1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/buffer_head.h> 15 #include <linux/kthread.h> 16 #include <linux/parser.h> 17 #include <linux/mount.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/random.h> 21 #include <linux/exportfs.h> 22 #include <linux/blkdev.h> 23 #include <linux/quotaops.h> 24 #include <linux/f2fs_fs.h> 25 #include <linux/sysfs.h> 26 #include <linux/quota.h> 27 #include <linux/unicode.h> 28 #include <linux/part_stat.h> 29 #include <linux/zstd.h> 30 #include <linux/lz4.h> 31 32 #include "f2fs.h" 33 #include "node.h" 34 #include "segment.h" 35 #include "xattr.h" 36 #include "gc.h" 37 #include "iostat.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/f2fs.h> 41 42 static struct kmem_cache *f2fs_inode_cachep; 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 46 const char *f2fs_fault_name[FAULT_MAX] = { 47 [FAULT_KMALLOC] = "kmalloc", 48 [FAULT_KVMALLOC] = "kvmalloc", 49 [FAULT_PAGE_ALLOC] = "page alloc", 50 [FAULT_PAGE_GET] = "page get", 51 [FAULT_ALLOC_NID] = "alloc nid", 52 [FAULT_ORPHAN] = "orphan", 53 [FAULT_BLOCK] = "no more block", 54 [FAULT_DIR_DEPTH] = "too big dir depth", 55 [FAULT_EVICT_INODE] = "evict_inode fail", 56 [FAULT_TRUNCATE] = "truncate fail", 57 [FAULT_READ_IO] = "read IO error", 58 [FAULT_CHECKPOINT] = "checkpoint error", 59 [FAULT_DISCARD] = "discard error", 60 [FAULT_WRITE_IO] = "write IO error", 61 [FAULT_SLAB_ALLOC] = "slab alloc", 62 [FAULT_DQUOT_INIT] = "dquot initialize", 63 [FAULT_LOCK_OP] = "lock_op", 64 [FAULT_BLKADDR] = "invalid blkaddr", 65 }; 66 67 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 68 unsigned int type) 69 { 70 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 71 72 if (rate) { 73 atomic_set(&ffi->inject_ops, 0); 74 ffi->inject_rate = rate; 75 } 76 77 if (type) 78 ffi->inject_type = type; 79 80 if (!rate && !type) 81 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 82 } 83 #endif 84 85 /* f2fs-wide shrinker description */ 86 static struct shrinker f2fs_shrinker_info = { 87 .scan_objects = f2fs_shrink_scan, 88 .count_objects = f2fs_shrink_count, 89 .seeks = DEFAULT_SEEKS, 90 }; 91 92 enum { 93 Opt_gc_background, 94 Opt_disable_roll_forward, 95 Opt_norecovery, 96 Opt_discard, 97 Opt_nodiscard, 98 Opt_noheap, 99 Opt_heap, 100 Opt_user_xattr, 101 Opt_nouser_xattr, 102 Opt_acl, 103 Opt_noacl, 104 Opt_active_logs, 105 Opt_disable_ext_identify, 106 Opt_inline_xattr, 107 Opt_noinline_xattr, 108 Opt_inline_xattr_size, 109 Opt_inline_data, 110 Opt_inline_dentry, 111 Opt_noinline_dentry, 112 Opt_flush_merge, 113 Opt_noflush_merge, 114 Opt_barrier, 115 Opt_nobarrier, 116 Opt_fastboot, 117 Opt_extent_cache, 118 Opt_noextent_cache, 119 Opt_noinline_data, 120 Opt_data_flush, 121 Opt_reserve_root, 122 Opt_resgid, 123 Opt_resuid, 124 Opt_mode, 125 Opt_io_size_bits, 126 Opt_fault_injection, 127 Opt_fault_type, 128 Opt_lazytime, 129 Opt_nolazytime, 130 Opt_quota, 131 Opt_noquota, 132 Opt_usrquota, 133 Opt_grpquota, 134 Opt_prjquota, 135 Opt_usrjquota, 136 Opt_grpjquota, 137 Opt_prjjquota, 138 Opt_offusrjquota, 139 Opt_offgrpjquota, 140 Opt_offprjjquota, 141 Opt_jqfmt_vfsold, 142 Opt_jqfmt_vfsv0, 143 Opt_jqfmt_vfsv1, 144 Opt_alloc, 145 Opt_fsync, 146 Opt_test_dummy_encryption, 147 Opt_inlinecrypt, 148 Opt_checkpoint_disable, 149 Opt_checkpoint_disable_cap, 150 Opt_checkpoint_disable_cap_perc, 151 Opt_checkpoint_enable, 152 Opt_checkpoint_merge, 153 Opt_nocheckpoint_merge, 154 Opt_compress_algorithm, 155 Opt_compress_log_size, 156 Opt_compress_extension, 157 Opt_nocompress_extension, 158 Opt_compress_chksum, 159 Opt_compress_mode, 160 Opt_compress_cache, 161 Opt_atgc, 162 Opt_gc_merge, 163 Opt_nogc_merge, 164 Opt_discard_unit, 165 Opt_memory_mode, 166 Opt_age_extent_cache, 167 Opt_errors, 168 Opt_err, 169 }; 170 171 static match_table_t f2fs_tokens = { 172 {Opt_gc_background, "background_gc=%s"}, 173 {Opt_disable_roll_forward, "disable_roll_forward"}, 174 {Opt_norecovery, "norecovery"}, 175 {Opt_discard, "discard"}, 176 {Opt_nodiscard, "nodiscard"}, 177 {Opt_noheap, "no_heap"}, 178 {Opt_heap, "heap"}, 179 {Opt_user_xattr, "user_xattr"}, 180 {Opt_nouser_xattr, "nouser_xattr"}, 181 {Opt_acl, "acl"}, 182 {Opt_noacl, "noacl"}, 183 {Opt_active_logs, "active_logs=%u"}, 184 {Opt_disable_ext_identify, "disable_ext_identify"}, 185 {Opt_inline_xattr, "inline_xattr"}, 186 {Opt_noinline_xattr, "noinline_xattr"}, 187 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 188 {Opt_inline_data, "inline_data"}, 189 {Opt_inline_dentry, "inline_dentry"}, 190 {Opt_noinline_dentry, "noinline_dentry"}, 191 {Opt_flush_merge, "flush_merge"}, 192 {Opt_noflush_merge, "noflush_merge"}, 193 {Opt_barrier, "barrier"}, 194 {Opt_nobarrier, "nobarrier"}, 195 {Opt_fastboot, "fastboot"}, 196 {Opt_extent_cache, "extent_cache"}, 197 {Opt_noextent_cache, "noextent_cache"}, 198 {Opt_noinline_data, "noinline_data"}, 199 {Opt_data_flush, "data_flush"}, 200 {Opt_reserve_root, "reserve_root=%u"}, 201 {Opt_resgid, "resgid=%u"}, 202 {Opt_resuid, "resuid=%u"}, 203 {Opt_mode, "mode=%s"}, 204 {Opt_io_size_bits, "io_bits=%u"}, 205 {Opt_fault_injection, "fault_injection=%u"}, 206 {Opt_fault_type, "fault_type=%u"}, 207 {Opt_lazytime, "lazytime"}, 208 {Opt_nolazytime, "nolazytime"}, 209 {Opt_quota, "quota"}, 210 {Opt_noquota, "noquota"}, 211 {Opt_usrquota, "usrquota"}, 212 {Opt_grpquota, "grpquota"}, 213 {Opt_prjquota, "prjquota"}, 214 {Opt_usrjquota, "usrjquota=%s"}, 215 {Opt_grpjquota, "grpjquota=%s"}, 216 {Opt_prjjquota, "prjjquota=%s"}, 217 {Opt_offusrjquota, "usrjquota="}, 218 {Opt_offgrpjquota, "grpjquota="}, 219 {Opt_offprjjquota, "prjjquota="}, 220 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 221 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 222 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 223 {Opt_alloc, "alloc_mode=%s"}, 224 {Opt_fsync, "fsync_mode=%s"}, 225 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 226 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 227 {Opt_inlinecrypt, "inlinecrypt"}, 228 {Opt_checkpoint_disable, "checkpoint=disable"}, 229 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 230 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 231 {Opt_checkpoint_enable, "checkpoint=enable"}, 232 {Opt_checkpoint_merge, "checkpoint_merge"}, 233 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 234 {Opt_compress_algorithm, "compress_algorithm=%s"}, 235 {Opt_compress_log_size, "compress_log_size=%u"}, 236 {Opt_compress_extension, "compress_extension=%s"}, 237 {Opt_nocompress_extension, "nocompress_extension=%s"}, 238 {Opt_compress_chksum, "compress_chksum"}, 239 {Opt_compress_mode, "compress_mode=%s"}, 240 {Opt_compress_cache, "compress_cache"}, 241 {Opt_atgc, "atgc"}, 242 {Opt_gc_merge, "gc_merge"}, 243 {Opt_nogc_merge, "nogc_merge"}, 244 {Opt_discard_unit, "discard_unit=%s"}, 245 {Opt_memory_mode, "memory=%s"}, 246 {Opt_age_extent_cache, "age_extent_cache"}, 247 {Opt_errors, "errors=%s"}, 248 {Opt_err, NULL}, 249 }; 250 251 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 252 { 253 struct va_format vaf; 254 va_list args; 255 int level; 256 257 va_start(args, fmt); 258 259 level = printk_get_level(fmt); 260 vaf.fmt = printk_skip_level(fmt); 261 vaf.va = &args; 262 printk("%c%cF2FS-fs (%s): %pV\n", 263 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 264 265 va_end(args); 266 } 267 268 #if IS_ENABLED(CONFIG_UNICODE) 269 static const struct f2fs_sb_encodings { 270 __u16 magic; 271 char *name; 272 unsigned int version; 273 } f2fs_sb_encoding_map[] = { 274 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 275 }; 276 277 static const struct f2fs_sb_encodings * 278 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 279 { 280 __u16 magic = le16_to_cpu(sb->s_encoding); 281 int i; 282 283 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 284 if (magic == f2fs_sb_encoding_map[i].magic) 285 return &f2fs_sb_encoding_map[i]; 286 287 return NULL; 288 } 289 290 struct kmem_cache *f2fs_cf_name_slab; 291 static int __init f2fs_create_casefold_cache(void) 292 { 293 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 294 F2FS_NAME_LEN); 295 return f2fs_cf_name_slab ? 0 : -ENOMEM; 296 } 297 298 static void f2fs_destroy_casefold_cache(void) 299 { 300 kmem_cache_destroy(f2fs_cf_name_slab); 301 } 302 #else 303 static int __init f2fs_create_casefold_cache(void) { return 0; } 304 static void f2fs_destroy_casefold_cache(void) { } 305 #endif 306 307 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 308 { 309 block_t limit = min((sbi->user_block_count >> 3), 310 sbi->user_block_count - sbi->reserved_blocks); 311 312 /* limit is 12.5% */ 313 if (test_opt(sbi, RESERVE_ROOT) && 314 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 315 F2FS_OPTION(sbi).root_reserved_blocks = limit; 316 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 317 F2FS_OPTION(sbi).root_reserved_blocks); 318 } 319 if (!test_opt(sbi, RESERVE_ROOT) && 320 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 321 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 322 !gid_eq(F2FS_OPTION(sbi).s_resgid, 323 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 324 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 325 from_kuid_munged(&init_user_ns, 326 F2FS_OPTION(sbi).s_resuid), 327 from_kgid_munged(&init_user_ns, 328 F2FS_OPTION(sbi).s_resgid)); 329 } 330 331 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi) 332 { 333 unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec; 334 unsigned int avg_vblocks; 335 unsigned int wanted_reserved_segments; 336 block_t avail_user_block_count; 337 338 if (!F2FS_IO_ALIGNED(sbi)) 339 return 0; 340 341 /* average valid block count in section in worst case */ 342 avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi); 343 344 /* 345 * we need enough free space when migrating one section in worst case 346 */ 347 wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) * 348 reserved_segments(sbi); 349 wanted_reserved_segments -= reserved_segments(sbi); 350 351 avail_user_block_count = sbi->user_block_count - 352 sbi->current_reserved_blocks - 353 F2FS_OPTION(sbi).root_reserved_blocks; 354 355 if (wanted_reserved_segments * sbi->blocks_per_seg > 356 avail_user_block_count) { 357 f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u", 358 wanted_reserved_segments, 359 avail_user_block_count >> sbi->log_blocks_per_seg); 360 return -ENOSPC; 361 } 362 363 SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments; 364 365 f2fs_info(sbi, "IO align feature needs additional reserved segment: %u", 366 wanted_reserved_segments); 367 368 return 0; 369 } 370 371 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 372 { 373 if (!F2FS_OPTION(sbi).unusable_cap_perc) 374 return; 375 376 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 377 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 378 else 379 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 380 F2FS_OPTION(sbi).unusable_cap_perc; 381 382 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 383 F2FS_OPTION(sbi).unusable_cap, 384 F2FS_OPTION(sbi).unusable_cap_perc); 385 } 386 387 static void init_once(void *foo) 388 { 389 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 390 391 inode_init_once(&fi->vfs_inode); 392 } 393 394 #ifdef CONFIG_QUOTA 395 static const char * const quotatypes[] = INITQFNAMES; 396 #define QTYPE2NAME(t) (quotatypes[t]) 397 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 398 substring_t *args) 399 { 400 struct f2fs_sb_info *sbi = F2FS_SB(sb); 401 char *qname; 402 int ret = -EINVAL; 403 404 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 405 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 406 return -EINVAL; 407 } 408 if (f2fs_sb_has_quota_ino(sbi)) { 409 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 410 return 0; 411 } 412 413 qname = match_strdup(args); 414 if (!qname) { 415 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 416 return -ENOMEM; 417 } 418 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 419 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 420 ret = 0; 421 else 422 f2fs_err(sbi, "%s quota file already specified", 423 QTYPE2NAME(qtype)); 424 goto errout; 425 } 426 if (strchr(qname, '/')) { 427 f2fs_err(sbi, "quotafile must be on filesystem root"); 428 goto errout; 429 } 430 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 431 set_opt(sbi, QUOTA); 432 return 0; 433 errout: 434 kfree(qname); 435 return ret; 436 } 437 438 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 439 { 440 struct f2fs_sb_info *sbi = F2FS_SB(sb); 441 442 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 443 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 444 return -EINVAL; 445 } 446 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 447 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 448 return 0; 449 } 450 451 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 452 { 453 /* 454 * We do the test below only for project quotas. 'usrquota' and 455 * 'grpquota' mount options are allowed even without quota feature 456 * to support legacy quotas in quota files. 457 */ 458 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 459 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 460 return -1; 461 } 462 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 463 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 464 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 465 if (test_opt(sbi, USRQUOTA) && 466 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 467 clear_opt(sbi, USRQUOTA); 468 469 if (test_opt(sbi, GRPQUOTA) && 470 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 471 clear_opt(sbi, GRPQUOTA); 472 473 if (test_opt(sbi, PRJQUOTA) && 474 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 475 clear_opt(sbi, PRJQUOTA); 476 477 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 478 test_opt(sbi, PRJQUOTA)) { 479 f2fs_err(sbi, "old and new quota format mixing"); 480 return -1; 481 } 482 483 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 484 f2fs_err(sbi, "journaled quota format not specified"); 485 return -1; 486 } 487 } 488 489 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 490 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 491 F2FS_OPTION(sbi).s_jquota_fmt = 0; 492 } 493 return 0; 494 } 495 #endif 496 497 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 498 const char *opt, 499 const substring_t *arg, 500 bool is_remount) 501 { 502 struct f2fs_sb_info *sbi = F2FS_SB(sb); 503 struct fs_parameter param = { 504 .type = fs_value_is_string, 505 .string = arg->from ? arg->from : "", 506 }; 507 struct fscrypt_dummy_policy *policy = 508 &F2FS_OPTION(sbi).dummy_enc_policy; 509 int err; 510 511 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 512 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 513 return -EINVAL; 514 } 515 516 if (!f2fs_sb_has_encrypt(sbi)) { 517 f2fs_err(sbi, "Encrypt feature is off"); 518 return -EINVAL; 519 } 520 521 /* 522 * This mount option is just for testing, and it's not worthwhile to 523 * implement the extra complexity (e.g. RCU protection) that would be 524 * needed to allow it to be set or changed during remount. We do allow 525 * it to be specified during remount, but only if there is no change. 526 */ 527 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 528 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 529 return -EINVAL; 530 } 531 532 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 533 if (err) { 534 if (err == -EEXIST) 535 f2fs_warn(sbi, 536 "Can't change test_dummy_encryption on remount"); 537 else if (err == -EINVAL) 538 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 539 opt); 540 else 541 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 542 opt, err); 543 return -EINVAL; 544 } 545 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 546 return 0; 547 } 548 549 #ifdef CONFIG_F2FS_FS_COMPRESSION 550 /* 551 * 1. The same extension name cannot not appear in both compress and non-compress extension 552 * at the same time. 553 * 2. If the compress extension specifies all files, the types specified by the non-compress 554 * extension will be treated as special cases and will not be compressed. 555 * 3. Don't allow the non-compress extension specifies all files. 556 */ 557 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 558 { 559 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 560 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 561 int ext_cnt, noext_cnt, index = 0, no_index = 0; 562 563 ext = F2FS_OPTION(sbi).extensions; 564 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 565 noext = F2FS_OPTION(sbi).noextensions; 566 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 567 568 if (!noext_cnt) 569 return 0; 570 571 for (no_index = 0; no_index < noext_cnt; no_index++) { 572 if (!strcasecmp("*", noext[no_index])) { 573 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 574 return -EINVAL; 575 } 576 for (index = 0; index < ext_cnt; index++) { 577 if (!strcasecmp(ext[index], noext[no_index])) { 578 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 579 ext[index]); 580 return -EINVAL; 581 } 582 } 583 } 584 return 0; 585 } 586 587 #ifdef CONFIG_F2FS_FS_LZ4 588 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 589 { 590 #ifdef CONFIG_F2FS_FS_LZ4HC 591 unsigned int level; 592 593 if (strlen(str) == 3) { 594 F2FS_OPTION(sbi).compress_level = LZ4HC_DEFAULT_CLEVEL; 595 return 0; 596 } 597 598 str += 3; 599 600 if (str[0] != ':') { 601 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 602 return -EINVAL; 603 } 604 if (kstrtouint(str + 1, 10, &level)) 605 return -EINVAL; 606 607 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 608 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 609 return -EINVAL; 610 } 611 612 F2FS_OPTION(sbi).compress_level = level; 613 return 0; 614 #else 615 if (strlen(str) == 3) { 616 F2FS_OPTION(sbi).compress_level = 0; 617 return 0; 618 } 619 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 620 return -EINVAL; 621 #endif 622 } 623 #endif 624 625 #ifdef CONFIG_F2FS_FS_ZSTD 626 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 627 { 628 unsigned int level; 629 int len = 4; 630 631 if (strlen(str) == len) { 632 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 633 return 0; 634 } 635 636 str += len; 637 638 if (str[0] != ':') { 639 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 640 return -EINVAL; 641 } 642 if (kstrtouint(str + 1, 10, &level)) 643 return -EINVAL; 644 645 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 646 f2fs_info(sbi, "invalid zstd compress level: %d", level); 647 return -EINVAL; 648 } 649 650 F2FS_OPTION(sbi).compress_level = level; 651 return 0; 652 } 653 #endif 654 #endif 655 656 static int parse_options(struct super_block *sb, char *options, bool is_remount) 657 { 658 struct f2fs_sb_info *sbi = F2FS_SB(sb); 659 substring_t args[MAX_OPT_ARGS]; 660 #ifdef CONFIG_F2FS_FS_COMPRESSION 661 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 662 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 663 int ext_cnt, noext_cnt; 664 #endif 665 char *p, *name; 666 int arg = 0; 667 kuid_t uid; 668 kgid_t gid; 669 int ret; 670 671 if (!options) 672 goto default_check; 673 674 while ((p = strsep(&options, ",")) != NULL) { 675 int token; 676 677 if (!