1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/f2fs.h> 36 37 static struct proc_dir_entry *f2fs_proc_root; 38 static struct kmem_cache *f2fs_inode_cachep; 39 static struct kset *f2fs_kset; 40 41 enum { 42 Opt_gc_background, 43 Opt_disable_roll_forward, 44 Opt_discard, 45 Opt_noheap, 46 Opt_user_xattr, 47 Opt_nouser_xattr, 48 Opt_acl, 49 Opt_noacl, 50 Opt_active_logs, 51 Opt_disable_ext_identify, 52 Opt_inline_xattr, 53 Opt_inline_data, 54 Opt_err, 55 }; 56 57 static match_table_t f2fs_tokens = { 58 {Opt_gc_background, "background_gc=%s"}, 59 {Opt_disable_roll_forward, "disable_roll_forward"}, 60 {Opt_discard, "discard"}, 61 {Opt_noheap, "no_heap"}, 62 {Opt_user_xattr, "user_xattr"}, 63 {Opt_nouser_xattr, "nouser_xattr"}, 64 {Opt_acl, "acl"}, 65 {Opt_noacl, "noacl"}, 66 {Opt_active_logs, "active_logs=%u"}, 67 {Opt_disable_ext_identify, "disable_ext_identify"}, 68 {Opt_inline_xattr, "inline_xattr"}, 69 {Opt_inline_data, "inline_data"}, 70 {Opt_err, NULL}, 71 }; 72 73 /* Sysfs support for f2fs */ 74 enum { 75 GC_THREAD, /* struct f2fs_gc_thread */ 76 SM_INFO, /* struct f2fs_sm_info */ 77 F2FS_SBI, /* struct f2fs_sb_info */ 78 }; 79 80 struct f2fs_attr { 81 struct attribute attr; 82 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 83 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 84 const char *, size_t); 85 int struct_type; 86 int offset; 87 }; 88 89 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 90 { 91 if (struct_type == GC_THREAD) 92 return (unsigned char *)sbi->gc_thread; 93 else if (struct_type == SM_INFO) 94 return (unsigned char *)SM_I(sbi); 95 else if (struct_type == F2FS_SBI) 96 return (unsigned char *)sbi; 97 return NULL; 98 } 99 100 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 101 struct f2fs_sb_info *sbi, char *buf) 102 { 103 unsigned char *ptr = NULL; 104 unsigned int *ui; 105 106 ptr = __struct_ptr(sbi, a->struct_type); 107 if (!ptr) 108 return -EINVAL; 109 110 ui = (unsigned int *)(ptr + a->offset); 111 112 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 113 } 114 115 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 116 struct f2fs_sb_info *sbi, 117 const char *buf, size_t count) 118 { 119 unsigned char *ptr; 120 unsigned long t; 121 unsigned int *ui; 122 ssize_t ret; 123 124 ptr = __struct_ptr(sbi, a->struct_type); 125 if (!ptr) 126 return -EINVAL; 127 128 ui = (unsigned int *)(ptr + a->offset); 129 130 ret = kstrtoul(skip_spaces(buf), 0, &t); 131 if (ret < 0) 132 return ret; 133 *ui = t; 134 return count; 135 } 136 137 static ssize_t f2fs_attr_show(struct kobject *kobj, 138 struct attribute *attr, char *buf) 139 { 140 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 141 s_kobj); 142 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 143 144 return a->show ? a->show(a, sbi, buf) : 0; 145 } 146 147 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 148 const char *buf, size_t len) 149 { 150 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 151 s_kobj); 152 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 153 154 return a->store ? a->store(a, sbi, buf, len) : 0; 155 } 156 157 static void f2fs_sb_release(struct kobject *kobj) 158 { 159 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 160 s_kobj); 161 complete(&sbi->s_kobj_unregister); 162 } 163 164 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 165 static struct f2fs_attr f2fs_attr_##_name = { \ 166 .attr = {.name = __stringify(_name), .mode = _mode }, \ 167 .show = _show, \ 168 .store = _store, \ 169 .struct_type = _struct_type, \ 170 .offset = _offset \ 171 } 172 173 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 174 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 175 f2fs_sbi_show, f2fs_sbi_store, \ 176 offsetof(struct struct_name, elname)) 177 178 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 179 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 