xref: /linux/fs/f2fs/super.c (revision 60684c2bd35064043360e6f716d1b7c20e967b7d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/fs_context.h>
12 #include <linux/sched/mm.h>
13 #include <linux/statfs.h>
14 #include <linux/buffer_head.h>
15 #include <linux/kthread.h>
16 #include <linux/parser.h>
17 #include <linux/mount.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/random.h>
21 #include <linux/exportfs.h>
22 #include <linux/blkdev.h>
23 #include <linux/quotaops.h>
24 #include <linux/f2fs_fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/quota.h>
27 #include <linux/unicode.h>
28 #include <linux/part_stat.h>
29 #include <linux/zstd.h>
30 #include <linux/lz4.h>
31 
32 #include "f2fs.h"
33 #include "node.h"
34 #include "segment.h"
35 #include "xattr.h"
36 #include "gc.h"
37 #include "iostat.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/f2fs.h>
41 
42 static struct kmem_cache *f2fs_inode_cachep;
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 
46 const char *f2fs_fault_name[FAULT_MAX] = {
47 	[FAULT_KMALLOC]		= "kmalloc",
48 	[FAULT_KVMALLOC]	= "kvmalloc",
49 	[FAULT_PAGE_ALLOC]	= "page alloc",
50 	[FAULT_PAGE_GET]	= "page get",
51 	[FAULT_ALLOC_NID]	= "alloc nid",
52 	[FAULT_ORPHAN]		= "orphan",
53 	[FAULT_BLOCK]		= "no more block",
54 	[FAULT_DIR_DEPTH]	= "too big dir depth",
55 	[FAULT_EVICT_INODE]	= "evict_inode fail",
56 	[FAULT_TRUNCATE]	= "truncate fail",
57 	[FAULT_READ_IO]		= "read IO error",
58 	[FAULT_CHECKPOINT]	= "checkpoint error",
59 	[FAULT_DISCARD]		= "discard error",
60 	[FAULT_WRITE_IO]	= "write IO error",
61 	[FAULT_SLAB_ALLOC]	= "slab alloc",
62 	[FAULT_DQUOT_INIT]	= "dquot initialize",
63 	[FAULT_LOCK_OP]		= "lock_op",
64 	[FAULT_BLKADDR]		= "invalid blkaddr",
65 };
66 
67 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
68 							unsigned int type)
69 {
70 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
71 
72 	if (rate) {
73 		atomic_set(&ffi->inject_ops, 0);
74 		ffi->inject_rate = rate;
75 	}
76 
77 	if (type)
78 		ffi->inject_type = type;
79 
80 	if (!rate && !type)
81 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
82 }
83 #endif
84 
85 /* f2fs-wide shrinker description */
86 static struct shrinker f2fs_shrinker_info = {
87 	.scan_objects = f2fs_shrink_scan,
88 	.count_objects = f2fs_shrink_count,
89 	.seeks = DEFAULT_SEEKS,
90 };
91 
92 enum {
93 	Opt_gc_background,
94 	Opt_disable_roll_forward,
95 	Opt_norecovery,
96 	Opt_discard,
97 	Opt_nodiscard,
98 	Opt_noheap,
99 	Opt_heap,
100 	Opt_user_xattr,
101 	Opt_nouser_xattr,
102 	Opt_acl,
103 	Opt_noacl,
104 	Opt_active_logs,
105 	Opt_disable_ext_identify,
106 	Opt_inline_xattr,
107 	Opt_noinline_xattr,
108 	Opt_inline_xattr_size,
109 	Opt_inline_data,
110 	Opt_inline_dentry,
111 	Opt_noinline_dentry,
112 	Opt_flush_merge,
113 	Opt_noflush_merge,
114 	Opt_barrier,
115 	Opt_nobarrier,
116 	Opt_fastboot,
117 	Opt_extent_cache,
118 	Opt_noextent_cache,
119 	Opt_noinline_data,
120 	Opt_data_flush,
121 	Opt_reserve_root,
122 	Opt_resgid,
123 	Opt_resuid,
124 	Opt_mode,
125 	Opt_io_size_bits,
126 	Opt_fault_injection,
127 	Opt_fault_type,
128 	Opt_lazytime,
129 	Opt_nolazytime,
130 	Opt_quota,
131 	Opt_noquota,
132 	Opt_usrquota,
133 	Opt_grpquota,
134 	Opt_prjquota,
135 	Opt_usrjquota,
136 	Opt_grpjquota,
137 	Opt_prjjquota,
138 	Opt_offusrjquota,
139 	Opt_offgrpjquota,
140 	Opt_offprjjquota,
141 	Opt_jqfmt_vfsold,
142 	Opt_jqfmt_vfsv0,
143 	Opt_jqfmt_vfsv1,
144 	Opt_alloc,
145 	Opt_fsync,
146 	Opt_test_dummy_encryption,
147 	Opt_inlinecrypt,
148 	Opt_checkpoint_disable,
149 	Opt_checkpoint_disable_cap,
150 	Opt_checkpoint_disable_cap_perc,
151 	Opt_checkpoint_enable,
152 	Opt_checkpoint_merge,
153 	Opt_nocheckpoint_merge,
154 	Opt_compress_algorithm,
155 	Opt_compress_log_size,
156 	Opt_compress_extension,
157 	Opt_nocompress_extension,
158 	Opt_compress_chksum,
159 	Opt_compress_mode,
160 	Opt_compress_cache,
161 	Opt_atgc,
162 	Opt_gc_merge,
163 	Opt_nogc_merge,
164 	Opt_discard_unit,
165 	Opt_memory_mode,
166 	Opt_age_extent_cache,
167 	Opt_err,
168 };
169 
170 static match_table_t f2fs_tokens = {
171 	{Opt_gc_background, "background_gc=%s"},
172 	{Opt_disable_roll_forward, "disable_roll_forward"},
173 	{Opt_norecovery, "norecovery"},
174 	{Opt_discard, "discard"},
175 	{Opt_nodiscard, "nodiscard"},
176 	{Opt_noheap, "no_heap"},
177 	{Opt_heap, "heap"},
178 	{Opt_user_xattr, "user_xattr"},
179 	{Opt_nouser_xattr, "nouser_xattr"},
180 	{Opt_acl, "acl"},
181 	{Opt_noacl, "noacl"},
182 	{Opt_active_logs, "active_logs=%u"},
183 	{Opt_disable_ext_identify, "disable_ext_identify"},
184 	{Opt_inline_xattr, "inline_xattr"},
185 	{Opt_noinline_xattr, "noinline_xattr"},
186 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
187 	{Opt_inline_data, "inline_data"},
188 	{Opt_inline_dentry, "inline_dentry"},
189 	{Opt_noinline_dentry, "noinline_dentry"},
190 	{Opt_flush_merge, "flush_merge"},
191 	{Opt_noflush_merge, "noflush_merge"},
192 	{Opt_barrier, "barrier"},
193 	{Opt_nobarrier, "nobarrier"},
194 	{Opt_fastboot, "fastboot"},
195 	{Opt_extent_cache, "extent_cache"},
196 	{Opt_noextent_cache, "noextent_cache"},
197 	{Opt_noinline_data, "noinline_data"},
198 	{Opt_data_flush, "data_flush"},
199 	{Opt_reserve_root, "reserve_root=%u"},
200 	{Opt_resgid, "resgid=%u"},
201 	{Opt_resuid, "resuid=%u"},
202 	{Opt_mode, "mode=%s"},
203 	{Opt_io_size_bits, "io_bits=%u"},
204 	{Opt_fault_injection, "fault_injection=%u"},
205 	{Opt_fault_type, "fault_type=%u"},
206 	{Opt_lazytime, "lazytime"},
207 	{Opt_nolazytime, "nolazytime"},
208 	{Opt_quota, "quota"},
209 	{Opt_noquota, "noquota"},
210 	{Opt_usrquota, "usrquota"},
211 	{Opt_grpquota, "grpquota"},
212 	{Opt_prjquota, "prjquota"},
213 	{Opt_usrjquota, "usrjquota=%s"},
214 	{Opt_grpjquota, "grpjquota=%s"},
215 	{Opt_prjjquota, "prjjquota=%s"},
216 	{Opt_offusrjquota, "usrjquota="},
217 	{Opt_offgrpjquota, "grpjquota="},
218 	{Opt_offprjjquota, "prjjquota="},
219 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
220 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
221 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
222 	{Opt_alloc, "alloc_mode=%s"},
223 	{Opt_fsync, "fsync_mode=%s"},
224 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
225 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
226 	{Opt_inlinecrypt, "inlinecrypt"},
227 	{Opt_checkpoint_disable, "checkpoint=disable"},
228 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
229 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
230 	{Opt_checkpoint_enable, "checkpoint=enable"},
231 	{Opt_checkpoint_merge, "checkpoint_merge"},
232 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
233 	{Opt_compress_algorithm, "compress_algorithm=%s"},
234 	{Opt_compress_log_size, "compress_log_size=%u"},
235 	{Opt_compress_extension, "compress_extension=%s"},
236 	{Opt_nocompress_extension, "nocompress_extension=%s"},
237 	{Opt_compress_chksum, "compress_chksum"},
238 	{Opt_compress_mode, "compress_mode=%s"},
239 	{Opt_compress_cache, "compress_cache"},
240 	{Opt_atgc, "atgc"},
241 	{Opt_gc_merge, "gc_merge"},
242 	{Opt_nogc_merge, "nogc_merge"},
243 	{Opt_discard_unit, "discard_unit=%s"},
244 	{Opt_memory_mode, "memory=%s"},
245 	{Opt_age_extent_cache, "age_extent_cache"},
246 	{Opt_err, NULL},
247 };
248 
249 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
250 {
251 	struct va_format vaf;
252 	va_list args;
253 	int level;
254 
255 	va_start(args, fmt);
256 
257 	level = printk_get_level(fmt);
258 	vaf.fmt = printk_skip_level(fmt);
259 	vaf.va = &args;
260 	printk("%c%cF2FS-fs (%s): %pV\n",
261 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
262 
263 	va_end(args);
264 }
265 
266 #if IS_ENABLED(CONFIG_UNICODE)
267 static const struct f2fs_sb_encodings {
268 	__u16 magic;
269 	char *name;
270 	unsigned int version;
271 } f2fs_sb_encoding_map[] = {
272 	{F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
273 };
274 
275 static const struct f2fs_sb_encodings *
276 f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
277 {
278 	__u16 magic = le16_to_cpu(sb->s_encoding);
279 	int i;
280 
281 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
282 		if (magic == f2fs_sb_encoding_map[i].magic)
283 			return &f2fs_sb_encoding_map[i];
284 
285 	return NULL;
286 }
287 
288 struct kmem_cache *f2fs_cf_name_slab;
289 static int __init f2fs_create_casefold_cache(void)
290 {
291 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
292 							F2FS_NAME_LEN);
293 	return f2fs_cf_name_slab ? 0 : -ENOMEM;
294 }
295 
296 static void f2fs_destroy_casefold_cache(void)
297 {
298 	kmem_cache_destroy(f2fs_cf_name_slab);
299 }
300 #else
301 static int __init f2fs_create_casefold_cache(void) { return 0; }
302 static void f2fs_destroy_casefold_cache(void) { }
303 #endif
304 
305 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
306 {
307 	block_t limit = min((sbi->user_block_count >> 3),
308 			sbi->user_block_count - sbi->reserved_blocks);
309 
310 	/* limit is 12.5% */
311 	if (test_opt(sbi, RESERVE_ROOT) &&
312 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
313 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
314 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
315 			  F2FS_OPTION(sbi).root_reserved_blocks);
316 	}
317 	if (!test_opt(sbi, RESERVE_ROOT) &&
318 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
319 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
320 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
321 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
322 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
323 			  from_kuid_munged(&init_user_ns,
324 					   F2FS_OPTION(sbi).s_resuid),
325 			  from_kgid_munged(&init_user_ns,
326 					   F2FS_OPTION(sbi).s_resgid));
327 }
328 
329 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi)
330 {
331 	unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec;
332 	unsigned int avg_vblocks;
333 	unsigned int wanted_reserved_segments;
334 	block_t avail_user_block_count;
335 
336 	if (!F2FS_IO_ALIGNED(sbi))
337 		return 0;
338 
339 	/* average valid block count in section in worst case */
340 	avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi);
341 
342 	/*
343 	 * we need enough free space when migrating one section in worst case
344 	 */
345 	wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) *
346 						reserved_segments(sbi);
347 	wanted_reserved_segments -= reserved_segments(sbi);
348 
349 	avail_user_block_count = sbi->user_block_count -
350 				sbi->current_reserved_blocks -
351 				F2FS_OPTION(sbi).root_reserved_blocks;
352 
353 	if (wanted_reserved_segments * sbi->blocks_per_seg >
354 					avail_user_block_count) {
355 		f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u",
356 			wanted_reserved_segments,
357 			avail_user_block_count >> sbi->log_blocks_per_seg);
358 		return -ENOSPC;
359 	}
360 
361 	SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments;
362 
363 	f2fs_info(sbi, "IO align feature needs additional reserved segment: %u",
364 			 wanted_reserved_segments);
365 
366 	return 0;
367 }
368 
369 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
370 {
371 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
372 		return;
373 
374 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
375 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
376 	else
377 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
378 					F2FS_OPTION(sbi).unusable_cap_perc;
379 
380 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
381 			F2FS_OPTION(sbi).unusable_cap,
382 			F2FS_OPTION(sbi).unusable_cap_perc);
383 }
384 
385 static void init_once(void *foo)
386 {
387 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
388 
389 	inode_init_once(&fi->vfs_inode);
390 }
391 
392 #ifdef CONFIG_QUOTA
393 static const char * const quotatypes[] = INITQFNAMES;
394 #define QTYPE2NAME(t) (quotatypes[t])
395 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
396 							substring_t *args)
397 {
398 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
399 	char *qname;
400 	int ret = -EINVAL;
401 
402 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
403 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
404 		return -EINVAL;
405 	}
406 	if (f2fs_sb_has_quota_ino(sbi)) {
407 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
408 		return 0;
409 	}
410 
411 	qname = match_strdup(args);
412 	if (!qname) {
413 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
414 		return -ENOMEM;
415 	}
416 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
417 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
418 			ret = 0;
419 		else
420 			f2fs_err(sbi, "%s quota file already specified",
421 				 QTYPE2NAME(qtype));
422 		goto errout;
423 	}
424 	if (strchr(qname, '/')) {
425 		f2fs_err(sbi, "quotafile must be on filesystem root");
426 		goto errout;
427 	}
428 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
429 	set_opt(sbi, QUOTA);
430 	return 0;
431 errout:
432 	kfree(qname);
433 	return ret;
434 }
435 
436 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
437 {
438 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
439 
440 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
441 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
442 		return -EINVAL;
443 	}
444 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
445 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
446 	return 0;
447 }
448 
449 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
450 {
451 	/*
452 	 * We do the test below only for project quotas. 'usrquota' and
453 	 * 'grpquota' mount options are allowed even without quota feature
454 	 * to support legacy quotas in quota files.
455 	 */
456 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
457 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
458 		return -1;
459 	}
460 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
461 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
462 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
463 		if (test_opt(sbi, USRQUOTA) &&
464 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
465 			clear_opt(sbi, USRQUOTA);
466 
467 		if (test_opt(sbi, GRPQUOTA) &&
468 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
469 			clear_opt(sbi, GRPQUOTA);
470 
471 		if (test_opt(sbi, PRJQUOTA) &&
472 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
473 			clear_opt(sbi, PRJQUOTA);
474 
475 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
476 				test_opt(sbi, PRJQUOTA)) {
477 			f2fs_err(sbi, "old and new quota format mixing");
478 			return -1;
479 		}
480 
481 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
482 			f2fs_err(sbi, "journaled quota format not specified");
483 			return -1;
484 		}
485 	}
486 
487 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
488 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
489 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
490 	}
491 	return 0;
492 }
493 #endif
494 
495 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
496 					  const char *opt,
497 					  const substring_t *arg,
498 					  bool is_remount)
499 {
500 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
501 	struct fs_parameter param = {
502 		.type = fs_value_is_string,
503 		.string = arg->from ? arg->from : "",
504 	};
505 	struct fscrypt_dummy_policy *policy =
506 		&F2FS_OPTION(sbi).dummy_enc_policy;
507 	int err;
508 
509 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
510 		f2fs_warn(sbi, "test_dummy_encryption option not supported");
511 		return -EINVAL;
512 	}
513 
514 	if (!f2fs_sb_has_encrypt(sbi)) {
515 		f2fs_err(sbi, "Encrypt feature is off");
516 		return -EINVAL;
517 	}
518 
519 	/*
520 	 * This mount option is just for testing, and it's not worthwhile to
521 	 * implement the extra complexity (e.g. RCU protection) that would be
522 	 * needed to allow it to be set or changed during remount.  We do allow
523 	 * it to be specified during remount, but only if there is no change.
524 	 */
525 	if (is_remount && !fscrypt_is_dummy_policy_set(policy)) {
526 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
527 		return -EINVAL;
528 	}
529 
530 	err = fscrypt_parse_test_dummy_encryption(&param, policy);
531 	if (err) {
532 		if (err == -EEXIST)
533 			f2fs_warn(sbi,
534 				  "Can't change test_dummy_encryption on remount");
535 		else if (err == -EINVAL)
536 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
537 				  opt);
538 		else
539 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
540 				  opt, err);
541 		return -EINVAL;
542 	}
543 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
544 	return 0;
545 }
546 
547 #ifdef CONFIG_F2FS_FS_COMPRESSION
548 /*
549  * 1. The same extension name cannot not appear in both compress and non-compress extension
550  * at the same time.
551  * 2. If the compress extension specifies all files, the types specified by the non-compress
552  * extension will be treated as special cases and will not be compressed.
553  * 3. Don't allow the non-compress extension specifies all files.