*p) 678 continue; 679 /* 680 * Initialize args struct so we know whether arg was 681 * found; some options take optional arguments. 682 */ 683 args[0].to = args[0].from = NULL; 684 token = match_token(p, f2fs_tokens, args); 685 686 switch (token) { 687 case Opt_gc_background: 688 name = match_strdup(&args[0]); 689 690 if (!name) 691 return -ENOMEM; 692 if (!strcmp(name, "on")) { 693 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 694 } else if (!strcmp(name, "off")) { 695 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 696 } else if (!strcmp(name, "sync")) { 697 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 698 } else { 699 kfree(name); 700 return -EINVAL; 701 } 702 kfree(name); 703 break; 704 case Opt_disable_roll_forward: 705 set_opt(sbi, DISABLE_ROLL_FORWARD); 706 break; 707 case Opt_norecovery: 708 /* this option mounts f2fs with ro */ 709 set_opt(sbi, NORECOVERY); 710 if (!f2fs_readonly(sb)) 711 return -EINVAL; 712 break; 713 case Opt_discard: 714 if (!f2fs_hw_support_discard(sbi)) { 715 f2fs_warn(sbi, "device does not support discard"); 716 break; 717 } 718 set_opt(sbi, DISCARD); 719 break; 720 case Opt_nodiscard: 721 if (f2fs_hw_should_discard(sbi)) { 722 f2fs_warn(sbi, "discard is required for zoned block devices"); 723 return -EINVAL; 724 } 725 clear_opt(sbi, DISCARD); 726 break; 727 case Opt_noheap: 728 set_opt(sbi, NOHEAP); 729 break; 730 case Opt_heap: 731 clear_opt(sbi, NOHEAP); 732 break; 733 #ifdef CONFIG_F2FS_FS_XATTR 734 case Opt_user_xattr: 735 set_opt(sbi, XATTR_USER); 736 break; 737 case Opt_nouser_xattr: 738 clear_opt(sbi, XATTR_USER); 739 break; 740 case Opt_inline_xattr: 741 set_opt(sbi, INLINE_XATTR); 742 break; 743 case Opt_noinline_xattr: 744 clear_opt(sbi, INLINE_XATTR); 745 break; 746 case Opt_inline_xattr_size: 747 if (args->from && match_int(args, &arg)) 748 return -EINVAL; 749 set_opt(sbi, INLINE_XATTR_SIZE); 750 F2FS_OPTION(sbi).inline_xattr_size = arg; 751 break; 752 #else 753 case Opt_user_xattr: 754 f2fs_info(sbi, "user_xattr options not supported"); 755 break; 756 case Opt_nouser_xattr: 757 f2fs_info(sbi, "nouser_xattr options not supported"); 758 break; 759 case Opt_inline_xattr: 760 f2fs_info(sbi, "inline_xattr options not supported"); 761 break; 762 case Opt_noinline_xattr: 763 f2fs_info(sbi, "noinline_xattr options not supported"); 764 break; 765 #endif 766 #ifdef CONFIG_F2FS_FS_POSIX_ACL 767 case Opt_acl: 768 set_opt(sbi, POSIX_ACL); 769 break; 770 case Opt_noacl: 771 clear_opt(sbi, POSIX_ACL); 772 break; 773 #else 774 case Opt_acl: 775 f2fs_info(sbi, "acl options not supported"); 776 break; 777 case Opt_noacl: 778 f2fs_info(sbi, "noacl options not supported"); 779 break; 780 #endif 781 case Opt_active_logs: 782 if (args->from && match_int(args, &arg)) 783 return -EINVAL; 784 if (arg != 2 && arg != 4 && 785 arg != NR_CURSEG_PERSIST_TYPE) 786 return -EINVAL; 787 F2FS_OPTION(sbi).active_logs = arg; 788 break; 789 case Opt_disable_ext_identify: 790 set_opt(sbi, DISABLE_EXT_IDENTIFY); 791 break; 792 case Opt_inline_data: 793 set_opt(sbi, INLINE_DATA); 794 break; 795 case Opt_inline_dentry: 796 set_opt(sbi, INLINE_DENTRY); 797 break; 798 case Opt_noinline_dentry: 799 clear_opt(sbi, INLINE_DENTRY); 800 break; 801 case Opt_flush_merge: 802 set_opt(sbi, FLUSH_MERGE); 803 break; 804 case Opt_noflush_merge: 805 clear_opt(sbi, FLUSH_MERGE); 806 break; 807 case Opt_nobarrier: 808 set_opt(sbi, NOBARRIER); 809 break; 810 case Opt_barrier: 811 clear_opt(sbi, NOBARRIER); 812 break; 813 case Opt_fastboot: 814 set_opt(sbi, FASTBOOT); 815 break; 816 case Opt_extent_cache: 817 set_opt(sbi, READ_EXTENT_CACHE); 818 break; 819 case Opt_noextent_cache: 820 clear_opt(sbi, READ_EXTENT_CACHE); 821 break; 822 case Opt_noinline_data: 823 clear_opt(sbi, INLINE_DATA); 824 break; 825 case Opt_data_flush: 826 set_opt(sbi, DATA_FLUSH); 827 break; 828 case Opt_reserve_root: 829 if (args->from && match_int(args, &arg)) 830 return -EINVAL; 831 if (test_opt(sbi, RESERVE_ROOT)) { 832 f2fs_info(sbi, "Preserve previous reserve_root=%u", 833 F2FS_OPTION(sbi).root_reserved_blocks); 834 } else { 835 F2FS_OPTION(sbi).root_reserved_blocks = arg; 836 set_opt(sbi, RESERVE_ROOT); 837 } 838 break; 839 case Opt_resuid: 840 if (args->from && match_int(args, &arg)) 841 return -EINVAL; 842 uid = make_kuid(current_user_ns(), arg); 843 if (!uid_valid(uid)) { 844 f2fs_err(sbi, "Invalid uid value %d", arg); 845 return -EINVAL; 846 } 847 F2FS_OPTION(sbi).s_resuid = uid; 848 break; 849 case Opt_resgid: 850 if (args->from && match_int(args, &arg)) 851 return -EINVAL; 852 gid = make_kgid(current_user_ns(), arg); 853 if (!gid_valid(gid)) { 854 f2fs_err(sbi, "Invalid gid value %d", arg); 855 return -EINVAL; 856 } 857 F2FS_OPTION(sbi).s_resgid = gid; 858 break; 859 case Opt_mode: 860 name = match_strdup(&args[0]); 861 862 if (!name) 863 return -ENOMEM; 864 if (!strcmp(name, "adaptive")) { 865 if (f2fs_sb_has_blkzoned(sbi)) { 866 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 867 kfree(name); 868 return -EINVAL; 869 } 870 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 871 } else if (!strcmp(name, "lfs")) { 872 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 873 } else if (!strcmp(name, "fragment:segment")) { 874 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 875 } else if (!strcmp(name, "fragment:block")) { 876 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 877 } else { 878 kfree(name); 879 return -EINVAL; 880 } 881 kfree(name); 882 break; 883 case Opt_io_size_bits: 884 if (args->from && match_int(args, &arg)) 885 return -EINVAL; 886 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) { 887 f2fs_warn(sbi, "Not support %ld, larger than %d", 888 BIT(arg), BIO_MAX_VECS); 889 return -EINVAL; 890 } 891 F2FS_OPTION(sbi).write_io_size_bits = arg; 892 break; 893 #ifdef CONFIG_F2FS_FAULT_INJECTION 894 case Opt_fault_injection: 895 if (args->from && match_int(args, &arg)) 896 return -EINVAL; 897 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 898 set_opt(sbi, FAULT_INJECTION); 899 break; 900 901 case Opt_fault_type: 902 if (args->from && match_int(args, &arg)) 903 return -EINVAL; 904 f2fs_build_fault_attr(sbi, 0, arg); 905 set_opt(sbi, FAULT_INJECTION); 906 break; 907 #else 908 case Opt_fault_injection: 909 f2fs_info(sbi, "fault_injection options not supported"); 910 break; 911 912 case Opt_fault_type: 913 f2fs_info(sbi, "fault_type options not supported"); 914 break; 915 #endif 916 case Opt_lazytime: 917 sb->s_flags |= SB_LAZYTIME; 918 break; 919 case Opt_nolazytime: 920 sb->s_flags &= ~SB_LAZYTIME; 921 break; 922 #ifdef CONFIG_QUOTA 923 case Opt_quota: 924 case Opt_usrquota: 925 set_opt(sbi, USRQUOTA); 926 break; 927 case Opt_grpquota: 928 set_opt(sbi, GRPQUOTA); 929 break; 930 case Opt_prjquota: 931 set_opt(sbi, PRJQUOTA); 932 break; 933 case Opt_usrjquota: 934 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 935 if (ret) 936 return ret; 937 break; 938 case Opt_grpjquota: 939 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 940 if (ret) 941 return ret; 942 break; 943 case Opt_prjjquota: 944 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 945 if (ret) 946 return ret; 947 break; 948 case Opt_offusrjquota: 949 ret = f2fs_clear_qf_name(sb, USRQUOTA); 950 if (ret) 951 return ret; 952 break; 953 case Opt_offgrpjquota: 954 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 955 if (ret) 956 return ret; 957 break; 958 case Opt_offprjjquota: 959 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 960 if (ret) 961 return ret; 962 break; 963 case Opt_jqfmt_vfsold: 964 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 965 break; 966 case Opt_jqfmt_vfsv0: 967 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 968 break; 969 case Opt_jqfmt_vfsv1: 970 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 971 break; 972 case Opt_noquota: 973 clear_opt(sbi, QUOTA); 974 clear_opt(sbi, USRQUOTA); 975 clear_opt(sbi, GRPQUOTA); 976 clear_opt(sbi, PRJQUOTA); 977 break; 978 #else 979 case Opt_quota: 980 case Opt_usrquota: 981 case Opt_grpquota: 982 case Opt_prjquota: 983 case Opt_usrjquota: 984 case Opt_grpjquota: 985 case Opt_prjjquota: 986 case Opt_offusrjquota: 987 case Opt_offgrpjquota: 988 case Opt_offprjjquota: 989 case Opt_jqfmt_vfsold: 990 case Opt_jqfmt_vfsv0: 991 case Opt_jqfmt_vfsv1: 992 case Opt_noquota: 993 f2fs_info(sbi, "quota operations not supported"); 994 break; 995 #endif 996 case Opt_alloc: 997 name = match_strdup(&args[0]); 998 if (!name) 999 return -ENOMEM; 1000 1001 if (!strcmp(name, "default")) { 1002 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1003 } else if (!strcmp(name, "reuse")) { 1004 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 1005 } else { 1006 kfree(name); 1007 return -EINVAL; 1008 } 1009 kfree(name); 1010 break; 1011 case Opt_fsync: 1012 name = match_strdup(&args[0]); 1013 if (!name) 1014 return -ENOMEM; 1015 if (!strcmp(name, "posix")) { 1016 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1017 } else if (!strcmp(name, "strict")) { 1018 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1019 } else if (!strcmp(name, "nobarrier")) { 1020 F2FS_OPTION(sbi).fsync_mode = 1021 FSYNC_MODE_NOBARRIER; 1022 } else { 1023 kfree(name); 1024 return -EINVAL; 1025 } 1026 kfree(name); 1027 break; 1028 case Opt_test_dummy_encryption: 1029 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1030 is_remount); 1031 if (ret) 1032 return ret; 1033 break; 1034 case Opt_inlinecrypt: 1035 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1036 sb->s_flags |= SB_INLINECRYPT; 1037 #else 1038 f2fs_info(sbi, "inline encryption not supported"); 1039 #endif 1040 break; 1041 case Opt_checkpoint_disable_cap_perc: 1042 if (args->from && match_int(args, &arg)) 1043 return -EINVAL; 1044 if (arg < 0 || arg > 100) 1045 return -EINVAL; 1046 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1047 set_opt(sbi, DISABLE_CHECKPOINT); 1048 break; 1049 case Opt_checkpoint_disable_cap: 1050 if (args->from && match_int(args, &arg)) 1051 return -EINVAL; 1052 F2FS_OPTION(sbi).unusable_cap = arg; 1053 set_opt(sbi, DISABLE_CHECKPOINT); 1054 break; 1055 case Opt_checkpoint_disable: 1056 set_opt(sbi, DISABLE_CHECKPOINT); 1057 break; 1058 case Opt_checkpoint_enable: 1059 clear_opt(sbi, DISABLE_CHECKPOINT); 1060 break; 1061 case Opt_checkpoint_merge: 1062 set_opt(sbi, MERGE_CHECKPOINT); 1063 break; 1064 case Opt_nocheckpoint_merge: 1065 clear_opt(sbi, MERGE_CHECKPOINT); 1066 break; 1067 #ifdef CONFIG_F2FS_FS_COMPRESSION 1068 case Opt_compress_algorithm: 1069 if (!f2fs_sb_has_compression(sbi)) { 1070 f2fs_info(sbi, "Image doesn't support compression"); 1071 break; 1072 } 1073 name = match_strdup(&args[0]); 1074 if (!name) 1075 return -ENOMEM; 1076 if (!strcmp(name, "lzo")) { 1077 #ifdef CONFIG_F2FS_FS_LZO 1078 F2FS_OPTION(sbi).compress_level = 0; 1079 F2FS_OPTION(sbi).compress_algorithm = 1080 COMPRESS_LZO; 1081 #else 1082 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1083 #endif 1084 } else if (!strncmp(name, "lz4", 3)) { 1085 #ifdef CONFIG_F2FS_FS_LZ4 1086 ret = f2fs_set_lz4hc_level(sbi, name); 1087 if (ret) { 1088 kfree(name); 1089 return -EINVAL; 1090 } 1091 F2FS_OPTION(sbi).compress_algorithm = 1092 COMPRESS_LZ4; 1093 #else 1094 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1095 #endif 1096 } else if (!strncmp(name, "zstd", 4)) { 1097 #ifdef CONFIG_F2FS_FS_ZSTD 1098 ret = f2fs_set_zstd_level(sbi, name); 1099 if (ret) { 1100 kfree(name); 1101 return -EINVAL; 1102 } 1103 F2FS_OPTION(sbi).compress_algorithm = 1104 COMPRESS_ZSTD; 1105 #else 1106 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1107 #endif 1108 } else if (!strcmp(name, "lzo-rle")) { 1109 #ifdef CONFIG_F2FS_FS_LZORLE 1110 F2FS_OPTION(sbi).compress_level = 0; 1111 F2FS_OPTION(sbi).compress_algorithm = 1112 COMPRESS_LZORLE; 1113 #else 1114 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1115 #endif 1116 } else { 1117 kfree(name); 1118 return -EINVAL; 1119 } 1120 kfree(name); 1121 break; 1122 case Opt_compress_log_size: 1123 if (!f2fs_sb_has_compression(sbi)) { 1124 f2fs_info(sbi, "Image doesn't support compression"); 1125 break; 1126 } 1127 if (args->from && match_int(args, &arg)) 1128 return -EINVAL; 1129 if (arg < MIN_COMPRESS_LOG_SIZE || 1130 arg > MAX_COMPRESS_LOG_SIZE) { 1131 f2fs_err(sbi, 1132 "Compress cluster log size is out of range"); 1133 return -EINVAL; 1134 } 1135 F2FS_OPTION(sbi).compress_log_size = arg; 1136 break; 1137 case Opt_compress_extension: 1138 if (!f2fs_sb_has_compression(sbi)) { 1139 f2fs_info(sbi, "Image doesn't support compression"); 1140 break; 1141 } 1142 name = match_strdup(&args[0]); 1143 if (!name) 1144 return -ENOMEM; 1145 1146 ext = F2FS_OPTION(sbi).extensions; 1147 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1148 1149 if (strlen(name) >= F2FS_EXTENSION_LEN || 1150 ext_cnt >= COMPRESS_EXT_NUM) { 1151 f2fs_err(sbi, 1152 "invalid extension length/number"); 1153 kfree(name); 1154 return -EINVAL; 1155 } 1156 1157 strcpy(ext[ext_cnt], name); 1158 F2FS_OPTION(sbi).compress_ext_cnt++; 1159 kfree(name); 1160 break; 1161 case Opt_nocompress_extension: 1162 if (!f2fs_sb_has_compression(sbi)) { 1163 f2fs_info(sbi, "Image doesn't support compression"); 1164 break; 1165 } 1166 name = match_strdup(&args[0]); 1167 if (!name) 1168 return -ENOMEM; 1169 1170 noext = F2FS_OPTION(sbi).noextensions; 1171 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1172 1173 if (strlen(name) >= F2FS_EXTENSION_LEN || 1174 noext_cnt >= COMPRESS_EXT_NUM) { 1175 f2fs_err(sbi, 1176 "invalid extension length/number"); 1177 kfree(name); 1178 return -EINVAL; 1179 } 1180 1181 strcpy(noext[noext_cnt], name); 1182 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1183 kfree(name); 1184 break; 1185 case Opt_compress_chksum: 1186 if (!f2fs_sb_has_compression(sbi)) { 1187 f2fs_info(sbi, "Image doesn't support compression"); 1188 break; 1189 } 1190 F2FS_OPTION(sbi).compress_chksum = true; 1191 break; 1192 case Opt_compress_mode: 1193 if (!f2fs_sb_has_compression(sbi)) { 1194 f2fs_info(sbi, "Image doesn't support compression"); 1195 break; 1196 } 1197 name = match_strdup(&args[0]); 1198 if (!name) 1199 return -ENOMEM; 1200 if (!strcmp(name, "fs")) { 1201 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1202 } else if (!strcmp(name, "user")) { 1203 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1204 } else { 1205 kfree(name); 1206 return -EINVAL; 1207 } 1208 kfree(name); 1209 break; 1210 case Opt_compress_cache: 1211 if (!f2fs_sb_has_compression(sbi)) { 1212 f2fs_info(sbi, "Image doesn't support compression"); 1213 break; 1214 } 1215 set_opt(sbi, COMPRESS_CACHE); 1216 break; 1217 #else 1218 case Opt_compress_algorithm: 1219 case Opt_compress_log_size: 1220 case Opt_compress_extension: 1221 case Opt_nocompress_extension: 1222 case Opt_compress_chksum: 1223 case Opt_compress_mode: 1224 case Opt_compress_cache: 1225 f2fs_info(sbi, "compression options not supported"); 1226 break; 1227 #endif 1228 case Opt_atgc: 1229 set_opt(sbi, ATGC); 1230 break; 1231 case Opt_gc_merge: 1232 set_opt(sbi, GC_MERGE); 1233 break; 1234 case Opt_nogc_merge: 1235 clear_opt(sbi, GC_MERGE); 1236 break; 1237 case Opt_discard_unit: 1238 name = match_strdup(&args[0]); 1239 if (!name) 1240 return -ENOMEM; 1241 if (!strcmp(name, "block")) { 1242 F2FS_OPTION(sbi).discard_unit = 1243 DISCARD_UNIT_BLOCK; 1244 } else if (!strcmp(name, "segment")) { 1245 F2FS_OPTION(sbi).discard_unit = 1246 DISCARD_UNIT_SEGMENT; 1247 } else if (!strcmp(name, "section")) { 1248 F2FS_OPTION(sbi).discard_unit = 1249 DISCARD_UNIT_SECTION; 1250 } else { 1251 kfree(name); 1252 return -EINVAL; 1253 } 1254 kfree(name); 1255 break; 1256 case Opt_memory_mode: 1257 name = match_strdup(&args[0]); 1258 if (!name) 1259 return -ENOMEM; 1260 if (!strcmp(name, "normal")) { 1261 F2FS_OPTION(sbi).memory_mode = 1262 MEMORY_MODE_NORMAL; 1263 } else if (!strcmp(name, "low")) { 1264 F2FS_OPTION(sbi).memory_mode = 1265 MEMORY_MODE_LOW; 1266 } else { 1267 kfree(name); 1268 return -EINVAL; 1269 } 1270 kfree(name); 1271 break; 1272 case Opt_age_extent_cache: 1273 set_opt(sbi, AGE_EXTENT_CACHE); 1274 break; 1275 case Opt_errors: 1276 name = match_strdup(&args[0]); 1277 if (!name) 1278 return -ENOMEM; 1279 if (!strcmp(name, "remount-ro")) { 1280 F2FS_OPTION(sbi).errors = 1281 MOUNT_ERRORS_READONLY; 1282 } else if (!strcmp(name, "continue")) { 1283 F2FS_OPTION(sbi).errors = 1284 MOUNT_ERRORS_CONTINUE; 1285 } else if (!strcmp(name, "panic")) { 1286 F2FS_OPTION(sbi).errors = 1287 MOUNT_ERRORS_PANIC; 1288 } else { 1289 kfree(name); 1290 return -EINVAL; 1291 } 1292 kfree(name); 1293 break; 1294 default: 1295 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1296 p); 1297 return -EINVAL; 1298 } 1299 } 1300 default_check: 1301 #ifdef CONFIG_QUOTA 1302 if (f2fs_check_quota_options(sbi)) 1303 return -EINVAL; 1304 #else 1305 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1306 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1307 return -EINVAL; 1308 } 1309 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1310 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1311 return -EINVAL; 1312 } 1313 #endif 1314 #if !IS_ENABLED(CONFIG_UNICODE) 1315 if (f2fs_sb_has_casefold(sbi)) { 1316 f2fs_err(sbi, 1317 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1318 return -EINVAL; 1319 } 1320 #endif 1321 /* 1322 * The BLKZONED feature indicates that the drive was formatted with 1323 * zone alignment optimization. This is optional for host-aware 1324 * devices, but mandatory for host-managed zoned block devices. 