180 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 181 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 182 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 183 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 184 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 185 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 186 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 187 188 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 189 static struct attribute *f2fs_attrs[] = { 190 ATTR_LIST(gc_min_sleep_time), 191 ATTR_LIST(gc_max_sleep_time), 192 ATTR_LIST(gc_no_gc_sleep_time), 193 ATTR_LIST(gc_idle), 194 ATTR_LIST(reclaim_segments), 195 ATTR_LIST(max_small_discards), 196 ATTR_LIST(ipu_policy), 197 ATTR_LIST(min_ipu_util), 198 ATTR_LIST(max_victim_search), 199 NULL, 200 }; 201 202 static const struct sysfs_ops f2fs_attr_ops = { 203 .show = f2fs_attr_show, 204 .store = f2fs_attr_store, 205 }; 206 207 static struct kobj_type f2fs_ktype = { 208 .default_attrs = f2fs_attrs, 209 .sysfs_ops = &f2fs_attr_ops, 210 .release = f2fs_sb_release, 211 }; 212 213 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 214 { 215 struct va_format vaf; 216 va_list args; 217 218 va_start(args, fmt); 219 vaf.fmt = fmt; 220 vaf.va = &args; 221 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 222 va_end(args); 223 } 224 225 static void init_once(void *foo) 226 { 227 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 228 229 inode_init_once(&fi->vfs_inode); 230 } 231 232 static int parse_options(struct super_block *sb, char *options) 233 { 234 struct f2fs_sb_info *sbi = F2FS_SB(sb); 235 substring_t args[MAX_OPT_ARGS]; 236 char *p, *name; 237 int arg = 0; 238 239 if (!options) 240 return 0; 241 242 while ((p = strsep(&options, ",")) != NULL) { 243 int token; 244 if (!*p) 245 continue; 246 /* 247 * Initialize args struct so we know whether arg was 248 * found; some options take optional arguments. 249 */ 250 args[0].to = args[0].from = NULL; 251 token = match_token(p, f2fs_tokens, args); 252 253 switch (token) { 254 case Opt_gc_background: 255 name = match_strdup(&args[0]); 256 257 if (!name) 258 return -ENOMEM; 259 if (!strncmp(name, "on", 2)) 260 set_opt(sbi, BG_GC); 261 else if (!strncmp(name, "off", 3)) 262 clear_opt(sbi, BG_GC); 263 else { 264 kfree(name); 265 return -EINVAL; 266 } 267 kfree(name); 268 break; 269 case Opt_disable_roll_forward: 270 set_opt(sbi, DISABLE_ROLL_FORWARD); 271 break; 272 case Opt_discard: 273 set_opt(sbi, DISCARD); 274 break; 275 case Opt_noheap: 276 set_opt(sbi, NOHEAP); 277 break; 278 #ifdef CONFIG_F2FS_FS_XATTR 279 case Opt_user_xattr: 280 set_opt(sbi, XATTR_USER); 281 break; 282 case Opt_nouser_xattr: 283 clear_opt(sbi, XATTR_USER); 284 break; 285 case Opt_inline_xattr: 286 set_opt(sbi, INLINE_XATTR); 287 break; 288 #else 289 case Opt_user_xattr: 290 f2fs_msg(sb, KERN_INFO, 291 "user_xattr options not supported"); 292 break; 293 case Opt_nouser_xattr: 294 f2fs_msg(sb, KERN_INFO, 295 "nouser_xattr options not supported"); 296 break; 297 case Opt_inline_xattr: 298 f2fs_msg(sb, KERN_INFO, 299 "inline_xattr options not supported"); 300 break; 301 #endif 302 #ifdef CONFIG_F2FS_FS_POSIX_ACL 303 case Opt_acl: 304 set_opt(sbi, POSIX_ACL); 305 break; 306 case Opt_noacl: 307 clear_opt(sbi, POSIX_ACL); 308 break; 309 #else 310 case Opt_acl: 311 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 312 break; 313 case Opt_noacl: 314 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 315 break; 316 #endif 317 case Opt_active_logs: 318 if (args->from && match_int(args, &arg)) 319 return -EINVAL; 320 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 321 return -EINVAL; 322 sbi->active_logs = arg; 323 break; 324 case Opt_disable_ext_identify: 325 set_opt(sbi, DISABLE_EXT_IDENTIFY); 326 break; 327 case Opt_inline_data: 328 set_opt(sbi, INLINE_DATA); 329 break; 330 