1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/random.h> 22 #include <linux/exportfs.h> 23 #include <linux/blkdev.h> 24 #include <linux/f2fs_fs.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "xattr.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/f2fs.h> 33 34 static struct kmem_cache *f2fs_inode_cachep; 35 36 enum { 37 Opt_gc_background, 38 Opt_disable_roll_forward, 39 Opt_discard, 40 Opt_noheap, 41 Opt_nouser_xattr, 42 Opt_noacl, 43 Opt_active_logs, 44 Opt_disable_ext_identify, 45 Opt_err, 46 }; 47 48 static match_table_t f2fs_tokens = { 49 {Opt_gc_background, "background_gc=%s"}, 50 {Opt_disable_roll_forward, "disable_roll_forward"}, 51 {Opt_discard, "discard"}, 52 {Opt_noheap, "no_heap"}, 53 {Opt_nouser_xattr, "nouser_xattr"}, 54 {Opt_noacl, "noacl"}, 55 {Opt_active_logs, "active_logs=%u"}, 56 {Opt_disable_ext_identify, "disable_ext_identify"}, 57 {Opt_err, NULL}, 58 }; 59 60 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 61 { 62 struct va_format vaf; 63 va_list args; 64 65 va_start(args, fmt); 66 vaf.fmt = fmt; 67 vaf.va = &args; 68 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 69 va_end(args); 70 } 71 72 static void init_once(void *foo) 73 { 74 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 75 76 inode_init_once(&fi->vfs_inode); 77 } 78 79 static int parse_options(struct super_block *sb, char *options) 80 { 81 struct f2fs_sb_info *sbi = F2FS_SB(sb); 82 substring_t args[MAX_OPT_ARGS]; 83 char *p, *name; 84 int arg = 0; 85 86 if (!options) 87 return 0; 88 89 while ((p = strsep(&options, ",")) != NULL) { 90 int token; 91 if (!*p) 92 continue; 93 /* 94 * Initialize args struct so we know whether arg was 95 * found; some options take optional arguments. 96 */ 97 args[0].to = args[0].from = NULL; 98 token = match_token(p, f2fs_tokens, args); 99 100 switch (token) { 101 case Opt_gc_background: 102 name = match_strdup(&args[0]); 103 104 if (!name) 105 return -ENOMEM; 106 if (!strncmp(name, "on", 2)) 107 set_opt(sbi, BG_GC); 108 else if (!strncmp(name, "off", 3)) 109 clear_opt(sbi, BG_GC); 110 else { 111 kfree(name); 112 return -EINVAL; 113 } 114 kfree(name); 115 break; 116 case Opt_disable_roll_forward: 117 set_opt(sbi, DISABLE_ROLL_FORWARD); 118 break; 119 case Opt_discard: 120 set_opt(sbi, DISCARD); 121 break; 122 case Opt_noheap: 123 set_opt(sbi, NOHEAP); 124 break; 125 #ifdef CONFIG_F2FS_FS_XATTR 126 case Opt_nouser_xattr: 127 clear_opt(sbi, XATTR_USER); 128 break; 129 #else 130 case Opt_nouser_xattr: 131 f2fs_msg(sb, KERN_INFO, 132 "nouser_xattr options not supported"); 133 break; 134 #endif 135 #ifdef CONFIG_F2FS_FS_POSIX_ACL 136 case Opt_noacl: 137 clear_opt(sbi, POSIX_ACL); 138 break; 139 #else 140 case Opt_noacl: 141 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 142 break; 143 #endif 144 case Opt_active_logs: 145 if (args->from && match_int(args, &arg)) 146 return -EINVAL; 147 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 148 return -EINVAL; 149 sbi->active_logs = arg; 150 break; 151 case Opt_disable_ext_identify: 152 set_opt(sbi, DISABLE_EXT_IDENTIFY); 153 break; 154 default: 155 f2fs_msg(sb, KERN_ERR, 156 "Unrecognized mount option \"%s\" or missing value", 157 p); 158 return -EINVAL; 159 } 160 } 161 return 0; 162 } 163 164 static struct inode *f2fs_alloc_inode(struct super_block *sb) 165 { 166 struct f2fs_inode_info *fi; 167 168 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_NOFS | __GFP_ZERO); 169 if (!fi) 170 return NULL; 171 172 init_once((void *) fi); 173 174 /* Initialize f2fs-specific inode info */ 175 fi->vfs_inode.i_version = 1; 176 atomic_set(&fi->dirty_dents, 0); 177 fi->i_current_depth = 1; 178 fi->i_advise = 0; 179 rwlock_init(&fi->ext.ext_lock); 180 181 set_inode_flag(fi, FI_NEW_INODE); 182 183 return &fi->vfs_inode; 184 } 185 186 static int f2fs_drop_inode(struct inode *inode) 187 { 188 /* 189 * This is to avoid a deadlock condition like below. 