1325 */ 1326 if (f2fs_sb_has_blkzoned(sbi)) { 1327 #ifdef CONFIG_BLK_DEV_ZONED 1328 if (F2FS_OPTION(sbi).discard_unit != 1329 DISCARD_UNIT_SECTION) { 1330 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1331 F2FS_OPTION(sbi).discard_unit = 1332 DISCARD_UNIT_SECTION; 1333 } 1334 #else 1335 f2fs_err(sbi, "Zoned block device support is not enabled"); 1336 return -EINVAL; 1337 #endif 1338 } 1339 1340 #ifdef CONFIG_F2FS_FS_COMPRESSION 1341 if (f2fs_test_compress_extension(sbi)) { 1342 f2fs_err(sbi, "invalid compress or nocompress extension"); 1343 return -EINVAL; 1344 } 1345 #endif 1346 1347 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1348 f2fs_err(sbi, "Should set mode=lfs with %luKB-sized IO", 1349 F2FS_IO_SIZE_KB(sbi)); 1350 return -EINVAL; 1351 } 1352 1353 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1354 int min_size, max_size; 1355 1356 if (!f2fs_sb_has_extra_attr(sbi) || 1357 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1358 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1359 return -EINVAL; 1360 } 1361 if (!test_opt(sbi, INLINE_XATTR)) { 1362 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1363 return -EINVAL; 1364 } 1365 1366 min_size = MIN_INLINE_XATTR_SIZE; 1367 max_size = MAX_INLINE_XATTR_SIZE; 1368 1369 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1370 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1371 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1372 min_size, max_size); 1373 return -EINVAL; 1374 } 1375 } 1376 1377 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1378 f2fs_err(sbi, "LFS is not compatible with checkpoint=disable"); 1379 return -EINVAL; 1380 } 1381 1382 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1383 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1384 return -EINVAL; 1385 } 1386 1387 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1388 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1389 return -EINVAL; 1390 } 1391 1392 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1393 f2fs_err(sbi, "Allow to mount readonly mode only"); 1394 return -EROFS; 1395 } 1396 return 0; 1397 } 1398 1399 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1400 { 1401 struct f2fs_inode_info *fi; 1402 1403 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1404 return NULL; 1405 1406 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1407 if (!fi) 1408 return NULL; 1409 1410 init_once((void *) fi); 1411 1412 /* Initialize f2fs-specific inode info */ 1413 atomic_set(&fi->dirty_pages, 0); 1414 atomic_set(&fi->i_compr_blocks, 0); 1415 init_f2fs_rwsem(&fi->i_sem); 1416 spin_lock_init(&fi->i_size_lock); 1417 INIT_LIST_HEAD(&fi->dirty_list); 1418 INIT_LIST_HEAD(&fi->gdirty_list); 1419 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1420 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1421 init_f2fs_rwsem(&fi->i_xattr_sem); 1422 1423 /* Will be used by directory only */ 1424 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1425 1426 return &fi->vfs_inode; 1427 } 1428 1429 static int f2fs_drop_inode(struct inode *inode) 1430 { 1431 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1432 int ret; 1433 1434 /* 1435 * during filesystem shutdown, if checkpoint is disabled, 1436 * drop useless meta/node dirty pages. 1437 */ 1438 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1439 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1440 inode->i_ino == F2FS_META_INO(sbi)) { 1441 trace_f2fs_drop_inode(inode, 1); 1442 return 1; 1443 } 1444 } 1445 1446 /* 1447 * This is to avoid a deadlock condition like below. 1448 * writeback_single_inode(inode) 1449 * - f2fs_write_data_page 1450 * - f2fs_gc -> iput -> evict 1451 * - inode_wait_for_writeback(inode) 1452 */ 1453 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1454 if (!inode->i_nlink && !is_bad_inode(inode)) { 1455 /* to avoid evict_inode call simultaneously */ 1456 atomic_inc(&inode->i_count); 1457 spin_unlock(&inode->i_lock); 1458 1459 /* should remain fi->extent_tree for writepage */ 1460 f2fs_destroy_extent_node(inode); 1461 1462 sb_start_intwrite(inode->i_sb); 1463 f2fs_i_size_write(inode, 0); 1464 1465 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1466 inode, NULL, 0, DATA); 1467 truncate_inode_pages_final(inode->i_mapping); 1468 1469 if (F2FS_HAS_BLOCKS(inode)) 1470 f2fs_truncate(inode); 1471 1472 sb_end_intwrite(inode->i_sb); 1473 1474 spin_lock(&inode->i_lock); 1475 atomic_dec(&inode->i_count); 1476 } 1477 trace_f2fs_drop_inode(inode, 0); 1478 return 0; 1479 } 1480 ret = generic_drop_inode(inode); 1481 if (!ret) 1482 ret = fscrypt_drop_inode(inode); 1483 trace_f2fs_drop_inode(inode, ret); 1484 return ret; 1485 } 1486 1487 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1488 { 1489 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1490 int ret = 0; 1491 1492 spin_lock(&sbi->inode_lock[DIRTY_META]); 1493 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1494 ret = 1; 1495 } else { 1496 set_inode_flag(inode, FI_DIRTY_INODE); 1497 stat_inc_dirty_inode(sbi, DIRTY_META); 1498 } 1499 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1500 list_add_tail(&F2FS_I(inode)->gdirty_list, 1501 &sbi->inode_list[DIRTY_META]); 1502 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1503 } 1504 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1505 return ret; 1506 } 1507 1508 void f2fs_inode_synced(struct inode *inode) 1509 { 1510 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1511 1512 spin_lock(&sbi->inode_lock[DIRTY_META]); 1513 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1514 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1515 return; 1516 } 1517 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1518 list_del_init(&F2FS_I(inode)->gdirty_list); 1519 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1520 } 1521 clear_inode_flag(inode, FI_DIRTY_INODE); 1522 clear_inode_flag(inode, FI_AUTO_RECOVER); 1523 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1524 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1525 } 1526 1527 /* 1528 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1529 * 1530 * We should call set_dirty_inode to write the dirty inode through write_inode. 1531 */ 1532 static void f2fs_dirty_inode(struct inode *inode, int flags) 1533 { 1534 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1535 1536 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1537 inode->i_ino == F2FS_META_INO(sbi)) 1538 return; 1539 1540 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1541 clear_inode_flag(inode, FI_AUTO_RECOVER); 1542 1543 f2fs_inode_dirtied(inode, false); 1544 } 1545 1546 static void f2fs_free_inode(struct inode *inode) 1547 { 1548 fscrypt_free_inode(inode); 1549 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1550 } 1551 1552 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1553 { 1554 percpu_counter_destroy(&sbi->total_valid_inode_count); 1555 percpu_counter_destroy(&sbi->rf_node_block_count); 1556 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1557 } 1558 1559 static void destroy_device_list(struct f2fs_sb_info *sbi) 1560 { 1561 int i; 1562 1563 for (i = 0; i < sbi->s_ndevs; i++) { 1564 blkdev_put(FDEV(i).bdev, sbi->sb->s_type); 1565 #ifdef CONFIG_BLK_DEV_ZONED 1566 kvfree(FDEV(i).blkz_seq); 1567 #endif 1568 } 1569 kvfree(sbi->devs); 1570 } 1571 1572 static void f2fs_put_super(struct super_block *sb) 1573 { 1574 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1575 int i; 1576 int err = 0; 1577 bool done; 1578 1579 /* unregister procfs/sysfs entries in advance to avoid race case */ 1580 f2fs_unregister_sysfs(sbi); 1581 1582 f2fs_quota_off_umount(sb); 1583 1584 /* prevent remaining shrinker jobs */ 1585 mutex_lock(&sbi->umount_mutex); 1586 1587 /* 1588 * flush all issued checkpoints and stop checkpoint issue thread. 1589 * after then, all checkpoints should be done by each process context. 1590 */ 1591 f2fs_stop_ckpt_thread(sbi); 1592 1593 /* 1594 * We don't need to do checkpoint when superblock is clean. 1595 * But, the previous checkpoint was not done by umount, it needs to do 1596 * clean checkpoint again. 1597 */ 1598 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1599 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1600 struct cp_control cpc = { 1601 .reason = CP_UMOUNT, 1602 }; 1603 err = f2fs_write_checkpoint(sbi, &cpc); 1604 } 1605 1606 /* be sure to wait for any on-going discard commands */ 1607 done = f2fs_issue_discard_timeout(sbi); 1608 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1609 struct cp_control cpc = { 1610 .reason = CP_UMOUNT | CP_TRIMMED, 1611 }; 1612 err = f2fs_write_checkpoint(sbi, &cpc); 1613 } 1614 1615 /* 1616 * normally superblock is clean, so we need to release this. 1617 * In addition, EIO will skip do checkpoint, we need this as well. 1618 */ 1619 f2fs_release_ino_entry(sbi, true); 1620 1621 f2fs_leave_shrinker(sbi); 1622 mutex_unlock(&sbi->umount_mutex); 1623 1624 /* our cp_error case, we can wait for any writeback page */ 1625 f2fs_flush_merged_writes(sbi); 1626 1627 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1628 1629 if (err) { 1630 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1631 truncate_inode_pages_final(META_MAPPING(sbi)); 1632 } 1633 1634 for (i = 0; i < NR_COUNT_TYPE; i++) { 1635 if (!get_pages(sbi, i)) 1636 continue; 1637 f2fs_err(sbi, "detect filesystem reference count leak during " 1638 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1639 f2fs_bug_on(sbi, 1); 1640 } 1641 1642 f2fs_bug_on(sbi, sbi->fsync_node_num); 1643 1644 f2fs_destroy_compress_inode(sbi); 1645 1646 iput(sbi->node_inode); 1647 sbi->node_inode = NULL; 1648 1649 iput(sbi->meta_inode); 1650 sbi->meta_inode = NULL; 1651 1652 /* 1653 * iput() can update stat information, if f2fs_write_checkpoint() 1654 * above failed with error. 1655 */ 1656 f2fs_destroy_stats(sbi); 1657 1658 /* destroy f2fs internal modules */ 1659 f2fs_destroy_node_manager(sbi); 1660 f2fs_destroy_segment_manager(sbi); 1661 1662 /* flush s_error_work before sbi destroy */ 1663 flush_work(&sbi->s_error_work); 1664 1665 f2fs_destroy_post_read_wq(sbi); 1666 1667 kvfree(sbi->ckpt); 1668 1669 sb->s_fs_info = NULL; 1670 if (sbi->s_chksum_driver) 1671 crypto_free_shash(sbi->s_chksum_driver); 1672 kfree(sbi->raw_super); 1673 1674 destroy_device_list(sbi); 1675 f2fs_destroy_page_array_cache(sbi); 1676 f2fs_destroy_xattr_caches(sbi); 1677 mempool_destroy(sbi->write_io_dummy); 1678 #ifdef CONFIG_QUOTA 1679 for (i = 0; i < MAXQUOTAS; i++) 1680 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1681 #endif 1682 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1683 destroy_percpu_info(sbi); 1684 f2fs_destroy_iostat(sbi); 1685 for (i = 0; i < NR_PAGE_TYPE; i++) 1686 kvfree(sbi->write_io[i]); 1687 #if IS_ENABLED(CONFIG_UNICODE) 1688 utf8_unload(sb->s_encoding); 1689 #endif 1690 kfree(sbi); 1691 } 1692 1693 int f2fs_sync_fs(struct super_block *sb, int sync) 1694 { 1695 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1696 int err = 0; 1697 1698 if (unlikely(f2fs_cp_error(sbi))) 1699 return 0; 1700 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1701 return 0; 1702 1703 trace_f2fs_sync_fs(sb, sync); 1704 1705 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1706 return -EAGAIN; 1707 1708 if (sync) 1709 err = f2fs_issue_checkpoint(sbi); 1710 1711 return err; 1712 } 1713 1714 static int f2fs_freeze(struct super_block *sb) 1715 { 1716 if (f2fs_readonly(sb)) 1717 return 0; 1718 1719 /* IO error happened before */ 1720 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1721 return -EIO; 1722 1723 /* must be clean, since sync_filesystem() was already called */ 1724 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1725 return -EINVAL; 1726 1727 /* Let's flush checkpoints and stop the thread. */ 1728 f2fs_flush_ckpt_thread(F2FS_SB(sb)); 1729 1730 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1731 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1732 return 0; 1733 } 1734 1735 static int f2fs_unfreeze(struct super_block *sb) 1736 { 1737 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1738 return 0; 1739 } 1740 1741 #ifdef CONFIG_QUOTA 1742 static int f2fs_statfs_project(struct super_block *sb, 1743 kprojid_t projid, struct kstatfs *buf) 1744 { 1745 struct kqid qid; 1746 struct dquot *dquot; 1747 u64 limit; 1748 u64 curblock; 1749 1750 qid = make_kqid_projid(projid); 1751 dquot = dqget(sb, qid); 1752 if (IS_ERR(dquot)) 1753 return PTR_ERR(dquot); 1754 spin_lock(&dquot->dq_dqb_lock); 1755 1756 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1757 dquot->dq_dqb.dqb_bhardlimit); 1758 if (limit) 1759 limit >>= sb->s_blocksize_bits; 1760 1761 if (limit && buf->f_blocks > limit) { 1762 curblock = (dquot->dq_dqb.dqb_curspace + 1763 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1764 buf->f_blocks = limit; 1765 buf->f_bfree = buf->f_bavail = 1766 (buf->f_blocks > curblock) ? 1767 (buf->f_blocks - curblock) : 0; 1768 } 1769 1770 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1771 dquot->dq_dqb.dqb_ihardlimit); 1772 1773 if (limit && buf->f_files > limit) { 1774 buf->f_files = limit; 1775 buf->f_ffree = 1776 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1777 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1778 } 1779 1780 spin_unlock(&dquot->dq_dqb_lock); 1781 dqput(dquot); 1782 return 0; 1783 } 1784 #endif 1785 1786 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1787 { 1788 struct super_block *sb = dentry->d_sb; 1789 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1790 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1791 block_t total_count, user_block_count, start_count; 1792 u64 avail_node_count; 1793 unsigned int total_valid_node_count; 1794 1795 total_count = le64_to_cpu(sbi->raw_super->block_count); 1796 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1797 buf->f_type = F2FS_SUPER_MAGIC; 1798 buf->f_bsize = sbi->blocksize; 1799 1800 buf->f_blocks = total_count - start_count; 1801 1802 spin_lock(&sbi->stat_lock); 1803 1804 user_block_count = sbi->user_block_count; 1805 total_valid_node_count = valid_node_count(sbi); 1806 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1807 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1808 sbi->current_reserved_blocks; 1809 1810 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1811 buf->f_bfree = 0; 1812 else 1813 buf->f_bfree -= sbi->unusable_block_count; 1814 spin_unlock(&sbi->stat_lock); 1815 1816 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1817 buf->f_bavail = buf->f_bfree - 1818 F2FS_OPTION(sbi).root_reserved_blocks; 1819 else 1820 buf->f_bavail = 0; 1821 1822 if (avail_node_count > user_block_count) { 1823 buf->f_files = user_block_count; 1824 buf->f_ffree = buf->f_bavail; 1825 } else { 1826 buf->f_files = avail_node_count; 1827 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1828 buf->f_bavail); 1829 } 1830 1831 buf->f_namelen = F2FS_NAME_LEN; 1832 buf->f_fsid = u64_to_fsid(id); 1833 1834 #ifdef CONFIG_QUOTA 1835 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1836 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1837 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1838 } 1839 #endif 1840 return 0; 1841 } 1842 1843 static inline void f2fs_show_quota_options(struct seq_file *seq, 1844 struct super_block *sb) 1845 { 1846 #ifdef CONFIG_QUOTA 1847 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1848 1849 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1850 char *fmtname = ""; 1851 1852 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1853 case QFMT_VFS_OLD: 1854 fmtname = "vfsold"; 1855 break; 1856 case QFMT_VFS_V0: 1857 fmtname = "vfsv0"; 1858 break; 1859 case QFMT_VFS_V1: 1860 fmtname = "vfsv1"; 1861 break; 1862 } 1863 seq_printf(seq, ",jqfmt=%s", fmtname); 1864 } 1865 1866 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1867 seq_show_option(seq, "usrjquota", 1868 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1869 1870 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1871 seq_show_option(seq, "grpjquota", 1872 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1873 1874 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1875 seq_show_option(seq, "prjjquota", 1876 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1877 #endif 1878 } 1879 1880 #ifdef CONFIG_F2FS_FS_COMPRESSION 1881 static inline void f2fs_show_compress_options(struct seq_file *seq, 1882 struct super_block *sb) 1883 { 1884 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1885 char *algtype = ""; 1886 int i; 1887 1888 if (!f2fs_sb_has_compression(sbi)) 1889 return; 1890 1891 switch (F2FS_OPTION(sbi).compress_algorithm) { 1892 case COMPRESS_LZO: 1893 algtype = "lzo"; 1894 break; 1895 case COMPRESS_LZ4: 1896 algtype = "lz4"; 1897 break; 1898 case COMPRESS_ZSTD: 1899 algtype = "zstd"; 1900 break; 1901 case COMPRESS_LZORLE: 1902 algtype = "lzo-rle"; 1903 break; 1904 } 1905 seq_printf(seq, ",compress_algorithm=%s", algtype); 1906 1907 if (F2FS_OPTION(sbi).compress_level) 1908 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1909 1910 seq_printf(seq, ",compress_log_size=%u", 1911 F2FS_OPTION(sbi).compress_log_size); 1912 1913 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1914 seq_printf(seq, ",compress_extension=%s", 1915 F2FS_OPTION(sbi).extensions[i]); 1916 } 1917 1918 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1919 seq_printf(seq, ",nocompress_extension=%s", 1920 F2FS_OPTION(sbi).noextensions[i]); 1921 } 1922 1923 if (F2FS_OPTION(sbi).compress_chksum) 1924 seq_puts(seq, ",compress_chksum"); 1925 1926 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1927 seq_printf(seq, ",compress_mode=%s", "fs"); 1928 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1929 seq_printf(seq, ",compress_mode=%s", "user"); 1930 1931 if (test_opt(sbi, COMPRESS_CACHE)) 1932 seq_puts(seq, ",compress_cache"); 1933 } 1934 #endif 1935 1936 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1937 { 1938 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1939 1940 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1941 seq_printf(seq, ",background_gc=%s", "sync"); 1942 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1943 seq_printf(seq, ",background_gc=%s", "on"); 1944 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1945 seq_printf(seq, ",background_gc=%s", "off"); 1946 1947 if (test_opt(sbi, GC_MERGE)) 1948 seq_puts(seq, ",gc_merge"); 1949 else 1950 seq_puts(seq, ",nogc_merge"); 1951 1952 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1953 seq_puts(seq, ",disable_roll_forward"); 1954 if (test_opt(sbi, NORECOVERY)) 1955 seq_puts(seq, ",norecovery"); 1956 if (test_opt(sbi, DISCARD)) { 1957 