default: 331 f2fs_msg(sb, KERN_ERR, 332 "Unrecognized mount option \"%s\" or missing value", 333 p); 334 return -EINVAL; 335 } 336 } 337 return 0; 338 } 339 340 static struct inode *f2fs_alloc_inode(struct super_block *sb) 341 { 342 struct f2fs_inode_info *fi; 343 344 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 345 if (!fi) 346 return NULL; 347 348 init_once((void *) fi); 349 350 /* Initialize f2fs-specific inode info */ 351 fi->vfs_inode.i_version = 1; 352 atomic_set(&fi->dirty_dents, 0); 353 fi->i_current_depth = 1; 354 fi->i_advise = 0; 355 rwlock_init(&fi->ext.ext_lock); 356 357 set_inode_flag(fi, FI_NEW_INODE); 358 359 if (test_opt(F2FS_SB(sb), INLINE_XATTR)) 360 set_inode_flag(fi, FI_INLINE_XATTR); 361 362 return &fi->vfs_inode; 363 } 364 365 static int f2fs_drop_inode(struct inode *inode) 366 { 367 /* 368 * This is to avoid a deadlock condition like below. 369 * writeback_single_inode(inode) 370 * - f2fs_write_data_page 371 * - f2fs_gc -> iput -> evict 372 * - inode_wait_for_writeback(inode) 373 */ 374 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) 375 return 0; 376 return generic_drop_inode(inode); 377 } 378 379 /* 380 * f2fs_dirty_inode() is called from __mark_inode_dirty() 381 * 382 * We should call set_dirty_inode to write the dirty inode through write_inode. 383 */ 384 static void f2fs_dirty_inode(struct inode *inode, int flags) 385 { 386 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 387 } 388 389 static void f2fs_i_callback(struct rcu_head *head) 390 { 391 struct inode *inode = container_of(head, struct inode, i_rcu); 392 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 393 } 394 395 static void f2fs_destroy_inode(struct inode *inode) 396 { 397 call_rcu(&inode->i_rcu, f2fs_i_callback); 398 } 399 400 static void f2fs_put_super(struct super_block *sb) 401 { 402 struct f2fs_sb_info *sbi = F2FS_SB(sb); 403 404 if (sbi->s_proc) { 405 remove_proc_entry("segment_info", sbi->s_proc); 406 remove_proc_entry(sb->s_id, f2fs_proc_root); 407 } 408 kobject_del(&sbi->s_kobj); 409 410 f2fs_destroy_stats(sbi); 411 stop_gc_thread(sbi); 412 413 /* We don't need to do checkpoint when it's clean */ 414 if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES)) 415 write_checkpoint(sbi, true); 416 417 iput(sbi->node_inode); 418 iput(sbi->meta_inode); 419 420 /* destroy f2fs internal modules */ 421 destroy_node_manager(sbi); 422 destroy_segment_manager(sbi); 423 424 kfree(sbi->ckpt); 425 kobject_put(&sbi->s_kobj); 426 wait_for_completion(&sbi->s_kobj_unregister); 427 428 sb->s_fs_info = NULL; 429 brelse(sbi->raw_super_buf); 430 kfree(sbi); 431 } 432 433 int f2fs_sync_fs(struct super_block *sb, int sync) 434 { 435 struct f2fs_sb_info *sbi = F2FS_SB(sb); 436 437 trace_f2fs_sync_fs(sb, sync); 438 439 if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES)) 440 return 0; 441 442 if (sync) { 443 mutex_lock(&sbi->gc_mutex); 444 write_checkpoint(sbi, false); 445 mutex_unlock(&sbi->gc_mutex); 446 } else { 447 f2fs_balance_fs(sbi); 448 } 449 450 return 0; 451 } 452 453 static int f2fs_freeze(struct super_block *sb) 454 { 455 int err; 456 457 if (f2fs_readonly(sb)) 458 return 0; 459 460 err = f2fs_sync_fs(sb, 1); 461 return err; 462 } 463 464 static int f2fs_unfreeze(struct super_block *sb) 465 { 466 return 0; 467 } 468 469 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 470 { 471 struct super_block *sb = dentry->d_sb; 472 struct f2fs_sb_info *sbi = F2FS_SB(sb); 473 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 474 block_t total_count, user_block_count, start_count, ovp_count; 475 476 total_count = le64_to_cpu(sbi->raw_super->block_count); 477 user_block_count = sbi->user_block_count; 478 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 479 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 480 buf->f_type = F2FS_SUPER_MAGIC; 481 buf->f_bsize = sbi->blocksize; 482 483 buf->f_blocks = total_count - start_count; 484 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; 485 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 486 487 buf->f_files = sbi->total_node_count; 488 buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi); 489 490 buf->f_namelen = F2FS_NAME_LEN; 491 buf->f_fsid.val[0] = (u32)id; 492 buf->f_fsid.val[1] = (u32)(id >> 32); 493 494 return 0; 495 } 496 497 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 498 { 499 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 500 501 if (!