190 * writeback_single_inode(inode) 191 * - f2fs_write_data_page 192 * - f2fs_gc -> iput -> evict 193 * - inode_wait_for_writeback(inode) 194 */ 195 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) 196 return 0; 197 return generic_drop_inode(inode); 198 } 199 200 /* 201 * f2fs_dirty_inode() is called from __mark_inode_dirty() 202 * 203 * We should call set_dirty_inode to write the dirty inode through write_inode. 204 */ 205 static void f2fs_dirty_inode(struct inode *inode, int flags) 206 { 207 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 208 return; 209 } 210 211 static void f2fs_i_callback(struct rcu_head *head) 212 { 213 struct inode *inode = container_of(head, struct inode, i_rcu); 214 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 215 } 216 217 static void f2fs_destroy_inode(struct inode *inode) 218 { 219 call_rcu(&inode->i_rcu, f2fs_i_callback); 220 } 221 222 static void f2fs_put_super(struct super_block *sb) 223 { 224 struct f2fs_sb_info *sbi = F2FS_SB(sb); 225 226 f2fs_destroy_stats(sbi); 227 stop_gc_thread(sbi); 228 229 write_checkpoint(sbi, true); 230 231 iput(sbi->node_inode); 232 iput(sbi->meta_inode); 233 234 /* destroy f2fs internal modules */ 235 destroy_node_manager(sbi); 236 destroy_segment_manager(sbi); 237 238 kfree(sbi->ckpt); 239 240 sb->s_fs_info = NULL; 241 brelse(sbi->raw_super_buf); 242 kfree(sbi); 243 } 244 245 int f2fs_sync_fs(struct super_block *sb, int sync) 246 { 247 struct f2fs_sb_info *sbi = F2FS_SB(sb); 248 249 trace_f2fs_sync_fs(sb, sync); 250 251 if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES)) 252 return 0; 253 254 if (sync) { 255 mutex_lock(&sbi->gc_mutex); 256 write_checkpoint(sbi, false); 257 mutex_unlock(&sbi->gc_mutex); 258 } else { 259 f2fs_balance_fs(sbi); 260 } 261 262 return 0; 263 } 264 265 static int f2fs_freeze(struct super_block *sb) 266 { 267 int err; 268 269 if (f2fs_readonly(sb)) 270 return 0; 271 272 err = f2fs_sync_fs(sb, 1); 273 return err; 274 } 275 276 static int f2fs_unfreeze(struct super_block *sb) 277 { 278 return 0; 279 } 280 281 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 282 { 283 struct super_block *sb = dentry->d_sb; 284 struct f2fs_sb_info *sbi = F2FS_SB(sb); 285 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 286 block_t total_count, user_block_count, start_count, ovp_count; 287 288 total_count = le64_to_cpu(sbi->raw_super->block_count); 289 user_block_count = sbi->user_block_count; 290 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 291 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 292 buf->f_type = F2FS_SUPER_MAGIC; 293 buf->f_bsize = sbi->blocksize; 294 295 buf->f_blocks = total_count - start_count; 296 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; 297 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 298 299 buf->f_files = sbi->total_node_count; 300 buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi); 301 302 buf->f_namelen = F2FS_NAME_LEN; 303 buf->f_fsid.val[0] = (u32)id; 304 buf->f_fsid.val[1] = (u32)(id >> 32); 305 306 return 0; 307 } 308 309 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 310 { 311 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 312 313 if (!