554  */
555 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
556 {
557 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
558 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
559 	int ext_cnt, noext_cnt, index = 0, no_index = 0;
560 
561 	ext = F2FS_OPTION(sbi).extensions;
562 	ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
563 	noext = F2FS_OPTION(sbi).noextensions;
564 	noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
565 
566 	if (!noext_cnt)
567 		return 0;
568 
569 	for (no_index = 0; no_index < noext_cnt; no_index++) {
570 		if (!strcasecmp("*", noext[no_index])) {
571 			f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
572 			return -EINVAL;
573 		}
574 		for (index = 0; index < ext_cnt; index++) {
575 			if (!strcasecmp(ext[index], noext[no_index])) {
576 				f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
577 						ext[index]);
578 				return -EINVAL;
579 			}
580 		}
581 	}
582 	return 0;
583 }
584 
585 #ifdef CONFIG_F2FS_FS_LZ4
586 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
587 {
588 #ifdef CONFIG_F2FS_FS_LZ4HC
589 	unsigned int level;
590 #endif
591 
592 	if (strlen(str) == 3) {
593 		F2FS_OPTION(sbi).compress_level = 0;
594 		return 0;
595 	}
596 
597 #ifdef CONFIG_F2FS_FS_LZ4HC
598 	str += 3;
599 
600 	if (str[0] != ':') {
601 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
602 		return -EINVAL;
603 	}
604 	if (kstrtouint(str + 1, 10, &level))
605 		return -EINVAL;
606 
607 	if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) {
608 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
609 		return -EINVAL;
610 	}
611 
612 	F2FS_OPTION(sbi).compress_level = level;
613 	return 0;
614 #else
615 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
616 	return -EINVAL;
617 #endif
618 }
619 #endif
620 
621 #ifdef CONFIG_F2FS_FS_ZSTD
622 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
623 {
624 	unsigned int level;
625 	int len = 4;
626 
627 	if (strlen(str) == len) {
628 		F2FS_OPTION(sbi).compress_level = 0;
629 		return 0;
630 	}
631 
632 	str += len;
633 
634 	if (str[0] != ':') {
635 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
636 		return -EINVAL;
637 	}
638 	if (kstrtouint(str + 1, 10, &level))
639 		return -EINVAL;
640 
641 	if (!level || level > zstd_max_clevel()) {
642 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
643 		return -EINVAL;
644 	}
645 
646 	F2FS_OPTION(sbi).compress_level = level;
647 	return 0;
648 }
649 #endif
650 #endif
651 
652 static int parse_options(struct super_block *sb, char *options, bool is_remount)
653 {
654 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
655 	substring_t args[MAX_OPT_ARGS];
656 #ifdef CONFIG_F2FS_FS_COMPRESSION
657 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
658 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
659 	int ext_cnt, noext_cnt;
660 #endif
661 	char *p, *name;
662 	int arg = 0;
663 	kuid_t uid;
664 	kgid_t gid;
665 	int ret;
666 
667 	if (!options)
668 		goto default_check;
669 
670 	while ((p = strsep(&options, ",")) != NULL) {
671 		int token;
672 
673 		if (!*p)
674 			continue;
675 		/*
676 		 * Initialize args struct so we know whether arg was
677 		 * found; some options take optional arguments.
678 		 */
679 		args[0].to = args[0].from = NULL;
680 		token = match_token(p, f2fs_tokens, args);
681 
682 		switch (token) {
683 		case Opt_gc_background:
684 			name = match_strdup(&args[0]);
685 
686 			if (!name)
687 				return -ENOMEM;
688 			if (!strcmp(name, "on")) {
689 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
690 			} else if (!strcmp(name, "off")) {
691 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
692 			} else if (!strcmp(name, "sync")) {
693 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
694 			} else {
695 				kfree(name);
696 				return -EINVAL;
697 			}
698 			kfree(name);
699 			break;
700 		case Opt_disable_roll_forward:
701 			set_opt(sbi, DISABLE_ROLL_FORWARD);
702 			break;
703 		case Opt_norecovery:
704 			/* this option mounts f2fs with ro */
705 			set_opt(sbi, NORECOVERY);
706 			if (!f2fs_readonly(sb))
707 				return -EINVAL;
708 			break;
709 		case Opt_discard:
710 			if (!f2fs_hw_support_discard(sbi)) {
711 				f2fs_warn(sbi, "device does not support discard");
712 				break;
713 			}
714 			set_opt(sbi, DISCARD);
715 			break;
716 		case Opt_nodiscard:
717 			if (f2fs_hw_should_discard(sbi)) {
718 				f2fs_warn(sbi, "discard is required for zoned block devices");
719 				return -EINVAL;
720 			}
721 			clear_opt(sbi, DISCARD);
722 			break;
723 		case Opt_noheap:
724 			set_opt(sbi, NOHEAP);
725 			break;
726 		case Opt_heap:
727 			clear_opt(sbi, NOHEAP);
728 			break;
729 #ifdef CONFIG_F2FS_FS_XATTR
730 		case Opt_user_xattr:
731 			set_opt(sbi, XATTR_USER);
732 			break;
733 		case Opt_nouser_xattr:
734 			clear_opt(sbi, XATTR_USER);
735 			break;
736 		case Opt_inline_xattr:
737 			set_opt(sbi, INLINE_XATTR);
738 			break;
739 		case Opt_noinline_xattr:
740 			clear_opt(sbi, INLINE_XATTR);
741 			break;
742 		case Opt_inline_xattr_size:
743 			if (args->from && match_int(args, &arg))
744 				return -EINVAL;
745 			set_opt(sbi, INLINE_XATTR_SIZE);
746 			F2FS_OPTION(sbi).inline_xattr_size = arg;
747 			break;
748 #else
749 		case Opt_user_xattr:
750 			f2fs_info(sbi, "user_xattr options not supported");
751 			break;
752 		case Opt_nouser_xattr:
753 			f2fs_info(sbi, "nouser_xattr options not supported");
754 			break;
755 		case Opt_inline_xattr:
756 			f2fs_info(sbi, "inline_xattr options not supported");
757 			break;
758 		case Opt_noinline_xattr:
759 			f2fs_info(sbi, "noinline_xattr options not supported");
760 			break;
761 #endif
762 #ifdef CONFIG_F2FS_FS_POSIX_ACL
763 		case Opt_acl:
764 			set_opt(sbi, POSIX_ACL);
765 			break;
766 		case Opt_noacl:
767 			clear_opt(sbi, POSIX_ACL);
768 			break;
769 #else
770 		case Opt_acl:
771 			f2fs_info(sbi, "acl options not supported");
772 			break;
773 		case Opt_noacl:
774 			f2fs_info(sbi, "noacl options not supported");
775 			break;
776 #endif
777 		case Opt_active_logs:
778 			if (args->from && match_int(args, &arg))
779 				return -EINVAL;
780 			if (arg != 2 && arg != 4 &&
781 				arg != NR_CURSEG_PERSIST_TYPE)
782 				return -EINVAL;
783 			F2FS_OPTION(sbi).active_logs = arg;
784 			break;
785 		case Opt_disable_ext_identify:
786 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
787 			break;
788 		case Opt_inline_data:
789 			set_opt(sbi, INLINE_DATA);
790 			break;
791 		case Opt_inline_dentry:
792 			set_opt(sbi, INLINE_DENTRY);
793 			break;
794 		case Opt_noinline_dentry:
795 			clear_opt(sbi, INLINE_DENTRY);
796 			break;
797 		case Opt_flush_merge:
798 			set_opt(sbi, FLUSH_MERGE);
799 			break;
800 		case Opt_noflush_merge:
801 			clear_opt(sbi, FLUSH_MERGE);
802 			break;
803 		case Opt_nobarrier:
804 			set_opt(sbi, NOBARRIER);
805 			break;
806 		case Opt_barrier:
807 			clear_opt(sbi, NOBARRIER);
808 			break;
809 		case Opt_fastboot:
810 			set_opt(sbi, FASTBOOT);
811 			break;
812 		case Opt_extent_cache:
813 			set_opt(sbi, READ_EXTENT_CACHE);
814 			break;
815 		case Opt_noextent_cache:
816 			clear_opt(sbi, READ_EXTENT_CACHE);
817 			break;
818 		case Opt_noinline_data:
819 			clear_opt(sbi, INLINE_DATA);
820 			break;
821 		case Opt_data_flush:
822 			set_opt(sbi, DATA_FLUSH);
823 			break;
824 		case Opt_reserve_root:
825 			if (args->from && match_int(args, &arg))
826 				return -EINVAL;
827 			if (test_opt(sbi, RESERVE_ROOT)) {
828 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
829 					  F2FS_OPTION(sbi).root_reserved_blocks);
830 			} else {
831 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
832 				set_opt(sbi, RESERVE_ROOT);
833 			}
834 			break;
835 		case Opt_resuid:
836 			if (args->from && match_int(args, &arg))
837 				return -EINVAL;
838 			uid = make_kuid(current_user_ns(), arg);
839 			if (!uid_valid(uid)) {
840 				f2fs_err(sbi, "Invalid uid value %d", arg);
841 				return -EINVAL;
842 			}
843 			F2FS_OPTION(sbi).s_resuid = uid;
844 			break;
845 		case Opt_resgid:
846 			if (args->from && match_int(args, &arg))
847 				return -EINVAL;
848 			gid = make_kgid(current_user_ns(), arg);
849 			if (!gid_valid(gid)) {
850 				f2fs_err(sbi, "Invalid gid value %d", arg);
851 				return -EINVAL;
852 			}
853 			F2FS_OPTION(sbi).s_resgid = gid;
854 			break;
855 		case Opt_mode:
856 			name = match_strdup(&args[0]);
857 
858 			if (!name)
859 				return -ENOMEM;
860 			if (!strcmp(name, "adaptive")) {
861 				if (f2fs_sb_has_blkzoned(sbi)) {
862 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
863 					kfree(name);
864 					return -EINVAL;
865 				}
866 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
867 			} else if (!strcmp(name, "lfs")) {
868 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
869 			} else if (!strcmp(name, "fragment:segment")) {
870 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG;
871 			} else if (!strcmp(name, "fragment:block")) {
872 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK;
873 			} else {
874 				kfree(name);
875 				return -EINVAL;
876 			}
877 			kfree(name);
878 			break;
879 		case Opt_io_size_bits:
880 			if (args->from && match_int(args, &arg))
881 				return -EINVAL;
882 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) {
883 				f2fs_warn(sbi, "Not support %d, larger than %d",
884 					  1 << arg, BIO_MAX_VECS);
885 				return -EINVAL;
886 			}
887 			F2FS_OPTION(sbi).write_io_size_bits = arg;
888 			break;
889 #ifdef CONFIG_F2FS_FAULT_INJECTION
890 		case Opt_fault_injection:
891 			if (args->from && match_int(args, &arg))
892 				return -EINVAL;
893 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
894 			set_opt(sbi, FAULT_INJECTION);
895 			break;
896 
897 		case Opt_fault_type:
898 			if (args->from && match_int(args, &arg))
899 				return -EINVAL;
900 			f2fs_build_fault_attr(sbi, 0, arg);
901 			set_opt(sbi, FAULT_INJECTION);
902 			break;
903 #else
904 		case Opt_fault_injection:
905 			f2fs_info(sbi, "fault_injection options not supported");
906 			break;
907 
908 		case Opt_fault_type:
909 			f2fs_info(sbi, "fault_type options not supported");
910 			break;
911 #endif
912 		case Opt_lazytime:
913 			sb->s_flags |= SB_LAZYTIME;
914 			break;
915 		case Opt_nolazytime:
916 			sb->s_flags &= ~SB_LAZYTIME;
917 			break;
918 #ifdef CONFIG_QUOTA
919 		case Opt_quota:
920 		case Opt_usrquota:
921 			set_opt(sbi, USRQUOTA);
922 			break;
923 		case Opt_grpquota:
924 			set_opt(sbi, GRPQUOTA);
925 			break;
926 		case Opt_prjquota:
927 			set_opt(sbi, PRJQUOTA);
928 			break;
929 		case Opt_usrjquota:
930 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
931 			if (ret)
932 				return ret;
933 			break;
934 		case Opt_grpjquota:
935 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
936 			if (ret)
937 				return ret;
938 			break;
939 		case Opt_prjjquota:
940 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
941 			if (ret)
942 				return ret;
943 			break;
944 		case Opt_offusrjquota:
945 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
946 			if (ret)
947 				return ret;
948 			break;
949 		case Opt_offgrpjquota:
950 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
951 			if (ret)
952 				return ret;
953 			break;
954 		case Opt_offprjjquota:
955 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
956 			if (ret)
957 				return ret;
958 			break;
959 		case Opt_jqfmt_vfsold:
960 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
961 			break;
962 		case Opt_jqfmt_vfsv0:
963 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
964 			break;
965 		case Opt_jqfmt_vfsv1:
966 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
967 			break;
968 		case Opt_noquota:
969 			clear_opt(sbi, QUOTA);
970 			clear_opt(sbi, USRQUOTA);
971 			clear_opt(sbi, GRPQUOTA);
972 			clear_opt(sbi, PRJQUOTA);
973 			break;
974 #else
975 		case Opt_quota:
976 		case Opt_usrquota:
977 		case Opt_grpquota:
978 		case Opt_prjquota:
979 		case Opt_usrjquota:
980 		case Opt_grpjquota:
981 		case Opt_prjjquota:
982 		case Opt_offusrjquota:
983 		case Opt_offgrpjquota:
984 		case Opt_offprjjquota:
985 		case Opt_jqfmt_vfsold:
986 		case Opt_jqfmt_vfsv0:
987 		case Opt_jqfmt_vfsv1:
988 		case Opt_noquota:
989 			f2fs_info(sbi, "quota operations not supported");
990 			break;
991 #endif
992 		case Opt_alloc:
993 			name = match_strdup(&args[0]);
994 			if (!name)
995 				return -ENOMEM;
996 
997 			if (!strcmp(name, "default")) {
998 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
999 			} else if (!strcmp(name, "reuse")) {
1000 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
1001 			} else {
1002 				kfree(name);
1003 				return -EINVAL;
1004 			}
1005 			kfree(name);
1006 			break;
1007 		case Opt_fsync:
1008 			name = match_strdup(&args[0]);
1009 			if (!name)
1010 				return -ENOMEM;
1011 			if (!strcmp(name, "posix")) {
1012 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1013 			} else if (!strcmp(name, "strict")) {
1014 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
1015 			} else if (!strcmp(name, "nobarrier")) {
1016 				F2FS_OPTION(sbi).fsync_mode =
1017 							FSYNC_MODE_NOBARRIER;
1018 			} else {
1019 				kfree(name);
1020 				return -EINVAL;
1021 			}
1022 			kfree(name);
1023 			break;
1024 		case Opt_test_dummy_encryption:
1025 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
1026 							     is_remount);
1027 			if (ret)
1028 				return ret;
1029 			break;
1030 		case Opt_inlinecrypt:
1031 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1032 			sb->s_flags |= SB_INLINECRYPT;
1033 #else
1034 			f2fs_info(sbi, "inline encryption not supported");
1035 #endif
1036 			break;
1037 		case Opt_checkpoint_disable_cap_perc:
1038 			if (args->from && match_int(args, &arg))
1039 				return -EINVAL;
1040 			if (arg < 0 || arg > 100)
1041 				return -EINVAL;
1042 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
1043 			set_opt(sbi, DISABLE_CHECKPOINT);
1044 			break;
1045 		case Opt_checkpoint_disable_cap:
1046 			if (args->from && match_int(args, &arg))
1047 				return -EINVAL;
1048 			F2FS_OPTION(sbi).unusable_cap = arg;
1049 			set_opt(sbi, DISABLE_CHECKPOINT);
1050 			break;
1051 		case Opt_checkpoint_disable:
1052 			set_opt(sbi, DISABLE_CHECKPOINT);
1053 			break;
1054 		case Opt_checkpoint_enable:
1055 			clear_opt(sbi, DISABLE_CHECKPOINT);
1056 			break;
1057 		case Opt_checkpoint_merge:
1058 			set_opt(sbi, MERGE_CHECKPOINT);
1059 			break;
1060 		case Opt_nocheckpoint_merge:
1061 			clear_opt(sbi, MERGE_CHECKPOINT);
1062 			break;
1063 #ifdef CONFIG_F2FS_FS_COMPRESSION
1064 		case Opt_compress_algorithm:
1065 			if (!f2fs_sb_has_compression(sbi)) {
1066 				f2fs_info(sbi, "Image doesn't support compression");
1067 				break;
1068 			}
1069 			name = match_strdup(&args[0]);
1070 			if (!name)
1071 				return -ENOMEM;
1072 			if (!strcmp(name, "lzo")) {
1073 #ifdef CONFIG_F2FS_FS_LZO
1074 				F2FS_OPTION(sbi).compress_level = 0;
1075 				F2FS_OPTION(sbi).compress_algorithm =
1076 								COMPRESS_LZO;
1077 #else
1078 				f2fs_info(sbi, "kernel doesn't support lzo compression");
1079 #endif
1080 			} else if (!strncmp(name, "lz4", 3)) {
1081 #ifdef CONFIG_F2FS_FS_LZ4
1082 				ret = f2fs_set_lz4hc_level(sbi, name);
1083 				if (ret) {
1084 					kfree(name);
1085 					return -EINVAL;
1086 				}
1087 				F2FS_OPTION(sbi).compress_algorithm =
1088 								COMPRESS_LZ4;
1089 #else
1090 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
1091 #endif
1092 			} else if (!strncmp(name, "zstd", 4)) {
1093 #ifdef CONFIG_F2FS_FS_ZSTD
1094 				ret = f2fs_set_zstd_level(sbi, name);
1095 				if (ret) {
1096 					kfree(name);
1097 					return -EINVAL;
1098 				}
1099 				F2FS_OPTION(sbi).compress_algorithm =
1100 								COMPRESS_ZSTD;
1101 #else
1102 				f2fs_info(sbi, "kernel doesn't support zstd compression");
1103 #endif
1104 			} else if (!strcmp(name, "lzo-rle")) {
1105 #ifdef CONFIG_F2FS_FS_LZORLE
1106 				F2FS_OPTION(sbi).compress_level = 0;
1107 				F2FS_OPTION(sbi).compress_algorithm =
1108 								COMPRESS_LZORLE;
1109 #else
1110 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1111 #endif
1112 			} else {
1113 				kfree(name);
1114 				return -EINVAL;
1115 			}
1116 			kfree(name);
1117 			break;
1118 		case Opt_compress_log_size:
1119 			if (!f2fs_sb_has_compression(sbi)) {
1120 				f2fs_info(sbi, "Image doesn't support compression");
1121 				break;
1122 			}
1123 			if (args->from && match_int(args, &arg))
1124 				return -EINVAL;
1125 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1126 				arg > MAX_COMPRESS_LOG_SIZE) {
1127 				f2fs_err(sbi,
1128 					"Compress cluster log size is out of range");
1129 				return -EINVAL;
1130 			}
1131 			F2FS_OPTION(sbi).compress_log_size = arg;
1132 			break;
1133 		case Opt_compress_extension:
1134 			if (!f2fs_sb_has_compression(sbi)) {
1135 				f2fs_info(sbi, "Image doesn't support compression");
1136 				break;
1137 			}
1138 			name = match_strdup(&args[0]);
1139 			if (!name)
1140 				return -ENOMEM;
1141 
1142 			ext = F2FS_OPTION(sbi).extensions;
1143 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1144 
1145 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1146 				ext_cnt >= COMPRESS_EXT_NUM) {
1147 				f2fs_err(sbi,
1148 					"invalid extension length/number");
1149 				kfree(name);
1150 				return -EINVAL;
1151 			}
1152 
1153 			strcpy(ext[ext_cnt], name);
1154 			F2FS_OPTION(sbi).compress_ext_cnt++;
1155 			kfree(name);
1156 			break;
1157 		case Opt_nocompress_extension:
1158 			if (!f2fs_sb_has_compression(sbi)) {
1159 				f2fs_info(sbi, "Image doesn't support compression");
1160 				break;
1161 			}
1162 			name = match_strdup(&args[0]);
1163 			if (!name)
1164 				return -ENOMEM;
1165 
1166 			noext = F2FS_OPTION(sbi).noextensions;
1167 			noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1168 
1169 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1170 				noext_cnt >= COMPRESS_EXT_NUM) {
1171 				f2fs_err(sbi,
1172 					"invalid extension length/number");
1173 				kfree(name);
1174 				return -EINVAL;
1175 			}
1176 
1177 			strcpy(noext[noext_cnt], name);
1178 			F2FS_OPTION(sbi).nocompress_ext_cnt++;
1179 			kfree(name);
1180 			break;
1181 		case Opt_compress_chksum:
1182 			F2FS_OPTION(sbi).compress_chksum = true;
1183 			break;
1184 		case Opt_compress_mode:
1185 			name = match_strdup(&args[0]);
1186 			if (!name)
1187 				return -ENOMEM;
1188 			if (!strcmp(name, "fs")) {
1189 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1190 			} else if (!strcmp(name, "user")) {
1191 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1192 			} else {
1193 				kfree(name);
1194 				return -EINVAL;
1195 			}
1196 			kfree(name);
1197 			break;
1198 		case Opt_compress_cache:
1199 			set_opt(sbi, COMPRESS_CACHE);
1200 			break;
1201 #else
1202 		case Opt_compress_algorithm:
1203 		case Opt_compress_log_size:
1204 		case Opt_compress_extension:
1205 		case Opt_nocompress_extension:
1206 		case Opt_compress_chksum:
1207 		case Opt_compress_mode:
1208 		case Opt_compress_cache:
1209 			f2fs_info(sbi, "compression options not supported");
1210 			break;
1211 #endif
1212 		case Opt_atgc:
1213 			set_opt(sbi, ATGC);
1214 			break;
1215 		case Opt_gc_merge:
1216 			set_opt(sbi, GC_MERGE);
1217 			break;
1218 		case Opt_nogc_merge:
1219 			clear_opt(sbi, GC_MERGE);
1220 			break;
1221 		case Opt_discard_unit:
1222 			name = match_strdup(&args[0]);
1223 			if (!name)
1224 				return -ENOMEM;
1225 			if (!strcmp(name, "block")) {
1226 				F2FS_OPTION(sbi).discard_unit =
1227 						DISCARD_UNIT_BLOCK;
1228 			} else if (!strcmp(name, "segment")) {
1229 				F2FS_OPTION(sbi).discard_unit =
1230 						DISCARD_UNIT_SEGMENT;
1231 			} else if (!strcmp(name, "section")) {
1232 				F2FS_OPTION(sbi).discard_unit =
1233 						DISCARD_UNIT_SECTION;
1234 			} else {
1235 				kfree(name);
1236 				return -EINVAL;
1237 			}
1238 			kfree(name);
1239 			break;
1240 		case Opt_memory_mode:
1241 			name = match_strdup(&args[0]);
1242 			if (!name)
1243 				return -ENOMEM;
1244 			if (!strcmp(name, "normal")) {
1245 				F2FS_OPTION(sbi).memory_mode =
1246 						MEMORY_MODE_NORMAL;
1247 			} else if (!strcmp(name, "low")) {
1248 				F2FS_OPTION(sbi).memory_mode =
1249 						MEMORY_MODE_LOW;
1250 			} else {
1251 				kfree(name);
1252 				return -EINVAL;
1253 			}
1254 			kfree(name);
1255 			break;
1256 		case Opt_age_extent_cache:
1257 			set_opt(sbi, AGE_EXTENT_CACHE);
1258 			break;
1259 		default:
1260 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1261 				 p);
1262 			return -EINVAL;
1263 		}
1264 	}
1265 default_check:
1266 #ifdef CONFIG_QUOTA
1267 	if (f2fs_check_quota_options(sbi))
1268 		return -EINVAL;
1269 #else
1270 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1271 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1272 		return -EINVAL;
1273 	}
1274 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1275 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1276 		return -EINVAL;
1277 	}
1278 #endif
1279 #if !IS_ENABLED(CONFIG_UNICODE)
1280 	if (f2fs_sb_has_casefold(sbi)) {
1281 		f2fs_err(sbi,
1282 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1283 		return -EINVAL;
1284 	}
1285 #endif
1286 	/*
1287 	 * The BLKZONED feature indicates that the drive was formatted with
1288 	 * zone alignment optimization. This is optional for host-aware
1289 	 * devices, but mandatory for host-managed zoned block devices.
