xref: /linux/fs/f2fs/super.c (revision 43bb48c38e817b5f89fce340f49436a605e47e66)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38 
39 static struct kmem_cache *f2fs_inode_cachep;
40 
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42 
43 const char *f2fs_fault_name[FAULT_MAX] = {
44 	[FAULT_KMALLOC]		= "kmalloc",
45 	[FAULT_KVMALLOC]	= "kvmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_PAGE_GET]	= "page get",
48 	[FAULT_ALLOC_BIO]	= "alloc bio",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_READ_IO]		= "read IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 	[FAULT_DISCARD]		= "discard error",
58 	[FAULT_WRITE_IO]	= "write IO error",
59 };
60 
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_inlinecrypt,
142 	Opt_checkpoint_disable,
143 	Opt_checkpoint_disable_cap,
144 	Opt_checkpoint_disable_cap_perc,
145 	Opt_checkpoint_enable,
146 	Opt_compress_algorithm,
147 	Opt_compress_log_size,
148 	Opt_compress_extension,
149 	Opt_atgc,
150 	Opt_err,
151 };
152 
153 static match_table_t f2fs_tokens = {
154 	{Opt_gc_background, "background_gc=%s"},
155 	{Opt_disable_roll_forward, "disable_roll_forward"},
156 	{Opt_norecovery, "norecovery"},
157 	{Opt_discard, "discard"},
158 	{Opt_nodiscard, "nodiscard"},
159 	{Opt_noheap, "no_heap"},
160 	{Opt_heap, "heap"},
161 	{Opt_user_xattr, "user_xattr"},
162 	{Opt_nouser_xattr, "nouser_xattr"},
163 	{Opt_acl, "acl"},
164 	{Opt_noacl, "noacl"},
165 	{Opt_active_logs, "active_logs=%u"},
166 	{Opt_disable_ext_identify, "disable_ext_identify"},
167 	{Opt_inline_xattr, "inline_xattr"},
168 	{Opt_noinline_xattr, "noinline_xattr"},
169 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
170 	{Opt_inline_data, "inline_data"},
171 	{Opt_inline_dentry, "inline_dentry"},
172 	{Opt_noinline_dentry, "noinline_dentry"},
173 	{Opt_flush_merge, "flush_merge"},
174 	{Opt_noflush_merge, "noflush_merge"},
175 	{Opt_nobarrier, "nobarrier"},
176 	{Opt_fastboot, "fastboot"},
177 	{Opt_extent_cache, "extent_cache"},
178 	{Opt_noextent_cache, "noextent_cache"},
179 	{Opt_noinline_data, "noinline_data"},
180 	{Opt_data_flush, "data_flush"},
181 	{Opt_reserve_root, "reserve_root=%u"},
182 	{Opt_resgid, "resgid=%u"},
183 	{Opt_resuid, "resuid=%u"},
184 	{Opt_mode, "mode=%s"},
185 	{Opt_io_size_bits, "io_bits=%u"},
186 	{Opt_fault_injection, "fault_injection=%u"},
187 	{Opt_fault_type, "fault_type=%u"},
188 	{Opt_lazytime, "lazytime"},
189 	{Opt_nolazytime, "nolazytime"},
190 	{Opt_quota, "quota"},
191 	{Opt_noquota, "noquota"},
192 	{Opt_usrquota, "usrquota"},
193 	{Opt_grpquota, "grpquota"},
194 	{Opt_prjquota, "prjquota"},
195 	{Opt_usrjquota, "usrjquota=%s"},
196 	{Opt_grpjquota, "grpjquota=%s"},
197 	{Opt_prjjquota, "prjjquota=%s"},
198 	{Opt_offusrjquota, "usrjquota="},
199 	{Opt_offgrpjquota, "grpjquota="},
200 	{Opt_offprjjquota, "prjjquota="},
201 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
202 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
203 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
204 	{Opt_whint, "whint_mode=%s"},
205 	{Opt_alloc, "alloc_mode=%s"},
206 	{Opt_fsync, "fsync_mode=%s"},
207 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
208 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
209 	{Opt_inlinecrypt, "inlinecrypt"},
210 	{Opt_checkpoint_disable, "checkpoint=disable"},
211 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
212 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
213 	{Opt_checkpoint_enable, "checkpoint=enable"},
214 	{Opt_compress_algorithm, "compress_algorithm=%s"},
215 	{Opt_compress_log_size, "compress_log_size=%u"},
216 	{Opt_compress_extension, "compress_extension=%s"},
217 	{Opt_atgc, "atgc"},
218 	{Opt_err, NULL},
219 };
220 
221 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
222 {
223 	struct va_format vaf;
224 	va_list args;
225 	int level;
226 
227 	va_start(args, fmt);
228 
229 	level = printk_get_level(fmt);
230 	vaf.fmt = printk_skip_level(fmt);
231 	vaf.va = &args;
232 	printk("%c%cF2FS-fs (%s): %pV\n",
233 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
234 
235 	va_end(args);
236 }
237 
238 #ifdef CONFIG_UNICODE
239 static const struct f2fs_sb_encodings {
240 	__u16 magic;
241 	char *name;
242 	char *version;
243 } f2fs_sb_encoding_map[] = {
244 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
245 };
246 
247 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
248 				 const struct f2fs_sb_encodings **encoding,
249 				 __u16 *flags)
250 {
251 	__u16 magic = le16_to_cpu(sb->s_encoding);
252 	int i;
253 
254 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
255 		if (magic == f2fs_sb_encoding_map[i].magic)
256 			break;
257 
258 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
259 		return -EINVAL;
260 
261 	*encoding = &f2fs_sb_encoding_map[i];
262 	*flags = le16_to_cpu(sb->s_encoding_flags);
263 
264 	return 0;
265 }
266 #endif
267 
268 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
269 {
270 	block_t limit = min((sbi->user_block_count << 1) / 1000,
271 			sbi->user_block_count - sbi->reserved_blocks);
272 
273 	/* limit is 0.2% */
274 	if (test_opt(sbi, RESERVE_ROOT) &&
275 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
276 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
277 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
278 			  F2FS_OPTION(sbi).root_reserved_blocks);
279 	}
280 	if (!test_opt(sbi, RESERVE_ROOT) &&
281 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
282 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
283 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
284 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
285 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
286 			  from_kuid_munged(&init_user_ns,
287 					   F2FS_OPTION(sbi).s_resuid),
288 			  from_kgid_munged(&init_user_ns,
289 					   F2FS_OPTION(sbi).s_resgid));
290 }
291 
292 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
293 {
294 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
295 		return;
296 
297 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
298 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
299 	else
300 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
301 					F2FS_OPTION(sbi).unusable_cap_perc;
302 
303 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
304 			F2FS_OPTION(sbi).unusable_cap,
305 			F2FS_OPTION(sbi).unusable_cap_perc);
306 }
307 
308 static void init_once(void *foo)
309 {
310 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
311 
312 	inode_init_once(&fi->vfs_inode);
313 }
314 
315 #ifdef CONFIG_QUOTA
316 static const char * const quotatypes[] = INITQFNAMES;
317 #define QTYPE2NAME(t) (quotatypes[t])
318 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
319 							substring_t *args)
320 {
321 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
322 	char *qname;
323 	int ret = -EINVAL;
324 
325 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
326 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
327 		return -EINVAL;
328 	}
329 	if (f2fs_sb_has_quota_ino(sbi)) {
330 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
331 		return 0;
332 	}
333 
334 	qname = match_strdup(args);
335 	if (!qname) {
336 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
337 		return -ENOMEM;
338 	}
339 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
340 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
341 			ret = 0;
342 		else
343 			f2fs_err(sbi, "%s quota file already specified",
344 				 QTYPE2NAME(qtype));
345 		goto errout;
346 	}
347 	if (strchr(qname, '/')) {
348 		f2fs_err(sbi, "quotafile must be on filesystem root");
349 		goto errout;
350 	}
351 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
352 	set_opt(sbi, QUOTA);
353 	return 0;
354 errout:
355 	kfree(qname);
356 	return ret;
357 }
358 
359 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
360 {
361 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
362 
363 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
364 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
365 		return -EINVAL;
366 	}
367 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
368 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
369 	return 0;
370 }
371 
372 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
373 {
374 	/*
375 	 * We do the test below only for project quotas. 'usrquota' and
376 	 * 'grpquota' mount options are allowed even without quota feature
377 	 * to support legacy quotas in quota files.
378 	 */
379 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
380 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
381 		return -1;
382 	}
383 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
384 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
385 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
386 		if (test_opt(sbi, USRQUOTA) &&
387 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
388 			clear_opt(sbi, USRQUOTA);
389 
390 		if (test_opt(sbi, GRPQUOTA) &&
391 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
392 			clear_opt(sbi, GRPQUOTA);
393 
394 		if (test_opt(sbi, PRJQUOTA) &&
395 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
396 			clear_opt(sbi, PRJQUOTA);
397 
398 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
399 				test_opt(sbi, PRJQUOTA)) {
400 			f2fs_err(sbi, "old and new quota format mixing");
401 			return -1;
402 		}
403 
404 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
405 			f2fs_err(sbi, "journaled quota format not specified");
406 			return -1;
407 		}
408 	}
409 
410 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
411 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
412 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
413 	}
414 	return 0;
415 }
416 #endif
417 
418 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
419 					  const char *opt,
420 					  const substring_t *arg,
421 					  bool is_remount)
422 {
423 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
424 #ifdef CONFIG_FS_ENCRYPTION
425 	int err;
426 
427 	if (!f2fs_sb_has_encrypt(sbi)) {
428 		f2fs_err(sbi, "Encrypt feature is off");
429 		return -EINVAL;
430 	}
431 
432 	/*
433 	 * This mount option is just for testing, and it's not worthwhile to
434 	 * implement the extra complexity (e.g. RCU protection) that would be
435 	 * needed to allow it to be set or changed during remount.  We do allow
436 	 * it to be specified during remount, but only if there is no change.
437 	 */
438 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
439 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
440 		return -EINVAL;
441 	}
442 	err = fscrypt_set_test_dummy_encryption(
443 		sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
444 	if (err) {
445 		if (err == -EEXIST)
446 			f2fs_warn(sbi,
447 				  "Can't change test_dummy_encryption on remount");
448 		else if (err == -EINVAL)
449 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
450 				  opt);
451 		else
452 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
453 				  opt, err);
454 		return -EINVAL;
455 	}
456 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
457 #else
458 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
459 #endif
460 	return 0;
461 }
462 
463 static int parse_options(struct super_block *sb, char *options, bool is_remount)
464 {
465 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
466 	substring_t args[MAX_OPT_ARGS];
467 #ifdef CONFIG_F2FS_FS_COMPRESSION
468 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
469 	int ext_cnt;
470 #endif
471 	char *p, *name;
472 	int arg = 0;
473 	kuid_t uid;
474 	kgid_t gid;
475 	int ret;
476 
477 	if (!options)
478 		return 0;
479 
480 	while ((p = strsep(&options, ",")) != NULL) {
481 		int token;
482 		if (!*p)
483 			continue;
484 		/*
485 		 * Initialize args struct so we know whether arg was
486 		 * found; some options take optional arguments.
