blocks();
3362 	sb->s_maxbytes = sbi->max_file_blocks <<
3363 				le32_to_cpu(raw_super->log_blocksize);
3364 	sb->s_max_links = F2FS_LINK_MAX;
3365 
3366 	err = f2fs_setup_casefold(sbi);
3367 	if (err)
3368 		goto free_options;
3369 
3370 #ifdef CONFIG_QUOTA
3371 	sb->dq_op = &f2fs_quota_operations;
3372 	sb->s_qcop = &f2fs_quotactl_ops;
3373 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3374 
3375 	if (f2fs_sb_has_quota_ino(sbi)) {
3376 		for (i = 0; i < MAXQUOTAS; i++) {
3377 			if (f2fs_qf_ino(sbi->sb, i))
3378 				sbi->nquota_files++;
3379 		}
3380 	}
3381 #endif
3382 
3383 	sb->s_op = &f2fs_sops;
3384 #ifdef CONFIG_FS_ENCRYPTION
3385 	sb->s_cop = &f2fs_cryptops;
3386 #endif
3387 #ifdef CONFIG_FS_VERITY
3388 	sb->s_vop = &f2fs_verityops;
3389 #endif
3390 	sb->s_xattr = f2fs_xattr_handlers;
3391 	sb->s_export_op = &f2fs_export_ops;
3392 	sb->s_magic = F2FS_SUPER_MAGIC;
3393 	sb->s_time_gran = 1;
3394 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3395 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3396 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3397 	sb->s_iflags |= SB_I_CGROUPWB;
3398 
3399 	/* init f2fs-specific super block info */
3400 	sbi->valid_super_block = valid_super_block;
3401 	init_rwsem(&sbi->gc_lock);
3402 	mutex_init(&sbi->writepages);
3403 	mutex_init(&sbi->cp_mutex);
3404 	mutex_init(&sbi->resize_mutex);
3405 	init_rwsem(&sbi->node_write);
3406 	init_rwsem(&sbi->node_change);
3407 
3408 	/* disallow all the data/node/meta page writes */
3409 	set_sbi_flag(sbi, SBI_POR_DOING);
3410 	spin_lock_init(&sbi->stat_lock);
3411 
3412 	/* init iostat info */
3413 	spin_lock_init(&sbi->iostat_lock);
3414 	sbi->iostat_enable = false;
3415 
3416 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3417 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3418 		int j;
3419 
3420 		sbi->write_io[i] =
3421 			f2fs_kmalloc(sbi,
3422 				     array_size(n,
3423 						sizeof(struct f2fs_bio_info)),
3424 				     GFP_KERNEL);
3425 		if (!sbi->write_io[i]) {
3426 			err = -ENOMEM;
3427 			goto free_bio_info;
3428 		}
3429 
3430 		for (j = HOT; j < n; j++) {
3431 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3432 			sbi->write_io[i][j].sbi = sbi;
3433 			sbi->write_io[i][j].bio = NULL;
3434 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3435 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3436 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3437 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3438 		}
3439 	}
3440 
3441 	init_rwsem(&sbi->cp_rwsem);
3442 	init_rwsem(&sbi->quota_sem);
3443 	init_waitqueue_head(&sbi->cp_wait);
3444 	init_sb_info(sbi);
3445 
3446 	err = init_percpu_info(sbi);
3447 	if (err)
3448 		goto free_bio_info;
3449 
3450 	if (F2FS_IO_ALIGNED(sbi)) {
3451 		sbi->write_io_dummy =
3452 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3453 		if (!sbi->write_io_dummy) {
3454 			err = -ENOMEM;
3455 			goto free_percpu;
3456 		}
3457 	}
3458 
3459 	/* get an inode for meta space */
3460 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3461 	if (IS_ERR(sbi->meta_inode)) {
3462 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3463 		err = PTR_ERR(sbi->meta_inode);
3464 		goto free_io_dummy;
3465 	}
3466 
3467 	err = f2fs_get_valid_checkpoint(sbi);
3468 	if (err) {
3469 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3470 		goto free_meta_inode;
3471 	}
3472 
3473 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3474 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3475 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3476 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3477 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3478 	}
3479 
3480 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3481 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3482 
3483 	/* Initialize device list */
3484 	err = f2fs_scan_devices(sbi);
3485 	if (err) {
3486 		f2fs_err(sbi, "Failed to find devices");
3487 		goto free_devices;
3488 	}
3489 
3490 	err = f2fs_init_post_read_wq(sbi);
3491 	if (err) {
3492 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3493 		goto free_devices;
3494 	}
3495 
3496 	sbi->total_valid_node_count =
3497 				le32_to_cpu(sbi->ckpt->valid_node_count);
3498 	percpu_counter_set(&sbi->total_valid_inode_count,