1290 	 */
1291 	if (f2fs_sb_has_blkzoned(sbi)) {
1292 #ifdef CONFIG_BLK_DEV_ZONED
1293 		if (F2FS_OPTION(sbi).discard_unit !=
1294 						DISCARD_UNIT_SECTION) {
1295 			f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1296 			F2FS_OPTION(sbi).discard_unit =
1297 					DISCARD_UNIT_SECTION;
1298 		}
1299 #else
1300 		f2fs_err(sbi, "Zoned block device support is not enabled");
1301 		return -EINVAL;
1302 #endif
1303 	}
1304 
1305 #ifdef CONFIG_F2FS_FS_COMPRESSION
1306 	if (f2fs_test_compress_extension(sbi)) {
1307 		f2fs_err(sbi, "invalid compress or nocompress extension");
1308 		return -EINVAL;
1309 	}
1310 #endif
1311 
1312 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1313 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1314 			 F2FS_IO_SIZE_KB(sbi));
1315 		return -EINVAL;
1316 	}
1317 
1318 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1319 		int min_size, max_size;
1320 
1321 		if (!f2fs_sb_has_extra_attr(sbi) ||
1322 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1323 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1324 			return -EINVAL;
1325 		}
1326 		if (!test_opt(sbi, INLINE_XATTR)) {
1327 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1328 			return -EINVAL;
1329 		}
1330 
1331 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1332 		max_size = MAX_INLINE_XATTR_SIZE;
1333 
1334 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1335 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1336 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1337 				 min_size, max_size);
1338 			return -EINVAL;
1339 		}
1340 	}
1341 
1342 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1343 		f2fs_err(sbi, "LFS is not compatible with checkpoint=disable");
1344 		return -EINVAL;
1345 	}
1346 
1347 	if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) {
1348 		f2fs_err(sbi, "LFS is not compatible with ATGC");
1349 		return -EINVAL;
1350 	}
1351 
1352 	if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) {
1353 		f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode");
1354 		return -EINVAL;
1355 	}
1356 
1357 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1358 		f2fs_err(sbi, "Allow to mount readonly mode only");
1359 		return -EROFS;
1360 	}
1361 	return 0;
1362 }
1363 
1364 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1365 {
1366 	struct f2fs_inode_info *fi;
1367 
1368 	if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC))
1369 		return NULL;
1370 
1371 	fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO);
1372 	if (!fi)
1373 		return NULL;
1374 
1375 	init_once((void *) fi);
1376 
1377 	/* Initialize f2fs-specific inode info */
1378 	atomic_set(&fi->dirty_pages, 0);
1379 	atomic_set(&fi->i_compr_blocks, 0);
1380 	init_f2fs_rwsem(&fi->i_sem);
1381 	spin_lock_init(&fi->i_size_lock);
1382 	INIT_LIST_HEAD(&fi->dirty_list);
1383 	INIT_LIST_HEAD(&fi->gdirty_list);
1384 	init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
1385 	init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
1386 	init_f2fs_rwsem(&fi->i_xattr_sem);
1387 
1388 	/* Will be used by directory only */
1389 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1390 
1391 	return &fi->vfs_inode;
1392 }
1393 
1394 static int f2fs_drop_inode(struct inode *inode)
1395 {
1396 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1397 	int ret;
1398 
1399 	/*
1400 	 * during filesystem shutdown, if checkpoint is disabled,
1401 	 * drop useless meta/node dirty pages.
1402 	 */
1403 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1404 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1405 			inode->i_ino == F2FS_META_INO(sbi)) {
1406 			trace_f2fs_drop_inode(inode, 1);
1407 			return 1;
1408 		}
1409 	}
1410 
1411 	/*
1412 	 * This is to avoid a deadlock condition like below.
1413 	 * writeback_single_inode(inode)
1414 	 *  - f2fs_write_data_page
1415 	 *    - f2fs_gc -> iput -> evict
1416 	 *       - inode_wait_for_writeback(inode)
1417 	 */
1418 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1419 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1420 			/* to avoid evict_inode call simultaneously */
1421 			atomic_inc(&inode->i_count);
1422 			spin_unlock(&inode->i_lock);
1423 
1424 			/* should remain fi->extent_tree for writepage */
1425 			f2fs_destroy_extent_node(inode);
1426 
1427 			sb_start_intwrite(inode->i_sb);
1428 			f2fs_i_size_write(inode, 0);
1429 
1430 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1431 					inode, NULL, 0, DATA);
1432 			truncate_inode_pages_final(inode->i_mapping);
1433 
1434 			if (F2FS_HAS_BLOCKS(inode))
1435 				f2fs_truncate(inode);
1436 
1437 			sb_end_intwrite(inode->i_sb);
1438 
1439 			spin_lock(&inode->i_lock);
1440 			atomic_dec(&inode->i_count);
1441 		}
1442 		trace_f2fs_drop_inode(inode, 0);
1443 		return 0;
1444 	}
1445 	ret = generic_drop_inode(inode);
1446 	if (!ret)
1447 		ret = fscrypt_drop_inode(inode);
1448 	trace_f2fs_drop_inode(inode, ret);
1449 	return ret;
1450 }
1451 
1452 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1453 {
1454 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1455 	int ret = 0;
1456 
1457 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1458 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1459 		ret = 1;
1460 	} else {
1461 		set_inode_flag(inode, FI_DIRTY_INODE);
1462 		stat_inc_dirty_inode(sbi, DIRTY_META);
1463 	}
1464 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1465 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1466 				&sbi->inode_list[DIRTY_META]);
1467 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1468 	}
1469 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1470 	return ret;
1471 }
1472 
1473 void f2fs_inode_synced(struct inode *inode)
1474 {
1475 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1476 
1477 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1478 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1479 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1480 		return;
1481 	}
1482 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1483 		list_del_init(&F2FS_I(inode)->gdirty_list);
1484 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1485 	}
1486 	clear_inode_flag(inode, FI_DIRTY_INODE);
1487 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1488 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1489 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1490 }
1491 
1492 /*
1493  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1494  *
1495  * We should call set_dirty_inode to write the dirty inode through write_inode.
1496  */
1497 static void f2fs_dirty_inode(struct inode *inode, int flags)
1498 {
1499 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1500 
1501 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1502 			inode->i_ino == F2FS_META_INO(sbi))
1503 		return;
1504 
1505 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1506 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1507 
1508 	f2fs_inode_dirtied(inode, false);
1509 }
1510 
1511 static void f2fs_free_inode(struct inode *inode)
1512 {
1513 	fscrypt_free_inode(inode);
1514 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1515 }
1516 
1517 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1518 {
1519 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1520 	percpu_counter_destroy(&sbi->rf_node_block_count);
1521 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1522 }
1523 
1524 static void destroy_device_list(struct f2fs_sb_info *sbi)
1525 {
1526 	int i;
1527 
1528 	for (i = 0; i < sbi->s_ndevs; i++) {
1529 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1530 #ifdef CONFIG_BLK_DEV_ZONED
1531 		kvfree(FDEV(i).blkz_seq);
1532 #endif
1533 	}
1534 	kvfree(sbi->devs);
1535 }
1536 
1537 static void f2fs_put_super(struct super_block *sb)
1538 {
1539 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1540 	int i;
1541 	bool done;
1542 
1543 	/* unregister procfs/sysfs entries in advance to avoid race case */
1544 	f2fs_unregister_sysfs(sbi);
1545 
1546 	f2fs_quota_off_umount(sb);
1547 
1548 	/* prevent remaining shrinker jobs */
1549 	mutex_lock(&sbi->umount_mutex);
1550 
1551 	/*
1552 	 * flush all issued checkpoints and stop checkpoint issue thread.
1553 	 * after then, all checkpoints should be done by each process context.
1554 	 */
1555 	f2fs_stop_ckpt_thread(sbi);
1556 
1557 	/*
1558 	 * We don't need to do checkpoint when superblock is clean.
1559 	 * But, the previous checkpoint was not done by umount, it needs to do
1560 	 * clean checkpoint again.
1561 	 */
1562 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1563 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1564 		struct cp_control cpc = {
1565 			.reason = CP_UMOUNT,
1566 		};
1567 		f2fs_write_checkpoint(sbi, &cpc);
1568 	}
1569 
1570 	/* be sure to wait for any on-going discard commands */
1571 	done = f2fs_issue_discard_timeout(sbi);
1572 	if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) {
1573 		struct cp_control cpc = {
1574 			.reason = CP_UMOUNT | CP_TRIMMED,
1575 		};
1576 		f2fs_write_checkpoint(sbi, &cpc);
1577 	}
1578 
1579 	/*
1580 	 * normally superblock is clean, so we need to release this.
1581 	 * In addition, EIO will skip do checkpoint, we need this as well.
1582 	 */
1583 	f2fs_release_ino_entry(sbi, true);
1584 
1585 	f2fs_leave_shrinker(sbi);
1586 	mutex_unlock(&sbi->umount_mutex);
1587 
1588 	/* our cp_error case, we can wait for any writeback page */
1589 	f2fs_flush_merged_writes(sbi);
1590 
1591 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1592 
1593 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1594 
1595 	f2fs_destroy_compress_inode(sbi);
1596 
1597 	iput(sbi->node_inode);
1598 	sbi->node_inode = NULL;
1599 
1600 	iput(sbi->meta_inode);
1601 	sbi->meta_inode = NULL;
1602 
1603 	/*
1604 	 * iput() can update stat information, if f2fs_write_checkpoint()
1605 	 * above failed with error.
1606 	 */
1607 	f2fs_destroy_stats(sbi);
1608 
1609 	/* destroy f2fs internal modules */
1610 	f2fs_destroy_node_manager(sbi);
1611 	f2fs_destroy_segment_manager(sbi);
1612 
1613 	f2fs_destroy_post_read_wq(sbi);
1614 
1615 	kvfree(sbi->ckpt);
1616 
1617 	sb->s_fs_info = NULL;
1618 	if (sbi->s_chksum_driver)
1619 		crypto_free_shash(sbi->s_chksum_driver);
1620 	kfree(sbi->raw_super);
1621 
1622 	destroy_device_list(sbi);
1623 	f2fs_destroy_page_array_cache(sbi);
1624 	f2fs_destroy_xattr_caches(sbi);
1625 	mempool_destroy(sbi->write_io_dummy);
1626 #ifdef CONFIG_QUOTA
1627 	for (i = 0; i < MAXQUOTAS; i++)
1628 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1629 #endif
1630 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1631 	destroy_percpu_info(sbi);
1632 	f2fs_destroy_iostat(sbi);
1633 	for (i = 0; i < NR_PAGE_TYPE; i++)
1634 		kvfree(sbi->write_io[i]);
1635 #if IS_ENABLED(CONFIG_UNICODE)
1636 	utf8_unload(sb->s_encoding);
1637 #endif
1638 	kfree(sbi);
1639 }
1640 
1641 int f2fs_sync_fs(struct super_block *sb, int sync)
1642 {
1643 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1644 	int err = 0;
1645 
1646 	if (unlikely(f2fs_cp_error(sbi)))
1647 		return 0;
1648 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1649 		return 0;
1650 
1651 	trace_f2fs_sync_fs(sb, sync);
1652 
1653 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1654 		return -EAGAIN;
1655 
1656 	if (sync)
1657 		err = f2fs_issue_checkpoint(sbi);
1658 
1659 	return err;
1660 }
1661 
1662 static int f2fs_freeze(struct super_block *sb)
1663 {
1664 	if (f2fs_readonly(sb))
1665 		return 0;
1666 
1667 	/* IO error happened before */
1668 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1669 		return -EIO;
1670 
1671 	/* must be clean, since sync_filesystem() was already called */
1672 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1673 		return -EINVAL;
1674 
1675 	/* Let's flush checkpoints and stop the thread. */
1676 	f2fs_flush_ckpt_thread(F2FS_SB(sb));
1677 
1678 	/* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
1679 	set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1680 	return 0;
1681 }
1682 
1683 static int f2fs_unfreeze(struct super_block *sb)
1684 {
1685 	clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1686 	return 0;
1687 }
1688 
1689 #ifdef CONFIG_QUOTA
1690 static int f2fs_statfs_project(struct super_block *sb,
1691 				kprojid_t projid, struct kstatfs *buf)
1692 {
1693 	struct kqid qid;
1694 	struct dquot *dquot;
1695 	u64 limit;
1696 	u64 curblock;
1697 
1698 	qid = make_kqid_projid(projid);
1699 	dquot = dqget(sb, qid);
1700 	if (IS_ERR(dquot))
1701 		return PTR_ERR(dquot);
1702 	spin_lock(&dquot->dq_dqb_lock);
1703 
1704 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1705 					dquot->dq_dqb.dqb_bhardlimit);
1706 	if (limit)
1707 		limit >>= sb->s_blocksize_bits;
1708 
1709 	if (limit && buf->f_blocks > limit) {
1710 		curblock = (dquot->dq_dqb.dqb_curspace +
1711 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1712 		buf->f_blocks = limit;
1713 		buf->f_bfree = buf->f_bavail =
1714 			(buf->f_blocks > curblock) ?