487 		 */
488 		args[0].to = args[0].from = NULL;
489 		token = match_token(p, f2fs_tokens, args);
490 
491 		switch (token) {
492 		case Opt_gc_background:
493 			name = match_strdup(&args[0]);
494 
495 			if (!name)
496 				return -ENOMEM;
497 			if (!strcmp(name, "on")) {
498 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
499 			} else if (!strcmp(name, "off")) {
500 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
501 			} else if (!strcmp(name, "sync")) {
502 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
503 			} else {
504 				kfree(name);
505 				return -EINVAL;
506 			}
507 			kfree(name);
508 			break;
509 		case Opt_disable_roll_forward:
510 			set_opt(sbi, DISABLE_ROLL_FORWARD);
511 			break;
512 		case Opt_norecovery:
513 			/* this option mounts f2fs with ro */
514 			set_opt(sbi, NORECOVERY);
515 			if (!f2fs_readonly(sb))
516 				return -EINVAL;
517 			break;
518 		case Opt_discard:
519 			set_opt(sbi, DISCARD);
520 			break;
521 		case Opt_nodiscard:
522 			if (f2fs_sb_has_blkzoned(sbi)) {
523 				f2fs_warn(sbi, "discard is required for zoned block devices");
524 				return -EINVAL;
525 			}
526 			clear_opt(sbi, DISCARD);
527 			break;
528 		case Opt_noheap:
529 			set_opt(sbi, NOHEAP);
530 			break;
531 		case Opt_heap:
532 			clear_opt(sbi, NOHEAP);
533 			break;
534 #ifdef CONFIG_F2FS_FS_XATTR
535 		case Opt_user_xattr:
536 			set_opt(sbi, XATTR_USER);
537 			break;
538 		case Opt_nouser_xattr:
539 			clear_opt(sbi, XATTR_USER);
540 			break;
541 		case Opt_inline_xattr:
542 			set_opt(sbi, INLINE_XATTR);
543 			break;
544 		case Opt_noinline_xattr:
545 			clear_opt(sbi, INLINE_XATTR);
546 			break;
547 		case Opt_inline_xattr_size:
548 			if (args->from && match_int(args, &arg))
549 				return -EINVAL;
550 			set_opt(sbi, INLINE_XATTR_SIZE);
551 			F2FS_OPTION(sbi).inline_xattr_size = arg;
552 			break;
553 #else
554 		case Opt_user_xattr:
555 			f2fs_info(sbi, "user_xattr options not supported");
556 			break;
557 		case Opt_nouser_xattr:
558 			f2fs_info(sbi, "nouser_xattr options not supported");
559 			break;
560 		case Opt_inline_xattr:
561 			f2fs_info(sbi, "inline_xattr options not supported");
562 			break;
563 		case Opt_noinline_xattr:
564 			f2fs_info(sbi, "noinline_xattr options not supported");
565 			break;
566 #endif
567 #ifdef CONFIG_F2FS_FS_POSIX_ACL
568 		case Opt_acl:
569 			set_opt(sbi, POSIX_ACL);
570 			break;
571 		case Opt_noacl:
572 			clear_opt(sbi, POSIX_ACL);
573 			break;
574 #else
575 		case Opt_acl:
576 			f2fs_info(sbi, "acl options not supported");
577 			break;
578 		case Opt_noacl:
579 			f2fs_info(sbi, "noacl options not supported");
580 			break;
581 #endif
582 		case Opt_active_logs:
583 			if (args->from && match_int(args, &arg))
584 				return -EINVAL;
585 			if (arg != 2 && arg != 4 &&
586 				arg != NR_CURSEG_PERSIST_TYPE)
587 				return -EINVAL;
588 			F2FS_OPTION(sbi).active_logs = arg;
589 			break;
590 		case Opt_disable_ext_identify:
591 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
592 			break;
593 		case Opt_inline_data:
594 			set_opt(sbi, INLINE_DATA);
595 			break;
596 		case Opt_inline_dentry:
597 			set_opt(sbi, INLINE_DENTRY);
598 			break;
599 		case Opt_noinline_dentry:
600 			clear_opt(sbi, INLINE_DENTRY);
601 			break;
602 		case Opt_flush_merge:
603 			set_opt(sbi, FLUSH_MERGE);
604 			break;
605 		case Opt_noflush_merge:
606 			clear_opt(sbi, FLUSH_MERGE);
607 			break;
608 		case Opt_nobarrier:
609 			set_opt(sbi, NOBARRIER);
610 			break;
611 		case Opt_fastboot:
612 			set_opt(sbi, FASTBOOT);
613 			break;
614 		case Opt_extent_cache:
615 			set_opt(sbi, EXTENT_CACHE);
616 			break;
617 		case Opt_noextent_cache:
618 			clear_opt(sbi, EXTENT_CACHE);
619 			break;
620 		case Opt_noinline_data:
621 			clear_opt(sbi, INLINE_DATA);
622 			break;
623 		case Opt_data_flush:
624 			set_opt(sbi, DATA_FLUSH);
625 			break;
626 		case Opt_reserve_root:
627 			if (args->from && match_int(args, &arg))
628 				return -EINVAL;
629 			if (test_opt(sbi, RESERVE_ROOT)) {
630 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
631 					  F2FS_OPTION(sbi).root_reserved_blocks);
632 			} else {
633 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
634 				set_opt(sbi, RESERVE_ROOT);
635 			}
636 			break;
637 		case Opt_resuid:
638 			if (args->from && match_int(args, &arg))
639 				return -EINVAL;
640 			uid = make_kuid(current_user_ns(), arg);
641 			if (!uid_valid(uid)) {
642 				f2fs_err(sbi, "Invalid uid value %d", arg);
643 				return -EINVAL;
644 			}
645 			F2FS_OPTION(sbi).s_resuid = uid;
646 			break;
647 		case Opt_resgid:
648 			if (args->from && match_int(args, &arg))
649 				return -EINVAL;
650 			gid = make_kgid(current_user_ns(), arg);
651 			if (!gid_valid(gid)) {
652 				f2fs_err(sbi, "Invalid gid value %d", arg);
653 				return -EINVAL;
654 			}
655 			F2FS_OPTION(sbi).s_resgid = gid;
656 			break;
657 		case Opt_mode:
658 			name = match_strdup(&args[0]);
659 
660 			if (!name)
661 				return -ENOMEM;
662 			if (!strcmp(name, "adaptive")) {
663 				if (f2fs_sb_has_blkzoned(sbi)) {
664 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
665 					kfree(name);
666 					return -EINVAL;
667 				}
668 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
669 			} else if (!strcmp(name, "lfs")) {
670 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
671 			} else {
672 				kfree(name);
673 				return -EINVAL;
674 			}
675 			kfree(name);
676 			break;
677 		case Opt_io_size_bits:
678 			if (args->from && match_int(args, &arg))
679 				return -EINVAL;
680 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
681 				f2fs_warn(sbi, "Not support %d, larger than %d",
682 					  1 << arg, BIO_MAX_PAGES);
683 				return -EINVAL;
684 			}
685 			F2FS_OPTION(sbi).write_io_size_bits = arg;
686 			break;
687 #ifdef CONFIG_F2FS_FAULT_INJECTION
688 		case Opt_fault_injection:
689 			if (args->from && match_int(args, &arg))
690 				return -EINVAL;
691 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
692 			set_opt(sbi, FAULT_INJECTION);
693 			break;
694 
695 		case Opt_fault_type:
696 			if (args->from && match_int(args, &arg))
697 				return -EINVAL;
698 			f2fs_build_fault_attr(sbi, 0, arg);
699 			set_opt(sbi, FAULT_INJECTION);
700 			break;
701 #else
702 		case Opt_fault_injection:
703 			f2fs_info(sbi, "fault_injection options not supported");
704 			break;
705 
706 		case Opt_fault_type:
707 			f2fs_info(sbi, "fault_type options not supported");
708 			break;
709 #endif
710 		case Opt_lazytime:
711 			sb->s_flags |= SB_LAZYTIME;
712 			break;
713 		case Opt_nolazytime:
714 			sb->s_flags &= ~SB_LAZYTIME;
715 			break;
716 #ifdef CONFIG_QUOTA
717 		case Opt_quota:
718 		case Opt_usrquota:
719 			set_opt(sbi, USRQUOTA);
720 			break;
721 		case Opt_grpquota:
722 			set_opt(sbi, GRPQUOTA);
723 			break;
724 		case Opt_prjquota:
725 			set_opt(sbi, PRJQUOTA);
726 			break;
727 		case Opt_usrjquota:
728 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
729 			if (ret)
730 				return ret;
731 			break;
732 		case Opt_grpjquota:
733 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
734 			if (ret)
735 				return ret;
736 			break;
737 		case Opt_prjjquota:
738 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
739 			if (ret)
740 				return ret;
741 			break;
742 		case Opt_offusrjquota:
743 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
744 			if (ret)
745 				return ret;
746 			break;
747 		case Opt_offgrpjquota:
748 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
749 			if (ret)
750 				return ret;
751 			break;
752 		case Opt_offprjjquota:
753 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
754 			if (ret)
755 				return ret;
756 			break;
757 		case Opt_jqfmt_vfsold:
758 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
759 			break;
760 		case Opt_jqfmt_vfsv0:
761 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
762 			break;
763 		case Opt_jqfmt_vfsv1:
764 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
765 			break;
766 		case Opt_noquota:
767 			clear_opt(sbi, QUOTA);
768 			clear_opt(sbi, USRQUOTA);
769 			clear_opt(sbi, GRPQUOTA);
770 			clear_opt(sbi, PRJQUOTA);
771 			break;
772 #else
773 		case Opt_quota:
774 		case Opt_usrquota:
775 		case Opt_grpquota:
776 		case Opt_prjquota:
777 		case Opt_usrjquota:
778 		case Opt_grpjquota:
779 		case Opt_prjjquota:
780 		case Opt_offusrjquota:
781 		case Opt_offgrpjquota:
782 		case Opt_offprjjquota:
783 		case Opt_jqfmt_vfsold:
784 		case Opt_jqfmt_vfsv0:
785 		case Opt_jqfmt_vfsv1:
786 		case Opt_noquota:
787 			f2fs_info(sbi, "quota operations not supported");
788 			break;
789 #endif
790 		case Opt_whint:
791 			name = match_strdup(&args[0]);
792 			if (!name)
793 				return -ENOMEM;
794 			if (!strcmp(name, "user-based")) {
795 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
796 			} else if (!strcmp(name, "off")) {
797 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
798 			} else if (!strcmp(name, "fs-based")) {
799 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
800 			} else {
801 				kfree(name);
802 				return -EINVAL;
803 			}
804 			kfree(name);
805 			break;
806 		case Opt_alloc:
807 			name = match_strdup(&args[0]);
808 			if (!name)
809 				return -ENOMEM;
810 
811 			if (!strcmp(name, "default")) {
812 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
813 			} else if (!strcmp(name, "reuse")) {
814 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
815 			} else {
816 				kfree(name);
817 				return -EINVAL;
818 			}
819 			kfree(name);
820 			break;
821 		case Opt_fsync:
822 			name = match_strdup(&args[0]);
823 			if (!name)
824 				return -ENOMEM;
825 			if (!strcmp(name, "posix")) {
826 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
827 			} else if (!strcmp(name, "strict")) {
828 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
829 			} else if (!strcmp(name, "nobarrier")) {
830 				F2FS_OPTION(sbi).fsync_mode =
831 							FSYNC_MODE_NOBARRIER;
832 			} else {
833 				kfree(name);
834 				return -EINVAL;
835 			}
836 			kfree(name);
837 			break;
838 		case Opt_test_dummy_encryption:
839 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
840 							     is_remount);
841 			if (ret)
842 				return ret;
843 			break;
844 		case Opt_inlinecrypt:
845 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
846 			sb->s_flags |= SB_INLINECRYPT;
847 #else
848 			f2fs_info(sbi, "inline encryption not supported");
849 #endif
850 			break;
851 		case Opt_checkpoint_disable_cap_perc:
852 			if (args->from && match_int(args, &arg))
853 				return -EINVAL;
854 			if (arg < 0 || arg > 100)
855 				return -EINVAL;
856 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
857 			set_opt(sbi, DISABLE_CHECKPOINT);
858 			break;
859 		case Opt_checkpoint_disable_cap:
860 			if (args->from && match_int(args, &arg))
861 				return -EINVAL;
862 			F2FS_OPTION(sbi).unusable_cap = arg;
863 			set_opt(sbi, DISABLE_CHECKPOINT);
864 			break;
865 		case Opt_checkpoint_disable:
866 			set_opt(sbi, DISABLE_CHECKPOINT);
867 			break;
868 		case Opt_checkpoint_enable:
869 			clear_opt(sbi, DISABLE_CHECKPOINT);
870 			break;
871 #ifdef CONFIG_F2FS_FS_COMPRESSION
872 		case Opt_compress_algorithm:
873 			if (!f2fs_sb_has_compression(sbi)) {
874 				f2fs_info(sbi, "Image doesn't support compression");
875 				break;
876 			}
877 			name = match_strdup(&args[0]);
878 			if (!name)
879 				return -ENOMEM;
880 			if (!strcmp(name, "lzo")) {
881 				F2FS_OPTION(sbi).compress_algorithm =
882 								COMPRESS_LZO;
883 			} else if (!strcmp(name, "lz4")) {
884 				F2FS_OPTION(sbi).compress_algorithm =
885 								COMPRESS_LZ4;
886 			} else if (!strcmp(name, "zstd")) {
887 				F2FS_OPTION(sbi).compress_algorithm =
888 								COMPRESS_ZSTD;
889 			} else if (!strcmp(name, "lzo-rle")) {
890 				F2FS_OPTION(sbi).compress_algorithm =
891 								COMPRESS_LZORLE;
892 			} else {
893 				kfree(name);
894 				return -EINVAL;
895 			}
896 			kfree(name);
897 			break;
898 		case Opt_compress_log_size:
899 			if (!f2fs_sb_has_compression(sbi)) {
900 				f2fs_info(sbi, "Image doesn't support compression");
901 				break;
902 			}
903 			if (args->from && match_int(args, &arg))
904 				return -EINVAL;
905 			if (arg < MIN_COMPRESS_LOG_SIZE ||
906 				arg > MAX_COMPRESS_LOG_SIZE) {
907 				f2fs_err(sbi,
908 					"Compress cluster log size is out of range");
909 				return -EINVAL;
910 			}
911 			F2FS_OPTION(sbi).compress_log_size = arg;
912 			break;
913 		case Opt_compress_extension:
914 			if (!f2fs_sb_has_compression(sbi)) {
915 				f2fs_info(sbi, "Image doesn't support compression");
916 				break;
917 			}
918 			name = match_strdup(&args[0]);
919 			if (!name)
920 				return -ENOMEM;
921 
922 			ext = F2FS_OPTION(sbi).extensions;
923 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
924 
925 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
926 				ext_cnt >= COMPRESS_EXT_NUM) {
927 				f2fs_err(sbi,
928 					"invalid extension length/number");
929 				kfree(name);
930 				return -EINVAL;
931 			}
932 
933 			strcpy(ext[ext_cnt], name);
934 			F2FS_OPTION(sbi).compress_ext_cnt++;
935 			kfree(name);
936 			break;
937 #else
938 		case Opt_compress_algorithm:
939 		case Opt_compress_log_size:
940 		case Opt_compress_extension:
941 			f2fs_info(sbi, "compression options not supported");
942 			break;
943 #endif
944 		case Opt_atgc:
945 			set_opt(sbi, ATGC);
946 			break;
947 		default:
948 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
949 				 p);
950 			return -EINVAL;
951 		}
952 	}
953 #ifdef CONFIG_QUOTA
954 	if (f2fs_check_quota_options(sbi))
955 		return -EINVAL;
956 #else
957 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
958 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
959 		return -EINVAL;
960 	}
961 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
962 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
963 		return -EINVAL;
964 	}
965 #endif
966 #ifndef CONFIG_UNICODE
967 	if (f2fs_sb_has_casefold(sbi)) {
968 		f2fs_err(sbi,
969 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
970 		return -EINVAL;
971 	}
972 #endif
973 	/*
974 	 * The BLKZONED feature indicates that the drive was formatted with
975 	 * zone alignment optimization. This is optional for host-aware
976 	 * devices, but mandatory for host-managed zoned block devices.