(root->d_sb->s_flags & MS_RDONLY) && test_opt(sbi, BG_GC)) 502 seq_printf(seq, ",background_gc=%s", "on"); 503 else 504 seq_printf(seq, ",background_gc=%s", "off"); 505 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 506 seq_puts(seq, ",disable_roll_forward"); 507 if (test_opt(sbi, DISCARD)) 508 seq_puts(seq, ",discard"); 509 if (test_opt(sbi, NOHEAP)) 510 seq_puts(seq, ",no_heap_alloc"); 511 #ifdef CONFIG_F2FS_FS_XATTR 512 if (test_opt(sbi, XATTR_USER)) 513 seq_puts(seq, ",user_xattr"); 514 else 515 seq_puts(seq, ",nouser_xattr"); 516 if (test_opt(sbi, INLINE_XATTR)) 517 seq_puts(seq, ",inline_xattr"); 518 #endif 519 #ifdef CONFIG_F2FS_FS_POSIX_ACL 520 if (test_opt(sbi, POSIX_ACL)) 521 seq_puts(seq, ",acl"); 522 else 523 seq_puts(seq, ",noacl"); 524 #endif 525 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 526 seq_puts(seq, ",disable_ext_identify"); 527 if (test_opt(sbi, INLINE_DATA)) 528 seq_puts(seq, ",inline_data"); 529 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 530 531 return 0; 532 } 533 534 static int segment_info_seq_show(struct seq_file *seq, void *offset) 535 { 536 struct super_block *sb = seq->private; 537 struct f2fs_sb_info *sbi = F2FS_SB(sb); 538 unsigned int total_segs = 539 le32_to_cpu(sbi->raw_super->segment_count_main); 540 int i; 541 542 for (i = 0; i < total_segs; i++) { 543 seq_printf(seq, "%u", get_valid_blocks(sbi, i, 1)); 544 if (i != 0 && (i % 10) == 0) 545 seq_puts(seq, "\n"); 546 else 547 seq_puts(seq, " "); 548 } 549 return 0; 550 } 551 552 static int segment_info_open_fs(struct inode *inode, struct file *file) 553 { 554 return single_open(file, segment_info_seq_show, PDE_DATA(inode)); 555 } 556 557 static const struct file_operations f2fs_seq_segment_info_fops = { 558 .owner = THIS_MODULE, 559 .open = segment_info_open_fs, 560 .read = seq_read, 561 .llseek = seq_lseek, 562 .release = single_release, 563 }; 564 565 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 566 { 567 struct f2fs_sb_info *sbi = F2FS_SB(sb); 568 struct f2fs_mount_info org_mount_opt; 569 int err, active_logs; 570 571 /* 572 * Save the old mount options in case we 573 * need to restore them. 574 */ 575 org_mount_opt = sbi->mount_opt; 576 active_logs = sbi->active_logs; 577 578 /* parse mount options */ 579 err = parse_options(sb, data); 580 if (err) 581 goto restore_opts; 582 583 /* 584 * Previous and new state of filesystem is RO, 585 * so no point in checking GC conditions. 586 */ 587 if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) 588 goto skip; 589 590 /* 591 * We stop the GC thread if FS is mounted as RO 592 * or if background_gc = off is passed in mount 593 * option. Also sync the filesystem. 594 */ 595 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 596 if (sbi->gc_thread) { 597 stop_gc_thread(sbi); 598 f2fs_sync_fs(sb, 1); 599 } 600 } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) { 601 err = start_gc_thread(sbi); 602 if (err) 603 goto restore_opts; 604 } 605 skip: 606 /* Update the POSIXACL Flag */ 607 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 608 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 609 return 0; 610 611 restore_opts: 612 sbi->mount_opt = org_mount_opt; 613 sbi->active_logs = active_logs; 614 return err; 615 } 616 617 static struct super_operations f2fs_sops = { 618 .alloc_inode = f2fs_alloc_inode, 