1715 			 (buf->f_blocks - curblock) : 0;
1716 	}
1717 
1718 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1719 					dquot->dq_dqb.dqb_ihardlimit);
1720 
1721 	if (limit && buf->f_files > limit) {
1722 		buf->f_files = limit;
1723 		buf->f_ffree =
1724 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1725 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1726 	}
1727 
1728 	spin_unlock(&dquot->dq_dqb_lock);
1729 	dqput(dquot);
1730 	return 0;
1731 }
1732 #endif
1733 
1734 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1735 {
1736 	struct super_block *sb = dentry->d_sb;
1737 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1738 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1739 	block_t total_count, user_block_count, start_count;
1740 	u64 avail_node_count;
1741 	unsigned int total_valid_node_count;
1742 
1743 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1744 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1745 	buf->f_type = F2FS_SUPER_MAGIC;
1746 	buf->f_bsize = sbi->blocksize;
1747 
1748 	buf->f_blocks = total_count - start_count;
1749 
1750 	spin_lock(&sbi->stat_lock);
1751 
1752 	user_block_count = sbi->user_block_count;
1753 	total_valid_node_count = valid_node_count(sbi);
1754 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1755 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1756 						sbi->current_reserved_blocks;
1757 
1758 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1759 		buf->f_bfree = 0;
1760 	else
1761 		buf->f_bfree -= sbi->unusable_block_count;
1762 	spin_unlock(&sbi->stat_lock);
1763 
1764 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1765 		buf->f_bavail = buf->f_bfree -
1766 				F2FS_OPTION(sbi).root_reserved_blocks;
1767 	else
1768 		buf->f_bavail = 0;
1769 
1770 	if (avail_node_count > user_block_count) {
1771 		buf->f_files = user_block_count;
1772 		buf->f_ffree = buf->f_bavail;
1773 	} else {
1774 		buf->f_files = avail_node_count;
1775 		buf->f_ffree = min(avail_node_count - total_valid_node_count,
1776 					buf->f_bavail);
1777 	}
1778 
1779 	buf->f_namelen = F2FS_NAME_LEN;
1780 	buf->f_fsid    = u64_to_fsid(id);
1781 
1782 #ifdef CONFIG_QUOTA
1783 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1784 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1785 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1786 	}
1787 #endif
1788 	return 0;
1789 }
1790 
1791 static inline void f2fs_show_quota_options(struct seq_file *seq,
1792 					   struct super_block *sb)
1793 {
1794 #ifdef CONFIG_QUOTA
1795 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1796 
1797 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1798 		char *fmtname = "";
1799 
1800 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1801 		case QFMT_VFS_OLD:
1802 			fmtname = "vfsold";
1803 			break;
1804 		case QFMT_VFS_V0:
1805 			fmtname = "vfsv0";
1806 			break;
1807 		case QFMT_VFS_V1:
1808 			fmtname = "vfsv1";
1809 			break;
1810 		}
1811 		seq_printf(seq, ",jqfmt=%s", fmtname);
1812 	}
1813 
1814 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1815 		seq_show_option(seq, "usrjquota",
1816 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1817 
1818 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1819 		seq_show_option(seq, "grpjquota",
1820 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1821 
1822 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1823 		seq_show_option(seq, "prjjquota",
1824 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1825 #endif
1826 }
1827 
1828 #ifdef CONFIG_F2FS_FS_COMPRESSION
1829 static inline void f2fs_show_compress_options(struct seq_file *seq,
1830 							struct super_block *sb)
1831 {
1832 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1833 	char *algtype = "";
1834 	int i;
1835 
1836 	if (!f2fs_sb_has_compression(sbi))
1837 		return;
1838 
1839 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1840 	case COMPRESS_LZO:
1841 		algtype = "lzo";
1842 		break;
1843 	case COMPRESS_LZ4:
1844 		algtype = "lz4";
1845 		break;
1846 	case COMPRESS_ZSTD:
1847 		algtype = "zstd";
1848 		break;
1849 	case COMPRESS_LZORLE:
1850 		algtype = "lzo-rle";
1851 		break;
1852 	}
1853 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1854 
1855 	if (F2FS_OPTION(sbi).compress_level)
1856 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1857 
1858 	seq_printf(seq, ",compress_log_size=%u",
1859 			F2FS_OPTION(sbi).compress_log_size);
1860 
1861 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1862 		seq_printf(seq, ",compress_extension=%s",
1863 			F2FS_OPTION(sbi).extensions[i]);
1864 	}
1865 
1866 	for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1867 		seq_printf(seq, ",nocompress_extension=%s",
1868 			F2FS_OPTION(sbi).noextensions[i]);
1869 	}
1870 
1871 	if (F2FS_OPTION(sbi).compress_chksum)
1872 		seq_puts(seq, ",compress_chksum");
1873 
1874 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1875 		seq_printf(seq, ",compress_mode=%s", "fs");
1876 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1877 		seq_printf(seq, ",compress_mode=%s", "user");
1878 
1879 	if (test_opt(sbi, COMPRESS_CACHE))
1880 		seq_puts(seq, ",compress_cache");
1881 }
1882 #endif
1883 
1884 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1885 {
1886 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1887 
1888 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1889 		seq_printf(seq, ",background_gc=%s", "sync");
1890 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1891 		seq_printf(seq, ",background_gc=%s", "on");
1892 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1893 		seq_printf(seq, ",background_gc=%s", "off");
1894 
1895 	if (test_opt(sbi, GC_MERGE))
1896 		seq_puts(seq, ",gc_merge");
1897 	else
1898 		seq_puts(seq, ",nogc_merge");
1899 
1900 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1901 		seq_puts(seq, ",disable_roll_forward");
1902 	if (test_opt(sbi, NORECOVERY))
1903 		seq_puts(seq, ",norecovery");
1904 	if (test_opt(sbi, DISCARD)) {
1905 		seq_puts(seq, ",discard");
1906 		if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
1907 			seq_printf(seq, ",discard_unit=%s", "block");
1908 		else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
1909 			seq_printf(seq, ",discard_unit=%s", "segment");
1910 		else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
1911 			seq_printf(seq, ",discard_unit=%s", "section");
1912 	} else {
1913 		seq_puts(seq, ",nodiscard");
1914 	}
1915 	if (test_opt(sbi, NOHEAP))
1916 		seq_puts(seq, ",no_heap");
1917 	else
1918 		seq_puts(seq, ",heap");
1919 #ifdef CONFIG_F2FS_FS_XATTR
1920 	if (test_opt(sbi, XATTR_USER))
1921 		seq_puts(seq, ",user_xattr");
1922 	else
1923 		seq_puts(seq, ",nouser_xattr");
1924 	if (test_opt(sbi, INLINE_XATTR))
1925 		seq_puts(seq, ",inline_xattr");
1926 	else
1927 		seq_puts(seq, ",noinline_xattr");
1928 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1929 		seq_printf(seq, ",inline_xattr_size=%u",
1930 					F2FS_OPTION(sbi).inline_xattr_size);
1931 #endif
1932 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1933 	if (test_opt(sbi, POSIX_ACL))
1934 		seq_puts(seq, ",acl");
1935 	else
1936 		seq_puts(seq, ",noacl");
1937 #endif
1938 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1939 		seq_puts(seq, ",disable_ext_identify");
1940 	if (test_opt(sbi, INLINE_DATA))
1941 		seq_puts(seq, ",inline_data");
1942 	else
1943 		seq_puts(seq, ",noinline_data");
1944 	if (test_opt(sbi, INLINE_DENTRY))
1945 		seq_puts(seq, ",inline_dentry");
1946 	else
1947 		seq_puts(seq, ",noinline_dentry");
1948 	if (test_opt(sbi, FLUSH_MERGE))
1949 		seq_puts(seq, ",flush_merge");
1950 	else
1951 		seq_puts(seq, ",noflush_merge");
1952 	if (test_opt(sbi, NOBARRIER))
1953 		seq_puts(seq, ",nobarrier");
1954 	else
1955 		seq_puts(seq, ",barrier");
1956 	if (test_opt(sbi, FASTBOOT))
1957 		seq_puts(seq, ",fastboot");
1958 	if (test_opt(sbi, READ_EXTENT_CACHE))
1959 		seq_puts(seq, ",extent_cache");
1960 	else
1961 		seq_puts(seq, ",noextent_cache");
1962 	if (test_opt(sbi, AGE_EXTENT_CACHE))
1963 		seq_puts(seq, ",age_extent_cache");
1964 	if (test_opt(sbi, DATA_FLUSH))
1965 		seq_puts(seq, ",data_flush");
1966 
1967 	seq_puts(seq, ",mode=");
1968 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1969 		seq_puts(seq, "adaptive");
1970 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1971 		seq_puts(seq, "lfs");
1972 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
1973 		seq_puts(seq, "fragment:segment");
1974 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
1975 		seq_puts(seq, "fragment:block");
1976 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1977 	if (test_opt(sbi, RESERVE_ROOT))
1978 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1979 				F2FS_OPTION(sbi).root_reserved_blocks,
1980 				from_kuid_munged(&init_user_ns,
1981 					F2FS_OPTION(sbi).s_resuid),
1982 				from_kgid_munged(&init_user_ns,
1983 					F2FS_OPTION(sbi).s_resgid));
1984 	if (F2FS_IO_SIZE_BITS(sbi))
1985 		seq_printf(seq, ",io_bits=%u",
1986 				F2FS_OPTION(sbi).write_io_size_bits);
1987 #ifdef CONFIG_F2FS_FAULT_INJECTION
1988 	if (test_opt(sbi, FAULT_INJECTION)) {
1989 		seq_printf(seq, ",fault_injection=%u",
1990 				F2FS_OPTION(sbi).fault_info.inject_rate);
1991 		seq_printf(seq, ",fault_type=%u",
1992 				F2FS_OPTION(sbi).fault_info.inject_type);
1993 	}
1994 #endif
1995 #ifdef CONFIG_QUOTA
1996 	if (test_opt(sbi, QUOTA))
1997 		seq_puts(seq, ",quota");
1998 	if (test_opt(sbi, USRQUOTA))
1999 		seq_puts(seq, ",usrquota");
2000 	if (test_opt(sbi, GRPQUOTA))
2001 		seq_puts(seq, ",grpquota");
2002 	if (test_opt(sbi, PRJQUOTA))
2003 		seq_puts(seq, ",prjquota");
2004 #endif
2005 	f2fs_show_quota_options(seq, sbi->sb);
2006 
2007 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
2008 
2009 	if (sbi->sb->s_flags & SB_INLINECRYPT)
2010 		seq_puts(seq, ",inlinecrypt");
2011 
2012 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
2013 		seq_printf(seq, ",alloc_mode=%s", "default");
2014 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2015 		seq_printf(seq, ",alloc_mode=%s", "reuse");
2016 
2017 	if (test_opt(sbi, DISABLE_CHECKPOINT))
2018 		seq_printf(seq, ",checkpoint=disable:%u",
2019 				F2FS_OPTION(sbi).unusable_cap);
2020 	if (test_opt(sbi, MERGE_CHECKPOINT))
2021 		seq_puts(seq, ",checkpoint_merge");
2022 	else
2023 		seq_puts(seq, ",nocheckpoint_merge");
2024 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
2025 		seq_printf(seq, ",fsync_mode=%s", "posix");
2026 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
2027 		seq_printf(seq, ",fsync_mode=%s", "strict");
2028 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
2029 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
2030 
2031 #ifdef CONFIG_F2FS_FS_COMPRESSION
2032 	f2fs_show_compress_options(seq, sbi->sb);
2033 #endif
2034 
2035 	if (test_opt(sbi, ATGC))
2036 		seq_puts(seq, ",atgc");
2037 
2038 	if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL)
2039 		seq_printf(seq, ",memory=%s", "normal");
2040 	else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW)
2041 		seq_printf(seq, ",memory=%s", "low");
2042 
2043 	return 0;
2044 }
2045 
2046 static void default_options(struct f2fs_sb_info *sbi)
2047 {
2048 	/* init some FS parameters */
2049 	if (f2fs_sb_has_readonly(sbi))
2050 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
2051 	else
2052 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
2053 
2054 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
2055 	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <=
2056 							SMALL_VOLUME_SEGMENTS)
2057 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2058 	else
2059 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
2060 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
2061 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2062 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2063 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
2064 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
2065 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
2066 	F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
2067 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
2068 	F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL;
2069 
2070 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
2071 
2072 	set_opt(sbi, INLINE_XATTR);
2073 	set_opt(sbi, INLINE_DATA);
2074 	set_opt(sbi, INLINE_DENTRY);
2075 	set_opt(sbi, READ_EXTENT_CACHE);
2076 	set_opt(sbi, NOHEAP);
2077 	clear_opt(sbi, DISABLE_CHECKPOINT);
2078 	set_opt(sbi, MERGE_CHECKPOINT);
2079 	F2FS_OPTION(sbi).unusable_cap = 0;
2080 	sbi->sb->s_flags |= SB_LAZYTIME;
2081 	if (!f2fs_is_readonly(sbi))
2082 		set_opt(sbi, FLUSH_MERGE);
2083 	if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2084 		set_opt(sbi, DISCARD);
2085 	if (f2fs_sb_has_blkzoned(sbi)) {
2086 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2087 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2088 	} else {
2089 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2090 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2091 	}
2092 
2093 #ifdef CONFIG_F2FS_FS_XATTR
2094 	set_opt(sbi, XATTR_USER);
2095 #endif
2096 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2097 	set_opt(sbi, POSIX_ACL);
2098 #endif
2099 
2100 	f2fs_build_fault_attr(sbi, 0, 0);
2101 }
2102 
2103 #ifdef CONFIG_QUOTA
2104 static int f2fs_enable_quotas(struct super_block *sb);
2105 #endif
2106 
2107 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2108 {
2109 	unsigned int s_flags = sbi->sb->s_flags;
2110 	struct cp_control cpc;
2111 	unsigned int gc_mode = sbi->gc_mode;
2112 	int err = 0;
2113 	int ret;
2114 	block_t unusable;
2115 
2116 	if (s_flags & SB_RDONLY) {
2117 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
2118 		return -EINVAL;
2119 	}
2120 	sbi->sb->s_flags |= SB_ACTIVE;
2121 
2122 	/* check if we need more GC first */
2123 	unusable = f2fs_get_unusable_blocks(sbi);
2124 	if (!f2fs_disable_cp_again(sbi, unusable))
2125 		goto skip_gc;
2126 
2127 	f2fs_update_time(sbi, DISABLE_TIME);
2128 
2129 	sbi->gc_mode = GC_URGENT_HIGH;
2130 
2131 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2132 		struct f2fs_gc_control gc_control = {
2133 			.victim_segno = NULL_SEGNO,
2134 			.init_gc_type = FG_GC,
2135 			.should_migrate_blocks = false,
2136 			.err_gc_skipped = true,
2137 			.nr_free_secs = 1 };
2138 
2139 		f2fs_down_write(&sbi->gc_lock);
2140 		err = f2fs_gc(sbi, &gc_control);
2141 		if (err == -ENODATA) {
2142 			err = 0;
2143 			break;
2144 		}
2145 		if (err && err != -EAGAIN)
2146 			break;
2147 	}
2148 
2149 	ret = sync_filesystem(sbi->sb);
2150 	if (ret || err) {
2151 		err = ret ? ret : err;
2152 		goto restore_flag;
2153 	}
2154 
2155 	unusable = f2fs_get_unusable_blocks(sbi);
2156 	if (f2fs_disable_cp_again(sbi, unusable)) {
2157 		err = -EAGAIN;
2158 		goto restore_flag;
2159 	}
2160 
2161 skip_gc:
2162 	f2fs_down_write(&sbi->gc_lock);
2163 	cpc.reason = CP_PAUSE;
2164 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2165 	err = f2fs_write_checkpoint(sbi, &cpc);
2166 	if (err)
2167 		goto out_unlock;
2168 
2169 	spin_lock(&sbi->stat_lock);
2170 	sbi->unusable_block_count = unusable;
2171 	spin_unlock(&sbi->stat_lock);
2172 
2173 out_unlock:
2174 	f2fs_up_write(&sbi->gc_lock);
2175 restore_flag:
2176 	sbi->gc_mode = gc_mode;
2177 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2178 	return err;
2179 }
2180 
2181 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2182 {
2183 	int retry = DEFAULT_RETRY_IO_COUNT;
2184 
2185 	/* we should flush all the data to keep data consistency */
2186 	do {
2187 		sync_inodes_sb(sbi->sb);
2188 		f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2189 	} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2190 
2191 	if (unlikely(retry < 0))
2192 		f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2193 
2194 	f2fs_down_write(&sbi->gc_lock);
2195 	f2fs_dirty_to_prefree(sbi);
2196 
2197 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2198 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2199 	f2fs_up_write(&sbi->gc_lock);
2200 
2201 	f2fs_sync_fs(sbi->sb, 1);
2202 
2203 	/* Let's ensure there's no pending checkpoint anymore */
2204 	f2fs_flush_ckpt_thread(sbi);
2205 }
2206 
2207 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2208 {
2209 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2210 	struct f2fs_mount_info org_mount_opt;
2211 	unsigned long old_sb_flags;
2212 	int err;
2213 	bool need_restart_gc = false, need_stop_gc = false;
2214 	bool need_restart_ckpt = false, need_stop_ckpt = false;
2215 	bool need_restart_flush = false, need_stop_flush = false;
2216 	bool need_restart_discard = false, need_stop_discard = false;
2217 	bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE);
2218 	bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE);
2219 	bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2220 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
2221 	bool no_atgc = !test_opt(sbi, ATGC);
2222 	bool no_discard = !test_opt(sbi, DISCARD);
2223 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2224 	bool block_unit_discard = f2fs_block_unit_discard(sbi);
2225 #ifdef CONFIG_QUOTA
2226 	int i, j;
2227 #endif
2228 
2229 	/*
2230 	 * Save the old mount options in case we
2231 	 * need to restore them.
2232 	 */
2233 	org_mount_opt = sbi->mount_opt;
2234 	old_sb_flags = sb->s_flags;
2235 
2236 #ifdef CONFIG_QUOTA
2237 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2238 	for (i = 0; i < MAXQUOTAS; i++) {
2239 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2240 			org_mount_opt.s_qf_names[i] =
2241 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2242 				GFP_KERNEL);
2243 			if (!org_mount_opt.s_qf_names[i]) {
2244 				for (j = 0; j < i; j++)
2245 					kfree(org_mount_opt.s_qf_names[j]);
2246 				return -ENOMEM;
2247 			}
2248 		} else {
2249 			org_mount_opt.s_qf_names[i] = NULL;
2250 		}
2251 	}
2252 #endif
2253 
2254 	/* recover superblocks we couldn't write due to previous RO mount */
2255 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2256 		err = f2fs_commit_super(sbi, false);
2257 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2258 			  err);
2259 		if (!err)
2260 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2261 	}
2262 
2263 	default_options(sbi);
2264 
2265 	/* parse mount options */
2266 	err = parse_options(sb, data, true);
2267 	if (err)
2268 		goto restore_opts;
2269 
2270 	/*
2271 	 * Previous and new state of filesystem is RO,
2272 	 * so skip checking GC and FLUSH_MERGE conditions.
2273 	 */
2274 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2275 		goto skip;
2276 
2277 	if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) {
2278 		err = -EROFS;
2279 		goto restore_opts;
2280 	}
2281 
2282 #ifdef CONFIG_QUOTA
2283 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2284 		err = dquot_suspend(sb, -1);
2285 		if (err < 0)
2286 			goto restore_opts;
2287 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2288 		/* dquot_resume needs RW */
2289 		sb->s_flags &= ~SB_RDONLY;
2290 		if (sb_any_quota_suspended(sb)) {
2291 			dquot_resume(sb, -1);
2292 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2293 			err = f2fs_enable_quotas(sb);
2294 			if (err)
2295 				goto restore_opts;
2296 		}
2297 	}
2298 #endif
2299 	if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) {
2300 		err = -EINVAL;
2301 		f2fs_warn(sbi, "LFS is not compatible with IPU");
2302 		goto restore_opts;
2303 	}
2304 
2305 	/* disallow enable atgc dynamically */
2306 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2307 		err = -EINVAL;
2308 		f2fs_warn(sbi, "switch atgc option is not allowed");
2309 		goto restore_opts;
2310 	}
2311 
2312 	/* disallow enable/disable extent_cache dynamically */
2313 	if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) {
2314 		err = -EINVAL;
2315 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2316 		goto restore_opts;
2317 	}
2318 	/* disallow enable/disable age extent_cache dynamically */
2319 	if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) {
2320 		err = -EINVAL;
2321 		f2fs_warn(sbi, "switch age_extent_cache option is not allowed");
2322 		goto restore_opts;
2323 	}
2324 
2325 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2326 		err = -EINVAL;
2327 		f2fs_warn(sbi, "switch io_bits option is not allowed");
2328 		goto restore_opts;
2329 	}
2330 
2331 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2332 		err = -EINVAL;
2333 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2334 		goto restore_opts;
2335 	}
2336 
2337 	if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2338 		err = -EINVAL;
2339 		f2fs_warn(sbi, "switch discard_unit option is not allowed");
2340 		goto restore_opts;
2341 	}
2342 
2343 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2344 		err = -EINVAL;
2345 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2346 		goto restore_opts;
2347 	}
2348 
2349 	/*
2350 	 * We stop the GC thread if FS is mounted as RO
2351 	 * or if background_gc = off is passed in mount
2352 	 * option. Also sync the filesystem.