(root->d_sb->s_flags & MS_RDONLY) && test_opt(sbi, BG_GC)) 314 seq_printf(seq, ",background_gc=%s", "on"); 315 else 316 seq_printf(seq, ",background_gc=%s", "off"); 317 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 318 seq_puts(seq, ",disable_roll_forward"); 319 if (test_opt(sbi, DISCARD)) 320 seq_puts(seq, ",discard"); 321 if (test_opt(sbi, NOHEAP)) 322 seq_puts(seq, ",no_heap_alloc"); 323 #ifdef CONFIG_F2FS_FS_XATTR 324 if (test_opt(sbi, XATTR_USER)) 325 seq_puts(seq, ",user_xattr"); 326 else 327 seq_puts(seq, ",nouser_xattr"); 328 #endif 329 #ifdef CONFIG_F2FS_FS_POSIX_ACL 330 if (test_opt(sbi, POSIX_ACL)) 331 seq_puts(seq, ",acl"); 332 else 333 seq_puts(seq, ",noacl"); 334 #endif 335 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 336 seq_puts(seq, ",disable_ext_identify"); 337 338 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 339 340 return 0; 341 } 342 343 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 344 { 345 struct f2fs_sb_info *sbi = F2FS_SB(sb); 346 struct f2fs_mount_info org_mount_opt; 347 int err, active_logs; 348 349 /* 350 * Save the old mount options in case we 351 * need to restore them. 352 */ 353 org_mount_opt = sbi->mount_opt; 354 active_logs = sbi->active_logs; 355 356 /* parse mount options */ 357 err = parse_options(sb, data); 358 if (err) 359 goto restore_opts; 360 361 /* 362 * Previous and new state of filesystem is RO, 363 * so no point in checking GC conditions. 364 */ 365 if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) 366 goto skip; 367 368 /* 369 * We stop the GC thread if FS is mounted as RO 370 * or if background_gc = off is passed in mount 371 * option. Also sync the filesystem. 372 */ 373 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 374 if (sbi->gc_thread) { 375 stop_gc_thread(sbi); 376 f2fs_sync_fs(sb, 1); 377 } 378 } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) { 379 err = start_gc_thread(sbi); 380 if (err) 381 goto restore_opts; 382 } 383 skip: 384 /* Update the POSIXACL Flag */ 385 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 386 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 387 return 0; 388 389 restore_opts: 390 sbi->mount_opt = org_mount_opt; 391 sbi->active_logs = active_logs; 392 return err; 393 } 394 395 static struct super_operations f2fs_sops = { 396 .alloc_inode = f2fs_alloc_inode, 397 .drop_inode = f2fs_drop_inode, 398 .destroy_inode = f2fs_destroy_inode, 399 .write_inode = f2fs_write_inode, 400 .dirty_inode = f2fs_dirty_inode, 401 .show_options = f2fs_show_options, 402 .evict_inode = f2fs_evict_inode, 403 .put_super = f2fs_put_super, 404 .sync_fs = f2fs_sync_fs, 405 .freeze_fs = f2fs_freeze, 406 .unfreeze_fs = f2fs_unfreeze, 407 .statfs = f2fs_statfs, 408 .remount_fs = f2fs_remount, 409 }; 410 411 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 412 u64 ino, u32 generation) 413 { 414 struct f2fs_sb_info *sbi = F2FS_SB(sb); 415 struct inode *inode; 416 417 if (ino < F2FS_ROOT_INO(sbi)) 418 return ERR_PTR(-ESTALE); 419 420 /* 421 * f2fs_iget isn't quite right if the inode is currently unallocated! 422 * However f2fs_iget currently does appropriate checks to handle stale 423 * inodes so everything is OK. 424 */ 425 inode = f2fs_iget(sb, ino); 426 if (IS_ERR(inode)) 427 return ERR_CAST(inode); 428 if (generation && inode->i_generation != generation) { 429 /* we didn't find the right inode.. */ 430 iput(inode); 431 return ERR_PTR(-ESTALE); 432 } 433 return inode; 434 } 435 436 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 437 int fh_len, int fh_type) 438 { 439 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 440 f2fs_nfs_get_inode); 441 } 442 443 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 444 int fh_len, int fh_type) 445 { 446 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 447 f2fs_nfs_get_inode); 448 } 449 450 static const struct export_operations f2fs_export_ops = { 451 .fh_to_dentry = f2fs_fh_to_dentry, 452 .fh_to_parent = f2fs_fh_to_parent, 453 .get_parent = f2fs_get_parent, 454 }; 455 456 static loff_t max_file_size(unsigned bits) 457 { 458 loff_t result = ADDRS_PER_INODE; 459 loff_t leaf_count = ADDRS_PER_BLOCK; 460 461 /* two direct node blocks */ 462 result += (leaf_count * 2); 463 464 /* two indirect node blocks */ 465 leaf_count *= NIDS_PER_BLOCK; 466 result += (leaf_count * 2); 467 468 /* one double indirect node block */ 469 leaf_count *= NIDS_PER_BLOCK; 