seq_puts(seq, ",discard"); 1958 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 1959 seq_printf(seq, ",discard_unit=%s", "block"); 1960 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 1961 seq_printf(seq, ",discard_unit=%s", "segment"); 1962 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 1963 seq_printf(seq, ",discard_unit=%s", "section"); 1964 } else { 1965 seq_puts(seq, ",nodiscard"); 1966 } 1967 if (test_opt(sbi, NOHEAP)) 1968 seq_puts(seq, ",no_heap"); 1969 else 1970 seq_puts(seq, ",heap"); 1971 #ifdef CONFIG_F2FS_FS_XATTR 1972 if (test_opt(sbi, XATTR_USER)) 1973 seq_puts(seq, ",user_xattr"); 1974 else 1975 seq_puts(seq, ",nouser_xattr"); 1976 if (test_opt(sbi, INLINE_XATTR)) 1977 seq_puts(seq, ",inline_xattr"); 1978 else 1979 seq_puts(seq, ",noinline_xattr"); 1980 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1981 seq_printf(seq, ",inline_xattr_size=%u", 1982 F2FS_OPTION(sbi).inline_xattr_size); 1983 #endif 1984 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1985 if (test_opt(sbi, POSIX_ACL)) 1986 seq_puts(seq, ",acl"); 1987 else 1988 seq_puts(seq, ",noacl"); 1989 #endif 1990 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1991 seq_puts(seq, ",disable_ext_identify"); 1992 if (test_opt(sbi, INLINE_DATA)) 1993 seq_puts(seq, ",inline_data"); 1994 else 1995 seq_puts(seq, ",noinline_data"); 1996 if (test_opt(sbi, INLINE_DENTRY)) 1997 seq_puts(seq, ",inline_dentry"); 1998 else 1999 seq_puts(seq, ",noinline_dentry"); 2000 if (test_opt(sbi, FLUSH_MERGE)) 2001 seq_puts(seq, ",flush_merge"); 2002 else 2003 seq_puts(seq, ",noflush_merge"); 2004 if (test_opt(sbi, NOBARRIER)) 2005 seq_puts(seq, ",nobarrier"); 2006 else 2007 seq_puts(seq, ",barrier"); 2008 if (test_opt(sbi, FASTBOOT)) 2009 seq_puts(seq, ",fastboot"); 2010 if (test_opt(sbi, READ_EXTENT_CACHE)) 2011 seq_puts(seq, ",extent_cache"); 2012 else 2013 seq_puts(seq, ",noextent_cache"); 2014 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2015 seq_puts(seq, ",age_extent_cache"); 2016 if (test_opt(sbi, DATA_FLUSH)) 2017 seq_puts(seq, ",data_flush"); 2018 2019 seq_puts(seq, ",mode="); 2020 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2021 seq_puts(seq, "adaptive"); 2022 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2023 seq_puts(seq, "lfs"); 2024 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2025 seq_puts(seq, "fragment:segment"); 2026 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2027 seq_puts(seq, "fragment:block"); 2028 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2029 if (test_opt(sbi, RESERVE_ROOT)) 2030 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2031 F2FS_OPTION(sbi).root_reserved_blocks, 2032 from_kuid_munged(&init_user_ns, 2033 F2FS_OPTION(sbi).s_resuid), 2034 from_kgid_munged(&init_user_ns, 2035 F2FS_OPTION(sbi).s_resgid)); 2036 if (F2FS_IO_SIZE_BITS(sbi)) 2037 seq_printf(seq, ",io_bits=%u", 2038 F2FS_OPTION(sbi).write_io_size_bits); 2039 #ifdef CONFIG_F2FS_FAULT_INJECTION 2040 if (test_opt(sbi, FAULT_INJECTION)) { 2041 seq_printf(seq, ",fault_injection=%u", 2042 F2FS_OPTION(sbi).fault_info.inject_rate); 2043 seq_printf(seq, ",fault_type=%u", 2044 F2FS_OPTION(sbi).fault_info.inject_type); 2045 } 2046 #endif 2047 #ifdef CONFIG_QUOTA 2048 if (test_opt(sbi, QUOTA)) 2049 seq_puts(seq, ",quota"); 2050 if (test_opt(sbi, USRQUOTA)) 2051 seq_puts(seq, ",usrquota"); 2052 if (test_opt(sbi, GRPQUOTA)) 2053 seq_puts(seq, ",grpquota"); 2054 if (test_opt(sbi, PRJQUOTA)) 2055 seq_puts(seq, ",prjquota"); 2056 #endif 2057 f2fs_show_quota_options(seq, sbi->sb); 2058 2059 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2060 2061 if (sbi->sb->s_flags & SB_INLINECRYPT) 2062 seq_puts(seq, ",inlinecrypt"); 2063 2064 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2065 seq_printf(seq, ",alloc_mode=%s", "default"); 2066 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2067 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2068 2069 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2070 seq_printf(seq, ",checkpoint=disable:%u", 2071 F2FS_OPTION(sbi).unusable_cap); 2072 if (test_opt(sbi, MERGE_CHECKPOINT)) 2073 seq_puts(seq, ",checkpoint_merge"); 2074 else 2075 seq_puts(seq, ",nocheckpoint_merge"); 2076 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2077 seq_printf(seq, ",fsync_mode=%s", "posix"); 2078 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2079 seq_printf(seq, ",fsync_mode=%s", "strict"); 2080 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2081 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2082 2083 #ifdef CONFIG_F2FS_FS_COMPRESSION 2084 f2fs_show_compress_options(seq, sbi->sb); 2085 #endif 2086 2087 if (test_opt(sbi, ATGC)) 2088 seq_puts(seq, ",atgc"); 2089 2090 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2091 seq_printf(seq, ",memory=%s", "normal"); 2092 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2093 seq_printf(seq, ",memory=%s", "low"); 2094 2095 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2096 seq_printf(seq, ",errors=%s", "remount-ro"); 2097 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2098 seq_printf(seq, ",errors=%s", "continue"); 2099 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2100 seq_printf(seq, ",errors=%s", "panic"); 2101 2102 return 0; 2103 } 2104 2105 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2106 { 2107 /* init some FS parameters */ 2108 if (!remount) { 2109 set_opt(sbi, READ_EXTENT_CACHE); 2110 clear_opt(sbi, DISABLE_CHECKPOINT); 2111 2112 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2113 set_opt(sbi, DISCARD); 2114 2115 if (f2fs_sb_has_blkzoned(sbi)) 2116 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2117 else 2118 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2119 } 2120 2121 if (f2fs_sb_has_readonly(sbi)) 2122 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2123 else 2124 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2125 2126 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2127 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2128 SMALL_VOLUME_SEGMENTS) 2129 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2130 else 2131 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2132 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2133 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2134 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2135 if (f2fs_sb_has_compression(sbi)) { 2136 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2137 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2138 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2139 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2140 } 2141 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2142 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2143 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2144 2145 sbi->sb->s_flags &= ~SB_INLINECRYPT; 2146 2147 set_opt(sbi, INLINE_XATTR); 2148 set_opt(sbi, INLINE_DATA); 2149 set_opt(sbi, INLINE_DENTRY); 2150 set_opt(sbi, NOHEAP); 2151 set_opt(sbi, MERGE_CHECKPOINT); 2152 F2FS_OPTION(sbi).unusable_cap = 0; 2153 sbi->sb->s_flags |= SB_LAZYTIME; 2154 if (!f2fs_is_readonly(sbi)) 2155 set_opt(sbi, FLUSH_MERGE); 2156 if (f2fs_sb_has_blkzoned(sbi)) 2157 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2158 else 2159 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2160 2161 #ifdef CONFIG_F2FS_FS_XATTR 2162 set_opt(sbi, XATTR_USER); 2163 #endif 2164 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2165 set_opt(sbi, POSIX_ACL); 2166 #endif 2167 2168 f2fs_build_fault_attr(sbi, 0, 0); 2169 } 2170 2171 #ifdef CONFIG_QUOTA 2172 static int f2fs_enable_quotas(struct super_block *sb); 2173 #endif 2174 2175 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2176 { 2177 unsigned int s_flags = sbi->sb->s_flags; 2178 struct cp_control cpc; 2179 unsigned int gc_mode = sbi->gc_mode; 2180 int err = 0; 2181 int ret; 2182 block_t unusable; 2183 2184 if (s_flags & SB_RDONLY) { 2185 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2186 return -EINVAL; 2187 } 2188 sbi->sb->s_flags |= SB_ACTIVE; 2189 2190 /* check if we need more GC first */ 2191 unusable = f2fs_get_unusable_blocks(sbi); 2192 if (!f2fs_disable_cp_again(sbi, unusable)) 2193 goto skip_gc; 2194 2195 f2fs_update_time(sbi, DISABLE_TIME); 2196 2197 sbi->gc_mode = GC_URGENT_HIGH; 2198 2199 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2200 struct f2fs_gc_control gc_control = { 2201 .victim_segno = NULL_SEGNO, 2202 .init_gc_type = FG_GC, 2203 .should_migrate_blocks = false, 2204 .err_gc_skipped = true, 2205 .nr_free_secs = 1 }; 2206 2207 f2fs_down_write(&sbi->gc_lock); 2208 err = f2fs_gc(sbi, &gc_control); 2209 if (err == -ENODATA) { 2210 err = 0; 2211 break; 2212 } 2213 if (err && err != -EAGAIN) 2214 break; 2215 } 2216 2217 ret = sync_filesystem(sbi->sb); 2218 if (ret || err) { 2219 err = ret ? ret : err; 2220 goto restore_flag; 2221 } 2222 2223 unusable = f2fs_get_unusable_blocks(sbi); 2224 if (f2fs_disable_cp_again(sbi, unusable)) { 2225 err = -EAGAIN; 2226 goto restore_flag; 2227 } 2228 2229 skip_gc: 2230 f2fs_down_write(&sbi->gc_lock); 2231 cpc.reason = CP_PAUSE; 2232 set_sbi_flag(sbi, SBI_CP_DISABLED); 2233 err = f2fs_write_checkpoint(sbi, &cpc); 2234 if (err) 2235 goto out_unlock; 2236 2237 spin_lock(&sbi->stat_lock); 2238 sbi->unusable_block_count = unusable; 2239 spin_unlock(&sbi->stat_lock); 2240 2241 out_unlock: 2242 f2fs_up_write(&sbi->gc_lock); 2243 restore_flag: 2244 sbi->gc_mode = gc_mode; 2245 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2246 return err; 2247 } 2248 2249 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2250 { 2251 int retry = DEFAULT_RETRY_IO_COUNT; 2252 2253 /* we should flush all the data to keep data consistency */ 2254 do { 2255 sync_inodes_sb(sbi->sb); 2256 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2257 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2258 2259 if (unlikely(retry < 0)) 2260 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2261 2262 f2fs_down_write(&sbi->gc_lock); 2263 f2fs_dirty_to_prefree(sbi); 2264 2265 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2266 set_sbi_flag(sbi, SBI_IS_DIRTY); 2267 f2fs_up_write(&sbi->gc_lock); 2268 2269 f2fs_sync_fs(sbi->sb, 1); 2270 2271 /* Let's ensure there's no pending checkpoint anymore */ 2272 f2fs_flush_ckpt_thread(sbi); 2273 } 2274 2275 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2276 { 2277 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2278 struct f2fs_mount_info org_mount_opt; 2279 unsigned long old_sb_flags; 2280 int err; 2281 bool need_restart_gc = false, need_stop_gc = false; 2282 bool need_restart_ckpt = false, need_stop_ckpt = false; 2283 bool need_restart_flush = false, need_stop_flush = false; 2284 bool need_restart_discard = false, need_stop_discard = false; 2285 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2286 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2287 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2288 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 2289 bool no_atgc = !test_opt(sbi, ATGC); 2290 bool no_discard = !test_opt(sbi, DISCARD); 2291 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2292 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2293 #ifdef CONFIG_QUOTA 2294 int i, j; 2295 #endif 2296 2297 /* 2298 * Save the old mount options in case we 2299 * need to restore them. 2300 */ 2301 org_mount_opt = sbi->mount_opt; 2302 old_sb_flags = sb->s_flags; 2303 2304 #ifdef CONFIG_QUOTA 2305 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2306 for (i = 0; i < MAXQUOTAS; i++) { 2307 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2308 org_mount_opt.s_qf_names[i] = 2309 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2310 GFP_KERNEL); 2311 if (!org_mount_opt.s_qf_names[i]) { 2312 for (j = 0; j < i; j++) 2313 kfree(org_mount_opt.s_qf_names[j]); 2314 return -ENOMEM; 2315 } 2316 } else { 2317 org_mount_opt.s_qf_names[i] = NULL; 2318 } 2319 } 2320 #endif 2321 2322 /* recover superblocks we couldn't write due to previous RO mount */ 2323 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2324 err = f2fs_commit_super(sbi, false); 2325 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2326 err); 2327 if (!err) 2328 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2329 } 2330 2331 default_options(sbi, true); 2332 2333 /* parse mount options */ 2334 err = parse_options(sb, data, true); 2335 if (err) 2336 goto restore_opts; 2337 2338 /* flush outstanding errors before changing fs state */ 2339 flush_work(&sbi->s_error_work); 2340 2341 /* 2342 * Previous and new state of filesystem is RO, 2343 * so skip checking GC and FLUSH_MERGE conditions. 2344 */ 2345 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2346 goto skip; 2347 2348 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2349 err = -EROFS; 2350 goto restore_opts; 2351 } 2352 2353 #ifdef CONFIG_QUOTA 2354 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2355 err = dquot_suspend(sb, -1); 2356 if (err < 0) 2357 goto restore_opts; 2358 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2359 /* dquot_resume needs RW */ 2360 sb->s_flags &= ~SB_RDONLY; 2361 if (sb_any_quota_suspended(sb)) { 2362 dquot_resume(sb, -1); 2363 } else if (f2fs_sb_has_quota_ino(sbi)) { 2364 err = f2fs_enable_quotas(sb); 2365 if (err) 2366 goto restore_opts; 2367 } 2368 } 2369 #endif 2370 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2371 err = -EINVAL; 2372 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2373 goto restore_opts; 2374 } 2375 2376 /* disallow enable atgc dynamically */ 2377 if (no_atgc == !!test_opt(sbi, ATGC)) { 2378 err = -EINVAL; 2379 f2fs_warn(sbi, "switch atgc option is not allowed"); 2380 goto restore_opts; 2381 } 2382 2383 /* disallow enable/disable extent_cache dynamically */ 2384 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2385 err = -EINVAL; 2386 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2387 goto restore_opts; 2388 } 2389 /* disallow enable/disable age extent_cache dynamically */ 2390 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2391 err = -EINVAL; 2392 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2393 goto restore_opts; 2394 } 2395 2396 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 2397 err = -EINVAL; 2398 f2fs_warn(sbi, "switch io_bits option is not allowed"); 2399 goto restore_opts; 2400 } 2401 2402 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2403 err = -EINVAL; 2404 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2405 goto restore_opts; 2406 } 2407 2408 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2409 err = -EINVAL; 2410 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2411 goto restore_opts; 2412 } 2413 2414 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2415 err = -EINVAL; 2416 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2417 goto restore_opts; 2418 } 2419 2420 /* 2421 * We stop the GC thread if FS is mounted as RO 2422 * or if background_gc = off is passed in mount 2423 * option. Also sync the filesystem. 2424 */ 2425 if ((*flags & SB_RDONLY) || 2426 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2427 !test_opt(sbi, GC_MERGE))) { 2428 if (sbi->gc_thread) { 2429 f2fs_stop_gc_thread(sbi); 2430 need_restart_gc = true; 2431 } 2432 } else if (!sbi->gc_thread) { 2433 err = f2fs_start_gc_thread(sbi); 2434 if (err) 2435 goto restore_opts; 2436 need_stop_gc = true; 2437 } 2438 2439 if (*flags & SB_RDONLY) { 2440 sync_inodes_sb(sb); 2441 2442 set_sbi_flag(sbi, SBI_IS_DIRTY); 2443 set_sbi_flag(sbi, SBI_IS_CLOSE); 2444 f2fs_sync_fs(sb, 1); 2445 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2446 } 2447 2448 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2449 !test_opt(sbi, MERGE_CHECKPOINT)) { 2450 f2fs_stop_ckpt_thread(sbi); 2451 need_restart_ckpt = true; 2452 } else { 2453 /* Flush if the prevous checkpoint, if exists. */ 2454 f2fs_flush_ckpt_thread(sbi); 2455 2456 err = f2fs_start_ckpt_thread(sbi); 2457 if (err) { 2458 f2fs_err(sbi, 2459 "Failed to start F2FS issue_checkpoint_thread (%d)", 2460 err); 2461 goto restore_gc; 2462 } 2463 need_stop_ckpt = true; 2464 } 2465 2466 /* 2467 * We stop issue flush thread if FS is mounted as RO 2468 * or if flush_merge is not passed in mount option. 2469 */ 2470 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2471 clear_opt(sbi, FLUSH_MERGE); 2472 f2fs_destroy_flush_cmd_control(sbi, false); 2473 need_restart_flush = true; 2474 } else { 2475 err = f2fs_create_flush_cmd_control(sbi); 2476 if (err) 2477 goto restore_ckpt; 2478 need_stop_flush = true; 2479 } 2480 2481 if (no_discard == !!test_opt(sbi, DISCARD)) { 2482 if (test_opt(sbi, DISCARD)) { 2483 err = f2fs_start_discard_thread(sbi); 2484 if (err) 2485 goto restore_flush; 2486 need_stop_discard = true; 2487 } else { 2488 f2fs_stop_discard_thread(sbi); 2489 f2fs_issue_discard_timeout(sbi); 2490 need_restart_discard = true; 2491 } 2492 } 2493 2494 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2495 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2496 err = f2fs_disable_checkpoint(sbi); 2497 if (err) 2498 goto restore_discard; 2499 } else { 2500 f2fs_enable_checkpoint(sbi); 2501 } 2502 } 2503 2504 skip: 2505 #ifdef CONFIG_QUOTA 2506 /* Release old quota file names */ 2507 for (i = 0; i < MAXQUOTAS; i++) 2508 kfree(org_mount_opt.s_qf_names[i]); 2509 #endif 2510 /* Update the POSIXACL Flag */ 2511 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2512 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2513 2514 limit_reserve_root(sbi); 2515 adjust_unusable_cap_perc(sbi); 2516 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2517 return 0; 2518 restore_discard: 2519 if (need_restart_discard) { 2520 if (f2fs_start_discard_thread(sbi)) 2521 f2fs_warn(sbi, "discard has been stopped"); 2522 } else if (need_stop_discard) { 2523 f2fs_stop_discard_thread(sbi); 2524 } 2525 restore_flush: 2526 if (need_restart_flush) { 2527 if (f2fs_create_flush_cmd_control(sbi)) 2528 f2fs_warn(sbi, "background flush thread has stopped"); 2529 } else if (need_stop_flush) { 2530 clear_opt(sbi, FLUSH_MERGE); 2531 f2fs_destroy_flush_cmd_control(sbi, false); 2532 } 2533 restore_ckpt: 2534 if (need_restart_ckpt) { 2535 if (f2fs_start_ckpt_thread(sbi)) 2536 f2fs_warn(sbi, "background ckpt thread has stopped"); 2537 } else if (need_stop_ckpt) { 2538 f2fs_stop_ckpt_thread(sbi); 2539 } 2540 restore_gc: 2541 if (need_restart_gc) { 2542 if (f2fs_start_gc_thread(sbi)) 2543 f2fs_warn(sbi, "background gc thread has stopped"); 2544 } else if (need_stop_gc) { 2545 f2fs_stop_gc_thread(sbi); 2546 } 2547 restore_opts: 2548 #ifdef CONFIG_QUOTA 2549 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2550 for (i = 0; i < MAXQUOTAS; i++) { 2551 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2552 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2553 } 2554 #endif 2555 sbi->mount_opt = org_mount_opt; 2556 sb->s_flags = old_sb_flags; 2557 return err; 2558 } 2559 2560 #ifdef CONFIG_QUOTA 2561 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2562 { 2563 /* need to recovery orphan */ 2564 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2565 return true; 2566 /* need to recovery data */ 2567 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2568 return false; 2569 if (test_opt(sbi, NORECOVERY)) 2570 return false; 2571 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2572 } 2573 2574 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2575 { 2576 bool readonly = f2fs_readonly(sbi->sb); 2577 2578 if (!f2fs_need_recovery(sbi)) 2579 return false; 2580 2581 /* it doesn't need to check f2fs_sb_has_readonly() */ 2582 if (f2fs_hw_is_readonly(sbi)) 2583 return false; 2584 2585 if (readonly) { 2586 sbi->sb->s_flags &= ~SB_RDONLY; 2587 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2588 } 2589 2590 /* 2591 * Turn on quotas which were not enabled for read-only mounts if 2592 * filesystem has quota feature, so that they are updated correctly. 