2353 	 */
2354 	if ((*flags & SB_RDONLY) ||
2355 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2356 			!test_opt(sbi, GC_MERGE))) {
2357 		if (sbi->gc_thread) {
2358 			f2fs_stop_gc_thread(sbi);
2359 			need_restart_gc = true;
2360 		}
2361 	} else if (!sbi->gc_thread) {
2362 		err = f2fs_start_gc_thread(sbi);
2363 		if (err)
2364 			goto restore_opts;
2365 		need_stop_gc = true;
2366 	}
2367 
2368 	if (*flags & SB_RDONLY) {
2369 		sync_inodes_sb(sb);
2370 
2371 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2372 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2373 		f2fs_sync_fs(sb, 1);
2374 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2375 	}
2376 
2377 	if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2378 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2379 		f2fs_stop_ckpt_thread(sbi);
2380 		need_restart_ckpt = true;
2381 	} else {
2382 		/* Flush if the prevous checkpoint, if exists. */
2383 		f2fs_flush_ckpt_thread(sbi);
2384 
2385 		err = f2fs_start_ckpt_thread(sbi);
2386 		if (err) {
2387 			f2fs_err(sbi,
2388 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2389 			    err);
2390 			goto restore_gc;
2391 		}
2392 		need_stop_ckpt = true;
2393 	}
2394 
2395 	/*
2396 	 * We stop issue flush thread if FS is mounted as RO
2397 	 * or if flush_merge is not passed in mount option.
2398 	 */
2399 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2400 		clear_opt(sbi, FLUSH_MERGE);
2401 		f2fs_destroy_flush_cmd_control(sbi, false);
2402 		need_restart_flush = true;
2403 	} else {
2404 		err = f2fs_create_flush_cmd_control(sbi);
2405 		if (err)
2406 			goto restore_ckpt;
2407 		need_stop_flush = true;
2408 	}
2409 
2410 	if (no_discard == !!test_opt(sbi, DISCARD)) {
2411 		if (test_opt(sbi, DISCARD)) {
2412 			err = f2fs_start_discard_thread(sbi);
2413 			if (err)
2414 				goto restore_flush;
2415 			need_stop_discard = true;
2416 		} else {
2417 			f2fs_stop_discard_thread(sbi);
2418 			f2fs_issue_discard_timeout(sbi);
2419 			need_restart_discard = true;
2420 		}
2421 	}
2422 
2423 	if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2424 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2425 			err = f2fs_disable_checkpoint(sbi);
2426 			if (err)
2427 				goto restore_discard;
2428 		} else {
2429 			f2fs_enable_checkpoint(sbi);
2430 		}
2431 	}
2432 
2433 skip:
2434 #ifdef CONFIG_QUOTA
2435 	/* Release old quota file names */
2436 	for (i = 0; i < MAXQUOTAS; i++)
2437 		kfree(org_mount_opt.s_qf_names[i]);
2438 #endif
2439 	/* Update the POSIXACL Flag */
2440 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2441 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2442 
2443 	limit_reserve_root(sbi);
2444 	adjust_unusable_cap_perc(sbi);
2445 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2446 	return 0;
2447 restore_discard:
2448 	if (need_restart_discard) {
2449 		if (f2fs_start_discard_thread(sbi))
2450 			f2fs_warn(sbi, "discard has been stopped");
2451 	} else if (need_stop_discard) {
2452 		f2fs_stop_discard_thread(sbi);
2453 	}
2454 restore_flush:
2455 	if (need_restart_flush) {
2456 		if (f2fs_create_flush_cmd_control(sbi))
2457 			f2fs_warn(sbi, "background flush thread has stopped");
2458 	} else if (need_stop_flush) {
2459 		clear_opt(sbi, FLUSH_MERGE);
2460 		f2fs_destroy_flush_cmd_control(sbi, false);
2461 	}
2462 restore_ckpt:
2463 	if (need_restart_ckpt) {
2464 		if (f2fs_start_ckpt_thread(sbi))
2465 			f2fs_warn(sbi, "background ckpt thread has stopped");
2466 	} else if (need_stop_ckpt) {
2467 		f2fs_stop_ckpt_thread(sbi);
2468 	}
2469 restore_gc:
2470 	if (need_restart_gc) {
2471 		if (f2fs_start_gc_thread(sbi))
2472 			f2fs_warn(sbi, "background gc thread has stopped");
2473 	} else if (need_stop_gc) {
2474 		f2fs_stop_gc_thread(sbi);
2475 	}
2476 restore_opts:
2477 #ifdef CONFIG_QUOTA
2478 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2479 	for (i = 0; i < MAXQUOTAS; i++) {
2480 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2481 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2482 	}
2483 #endif
2484 	sbi->mount_opt = org_mount_opt;
2485 	sb->s_flags = old_sb_flags;
2486 	return err;
2487 }
2488 
2489 #ifdef CONFIG_QUOTA
2490 /* Read data from quotafile */
2491 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2492 			       size_t len, loff_t off)
2493 {
2494 	struct inode *inode = sb_dqopt(sb)->files[type];
2495 	struct address_space *mapping = inode->i_mapping;
2496 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2497 	int offset = off & (sb->s_blocksize - 1);
2498 	int tocopy;
2499 	size_t toread;
2500 	loff_t i_size = i_size_read(inode);
2501 	struct page *page;
2502 
2503 	if (off > i_size)
2504 		return 0;
2505 
2506 	if (off + len > i_size)
2507 		len = i_size - off;
2508 	toread = len;
2509 	while (toread > 0) {
2510 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2511 repeat:
2512 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2513 		if (IS_ERR(page)) {
2514 			if (PTR_ERR(page) == -ENOMEM) {
2515 				memalloc_retry_wait(GFP_NOFS);
2516 				goto repeat;
2517 			}
2518 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2519 			return PTR_ERR(page);
2520 		}
2521 
2522 		lock_page(page);
2523 
2524 		if (unlikely(page->mapping != mapping)) {
2525 			f2fs_put_page(page, 1);
2526 			goto repeat;
2527 		}
2528 		if (unlikely(!PageUptodate(page))) {
2529 			f2fs_put_page(page, 1);
2530 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2531 			return -EIO;
2532 		}
2533 
2534 		memcpy_from_page(data, page, offset, tocopy);
2535 		f2fs_put_page(page, 1);
2536 
2537 		offset = 0;
2538 		toread -= tocopy;
2539 		data += tocopy;
2540 		blkidx++;
2541 	}
2542 	return len;
2543 }
2544 
2545 /* Write to quotafile */
2546 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2547 				const char *data, size_t len, loff_t off)
2548 {
2549 	struct inode *inode = sb_dqopt(sb)->files[type];
2550 	struct address_space *mapping = inode->i_mapping;
2551 	const struct address_space_operations *a_ops = mapping->a_ops;
2552 	int offset = off & (sb->s_blocksize - 1);
2553 	size_t towrite = len;
2554 	struct page *page;
2555 	void *fsdata = NULL;
2556 	int err = 0;
2557 	int tocopy;
2558 
2559 	while (towrite > 0) {
2560 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2561 								towrite);
2562 retry:
2563 		err = a_ops->write_begin(NULL, mapping, off, tocopy,
2564 							&page, &fsdata);
2565 		if (unlikely(err)) {
2566 			if (err == -ENOMEM) {
2567 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2568 				goto retry;
2569 			}
2570 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2571 			break;
2572 		}
2573 
2574 		memcpy_to_page(page, offset, data, tocopy);
2575 
2576 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2577 						page, fsdata);
2578 		offset = 0;
2579 		towrite -= tocopy;
2580 		off += tocopy;
2581 		data += tocopy;
2582 		cond_resched();
2583 	}
2584 
2585 	if (len == towrite)
2586 		return err;
2587 	inode->i_mtime = inode->i_ctime = current_time(inode);
2588 	f2fs_mark_inode_dirty_sync(inode, false);
2589 	return len - towrite;
2590 }
2591 
2592 int f2fs_dquot_initialize(struct inode *inode)
2593 {
2594 	if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT))
2595 		return -ESRCH;
2596 
2597 	return dquot_initialize(inode);
2598 }
2599 
2600 static struct dquot **f2fs_get_dquots(struct inode *inode)
2601 {
2602 	return F2FS_I(inode)->i_dquot;
2603 }
2604 
2605 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2606 {
2607 	return &F2FS_I(inode)->i_reserved_quota;
2608 }
2609 
2610 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2611 {
2612 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2613 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2614 		return 0;
2615 	}
2616 
2617 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2618 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2619 }
2620 
2621 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2622 {
2623 	int enabled = 0;
2624 	int i, err;
2625 
2626 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2627 		err = f2fs_enable_quotas(sbi->sb);
2628 		if (err) {
2629 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2630 			return 0;
2631 		}
2632 		return 1;
2633 	}
2634 
2635 	for (i = 0; i < MAXQUOTAS; i++) {
2636 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2637 			err = f2fs_quota_on_mount(sbi, i);
2638 			if (!err) {
2639 				enabled = 1;
2640 				continue;
2641 			}
2642 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2643 				 err, i);
2644 		}
2645 	}
2646 	return enabled;
2647 }
2648 
2649 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2650 			     unsigned int flags)
2651 {
2652 	struct inode *qf_inode;
2653 	unsigned long qf_inum;
2654 	int err;
2655 
2656 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2657 
2658 	qf_inum = f2fs_qf_ino(sb, type);
2659 	if (!qf_inum)
2660 		return -EPERM;
2661 
2662 	qf_inode = f2fs_iget(sb, qf_inum);
2663 	if (IS_ERR(qf_inode)) {
2664 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2665 		return PTR_ERR(qf_inode);
2666 	}
2667 
2668 	/* Don't account quota for quota files to avoid recursion */
2669 	qf_inode->i_flags |= S_NOQUOTA;
2670 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2671 	iput(qf_inode);
2672 	return err;
2673 }
2674 
2675 static int f2fs_enable_quotas(struct super_block *sb)
2676 {
2677 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2678 	int type, err = 0;
2679 	unsigned long qf_inum;
2680 	bool quota_mopt[MAXQUOTAS] = {
2681 		test_opt(sbi, USRQUOTA),
2682 		test_opt(sbi, GRPQUOTA),
2683 		test_opt(sbi, PRJQUOTA),
2684 	};
2685 
2686 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2687 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2688 		return 0;
2689 	}
2690 
2691 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2692 
2693 	for (type = 0; type < MAXQUOTAS; type++) {
2694 		qf_inum = f2fs_qf_ino(sb, type);
2695 		if (qf_inum) {
2696 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2697 				DQUOT_USAGE_ENABLED |
2698 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2699 			if (err) {
2700 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2701 					 type, err);
2702 				for (type--; type >= 0; type--)
2703 					dquot_quota_off(sb, type);
2704 				set_sbi_flag(F2FS_SB(sb),
2705 						SBI_QUOTA_NEED_REPAIR);
2706 				return err;
2707 			}
2708 		}
2709 	}
2710 	return 0;
2711 }
2712 
2713 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2714 {
2715 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
2716 	struct address_space *mapping = dqopt->files[type]->i_mapping;
2717 	int ret = 0;
2718 
2719 	ret = dquot_writeback_dquots(sbi->sb, type);
2720 	if (ret)
2721 		goto out;
2722 
2723 	ret = filemap_fdatawrite(mapping);
2724 	if (ret)
2725 		goto out;
2726 
2727 	/* if we are using journalled quota */
2728 	if (is_journalled_quota(sbi))
2729 		goto out;
2730 
2731 	ret = filemap_fdatawait(mapping);
2732 
2733 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2734 out:
2735 	if (ret)
2736 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2737 	return ret;
2738 }
2739 
2740 int f2fs_quota_sync(struct super_block *sb, int type)
2741 {
2742 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2743 	struct quota_info *dqopt = sb_dqopt(sb);
2744 	int cnt;
2745 	int ret = 0;
2746 
2747 	/*
2748 	 * Now when everything is written we can discard the pagecache so
2749 	 * that userspace sees the changes.
2750 	 */
2751 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2752 
2753 		if (type != -1 && cnt != type)
2754 			continue;
2755 
2756 		if (!sb_has_quota_active(sb, cnt))
2757 			continue;
2758 
2759 		if (!f2fs_sb_has_quota_ino(sbi))
2760 			inode_lock(dqopt->files[cnt]);
2761 
2762 		/*
2763 		 * do_quotactl
2764 		 *  f2fs_quota_sync
2765 		 *  f2fs_down_read(quota_sem)
2766 		 *  dquot_writeback_dquots()
2767 		 *  f2fs_dquot_commit
2768 		 *			      block_operation
2769 		 *			      f2fs_down_read(quota_sem)
2770 		 */
2771 		f2fs_lock_op(sbi);
2772 		f2fs_down_read(&sbi->quota_sem);
2773 
2774 		ret = f2fs_quota_sync_file(sbi, cnt);
2775 
2776 		f2fs_up_read(&sbi->quota_sem);
2777 		f2fs_unlock_op(sbi);
2778 
2779 		if (!f2fs_sb_has_quota_ino(sbi))
2780 			inode_unlock(dqopt->files[cnt]);
2781 
2782 		if (ret)
2783 			break;
2784 	}
2785 	return ret;
2786 }
2787 
2788 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2789 							const struct path *path)
2790 {
2791 	struct inode *inode;
2792 	int err;
2793 
2794 	/* if quota sysfile exists, deny enabling quota with specific file */
2795 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2796 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2797 		return -EBUSY;
2798 	}
2799 
2800 	err = f2fs_quota_sync(sb, type);
2801 	if (err)
2802 		return err;
2803 
2804 	err = dquot_quota_on(sb, type, format_id, path);
2805 	if (err)
2806 		return err;
2807 
2808 	inode = d_inode(path->dentry);
2809 
2810 	inode_lock(inode);
2811 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2812 	f2fs_set_inode_flags(inode);
2813 	inode_unlock(inode);
2814 	f2fs_mark_inode_dirty_sync(inode, false);
2815 
2816 	return 0;
2817 }
2818 
2819 static int __f2fs_quota_off(struct super_block *sb, int type)
2820 {
2821 	struct inode *inode = sb_dqopt(sb)->files[type];
2822 	int err;
2823 
2824 	if (!inode || !igrab(inode))
2825 		return dquot_quota_off(sb, type);
2826 
2827 	err = f2fs_quota_sync(sb, type);
2828 	if (err)
2829 		goto out_put;
2830 
2831 	err = dquot_quota_off(sb, type);
2832 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2833 		goto out_put;
2834 
2835 	inode_lock(inode);
2836 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2837 	f2fs_set_inode_flags(inode);
2838 	inode_unlock(inode);
2839 	f2fs_mark_inode_dirty_sync(inode, false);
2840 out_put:
2841 	iput(inode);
2842 	return err;
2843 }
2844 
2845 static int f2fs_quota_off(struct super_block *sb, int type)
2846 {
2847 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2848 	int err;
2849 
2850 	err = __f2fs_quota_off(sb, type);
2851 
2852 	/*
2853 	 * quotactl can shutdown journalled quota, result in inconsistence
2854 	 * between quota record and fs data by following updates, tag the
2855 	 * flag to let fsck be aware of it.
2856 	 */
2857 	if (is_journalled_quota(sbi))
2858 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2859 	return err;
2860 }
2861 
2862 void f2fs_quota_off_umount(struct super_block *sb)
2863 {
2864 	int type;
2865 	int err;
2866 
2867 	for (type = 0; type < MAXQUOTAS; type++) {
2868 		err = __f2fs_quota_off(sb, type);
2869 		if (err) {
2870 			int ret = dquot_quota_off(sb, type);
2871 
2872 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2873 				 type, err, ret);
2874 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2875 		}
2876 	}
2877 	/*
2878 	 * In case of checkpoint=disable, we must flush quota blocks.
2879 	 * This can cause NULL exception for node_inode in end_io, since
2880 	 * put_super already dropped it.
2881 	 */
2882 	sync_filesystem(sb);
2883 }
2884 
2885 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2886 {
2887 	struct quota_info *dqopt = sb_dqopt(sb);
2888 	int type;
2889 
2890 	for (type = 0; type < MAXQUOTAS; type++) {
2891 		if (!dqopt->files[type])
2892 			continue;
2893 		f2fs_inode_synced(dqopt->files[type]);
2894 	}
2895 }
2896 
2897 static int f2fs_dquot_commit(struct dquot *dquot)
2898 {
2899 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2900 	int ret;
2901 
2902 	f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2903 	ret = dquot_commit(dquot);
2904 	if (ret < 0)
2905 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2906 	f2fs_up_read(&sbi->quota_sem);
2907 	return ret;
2908 }
2909 
2910 static int f2fs_dquot_acquire(struct dquot *dquot)
2911 {
2912 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2913 	int ret;
2914 
2915 	f2fs_down_read(&sbi->quota_sem);
2916 	ret = dquot_acquire(dquot);
2917 	if (ret < 0)
2918 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2919 	f2fs_up_read(&sbi->quota_sem);
2920 	return ret;
2921 }
2922 
2923 static int f2fs_dquot_release(struct dquot *dquot)
2924 {
2925 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2926 	int ret = dquot_release(dquot);
2927 
2928 	if (ret < 0)
2929 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2930 	return ret;
2931 }
2932 
2933 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2934 {
2935 	struct super_block *sb = dquot->dq_sb;
2936 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2937 	int ret = dquot_mark_dquot_dirty(dquot);
2938 
2939 	/* if we are using journalled quota */
2940 	if (is_journalled_quota(sbi))
2941 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2942 
2943 	return ret;
2944 }
2945 
2946 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2947 {
2948 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2949 	int ret = dquot_commit_info(sb, type);
2950 
2951 	if (ret < 0)
2952 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2953 	return ret;
2954 }
2955 
2956 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2957 {
2958 	*projid = F2FS_I(inode)->i_projid;
2959 	return 0;
2960 }
2961 
2962 static const struct dquot_operations f2fs_quota_operations = {
2963 	.get_reserved_space = f2fs_get_reserved_space,
2964 	.write_dquot	= f2fs_dquot_commit,
2965 	.acquire_dquot	= f2fs_dquot_acquire,
2966 	.release_dquot	= f2fs_dquot_release,
2967 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2968 	.write_info	= f2fs_dquot_commit_info,
2969 	.alloc_dquot	= dquot_alloc,
2970 	.destroy_dquot	= dquot_destroy,
2971 	.get_projid	= f2fs_get_projid,
2972 	.get_next_id	= dquot_get_next_id,
2973 };
2974 
2975 static const struct quotactl_ops f2fs_quotactl_ops = {
2976 	.quota_on	= f2fs_quota_on,
2977 	.quota_off	= f2fs_quota_off,
2978 	.quota_sync	= f2fs_quota_sync,
2979 	.get_state	= dquot_get_state,
2980 	.set_info	= dquot_set_dqinfo,
2981 	.get_dqblk	= dquot_get_dqblk,
2982 	.set_dqblk	= dquot_set_dqblk,
2983 	.get_nextdqblk	= dquot_get_next_dqblk,
2984 };
2985 #else
2986 int f2fs_dquot_initialize(struct inode *inode)
2987 {
2988 	return 0;
2989 }
2990 
2991 int f2fs_quota_sync(struct super_block *sb, int type)
2992 {
2993 	return 0;
2994 }
2995 
2996 void f2fs_quota_off_umount(struct super_block *sb)
2997 {
2998 }
2999 #endif
3000 
3001 static const struct super_operations f2fs_sops = {
3002 	.alloc_inode	= f2fs_alloc_inode,
3003 	.free_inode	= f2fs_free_inode,
3004 	.drop_inode	= f2fs_drop_inode,
3005 	.write_inode	= f2fs_write_inode,
3006 	.dirty_inode	= f2fs_dirty_inode,
3007 	.show_options	= f2fs_show_options,
3008 #ifdef CONFIG_QUOTA
3009 	.quota_read	= f2fs_quota_read,
3010 	.quota_write	= f2fs_quota_write,
3011 	.get_dquots	= f2fs_get_dquots,
3012 #endif
3013 	.evict_inode	= f2fs_evict_inode,
3014 	.put_super	= f2fs_put_super,
3015 	.sync_fs	= f2fs_sync_fs,
3016 	.freeze_fs	= f2fs_freeze,
3017 	.unfreeze_fs	= f2fs_unfreeze,
3018 	.statfs		= f2fs_statfs,
3019 	.remount_fs	= f2fs_remount,
3020 };
3021 
3022 #ifdef CONFIG_FS_ENCRYPTION
3023 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
3024 {
3025 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3026 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3027 				ctx, len, NULL);
3028 }
3029 
3030 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
3031 							void *fs_data)
3032 {
3033 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3034 
3035 	/*
3036 	 * Encrypting the root directory is not allowed because fsck
3037 	 * expects lost+found directory to exist and remain unencrypted
3038 	 * if LOST_FOUND feature is enabled.