470 result += leaf_count; 471 472 result <<= bits; 473 return result; 474 } 475 476 static int sanity_check_raw_super(struct super_block *sb, 477 struct f2fs_super_block *raw_super) 478 { 479 unsigned int blocksize; 480 481 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 482 f2fs_msg(sb, KERN_INFO, 483 "Magic Mismatch, valid(0x%x) - read(0x%x)", 484 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 485 return 1; 486 } 487 488 /* Currently, support only 4KB page cache size */ 489 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) { 490 f2fs_msg(sb, KERN_INFO, 491 "Invalid page_cache_size (%lu), supports only 4KB\n", 492 PAGE_CACHE_SIZE); 493 return 1; 494 } 495 496 /* Currently, support only 4KB block size */ 497 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 498 if (blocksize != F2FS_BLKSIZE) { 499 f2fs_msg(sb, KERN_INFO, 500 "Invalid blocksize (%u), supports only 4KB\n", 501 blocksize); 502 return 1; 503 } 504 505 if (le32_to_cpu(raw_super->log_sectorsize) != 506 F2FS_LOG_SECTOR_SIZE) { 507 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize"); 508 return 1; 509 } 510 if (le32_to_cpu(raw_super->log_sectors_per_block) != 511 F2FS_LOG_SECTORS_PER_BLOCK) { 512 f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block"); 513 return 1; 514 } 515 return 0; 516 } 517 518 static int sanity_check_ckpt(struct f2fs_sb_info *sbi) 519 { 520 unsigned int total, fsmeta; 521 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 522 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 523 524 total = le32_to_cpu(raw_super->segment_count); 525 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 526 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 527 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 528 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 529 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 530 531 if (fsmeta >= total) 532 return 1; 533 534 if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) { 535 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 536 return 1; 537 } 538 return 0; 539 } 540 541 static void init_sb_info(struct f2fs_sb_info *sbi) 542 { 543 struct f2fs_super_block *raw_super = sbi->raw_super; 544 int i; 545 546 sbi->log_sectors_per_block = 547 le32_to_cpu(raw_super->log_sectors_per_block); 548 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 549 sbi->blocksize = 1 << sbi->log_blocksize; 550 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 551 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 552 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 553 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 554 sbi->total_sections = le32_to_cpu(raw_super->section_count); 555 sbi->total_node_count = 556 (le32_to_cpu(raw_super->segment_count_nat) / 2) 557 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 558 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 559 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 560 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 561 sbi->cur_victim_sec = NULL_SECNO; 562 563 for (i = 0; i < NR_COUNT_TYPE; i++) 564 atomic_set(&sbi->nr_pages[i], 0); 565 } 566 567 static int validate_superblock(struct super_block *sb, 568 struct f2fs_super_block **raw_super, 569 struct buffer_head **raw_super_buf, sector_t block) 570 { 571 const char *super = (block == 0 ? "first" : "second"); 572 573 /* read f2fs raw super block */ 574 *raw_super_buf = sb_bread(sb, block); 575 if (!