2593 */ 2594 return f2fs_enable_quota_files(sbi, readonly); 2595 } 2596 2597 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2598 bool quota_enabled) 2599 { 2600 if (quota_enabled) 2601 f2fs_quota_off_umount(sbi->sb); 2602 2603 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2604 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2605 sbi->sb->s_flags |= SB_RDONLY; 2606 } 2607 } 2608 2609 /* Read data from quotafile */ 2610 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2611 size_t len, loff_t off) 2612 { 2613 struct inode *inode = sb_dqopt(sb)->files[type]; 2614 struct address_space *mapping = inode->i_mapping; 2615 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2616 int offset = off & (sb->s_blocksize - 1); 2617 int tocopy; 2618 size_t toread; 2619 loff_t i_size = i_size_read(inode); 2620 struct page *page; 2621 2622 if (off > i_size) 2623 return 0; 2624 2625 if (off + len > i_size) 2626 len = i_size - off; 2627 toread = len; 2628 while (toread > 0) { 2629 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2630 repeat: 2631 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2632 if (IS_ERR(page)) { 2633 if (PTR_ERR(page) == -ENOMEM) { 2634 memalloc_retry_wait(GFP_NOFS); 2635 goto repeat; 2636 } 2637 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2638 return PTR_ERR(page); 2639 } 2640 2641 lock_page(page); 2642 2643 if (unlikely(page->mapping != mapping)) { 2644 f2fs_put_page(page, 1); 2645 goto repeat; 2646 } 2647 if (unlikely(!PageUptodate(page))) { 2648 f2fs_put_page(page, 1); 2649 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2650 return -EIO; 2651 } 2652 2653 memcpy_from_page(data, page, offset, tocopy); 2654 f2fs_put_page(page, 1); 2655 2656 offset = 0; 2657 toread -= tocopy; 2658 data += tocopy; 2659 blkidx++; 2660 } 2661 return len; 2662 } 2663 2664 /* Write to quotafile */ 2665 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2666 const char *data, size_t len, loff_t off) 2667 { 2668 struct inode *inode = sb_dqopt(sb)->files[type]; 2669 struct address_space *mapping = inode->i_mapping; 2670 const struct address_space_operations *a_ops = mapping->a_ops; 2671 int offset = off & (sb->s_blocksize - 1); 2672 size_t towrite = len; 2673 struct page *page; 2674 void *fsdata = NULL; 2675 int err = 0; 2676 int tocopy; 2677 2678 while (towrite > 0) { 2679 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2680 towrite); 2681 retry: 2682 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2683 &page, &fsdata); 2684 if (unlikely(err)) { 2685 if (err == -ENOMEM) { 2686 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2687 goto retry; 2688 } 2689 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2690 break; 2691 } 2692 2693 memcpy_to_page(page, offset, data, tocopy); 2694 2695 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2696 page, fsdata); 2697 offset = 0; 2698 towrite -= tocopy; 2699 off += tocopy; 2700 data += tocopy; 2701 cond_resched(); 2702 } 2703 2704 if (len == towrite) 2705 return err; 2706 inode->i_mtime = inode->i_ctime = current_time(inode); 2707 f2fs_mark_inode_dirty_sync(inode, false); 2708 return len - towrite; 2709 } 2710 2711 int f2fs_dquot_initialize(struct inode *inode) 2712 { 2713 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2714 return -ESRCH; 2715 2716 return dquot_initialize(inode); 2717 } 2718 2719 static struct dquot **f2fs_get_dquots(struct inode *inode) 2720 { 2721 return F2FS_I(inode)->i_dquot; 2722 } 2723 2724 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2725 { 2726 return &F2FS_I(inode)->i_reserved_quota; 2727 } 2728 2729 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2730 { 2731 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2732 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2733 return 0; 2734 } 2735 2736 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2737 F2FS_OPTION(sbi).s_jquota_fmt, type); 2738 } 2739 2740 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2741 { 2742 int enabled = 0; 2743 int i, err; 2744 2745 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2746 err = f2fs_enable_quotas(sbi->sb); 2747 if (err) { 2748 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2749 return 0; 2750 } 2751 return 1; 2752 } 2753 2754 for (i = 0; i < MAXQUOTAS; i++) { 2755 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2756 err = f2fs_quota_on_mount(sbi, i); 2757 if (!err) { 2758 enabled = 1; 2759 continue; 2760 } 2761 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2762 err, i); 2763 } 2764 } 2765 return enabled; 2766 } 2767 2768 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2769 unsigned int flags) 2770 { 2771 struct inode *qf_inode; 2772 unsigned long qf_inum; 2773 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2774 int err; 2775 2776 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2777 2778 qf_inum = f2fs_qf_ino(sb, type); 2779 if (!qf_inum) 2780 return -EPERM; 2781 2782 qf_inode = f2fs_iget(sb, qf_inum); 2783 if (IS_ERR(qf_inode)) { 2784 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2785 return PTR_ERR(qf_inode); 2786 } 2787 2788 /* Don't account quota for quota files to avoid recursion */ 2789 inode_lock(qf_inode); 2790 qf_inode->i_flags |= S_NOQUOTA; 2791 2792 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2793 F2FS_I(qf_inode)->i_flags |= qf_flag; 2794 f2fs_set_inode_flags(qf_inode); 2795 } 2796 inode_unlock(qf_inode); 2797 2798 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2799 iput(qf_inode); 2800 return err; 2801 } 2802 2803 static int f2fs_enable_quotas(struct super_block *sb) 2804 { 2805 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2806 int type, err = 0; 2807 unsigned long qf_inum; 2808 bool quota_mopt[MAXQUOTAS] = { 2809 test_opt(sbi, USRQUOTA), 2810 test_opt(sbi, GRPQUOTA), 2811 test_opt(sbi, PRJQUOTA), 2812 }; 2813 2814 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2815 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2816 return 0; 2817 } 2818 2819 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2820 2821 for (type = 0; type < MAXQUOTAS; type++) { 2822 qf_inum = f2fs_qf_ino(sb, type); 2823 if (qf_inum) { 2824 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2825 DQUOT_USAGE_ENABLED | 2826 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2827 if (err) { 2828 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2829 type, err); 2830 for (type--; type >= 0; type--) 2831 dquot_quota_off(sb, type); 2832 set_sbi_flag(F2FS_SB(sb), 2833 SBI_QUOTA_NEED_REPAIR); 2834 return err; 2835 } 2836 } 2837 } 2838 return 0; 2839 } 2840 2841 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2842 { 2843 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2844 struct address_space *mapping = dqopt->files[type]->i_mapping; 2845 int ret = 0; 2846 2847 ret = dquot_writeback_dquots(sbi->sb, type); 2848 if (ret) 2849 goto out; 2850 2851 ret = filemap_fdatawrite(mapping); 2852 if (ret) 2853 goto out; 2854 2855 /* if we are using journalled quota */ 2856 if (is_journalled_quota(sbi)) 2857 goto out; 2858 2859 ret = filemap_fdatawait(mapping); 2860 2861 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2862 out: 2863 if (ret) 2864 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2865 return ret; 2866 } 2867 2868 int f2fs_quota_sync(struct super_block *sb, int type) 2869 { 2870 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2871 struct quota_info *dqopt = sb_dqopt(sb); 2872 int cnt; 2873 int ret = 0; 2874 2875 /* 2876 * Now when everything is written we can discard the pagecache so 2877 * that userspace sees the changes. 2878 */ 2879 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2880 2881 if (type != -1 && cnt != type) 2882 continue; 2883 2884 if (!sb_has_quota_active(sb, cnt)) 2885 continue; 2886 2887 if (!f2fs_sb_has_quota_ino(sbi)) 2888 inode_lock(dqopt->files[cnt]); 2889 2890 /* 2891 * do_quotactl 2892 * f2fs_quota_sync 2893 * f2fs_down_read(quota_sem) 2894 * dquot_writeback_dquots() 2895 * f2fs_dquot_commit 2896 * block_operation 2897 * f2fs_down_read(quota_sem) 2898 */ 2899 f2fs_lock_op(sbi); 2900 f2fs_down_read(&sbi->quota_sem); 2901 2902 ret = f2fs_quota_sync_file(sbi, cnt); 2903 2904 f2fs_up_read(&sbi->quota_sem); 2905 f2fs_unlock_op(sbi); 2906 2907 if (!f2fs_sb_has_quota_ino(sbi)) 2908 inode_unlock(dqopt->files[cnt]); 2909 2910 if (ret) 2911 break; 2912 } 2913 return ret; 2914 } 2915 2916 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2917 const struct path *path) 2918 { 2919 struct inode *inode; 2920 int err; 2921 2922 /* if quota sysfile exists, deny enabling quota with specific file */ 2923 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2924 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2925 return -EBUSY; 2926 } 2927 2928 if (path->dentry->d_sb != sb) 2929 return -EXDEV; 2930 2931 err = f2fs_quota_sync(sb, type); 2932 if (err) 2933 return err; 2934 2935 inode = d_inode(path->dentry); 2936 2937 err = filemap_fdatawrite(inode->i_mapping); 2938 if (err) 2939 return err; 2940 2941 err = filemap_fdatawait(inode->i_mapping); 2942 if (err) 2943 return err; 2944 2945 err = dquot_quota_on(sb, type, format_id, path); 2946 if (err) 2947 return err; 2948 2949 inode_lock(inode); 2950 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 2951 f2fs_set_inode_flags(inode); 2952 inode_unlock(inode); 2953 f2fs_mark_inode_dirty_sync(inode, false); 2954 2955 return 0; 2956 } 2957 2958 static int __f2fs_quota_off(struct super_block *sb, int type) 2959 { 2960 struct inode *inode = sb_dqopt(sb)->files[type]; 2961 int err; 2962 2963 if (!inode || !igrab(inode)) 2964 return dquot_quota_off(sb, type); 2965 2966 err = f2fs_quota_sync(sb, type); 2967 if (err) 2968 goto out_put; 2969 2970 err = dquot_quota_off(sb, type); 2971 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2972 goto out_put; 2973 2974 inode_lock(inode); 2975 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 2976 f2fs_set_inode_flags(inode); 2977 inode_unlock(inode); 2978 f2fs_mark_inode_dirty_sync(inode, false); 2979 out_put: 2980 iput(inode); 2981 return err; 2982 } 2983 2984 static int f2fs_quota_off(struct super_block *sb, int type) 2985 { 2986 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2987 int err; 2988 2989 err = __f2fs_quota_off(sb, type); 2990 2991 /* 2992 * quotactl can shutdown journalled quota, result in inconsistence 2993 * between quota record and fs data by following updates, tag the 2994 * flag to let fsck be aware of it. 2995 */ 2996 if (is_journalled_quota(sbi)) 2997 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2998 return err; 2999 } 3000 3001 void f2fs_quota_off_umount(struct super_block *sb) 3002 { 3003 int type; 3004 int err; 3005 3006 for (type = 0; type < MAXQUOTAS; type++) { 3007 err = __f2fs_quota_off(sb, type); 3008 if (err) { 3009 int ret = dquot_quota_off(sb, type); 3010 3011 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3012 type, err, ret); 3013 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3014 } 3015 } 3016 /* 3017 * In case of checkpoint=disable, we must flush quota blocks. 3018 * This can cause NULL exception for node_inode in end_io, since 3019 * put_super already dropped it. 3020 */ 3021 sync_filesystem(sb); 3022 } 3023 3024 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3025 { 3026 struct quota_info *dqopt = sb_dqopt(sb); 3027 int type; 3028 3029 for (type = 0; type < MAXQUOTAS; type++) { 3030 if (!dqopt->files[type]) 3031 continue; 3032 f2fs_inode_synced(dqopt->files[type]); 3033 } 3034 } 3035 3036 static int f2fs_dquot_commit(struct dquot *dquot) 3037 { 3038 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3039 int ret; 3040 3041 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3042 ret = dquot_commit(dquot); 3043 if (ret < 0) 3044 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3045 f2fs_up_read(&sbi->quota_sem); 3046 return ret; 3047 } 3048 3049 static int f2fs_dquot_acquire(struct dquot *dquot) 3050 { 3051 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3052 int ret; 3053 3054 f2fs_down_read(&sbi->quota_sem); 3055 ret = dquot_acquire(dquot); 3056 if (ret < 0) 3057 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3058 f2fs_up_read(&sbi->quota_sem); 3059 return ret; 3060 } 3061 3062 static int f2fs_dquot_release(struct dquot *dquot) 3063 { 3064 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3065 int ret = dquot_release(dquot); 3066 3067 if (ret < 0) 3068 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3069 return ret; 3070 } 3071 3072 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3073 { 3074 struct super_block *sb = dquot->dq_sb; 3075 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3076 int ret = dquot_mark_dquot_dirty(dquot); 3077 3078 /* if we are using journalled quota */ 3079 if (is_journalled_quota(sbi)) 3080 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3081 3082 return ret; 3083 } 3084 3085 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3086 { 3087 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3088 int ret = dquot_commit_info(sb, type); 3089 3090 if (ret < 0) 3091 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3092 return ret; 3093 } 3094 3095 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3096 { 3097 *projid = F2FS_I(inode)->i_projid; 3098 return 0; 3099 } 3100 3101 static const struct dquot_operations f2fs_quota_operations = { 3102 .get_reserved_space = f2fs_get_reserved_space, 3103 .write_dquot = f2fs_dquot_commit, 3104 .acquire_dquot = f2fs_dquot_acquire, 3105 .release_dquot = f2fs_dquot_release, 3106 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3107 .write_info = f2fs_dquot_commit_info, 3108 .alloc_dquot = dquot_alloc, 3109 .destroy_dquot = dquot_destroy, 3110 .get_projid = f2fs_get_projid, 3111 .get_next_id = dquot_get_next_id, 3112 }; 3113 3114 static const struct quotactl_ops f2fs_quotactl_ops = { 3115 .quota_on = f2fs_quota_on, 3116 .quota_off = f2fs_quota_off, 3117 .quota_sync = f2fs_quota_sync, 3118 .get_state = dquot_get_state, 3119 .set_info = dquot_set_dqinfo, 3120 .get_dqblk = dquot_get_dqblk, 3121 .set_dqblk = dquot_set_dqblk, 3122 .get_nextdqblk = dquot_get_next_dqblk, 3123 }; 3124 #else 3125 int f2fs_dquot_initialize(struct inode *inode) 3126 { 3127 return 0; 3128 } 3129 3130 int f2fs_quota_sync(struct super_block *sb, int type) 3131 { 3132 return 0; 3133 } 3134 3135 void f2fs_quota_off_umount(struct super_block *sb) 3136 { 3137 } 3138 #endif 3139 3140 static const struct super_operations f2fs_sops = { 3141 .alloc_inode = f2fs_alloc_inode, 3142 .free_inode = f2fs_free_inode, 3143 .drop_inode = f2fs_drop_inode, 3144 .write_inode = f2fs_write_inode, 3145 .dirty_inode = f2fs_dirty_inode, 3146 .show_options = f2fs_show_options, 3147 #ifdef CONFIG_QUOTA 3148 .quota_read = f2fs_quota_read, 3149 .quota_write = f2fs_quota_write, 3150 .get_dquots = f2fs_get_dquots, 3151 #endif 3152 .evict_inode = f2fs_evict_inode, 3153 .put_super = f2fs_put_super, 3154 .sync_fs = f2fs_sync_fs, 3155 .freeze_fs = f2fs_freeze, 3156 .unfreeze_fs = f2fs_unfreeze, 3157 .statfs = f2fs_statfs, 3158 .remount_fs = f2fs_remount, 3159 }; 3160 3161 #ifdef CONFIG_FS_ENCRYPTION 3162 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3163 { 3164 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3165 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3166 ctx, len, NULL); 3167 } 3168 3169 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3170 void *fs_data) 3171 { 3172 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3173 3174 /* 3175 * Encrypting the root directory is not allowed because fsck 3176 * expects lost+found directory to exist and remain unencrypted 3177 * if LOST_FOUND feature is enabled. 3178 * 3179 */ 3180 if (f2fs_sb_has_lost_found(sbi) && 3181 inode->i_ino == F2FS_ROOT_INO(sbi)) 3182 return -EPERM; 3183 3184 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3185 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3186 ctx, len, fs_data, XATTR_CREATE); 3187 } 3188 3189 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3190 { 3191 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3192 } 3193 3194 static bool f2fs_has_stable_inodes(struct super_block *sb) 3195 { 3196 return true; 3197 } 3198 3199 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 3200 int *ino_bits_ret, int *lblk_bits_ret) 3201 { 3202 *ino_bits_ret = 8 * sizeof(nid_t); 3203 *lblk_bits_ret = 8 * sizeof(block_t); 3204 } 3205 3206 static struct block_device **f2fs_get_devices(struct super_block *sb, 3207 unsigned int *num_devs) 3208 { 3209 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3210 struct block_device **devs; 3211 int i; 3212 3213 if (!f2fs_is_multi_device(sbi)) 3214 return NULL; 3215 3216 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3217 if (!devs) 3218 return ERR_PTR(-ENOMEM); 3219 3220 for (i = 0; i < sbi->s_ndevs; i++) 3221 devs[i] = FDEV(i).bdev; 3222 *num_devs = sbi->s_ndevs; 3223 return devs; 3224 } 3225 3226 static const struct fscrypt_operations f2fs_cryptops = { 3227 .key_prefix = "f2fs:", 3228 .get_context = f2fs_get_context, 3229 .set_context = f2fs_set_context, 3230 .get_dummy_policy = f2fs_get_dummy_policy, 3231 .empty_dir = f2fs_empty_dir, 3232 .has_stable_inodes = f2fs_has_stable_inodes, 3233 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 3234 .get_devices = f2fs_get_devices, 3235 }; 3236 #endif 3237 3238 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3239 u64 ino, u32 generation) 3240 { 3241 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3242 struct inode *inode; 3243 3244 if (f2fs_check_nid_range(sbi, ino)) 3245 return ERR_PTR(-ESTALE); 3246 3247 /* 3248 * f2fs_iget isn't quite right if the inode is currently unallocated! 