977 	 */
978 #ifndef CONFIG_BLK_DEV_ZONED
979 	if (f2fs_sb_has_blkzoned(sbi)) {
980 		f2fs_err(sbi, "Zoned block device support is not enabled");
981 		return -EINVAL;
982 	}
983 #endif
984 
985 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
986 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
987 			 F2FS_IO_SIZE_KB(sbi));
988 		return -EINVAL;
989 	}
990 
991 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
992 		int min_size, max_size;
993 
994 		if (!f2fs_sb_has_extra_attr(sbi) ||
995 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
996 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
997 			return -EINVAL;
998 		}
999 		if (!test_opt(sbi, INLINE_XATTR)) {
1000 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1001 			return -EINVAL;
1002 		}
1003 
1004 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1005 		max_size = MAX_INLINE_XATTR_SIZE;
1006 
1007 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1008 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1009 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1010 				 min_size, max_size);
1011 			return -EINVAL;
1012 		}
1013 	}
1014 
1015 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1016 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
1017 		return -EINVAL;
1018 	}
1019 
1020 	/* Not pass down write hints if the number of active logs is lesser
1021 	 * than NR_CURSEG_PERSIST_TYPE.
1022 	 */
1023 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
1024 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1025 	return 0;
1026 }
1027 
1028 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1029 {
1030 	struct f2fs_inode_info *fi;
1031 
1032 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1033 	if (!fi)
1034 		return NULL;
1035 
1036 	init_once((void *) fi);
1037 
1038 	/* Initialize f2fs-specific inode info */
1039 	atomic_set(&fi->dirty_pages, 0);
1040 	atomic_set(&fi->i_compr_blocks, 0);
1041 	init_rwsem(&fi->i_sem);
1042 	spin_lock_init(&fi->i_size_lock);
1043 	INIT_LIST_HEAD(&fi->dirty_list);
1044 	INIT_LIST_HEAD(&fi->gdirty_list);
1045 	INIT_LIST_HEAD(&fi->inmem_ilist);
1046 	INIT_LIST_HEAD(&fi->inmem_pages);
1047 	mutex_init(&fi->inmem_lock);
1048 	init_rwsem(&fi->i_gc_rwsem[READ]);
1049 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1050 	init_rwsem(&fi->i_mmap_sem);
1051 	init_rwsem(&fi->i_xattr_sem);
1052 
1053 	/* Will be used by directory only */
1054 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1055 
1056 	fi->ra_offset = -1;
1057 
1058 	return &fi->vfs_inode;
1059 }
1060 
1061 static int f2fs_drop_inode(struct inode *inode)
1062 {
1063 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1064 	int ret;
1065 
1066 	/*
1067 	 * during filesystem shutdown, if checkpoint is disabled,
1068 	 * drop useless meta/node dirty pages.
1069 	 */
1070 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1071 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1072 			inode->i_ino == F2FS_META_INO(sbi)) {
1073 			trace_f2fs_drop_inode(inode, 1);
1074 			return 1;
1075 		}
1076 	}
1077 
1078 	/*
1079 	 * This is to avoid a deadlock condition like below.
1080 	 * writeback_single_inode(inode)
1081 	 *  - f2fs_write_data_page
1082 	 *    - f2fs_gc -> iput -> evict
1083 	 *       - inode_wait_for_writeback(inode)
1084 	 */
1085 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1086 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1087 			/* to avoid evict_inode call simultaneously */
1088 			atomic_inc(&inode->i_count);
1089 			spin_unlock(&inode->i_lock);
1090 
1091 			/* some remained atomic pages should discarded */
1092 			if (f2fs_is_atomic_file(inode))
1093 				f2fs_drop_inmem_pages(inode);
1094 
1095 			/* should remain fi->extent_tree for writepage */
1096 			f2fs_destroy_extent_node(inode);
1097 
1098 			sb_start_intwrite(inode->i_sb);
1099 			f2fs_i_size_write(inode, 0);
1100 
1101 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1102 					inode, NULL, 0, DATA);
1103 			truncate_inode_pages_final(inode->i_mapping);
1104 
1105 			if (F2FS_HAS_BLOCKS(inode))
1106 				f2fs_truncate(inode);
1107 
1108 			sb_end_intwrite(inode->i_sb);
1109 
1110 			spin_lock(&inode->i_lock);
1111 			atomic_dec(&inode->i_count);
1112 		}
1113 		trace_f2fs_drop_inode(inode, 0);
1114 		return 0;
1115 	}
1116 	ret = generic_drop_inode(inode);
1117 	if (!ret)
1118 		ret = fscrypt_drop_inode(inode);
1119 	trace_f2fs_drop_inode(inode, ret);
1120 	return ret;
1121 }
1122 
1123 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1124 {
1125 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1126 	int ret = 0;
1127 
1128 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1129 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1130 		ret = 1;
1131 	} else {
1132 		set_inode_flag(inode, FI_DIRTY_INODE);
1133 		stat_inc_dirty_inode(sbi, DIRTY_META);
1134 	}
1135 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1136 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1137 				&sbi->inode_list[DIRTY_META]);
1138 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1139 	}
1140 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1141 	return ret;
1142 }
1143 
1144 void f2fs_inode_synced(struct inode *inode)
1145 {
1146 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147 
1148 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1149 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1150 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1151 		return;
1152 	}
1153 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1154 		list_del_init(&F2FS_I(inode)->gdirty_list);
1155 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1156 	}
1157 	clear_inode_flag(inode, FI_DIRTY_INODE);
1158 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1159 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1160 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1161 }
1162 
1163 /*
1164  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1165  *
1166  * We should call set_dirty_inode to write the dirty inode through write_inode.
1167  */
1168 static void f2fs_dirty_inode(struct inode *inode, int flags)
1169 {
1170 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1171 
1172 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1173 			inode->i_ino == F2FS_META_INO(sbi))
1174 		return;
1175 
1176 	if (flags == I_DIRTY_TIME)
1177 		return;
1178 
1179 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1180 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1181 
1182 	f2fs_inode_dirtied(inode, false);
1183 }
1184 
1185 static void f2fs_free_inode(struct inode *inode)
1186 {
1187 	fscrypt_free_inode(inode);
1188 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1189 }
1190 
1191 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1192 {
1193 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1194 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1195 }
1196 
1197 static void destroy_device_list(struct f2fs_sb_info *sbi)
1198 {
1199 	int i;
1200 
1201 	for (i = 0; i < sbi->s_ndevs; i++) {
1202 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1203 #ifdef CONFIG_BLK_DEV_ZONED
1204 		kvfree(FDEV(i).blkz_seq);
1205 		kfree(FDEV(i).zone_capacity_blocks);
1206 #endif
1207 	}
1208 	kvfree(sbi->devs);
1209 }
1210 
1211 static void f2fs_put_super(struct super_block *sb)
1212 {
1213 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1214 	int i;
1215 	bool dropped;
1216 
1217 	/* unregister procfs/sysfs entries in advance to avoid race case */
1218 	f2fs_unregister_sysfs(sbi);
1219 
1220 	f2fs_quota_off_umount(sb);
1221 
1222 	/* prevent remaining shrinker jobs */
1223 	mutex_lock(&sbi->umount_mutex);
1224 
1225 	/*
1226 	 * We don't need to do checkpoint when superblock is clean.
1227 	 * But, the previous checkpoint was not done by umount, it needs to do
1228 	 * clean checkpoint again.
1229 	 */
1230 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1231 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1232 		struct cp_control cpc = {
1233 			.reason = CP_UMOUNT,
1234 		};
1235 		f2fs_write_checkpoint(sbi, &cpc);
1236 	}
1237 
1238 	/* be sure to wait for any on-going discard commands */
1239 	dropped = f2fs_issue_discard_timeout(sbi);
1240 
1241 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1242 					!sbi->discard_blks && !dropped) {
1243 		struct cp_control cpc = {
1244 			.reason = CP_UMOUNT | CP_TRIMMED,
1245 		};
1246 		f2fs_write_checkpoint(sbi, &cpc);
1247 	}
1248 
1249 	/*
1250 	 * normally superblock is clean, so we need to release this.
1251 	 * In addition, EIO will skip do checkpoint, we need this as well.
1252 	 */
1253 	f2fs_release_ino_entry(sbi, true);
1254 
1255 	f2fs_leave_shrinker(sbi);
1256 	mutex_unlock(&sbi->umount_mutex);
1257 
1258 	/* our cp_error case, we can wait for any writeback page */
1259 	f2fs_flush_merged_writes(sbi);
1260 
1261 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1262 
1263 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1264 
1265 	iput(sbi->node_inode);
1266 	sbi->node_inode = NULL;
1267 
1268 	iput(sbi->meta_inode);
1269 	sbi->meta_inode = NULL;
1270 
1271 	/*
1272 	 * iput() can update stat information, if f2fs_write_checkpoint()
1273 	 * above failed with error.
1274 	 */
1275 	f2fs_destroy_stats(sbi);
1276 
1277 	/* destroy f2fs internal modules */
1278 	f2fs_destroy_node_manager(sbi);
1279 	f2fs_destroy_segment_manager(sbi);
1280 
1281 	f2fs_destroy_post_read_wq(sbi);
1282 
1283 	kvfree(sbi->ckpt);
1284 
1285 	sb->s_fs_info = NULL;
1286 	if (sbi->s_chksum_driver)
1287 		crypto_free_shash(sbi->s_chksum_driver);
1288 	kfree(sbi->raw_super);
1289 
1290 	destroy_device_list(sbi);
1291 	f2fs_destroy_page_array_cache(sbi);
1292 	f2fs_destroy_xattr_caches(sbi);
1293 	mempool_destroy(sbi->write_io_dummy);
1294 #ifdef CONFIG_QUOTA
1295 	for (i = 0; i < MAXQUOTAS; i++)
1296 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1297 #endif
1298 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1299 	destroy_percpu_info(sbi);
1300 	for (i = 0; i < NR_PAGE_TYPE; i++)
1301 		kvfree(sbi->write_io[i]);
1302 #ifdef CONFIG_UNICODE
1303 	utf8_unload(sb->s_encoding);
1304 #endif
1305 	kfree(sbi);
1306 }
1307 
1308 int f2fs_sync_fs(struct super_block *sb, int sync)
1309 {
1310 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1311 	int err = 0;
1312 
1313 	if (unlikely(f2fs_cp_error(sbi)))
1314 		return 0;
1315 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1316 		return 0;
1317 
1318 	trace_f2fs_sync_fs(sb, sync);
1319 
1320 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1321 		return -EAGAIN;
1322 
1323 	if (sync) {
1324 		struct cp_control cpc;
1325 
1326 		cpc.reason = __get_cp_reason(sbi);
1327 
1328 		down_write(&sbi->gc_lock);
1329 		err = f2fs_write_checkpoint(sbi, &cpc);
1330 		up_write(&sbi->gc_lock);
1331 	}
1332 	f2fs_trace_ios(NULL, 1);
1333 
1334 	return err;
1335 }
1336 
1337 static int f2fs_freeze(struct super_block *sb)
1338 {
1339 	if (f2fs_readonly(sb))
1340 		return 0;
1341 
1342 	/* IO error happened before */
1343 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1344 		return -EIO;
1345 
1346 	/* must be clean, since sync_filesystem() was already called */
1347 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1348 		return -EINVAL;
1349 	return 0;
1350 }
1351 
1352 static int f2fs_unfreeze(struct super_block *sb)
1353 {
1354 	return 0;
1355 }
1356 
1357 #ifdef CONFIG_QUOTA
1358 static int f2fs_statfs_project(struct super_block *sb,
1359 				kprojid_t projid, struct kstatfs *buf)
1360 {
1361 	struct kqid qid;
1362 	struct dquot *dquot;
1363 	u64 limit;
1364 	u64 curblock;
1365 
1366 	qid = make_kqid_projid(projid);
1367 	dquot = dqget(sb, qid);
1368 	if (IS_ERR(dquot))
1369 		return PTR_ERR(dquot);
1370 	spin_lock(&dquot->dq_dqb_lock);
1371 
1372 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1373 					dquot->dq_dqb.dqb_bhardlimit);
1374 	if (limit)
1375 		limit >>= sb->s_blocksize_bits;
1376 
1377 	if (limit && buf->f_blocks > limit) {
1378 		curblock = (dquot->dq_dqb.dqb_curspace +
1379 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1380 		buf->f_blocks = limit;
1381 		buf->f_bfree = buf->f_bavail =
1382 			(buf->f_blocks > curblock) ?