3039 	 *
3040 	 */
3041 	if (f2fs_sb_has_lost_found(sbi) &&
3042 			inode->i_ino == F2FS_ROOT_INO(sbi))
3043 		return -EPERM;
3044 
3045 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3046 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3047 				ctx, len, fs_data, XATTR_CREATE);
3048 }
3049 
3050 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
3051 {
3052 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
3053 }
3054 
3055 static bool f2fs_has_stable_inodes(struct super_block *sb)
3056 {
3057 	return true;
3058 }
3059 
3060 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
3061 				       int *ino_bits_ret, int *lblk_bits_ret)
3062 {
3063 	*ino_bits_ret = 8 * sizeof(nid_t);
3064 	*lblk_bits_ret = 8 * sizeof(block_t);
3065 }
3066 
3067 static struct block_device **f2fs_get_devices(struct super_block *sb,
3068 					      unsigned int *num_devs)
3069 {
3070 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3071 	struct block_device **devs;
3072 	int i;
3073 
3074 	if (!f2fs_is_multi_device(sbi))
3075 		return NULL;
3076 
3077 	devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL);
3078 	if (!devs)
3079 		return ERR_PTR(-ENOMEM);
3080 
3081 	for (i = 0; i < sbi->s_ndevs; i++)
3082 		devs[i] = FDEV(i).bdev;
3083 	*num_devs = sbi->s_ndevs;
3084 	return devs;
3085 }
3086 
3087 static const struct fscrypt_operations f2fs_cryptops = {
3088 	.key_prefix		= "f2fs:",
3089 	.get_context		= f2fs_get_context,
3090 	.set_context		= f2fs_set_context,
3091 	.get_dummy_policy	= f2fs_get_dummy_policy,
3092 	.empty_dir		= f2fs_empty_dir,
3093 	.has_stable_inodes	= f2fs_has_stable_inodes,
3094 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
3095 	.get_devices		= f2fs_get_devices,
3096 };
3097 #endif
3098 
3099 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3100 		u64 ino, u32 generation)
3101 {
3102 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3103 	struct inode *inode;
3104 
3105 	if (f2fs_check_nid_range(sbi, ino))
3106 		return ERR_PTR(-ESTALE);
3107 
3108 	/*
3109 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
3110 	 * However f2fs_iget currently does appropriate checks to handle stale
3111 	 * inodes so everything is OK.
3112 	 */
3113 	inode = f2fs_iget(sb, ino);
3114 	if (IS_ERR(inode))
3115 		return ERR_CAST(inode);
3116 	if (unlikely(generation && inode->i_generation != generation)) {
3117 		/* we didn't find the right inode.. */
3118 		iput(inode);
3119 		return ERR_PTR(-ESTALE);
3120 	}
3121 	return inode;
3122 }
3123 
3124 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3125 		int fh_len, int fh_type)
3126 {
3127 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3128 				    f2fs_nfs_get_inode);
3129 }
3130 
3131 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3132 		int fh_len, int fh_type)
3133 {
3134 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3135 				    f2fs_nfs_get_inode);
3136 }
3137 
3138 static const struct export_operations f2fs_export_ops = {
3139 	.fh_to_dentry = f2fs_fh_to_dentry,
3140 	.fh_to_parent = f2fs_fh_to_parent,
3141 	.get_parent = f2fs_get_parent,
3142 };
3143 
3144 loff_t max_file_blocks(struct inode *inode)
3145 {
3146 	loff_t result = 0;
3147 	loff_t leaf_count;
3148 
3149 	/*
3150 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3151 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3152 	 * space in inode.i_addr, it will be more safe to reassign
3153 	 * result as zero.
3154 	 */
3155 
3156 	if (inode && f2fs_compressed_file(inode))
3157 		leaf_count = ADDRS_PER_BLOCK(inode);
3158 	else
3159 		leaf_count = DEF_ADDRS_PER_BLOCK;
3160 
3161 	/* two direct node blocks */
3162 	result += (leaf_count * 2);
3163 
3164 	/* two indirect node blocks */
3165 	leaf_count *= NIDS_PER_BLOCK;
3166 	result += (leaf_count * 2);
3167 
3168 	/* one double indirect node block */
3169 	leaf_count *= NIDS_PER_BLOCK;
3170 	result += leaf_count;
3171 
3172 	return result;
3173 }
3174 
3175 static int __f2fs_commit_super(struct buffer_head *bh,
3176 			struct f2fs_super_block *super)
3177 {
3178 	lock_buffer(bh);
3179 	if (super)
3180 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
3181 	set_buffer_dirty(bh);
3182 	unlock_buffer(bh);
3183 
3184 	/* it's rare case, we can do fua all the time */
3185 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
3186 }
3187 
3188 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3189 					struct buffer_head *bh)
3190 {
3191 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3192 					(bh->b_data + F2FS_SUPER_OFFSET);
3193 	struct super_block *sb = sbi->sb;
3194 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3195 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3196 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3197 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3198 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3199 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3200 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3201 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3202 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3203 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3204 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3205 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
3206 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3207 	u64 main_end_blkaddr = main_blkaddr +
3208 				(segment_count_main << log_blocks_per_seg);
3209 	u64 seg_end_blkaddr = segment0_blkaddr +
3210 				(segment_count << log_blocks_per_seg);
3211 
3212 	if (segment0_blkaddr != cp_blkaddr) {
3213 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3214 			  segment0_blkaddr, cp_blkaddr);
3215 		return true;
3216 	}
3217 
3218 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3219 							sit_blkaddr) {
3220 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3221 			  cp_blkaddr, sit_blkaddr,
3222 			  segment_count_ckpt << log_blocks_per_seg);
3223 		return true;
3224 	}
3225 
3226 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3227 							nat_blkaddr) {
3228 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3229 			  sit_blkaddr, nat_blkaddr,
3230 			  segment_count_sit << log_blocks_per_seg);
3231 		return true;
3232 	}
3233 
3234 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3235 							ssa_blkaddr) {
3236 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3237 			  nat_blkaddr, ssa_blkaddr,
3238 			  segment_count_nat << log_blocks_per_seg);
3239 		return true;
3240 	}
3241 
3242 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3243 							main_blkaddr) {
3244 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3245 			  ssa_blkaddr, main_blkaddr,
3246 			  segment_count_ssa << log_blocks_per_seg);
3247 		return true;
3248 	}
3249 
3250 	if (main_end_blkaddr > seg_end_blkaddr) {
3251 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3252 			  main_blkaddr, seg_end_blkaddr,
3253 			  segment_count_main << log_blocks_per_seg);
3254 		return true;
3255 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3256 		int err = 0;
3257 		char *res;
3258 
3259 		/* fix in-memory information all the time */
3260 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3261 				segment0_blkaddr) >> log_blocks_per_seg);
3262 
3263 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
3264 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3265 			res = "internally";
3266 		} else {
3267 			err = __f2fs_commit_super(bh, NULL);
3268 			res = err ? "failed" : "done";
3269 		}
3270 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3271 			  res, main_blkaddr, seg_end_blkaddr,
3272 			  segment_count_main << log_blocks_per_seg);
3273 		if (err)
3274 			return true;
3275 	}
3276 	return false;
3277 }
3278 
3279 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3280 				struct buffer_head *bh)
3281 {
3282 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3283 	block_t total_sections, blocks_per_seg;
3284 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3285 					(bh->b_data + F2FS_SUPER_OFFSET);
3286 	size_t crc_offset = 0;
3287 	__u32 crc = 0;
3288 
3289 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3290 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3291 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3292 		return -EINVAL;
3293 	}
3294 
3295 	/* Check checksum_offset and crc in superblock */
3296 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3297 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3298 		if (crc_offset !=
3299 			offsetof(struct f2fs_super_block, crc)) {
3300 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3301 				  crc_offset);
3302 			return -EFSCORRUPTED;
3303 		}
3304 		crc = le32_to_cpu(raw_super->crc);
3305 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3306 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3307 			return -EFSCORRUPTED;
3308 		}
3309 	}
3310 
3311 	/* Currently, support only 4KB block size */
3312 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3313 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3314 			  le32_to_cpu(raw_super->log_blocksize),
3315 			  F2FS_BLKSIZE_BITS);
3316 		return -EFSCORRUPTED;
3317 	}
3318 
3319 	/* check log blocks per segment */
3320 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3321 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3322 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3323 		return -EFSCORRUPTED;
3324 	}
3325 
3326 	/* Currently, support 512/1024/2048/4096 bytes sector size */
3327 	if (le32_to_cpu(raw_super->log_sectorsize) >
3328 				F2FS_MAX_LOG_SECTOR_SIZE ||
3329 		le32_to_cpu(raw_super->log_sectorsize) <
3330 				F2FS_MIN_LOG_SECTOR_SIZE) {
3331 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3332 			  le32_to_cpu(raw_super->log_sectorsize));
3333 		return -EFSCORRUPTED;
3334 	}
3335 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3336 		le32_to_cpu(raw_super->log_sectorsize) !=
3337 			F2FS_MAX_LOG_SECTOR_SIZE) {
3338 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3339 			  le32_to_cpu(raw_super->log_sectors_per_block),
3340 			  le32_to_cpu(raw_super->log_sectorsize));
3341 		return -EFSCORRUPTED;
3342 	}
3343 
3344 	segment_count = le32_to_cpu(raw_super->segment_count);
3345 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3346 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3347 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3348 	total_sections = le32_to_cpu(raw_super->section_count);
3349 
3350 	/* blocks_per_seg should be 512, given the above check */
3351 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
3352 
3353 	if (segment_count > F2FS_MAX_SEGMENT ||
3354 				segment_count < F2FS_MIN_SEGMENTS) {
3355 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3356 		return -EFSCORRUPTED;
3357 	}
3358 
3359 	if (total_sections > segment_count_main || total_sections < 1 ||
3360 			segs_per_sec > segment_count || !segs_per_sec) {
3361 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3362 			  segment_count, total_sections, segs_per_sec);
3363 		return -EFSCORRUPTED;
3364 	}
3365 
3366 	if (segment_count_main != total_sections * segs_per_sec) {
3367 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3368 			  segment_count_main, total_sections, segs_per_sec);
3369 		return -EFSCORRUPTED;
3370 	}
3371 
3372 	if ((segment_count / segs_per_sec) < total_sections) {
3373 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3374 			  segment_count, segs_per_sec, total_sections);
3375 		return -EFSCORRUPTED;
3376 	}
3377 
3378 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3379 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3380 			  segment_count, le64_to_cpu(raw_super->block_count));
3381 		return -EFSCORRUPTED;
3382 	}
3383 
3384 	if (RDEV(0).path[0]) {
3385 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3386 		int i = 1;
3387 
3388 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3389 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3390 			i++;
3391 		}
3392 		if (segment_count != dev_seg_count) {
3393 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3394 					segment_count, dev_seg_count);
3395 			return -EFSCORRUPTED;
3396 		}
3397 	} else {
3398 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3399 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3400 			f2fs_info(sbi, "Zoned block device path is missing");
3401 			return -EFSCORRUPTED;
3402 		}
3403 	}
3404 
3405 	if (secs_per_zone > total_sections || !secs_per_zone) {
3406 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3407 			  secs_per_zone, total_sections);
3408 		return -EFSCORRUPTED;
3409 	}
3410 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3411 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3412 			(le32_to_cpu(raw_super->extension_count) +
3413 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3414 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3415 			  le32_to_cpu(raw_super->extension_count),
3416 			  raw_super->hot_ext_count,
3417 			  F2FS_MAX_EXTENSION);
3418 		return -EFSCORRUPTED;
3419 	}
3420 
3421 	if (le32_to_cpu(raw_super->cp_payload) >=
3422 				(blocks_per_seg - F2FS_CP_PACKS -
3423 				NR_CURSEG_PERSIST_TYPE)) {
3424 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3425 			  le32_to_cpu(raw_super->cp_payload),
3426 			  blocks_per_seg - F2FS_CP_PACKS -
3427 			  NR_CURSEG_PERSIST_TYPE);
3428 		return -EFSCORRUPTED;
3429 	}
3430 
3431 	/* check reserved ino info */
3432 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3433 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3434 		le32_to_cpu(raw_super->root_ino) != 3) {
3435 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3436 			  le32_to_cpu(raw_super->node_ino),
3437 			  le32_to_cpu(raw_super->meta_ino),
3438 			  le32_to_cpu(raw_super->root_ino));
3439 		return -EFSCORRUPTED;
3440 	}
3441 
3442 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3443 	if (sanity_check_area_boundary(sbi, bh))
3444 		return -EFSCORRUPTED;
3445 
3446 	return 0;
3447 }
3448 
3449 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3450 {
3451 	unsigned int total, fsmeta;
3452 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3453 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3454 	unsigned int ovp_segments, reserved_segments;
3455 	unsigned int main_segs, blocks_per_seg;
3456 	unsigned int sit_segs, nat_segs;
3457 	unsigned int sit_bitmap_size, nat_bitmap_size;
3458 	unsigned int log_blocks_per_seg;
3459 	unsigned int segment_count_main;
3460 	unsigned int cp_pack_start_sum, cp_payload;
3461 	block_t user_block_count, valid_user_blocks;
3462 	block_t avail_node_count, valid_node_count;
3463 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3464 	int i, j;
3465 
3466 	total = le32_to_cpu(raw_super->segment_count);
3467 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3468 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3469 	fsmeta += sit_segs;
3470 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3471 	fsmeta += nat_segs;
3472 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3473 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3474 
3475 	if (unlikely(fsmeta >= total))
3476 		return 1;
3477 
3478 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3479 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3480 
3481 	if (!f2fs_sb_has_readonly(sbi) &&
3482 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3483 			ovp_segments == 0 || reserved_segments == 0)) {
3484 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3485 		return 1;
3486 	}
3487 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3488 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3489 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
3490 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3491 	if (!user_block_count || user_block_count >=
3492 			segment_count_main << log_blocks_per_seg) {
3493 		f2fs_err(sbi, "Wrong user_block_count: %u",
3494 			 user_block_count);
3495 		return 1;
3496 	}
3497 
3498 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3499 	if (valid_user_blocks > user_block_count) {
3500 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3501 			 valid_user_blocks, user_block_count);
3502 		return 1;
3503 	}
3504 
3505 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3506 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3507 	if (valid_node_count > avail_node_count) {
3508 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3509 			 valid_node_count, avail_node_count);
3510 		return 1;
3511 	}
3512 
3513 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3514 	blocks_per_seg = sbi->blocks_per_seg;
3515 
3516 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3517 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3518 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3519 			return 1;
3520 
3521 		if (f2fs_sb_has_readonly(sbi))
3522 			goto check_data;
3523 
3524 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3525 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3526 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3527 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3528 					 i, j,
3529 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3530 				return 1;
3531 			}
3532 		}
3533 	}
3534 check_data:
3535 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3536 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3537 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3538 			return 1;
3539 
3540 		if (f2fs_sb_has_readonly(sbi))
3541 			goto skip_cross;
3542 
3543 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3544 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3545 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3546 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3547 					 i, j,
3548 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3549 				return 1;
3550 			}
3551 		}
3552 	}
3553 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3554 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3555 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3556 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3557 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3558 					 i, j,
3559 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3560 				return 1;
3561 			}
3562 		}
3563 	}
3564 skip_cross:
3565 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3566 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3567 
3568 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3569 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3570 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3571 			 sit_bitmap_size, nat_bitmap_size);
3572 		return 1;
3573 	}
3574 
3575 	cp_pack_start_sum = __start_sum_addr(sbi);
3576 	cp_payload = __cp_payload(sbi);
3577 	if (cp_pack_start_sum < cp_payload + 1 ||
3578 		cp_pack_start_sum > blocks_per_seg - 1 -
3579 			NR_CURSEG_PERSIST_TYPE) {
3580 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3581 			 cp_pack_start_sum);
3582 		return 1;
3583 	}
3584 
3585 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3586 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3587 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3588 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3589 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3590 			  le32_to_cpu(ckpt->checksum_offset));
3591 		return 1;
3592 	}
3593 
3594 	nat_blocks = nat_segs << log_blocks_per_seg;
3595 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3596 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3597 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3598 		(cp_payload + F2FS_CP_PACKS +
3599 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3600 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3601 			  cp_payload, nat_bits_blocks);
3602 		return 1;
3603 	}
3604 
3605 	if (unlikely(f2fs_cp_error(sbi))) {
3606 		f2fs_err(sbi, "A bug case: need to run fsck");
3607 		return 1;
3608 	}
3609 	return 0;
3610 }
3611 
3612 static void init_sb_info(struct f2fs_sb_info *sbi)
3613 {
3614 	struct f2fs_super_block *raw_super = sbi->raw_super;
3615 	int i;
3616 
3617 	sbi->log_sectors_per_block =
3618 		le32_to_cpu(raw_super->log_sectors_per_block);
3619 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3620 	sbi->blocksize = 1 << sbi->log_blocksize;
3621 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3622 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3623 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3624 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3625 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3626 	sbi->total_node_count =
3627 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3628 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3629 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3630 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3631 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3632 	sbi->cur_victim_sec = NULL_SECNO;
3633 	sbi->gc_mode = GC_NORMAL;
3634 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3635 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3636 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3637 	sbi->migration_granularity = sbi->segs_per_sec;
3638 	sbi->seq_file_ra_mul = MIN_RA_MUL;
3639 	sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
3640 	sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
3641 	spin_lock_init(&sbi->gc_remaining_trials_lock);
3642 	atomic64_set(&sbi->current_atomic_write, 0);
3643 
3644 	sbi->dir_level = DEF_DIR_LEVEL;
3645 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3646 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3647 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3648 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3649 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3650 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3651 				DEF_UMOUNT_DISCARD_TIMEOUT;
3652 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3653 
3654 	for (i = 0; i < NR_COUNT_TYPE; i++)
3655 		atomic_set(&sbi->nr_pages[i], 0);
3656 
3657 	for (i = 0; i < META; i++)
3658 		atomic_set(&sbi->wb_sync_req[i], 0);
3659 
3660 	INIT_LIST_HEAD(&sbi->s_list);
3661 	mutex_init(&sbi->umount_mutex);
3662 	init_f2fs_rwsem(&sbi->io_order_lock);
3663 	spin_lock_init(&sbi->cp_lock);
3664 
3665 	sbi->dirty_device = 0;
3666 	spin_lock_init(&sbi->dev_lock);
3667 
3668 	init_f2fs_rwsem(&sbi->sb_lock);
3669 	init_f2fs_rwsem(&sbi->pin_sem);
3670 }
3671 
3672 static int init_percpu_info(struct f2fs_sb_info *sbi)
3673 {
3674 	int err;
3675 
3676 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3677 	if (err)
3678 		return err;
3679 
3680 	err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL);
3681 	if (err)
3682 		goto err_valid_block;
3683 
3684 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3685 								GFP_KERNEL);
3686 	if (err)
3687 		goto err_node_block;
3688 	return 0;
3689 
3690 err_node_block:
3691 	percpu_counter_destroy(&sbi->rf_node_block_count);
3692 err_valid_block:
3693 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
3694 	return err;
3695 }
3696 
3697 #ifdef CONFIG_BLK_DEV_ZONED
3698 
3699 struct f2fs_report_zones_args {
3700 	struct f2fs_sb_info *sbi;
3701 	struct f2fs_dev_info *dev;
3702 };
3703 
3704 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3705 			      void *data)
3706 {
3707 	struct f2fs_report_zones_args *rz_args = data;
3708 	block_t unusable_blocks = (zone->len - zone->capacity) >>
3709 					F2FS_LOG_SECTORS_PER_BLOCK;
3710 
3711 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3712 		return 0;
3713 
3714 	set_bit(idx, rz_args->dev->blkz_seq);
3715 	if (!rz_args->sbi->unusable_blocks_per_sec) {
3716 		rz_args->sbi->unusable_blocks_per_sec = unusable_blocks;
3717 		return 0;
3718 	}
3719 	if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) {
3720 		f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n");
3721 		return -EINVAL;
3722 	}
3723 	return 0;
3724 }
3725 
3726 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3727 {
3728 	struct block_device *bdev = FDEV(devi).bdev;
3729 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3730 	struct f2fs_report_zones_args rep_zone_arg;
3731 	u64 zone_sectors;
3732 	int ret;
3733 
3734 	if (!f2fs_sb_has_blkzoned(sbi))
3735 		return 0;
3736 
3737 	zone_sectors = bdev_zone_sectors(bdev);
3738 	if (!is_power_of_2(zone_sectors)) {
3739 		f2fs_err(sbi, "F2FS does not support non power of 2 zone sizes\n");
3740 		return -EINVAL;
3741 	}
3742 
3743 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3744 				SECTOR_TO_BLOCK(zone_sectors))
3745 		return -EINVAL;
3746 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors);
3747 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3748 				__ilog2_u32(sbi->blocks_per_blkz))
3749 		return -EINVAL;
3750 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3751 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3752 					sbi->log_blocks_per_blkz;
3753 	if (nr_sectors & (zone_sectors - 1))
3754 		FDEV(devi).nr_blkz++;
3755 
3756 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3757 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3758 					* sizeof(unsigned long),
3759 					GFP_KERNEL);
3760 	if (!FDEV(devi).blkz_seq)
3761 		return -ENOMEM;
3762 
3763 	rep_zone_arg.sbi = sbi;
3764 	rep_zone_arg.dev = &FDEV(devi);
3765 
3766 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3767 				  &rep_zone_arg);
3768 	if (ret < 0)
3769 		return ret;
3770 	return 0;
3771 }
3772 #endif
3773 
3774 /*
3775  * Read f2fs raw super block.