619 .drop_inode = f2fs_drop_inode, 620 .destroy_inode = f2fs_destroy_inode, 621 .write_inode = f2fs_write_inode, 622 .dirty_inode = f2fs_dirty_inode, 623 .show_options = f2fs_show_options, 624 .evict_inode = f2fs_evict_inode, 625 .put_super = f2fs_put_super, 626 .sync_fs = f2fs_sync_fs, 627 .freeze_fs = f2fs_freeze, 628 .unfreeze_fs = f2fs_unfreeze, 629 .statfs = f2fs_statfs, 630 .remount_fs = f2fs_remount, 631 }; 632 633 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 634 u64 ino, u32 generation) 635 { 636 struct f2fs_sb_info *sbi = F2FS_SB(sb); 637 struct inode *inode; 638 639 if (unlikely(ino < F2FS_ROOT_INO(sbi))) 640 return ERR_PTR(-ESTALE); 641 642 /* 643 * f2fs_iget isn't quite right if the inode is currently unallocated! 644 * However f2fs_iget currently does appropriate checks to handle stale 645 * inodes so everything is OK. 646 */ 647 inode = f2fs_iget(sb, ino); 648 if (IS_ERR(inode)) 649 return ERR_CAST(inode); 650 if (unlikely(generation && inode->i_generation != generation)) { 651 /* we didn't find the right inode.. */ 652 iput(inode); 653 return ERR_PTR(-ESTALE); 654 } 655 return inode; 656 } 657 658 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 659 int fh_len, int fh_type) 660 { 661 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 662 f2fs_nfs_get_inode); 663 } 664 665 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 666 int fh_len, int fh_type) 667 { 668 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 669 f2fs_nfs_get_inode); 670 } 671 672 static const struct export_operations f2fs_export_ops = { 673 .fh_to_dentry = f2fs_fh_to_dentry, 674 .fh_to_parent = f2fs_fh_to_parent, 675 .get_parent = f2fs_get_parent, 676 }; 677 678 static loff_t max_file_size(unsigned bits) 679 { 680 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 681 loff_t leaf_count = ADDRS_PER_BLOCK; 682 683 /* two direct node blocks */ 684 result += (leaf_count * 2); 685 686 /* two indirect node blocks */ 687 leaf_count *= NIDS_PER_BLOCK; 688 result += (leaf_count * 2); 689 690 /* one double indirect node block */ 691 leaf_count *= NIDS_PER_BLOCK; 692 result += leaf_count; 693 694 result <<= bits; 695 return result; 696 } 697 698 static int sanity_check_raw_super(struct super_block *sb, 699 struct f2fs_super_block *raw_super) 700 { 701 unsigned int blocksize; 702 703 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 704 f2fs_msg(sb, KERN_INFO, 705 "Magic Mismatch, valid(0x%x) - read(0x%x)", 706 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 707 return 1; 708 } 709 710 /* Currently, support only 4KB page cache size */ 711 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) { 712 f2fs_msg(sb, KERN_INFO, 713 "Invalid page_cache_size (%lu), supports only 4KB\n", 714 PAGE_CACHE_SIZE); 715 return 1; 716 } 717 718 /* Currently, support only 4KB block size */ 719 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 720 if (blocksize != F2FS_BLKSIZE) { 721 f2fs_msg(sb, KERN_INFO, 722 "Invalid blocksize (%u), supports only 4KB\n", 723 blocksize); 724 return 1; 725 } 726 727 if (le32_to_cpu(raw_super->log_sectorsize) != 728 F2FS_LOG_SECTOR_SIZE) { 729 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize"); 730 return 1; 731 } 732 if (le32_to_cpu(raw_super->log_sectors_per_block) != 733 F2FS_LOG_SECTORS_PER_BLOCK) { 734 f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block"); 735 return 1; 736 } 737 return 0; 738 } 739 740 static int sanity_check_ckpt(struct f2fs_sb_info *sbi) 741 { 742 unsigned int total, fsmeta; 743 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 744 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 745 746 total = le32_to_cpu(raw_super->segment_count); 747 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 748 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 749 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 750 