1383 			 (buf->f_blocks - curblock) : 0;
1384 	}
1385 
1386 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1387 					dquot->dq_dqb.dqb_ihardlimit);
1388 
1389 	if (limit && buf->f_files > limit) {
1390 		buf->f_files = limit;
1391 		buf->f_ffree =
1392 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1393 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1394 	}
1395 
1396 	spin_unlock(&dquot->dq_dqb_lock);
1397 	dqput(dquot);
1398 	return 0;
1399 }
1400 #endif
1401 
1402 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1403 {
1404 	struct super_block *sb = dentry->d_sb;
1405 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1406 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1407 	block_t total_count, user_block_count, start_count;
1408 	u64 avail_node_count;
1409 
1410 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1411 	user_block_count = sbi->user_block_count;
1412 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1413 	buf->f_type = F2FS_SUPER_MAGIC;
1414 	buf->f_bsize = sbi->blocksize;
1415 
1416 	buf->f_blocks = total_count - start_count;
1417 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1418 						sbi->current_reserved_blocks;
1419 
1420 	spin_lock(&sbi->stat_lock);
1421 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1422 		buf->f_bfree = 0;
1423 	else
1424 		buf->f_bfree -= sbi->unusable_block_count;
1425 	spin_unlock(&sbi->stat_lock);
1426 
1427 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1428 		buf->f_bavail = buf->f_bfree -
1429 				F2FS_OPTION(sbi).root_reserved_blocks;
1430 	else
1431 		buf->f_bavail = 0;
1432 
1433 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1434 
1435 	if (avail_node_count > user_block_count) {
1436 		buf->f_files = user_block_count;
1437 		buf->f_ffree = buf->f_bavail;
1438 	} else {
1439 		buf->f_files = avail_node_count;
1440 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1441 					buf->f_bavail);
1442 	}
1443 
1444 	buf->f_namelen = F2FS_NAME_LEN;
1445 	buf->f_fsid    = u64_to_fsid(id);
1446 
1447 #ifdef CONFIG_QUOTA
1448 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1449 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1450 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1451 	}
1452 #endif
1453 	return 0;
1454 }
1455 
1456 static inline void f2fs_show_quota_options(struct seq_file *seq,
1457 					   struct super_block *sb)
1458 {
1459 #ifdef CONFIG_QUOTA
1460 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1461 
1462 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1463 		char *fmtname = "";
1464 
1465 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1466 		case QFMT_VFS_OLD:
1467 			fmtname = "vfsold";
1468 			break;
1469 		case QFMT_VFS_V0:
1470 			fmtname = "vfsv0";
1471 			break;
1472 		case QFMT_VFS_V1:
1473 			fmtname = "vfsv1";
1474 			break;
1475 		}
1476 		seq_printf(seq, ",jqfmt=%s", fmtname);
1477 	}
1478 
1479 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1480 		seq_show_option(seq, "usrjquota",
1481 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1482 
1483 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1484 		seq_show_option(seq, "grpjquota",
1485 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1486 
1487 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1488 		seq_show_option(seq, "prjjquota",
1489 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1490 #endif
1491 }
1492 
1493 static inline void f2fs_show_compress_options(struct seq_file *seq,
1494 							struct super_block *sb)
1495 {
1496 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1497 	char *algtype = "";
1498 	int i;
1499 
1500 	if (!f2fs_sb_has_compression(sbi))
1501 		return;
1502 
1503 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1504 	case COMPRESS_LZO:
1505 		algtype = "lzo";
1506 		break;
1507 	case COMPRESS_LZ4:
1508 		algtype = "lz4";
1509 		break;
1510 	case COMPRESS_ZSTD:
1511 		algtype = "zstd";
1512 		break;
1513 	case COMPRESS_LZORLE:
1514 		algtype = "lzo-rle";
1515 		break;
1516 	}
1517 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1518 
1519 	seq_printf(seq, ",compress_log_size=%u",
1520 			F2FS_OPTION(sbi).compress_log_size);
1521 
1522 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1523 		seq_printf(seq, ",compress_extension=%s",
1524 			F2FS_OPTION(sbi).extensions[i]);
1525 	}
1526 }
1527 
1528 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1529 {
1530 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1531 
1532 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1533 		seq_printf(seq, ",background_gc=%s", "sync");
1534 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1535 		seq_printf(seq, ",background_gc=%s", "on");
1536 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1537 		seq_printf(seq, ",background_gc=%s", "off");
1538 
1539 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1540 		seq_puts(seq, ",disable_roll_forward");
1541 	if (test_opt(sbi, NORECOVERY))
1542 		seq_puts(seq, ",norecovery");
1543 	if (test_opt(sbi, DISCARD))
1544 		seq_puts(seq, ",discard");
1545 	else
1546 		seq_puts(seq, ",nodiscard");
1547 	if (test_opt(sbi, NOHEAP))
1548 		seq_puts(seq, ",no_heap");
1549 	else
1550 		seq_puts(seq, ",heap");
1551 #ifdef CONFIG_F2FS_FS_XATTR
1552 	if (test_opt(sbi, XATTR_USER))
1553 		seq_puts(seq, ",user_xattr");
1554 	else
1555 		seq_puts(seq, ",nouser_xattr");
1556 	if (test_opt(sbi, INLINE_XATTR))
1557 		seq_puts(seq, ",inline_xattr");
1558 	else
1559 		seq_puts(seq, ",noinline_xattr");
1560 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1561 		seq_printf(seq, ",inline_xattr_size=%u",
1562 					F2FS_OPTION(sbi).inline_xattr_size);
1563 #endif
1564 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1565 	if (test_opt(sbi, POSIX_ACL))
1566 		seq_puts(seq, ",acl");
1567 	else
1568 		seq_puts(seq, ",noacl");
1569 #endif
1570 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1571 		seq_puts(seq, ",disable_ext_identify");
1572 	if (test_opt(sbi, INLINE_DATA))
1573 		seq_puts(seq, ",inline_data");
1574 	else
1575 		seq_puts(seq, ",noinline_data");
1576 	if (test_opt(sbi, INLINE_DENTRY))
1577 		seq_puts(seq, ",inline_dentry");
1578 	else
1579 		seq_puts(seq, ",noinline_dentry");
1580 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1581 		seq_puts(seq, ",flush_merge");
1582 	if (test_opt(sbi, NOBARRIER))
1583 		seq_puts(seq, ",nobarrier");
1584 	if (test_opt(sbi, FASTBOOT))
1585 		seq_puts(seq, ",fastboot");
1586 	if (test_opt(sbi, EXTENT_CACHE))
1587 		seq_puts(seq, ",extent_cache");
1588 	else
1589 		seq_puts(seq, ",noextent_cache");
1590 	if (test_opt(sbi, DATA_FLUSH))
1591 		seq_puts(seq, ",data_flush");
1592 
1593 	seq_puts(seq, ",mode=");
1594 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1595 		seq_puts(seq, "adaptive");
1596 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1597 		seq_puts(seq, "lfs");
1598 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1599 	if (test_opt(sbi, RESERVE_ROOT))
1600 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1601 				F2FS_OPTION(sbi).root_reserved_blocks,
1602 				from_kuid_munged(&init_user_ns,
1603 					F2FS_OPTION(sbi).s_resuid),
1604 				from_kgid_munged(&init_user_ns,
1605 					F2FS_OPTION(sbi).s_resgid));
1606 	if (F2FS_IO_SIZE_BITS(sbi))
1607 		seq_printf(seq, ",io_bits=%u",
1608 				F2FS_OPTION(sbi).write_io_size_bits);
1609 #ifdef CONFIG_F2FS_FAULT_INJECTION
1610 	if (test_opt(sbi, FAULT_INJECTION)) {
1611 		seq_printf(seq, ",fault_injection=%u",
1612 				F2FS_OPTION(sbi).fault_info.inject_rate);
1613 		seq_printf(seq, ",fault_type=%u",
1614 				F2FS_OPTION(sbi).fault_info.inject_type);
1615 	}
1616 #endif
1617 #ifdef CONFIG_QUOTA
1618 	if (test_opt(sbi, QUOTA))
1619 		seq_puts(seq, ",quota");
1620 	if (test_opt(sbi, USRQUOTA))
1621 		seq_puts(seq, ",usrquota");
1622 	if (test_opt(sbi, GRPQUOTA))
1623 		seq_puts(seq, ",grpquota");
1624 	if (test_opt(sbi, PRJQUOTA))
1625 		seq_puts(seq, ",prjquota");
1626 #endif
1627 	f2fs_show_quota_options(seq, sbi->sb);
1628 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1629 		seq_printf(seq, ",whint_mode=%s", "user-based");
1630 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1631 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1632 
1633 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1634 
1635 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1636 		seq_puts(seq, ",inlinecrypt");
1637 
1638 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1639 		seq_printf(seq, ",alloc_mode=%s", "default");
1640 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1641 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1642 
1643 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1644 		seq_printf(seq, ",checkpoint=disable:%u",
1645 				F2FS_OPTION(sbi).unusable_cap);
1646 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1647 		seq_printf(seq, ",fsync_mode=%s", "posix");
1648 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1649 		seq_printf(seq, ",fsync_mode=%s", "strict");
1650 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1651 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1652 
1653 #ifdef CONFIG_F2FS_FS_COMPRESSION
1654 	f2fs_show_compress_options(seq, sbi->sb);
1655 #endif
1656 
1657 	if (test_opt(sbi, ATGC))
1658 		seq_puts(seq, ",atgc");
1659 	return 0;
1660 }
1661 
1662 static void default_options(struct f2fs_sb_info *sbi)
1663 {
1664 	/* init some FS parameters */
1665 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1666 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1667 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1668 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1669 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1670 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1671 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1672 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1673 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1674 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1675 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1676 
1677 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
1678 
1679 	set_opt(sbi, INLINE_XATTR);
1680 	set_opt(sbi, INLINE_DATA);
1681 	set_opt(sbi, INLINE_DENTRY);
1682 	set_opt(sbi, EXTENT_CACHE);
1683 	set_opt(sbi, NOHEAP);
1684 	clear_opt(sbi, DISABLE_CHECKPOINT);
1685 	F2FS_OPTION(sbi).unusable_cap = 0;
1686 	sbi->sb->s_flags |= SB_LAZYTIME;
1687 	set_opt(sbi, FLUSH_MERGE);
1688 	set_opt(sbi, DISCARD);
1689 	if (f2fs_sb_has_blkzoned(sbi))
1690 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1691 	else
1692 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1693 
1694 #ifdef CONFIG_F2FS_FS_XATTR
1695 	set_opt(sbi, XATTR_USER);
1696 #endif
1697 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1698 	set_opt(sbi, POSIX_ACL);
1699 #endif
1700 
1701 	f2fs_build_fault_attr(sbi, 0, 0);
1702 }
1703 
1704 #ifdef CONFIG_QUOTA
1705 static int f2fs_enable_quotas(struct super_block *sb);
1706 #endif
1707 
1708 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1709 {
1710 	unsigned int s_flags = sbi->sb->s_flags;
1711 	struct cp_control cpc;
1712 	int err = 0;
1713 	int ret;
1714 	block_t unusable;
1715 
1716 	if (s_flags & SB_RDONLY) {
1717 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1718 		return -EINVAL;
1719 	}
1720 	sbi->sb->s_flags |= SB_ACTIVE;
1721 
1722 	f2fs_update_time(sbi, DISABLE_TIME);
1723 
1724 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1725 		down_write(&sbi->gc_lock);
1726 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1727 		if (err == -ENODATA) {
1728 			err = 0;
1729 			break;
1730 		}
1731 		if (err && err != -EAGAIN)
1732 			break;
1733 	}
1734 
1735 	ret = sync_filesystem(sbi->sb);
1736 	if (ret || err) {
1737 		err = ret ? ret: err;
1738 		goto restore_flag;
1739 	}
1740 
1741 	unusable = f2fs_get_unusable_blocks(sbi);
1742 	if (f2fs_disable_cp_again(sbi, unusable)) {
1743 		err = -EAGAIN;
1744 		goto restore_flag;
1745 	}
1746 
1747 	down_write(&sbi->gc_lock);
1748 	cpc.reason = CP_PAUSE;
1749 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1750 	err = f2fs_write_checkpoint(sbi, &cpc);
1751 	if (err)
1752 		goto out_unlock;
1753 
1754 	spin_lock(&sbi->stat_lock);
1755 	sbi->unusable_block_count = unusable;
1756 	spin_unlock(&sbi->stat_lock);
1757 
1758 out_unlock:
1759 	up_write(&sbi->gc_lock);
1760 restore_flag:
1761 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
1762 	return err;
1763 }
1764 
1765 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1766 {
1767 	down_write(&sbi->gc_lock);
1768 	f2fs_dirty_to_prefree(sbi);
1769 
1770 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1771 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1772 	up_write(&sbi->gc_lock);
1773 
1774 	f2fs_sync_fs(sbi->sb, 1);
1775 }
1776 
1777 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1778 {
1779 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1780 	struct f2fs_mount_info org_mount_opt;
1781 	unsigned long old_sb_flags;
1782 	int err;
1783 	bool need_restart_gc = false;
1784 	bool need_stop_gc = false;
1785 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1786 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1787 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1788 	bool no_atgc = !test_opt(sbi, ATGC);
1789 	bool checkpoint_changed;
1790 #ifdef CONFIG_QUOTA
1791 	int i, j;
1792 #endif
1793 
1794 	/*
1795 	 * Save the old mount options in case we
1796 	 * need to restore them.