3499 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3500 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3501 	sbi->total_valid_block_count =
3502 				le64_to_cpu(sbi->ckpt->valid_block_count);
3503 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3504 	sbi->reserved_blocks = 0;
3505 	sbi->current_reserved_blocks = 0;
3506 	limit_reserve_root(sbi);
3507 
3508 	for (i = 0; i < NR_INODE_TYPE; i++) {
3509 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3510 		spin_lock_init(&sbi->inode_lock[i]);
3511 	}
3512 	mutex_init(&sbi->flush_lock);
3513 
3514 	f2fs_init_extent_cache_info(sbi);
3515 
3516 	f2fs_init_ino_entry_info(sbi);
3517 
3518 	f2fs_init_fsync_node_info(sbi);
3519 
3520 	/* setup f2fs internal modules */
3521 	err = f2fs_build_segment_manager(sbi);
3522 	if (err) {
3523 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3524 			 err);
3525 		goto free_sm;
3526 	}
3527 	err = f2fs_build_node_manager(sbi);
3528 	if (err) {
3529 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3530 			 err);
3531 		goto free_nm;
3532 	}
3533 
3534 	/* For write statistics */
3535 	if (sb->s_bdev->bd_part)
3536 		sbi->sectors_written_start =
3537 			(u64)part_stat_read(sb->s_bdev->bd_part,
3538 					    sectors[STAT_WRITE]);
3539 
3540 	/* Read accumulated write IO statistics if exists */
3541 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3542 	if (__exist_node_summaries(sbi))
3543 		sbi->kbytes_written =
3544 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3545 
3546 	f2fs_build_gc_manager(sbi);
3547 
3548 	err = f2fs_build_stats(sbi);
3549 	if (err)
3550 		goto free_nm;
3551 
3552 	/* get an inode for node space */
3553 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3554 	if (IS_ERR(sbi->node_inode)) {
3555 		f2fs_err(sbi, "Failed to read node inode");
3556 		err = PTR_ERR(sbi->node_inode);
3557 		goto free_stats;
3558 	}
3559 
3560 	/* read root inode and dentry */
3561 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3562 	if (IS_ERR(root)) {
3563 		f2fs_err(sbi, "Failed to read root inode");
3564 		err = PTR_ERR(root);
3565 		goto free_node_inode;
3566 	}
3567 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3568 			!root->i_size || !root->i_nlink) {
3569 		iput(root);
3570 		err = -EINVAL;
3571 		goto free_node_inode;
3572 	}
3573 
3574 	sb->s_root = d_make_root(root); /* allocate root dentry */
3575 	if (!sb->s_root) {
3576 		err = -ENOMEM;
3577 		goto free_node_inode;
3578 	}
3579 
3580 	err = f2fs_register_sysfs(sbi);
3581 	if (err)
3582 		goto free_root_inode;
3583 
3584 #ifdef CONFIG_QUOTA
3585 	/* Enable quota usage during mount */
3586 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3587 		err = f2fs_enable_quotas(sb);
3588 		if (err)
3589 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3590 	}
3591 #endif
3592 	/* if there are nt orphan nodes free them */
3593 	err = f2fs_recover_orphan_inodes(sbi);
3594 	if (err)
3595 		goto free_meta;
3596 
3597 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3598 		goto reset_checkpoint;
3599 
3600 	/* recover fsynced data */
3601 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3602 		/*
3603 		 * mount should be failed, when device has readonly mode, and
3604 		 * previous checkpoint was not done by clean system shutdown.
3605 		 */
3606 		if (f2fs_hw_is_readonly(sbi)) {
3607 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3608 				err = -EROFS;
3609 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3610 				goto free_meta;
3611 			}
3612 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3613 			goto reset_checkpoint;
3614 		}
3615 
3616 		if (need_fsck)
3617 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3618 
3619 		if (skip_recovery)
3620 			goto reset_checkpoint;
3621 
3622 		err = f2fs_recover_fsync_data(sbi, false);
3623 		if (err < 0) {
3624 			if (err != -ENOMEM)
3625 				skip_recovery = true;
3626 			need_fsck = true;
3627 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3628 				 err);
3629 			goto free_meta;
3630 		}
3631 	} else {
3632 		err = f2fs_recover_fsync_data(sbi, true);
3633 
3634 		if (!f2fs_readonly(sb) && err > 0) {
3635 			err = -EINVAL;
3636 			f2fs_err(sbi, "Need to recover fsync data");
3637 			goto free_meta;
3638 		}
3639 	}
3640 
3641 	/*
3642 	 * If the f2fs is not readonly and fsync data recovery succeeds,
3643 	 * check zoned block devices' write pointer consistency.