3776  * Because we have two copies of super block, so read both of them
3777  * to get the first valid one. If any one of them is broken, we pass
3778  * them recovery flag back to the caller.
3779  */
3780 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3781 			struct f2fs_super_block **raw_super,
3782 			int *valid_super_block, int *recovery)
3783 {
3784 	struct super_block *sb = sbi->sb;
3785 	int block;
3786 	struct buffer_head *bh;
3787 	struct f2fs_super_block *super;
3788 	int err = 0;
3789 
3790 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3791 	if (!super)
3792 		return -ENOMEM;
3793 
3794 	for (block = 0; block < 2; block++) {
3795 		bh = sb_bread(sb, block);
3796 		if (!bh) {
3797 			f2fs_err(sbi, "Unable to read %dth superblock",
3798 				 block + 1);
3799 			err = -EIO;
3800 			*recovery = 1;
3801 			continue;
3802 		}
3803 
3804 		/* sanity checking of raw super */
3805 		err = sanity_check_raw_super(sbi, bh);
3806 		if (err) {
3807 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3808 				 block + 1);
3809 			brelse(bh);
3810 			*recovery = 1;
3811 			continue;
3812 		}
3813 
3814 		if (!*raw_super) {
3815 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3816 							sizeof(*super));
3817 			*valid_super_block = block;
3818 			*raw_super = super;
3819 		}
3820 		brelse(bh);
3821 	}
3822 
3823 	/* No valid superblock */
3824 	if (!*raw_super)
3825 		kfree(super);
3826 	else
3827 		err = 0;
3828 
3829 	return err;
3830 }
3831 
3832 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3833 {
3834 	struct buffer_head *bh;
3835 	__u32 crc = 0;
3836 	int err;
3837 
3838 	if ((recover && f2fs_readonly(sbi->sb)) ||
3839 				bdev_read_only(sbi->sb->s_bdev)) {
3840 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3841 		return -EROFS;
3842 	}
3843 
3844 	/* we should update superblock crc here */
3845 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3846 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3847 				offsetof(struct f2fs_super_block, crc));
3848 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3849 	}
3850 
3851 	/* write back-up superblock first */
3852 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3853 	if (!bh)
3854 		return -EIO;
3855 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3856 	brelse(bh);
3857 
3858 	/* if we are in recovery path, skip writing valid superblock */
3859 	if (recover || err)
3860 		return err;
3861 
3862 	/* write current valid superblock */
3863 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3864 	if (!bh)
3865 		return -EIO;
3866 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3867 	brelse(bh);
3868 	return err;
3869 }
3870 
3871 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason)
3872 {
3873 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3874 	int err;
3875 
3876 	f2fs_down_write(&sbi->sb_lock);
3877 
3878 	if (raw_super->s_stop_reason[reason] < ((1 << BITS_PER_BYTE) - 1))
3879 		raw_super->s_stop_reason[reason]++;
3880 
3881 	err = f2fs_commit_super(sbi, false);
3882 	if (err)
3883 		f2fs_err(sbi, "f2fs_commit_super fails to record reason:%u err:%d",
3884 								reason, err);
3885 	f2fs_up_write(&sbi->sb_lock);
3886 }
3887 
3888 static void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag)
3889 {
3890 	spin_lock(&sbi->error_lock);
3891 	if (!test_bit(flag, (unsigned long *)sbi->errors)) {
3892 		set_bit(flag, (unsigned long *)sbi->errors);
3893 		sbi->error_dirty = true;
3894 	}
3895 	spin_unlock(&sbi->error_lock);
3896 }
3897 
3898 static bool f2fs_update_errors(struct f2fs_sb_info *sbi)
3899 {
3900 	bool need_update = false;
3901 
3902 	spin_lock(&sbi->error_lock);
3903 	if (sbi->error_dirty) {
3904 		memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
3905 							MAX_F2FS_ERRORS);
3906 		sbi->error_dirty = false;
3907 		need_update = true;
3908 	}
3909 	spin_unlock(&sbi->error_lock);
3910 
3911 	return need_update;
3912 }
3913 
3914 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error)
3915 {
3916 	int err;
3917 
3918 	f2fs_save_errors(sbi, error);
3919 
3920 	f2fs_down_write(&sbi->sb_lock);
3921 
3922 	if (!f2fs_update_errors(sbi))
3923 		goto out_unlock;
3924 
3925 	err = f2fs_commit_super(sbi, false);
3926 	if (err)
3927 		f2fs_err(sbi, "f2fs_commit_super fails to record errors:%u, err:%d",
3928 								error, err);
3929 out_unlock:
3930 	f2fs_up_write(&sbi->sb_lock);
3931 }
3932 
3933 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3934 {
3935 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3936 	unsigned int max_devices = MAX_DEVICES;
3937 	unsigned int logical_blksize;
3938 	int i;
3939 
3940 	/* Initialize single device information */
3941 	if (!RDEV(0).path[0]) {
3942 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3943 			return 0;
3944 		max_devices = 1;
3945 	}
3946 
3947 	/*
3948 	 * Initialize multiple devices information, or single
3949 	 * zoned block device information.
3950 	 */
3951 	sbi->devs = f2fs_kzalloc(sbi,
3952 				 array_size(max_devices,
3953 					    sizeof(struct f2fs_dev_info)),
3954 				 GFP_KERNEL);
3955 	if (!sbi->devs)
3956 		return -ENOMEM;
3957 
3958 	logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
3959 	sbi->aligned_blksize = true;
3960 
3961 	for (i = 0; i < max_devices; i++) {
3962 
3963 		if (i > 0 && !RDEV(i).path[0])
3964 			break;
3965 
3966 		if (max_devices == 1) {
3967 			/* Single zoned block device mount */
3968 			FDEV(0).bdev =
3969 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3970 					sbi->sb->s_mode, sbi->sb->s_type);
3971 		} else {
3972 			/* Multi-device mount */
3973 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3974 			FDEV(i).total_segments =
3975 				le32_to_cpu(RDEV(i).total_segments);
3976 			if (i == 0) {
3977 				FDEV(i).start_blk = 0;
3978 				FDEV(i).end_blk = FDEV(i).start_blk +
3979 				    (FDEV(i).total_segments <<
3980 				    sbi->log_blocks_per_seg) - 1 +
3981 				    le32_to_cpu(raw_super->segment0_blkaddr);
3982 			} else {
3983 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3984 				FDEV(i).end_blk = FDEV(i).start_blk +
3985 					(FDEV(i).total_segments <<
3986 					sbi->log_blocks_per_seg) - 1;
3987 			}
3988 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3989 					sbi->sb->s_mode, sbi->sb->s_type);
3990 		}
3991 		if (IS_ERR(FDEV(i).bdev))
3992 			return PTR_ERR(FDEV(i).bdev);
3993 
3994 		/* to release errored devices */
3995 		sbi->s_ndevs = i + 1;
3996 
3997 		if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
3998 			sbi->aligned_blksize = false;
3999 
4000 #ifdef CONFIG_BLK_DEV_ZONED
4001 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
4002 				!f2fs_sb_has_blkzoned(sbi)) {
4003 			f2fs_err(sbi, "Zoned block device feature not enabled");
4004 			return -EINVAL;
4005 		}
4006 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
4007 			if (init_blkz_info(sbi, i)) {
4008 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
4009 				return -EINVAL;
4010 			}
4011 			if (max_devices == 1)
4012 				break;
4013 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
4014 				  i, FDEV(i).path,
4015 				  FDEV(i).total_segments,
4016 				  FDEV(i).start_blk, FDEV(i).end_blk,
4017 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
4018 				  "Host-aware" : "Host-managed");
4019 			continue;
4020 		}
4021 #endif
4022 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
4023 			  i, FDEV(i).path,
4024 			  FDEV(i).total_segments,
4025 			  FDEV(i).start_blk, FDEV(i).end_blk);
4026 	}
4027 	f2fs_info(sbi,
4028 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
4029 	return 0;
4030 }
4031 
4032 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
4033 {
4034 #if IS_ENABLED(CONFIG_UNICODE)
4035 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
4036 		const struct f2fs_sb_encodings *encoding_info;
4037 		struct unicode_map *encoding;
4038 		__u16 encoding_flags;
4039 
4040 		encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
4041 		if (!encoding_info) {
4042 			f2fs_err(sbi,
4043 				 "Encoding requested by superblock is unknown");
4044 			return -EINVAL;
4045 		}
4046 
4047 		encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
4048 		encoding = utf8_load(encoding_info->version);
4049 		if (IS_ERR(encoding)) {
4050 			f2fs_err(sbi,
4051 				 "can't mount with superblock charset: %s-%u.%u.%u "
4052 				 "not supported by the kernel. flags: 0x%x.",
4053 				 encoding_info->name,
4054 				 unicode_major(encoding_info->version),
4055 				 unicode_minor(encoding_info->version),
4056 				 unicode_rev(encoding_info->version),
4057 				 encoding_flags);
4058 			return PTR_ERR(encoding);
4059 		}
4060 		f2fs_info(sbi, "Using encoding defined by superblock: "
4061 			 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4062 			 unicode_major(encoding_info->version),
4063 			 unicode_minor(encoding_info->version),
4064 			 unicode_rev(encoding_info->version),
4065 			 encoding_flags);
4066 
4067 		sbi->sb->s_encoding = encoding;
4068 		sbi->sb->s_encoding_flags = encoding_flags;
4069 	}
4070 #else
4071 	if (f2fs_sb_has_casefold(sbi)) {
4072 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
4073 		return -EINVAL;
4074 	}
4075 #endif
4076 	return 0;
4077 }
4078 
4079 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
4080 {
4081 	/* adjust parameters according to the volume size */
4082 	if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) {
4083 		if (f2fs_block_unit_discard(sbi))
4084 			SM_I(sbi)->dcc_info->discard_granularity =
4085 						MIN_DISCARD_GRANULARITY;
4086 		if (!f2fs_lfs_mode(sbi))
4087 			SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) |
4088 						BIT(F2FS_IPU_HONOR_OPU_WRITE);
4089 	}
4090 
4091 	sbi->readdir_ra = true;
4092 }
4093 
4094 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
4095 {
4096 	struct f2fs_sb_info *sbi;
4097 	struct f2fs_super_block *raw_super;
4098 	struct inode *root;
4099 	int err;
4100 	bool skip_recovery = false, need_fsck = false;
4101 	char *options = NULL;
4102 	int recovery, i, valid_super_block;
4103 	struct curseg_info *seg_i;
4104 	int retry_cnt = 1;
4105 
4106 try_onemore:
4107 	err = -EINVAL;
4108 	raw_super = NULL;
4109 	valid_super_block = -1;
4110 	recovery = 0;
4111 
4112 	/* allocate memory for f2fs-specific super block info */
4113 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
4114 	if (!sbi)
4115 		return -ENOMEM;
4116 
4117 	sbi->sb = sb;
4118 
4119 	/* initialize locks within allocated memory */
4120 	init_f2fs_rwsem(&sbi->gc_lock);
4121 	mutex_init(&sbi->writepages);
4122 	init_f2fs_rwsem(&sbi->cp_global_sem);
4123 	init_f2fs_rwsem(&sbi->node_write);
4124 	init_f2fs_rwsem(&sbi->node_change);
4125 	spin_lock_init(&sbi->stat_lock);
4126 	init_f2fs_rwsem(&sbi->cp_rwsem);
4127 	init_f2fs_rwsem(&sbi->quota_sem);
4128 	init_waitqueue_head(&sbi->cp_wait);
4129 	spin_lock_init(&sbi->error_lock);
4130 
4131 	for (i = 0; i < NR_INODE_TYPE; i++) {
4132 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4133 		spin_lock_init(&sbi->inode_lock[i]);
4134 	}
4135 	mutex_init(&sbi->flush_lock);
4136 
4137 	/* Load the checksum driver */
4138 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
4139 	if (IS_ERR(sbi->s_chksum_driver)) {
4140 		f2fs_err(sbi, "Cannot load crc32 driver.");
4141 		err = PTR_ERR(sbi->s_chksum_driver);
4142 		sbi->s_chksum_driver = NULL;
4143 		goto free_sbi;
4144 	}
4145 
4146 	/* set a block size */
4147 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
4148 		f2fs_err(sbi, "unable to set blocksize");
4149 		goto free_sbi;
4150 	}
4151 
4152 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
4153 								&recovery);
4154 	if (err)
4155 		goto free_sbi;
4156 
4157 	sb->s_fs_info = sbi;
4158 	sbi->raw_super = raw_super;
4159 
4160 	memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS);
4161 
4162 	/* precompute checksum seed for metadata */
4163 	if (f2fs_sb_has_inode_chksum(sbi))
4164 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
4165 						sizeof(raw_super->uuid));
4166 
4167 	default_options(sbi);
4168 	/* parse mount options */
4169 	options = kstrdup((const char *)data, GFP_KERNEL);
4170 	if (data && !options) {
4171 		err = -ENOMEM;
4172 		goto free_sb_buf;
4173 	}
4174 
4175 	err = parse_options(sb, options, false);
4176 	if (err)
4177 		goto free_options;
4178 
4179 	sb->s_maxbytes = max_file_blocks(NULL) <<
4180 				le32_to_cpu(raw_super->log_blocksize);
4181 	sb->s_max_links = F2FS_LINK_MAX;
4182 
4183 	err = f2fs_setup_casefold(sbi);
4184 	if (err)
4185 		goto free_options;
4186 
4187 #ifdef CONFIG_QUOTA
4188 	sb->dq_op = &f2fs_quota_operations;
4189 	sb->s_qcop = &f2fs_quotactl_ops;
4190 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4191 
4192 	if (f2fs_sb_has_quota_ino(sbi)) {
4193 		for (i = 0; i < MAXQUOTAS; i++) {
4194 			if (f2fs_qf_ino(sbi->sb, i))
4195 				sbi->nquota_files++;
4196 		}
4197 	}
4198 #endif
4199 
4200 	sb->s_op = &f2fs_sops;
4201 #ifdef CONFIG_FS_ENCRYPTION
4202 	sb->s_cop = &f2fs_cryptops;
4203 #endif
4204 #ifdef CONFIG_FS_VERITY
4205 	sb->s_vop = &f2fs_verityops;
4206 #endif
4207 	sb->s_xattr = f2fs_xattr_handlers;
4208 	sb->s_export_op = &f2fs_export_ops;
4209 	sb->s_magic = F2FS_SUPER_MAGIC;
4210 	sb->s_time_gran = 1;
4211 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4212 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4213 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
4214 	sb->s_iflags |= SB_I_CGROUPWB;
4215 
4216 	/* init f2fs-specific super block info */
4217 	sbi->valid_super_block = valid_super_block;
4218 
4219 	/* disallow all the data/node/meta page writes */
4220 	set_sbi_flag(sbi, SBI_POR_DOING);
4221 
4222 	err = f2fs_init_write_merge_io(sbi);
4223 	if (err)
4224 		goto free_bio_info;
4225 
4226 	init_sb_info(sbi);
4227 
4228 	err = f2fs_init_iostat(sbi);
4229 	if (err)
4230 		goto free_bio_info;
4231 
4232 	err = init_percpu_info(sbi);
4233 	if (err)
4234 		goto free_iostat;
4235 
4236 	if (F2FS_IO_ALIGNED(sbi)) {
4237 		sbi->write_io_dummy =
4238 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
4239 		if (!sbi->write_io_dummy) {
4240 			err = -ENOMEM;
4241 			goto free_percpu;
4242 		}
4243 	}
4244 
4245 	/* init per sbi slab cache */
4246 	err = f2fs_init_xattr_caches(sbi);
4247 	if (err)
4248 		goto free_io_dummy;
4249 	err = f2fs_init_page_array_cache(sbi);
4250 	if (err)
4251 		goto free_xattr_cache;
4252 
4253 	/* get an inode for meta space */
4254 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4255 	if (IS_ERR(sbi->meta_inode)) {
4256 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
4257 		err = PTR_ERR(sbi->meta_inode);
4258 		goto free_page_array_cache;
4259 	}
4260 
4261 	err = f2fs_get_valid_checkpoint(sbi);
4262 	if (err) {
4263 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4264 		goto free_meta_inode;
4265 	}
4266 
4267 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4268 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4269 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4270 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4271 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4272 	}
4273 
4274 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4275 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4276 
4277 	/* Initialize device list */
4278 	err = f2fs_scan_devices(sbi);
4279 	if (err) {
4280 		f2fs_err(sbi, "Failed to find devices");
4281 		goto free_devices;
4282 	}
4283 