1797 	 */
1798 	org_mount_opt = sbi->mount_opt;
1799 	old_sb_flags = sb->s_flags;
1800 
1801 #ifdef CONFIG_QUOTA
1802 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1803 	for (i = 0; i < MAXQUOTAS; i++) {
1804 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1805 			org_mount_opt.s_qf_names[i] =
1806 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1807 				GFP_KERNEL);
1808 			if (!org_mount_opt.s_qf_names[i]) {
1809 				for (j = 0; j < i; j++)
1810 					kfree(org_mount_opt.s_qf_names[j]);
1811 				return -ENOMEM;
1812 			}
1813 		} else {
1814 			org_mount_opt.s_qf_names[i] = NULL;
1815 		}
1816 	}
1817 #endif
1818 
1819 	/* recover superblocks we couldn't write due to previous RO mount */
1820 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1821 		err = f2fs_commit_super(sbi, false);
1822 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1823 			  err);
1824 		if (!err)
1825 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1826 	}
1827 
1828 	default_options(sbi);
1829 
1830 	/* parse mount options */
1831 	err = parse_options(sb, data, true);
1832 	if (err)
1833 		goto restore_opts;
1834 	checkpoint_changed =
1835 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1836 
1837 	/*
1838 	 * Previous and new state of filesystem is RO,
1839 	 * so skip checking GC and FLUSH_MERGE conditions.
1840 	 */
1841 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1842 		goto skip;
1843 
1844 #ifdef CONFIG_QUOTA
1845 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1846 		err = dquot_suspend(sb, -1);
1847 		if (err < 0)
1848 			goto restore_opts;
1849 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1850 		/* dquot_resume needs RW */
1851 		sb->s_flags &= ~SB_RDONLY;
1852 		if (sb_any_quota_suspended(sb)) {
1853 			dquot_resume(sb, -1);
1854 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1855 			err = f2fs_enable_quotas(sb);
1856 			if (err)
1857 				goto restore_opts;
1858 		}
1859 	}
1860 #endif
1861 	/* disallow enable atgc dynamically */
1862 	if (no_atgc == !!test_opt(sbi, ATGC)) {
1863 		err = -EINVAL;
1864 		f2fs_warn(sbi, "switch atgc option is not allowed");
1865 		goto restore_opts;
1866 	}
1867 
1868 	/* disallow enable/disable extent_cache dynamically */
1869 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1870 		err = -EINVAL;
1871 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1872 		goto restore_opts;
1873 	}
1874 
1875 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1876 		err = -EINVAL;
1877 		f2fs_warn(sbi, "switch io_bits option is not allowed");
1878 		goto restore_opts;
1879 	}
1880 
1881 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1882 		err = -EINVAL;
1883 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1884 		goto restore_opts;
1885 	}
1886 
1887 	/*
1888 	 * We stop the GC thread if FS is mounted as RO
1889 	 * or if background_gc = off is passed in mount
1890 	 * option. Also sync the filesystem.
1891 	 */
1892 	if ((*flags & SB_RDONLY) ||
1893 			F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
1894 		if (sbi->gc_thread) {
1895 			f2fs_stop_gc_thread(sbi);
1896 			need_restart_gc = true;
1897 		}
1898 	} else if (!sbi->gc_thread) {
1899 		err = f2fs_start_gc_thread(sbi);
1900 		if (err)
1901 			goto restore_opts;
1902 		need_stop_gc = true;
1903 	}
1904 
1905 	if (*flags & SB_RDONLY ||
1906 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1907 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1908 		sync_inodes_sb(sb);
1909 
1910 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1911 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1912 		f2fs_sync_fs(sb, 1);
1913 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1914 	}
1915 
1916 	if (checkpoint_changed) {
1917 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1918 			err = f2fs_disable_checkpoint(sbi);
1919 			if (err)
1920 				goto restore_gc;
1921 		} else {
1922 			f2fs_enable_checkpoint(sbi);
1923 		}
1924 	}
1925 
1926 	/*
1927 	 * We stop issue flush thread if FS is mounted as RO
1928 	 * or if flush_merge is not passed in mount option.
1929 	 */
1930 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1931 		clear_opt(sbi, FLUSH_MERGE);
1932 		f2fs_destroy_flush_cmd_control(sbi, false);
1933 	} else {
1934 		err = f2fs_create_flush_cmd_control(sbi);
1935 		if (err)
1936 			goto restore_gc;
1937 	}
1938 skip:
1939 #ifdef CONFIG_QUOTA
1940 	/* Release old quota file names */
1941 	for (i = 0; i < MAXQUOTAS; i++)
1942 		kfree(org_mount_opt.s_qf_names[i]);
1943 #endif
1944 	/* Update the POSIXACL Flag */
1945 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1946 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1947 
1948 	limit_reserve_root(sbi);
1949 	adjust_unusable_cap_perc(sbi);
1950 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1951 	return 0;
1952 restore_gc:
1953 	if (need_restart_gc) {
1954 		if (f2fs_start_gc_thread(sbi))
1955 			f2fs_warn(sbi, "background gc thread has stopped");
1956 	} else if (need_stop_gc) {
1957 		f2fs_stop_gc_thread(sbi);
1958 	}
1959 restore_opts:
1960 #ifdef CONFIG_QUOTA
1961 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1962 	for (i = 0; i < MAXQUOTAS; i++) {
1963 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1964 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1965 	}
1966 #endif
1967 	sbi->mount_opt = org_mount_opt;
1968 	sb->s_flags = old_sb_flags;
1969 	return err;
1970 }
1971 
1972 #ifdef CONFIG_QUOTA
1973 /* Read data from quotafile */
1974 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1975 			       size_t len, loff_t off)
1976 {
1977 	struct inode *inode = sb_dqopt(sb)->files[type];
1978 	struct address_space *mapping = inode->i_mapping;
1979 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1980 	int offset = off & (sb->s_blocksize - 1);
1981 	int tocopy;
1982 	size_t toread;
1983 	loff_t i_size = i_size_read(inode);
1984 	struct page *page;
1985 	char *kaddr;
1986 
1987 	if (off > i_size)
1988 		return 0;
1989 
1990 	if (off + len > i_size)
1991 		len = i_size - off;
1992 	toread = len;
1993 	while (toread > 0) {
1994 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1995 repeat:
1996 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1997 		if (IS_ERR(page)) {
1998 			if (PTR_ERR(page) == -ENOMEM) {
1999 				congestion_wait(BLK_RW_ASYNC,
2000 						DEFAULT_IO_TIMEOUT);
2001 				goto repeat;
2002 			}
2003 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2004 			return PTR_ERR(page);
2005 		}
2006 
2007 		lock_page(page);
2008 
2009 		if (unlikely(page->mapping != mapping)) {
2010 			f2fs_put_page(page, 1);
2011 			goto repeat;
2012 		}
2013 		if (unlikely(!PageUptodate(page))) {
2014 			f2fs_put_page(page, 1);
2015 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2016 			return -EIO;
2017 		}
2018 
2019 		kaddr = kmap_atomic(page);
2020 		memcpy(data, kaddr + offset, tocopy);
2021 		kunmap_atomic(kaddr);
2022 		f2fs_put_page(page, 1);
2023 
2024 		offset = 0;
2025 		toread -= tocopy;
2026 		data += tocopy;
2027 		blkidx++;
2028 	}
2029 	return len;
2030 }
2031 
2032 /* Write to quotafile */
2033 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2034 				const char *data, size_t len, loff_t off)
2035 {
2036 	struct inode *inode = sb_dqopt(sb)->files[type];
2037 	struct address_space *mapping = inode->i_mapping;
2038 	const struct address_space_operations *a_ops = mapping->a_ops;
2039 	int offset = off & (sb->s_blocksize - 1);
2040 	size_t towrite = len;
2041 	struct page *page;
2042 	void *fsdata = NULL;
2043 	char *kaddr;
2044 	int err = 0;
2045 	int tocopy;
2046 
2047 	while (towrite > 0) {
2048 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2049 								towrite);
2050 retry:
2051 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2052 							&page, &fsdata);
2053 		if (unlikely(err)) {
2054 			if (err == -ENOMEM) {
2055 				congestion_wait(BLK_RW_ASYNC,
2056 						DEFAULT_IO_TIMEOUT);
2057 				goto retry;
2058 			}
2059 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2060 			break;
2061 		}
2062 
2063 		kaddr = kmap_atomic(page);
2064 		memcpy(kaddr + offset, data, tocopy);
2065 		kunmap_atomic(kaddr);
2066 		flush_dcache_page(page);
2067 
2068 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2069 						page, fsdata);
2070 		offset = 0;
2071 		towrite -= tocopy;
2072 		off += tocopy;
2073 		data += tocopy;
2074 		cond_resched();
2075 	}
2076 
2077 	if (len == towrite)
2078 		return err;
2079 	inode->i_mtime = inode->i_ctime = current_time(inode);
2080 	f2fs_mark_inode_dirty_sync(inode, false);
2081 	return len - towrite;
2082 }
2083 
2084 static struct dquot **f2fs_get_dquots(struct inode *inode)
2085 {
2086 	return F2FS_I(inode)->i_dquot;
2087 }
2088 
2089 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2090 {
2091 	return &F2FS_I(inode)->i_reserved_quota;
2092 }
2093 
2094 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2095 {
2096 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2097 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2098 		return 0;
2099 	}
2100 
2101 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2102 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2103 }
2104 
2105 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2106 {
2107 	int enabled = 0;
2108 	int i, err;
2109 
2110 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2111 		err = f2fs_enable_quotas(sbi->sb);
2112 		if (err) {
2113 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2114 			return 0;
2115 		}
2116 		return 1;
2117 	}
2118 
2119 	for (i = 0; i < MAXQUOTAS; i++) {
2120 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2121 			err = f2fs_quota_on_mount(sbi, i);
2122 			if (!err) {
2123 				enabled = 1;
2124 				continue;
2125 			}
2126 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2127 				 err, i);
2128 		}
2129 	}
2130 	return enabled;
2131 }
2132 
2133 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2134 			     unsigned int flags)
2135 {
2136 	struct inode *qf_inode;
2137 	unsigned long qf_inum;
2138 	int err;
2139 
2140 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2141 
2142 	qf_inum = f2fs_qf_ino(sb, type);
2143 	if (!qf_inum)
2144 		return -EPERM;
2145 
2146 	qf_inode = f2fs_iget(sb, qf_inum);
2147 	if (IS_ERR(qf_inode)) {
2148 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2149 		return PTR_ERR(qf_inode);
2150 	}
2151 
2152 	/* Don't account quota for quota files to avoid recursion */
2153 	qf_inode->i_flags |= S_NOQUOTA;
2154 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2155 	iput(qf_inode);
2156 	return err;
2157 }
2158 
2159 static int f2fs_enable_quotas(struct super_block *sb)
2160 {
2161 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2162 	int type, err = 0;
2163 	unsigned long qf_inum;
2164 	bool quota_mopt[MAXQUOTAS] = {
2165 		test_opt(sbi, USRQUOTA),
2166 		test_opt(sbi, GRPQUOTA),
2167 		test_opt(sbi, PRJQUOTA),
2168 	};
2169 
2170 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2171 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2172 		return 0;
2173 	}
2174 
2175 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2176 
2177 	for (type = 0; type < MAXQUOTAS; type++) {
2178 		qf_inum = f2fs_qf_ino(sb, type);
2179 		if (qf_inum) {
2180 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2181 				DQUOT_USAGE_ENABLED |
2182 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2183 			if (err) {
2184 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2185 					 type, err);
2186 				for (type--; type >= 0; type--)
2187 					dquot_quota_off(sb, type);
2188 				set_sbi_flag(F2FS_SB(sb),
2189 						SBI_QUOTA_NEED_REPAIR);
2190 				return err;
2191 			}
2192 		}
2193 	}
2194 	return 0;
2195 }
2196 
2197 int f2fs_quota_sync(struct super_block *sb, int type)
2198 {
2199 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2200 	struct quota_info *dqopt = sb_dqopt(sb);
2201 	int cnt;
2202 	int ret;
2203 
2204 	/*
2205 	 * do_quotactl
2206 	 *  f2fs_quota_sync
2207 	 *  down_read(quota_sem)
2208 	 *  dquot_writeback_dquots()
2209 	 *  f2fs_dquot_commit
2210 	 *                            block_operation
2211 	 *                            down_read(quota_sem)
2212 	 */
2213 	f2fs_lock_op(sbi);
2214 
2215 	down_read(&sbi->quota_sem);
2216 	ret = dquot_writeback_dquots(sb, type);
2217 	if (ret)
2218 		goto out;
2219 
2220 	/*
2221 	 * Now when everything is written we can discard the pagecache so
2222 	 * that userspace sees the changes.