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 751 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 752 753 if (unlikely(fsmeta >= total)) 754 return 1; 755 756 if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) { 757 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 758 return 1; 759 } 760 return 0; 761 } 762 763 static void init_sb_info(struct f2fs_sb_info *sbi) 764 { 765 struct f2fs_super_block *raw_super = sbi->raw_super; 766 int i; 767 768 sbi->log_sectors_per_block = 769 le32_to_cpu(raw_super->log_sectors_per_block); 770 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 771 sbi->blocksize = 1 << sbi->log_blocksize; 772 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 773 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 774 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 775 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 776 sbi->total_sections = le32_to_cpu(raw_super->section_count); 777 sbi->total_node_count = 778 (le32_to_cpu(raw_super->segment_count_nat) / 2) 779 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 780 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 781 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 782 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 783 sbi->cur_victim_sec = NULL_SECNO; 784 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 785 786 for (i = 0; i < NR_COUNT_TYPE; i++) 787 atomic_set(&sbi->nr_pages[i], 0); 788 } 789 790 /* 791 * Read f2fs raw super block. 792 * Because we have two copies of super block, so read the first one at first, 793 * if the first one is invalid, move to read the second one. 794 */ 795 static int read_raw_super_block(struct super_block *sb, 796 struct f2fs_super_block **raw_super, 797 struct buffer_head **raw_super_buf) 798 { 799 int block = 0; 800 801 retry: 802 *raw_super_buf = sb_bread(sb, block); 803 if (!*raw_super_buf) { 804 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 805 block + 1); 806 if (block == 0) { 807 block++; 808 goto retry; 809 } else { 810 return -EIO; 811 } 812 } 813 814 *raw_super = (struct f2fs_super_block *) 815 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET); 816 817 /* sanity checking of raw super */ 818 if (sanity_check_raw_super(sb, *raw_super)) { 819 brelse(*raw_super_buf); 820 f2fs_msg(sb, KERN_ERR, 821 "Can't find valid F2FS filesystem in %dth superblock", 822 block + 1); 823 if (block == 0) { 824 block++; 825 goto retry; 826 } else { 827 return -EINVAL; 828 } 829 } 830 831 return 0; 832 } 833 834 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 835 { 836 struct f2fs_sb_info *sbi; 837 struct f2fs_super_block *raw_super; 838 struct buffer_head *raw_super_buf; 839 struct inode *root; 840 long err = -EINVAL; 841 int i; 842 843 /* allocate memory for f2fs-specific super block info */ 844 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 845 if (!sbi) 846 return -ENOMEM; 847 848 /* set a block size */ 849 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 850 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 851 goto free_sbi; 852 } 853 854 err = read_raw_super_block(sb, &raw_super, &raw_super_buf); 855 if (err) 856 goto free_sbi; 857 858 sb->s_fs_info = sbi; 859 /* init some FS parameters */ 860 sbi->active_logs = NR_CURSEG_TYPE; 861 862 set_opt(sbi, BG_GC); 863 864 #ifdef CONFIG_F2FS_FS_XATTR 865 set_opt(sbi, XATTR_USER); 866 #endif 867 #ifdef CONFIG_F2FS_FS_POSIX_ACL 868 set_opt(sbi, POSIX_ACL); 869 #endif 870 /* parse mount options */ 871 err = parse_options(sb, (char *)data); 872 if (err) 873 goto free_sb_buf; 874 875 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize)); 876 sb->s_max_links = F2FS_LINK_MAX; 877 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 878 879 sb->s_op = &f2fs_sops; 880 sb->s_xattr = f2fs_xattr_handlers; 881 sb->s_export_op = &f2fs_export_ops; 882 sb->s_magic = F2FS_SUPER_MAGIC; 883 sb->s_time_gran = 1; 884 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 885 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 886 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 887 888 /* init f2fs-specific super block info */ 889 sbi->sb = sb; 890 sbi->raw_super = raw_super; 891 sbi->raw_super_buf = raw_super_buf; 892 mutex_init(&sbi->gc_mutex); 893 mutex_init(&sbi->writepages); 894 mutex_init(&sbi->cp_mutex); 895 mutex_init(&sbi->node_write); 896 sbi->por_doing = false; 897 spin_lock_init(&sbi->stat_lock); 898 899 mutex_init(&sbi->read_io.io_mutex); 900 sbi->read_io.sbi = sbi; 901 sbi->read_io.bio = NULL; 902 for (i = 0; i < NR_PAGE_TYPE; i++) { 903 mutex_init(&sbi->write_io[i].io_mutex); 904 sbi->write_io[i].sbi = sbi; 905 sbi->write_io[i].bio = NULL; 906 } 907 908 init_rwsem(&sbi->cp_rwsem); 909 init_waitqueue_head(&sbi->cp_wait); 910 init_sb_info(sbi); 911 912 /* get an inode for meta space */ 913 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 914 if (IS_ERR(sbi->meta_inode)) { 915 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 916 err = PTR_ERR(sbi->meta_inode); 917 goto free_sb_buf; 918 } 919 920 err = get_valid_checkpoint(sbi); 921 if (err) { 922 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 923 goto free_meta_inode; 924 } 925 926 /* sanity checking of checkpoint */ 927 err = -EINVAL; 928 if (sanity_check_ckpt(sbi)) { 929 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint"); 930 goto free_cp; 931 } 932 933 sbi->total_valid_node_count = 934 le32_to_cpu(sbi->ckpt->valid_node_count); 935 sbi->total_valid_inode_count = 936 le32_to_cpu(sbi->ckpt->valid_inode_count); 937 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 938 sbi->total_valid_block_count = 939 le64_to_cpu(sbi->ckpt->valid_block_count); 940 sbi->last_valid_block_count = sbi->total_valid_block_count; 941 sbi->alloc_valid_block_count = 0; 942 INIT_LIST_HEAD(&sbi->dir_inode_list); 943 spin_lock_init(&sbi->dir_inode_lock); 944 945 init_orphan_info(sbi); 946 947 /* setup f2fs internal modules */ 948 err = build_segment_manager(sbi); 949 if (err) { 950 f2fs_msg(sb, KERN_ERR, 951 "Failed to initialize F2FS segment manager"); 952 goto free_sm; 953 } 954 err = build_node_manager(sbi); 955 if (err) { 956 f2fs_msg(sb, KERN_ERR, 957 "Failed to initialize F2FS node manager"); 958 goto free_nm; 959 } 960 961 build_gc_manager(sbi); 962 963 /* get an inode for node space */ 964 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 965 if (IS_ERR(sbi->node_inode)) { 966 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 967 err = PTR_ERR(sbi->node_inode); 968 goto free_nm; 969 } 970 971 /* if there are nt orphan nodes free them */ 972 recover_orphan_inodes(sbi); 973 974 /* read root inode and dentry */ 975 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 976 if (IS_ERR(root)) { 977 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 978 err = PTR_ERR(root); 979 goto free_node_inode; 980 } 981 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 982 err = -EINVAL; 983 goto free_root_inode; 984 } 985 986 sb->s_root = d_make_root(root); /* allocate root dentry */ 987 if (!sb->s_root) { 988 err = -ENOMEM; 989 goto free_root_inode; 990 } 991 992 /* recover fsynced data */ 993 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 994 err = recover_fsync_data(sbi); 995 if (err) 996 f2fs_msg(sb, KERN_ERR, 997 "Cannot recover all fsync data errno=%ld", err); 998 } 999 1000 /* 1001 * If filesystem is not mounted as read-only then 1002 * do start the gc_thread. 1003 */ 1004 if (!(sb->s_flags & MS_RDONLY)) { 1005 /* After POR, we can run background GC thread.