3644 	 */
3645 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3646 		err = f2fs_check_write_pointer(sbi);
3647 		if (err)
3648 			goto free_meta;
3649 	}
3650 
3651 reset_checkpoint:
3652 	/* f2fs_recover_fsync_data() cleared this already */
3653 	clear_sbi_flag(sbi, SBI_POR_DOING);
3654 
3655 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3656 		err = f2fs_disable_checkpoint(sbi);
3657 		if (err)
3658 			goto sync_free_meta;
3659 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3660 		f2fs_enable_checkpoint(sbi);
3661 	}
3662 
3663 	/*
3664 	 * If filesystem is not mounted as read-only then
3665 	 * do start the gc_thread.
3666 	 */
3667 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3668 		/* After POR, we can run background GC thread.*/
3669 		err = f2fs_start_gc_thread(sbi);
3670 		if (err)
3671 			goto sync_free_meta;
3672 	}
3673 	kvfree(options);
3674 
3675 	/* recover broken superblock */
3676 	if (recovery) {
3677 		err = f2fs_commit_super(sbi, true);
3678 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3679 			  sbi->valid_super_block ? 1 : 2, err);
3680 	}
3681 
3682 	f2fs_join_shrinker(sbi);
3683 
3684 	f2fs_tuning_parameters(sbi);
3685 
3686 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3687 		    cur_cp_version(F2FS_CKPT(sbi)));
3688 	f2fs_update_time(sbi, CP_TIME);
3689 	f2fs_update_time(sbi, REQ_TIME);
3690 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3691 	return 0;
3692 
3693 sync_free_meta:
3694 	/* safe to flush all the data */
3695 	sync_filesystem(sbi->sb);
3696 	retry_cnt = 0;
3697 
3698 free_meta:
3699 #ifdef CONFIG_QUOTA
3700 	f2fs_truncate_quota_inode_pages(sb);
3701 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3702 		f2fs_quota_off_umount(sbi->sb);
3703 #endif
3704 	/*
3705 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3706 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3707 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3708 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3709 	 */
3710 	truncate_inode_pages_final(META_MAPPING(sbi));
3711 	/* evict some inodes being cached by GC */
3712 	evict_inodes(sb);
3713 	f2fs_unregister_sysfs(sbi);
3714 free_root_inode:
3715 	dput(sb->s_root);
3716 	sb->s_root = NULL;
3717 free_node_inode:
3718 	f2fs_release_ino_entry(sbi, true);
3719 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3720 	iput(sbi->node_inode);
3721 	sbi->node_inode = NULL;
3722 free_stats:
3723 	f2fs_destroy_stats(sbi);
3724 free_nm:
3725 	f2fs_destroy_node_manager(sbi);
3726 free_sm:
3727 	f2fs_destroy_segment_manager(sbi);
3728 	f2fs_destroy_post_read_wq(sbi);
3729 free_devices:
3730 	destroy_device_list(sbi);
3731 	kvfree(sbi->ckpt);
3732 free_meta_inode:
3733 	make_bad_inode(sbi->meta_inode);
3734 	iput(sbi->meta_inode);
3735 	sbi->meta_inode = NULL;
3736 free_io_dummy:
3737 	mempool_destroy(sbi->write_io_dummy);
3738 free_percpu:
3739 	destroy_percpu_info(sbi);
3740 free_bio_info:
3741 	for (i = 0; i < NR_PAGE_TYPE; i++)
3742 		kvfree(sbi->write_io[i]);
3743 
3744 #ifdef CONFIG_UNICODE
3745 	utf8_unload(sbi->s_encoding);
3746 #endif
3747 free_options:
3748 #ifdef CONFIG_QUOTA
3749 	for (i = 0; i < MAXQUOTAS; i++)
3750 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3751 #endif
3752 	kvfree(options);
3753 free_sb_buf:
3754 	kvfree(raw_super);
3755 free_sbi:
3756 	if (sbi->s_chksum_driver)
3757 		crypto_free_shash(sbi->s_chksum_driver);
3758 	kvfree(sbi);
3759 
3760 	/* give only one another chance */
3761 	if (retry_cnt > 0 && skip_recovery) {
3762 		retry_cnt--;
3763 		shrink_dcache_sb(sb);
3764 		goto try_onemore;
3765 	}
3766 	return err;
3767 }
3768 
3769 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3770 			const char *dev_name, void *data)
3771 {
3772 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3773 }
3774 
3775 static void kill_f2fs_super(struct super_block *sb)
3776 {
3777 	if (sb->s_root) {
3778 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3779 
3780 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3781 		f2fs_stop_gc_thread(sbi);
3782 		f2fs_stop_discard_thread(sbi);
3783 
3784 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3785 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3786 			struct cp_control cpc = {
3787 				.reason = CP_UMOUNT,
3788 			};
3789 			f2fs_write_checkpoint(sbi, &cpc);
3790 		}
3791 
3792 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3793 			sb->s_flags &= ~SB_RDONLY;
3794 	}
3795 	kill_block_super(sb);
3796 }
3797 
3798 static struct file_system_type f2fs_fs_type = {
3799 	.owner		= THIS_MODULE,
3800 	.name		= "f2fs",
3801 	.mount		= f2fs_mount,
3802 	.kill_sb	= kill_f2fs_super,
3803 	.fs_flags	= FS_REQUIRES_DEV,
3804 };
3805 MODULE_ALIAS_FS("f2fs");
3806 
3807 static int __init init_inodecache(void)
3808 {
3809 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3810 			sizeof(struct f2fs_inode_info), 0,
3811 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3812 	if (!f2fs_inode_cachep)
3813 		return -ENOMEM;
3814 	return 0;
3815 }
3816 
3817 static void destroy_inodecache(void)
3818 {
3819 	/*
3820 	 * Make sure all delayed rcu free inodes are flushed before we
3821 	 * destroy cache.