*raw_super_buf) { 576 f2fs_msg(sb, KERN_ERR, "unable to read %s superblock", 577 super); 578 return -EIO; 579 } 580 581 *raw_super = (struct f2fs_super_block *) 582 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET); 583 584 /* sanity checking of raw super */ 585 if (!sanity_check_raw_super(sb, *raw_super)) 586 return 0; 587 588 f2fs_msg(sb, KERN_ERR, "Can't find a valid F2FS filesystem " 589 "in %s superblock", super); 590 return -EINVAL; 591 } 592 593 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 594 { 595 struct f2fs_sb_info *sbi; 596 struct f2fs_super_block *raw_super; 597 struct buffer_head *raw_super_buf; 598 struct inode *root; 599 long err = -EINVAL; 600 int i; 601 602 /* allocate memory for f2fs-specific super block info */ 603 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 604 if (!sbi) 605 return -ENOMEM; 606 607 /* set a block size */ 608 if (!sb_set_blocksize(sb, F2FS_BLKSIZE)) { 609 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 610 goto free_sbi; 611 } 612 613 err = validate_superblock(sb, &raw_super, &raw_super_buf, 0); 614 if (err) { 615 brelse(raw_super_buf); 616 /* check secondary superblock when primary failed */ 617 err = validate_superblock(sb, &raw_super, &raw_super_buf, 1); 618 if (err) 619 goto free_sb_buf; 620 } 621 sb->s_fs_info = sbi; 622 /* init some FS parameters */ 623 sbi->active_logs = NR_CURSEG_TYPE; 624 625 set_opt(sbi, BG_GC); 626 627 #ifdef CONFIG_F2FS_FS_XATTR 628 set_opt(sbi, XATTR_USER); 629 #endif 630 #ifdef CONFIG_F2FS_FS_POSIX_ACL 631 set_opt(sbi, POSIX_ACL); 632 #endif 633 /* parse mount options */ 634 err = parse_options(sb, (char *)data); 635 if (err) 636 goto free_sb_buf; 637 638 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize)); 639 sb->s_max_links = F2FS_LINK_MAX; 640 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 641 642 sb->s_op = &f2fs_sops; 643 sb->s_xattr = f2fs_xattr_handlers; 644 sb->s_export_op = &f2fs_export_ops; 645 sb->s_magic = F2FS_SUPER_MAGIC; 646 sb->s_time_gran = 1; 647 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 648 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 649 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 650 651 /* init f2fs-specific super block info */ 652 sbi->sb = sb; 653 sbi->raw_super = raw_super; 654 sbi->raw_super_buf = raw_super_buf; 655 mutex_init(&sbi->gc_mutex); 656 mutex_init(&sbi->writepages); 657 mutex_init(&sbi->cp_mutex); 658 for (i = 0; i < NR_GLOBAL_LOCKS; i++) 659 mutex_init(&sbi->fs_lock[i]); 660 mutex_init(&sbi->node_write); 661 sbi->por_doing = 0; 662 spin_lock_init(&sbi->stat_lock); 663 init_rwsem(&sbi->bio_sem); 664 init_sb_info(sbi); 665 666 /* get an inode for meta space */ 667 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 668 if (IS_ERR(sbi->meta_inode)) { 669 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 670 err = PTR_ERR(sbi->meta_inode); 671 goto free_sb_buf; 672 } 673 674 err = get_valid_checkpoint(sbi); 675 if (err) { 676 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 677 goto free_meta_inode; 678 } 679 680 /* sanity checking of checkpoint */ 681 err = -EINVAL; 682 if (sanity_check_ckpt(sbi)) { 683 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint"); 684 goto free_cp; 685 } 686 687 sbi->total_valid_node_count = 688 le32_to_cpu(sbi->ckpt->valid_node_count); 689 sbi->total_valid_inode_count = 690 le32_to_cpu(sbi->ckpt->valid_inode_count); 691 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 692 sbi->total_valid_block_count = 693 le64_to_cpu(sbi->ckpt->valid_block_count); 694 sbi->last_valid_block_count = sbi->total_valid_block_count; 695 sbi->alloc_valid_block_count = 0; 696 INIT_LIST_HEAD(&sbi->dir_inode_list); 697 spin_lock_init(&sbi->dir_inode_lock); 698 699 init_orphan_info(sbi); 700 701 /* setup f2fs internal modules */ 702 err = build_segment_manager(sbi); 703 if (err) { 704 f2fs_msg(sb, KERN_ERR, 705 "Failed to initialize F2FS segment manager"); 706 goto free_sm; 707 } 708 err = build_node_manager(sbi); 709 if (err) { 710 f2fs_msg(sb, KERN_ERR, 711 "Failed to initialize F2FS node manager"); 712 goto free_nm; 713 } 714 715 build_gc_manager(sbi); 716 717 /* get an inode for node space */ 718 