*/ 1006 err = start_gc_thread(sbi); 1007 if (err) 1008 goto free_gc; 1009 } 1010 1011 err = f2fs_build_stats(sbi); 1012 if (err) 1013 goto free_gc; 1014 1015 if (f2fs_proc_root) 1016 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1017 1018 if (sbi->s_proc) 1019 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1020 &f2fs_seq_segment_info_fops, sb); 1021 1022 if (test_opt(sbi, DISCARD)) { 1023 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1024 if (!blk_queue_discard(q)) 1025 f2fs_msg(sb, KERN_WARNING, 1026 "mounting with \"discard\" option, but " 1027 "the device does not support discard"); 1028 } 1029 1030 sbi->s_kobj.kset = f2fs_kset; 1031 init_completion(&sbi->s_kobj_unregister); 1032 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1033 "%s", sb->s_id); 1034 if (err) 1035 goto fail; 1036 1037 return 0; 1038 fail: 1039 if (sbi->s_proc) { 1040 remove_proc_entry("segment_info", sbi->s_proc); 1041 remove_proc_entry(sb->s_id, f2fs_proc_root); 1042 } 1043 f2fs_destroy_stats(sbi); 1044 free_gc: 1045 stop_gc_thread(sbi); 1046 free_root_inode: 1047 dput(sb->s_root); 1048 sb->s_root = NULL; 1049 free_node_inode: 1050 iput(sbi->node_inode); 1051 free_nm: 1052 destroy_node_manager(sbi); 1053 free_sm: 1054 destroy_segment_manager(sbi); 1055 free_cp: 1056 kfree(sbi->ckpt); 1057 free_meta_inode: 1058 make_bad_inode(sbi->meta_inode); 1059 iput(sbi->meta_inode); 1060 free_sb_buf: 1061 brelse(raw_super_buf); 1062 free_sbi: 1063 kfree(sbi); 1064 return err; 1065 } 1066 1067 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1068 const char *dev_name, void *data) 1069 { 1070 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1071 } 1072 1073 static struct file_system_type f2fs_fs_type = { 1074 .owner = THIS_MODULE, 1075 .name = "f2fs", 1076 .mount = f2fs_mount, 1077 .kill_sb = kill_block_super, 1078 .fs_flags = FS_REQUIRES_DEV, 1079 }; 1080 MODULE_ALIAS_FS("f2fs"); 1081 1082 static int __init init_inodecache(void) 1083 { 1084 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache", 1085 sizeof(struct f2fs_inode_info), NULL); 1086 if (!f2fs_inode_cachep) 1087 return -ENOMEM; 1088 return 0; 1089 } 1090 1091 static void destroy_inodecache(void) 1092 { 1093 /* 1094 * Make sure all delayed rcu free inodes are flushed before we 1095 * destroy cache. 1096 */ 1097 rcu_barrier(); 1098 kmem_cache_destroy(f2fs_inode_cachep); 1099 } 1100 1101 static int __init init_f2fs_fs(void) 1102 { 1103 int err; 1104 1105 err = init_inodecache(); 1106 if (err) 1107 goto fail; 1108 err = create_node_manager_caches(); 1109 if (err) 1110 goto free_inodecache; 1111 err = create_segment_manager_caches(); 1112 if (err) 1113 goto free_node_manager_caches; 1114 err = create_gc_caches(); 1115 if (err) 1116 goto free_segment_manager_caches; 1117 err = create_checkpoint_caches(); 1118 if (err) 1119 goto free_gc_caches; 1120 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1121 if (!f2fs_kset) { 1122 err = -ENOMEM; 1123 goto free_checkpoint_caches; 1124 } 1125 err = register_filesystem(&f2fs_fs_type); 1126 if (err) 1127 goto free_kset; 1128 f2fs_create_root_stats(); 1129 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 1130 return 0; 1131 1132 free_kset: 1133 kset_unregister(f2fs_kset); 1134 free_checkpoint_caches: 1135 destroy_checkpoint_caches(); 1136 free_gc_caches: 1137 destroy_gc_caches(); 1138 free_segment_manager_caches: 1139 destroy_segment_manager_caches(); 1140 free_node_manager_caches: 1141 destroy_node_manager_caches(); 1142 free_inodecache: 1143 destroy_inodecache(); 1144 fail: 1145 return err; 1146 } 1147 1148 static void __exit exit_f2fs_fs(void) 1149 { 1150 remove_proc_entry("fs/f2fs", NULL); 1151 f2fs_destroy_root_stats(); 1152 unregister_filesystem(&f2fs_fs_type); 1153 destroy_checkpoint_caches(); 1154 destroy_gc_caches(); 1155 destroy_segment_manager_caches(); 1156 destroy_node_manager_caches(); 1157 destroy_inodecache(); 1158 kset_unregister(f2fs_kset); 1159 } 1160 1161 module_init(init_f2fs_fs) 1162 module_exit(exit_f2fs_fs) 1163 1164 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 1165 MODULE_DESCRIPTION("Flash Friendly File System"); 1166 MODULE_LICENSE("GPL"); 1167