3249 * However f2fs_iget currently does appropriate checks to handle stale 3250 * inodes so everything is OK. 3251 */ 3252 inode = f2fs_iget(sb, ino); 3253 if (IS_ERR(inode)) 3254 return ERR_CAST(inode); 3255 if (unlikely(generation && inode->i_generation != generation)) { 3256 /* we didn't find the right inode.. */ 3257 iput(inode); 3258 return ERR_PTR(-ESTALE); 3259 } 3260 return inode; 3261 } 3262 3263 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3264 int fh_len, int fh_type) 3265 { 3266 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3267 f2fs_nfs_get_inode); 3268 } 3269 3270 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3271 int fh_len, int fh_type) 3272 { 3273 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3274 f2fs_nfs_get_inode); 3275 } 3276 3277 static const struct export_operations f2fs_export_ops = { 3278 .fh_to_dentry = f2fs_fh_to_dentry, 3279 .fh_to_parent = f2fs_fh_to_parent, 3280 .get_parent = f2fs_get_parent, 3281 }; 3282 3283 loff_t max_file_blocks(struct inode *inode) 3284 { 3285 loff_t result = 0; 3286 loff_t leaf_count; 3287 3288 /* 3289 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3290 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3291 * space in inode.i_addr, it will be more safe to reassign 3292 * result as zero. 3293 */ 3294 3295 if (inode && f2fs_compressed_file(inode)) 3296 leaf_count = ADDRS_PER_BLOCK(inode); 3297 else 3298 leaf_count = DEF_ADDRS_PER_BLOCK; 3299 3300 /* two direct node blocks */ 3301 result += (leaf_count * 2); 3302 3303 /* two indirect node blocks */ 3304 leaf_count *= NIDS_PER_BLOCK; 3305 result += (leaf_count * 2); 3306 3307 /* one double indirect node block */ 3308 leaf_count *= NIDS_PER_BLOCK; 3309 result += leaf_count; 3310 3311 return result; 3312 } 3313 3314 static int __f2fs_commit_super(struct buffer_head *bh, 3315 struct f2fs_super_block *super) 3316 { 3317 lock_buffer(bh); 3318 if (super) 3319 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3320 set_buffer_dirty(bh); 3321 unlock_buffer(bh); 3322 3323 /* it's rare case, we can do fua all the time */ 3324 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3325 } 3326 3327 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3328 struct buffer_head *bh) 3329 { 3330 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3331 (bh->b_data + F2FS_SUPER_OFFSET); 3332 struct super_block *sb = sbi->sb; 3333 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3334 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3335 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3336 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3337 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3338 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3339 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3340 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3341 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3342 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3343 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3344 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3345 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3346 u64 main_end_blkaddr = main_blkaddr + 3347 (segment_count_main << log_blocks_per_seg); 3348 u64 seg_end_blkaddr = segment0_blkaddr + 3349 (segment_count << log_blocks_per_seg); 3350 3351 if (segment0_blkaddr != cp_blkaddr) { 3352 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3353 segment0_blkaddr, cp_blkaddr); 3354 return true; 3355 } 3356 3357 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3358 sit_blkaddr) { 3359 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3360 cp_blkaddr, sit_blkaddr, 3361 segment_count_ckpt << log_blocks_per_seg); 3362 return true; 3363 } 3364 3365 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3366 nat_blkaddr) { 3367 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3368 sit_blkaddr, nat_blkaddr, 3369 segment_count_sit << log_blocks_per_seg); 3370 return true; 3371 } 3372 3373 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3374 ssa_blkaddr) { 3375 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3376 nat_blkaddr, ssa_blkaddr, 3377 segment_count_nat << log_blocks_per_seg); 3378 return true; 3379 } 3380 3381 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3382 main_blkaddr) { 3383 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3384 ssa_blkaddr, main_blkaddr, 3385 segment_count_ssa << log_blocks_per_seg); 3386 return true; 3387 } 3388 3389 if (main_end_blkaddr > seg_end_blkaddr) { 3390 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3391 main_blkaddr, seg_end_blkaddr, 3392 segment_count_main << log_blocks_per_seg); 3393 return true; 3394 } else if (main_end_blkaddr < seg_end_blkaddr) { 3395 int err = 0; 3396 char *res; 3397 3398 /* fix in-memory information all the time */ 3399 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3400 segment0_blkaddr) >> log_blocks_per_seg); 3401 3402 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3403 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3404 res = "internally"; 3405 } else { 3406 err = __f2fs_commit_super(bh, NULL); 3407 res = err ? "failed" : "done"; 3408 } 3409 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3410 res, main_blkaddr, seg_end_blkaddr, 3411 segment_count_main << log_blocks_per_seg); 3412 if (err) 3413 return true; 3414 } 3415 return false; 3416 } 3417 3418 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3419 struct buffer_head *bh) 3420 { 3421 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3422 block_t total_sections, blocks_per_seg; 3423 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3424 (bh->b_data + F2FS_SUPER_OFFSET); 3425 size_t crc_offset = 0; 3426 __u32 crc = 0; 3427 3428 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3429 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3430 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3431 return -EINVAL; 3432 } 3433 3434 /* Check checksum_offset and crc in superblock */ 3435 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3436 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3437 if (crc_offset != 3438 offsetof(struct f2fs_super_block, crc)) { 3439 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3440 crc_offset); 3441 return -EFSCORRUPTED; 3442 } 3443 crc = le32_to_cpu(raw_super->crc); 3444 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3445 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3446 return -EFSCORRUPTED; 3447 } 3448 } 3449 3450 /* Currently, support only 4KB block size */ 3451 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3452 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3453 le32_to_cpu(raw_super->log_blocksize), 3454 F2FS_BLKSIZE_BITS); 3455 return -EFSCORRUPTED; 3456 } 3457 3458 /* check log blocks per segment */ 3459 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3460 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3461 le32_to_cpu(raw_super->log_blocks_per_seg)); 3462 return -EFSCORRUPTED; 3463 } 3464 3465 /* Currently, support 512/1024/2048/4096 bytes sector size */ 3466 if (le32_to_cpu(raw_super->log_sectorsize) > 3467 F2FS_MAX_LOG_SECTOR_SIZE || 3468 le32_to_cpu(raw_super->log_sectorsize) < 3469 F2FS_MIN_LOG_SECTOR_SIZE) { 3470 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3471 le32_to_cpu(raw_super->log_sectorsize)); 3472 return -EFSCORRUPTED; 3473 } 3474 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3475 le32_to_cpu(raw_super->log_sectorsize) != 3476 F2FS_MAX_LOG_SECTOR_SIZE) { 3477 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3478 le32_to_cpu(raw_super->log_sectors_per_block), 3479 le32_to_cpu(raw_super->log_sectorsize)); 3480 return -EFSCORRUPTED; 3481 } 3482 3483 segment_count = le32_to_cpu(raw_super->segment_count); 3484 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3485 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3486 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3487 total_sections = le32_to_cpu(raw_super->section_count); 3488 3489 /* blocks_per_seg should be 512, given the above check */ 3490 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3491 3492 if (segment_count > F2FS_MAX_SEGMENT || 3493 segment_count < F2FS_MIN_SEGMENTS) { 3494 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3495 return -EFSCORRUPTED; 3496 } 3497 3498 if (total_sections > segment_count_main || total_sections < 1 || 3499 segs_per_sec > segment_count || !segs_per_sec) { 3500 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3501 segment_count, total_sections, segs_per_sec); 3502 return -EFSCORRUPTED; 3503 } 3504 3505 if (segment_count_main != total_sections * segs_per_sec) { 3506 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3507 segment_count_main, total_sections, segs_per_sec); 3508 return -EFSCORRUPTED; 3509 } 3510 3511 if ((segment_count / segs_per_sec) < total_sections) { 3512 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3513 segment_count, segs_per_sec, total_sections); 3514 return -EFSCORRUPTED; 3515 } 3516 3517 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3518 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3519 segment_count, le64_to_cpu(raw_super->block_count)); 3520 return -EFSCORRUPTED; 3521 } 3522 3523 if (RDEV(0).path[0]) { 3524 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3525 int i = 1; 3526 3527 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3528 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3529 i++; 3530 } 3531 if (segment_count != dev_seg_count) { 3532 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3533 segment_count, dev_seg_count); 3534 return -EFSCORRUPTED; 3535 } 3536 } else { 3537 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3538 !bdev_is_zoned(sbi->sb->s_bdev)) { 3539 f2fs_info(sbi, "Zoned block device path is missing"); 3540 return -EFSCORRUPTED; 3541 } 3542 } 3543 3544 if (secs_per_zone > total_sections || !secs_per_zone) { 3545 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3546 secs_per_zone, total_sections); 3547 return -EFSCORRUPTED; 3548 } 3549 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3550 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3551 (le32_to_cpu(raw_super->extension_count) + 3552 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3553 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3554 le32_to_cpu(raw_super->extension_count), 3555 raw_super->hot_ext_count, 3556 F2FS_MAX_EXTENSION); 3557 return -EFSCORRUPTED; 3558 } 3559 3560 if (le32_to_cpu(raw_super->cp_payload) >= 3561 (blocks_per_seg - F2FS_CP_PACKS - 3562 NR_CURSEG_PERSIST_TYPE)) { 3563 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3564 le32_to_cpu(raw_super->cp_payload), 3565 blocks_per_seg - F2FS_CP_PACKS - 3566 NR_CURSEG_PERSIST_TYPE); 3567 return -EFSCORRUPTED; 3568 } 3569 3570 /* check reserved ino info */ 3571 if (le32_to_cpu(raw_super->node_ino) != 1 || 3572 le32_to_cpu(raw_super->meta_ino) != 2 || 3573 le32_to_cpu(raw_super->root_ino) != 3) { 3574 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3575 le32_to_cpu(raw_super->node_ino), 3576 le32_to_cpu(raw_super->meta_ino), 3577 le32_to_cpu(raw_super->root_ino)); 3578 return -EFSCORRUPTED; 3579 } 3580 3581 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3582 if (sanity_check_area_boundary(sbi, bh)) 3583 return -EFSCORRUPTED; 3584 3585 return 0; 3586 } 3587 3588 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3589 { 3590 unsigned int total, fsmeta; 3591 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3592 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3593 unsigned int ovp_segments, reserved_segments; 3594 unsigned int main_segs, blocks_per_seg; 3595 unsigned int sit_segs, nat_segs; 3596 unsigned int sit_bitmap_size, nat_bitmap_size; 3597 unsigned int log_blocks_per_seg; 3598 unsigned int segment_count_main; 3599 unsigned int cp_pack_start_sum, cp_payload; 3600 block_t user_block_count, valid_user_blocks; 3601 block_t avail_node_count, valid_node_count; 3602 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3603 int i, j; 3604 3605 total = le32_to_cpu(raw_super->segment_count); 3606 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3607 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3608 fsmeta += sit_segs; 3609 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3610 fsmeta += nat_segs; 3611 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3612 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3613 3614 if (unlikely(fsmeta >= total)) 3615 return 1; 3616 3617 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3618 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3619 3620 if (!f2fs_sb_has_readonly(sbi) && 3621 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3622 ovp_segments == 0 || reserved_segments == 0)) { 3623 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3624 return 1; 3625 } 3626 user_block_count = le64_to_cpu(ckpt->user_block_count); 3627 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3628 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3629 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3630 if (!user_block_count || user_block_count >= 3631 segment_count_main << log_blocks_per_seg) { 3632 f2fs_err(sbi, "Wrong user_block_count: %u", 3633 user_block_count); 3634 return 1; 3635 } 3636 3637 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3638 if (valid_user_blocks > user_block_count) { 3639 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3640 valid_user_blocks, user_block_count); 3641 return 1; 3642 } 3643 3644 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3645 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3646 if (valid_node_count > avail_node_count) { 3647 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3648 valid_node_count, avail_node_count); 3649 return 1; 3650 } 3651 3652 main_segs = le32_to_cpu(raw_super->segment_count_main); 3653 blocks_per_seg = sbi->blocks_per_seg; 3654 3655 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3656 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3657 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3658 return 1; 3659 3660 if (f2fs_sb_has_readonly(sbi)) 3661 goto check_data; 3662 3663 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3664 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3665 le32_to_cpu(ckpt->cur_node_segno[j])) { 3666 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3667 i, j, 3668 le32_to_cpu(ckpt->cur_node_segno[i])); 3669 return 1; 3670 } 3671 } 3672 } 3673 check_data: 3674 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3675 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3676 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3677 return 1; 3678 3679 if (f2fs_sb_has_readonly(sbi)) 3680 goto skip_cross; 3681 3682 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3683 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3684 le32_to_cpu(ckpt->cur_data_segno[j])) { 3685 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3686 i, j, 3687 le32_to_cpu(ckpt->cur_data_segno[i])); 3688 return 1; 3689 } 3690 } 3691 } 3692 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3693 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3694 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3695 le32_to_cpu(ckpt->cur_data_segno[j])) { 3696 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3697 i, j, 3698 le32_to_cpu(ckpt->cur_node_segno[i])); 3699 return 1; 3700 } 3701 } 3702 } 3703 skip_cross: 3704 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3705 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3706 3707 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3708 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3709 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3710 sit_bitmap_size, nat_bitmap_size); 3711 return 1; 3712 } 3713 3714 cp_pack_start_sum = __start_sum_addr(sbi); 3715 cp_payload = __cp_payload(sbi); 3716 if (cp_pack_start_sum < cp_payload + 1 || 3717 cp_pack_start_sum > blocks_per_seg - 1 - 3718 NR_CURSEG_PERSIST_TYPE) { 3719 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3720 cp_pack_start_sum); 3721 return 1; 3722 } 3723 3724 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3725 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3726 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3727 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3728 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3729 le32_to_cpu(ckpt->checksum_offset)); 3730 return 1; 3731 } 3732 3733 nat_blocks = nat_segs << log_blocks_per_seg; 3734 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3735 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3736 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3737 (cp_payload + F2FS_CP_PACKS + 3738 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3739 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3740 cp_payload, nat_bits_blocks); 3741 return 1; 3742 } 3743 3744 if (unlikely(f2fs_cp_error(sbi))) { 3745 f2fs_err(sbi, "A bug case: need to run fsck"); 3746 return 1; 3747 } 3748 return 0; 3749 } 3750 3751 static void init_sb_info(struct f2fs_sb_info *sbi) 3752 { 3753 struct f2fs_super_block *raw_super = sbi->raw_super; 3754 int i; 3755 3756 sbi->log_sectors_per_block = 3757 le32_to_cpu(raw_super->log_sectors_per_block); 3758 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3759 sbi->blocksize = BIT(sbi->log_blocksize); 3760 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3761 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3762 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3763 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3764 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3765 sbi->total_node_count = 3766 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3767 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3768 