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 719 if (IS_ERR(sbi->node_inode)) { 720 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 721 err = PTR_ERR(sbi->node_inode); 722 goto free_nm; 723 } 724 725 /* if there are nt orphan nodes free them */ 726 err = -EINVAL; 727 if (recover_orphan_inodes(sbi)) 728 goto free_node_inode; 729 730 /* read root inode and dentry */ 731 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 732 if (IS_ERR(root)) { 733 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 734 err = PTR_ERR(root); 735 goto free_node_inode; 736 } 737 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) 738 goto free_root_inode; 739 740 sb->s_root = d_make_root(root); /* allocate root dentry */ 741 if (!sb->s_root) { 742 err = -ENOMEM; 743 goto free_root_inode; 744 } 745 746 /* recover fsynced data */ 747 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 748 err = recover_fsync_data(sbi); 749 if (err) 750 f2fs_msg(sb, KERN_ERR, 751 "Cannot recover all fsync data errno=%ld", err); 752 } 753 754 /* 755 * If filesystem is not mounted as read-only then 756 * do start the gc_thread. 757 */ 758 if (!(sb->s_flags & MS_RDONLY)) { 759 /* After POR, we can run background GC thread.*/ 760 err = start_gc_thread(sbi); 761 if (err) 762 goto fail; 763 } 764 765 err = f2fs_build_stats(sbi); 766 if (err) 767 goto fail; 768 769 if (test_opt(sbi, DISCARD)) { 770 struct request_queue *q = bdev_get_queue(sb->s_bdev); 771 if (!blk_queue_discard(q)) 772 f2fs_msg(sb, KERN_WARNING, 773 "mounting with \"discard\" option, but " 774 "the device does not support discard"); 775 } 776 777 return 0; 778 fail: 779 stop_gc_thread(sbi); 780 free_root_inode: 781 dput(sb->s_root); 782 sb->s_root = NULL; 783 free_node_inode: 784 iput(sbi->node_inode); 785 free_nm: 786 destroy_node_manager(sbi); 787 free_sm: 788 destroy_segment_manager(sbi); 789 free_cp: 790 kfree(sbi->ckpt); 791 free_meta_inode: 792 make_bad_inode(sbi->meta_inode); 793 iput(sbi->meta_inode); 794 free_sb_buf: 795 brelse(raw_super_buf); 796 free_sbi: 797 kfree(sbi); 798 return err; 799 } 800 801 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 802 const char *dev_name, void *data) 803 { 804 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 805 } 806 807 static struct file_system_type f2fs_fs_type = { 808 .owner = THIS_MODULE, 809 .name = "f2fs", 810 .mount = f2fs_mount, 811 .kill_sb = kill_block_super, 812 .fs_flags = FS_REQUIRES_DEV, 813 }; 814 MODULE_ALIAS_FS("f2fs"); 815 816 static int __init init_inodecache(void) 817 { 818 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache", 819 sizeof(struct f2fs_inode_info), NULL); 820 if (f2fs_inode_cachep == NULL) 821 return -ENOMEM; 822 return 0; 823 } 824 825 static void destroy_inodecache(void) 826 { 827 /* 828 * Make sure all delayed rcu free inodes are flushed before we 829 * destroy cache. 830 */ 831 rcu_barrier(); 832 kmem_cache_destroy(f2fs_inode_cachep); 833 } 834 835 static int __init init_f2fs_fs(void) 836 { 837 int err; 838 839 err = init_inodecache(); 840 if (err) 841 goto fail; 842 err = create_node_manager_caches(); 843 if (err) 844 goto fail; 845 err = create_gc_caches(); 846 if (err) 847 goto fail; 848 err = create_checkpoint_caches(); 849 if (err) 850 goto fail; 851 err = register_filesystem(&f2fs_fs_type); 852 if (err) 853 goto fail; 854 f2fs_create_root_stats(); 855 fail: 856 return err; 857 } 858 859 static void __exit exit_f2fs_fs(void) 860 { 861 f2fs_destroy_root_stats(); 862 unregister_filesystem(&f2fs_fs_type); 863 destroy_checkpoint_caches(); 864 destroy_gc_caches(); 865 destroy_node_manager_caches(); 866 destroy_inodecache(); 867 } 868 869 module_init(init_f2fs_fs) 870 module_exit(exit_f2fs_fs) 871 872 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 873 MODULE_DESCRIPTION("Flash Friendly File System"); 874 MODULE_LICENSE("GPL"); 875