4284 	err = f2fs_init_post_read_wq(sbi);
4285 	if (err) {
4286 		f2fs_err(sbi, "Failed to initialize post read workqueue");
4287 		goto free_devices;
4288 	}
4289 
4290 	sbi->total_valid_node_count =
4291 				le32_to_cpu(sbi->ckpt->valid_node_count);
4292 	percpu_counter_set(&sbi->total_valid_inode_count,
4293 				le32_to_cpu(sbi->ckpt->valid_inode_count));
4294 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4295 	sbi->total_valid_block_count =
4296 				le64_to_cpu(sbi->ckpt->valid_block_count);
4297 	sbi->last_valid_block_count = sbi->total_valid_block_count;
4298 	sbi->reserved_blocks = 0;
4299 	sbi->current_reserved_blocks = 0;
4300 	limit_reserve_root(sbi);
4301 	adjust_unusable_cap_perc(sbi);
4302 
4303 	f2fs_init_extent_cache_info(sbi);
4304 
4305 	f2fs_init_ino_entry_info(sbi);
4306 
4307 	f2fs_init_fsync_node_info(sbi);
4308 
4309 	/* setup checkpoint request control and start checkpoint issue thread */
4310 	f2fs_init_ckpt_req_control(sbi);
4311 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4312 			test_opt(sbi, MERGE_CHECKPOINT)) {
4313 		err = f2fs_start_ckpt_thread(sbi);
4314 		if (err) {
4315 			f2fs_err(sbi,
4316 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4317 			    err);
4318 			goto stop_ckpt_thread;
4319 		}
4320 	}
4321 
4322 	/* setup f2fs internal modules */
4323 	err = f2fs_build_segment_manager(sbi);
4324 	if (err) {
4325 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4326 			 err);
4327 		goto free_sm;
4328 	}
4329 	err = f2fs_build_node_manager(sbi);
4330 	if (err) {
4331 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4332 			 err);
4333 		goto free_nm;
4334 	}
4335 
4336 	err = adjust_reserved_segment(sbi);
4337 	if (err)
4338 		goto free_nm;
4339 
4340 	/* For write statistics */
4341 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4342 
4343 	/* Read accumulated write IO statistics if exists */
4344 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4345 	if (__exist_node_summaries(sbi))
4346 		sbi->kbytes_written =
4347 			le64_to_cpu(seg_i->journal->info.kbytes_written);
4348 
4349 	f2fs_build_gc_manager(sbi);
4350 
4351 	err = f2fs_build_stats(sbi);
4352 	if (err)
4353 		goto free_nm;
4354 
4355 	/* get an inode for node space */
4356 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4357 	if (IS_ERR(sbi->node_inode)) {
4358 		f2fs_err(sbi, "Failed to read node inode");
4359 		err = PTR_ERR(sbi->node_inode);
4360 		goto free_stats;
4361 	}
4362 
4363 	/* read root inode and dentry */
4364 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4365 	if (IS_ERR(root)) {
4366 		f2fs_err(sbi, "Failed to read root inode");
4367 		err = PTR_ERR(root);
4368 		goto free_node_inode;
4369 	}
4370 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4371 			!root->i_size || !root->i_nlink) {
4372 		iput(root);
4373 		err = -EINVAL;
4374 		goto free_node_inode;
4375 	}
4376 
4377 	sb->s_root = d_make_root(root); /* allocate root dentry */
4378 	if (!sb->s_root) {
4379 		err = -ENOMEM;
4380 		goto free_node_inode;
4381 	}
4382 
4383 	err = f2fs_init_compress_inode(sbi);
4384 	if (err)
4385 		goto free_root_inode;
4386 
4387 	err = f2fs_register_sysfs(sbi);
4388 	if (err)
4389 		goto free_compress_inode;
4390 
4391 #ifdef CONFIG_QUOTA
4392 	/* Enable quota usage during mount */
4393 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4394 		err = f2fs_enable_quotas(sb);
4395 		if (err)
4396 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4397 	}
4398 #endif
4399 	/* if there are any orphan inodes, free them */
4400 	err = f2fs_recover_orphan_inodes(sbi);
4401 	if (err)
4402 		goto free_meta;
4403 
4404 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4405 		goto reset_checkpoint;
4406 
4407 	/* recover fsynced data */
4408 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4409 			!test_opt(sbi, NORECOVERY)) {
4410 		/*
4411 		 * mount should be failed, when device has readonly mode, and
4412 		 * previous checkpoint was not done by clean system shutdown.
4413 		 */
4414 		if (f2fs_hw_is_readonly(sbi)) {
4415 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4416 				err = f2fs_recover_fsync_data(sbi, true);
4417 				if (err > 0) {
4418 					err = -EROFS;
4419 					f2fs_err(sbi, "Need to recover fsync data, but "
4420 						"write access unavailable, please try "
4421 						"mount w/ disable_roll_forward or norecovery");
4422 				}
4423 				if (err < 0)
4424 					goto free_meta;
4425 			}
4426 			f2fs_info(sbi, "write access unavailable, skipping recovery");
4427 			goto reset_checkpoint;
4428 		}
4429 
4430 		if (need_fsck)
4431 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4432 
4433 		if (skip_recovery)
4434 			goto reset_checkpoint;
4435 
4436 		err = f2fs_recover_fsync_data(sbi, false);
4437 		if (err < 0) {
4438 			if (err != -ENOMEM)
4439 				skip_recovery = true;
4440 			need_fsck = true;
4441 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4442 				 err);
4443 			goto free_meta;
4444 		}
4445 	} else {
4446 		err = f2fs_recover_fsync_data(sbi, true);
4447 
4448 		if (!f2fs_readonly(sb) && err > 0) {
4449 			err = -EINVAL;
4450 			f2fs_err(sbi, "Need to recover fsync data");
4451 			goto free_meta;
4452 		}
4453 	}
4454 
4455 	/*
4456 	 * If the f2fs is not readonly and fsync data recovery succeeds,
4457 	 * check zoned block devices' write pointer consistency.
4458 	 */
4459 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4460 		err = f2fs_check_write_pointer(sbi);
4461 		if (err)
4462 			goto free_meta;
4463 	}
4464 
4465 reset_checkpoint:
4466 	f2fs_init_inmem_curseg(sbi);
4467 
4468 	/* f2fs_recover_fsync_data() cleared this already */
4469 	clear_sbi_flag(sbi, SBI_POR_DOING);
4470 
4471 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4472 		err = f2fs_disable_checkpoint(sbi);
4473 		if (err)
4474 			goto sync_free_meta;
4475 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4476 		f2fs_enable_checkpoint(sbi);
4477 	}
4478 
4479 	/*
4480 	 * If filesystem is not mounted as read-only then
4481 	 * do start the gc_thread.
4482 	 */
4483 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4484 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4485 		/* After POR, we can run background GC thread.*/
4486 		err = f2fs_start_gc_thread(sbi);
4487 		if (err)
4488 			goto sync_free_meta;
4489 	}
4490 	kvfree(options);
4491 
4492 	/* recover broken superblock */
4493 	if (recovery) {
4494 		err = f2fs_commit_super(sbi, true);
4495 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4496 			  sbi->valid_super_block ? 1 : 2, err);
4497 	}
4498 
4499 	f2fs_join_shrinker(sbi);
4500 
4501 	f2fs_tuning_parameters(sbi);
4502 
4503 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4504 		    cur_cp_version(F2FS_CKPT(sbi)));
4505 	f2fs_update_time(sbi, CP_TIME);
4506 	f2fs_update_time(sbi, REQ_TIME);
4507 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4508 	return 0;
4509 
4510 sync_free_meta:
4511 	/* safe to flush all the data */
4512 	sync_filesystem(sbi->sb);
4513 	retry_cnt = 0;
4514 
4515 free_meta:
4516 #ifdef CONFIG_QUOTA
4517 	f2fs_truncate_quota_inode_pages(sb);
4518 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4519 		f2fs_quota_off_umount(sbi->sb);
4520 #endif
4521 	/*
4522 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4523 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4524 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4525 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4526 	 */
4527 	truncate_inode_pages_final(META_MAPPING(sbi));
4528 	/* evict some inodes being cached by GC */
4529 	evict_inodes(sb);
4530 	f2fs_unregister_sysfs(sbi);
4531 free_compress_inode:
4532 	f2fs_destroy_compress_inode(sbi);
4533 free_root_inode:
4534 	dput(sb->s_root);
4535 	sb->s_root = NULL;
4536 free_node_inode:
4537 	f2fs_release_ino_entry(sbi, true);
4538 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4539 	iput(sbi->node_inode);
4540 	sbi->node_inode = NULL;
4541 free_stats:
4542 	f2fs_destroy_stats(sbi);
4543 free_nm:
4544 	/* stop discard thread before destroying node manager */
4545 	f2fs_stop_discard_thread(sbi);
4546 	f2fs_destroy_node_manager(sbi);
4547 free_sm:
4548 	f2fs_destroy_segment_manager(sbi);
4549 stop_ckpt_thread:
4550 	f2fs_stop_ckpt_thread(sbi);
4551 	f2fs_destroy_post_read_wq(sbi);
4552 free_devices:
4553 	destroy_device_list(sbi);
4554 	kvfree(sbi->ckpt);
4555 free_meta_inode:
4556 	make_bad_inode(sbi->meta_inode);
4557 	iput(sbi->meta_inode);
4558 	sbi->meta_inode = NULL;
4559 free_page_array_cache:
4560 	f2fs_destroy_page_array_cache(sbi);
4561 free_xattr_cache:
4562 	f2fs_destroy_xattr_caches(sbi);
4563 free_io_dummy:
4564 	mempool_destroy(sbi->write_io_dummy);
4565 free_percpu:
4566 	destroy_percpu_info(sbi);
4567 free_iostat:
4568 	f2fs_destroy_iostat(sbi);
4569 free_bio_info:
4570 	for (i = 0; i < NR_PAGE_TYPE; i++)
4571 		kvfree(sbi->write_io[i]);
4572 
4573 #if IS_ENABLED(CONFIG_UNICODE)
4574 	utf8_unload(sb->s_encoding);
4575 	sb->s_encoding = NULL;
4576 #endif
4577 free_options:
4578 #ifdef CONFIG_QUOTA
4579 	for (i = 0; i < MAXQUOTAS; i++)
4580 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4581 #endif
4582 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4583 	kvfree(options);
4584 free_sb_buf:
4585 	kfree(raw_super);
4586 free_sbi:
4587 	if (sbi->s_chksum_driver)
4588 		crypto_free_shash(sbi->s_chksum_driver);
4589 	kfree(sbi);
4590 
4591 	/* give only one another chance */
4592 	if (retry_cnt > 0 && skip_recovery) {
4593 		retry_cnt--;
4594 		shrink_dcache_sb(sb);
4595 		goto try_onemore;
4596 	}
4597 	return err;
4598 }
4599 
4600 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4601 			const char *dev_name, void *data)
4602 {
4603 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4604 }
4605 
4606 static void kill_f2fs_super(struct super_block *sb)
4607 {
4608 	if (sb->s_root) {
4609 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4610 
4611 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4612 		f2fs_stop_gc_thread(sbi);
4613 		f2fs_stop_discard_thread(sbi);
4614 
4615 #ifdef CONFIG_F2FS_FS_COMPRESSION
4616 		/*
4617 		 * latter evict_inode() can bypass checking and invalidating
4618 		 * compress inode cache.
4619 		 */
4620 		if (test_opt(sbi, COMPRESS_CACHE))
4621 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4622 #endif
4623 
4624 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4625 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4626 			struct cp_control cpc = {
4627 				.reason = CP_UMOUNT,
4628 			};
4629 			f2fs_write_checkpoint(sbi, &cpc);
4630 		}
4631 
4632 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4633 			sb->s_flags &= ~SB_RDONLY;
4634 	}
4635 	kill_block_super(sb);
4636 }
4637 
4638 static struct file_system_type f2fs_fs_type = {
4639 	.owner		= THIS_MODULE,
4640 	.name		= "f2fs",
4641 	.mount		= f2fs_mount,
4642 	.kill_sb	= kill_f2fs_super,
4643 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
4644 };
4645 MODULE_ALIAS_FS("f2fs");
4646 
4647 static int __init init_inodecache(void)
4648 {
4649 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4650 			sizeof(struct f2fs_inode_info), 0,
4651 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4652 	return f2fs_inode_cachep ? 0 : -ENOMEM;
4653 }
4654 
4655 static void destroy_inodecache(void)
4656 {
4657 	/*
4658 	 * Make sure all delayed rcu free inodes are flushed before we
4659 	 * destroy cache.
4660 	 */
4661 	rcu_barrier();
4662 	kmem_cache_destroy(f2fs_inode_cachep);
4663 }
4664 
4665 static int __init init_f2fs_fs(void)
4666 {
4667 	int err;
4668 
4669 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4670 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4671 				PAGE_SIZE, F2FS_BLKSIZE);
4672 		return -EINVAL;
4673 	}
4674 
4675 	err = init_inodecache();
4676 	if (err)
4677 		goto fail;
4678 	err = f2fs_create_node_manager_caches();
4679 	if (err)
4680 		goto free_inodecache;
4681 	err = f2fs_create_segment_manager_caches();
4682 	if (err)
4683 		goto free_node_manager_caches;
4684 	err = f2fs_create_checkpoint_caches();
4685 	if (err)
4686 		goto free_segment_manager_caches;
4687 	err = f2fs_create_recovery_cache();
4688 	if (err)
4689 		goto free_checkpoint_caches;
4690 	err = f2fs_create_extent_cache();
4691 	if (err)
4692 		goto free_recovery_cache;
4693 	err = f2fs_create_garbage_collection_cache();
4694 	if (err)
4695 		goto free_extent_cache;
4696 	err = f2fs_init_sysfs();
4697 	if (err)
4698 		goto free_garbage_collection_cache;
4699 	err = register_shrinker(&f2fs_shrinker_info, "f2fs-shrinker");
4700 	if (err)
4701 		goto free_sysfs;
4702 	err = register_filesystem(&f2fs_fs_type);
4703 	if (err)
4704 		goto free_shrinker;
4705 	f2fs_create_root_stats();
4706 	err = f2fs_init_post_read_processing();
4707 	if (err)
4708 		goto free_root_stats;
4709 	err = f2fs_init_iostat_processing();
4710 	if (err)
4711 		goto free_post_read;
4712 	err = f2fs_init_bio_entry_cache();
4713 	if (err)
4714 		goto free_iostat;
4715 	err = f2fs_init_bioset();
4716 	if (err)
4717 		goto free_bio_entry_cache;
4718 	err = f2fs_init_compress_mempool();
4719 	if (err)
4720 		goto free_bioset;
4721 	err = f2fs_init_compress_cache();
4722 	if (err)
4723 		goto free_compress_mempool;
4724 	err = f2fs_create_casefold_cache();
4725 	if (err)
4726 		goto free_compress_cache;
4727 	return 0;
4728 free_compress_cache:
4729 	f2fs_destroy_compress_cache();
4730 free_compress_mempool:
4731 	f2fs_destroy_compress_mempool();
4732 free_bioset:
4733 	f2fs_destroy_bioset();
4734 free_bio_entry_cache:
4735 	f2fs_destroy_bio_entry_cache();
4736 free_iostat:
4737 	f2fs_destroy_iostat_processing();
4738 free_post_read:
4739 	f2fs_destroy_post_read_processing();
4740 free_root_stats:
4741 	f2fs_destroy_root_stats();
4742 	unregister_filesystem(&f2fs_fs_type);
4743 free_shrinker:
4744 	unregister_shrinker(&f2fs_shrinker_info);
4745 free_sysfs:
4746 	f2fs_exit_sysfs();
4747 free_garbage_collection_cache:
4748 	f2fs_destroy_garbage_collection_cache();
4749 free_extent_cache:
4750 	f2fs_destroy_extent_cache();
4751 free_recovery_cache:
4752 	f2fs_destroy_recovery_cache();
4753 free_checkpoint_caches:
4754 	f2fs_destroy_checkpoint_caches();
4755 free_segment_manager_caches:
4756 	f2fs_destroy_segment_manager_caches();
4757 free_node_manager_caches:
4758 	f2fs_destroy_node_manager_caches();
4759 free_inodecache:
4760 	destroy_inodecache();
4761 fail:
4762 	return err;
4763 }
4764 
4765 static void __exit exit_f2fs_fs(void)
4766 {
4767 	f2fs_destroy_casefold_cache();
4768 	f2fs_destroy_compress_cache();
4769 	f2fs_destroy_compress_mempool();
4770 	f2fs_destroy_bioset();
4771 	f2fs_destroy_bio_entry_cache();
4772 	f2fs_destroy_iostat_processing();
4773 	f2fs_destroy_post_read_processing();
4774 	f2fs_destroy_root_stats();
4775 	unregister_filesystem(&f2fs_fs_type);
4776 	unregister_shrinker(&f2fs_shrinker_info);
4777 	f2fs_exit_sysfs();
4778 	f2fs_destroy_garbage_collection_cache();
4779 	f2fs_destroy_extent_cache();
4780 	f2fs_destroy_recovery_cache();
4781 	f2fs_destroy_checkpoint_caches();
4782 	f2fs_destroy_segment_manager_caches();
4783 	f2fs_destroy_node_manager_caches();
4784 	destroy_inodecache();
4785 }
4786 
4787 module_init(init_f2fs_fs)
4788 module_exit(exit_f2fs_fs)
4789 
4790 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4791 MODULE_DESCRIPTION("Flash Friendly File System");
4792 MODULE_LICENSE("GPL");
4793 MODULE_SOFTDEP("pre: crc32");
4794 
4795