2223 	 */
2224 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2225 		struct address_space *mapping;
2226 
2227 		if (type != -1 && cnt != type)
2228 			continue;
2229 		if (!sb_has_quota_active(sb, cnt))
2230 			continue;
2231 
2232 		mapping = dqopt->files[cnt]->i_mapping;
2233 
2234 		ret = filemap_fdatawrite(mapping);
2235 		if (ret)
2236 			goto out;
2237 
2238 		/* if we are using journalled quota */
2239 		if (is_journalled_quota(sbi))
2240 			continue;
2241 
2242 		ret = filemap_fdatawait(mapping);
2243 		if (ret)
2244 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2245 
2246 		inode_lock(dqopt->files[cnt]);
2247 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2248 		inode_unlock(dqopt->files[cnt]);
2249 	}
2250 out:
2251 	if (ret)
2252 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2253 	up_read(&sbi->quota_sem);
2254 	f2fs_unlock_op(sbi);
2255 	return ret;
2256 }
2257 
2258 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2259 							const struct path *path)
2260 {
2261 	struct inode *inode;
2262 	int err;
2263 
2264 	/* if quota sysfile exists, deny enabling quota with specific file */
2265 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2266 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2267 		return -EBUSY;
2268 	}
2269 
2270 	err = f2fs_quota_sync(sb, type);
2271 	if (err)
2272 		return err;
2273 
2274 	err = dquot_quota_on(sb, type, format_id, path);
2275 	if (err)
2276 		return err;
2277 
2278 	inode = d_inode(path->dentry);
2279 
2280 	inode_lock(inode);
2281 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2282 	f2fs_set_inode_flags(inode);
2283 	inode_unlock(inode);
2284 	f2fs_mark_inode_dirty_sync(inode, false);
2285 
2286 	return 0;
2287 }
2288 
2289 static int __f2fs_quota_off(struct super_block *sb, int type)
2290 {
2291 	struct inode *inode = sb_dqopt(sb)->files[type];
2292 	int err;
2293 
2294 	if (!inode || !igrab(inode))
2295 		return dquot_quota_off(sb, type);
2296 
2297 	err = f2fs_quota_sync(sb, type);
2298 	if (err)
2299 		goto out_put;
2300 
2301 	err = dquot_quota_off(sb, type);
2302 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2303 		goto out_put;
2304 
2305 	inode_lock(inode);
2306 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2307 	f2fs_set_inode_flags(inode);
2308 	inode_unlock(inode);
2309 	f2fs_mark_inode_dirty_sync(inode, false);
2310 out_put:
2311 	iput(inode);
2312 	return err;
2313 }
2314 
2315 static int f2fs_quota_off(struct super_block *sb, int type)
2316 {
2317 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2318 	int err;
2319 
2320 	err = __f2fs_quota_off(sb, type);
2321 
2322 	/*
2323 	 * quotactl can shutdown journalled quota, result in inconsistence
2324 	 * between quota record and fs data by following updates, tag the
2325 	 * flag to let fsck be aware of it.
2326 	 */
2327 	if (is_journalled_quota(sbi))
2328 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2329 	return err;
2330 }
2331 
2332 void f2fs_quota_off_umount(struct super_block *sb)
2333 {
2334 	int type;
2335 	int err;
2336 
2337 	for (type = 0; type < MAXQUOTAS; type++) {
2338 		err = __f2fs_quota_off(sb, type);
2339 		if (err) {
2340 			int ret = dquot_quota_off(sb, type);
2341 
2342 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2343 				 type, err, ret);
2344 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2345 		}
2346 	}
2347 	/*
2348 	 * In case of checkpoint=disable, we must flush quota blocks.
2349 	 * This can cause NULL exception for node_inode in end_io, since
2350 	 * put_super already dropped it.
2351 	 */
2352 	sync_filesystem(sb);
2353 }
2354 
2355 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2356 {
2357 	struct quota_info *dqopt = sb_dqopt(sb);
2358 	int type;
2359 
2360 	for (type = 0; type < MAXQUOTAS; type++) {
2361 		if (!dqopt->files[type])
2362 			continue;
2363 		f2fs_inode_synced(dqopt->files[type]);
2364 	}
2365 }
2366 
2367 static int f2fs_dquot_commit(struct dquot *dquot)
2368 {
2369 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2370 	int ret;
2371 
2372 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2373 	ret = dquot_commit(dquot);
2374 	if (ret < 0)
2375 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2376 	up_read(&sbi->quota_sem);
2377 	return ret;
2378 }
2379 
2380 static int f2fs_dquot_acquire(struct dquot *dquot)
2381 {
2382 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2383 	int ret;
2384 
2385 	down_read(&sbi->quota_sem);
2386 	ret = dquot_acquire(dquot);
2387 	if (ret < 0)
2388 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2389 	up_read(&sbi->quota_sem);
2390 	return ret;
2391 }
2392 
2393 static int f2fs_dquot_release(struct dquot *dquot)
2394 {
2395 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2396 	int ret = dquot_release(dquot);
2397 
2398 	if (ret < 0)
2399 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2400 	return ret;
2401 }
2402 
2403 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2404 {
2405 	struct super_block *sb = dquot->dq_sb;
2406 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2407 	int ret = dquot_mark_dquot_dirty(dquot);
2408 
2409 	/* if we are using journalled quota */
2410 	if (is_journalled_quota(sbi))
2411 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2412 
2413 	return ret;
2414 }
2415 
2416 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2417 {
2418 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2419 	int ret = dquot_commit_info(sb, type);
2420 
2421 	if (ret < 0)
2422 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2423 	return ret;
2424 }
2425 
2426 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2427 {
2428 	*projid = F2FS_I(inode)->i_projid;
2429 	return 0;
2430 }
2431 
2432 static const struct dquot_operations f2fs_quota_operations = {
2433 	.get_reserved_space = f2fs_get_reserved_space,
2434 	.write_dquot	= f2fs_dquot_commit,
2435 	.acquire_dquot	= f2fs_dquot_acquire,
2436 	.release_dquot	= f2fs_dquot_release,
2437 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2438 	.write_info	= f2fs_dquot_commit_info,
2439 	.alloc_dquot	= dquot_alloc,
2440 	.destroy_dquot	= dquot_destroy,
2441 	.get_projid	= f2fs_get_projid,
2442 	.get_next_id	= dquot_get_next_id,
2443 };
2444 
2445 static const struct quotactl_ops f2fs_quotactl_ops = {
2446 	.quota_on	= f2fs_quota_on,
2447 	.quota_off	= f2fs_quota_off,
2448 	.quota_sync	= f2fs_quota_sync,
2449 	.get_state	= dquot_get_state,
2450 	.set_info	= dquot_set_dqinfo,
2451 	.get_dqblk	= dquot_get_dqblk,
2452 	.set_dqblk	= dquot_set_dqblk,
2453 	.get_nextdqblk	= dquot_get_next_dqblk,
2454 };
2455 #else
2456 int f2fs_quota_sync(struct super_block *sb, int type)
2457 {
2458 	return 0;
2459 }
2460 
2461 void f2fs_quota_off_umount(struct super_block *sb)
2462 {
2463 }
2464 #endif
2465 
2466 static const struct super_operations f2fs_sops = {
2467 	.alloc_inode	= f2fs_alloc_inode,
2468 	.free_inode	= f2fs_free_inode,
2469 	.drop_inode	= f2fs_drop_inode,
2470 	.write_inode	= f2fs_write_inode,
2471 	.dirty_inode	= f2fs_dirty_inode,
2472 	.show_options	= f2fs_show_options,
2473 #ifdef CONFIG_QUOTA
2474 	.quota_read	= f2fs_quota_read,
2475 	.quota_write	= f2fs_quota_write,
2476 	.get_dquots	= f2fs_get_dquots,
2477 #endif
2478 	.evict_inode	= f2fs_evict_inode,
2479 	.put_super	= f2fs_put_super,
2480 	.sync_fs	= f2fs_sync_fs,
2481 	.freeze_fs	= f2fs_freeze,
2482 	.unfreeze_fs	= f2fs_unfreeze,
2483 	.statfs		= f2fs_statfs,
2484 	.remount_fs	= f2fs_remount,
2485 };
2486 
2487 #ifdef CONFIG_FS_ENCRYPTION
2488 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2489 {
2490 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2491 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2492 				ctx, len, NULL);
2493 }
2494 
2495 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2496 							void *fs_data)
2497 {
2498 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2499 
2500 	/*
2501 	 * Encrypting the root directory is not allowed because fsck
2502 	 * expects lost+found directory to exist and remain unencrypted
2503 	 * if LOST_FOUND feature is enabled.
2504 	 *
2505 	 */
2506 	if (f2fs_sb_has_lost_found(sbi) &&
2507 			inode->i_ino == F2FS_ROOT_INO(sbi))
2508 		return -EPERM;
2509 
2510 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2511 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2512 				ctx, len, fs_data, XATTR_CREATE);
2513 }
2514 
2515 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2516 {
2517 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2518 }
2519 
2520 static bool f2fs_has_stable_inodes(struct super_block *sb)
2521 {
2522 	return true;
2523 }
2524 
2525 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2526 				       int *ino_bits_ret, int *lblk_bits_ret)
2527 {
2528 	*ino_bits_ret = 8 * sizeof(nid_t);
2529 	*lblk_bits_ret = 8 * sizeof(block_t);
2530 }
2531 
2532 static int f2fs_get_num_devices(struct super_block *sb)
2533 {
2534 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2535 
2536 	if (f2fs_is_multi_device(sbi))
2537 		return sbi->s_ndevs;
2538 	return 1;
2539 }
2540 
2541 static void f2fs_get_devices(struct super_block *sb,
2542 			     struct request_queue **devs)
2543 {
2544 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2545 	int i;
2546 
2547 	for (i = 0; i < sbi->s_ndevs; i++)
2548 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2549 }
2550 
2551 static const struct fscrypt_operations f2fs_cryptops = {
2552 	.key_prefix		= "f2fs:",
2553 	.get_context		= f2fs_get_context,
2554 	.set_context		= f2fs_set_context,
2555 	.get_dummy_policy	= f2fs_get_dummy_policy,
2556 	.empty_dir		= f2fs_empty_dir,
2557 	.max_namelen		= F2FS_NAME_LEN,
2558 	.has_stable_inodes	= f2fs_has_stable_inodes,
2559 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2560 	.get_num_devices	= f2fs_get_num_devices,
2561 	.get_devices		= f2fs_get_devices,
2562 };
2563 #endif
2564 
2565 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2566 		u64 ino, u32 generation)
2567 {
2568 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2569 	struct inode *inode;
2570 
2571 	if (f2fs_check_nid_range(sbi, ino))
2572 		return ERR_PTR(-ESTALE);
2573 
2574 	/*
2575 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2576 	 * However f2fs_iget currently does appropriate checks to handle stale
2577 	 * inodes so everything is OK.
2578 	 */
2579 	inode = f2fs_iget(sb, ino);
2580 	if (IS_ERR(inode))
2581 		return ERR_CAST(inode);
2582 	if (unlikely(generation && inode->i_generation != generation)) {
2583 		/* we didn't find the right inode.. */
2584 		iput(inode);
2585 		return ERR_PTR(-ESTALE);
2586 	}
2587 	return inode;
2588 }
2589 
2590 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2591 		int fh_len, int fh_type)
2592 {
2593 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2594 				    f2fs_nfs_get_inode);
2595 }
2596 
2597 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2598 		int fh_len, int fh_type)
2599 {
2600 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2601 				    f2fs_nfs_get_inode);
2602 }
2603 
2604 static const struct export_operations f2fs_export_ops = {
2605 	.fh_to_dentry = f2fs_fh_to_dentry,
2606 	.fh_to_parent = f2fs_fh_to_parent,
2607 	.get_parent = f2fs_get_parent,
2608 };
2609 
2610 static loff_t max_file_blocks(void)
2611 {
2612 	loff_t result = 0;
2613 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2614 
2615 	/*
2616 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2617 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2618 	 * space in inode.i_addr, it will be more safe to reassign
2619 	 * result as zero.