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3769 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3770 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3771 sbi->cur_victim_sec = NULL_SECNO; 3772 sbi->gc_mode = GC_NORMAL; 3773 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3774 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3775 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3776 sbi->migration_granularity = sbi->segs_per_sec; 3777 sbi->seq_file_ra_mul = MIN_RA_MUL; 3778 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3779 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3780 spin_lock_init(&sbi->gc_remaining_trials_lock); 3781 atomic64_set(&sbi->current_atomic_write, 0); 3782 3783 sbi->dir_level = DEF_DIR_LEVEL; 3784 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3785 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3786 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3787 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3788 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3789 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3790 DEF_UMOUNT_DISCARD_TIMEOUT; 3791 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3792 3793 for (i = 0; i < NR_COUNT_TYPE; i++) 3794 atomic_set(&sbi->nr_pages[i], 0); 3795 3796 for (i = 0; i < META; i++) 3797 atomic_set(&sbi->wb_sync_req[i], 0); 3798 3799 INIT_LIST_HEAD(&sbi->s_list); 3800 mutex_init(&sbi->umount_mutex); 3801 init_f2fs_rwsem(&sbi->io_order_lock); 3802 spin_lock_init(&sbi->cp_lock); 3803 3804 sbi->dirty_device = 0; 3805 spin_lock_init(&sbi->dev_lock); 3806 3807 init_f2fs_rwsem(&sbi->sb_lock); 3808 init_f2fs_rwsem(&sbi->pin_sem); 3809 } 3810 3811 static int init_percpu_info(struct f2fs_sb_info *sbi) 3812 { 3813 int err; 3814 3815 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3816 if (err) 3817 return err; 3818 3819 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3820 if (err) 3821 goto err_valid_block; 3822 3823 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3824 GFP_KERNEL); 3825 if (err) 3826 goto err_node_block; 3827 return 0; 3828 3829 err_node_block: 3830 percpu_counter_destroy(&sbi->rf_node_block_count); 3831 err_valid_block: 3832 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3833 return err; 3834 } 3835 3836 #ifdef CONFIG_BLK_DEV_ZONED 3837 3838 struct f2fs_report_zones_args { 3839 struct f2fs_sb_info *sbi; 3840 struct f2fs_dev_info *dev; 3841 }; 3842 3843 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3844 void *data) 3845 { 3846 struct f2fs_report_zones_args *rz_args = data; 3847 block_t unusable_blocks = (zone->len - zone->capacity) >> 3848 F2FS_LOG_SECTORS_PER_BLOCK; 3849 3850 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3851 return 0; 3852 3853 set_bit(idx, rz_args->dev->blkz_seq); 3854 if (!rz_args->sbi->unusable_blocks_per_sec) { 3855 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3856 return 0; 3857 } 3858 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3859 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3860 return -EINVAL; 3861 } 3862 return 0; 3863 } 3864 3865 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3866 { 3867 struct block_device *bdev = FDEV(devi).bdev; 3868 sector_t nr_sectors = bdev_nr_sectors(bdev); 3869 struct f2fs_report_zones_args rep_zone_arg; 3870 u64 zone_sectors; 3871 int ret; 3872 3873 if (!f2fs_sb_has_blkzoned(sbi)) 3874 return 0; 3875 3876 zone_sectors = bdev_zone_sectors(bdev); 3877 if (!is_power_of_2(zone_sectors)) { 3878 f2fs_err(sbi, "F2FS does not support non power of 2 zone sizes\n"); 3879 return -EINVAL; 3880 } 3881 3882 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3883 SECTOR_TO_BLOCK(zone_sectors)) 3884 return -EINVAL; 3885 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3886 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 3887 sbi->blocks_per_blkz); 3888 if (nr_sectors & (zone_sectors - 1)) 3889 FDEV(devi).nr_blkz++; 3890 3891 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3892 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3893 * sizeof(unsigned long), 3894 GFP_KERNEL); 3895 if (!FDEV(devi).blkz_seq) 3896 return -ENOMEM; 3897 3898 rep_zone_arg.sbi = sbi; 3899 rep_zone_arg.dev = &FDEV(devi); 3900 3901 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3902 &rep_zone_arg); 3903 if (ret < 0) 3904 return ret; 3905 return 0; 3906 } 3907 #endif 3908 3909 /* 3910 * Read f2fs raw super block. 3911 * Because we have two copies of super block, so read both of them 3912 * to get the first valid one. If any one of them is broken, we pass 3913 * them recovery flag back to the caller. 3914 */ 3915 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3916 struct f2fs_super_block **raw_super, 3917 int *valid_super_block, int *recovery) 3918 { 3919 struct super_block *sb = sbi->sb; 3920 int block; 3921 struct buffer_head *bh; 3922 struct f2fs_super_block *super; 3923 int err = 0; 3924 3925 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3926 if (!super) 3927 return -ENOMEM; 3928 3929 for (block = 0; block < 2; block++) { 3930 bh = sb_bread(sb, block); 3931 if (!bh) { 3932 f2fs_err(sbi, "Unable to read %dth superblock", 3933 block + 1); 3934 err = -EIO; 3935 *recovery = 1; 3936 continue; 3937 } 3938 3939 /* sanity checking of raw super */ 3940 err = sanity_check_raw_super(sbi, bh); 3941 if (err) { 3942 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3943 block + 1); 3944 brelse(bh); 3945 *recovery = 1; 3946 continue; 3947 } 3948 3949 if (!*raw_super) { 3950 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3951 sizeof(*super)); 3952 *valid_super_block = block; 3953 *raw_super = super; 3954 } 3955 brelse(bh); 3956 } 3957 3958 /* No valid superblock */ 3959 if (!*raw_super) 3960 kfree(super); 3961 else 3962 err = 0; 3963 3964 return err; 3965 } 3966 3967 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3968 { 3969 struct buffer_head *bh; 3970 __u32 crc = 0; 3971 int err; 3972 3973 if ((recover && f2fs_readonly(sbi->sb)) || 3974 f2fs_hw_is_readonly(sbi)) { 3975 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3976 return -EROFS; 3977 } 3978 3979 /* we should update superblock crc here */ 3980 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3981 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3982 offsetof(struct f2fs_super_block, crc)); 3983 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3984 } 3985 3986 /* write back-up superblock first */ 3987 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3988 if (!bh) 3989 return -EIO; 3990 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3991 brelse(bh); 3992 3993 /* if we are in recovery path, skip writing valid superblock */ 3994 if (recover || err) 3995 return err; 3996 3997 /* write current valid superblock */ 3998 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3999 if (!bh) 4000 return -EIO; 4001 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4002 brelse(bh); 4003 return err; 4004 } 4005 4006 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 4007 { 4008 unsigned long flags; 4009 4010 spin_lock_irqsave(&sbi->error_lock, flags); 4011 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4012 sbi->stop_reason[reason]++; 4013 spin_unlock_irqrestore(&sbi->error_lock, flags); 4014 } 4015 4016 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4017 { 4018 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4019 unsigned long flags; 4020 int err; 4021 4022 f2fs_down_write(&sbi->sb_lock); 4023 4024 spin_lock_irqsave(&sbi->error_lock, flags); 4025 if (sbi->error_dirty) { 4026 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4027 MAX_F2FS_ERRORS); 4028 sbi->error_dirty = false; 4029 } 4030 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4031 spin_unlock_irqrestore(&sbi->error_lock, flags); 4032 4033 err = f2fs_commit_super(sbi, false); 4034 4035 f2fs_up_write(&sbi->sb_lock); 4036 if (err) 4037 f2fs_err(sbi, "f2fs_commit_super fails to record err:%d", err); 4038 } 4039 4040 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4041 { 4042 unsigned long flags; 4043 4044 spin_lock_irqsave(&sbi->error_lock, flags); 4045 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4046 set_bit(flag, (unsigned long *)sbi->errors); 4047 sbi->error_dirty = true; 4048 } 4049 spin_unlock_irqrestore(&sbi->error_lock, flags); 4050 } 4051 4052 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4053 { 4054 unsigned long flags; 4055 bool need_update = false; 4056 4057 spin_lock_irqsave(&sbi->error_lock, flags); 4058 if (sbi->error_dirty) { 4059 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4060 MAX_F2FS_ERRORS); 4061 sbi->error_dirty = false; 4062 need_update = true; 4063 } 4064 spin_unlock_irqrestore(&sbi->error_lock, flags); 4065 4066 return need_update; 4067 } 4068 4069 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4070 { 4071 int err; 4072 4073 f2fs_down_write(&sbi->sb_lock); 4074 4075 if (!f2fs_update_errors(sbi)) 4076 goto out_unlock; 4077 4078 err = f2fs_commit_super(sbi, false); 4079 if (err) 4080 f2fs_err(sbi, "f2fs_commit_super fails to record errors:%u, err:%d", 4081 error, err); 4082 out_unlock: 4083 f2fs_up_write(&sbi->sb_lock); 4084 } 4085 4086 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4087 { 4088 f2fs_save_errors(sbi, error); 4089 f2fs_record_errors(sbi, error); 4090 } 4091 4092 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4093 { 4094 f2fs_save_errors(sbi, error); 4095 4096 if (!sbi->error_dirty) 4097 return; 4098 if (!test_bit(error, (unsigned long *)sbi->errors)) 4099 return; 4100 schedule_work(&sbi->s_error_work); 4101 } 4102 4103 static bool system_going_down(void) 4104 { 4105 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4106 || system_state == SYSTEM_RESTART; 4107 } 4108 4109 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 4110 bool irq_context) 4111 { 4112 struct super_block *sb = sbi->sb; 4113 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4114 bool continue_fs = !shutdown && 4115 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4116 4117 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4118 4119 if (!f2fs_hw_is_readonly(sbi)) { 4120 save_stop_reason(sbi, reason); 4121 4122 if (irq_context && !shutdown) 4123 schedule_work(&sbi->s_error_work); 4124 else 4125 f2fs_record_stop_reason(sbi); 4126 } 4127 4128 /* 4129 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4130 * could panic during 'reboot -f' as the underlying device got already 4131 * disabled. 4132 */ 4133 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4134 !shutdown && !system_going_down() && 4135 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4136 panic("F2FS-fs (device %s): panic forced after error\n", 4137 sb->s_id); 4138 4139 if (shutdown) 4140 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4141 4142 /* continue filesystem operators if errors=continue */ 4143 if (continue_fs || f2fs_readonly(sb)) 4144 return; 4145 4146 f2fs_warn(sbi, "Remounting filesystem read-only"); 4147 /* 4148 * Make sure updated value of ->s_mount_flags will be visible before 4149 * ->s_flags update 4150 */ 4151 smp_wmb(); 4152 sb->s_flags |= SB_RDONLY; 4153 } 4154 4155 static void f2fs_record_error_work(struct work_struct *work) 4156 { 4157 struct f2fs_sb_info *sbi = container_of(work, 4158 struct f2fs_sb_info, s_error_work); 4159 4160 f2fs_record_stop_reason(sbi); 4161 } 4162 4163 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4164 { 4165 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4166 unsigned int max_devices = MAX_DEVICES; 4167 unsigned int logical_blksize; 4168 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4169 int i; 4170 4171 /* Initialize single device information */ 4172 if (!RDEV(0).path[0]) { 4173 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4174 return 0; 4175 max_devices = 1; 4176 } 4177 4178 /* 4179 * Initialize multiple devices information, or single 4180 * zoned block device information. 4181 */ 4182 sbi->devs = f2fs_kzalloc(sbi, 4183 array_size(max_devices, 4184 sizeof(struct f2fs_dev_info)), 4185 GFP_KERNEL); 4186 if (!sbi->devs) 4187 return -ENOMEM; 4188 4189 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4190 sbi->aligned_blksize = true; 4191 4192 for (i = 0; i < max_devices; i++) { 4193 4194 if (i > 0 && !RDEV(i).path[0]) 4195 break; 4196 4197 if (max_devices == 1) { 4198 /* Single zoned block device mount */ 4199 FDEV(0).bdev = 4200 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, mode, 4201 sbi->sb->s_type, NULL); 4202 } else { 4203 /* Multi-device mount */ 4204 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4205 FDEV(i).total_segments = 4206 le32_to_cpu(RDEV(i).total_segments); 4207 if (i == 0) { 4208 FDEV(i).start_blk = 0; 4209 FDEV(i).end_blk = FDEV(i).start_blk + 4210 (FDEV(i).total_segments << 4211 sbi->log_blocks_per_seg) - 1 + 4212 le32_to_cpu(raw_super->segment0_blkaddr); 4213 } else { 4214 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4215 FDEV(i).end_blk = FDEV(i).start_blk + 4216 (FDEV(i).total_segments << 4217 sbi->log_blocks_per_seg) - 1; 4218 } 4219 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, mode, 4220 sbi->sb->s_type, 4221 NULL); 4222 } 4223 if (IS_ERR(FDEV(i).bdev)) 4224 return PTR_ERR(FDEV(i).bdev); 4225 4226 /* to release errored devices */ 4227 sbi->s_ndevs = i + 1; 4228 4229 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4230 sbi->aligned_blksize = false; 4231 4232 #ifdef CONFIG_BLK_DEV_ZONED 4233 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 4234 !f2fs_sb_has_blkzoned(sbi)) { 4235 f2fs_err(sbi, "Zoned block device feature not enabled"); 4236 return -EINVAL; 4237 } 4238 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 4239 if (init_blkz_info(sbi, i)) { 4240 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4241 return -EINVAL; 4242 } 4243 if (max_devices == 1) 4244 break; 4245 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 4246 i, FDEV(i).path, 4247 FDEV(i).total_segments, 4248 FDEV(i).start_blk, FDEV(i).end_blk, 4249 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 4250 "Host-aware" : "Host-managed"); 4251 continue; 4252 } 4253 #endif 4254 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4255 i, FDEV(i).path, 4256 FDEV(i).total_segments, 4257 FDEV(i).start_blk, FDEV(i).end_blk); 4258 } 4259 f2fs_info(sbi, 4260 "IO Block Size: %8ld KB", F2FS_IO_SIZE_KB(sbi)); 4261 return 0; 4262 } 4263 4264 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4265 { 4266 #if IS_ENABLED(CONFIG_UNICODE) 4267 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4268 const struct f2fs_sb_encodings *encoding_info; 4269 struct unicode_map *encoding; 4270 __u16 encoding_flags; 4271 4272 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4273 if (!encoding_info) { 4274 f2fs_err(sbi, 4275 "Encoding requested by superblock is unknown"); 4276 return -EINVAL; 4277 } 4278 4279 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4280 encoding = utf8_load(encoding_info->version); 4281 if (IS_ERR(encoding)) { 4282 f2fs_err(sbi, 4283 "can't mount with superblock charset: %s-%u.%u.%u " 4284 "not supported by the kernel. flags: 0x%x.", 4285 encoding_info->name, 4286 unicode_major(encoding_info->version), 4287 unicode_minor(encoding_info->version), 4288 unicode_rev(encoding_info->version), 4289 encoding_flags); 4290 return PTR_ERR(encoding); 4291 } 4292 f2fs_info(sbi, "Using encoding defined by superblock: " 4293 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4294 unicode_major(encoding_info->version), 4295 unicode_minor(encoding_info->version), 4296 unicode_rev(encoding_info->version), 4297 encoding_flags); 4298 4299 sbi->sb->s_encoding = encoding; 4300 sbi->sb->s_encoding_flags = encoding_flags; 4301 } 4302 #else 4303 if (f2fs_sb_has_casefold(sbi)) { 4304 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4305 return -EINVAL; 4306 } 4307 #endif 4308 return 0; 4309 } 4310 4311 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4312 { 4313 /* adjust parameters according to the volume size */ 4314 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4315 if (f2fs_block_unit_discard(sbi)) 4316 SM_I(sbi)->dcc_info->discard_granularity = 4317 MIN_DISCARD_GRANULARITY; 4318 if (!f2fs_lfs_mode(sbi)) 4319 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4320 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4321 } 4322 4323 sbi->readdir_ra = true; 4324 } 4325 4326 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4327 { 4328 struct f2fs_sb_info *sbi; 4329 struct f2fs_super_block *raw_super; 4330 struct inode *root; 4331 int err; 4332 bool skip_recovery = false, need_fsck = false; 4333 char *options = NULL; 4334 int recovery, i, valid_super_block; 4335 struct curseg_info *seg_i; 4336 int retry_cnt = 1; 4337 #ifdef CONFIG_QUOTA 4338 bool quota_enabled = false; 4339 #endif 4340 4341 try_onemore: 4342 err = -EINVAL; 4343 raw_super = NULL; 4344 valid_super_block = -1; 4345 recovery = 0; 4346 4347 /* allocate memory for f2fs-specific super block info */ 4348 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4349 if (!sbi) 4350 return -ENOMEM; 4351 4352 sbi->sb = sb; 4353 4354 /* initialize locks within allocated memory */ 4355 init_f2fs_rwsem(&sbi->gc_lock); 4356 mutex_init(&sbi->writepages); 4357 init_f2fs_rwsem(&sbi->cp_global_sem); 4358 init_f2fs_rwsem(&sbi->node_write); 4359 init_f2fs_rwsem(&sbi->node_change); 4360 spin_lock_init(&sbi->stat_lock); 4361 init_f2fs_rwsem(&sbi->cp_rwsem); 4362 init_f2fs_rwsem(&sbi->quota_sem); 4363 init_waitqueue_head(&sbi->cp_wait); 4364 spin_lock_init(&sbi->error_lock); 4365 4366 for (i = 0; i < NR_INODE_TYPE; i++) { 4367 INIT_LIST_HEAD(&sbi->inode_list[i]); 4368 spin_lock_init(&sbi->inode_lock[i]); 4369 } 4370 mutex_init(&sbi->flush_lock); 4371 4372 /* Load the checksum driver */ 4373 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4374 if (IS_ERR(sbi->s_chksum_driver)) { 4375 f2fs_err(sbi, "Cannot load crc32 driver."); 4376 err = PTR_ERR(sbi->s_chksum_driver); 4377 sbi->s_chksum_driver = NULL; 4378 goto free_sbi; 4379 } 4380 4381 /* set a block size */ 4382 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4383 f2fs_err(sbi, "unable to set blocksize"); 4384 goto free_sbi; 4385 } 4386 4387 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4388 &recovery); 4389 if (err) 4390 goto free_sbi; 4391 4392 sb->s_fs_info = sbi; 4393 sbi->raw_super = raw_super; 4394 4395 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4396 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4397 