3822 	 */
3823 	rcu_barrier();
3824 	kmem_cache_destroy(f2fs_inode_cachep);
3825 }
3826 
3827 static int __init init_f2fs_fs(void)
3828 {
3829 	int err;
3830 
3831 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3832 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3833 				PAGE_SIZE, F2FS_BLKSIZE);
3834 		return -EINVAL;
3835 	}
3836 
3837 	f2fs_build_trace_ios();
3838 
3839 	err = init_inodecache();
3840 	if (err)
3841 		goto fail;
3842 	err = f2fs_create_node_manager_caches();
3843 	if (err)
3844 		goto free_inodecache;
3845 	err = f2fs_create_segment_manager_caches();
3846 	if (err)
3847 		goto free_node_manager_caches;
3848 	err = f2fs_create_checkpoint_caches();
3849 	if (err)
3850 		goto free_segment_manager_caches;
3851 	err = f2fs_create_extent_cache();
3852 	if (err)
3853 		goto free_checkpoint_caches;
3854 	err = f2fs_init_sysfs();
3855 	if (err)
3856 		goto free_extent_cache;
3857 	err = register_shrinker(&f2fs_shrinker_info);
3858 	if (err)
3859 		goto free_sysfs;
3860 	err = register_filesystem(&f2fs_fs_type);
3861 	if (err)
3862 		goto free_shrinker;
3863 	f2fs_create_root_stats();
3864 	err = f2fs_init_post_read_processing();
3865 	if (err)
3866 		goto free_root_stats;
3867 	err = f2fs_init_bio_entry_cache();
3868 	if (err)
3869 		goto free_post_read;
3870 	err = f2fs_init_bioset();
3871 	if (err)
3872 		goto free_bio_enrty_cache;
3873 	return 0;
3874 free_bio_enrty_cache:
3875 	f2fs_destroy_bio_entry_cache();
3876 free_post_read:
3877 	f2fs_destroy_post_read_processing();
3878 free_root_stats:
3879 	f2fs_destroy_root_stats();
3880 	unregister_filesystem(&f2fs_fs_type);
3881 free_shrinker:
3882 	unregister_shrinker(&f2fs_shrinker_info);
3883 free_sysfs:
3884 	f2fs_exit_sysfs();
3885 free_extent_cache:
3886 	f2fs_destroy_extent_cache();
3887 free_checkpoint_caches:
3888 	f2fs_destroy_checkpoint_caches();
3889 free_segment_manager_caches:
3890 	f2fs_destroy_segment_manager_caches();
3891 free_node_manager_caches:
3892 	f2fs_destroy_node_manager_caches();
3893 free_inodecache:
3894 	destroy_inodecache();
3895 fail:
3896 	return err;
3897 }
3898 
3899 static void __exit exit_f2fs_fs(void)
3900 {
3901 	f2fs_destroy_bioset();
3902 	f2fs_destroy_bio_entry_cache();
3903 	f2fs_destroy_post_read_processing();
3904 	f2fs_destroy_root_stats();
3905 	unregister_filesystem(&f2fs_fs_type);
3906 	unregister_shrinker(&f2fs_shrinker_info);
3907 	f2fs_exit_sysfs();
3908 	f2fs_destroy_extent_cache();
3909 	f2fs_destroy_checkpoint_caches();
3910 	f2fs_destroy_segment_manager_caches();
3911 	f2fs_destroy_node_manager_caches();
3912 	destroy_inodecache();
3913 	f2fs_destroy_trace_ios();
3914 }
3915 
3916 module_init(init_f2fs_fs)
3917 module_exit(exit_f2fs_fs)
3918 
3919 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3920 MODULE_DESCRIPTION("Flash Friendly File System");
3921 MODULE_LICENSE("GPL");
3922 
3923