2620 	 */
2621 
2622 	/* two direct node blocks */
2623 	result += (leaf_count * 2);
2624 
2625 	/* two indirect node blocks */
2626 	leaf_count *= NIDS_PER_BLOCK;
2627 	result += (leaf_count * 2);
2628 
2629 	/* one double indirect node block */
2630 	leaf_count *= NIDS_PER_BLOCK;
2631 	result += leaf_count;
2632 
2633 	return result;
2634 }
2635 
2636 static int __f2fs_commit_super(struct buffer_head *bh,
2637 			struct f2fs_super_block *super)
2638 {
2639 	lock_buffer(bh);
2640 	if (super)
2641 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2642 	set_buffer_dirty(bh);
2643 	unlock_buffer(bh);
2644 
2645 	/* it's rare case, we can do fua all the time */
2646 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2647 }
2648 
2649 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2650 					struct buffer_head *bh)
2651 {
2652 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2653 					(bh->b_data + F2FS_SUPER_OFFSET);
2654 	struct super_block *sb = sbi->sb;
2655 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2656 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2657 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2658 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2659 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2660 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2661 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2662 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2663 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2664 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2665 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2666 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2667 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2668 	u64 main_end_blkaddr = main_blkaddr +
2669 				(segment_count_main << log_blocks_per_seg);
2670 	u64 seg_end_blkaddr = segment0_blkaddr +
2671 				(segment_count << log_blocks_per_seg);
2672 
2673 	if (segment0_blkaddr != cp_blkaddr) {
2674 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2675 			  segment0_blkaddr, cp_blkaddr);
2676 		return true;
2677 	}
2678 
2679 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2680 							sit_blkaddr) {
2681 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2682 			  cp_blkaddr, sit_blkaddr,
2683 			  segment_count_ckpt << log_blocks_per_seg);
2684 		return true;
2685 	}
2686 
2687 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2688 							nat_blkaddr) {
2689 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2690 			  sit_blkaddr, nat_blkaddr,
2691 			  segment_count_sit << log_blocks_per_seg);
2692 		return true;
2693 	}
2694 
2695 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2696 							ssa_blkaddr) {
2697 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2698 			  nat_blkaddr, ssa_blkaddr,
2699 			  segment_count_nat << log_blocks_per_seg);
2700 		return true;
2701 	}
2702 
2703 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2704 							main_blkaddr) {
2705 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2706 			  ssa_blkaddr, main_blkaddr,
2707 			  segment_count_ssa << log_blocks_per_seg);
2708 		return true;
2709 	}
2710 
2711 	if (main_end_blkaddr > seg_end_blkaddr) {
2712 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
2713 			  main_blkaddr, seg_end_blkaddr,
2714 			  segment_count_main << log_blocks_per_seg);
2715 		return true;
2716 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2717 		int err = 0;
2718 		char *res;
2719 
2720 		/* fix in-memory information all the time */
2721 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2722 				segment0_blkaddr) >> log_blocks_per_seg);
2723 
2724 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2725 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2726 			res = "internally";
2727 		} else {
2728 			err = __f2fs_commit_super(bh, NULL);
2729 			res = err ? "failed" : "done";
2730 		}
2731 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
2732 			  res, main_blkaddr, seg_end_blkaddr,
2733 			  segment_count_main << log_blocks_per_seg);
2734 		if (err)
2735 			return true;
2736 	}
2737 	return false;
2738 }
2739 
2740 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2741 				struct buffer_head *bh)
2742 {
2743 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
2744 	block_t total_sections, blocks_per_seg;
2745 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2746 					(bh->b_data + F2FS_SUPER_OFFSET);
2747 	unsigned int blocksize;
2748 	size_t crc_offset = 0;
2749 	__u32 crc = 0;
2750 
2751 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2752 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2753 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2754 		return -EINVAL;
2755 	}
2756 
2757 	/* Check checksum_offset and crc in superblock */
2758 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2759 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2760 		if (crc_offset !=
2761 			offsetof(struct f2fs_super_block, crc)) {
2762 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2763 				  crc_offset);
2764 			return -EFSCORRUPTED;
2765 		}
2766 		crc = le32_to_cpu(raw_super->crc);
2767 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2768 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2769 			return -EFSCORRUPTED;
2770 		}
2771 	}
2772 
2773 	/* Currently, support only 4KB page cache size */
2774 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2775 		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2776 			  PAGE_SIZE);
2777 		return -EFSCORRUPTED;
2778 	}
2779 
2780 	/* Currently, support only 4KB block size */
2781 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2782 	if (blocksize != F2FS_BLKSIZE) {
2783 		f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2784 			  blocksize);
2785 		return -EFSCORRUPTED;
2786 	}
2787 
2788 	/* check log blocks per segment */
2789 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2790 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2791 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2792 		return -EFSCORRUPTED;
2793 	}
2794 
2795 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2796 	if (le32_to_cpu(raw_super->log_sectorsize) >
2797 				F2FS_MAX_LOG_SECTOR_SIZE ||
2798 		le32_to_cpu(raw_super->log_sectorsize) <
2799 				F2FS_MIN_LOG_SECTOR_SIZE) {
2800 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2801 			  le32_to_cpu(raw_super->log_sectorsize));
2802 		return -EFSCORRUPTED;
2803 	}
2804 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2805 		le32_to_cpu(raw_super->log_sectorsize) !=
2806 			F2FS_MAX_LOG_SECTOR_SIZE) {
2807 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2808 			  le32_to_cpu(raw_super->log_sectors_per_block),
2809 			  le32_to_cpu(raw_super->log_sectorsize));
2810 		return -EFSCORRUPTED;
2811 	}
2812 
2813 	segment_count = le32_to_cpu(raw_super->segment_count);
2814 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2815 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2816 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2817 	total_sections = le32_to_cpu(raw_super->section_count);
2818 
2819 	/* blocks_per_seg should be 512, given the above check */
2820 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2821 
2822 	if (segment_count > F2FS_MAX_SEGMENT ||
2823 				segment_count < F2FS_MIN_SEGMENTS) {
2824 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2825 		return -EFSCORRUPTED;
2826 	}
2827 
2828 	if (total_sections > segment_count_main || total_sections < 1 ||
2829 			segs_per_sec > segment_count || !segs_per_sec) {
2830 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2831 			  segment_count, total_sections, segs_per_sec);
2832 		return -EFSCORRUPTED;
2833 	}
2834 
2835 	if (segment_count_main != total_sections * segs_per_sec) {
2836 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
2837 			  segment_count_main, total_sections, segs_per_sec);
2838 		return -EFSCORRUPTED;
2839 	}
2840 
2841 	if ((segment_count / segs_per_sec) < total_sections) {
2842 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2843 			  segment_count, segs_per_sec, total_sections);
2844 		return -EFSCORRUPTED;
2845 	}
2846 
2847 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2848 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2849 			  segment_count, le64_to_cpu(raw_super->block_count));
2850 		return -EFSCORRUPTED;
2851 	}
2852 
2853 	if (RDEV(0).path[0]) {
2854 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2855 		int i = 1;
2856 
2857 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
2858 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2859 			i++;
2860 		}
2861 		if (segment_count != dev_seg_count) {
2862 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2863 					segment_count, dev_seg_count);
2864 			return -EFSCORRUPTED;
2865 		}
2866 	} else {
2867 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
2868 					!bdev_is_zoned(sbi->sb->s_bdev)) {
2869 			f2fs_info(sbi, "Zoned block device path is missing");
2870 			return -EFSCORRUPTED;
2871 		}
2872 	}
2873 
2874 	if (secs_per_zone > total_sections || !secs_per_zone) {
2875 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2876 			  secs_per_zone, total_sections);
2877 		return -EFSCORRUPTED;
2878 	}
2879 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2880 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2881 			(le32_to_cpu(raw_super->extension_count) +
2882 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2883 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2884 			  le32_to_cpu(raw_super->extension_count),
2885 			  raw_super->hot_ext_count,
2886 			  F2FS_MAX_EXTENSION);
2887 		return -EFSCORRUPTED;
2888 	}
2889 
2890 	if (le32_to_cpu(raw_super->cp_payload) >
2891 				(blocks_per_seg - F2FS_CP_PACKS)) {
2892 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2893 			  le32_to_cpu(raw_super->cp_payload),
2894 			  blocks_per_seg - F2FS_CP_PACKS);
2895 		return -EFSCORRUPTED;
2896 	}
2897 
2898 	/* check reserved ino info */
2899 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2900 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2901 		le32_to_cpu(raw_super->root_ino) != 3) {
2902 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2903 			  le32_to_cpu(raw_super->node_ino),
2904 			  le32_to_cpu(raw_super->meta_ino),
2905 			  le32_to_cpu(raw_super->root_ino));
2906 		return -EFSCORRUPTED;
2907 	}
2908 
2909 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2910 	if (sanity_check_area_boundary(sbi, bh))
2911 		return -EFSCORRUPTED;
2912 
2913 	return 0;
2914 }
2915 
2916 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2917 {
2918 	unsigned int total, fsmeta;
2919 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2920 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2921 	unsigned int ovp_segments, reserved_segments;
2922 	unsigned int main_segs, blocks_per_seg;
2923 	unsigned int sit_segs, nat_segs;
2924 	unsigned int sit_bitmap_size, nat_bitmap_size;
2925 	unsigned int log_blocks_per_seg;
2926 	unsigned int segment_count_main;
2927 	unsigned int cp_pack_start_sum, cp_payload;
2928 	block_t user_block_count, valid_user_blocks;
2929 	block_t avail_node_count, valid_node_count;
2930 	int i, j;
2931 
2932 	total = le32_to_cpu(raw_super->segment_count);
2933 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2934 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2935 	fsmeta += sit_segs;
2936 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2937 	fsmeta += nat_segs;
2938 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2939 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2940 
2941 	if (unlikely(fsmeta >= total))
2942 		return 1;
2943 
2944 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2945 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2946 
2947 	if (unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
2948 			ovp_segments == 0 || reserved_segments == 0)) {
2949 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2950 		return 1;
2951 	}
2952 
2953 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2954 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2955 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2956 	if (!user_block_count || user_block_count >=
2957 			segment_count_main << log_blocks_per_seg) {
2958 		f2fs_err(sbi, "Wrong user_block_count: %u",
2959 			 user_block_count);
2960 		return 1;
2961 	}
2962 
2963 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2964 	if (valid_user_blocks > user_block_count) {
2965 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2966 			 valid_user_blocks, user_block_count);
2967 		return 1;
2968 	}
2969 
2970 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2971 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2972 	if (valid_node_count > avail_node_count) {
2973 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2974 			 valid_node_count, avail_node_count);
2975 		return 1;
2976 	}
2977 
2978 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2979 	blocks_per_seg = sbi->blocks_per_seg;
2980 
2981 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2982 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2983 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2984 			return 1;
2985 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2986 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2987 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2988 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2989 					 i, j,
2990 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2991 				return 1;
2992 			}
2993 		}
2994 	}
2995 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2996 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2997 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2998 			return 1;
2999 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3000 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3001 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3002 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3003 					 i, j,
3004 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3005 				return 1;
3006 			}
3007 		}
3008 	}
3009 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3010 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3011 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3012 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3013 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3014 					 i, j,
3015 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3016 				return 1;
3017 			}
3018 		}
3019 	}
3020 
3021 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3022 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3023 
3024 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3025 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3026 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3027 			 sit_bitmap_size, nat_bitmap_size);
3028 		return 1;
3029 	}
3030 
3031 	cp_pack_start_sum = __start_sum_addr(sbi);
3032 	cp_payload = __cp_payload(sbi);
3033 	if (cp_pack_start_sum < cp_payload + 1 ||
3034 		cp_pack_start_sum > blocks_per_seg - 1 -
3035 			NR_CURSEG_PERSIST_TYPE) {
3036 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3037 			 cp_pack_start_sum);
3038 		return 1;
3039 	}
3040 
3041 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3042 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3043 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3044 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3045 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3046 			  le32_to_cpu(ckpt->checksum_offset));
3047 		return 1;
3048 	}
3049 
3050 	if (unlikely(f2fs_cp_error(sbi))) {
3051 		f2fs_err(sbi, "A bug case: need to run fsck");
3052 		return 1;
3053 	}
3054 	return 0;
3055 }
3056 
3057 static void init_sb_info(struct f2fs_sb_info *sbi)
3058 {
3059 	struct f2fs_super_block *raw_super = sbi->raw_super;
3060 	int i;
3061 
3062 	sbi->log_sectors_per_block =
3063 		le32_to_cpu(raw_super->log_sectors_per_block);
3064 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3065 	sbi->blocksize = 1 << sbi->log_blocksize;
3066 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3067 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3068 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3069 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3070 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3071 	sbi->total_node_count =
3072 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3073 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3074 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
3075 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
3076 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
3077 	sbi->cur_victim_sec = NULL_SECNO;
3078 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3079 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3080 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3081 	sbi->migration_granularity = sbi->segs_per_sec;
3082 
3083 	sbi->dir_level = DEF_DIR_LEVEL;
3084 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3085 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3086 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3087 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3088 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3089 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3090 				DEF_UMOUNT_DISCARD_TIMEOUT;
3091 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3092 
3093 	for (i = 0; i < NR_COUNT_TYPE; i++)
3094 		atomic_set(&sbi->nr_pages[i], 0);
3095 
3096 	for (i = 0; i < META; i++)
3097 		atomic_set(&sbi->wb_sync_req[i], 0);
3098 
3099 	INIT_LIST_HEAD(&sbi->s_list);
3100 	mutex_init(&sbi->umount_mutex);
3101 	init_rwsem(&sbi->io_order_lock);
3102 	spin_lock_init(&sbi->cp_lock);
3103 
3104 	sbi->dirty_device = 0;
3105 	spin_lock_init(&sbi->dev_lock);
3106 
3107 	init_rwsem(&sbi->sb_lock);
3108 	init_rwsem(&sbi->pin_sem);
3109 }
3110 
3111 static int init_percpu_info(struct f2fs_sb_info *sbi)
3112 {
3113 	int err;
3114 
3115 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3116 	if (err)
3117 		return err;
3118 
3119 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3120 								GFP_KERNEL);
3121 	if (err)
3122 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3123 
3124 	return err;
3125 }
3126 
3127 #ifdef CONFIG_BLK_DEV_ZONED
3128 
3129 struct f2fs_report_zones_args {
3130 	struct f2fs_dev_info *dev;
3131 	bool zone_cap_mismatch;
3132 };
3133 
3134 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3135 			      void *data)
3136 {
3137 	struct f2fs_report_zones_args *rz_args = data;
3138 
3139 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3140 		return 0;
3141 
3142 	set_bit(idx, rz_args->dev->blkz_seq);
3143 	rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3144 						F2FS_LOG_SECTORS_PER_BLOCK;
3145 	if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3146 		rz_args->zone_cap_mismatch = true;
3147 
3148 	return 0;
3149 }
3150 
3151 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3152 {
3153 	struct block_device *bdev = FDEV(devi).bdev;
3154 	sector_t nr_sectors = bdev->bd_part->nr_sects;
3155 	struct f2fs_report_zones_args rep_zone_arg;
3156 	int ret;
3157 
3158 	if (!f2fs_sb_has_blkzoned(sbi))
3159 		return 0;
3160 
3161 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3162 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3163 		return -EINVAL;
3164 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3165 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3166 				__ilog2_u32(sbi->blocks_per_blkz))
3167 		return -EINVAL;
3168 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3169 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3170 					sbi->log_blocks_per_blkz;
3171 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3172 		FDEV(devi).nr_blkz++;
3173 
3174 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3175 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3176 					* sizeof(unsigned long),
3177 					GFP_KERNEL);
3178 	if (!FDEV(devi).blkz_seq)
3179 		return -ENOMEM;
3180 
3181 	/* Get block zones type and zone-capacity */
3182 	FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3183 					FDEV(devi).nr_blkz * sizeof(block_t),
3184 					GFP_KERNEL);
3185 	if (!FDEV(devi).zone_capacity_blocks)
3186 		return -ENOMEM;
3187 
3188 	rep_zone_arg.dev = &FDEV(devi);
3189 	rep_zone_arg.zone_cap_mismatch = false;
3190 
3191 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3192 				  &rep_zone_arg);
3193 	if (ret < 0)
3194 		return ret;
3195 
3196 	if (!rep_zone_arg.zone_cap_mismatch) {
3197 		kfree(FDEV(devi).zone_capacity_blocks);
3198 		FDEV(devi).zone_capacity_blocks = NULL;
3199 	}
3200 
3201 	return 0;
3202 }
3203 #endif
3204 
3205 /*
3206  * Read f2fs raw super block.