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4398 4399 /* precompute checksum seed for metadata */ 4400 if (f2fs_sb_has_inode_chksum(sbi)) 4401 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4402 sizeof(raw_super->uuid)); 4403 4404 default_options(sbi, false); 4405 /* parse mount options */ 4406 options = kstrdup((const char *)data, GFP_KERNEL); 4407 if (data && !options) { 4408 err = -ENOMEM; 4409 goto free_sb_buf; 4410 } 4411 4412 err = parse_options(sb, options, false); 4413 if (err) 4414 goto free_options; 4415 4416 sb->s_maxbytes = max_file_blocks(NULL) << 4417 le32_to_cpu(raw_super->log_blocksize); 4418 sb->s_max_links = F2FS_LINK_MAX; 4419 4420 err = f2fs_setup_casefold(sbi); 4421 if (err) 4422 goto free_options; 4423 4424 #ifdef CONFIG_QUOTA 4425 sb->dq_op = &f2fs_quota_operations; 4426 sb->s_qcop = &f2fs_quotactl_ops; 4427 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4428 4429 if (f2fs_sb_has_quota_ino(sbi)) { 4430 for (i = 0; i < MAXQUOTAS; i++) { 4431 if (f2fs_qf_ino(sbi->sb, i)) 4432 sbi->nquota_files++; 4433 } 4434 } 4435 #endif 4436 4437 sb->s_op = &f2fs_sops; 4438 #ifdef CONFIG_FS_ENCRYPTION 4439 sb->s_cop = &f2fs_cryptops; 4440 #endif 4441 #ifdef CONFIG_FS_VERITY 4442 sb->s_vop = &f2fs_verityops; 4443 #endif 4444 sb->s_xattr = f2fs_xattr_handlers; 4445 sb->s_export_op = &f2fs_export_ops; 4446 sb->s_magic = F2FS_SUPER_MAGIC; 4447 sb->s_time_gran = 1; 4448 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4449 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4450 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 4451 sb->s_iflags |= SB_I_CGROUPWB; 4452 4453 /* init f2fs-specific super block info */ 4454 sbi->valid_super_block = valid_super_block; 4455 4456 /* disallow all the data/node/meta page writes */ 4457 set_sbi_flag(sbi, SBI_POR_DOING); 4458 4459 err = f2fs_init_write_merge_io(sbi); 4460 if (err) 4461 goto free_bio_info; 4462 4463 init_sb_info(sbi); 4464 4465 err = f2fs_init_iostat(sbi); 4466 if (err) 4467 goto free_bio_info; 4468 4469 err = init_percpu_info(sbi); 4470 if (err) 4471 goto free_iostat; 4472 4473 if (F2FS_IO_ALIGNED(sbi)) { 4474 sbi->write_io_dummy = 4475 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 4476 if (!sbi->write_io_dummy) { 4477 err = -ENOMEM; 4478 goto free_percpu; 4479 } 4480 } 4481 4482 /* init per sbi slab cache */ 4483 err = f2fs_init_xattr_caches(sbi); 4484 if (err) 4485 goto free_io_dummy; 4486 err = f2fs_init_page_array_cache(sbi); 4487 if (err) 4488 goto free_xattr_cache; 4489 4490 /* get an inode for meta space */ 4491 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4492 if (IS_ERR(sbi->meta_inode)) { 4493 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4494 err = PTR_ERR(sbi->meta_inode); 4495 goto free_page_array_cache; 4496 } 4497 4498 err = f2fs_get_valid_checkpoint(sbi); 4499 if (err) { 4500 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4501 goto free_meta_inode; 4502 } 4503 4504 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4505 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4506 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4507 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4508 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4509 } 4510 4511 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4512 set_sbi_flag(sbi, SBI_NEED_FSCK); 4513 4514 /* Initialize device list */ 4515 err = f2fs_scan_devices(sbi); 4516 if (err) { 4517 f2fs_err(sbi, "Failed to find devices"); 4518 goto free_devices; 4519 } 4520 4521 err = f2fs_init_post_read_wq(sbi); 4522 if (err) { 4523 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4524 goto free_devices; 4525 } 4526 4527 sbi->total_valid_node_count = 4528 le32_to_cpu(sbi->ckpt->valid_node_count); 4529 percpu_counter_set(&sbi->total_valid_inode_count, 4530 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4531 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4532 sbi->total_valid_block_count = 4533 le64_to_cpu(sbi->ckpt->valid_block_count); 4534 sbi->last_valid_block_count = sbi->total_valid_block_count; 4535 sbi->reserved_blocks = 0; 4536 sbi->current_reserved_blocks = 0; 4537 limit_reserve_root(sbi); 4538 adjust_unusable_cap_perc(sbi); 4539 4540 f2fs_init_extent_cache_info(sbi); 4541 4542 f2fs_init_ino_entry_info(sbi); 4543 4544 f2fs_init_fsync_node_info(sbi); 4545 4546 /* setup checkpoint request control and start checkpoint issue thread */ 4547 f2fs_init_ckpt_req_control(sbi); 4548 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4549 test_opt(sbi, MERGE_CHECKPOINT)) { 4550 err = f2fs_start_ckpt_thread(sbi); 4551 if (err) { 4552 f2fs_err(sbi, 4553 "Failed to start F2FS issue_checkpoint_thread (%d)", 4554 err); 4555 goto stop_ckpt_thread; 4556 } 4557 } 4558 4559 /* setup f2fs internal modules */ 4560 err = f2fs_build_segment_manager(sbi); 4561 if (err) { 4562 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4563 err); 4564 goto free_sm; 4565 } 4566 err = f2fs_build_node_manager(sbi); 4567 if (err) { 4568 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4569 err); 4570 goto free_nm; 4571 } 4572 4573 err = adjust_reserved_segment(sbi); 4574 if (err) 4575 goto free_nm; 4576 4577 /* For write statistics */ 4578 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4579 4580 /* Read accumulated write IO statistics if exists */ 4581 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4582 if (__exist_node_summaries(sbi)) 4583 sbi->kbytes_written = 4584 le64_to_cpu(seg_i->journal->info.kbytes_written); 4585 4586 f2fs_build_gc_manager(sbi); 4587 4588 err = f2fs_build_stats(sbi); 4589 if (err) 4590 goto free_nm; 4591 4592 /* get an inode for node space */ 4593 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4594 if (IS_ERR(sbi->node_inode)) { 4595 f2fs_err(sbi, "Failed to read node inode"); 4596 err = PTR_ERR(sbi->node_inode); 4597 goto free_stats; 4598 } 4599 4600 /* read root inode and dentry */ 4601 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4602 if (IS_ERR(root)) { 4603 f2fs_err(sbi, "Failed to read root inode"); 4604 err = PTR_ERR(root); 4605 goto free_node_inode; 4606 } 4607 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4608 !root->i_size || !root->i_nlink) { 4609 iput(root); 4610 err = -EINVAL; 4611 goto free_node_inode; 4612 } 4613 4614 sb->s_root = d_make_root(root); /* allocate root dentry */ 4615 if (!sb->s_root) { 4616 err = -ENOMEM; 4617 goto free_node_inode; 4618 } 4619 4620 err = f2fs_init_compress_inode(sbi); 4621 if (err) 4622 goto free_root_inode; 4623 4624 err = f2fs_register_sysfs(sbi); 4625 if (err) 4626 goto free_compress_inode; 4627 4628 #ifdef CONFIG_QUOTA 4629 /* Enable quota usage during mount */ 4630 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4631 err = f2fs_enable_quotas(sb); 4632 if (err) 4633 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4634 } 4635 4636 quota_enabled = f2fs_recover_quota_begin(sbi); 4637 #endif 4638 /* if there are any orphan inodes, free them */ 4639 err = f2fs_recover_orphan_inodes(sbi); 4640 if (err) 4641 goto free_meta; 4642 4643 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4644 goto reset_checkpoint; 4645 4646 /* recover fsynced data */ 4647 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4648 !test_opt(sbi, NORECOVERY)) { 4649 /* 4650 * mount should be failed, when device has readonly mode, and 4651 * previous checkpoint was not done by clean system shutdown. 4652 */ 4653 if (f2fs_hw_is_readonly(sbi)) { 4654 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4655 err = f2fs_recover_fsync_data(sbi, true); 4656 if (err > 0) { 4657 err = -EROFS; 4658 f2fs_err(sbi, "Need to recover fsync data, but " 4659 "write access unavailable, please try " 4660 "mount w/ disable_roll_forward or norecovery"); 4661 } 4662 if (err < 0) 4663 goto free_meta; 4664 } 4665 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4666 goto reset_checkpoint; 4667 } 4668 4669 if (need_fsck) 4670 set_sbi_flag(sbi, SBI_NEED_FSCK); 4671 4672 if (skip_recovery) 4673 goto reset_checkpoint; 4674 4675 err = f2fs_recover_fsync_data(sbi, false); 4676 if (err < 0) { 4677 if (err != -ENOMEM) 4678 skip_recovery = true; 4679 need_fsck = true; 4680 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4681 err); 4682 goto free_meta; 4683 } 4684 } else { 4685 err = f2fs_recover_fsync_data(sbi, true); 4686 4687 if (!f2fs_readonly(sb) && err > 0) { 4688 err = -EINVAL; 4689 f2fs_err(sbi, "Need to recover fsync data"); 4690 goto free_meta; 4691 } 4692 } 4693 4694 #ifdef CONFIG_QUOTA 4695 f2fs_recover_quota_end(sbi, quota_enabled); 4696 #endif 4697 4698 /* 4699 * If the f2fs is not readonly and fsync data recovery succeeds, 4700 * check zoned block devices' write pointer consistency. 4701 */ 4702 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 4703 err = f2fs_check_write_pointer(sbi); 4704 if (err) 4705 goto free_meta; 4706 } 4707 4708 reset_checkpoint: 4709 f2fs_init_inmem_curseg(sbi); 4710 4711 /* f2fs_recover_fsync_data() cleared this already */ 4712 clear_sbi_flag(sbi, SBI_POR_DOING); 4713 4714 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4715 err = f2fs_disable_checkpoint(sbi); 4716 if (err) 4717 goto sync_free_meta; 4718 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4719 f2fs_enable_checkpoint(sbi); 4720 } 4721 4722 /* 4723 * If filesystem is not mounted as read-only then 4724 * do start the gc_thread. 4725 */ 4726 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4727 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4728 /* After POR, we can run background GC thread.*/ 4729 err = f2fs_start_gc_thread(sbi); 4730 if (err) 4731 goto sync_free_meta; 4732 } 4733 kvfree(options); 4734 4735 /* recover broken superblock */ 4736 if (recovery) { 4737 err = f2fs_commit_super(sbi, true); 4738 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4739 sbi->valid_super_block ? 1 : 2, err); 4740 } 4741 4742 f2fs_join_shrinker(sbi); 4743 4744 f2fs_tuning_parameters(sbi); 4745 4746 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4747 cur_cp_version(F2FS_CKPT(sbi))); 4748 f2fs_update_time(sbi, CP_TIME); 4749 f2fs_update_time(sbi, REQ_TIME); 4750 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4751 return 0; 4752 4753 sync_free_meta: 4754 /* safe to flush all the data */ 4755 sync_filesystem(sbi->sb); 4756 retry_cnt = 0; 4757 4758 free_meta: 4759 #ifdef CONFIG_QUOTA 4760 f2fs_truncate_quota_inode_pages(sb); 4761 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4762 f2fs_quota_off_umount(sbi->sb); 4763 #endif 4764 /* 4765 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4766 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4767 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4768 * falls into an infinite loop in f2fs_sync_meta_pages(). 4769 */ 4770 truncate_inode_pages_final(META_MAPPING(sbi)); 4771 /* evict some inodes being cached by GC */ 4772 evict_inodes(sb); 4773 f2fs_unregister_sysfs(sbi); 4774 free_compress_inode: 4775 f2fs_destroy_compress_inode(sbi); 4776 free_root_inode: 4777 dput(sb->s_root); 4778 sb->s_root = NULL; 4779 free_node_inode: 4780 f2fs_release_ino_entry(sbi, true); 4781 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4782 iput(sbi->node_inode); 4783 sbi->node_inode = NULL; 4784 free_stats: 4785 f2fs_destroy_stats(sbi); 4786 free_nm: 4787 /* stop discard thread before destroying node manager */ 4788 f2fs_stop_discard_thread(sbi); 4789 f2fs_destroy_node_manager(sbi); 4790 free_sm: 4791 f2fs_destroy_segment_manager(sbi); 4792 stop_ckpt_thread: 4793 f2fs_stop_ckpt_thread(sbi); 4794 /* flush s_error_work before sbi destroy */ 4795 flush_work(&sbi->s_error_work); 4796 f2fs_destroy_post_read_wq(sbi); 4797 free_devices: 4798 destroy_device_list(sbi); 4799 kvfree(sbi->ckpt); 4800 free_meta_inode: 4801 make_bad_inode(sbi->meta_inode); 4802 iput(sbi->meta_inode); 4803 sbi->meta_inode = NULL; 4804 free_page_array_cache: 4805 f2fs_destroy_page_array_cache(sbi); 4806 free_xattr_cache: 4807 f2fs_destroy_xattr_caches(sbi); 4808 free_io_dummy: 4809 mempool_destroy(sbi->write_io_dummy); 4810 free_percpu: 4811 destroy_percpu_info(sbi); 4812 free_iostat: 4813 f2fs_destroy_iostat(sbi); 4814 free_bio_info: 4815 for (i = 0; i < NR_PAGE_TYPE; i++) 4816 kvfree(sbi->write_io[i]); 4817 4818 #if IS_ENABLED(CONFIG_UNICODE) 4819 utf8_unload(sb->s_encoding); 4820 sb->s_encoding = NULL; 4821 #endif 4822 free_options: 4823 #ifdef CONFIG_QUOTA 4824 for (i = 0; i < MAXQUOTAS; i++) 4825 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4826 #endif 4827 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4828 kvfree(options); 4829 free_sb_buf: 4830 kfree(raw_super); 4831 free_sbi: 4832 if (sbi->s_chksum_driver) 4833 crypto_free_shash(sbi->s_chksum_driver); 4834 kfree(sbi); 4835 4836 /* give only one another chance */ 4837 if (retry_cnt > 0 && skip_recovery) { 4838 retry_cnt--; 4839 shrink_dcache_sb(sb); 4840 goto try_onemore; 4841 } 4842 return err; 4843 } 4844 4845 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4846 const char *dev_name, void *data) 4847 { 4848 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4849 } 4850 4851 static void kill_f2fs_super(struct super_block *sb) 4852 { 4853 if (sb->s_root) { 4854 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4855 4856 set_sbi_flag(sbi, SBI_IS_CLOSE); 4857 f2fs_stop_gc_thread(sbi); 4858 f2fs_stop_discard_thread(sbi); 4859 4860 #ifdef CONFIG_F2FS_FS_COMPRESSION 4861 /* 4862 * latter evict_inode() can bypass checking and invalidating 4863 * compress inode cache. 4864 */ 4865 if (test_opt(sbi, COMPRESS_CACHE)) 4866 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4867 #endif 4868 4869 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4870 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4871 struct cp_control cpc = { 4872 .reason = CP_UMOUNT, 4873 }; 4874 f2fs_write_checkpoint(sbi, &cpc); 4875 } 4876 4877 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4878 sb->s_flags &= ~SB_RDONLY; 4879 } 4880 kill_block_super(sb); 4881 } 4882 4883 static struct file_system_type f2fs_fs_type = { 4884 .owner = THIS_MODULE, 4885 .name = "f2fs", 4886 .mount = f2fs_mount, 4887 .kill_sb = kill_f2fs_super, 4888 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4889 }; 4890 MODULE_ALIAS_FS("f2fs"); 4891 4892 static int __init init_inodecache(void) 4893 { 4894 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4895 sizeof(struct f2fs_inode_info), 0, 4896 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4897 return f2fs_inode_cachep ? 0 : -ENOMEM; 4898 } 4899 4900 static void destroy_inodecache(void) 4901 { 4902 /* 4903 * Make sure all delayed rcu free inodes are flushed before we 4904 * destroy cache. 4905 */ 4906 rcu_barrier(); 4907 kmem_cache_destroy(f2fs_inode_cachep); 4908 } 4909 4910 static int __init init_f2fs_fs(void) 4911 { 4912 int err; 4913 4914 if (PAGE_SIZE != F2FS_BLKSIZE) { 4915 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4916 PAGE_SIZE, F2FS_BLKSIZE); 4917 return -EINVAL; 4918 } 4919 4920 err = init_inodecache(); 4921 if (err) 4922 goto fail; 4923 err = f2fs_create_node_manager_caches(); 4924 if (err) 4925 goto free_inodecache; 4926 err = f2fs_create_segment_manager_caches(); 4927 if (err) 4928 goto free_node_manager_caches; 4929 err = f2fs_create_checkpoint_caches(); 4930 if (err) 4931 goto free_segment_manager_caches; 4932 err = f2fs_create_recovery_cache(); 4933 if (err) 4934 goto free_checkpoint_caches; 4935 err = f2fs_create_extent_cache(); 4936 if (err) 4937 goto free_recovery_cache; 4938 err = f2fs_create_garbage_collection_cache(); 4939 if (err) 4940 goto free_extent_cache; 4941 err = f2fs_init_sysfs(); 4942 if (err) 4943 goto free_garbage_collection_cache; 4944 err = register_shrinker(&f2fs_shrinker_info, "f2fs-shrinker"); 4945 if (err) 4946 goto free_sysfs; 4947 err = register_filesystem(&f2fs_fs_type); 4948 if (err) 4949 goto free_shrinker; 4950 f2fs_create_root_stats(); 4951 err = f2fs_init_post_read_processing(); 4952 if (err) 4953 goto free_root_stats; 4954 err = f2fs_init_iostat_processing(); 4955 if (err) 4956 goto free_post_read; 4957 err = f2fs_init_bio_entry_cache(); 4958 if (err) 4959 goto free_iostat; 4960 err = f2fs_init_bioset(); 4961 if (err) 4962 goto free_bio_entry_cache; 4963 err = f2fs_init_compress_mempool(); 4964 if (err) 4965 goto free_bioset; 4966 err = f2fs_init_compress_cache(); 4967 if (err) 4968 goto free_compress_mempool; 4969 err = f2fs_create_casefold_cache(); 4970 if (err) 4971 goto free_compress_cache; 4972 return 0; 4973 free_compress_cache: 4974 f2fs_destroy_compress_cache(); 4975 free_compress_mempool: 4976 f2fs_destroy_compress_mempool(); 4977 free_bioset: 4978 f2fs_destroy_bioset(); 4979 free_bio_entry_cache: 4980 f2fs_destroy_bio_entry_cache(); 4981 free_iostat: 4982 f2fs_destroy_iostat_processing(); 4983 free_post_read: 4984 f2fs_destroy_post_read_processing(); 4985 free_root_stats: 4986 f2fs_destroy_root_stats(); 4987 unregister_filesystem(&f2fs_fs_type); 4988 free_shrinker: 4989 unregister_shrinker(&f2fs_shrinker_info); 4990 free_sysfs: 4991 f2fs_exit_sysfs(); 4992 free_garbage_collection_cache: 4993 f2fs_destroy_garbage_collection_cache(); 4994 free_extent_cache: 4995 f2fs_destroy_extent_cache(); 4996 free_recovery_cache: 4997 f2fs_destroy_recovery_cache(); 4998 free_checkpoint_caches: 4999 f2fs_destroy_checkpoint_caches(); 5000 free_segment_manager_caches: 5001 f2fs_destroy_segment_manager_caches(); 5002 free_node_manager_caches: 5003 f2fs_destroy_node_manager_caches(); 5004 free_inodecache: 5005 destroy_inodecache(); 5006 fail: 5007 return err; 5008 } 5009 5010 static void __exit exit_f2fs_fs(void) 5011 { 5012 f2fs_destroy_casefold_cache(); 5013 f2fs_destroy_compress_cache(); 5014 f2fs_destroy_compress_mempool(); 5015 f2fs_destroy_bioset(); 5016 f2fs_destroy_bio_entry_cache(); 5017 f2fs_destroy_iostat_processing(); 5018 f2fs_destroy_post_read_processing(); 5019 f2fs_destroy_root_stats(); 5020 unregister_filesystem(&f2fs_fs_type); 5021 unregister_shrinker(&f2fs_shrinker_info); 5022 f2fs_exit_sysfs(); 5023 f2fs_destroy_garbage_collection_cache(); 5024 f2fs_destroy_extent_cache(); 5025 f2fs_destroy_recovery_cache(); 5026 f2fs_destroy_checkpoint_caches(); 5027 f2fs_destroy_segment_manager_caches(); 5028 f2fs_destroy_node_manager_caches(); 5029 destroy_inodecache(); 5030 } 5031 5032 module_init(init_f2fs_fs) 5033 module_exit(exit_f2fs_fs) 5034 5035 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5036 MODULE_DESCRIPTION("Flash Friendly File System"); 5037 MODULE_LICENSE("GPL"); 5038 MODULE_SOFTDEP("pre: crc32"); 5039 5040