3207  * Because we have two copies of super block, so read both of them
3208  * to get the first valid one. If any one of them is broken, we pass
3209  * them recovery flag back to the caller.
3210  */
3211 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3212 			struct f2fs_super_block **raw_super,
3213 			int *valid_super_block, int *recovery)
3214 {
3215 	struct super_block *sb = sbi->sb;
3216 	int block;
3217 	struct buffer_head *bh;
3218 	struct f2fs_super_block *super;
3219 	int err = 0;
3220 
3221 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3222 	if (!super)
3223 		return -ENOMEM;
3224 
3225 	for (block = 0; block < 2; block++) {
3226 		bh = sb_bread(sb, block);
3227 		if (!bh) {
3228 			f2fs_err(sbi, "Unable to read %dth superblock",
3229 				 block + 1);
3230 			err = -EIO;
3231 			*recovery = 1;
3232 			continue;
3233 		}
3234 
3235 		/* sanity checking of raw super */
3236 		err = sanity_check_raw_super(sbi, bh);
3237 		if (err) {
3238 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3239 				 block + 1);
3240 			brelse(bh);
3241 			*recovery = 1;
3242 			continue;
3243 		}
3244 
3245 		if (!*raw_super) {
3246 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3247 							sizeof(*super));
3248 			*valid_super_block = block;
3249 			*raw_super = super;
3250 		}
3251 		brelse(bh);
3252 	}
3253 
3254 	/* No valid superblock */
3255 	if (!*raw_super)
3256 		kfree(super);
3257 	else
3258 		err = 0;
3259 
3260 	return err;
3261 }
3262 
3263 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3264 {
3265 	struct buffer_head *bh;
3266 	__u32 crc = 0;
3267 	int err;
3268 
3269 	if ((recover && f2fs_readonly(sbi->sb)) ||
3270 				bdev_read_only(sbi->sb->s_bdev)) {
3271 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3272 		return -EROFS;
3273 	}
3274 
3275 	/* we should update superblock crc here */
3276 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3277 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3278 				offsetof(struct f2fs_super_block, crc));
3279 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3280 	}
3281 
3282 	/* write back-up superblock first */
3283 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3284 	if (!bh)
3285 		return -EIO;
3286 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3287 	brelse(bh);
3288 
3289 	/* if we are in recovery path, skip writing valid superblock */
3290 	if (recover || err)
3291 		return err;
3292 
3293 	/* write current valid superblock */
3294 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3295 	if (!bh)
3296 		return -EIO;
3297 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3298 	brelse(bh);
3299 	return err;
3300 }
3301 
3302 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3303 {
3304 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3305 	unsigned int max_devices = MAX_DEVICES;
3306 	int i;
3307 
3308 	/* Initialize single device information */
3309 	if (!RDEV(0).path[0]) {
3310 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3311 			return 0;
3312 		max_devices = 1;
3313 	}
3314 
3315 	/*
3316 	 * Initialize multiple devices information, or single
3317 	 * zoned block device information.
3318 	 */
3319 	sbi->devs = f2fs_kzalloc(sbi,
3320 				 array_size(max_devices,
3321 					    sizeof(struct f2fs_dev_info)),
3322 				 GFP_KERNEL);
3323 	if (!sbi->devs)
3324 		return -ENOMEM;
3325 
3326 	for (i = 0; i < max_devices; i++) {
3327 
3328 		if (i > 0 && !RDEV(i).path[0])
3329 			break;
3330 
3331 		if (max_devices == 1) {
3332 			/* Single zoned block device mount */
3333 			FDEV(0).bdev =
3334 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3335 					sbi->sb->s_mode, sbi->sb->s_type);
3336 		} else {
3337 			/* Multi-device mount */
3338 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3339 			FDEV(i).total_segments =
3340 				le32_to_cpu(RDEV(i).total_segments);
3341 			if (i == 0) {
3342 				FDEV(i).start_blk = 0;
3343 				FDEV(i).end_blk = FDEV(i).start_blk +
3344 				    (FDEV(i).total_segments <<
3345 				    sbi->log_blocks_per_seg) - 1 +
3346 				    le32_to_cpu(raw_super->segment0_blkaddr);
3347 			} else {
3348 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3349 				FDEV(i).end_blk = FDEV(i).start_blk +
3350 					(FDEV(i).total_segments <<
3351 					sbi->log_blocks_per_seg) - 1;
3352 			}
3353 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3354 					sbi->sb->s_mode, sbi->sb->s_type);
3355 		}
3356 		if (IS_ERR(FDEV(i).bdev))
3357 			return PTR_ERR(FDEV(i).bdev);
3358 
3359 		/* to release errored devices */
3360 		sbi->s_ndevs = i + 1;
3361 
3362 #ifdef CONFIG_BLK_DEV_ZONED
3363 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3364 				!f2fs_sb_has_blkzoned(sbi)) {
3365 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3366 			return -EINVAL;
3367 		}
3368 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3369 			if (init_blkz_info(sbi, i)) {
3370 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3371 				return -EINVAL;
3372 			}
3373 			if (max_devices == 1)
3374 				break;
3375 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3376 				  i, FDEV(i).path,
3377 				  FDEV(i).total_segments,
3378 				  FDEV(i).start_blk, FDEV(i).end_blk,
3379 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3380 				  "Host-aware" : "Host-managed");
3381 			continue;
3382 		}
3383 #endif
3384 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3385 			  i, FDEV(i).path,
3386 			  FDEV(i).total_segments,
3387 			  FDEV(i).start_blk, FDEV(i).end_blk);
3388 	}
3389 	f2fs_info(sbi,
3390 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3391 	return 0;
3392 }
3393 
3394 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3395 {
3396 #ifdef CONFIG_UNICODE
3397 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3398 		const struct f2fs_sb_encodings *encoding_info;
3399 		struct unicode_map *encoding;
3400 		__u16 encoding_flags;
3401 
3402 		if (f2fs_sb_has_encrypt(sbi)) {
3403 			f2fs_err(sbi,
3404 				"Can't mount with encoding and encryption");
3405 			return -EINVAL;
3406 		}
3407 
3408 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3409 					  &encoding_flags)) {
3410 			f2fs_err(sbi,
3411 				 "Encoding requested by superblock is unknown");
3412 			return -EINVAL;
3413 		}
3414 
3415 		encoding = utf8_load(encoding_info->version);
3416 		if (IS_ERR(encoding)) {
3417 			f2fs_err(sbi,
3418 				 "can't mount with superblock charset: %s-%s "
3419 				 "not supported by the kernel. flags: 0x%x.",
3420 				 encoding_info->name, encoding_info->version,
3421 				 encoding_flags);
3422 			return PTR_ERR(encoding);
3423 		}
3424 		f2fs_info(sbi, "Using encoding defined by superblock: "
3425 			 "%s-%s with flags 0x%hx", encoding_info->name,
3426 			 encoding_info->version?:"\b", encoding_flags);
3427 
3428 		sbi->sb->s_encoding = encoding;
3429 		sbi->sb->s_encoding_flags = encoding_flags;
3430 		sbi->sb->s_d_op = &f2fs_dentry_ops;
3431 	}
3432 #else
3433 	if (f2fs_sb_has_casefold(sbi)) {
3434 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3435 		return -EINVAL;
3436 	}
3437 #endif
3438 	return 0;
3439 }
3440 
3441 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3442 {
3443 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3444 
3445 	/* adjust parameters according to the volume size */
3446 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3447 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3448 		sm_i->dcc_info->discard_granularity = 1;
3449 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3450 	}
3451 
3452 	sbi->readdir_ra = 1;
3453 }
3454 
3455 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3456 {
3457 	struct f2fs_sb_info *sbi;
3458 	struct f2fs_super_block *raw_super;
3459 	struct inode *root;
3460 	int err;
3461 	bool skip_recovery = false, need_fsck = false;
3462 	char *options = NULL;
3463 	int recovery, i, valid_super_block;
3464 	struct curseg_info *seg_i;
3465 	int retry_cnt = 1;
3466 
3467 try_onemore:
3468 	err = -EINVAL;
3469 	raw_super = NULL;
3470 	valid_super_block = -1;
3471 	recovery = 0;
3472 
3473 	/* allocate memory for f2fs-specific super block info */
3474 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3475 	if (!sbi)
3476 		return -ENOMEM;
3477 
3478 	sbi->sb = sb;
3479 
3480 	/* Load the checksum driver */
3481 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3482 	if (IS_ERR(sbi->s_chksum_driver)) {
3483 		f2fs_err(sbi, "Cannot load crc32 driver.");
3484 		err = PTR_ERR(sbi->s_chksum_driver);
3485 		sbi->s_chksum_driver = NULL;
3486 		goto free_sbi;
3487 	}
3488 
3489 	/* set a block size */
3490 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3491 		f2fs_err(sbi, "unable to set blocksize");
3492 		goto free_sbi;
3493 	}
3494 
3495 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3496 								&recovery);
3497 	if (err)
3498 		goto free_sbi;
3499 
3500 	sb->s_fs_info = sbi;
3501 	sbi->raw_super = raw_super;
3502 
3503 	/* precompute checksum seed for metadata */
3504 	if (f2fs_sb_has_inode_chksum(sbi))
3505 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3506 						sizeof(raw_super->uuid));
3507 
3508 	default_options(sbi);
3509 	/* parse mount options */
3510 	options = kstrdup((const char *)data, GFP_KERNEL);
3511 	if (data && !options) {
3512 		err = -ENOMEM;
3513 		goto free_sb_buf;
3514 	}
3515 
3516 	err = parse_options(sb, options, false);
3517 	if (err)
3518 		goto free_options;
3519 
3520 	sbi->max_file_blocks = max_file_blocks();
3521 	sb->s_maxbytes = sbi->max_file_blocks <<
3522 				le32_to_cpu(raw_super->log_blocksize);
3523 	sb->s_max_links = F2FS_LINK_MAX;
3524 
3525 	err = f2fs_setup_casefold(sbi);
3526 	if (err)
3527 		goto free_options;
3528 
3529 #ifdef CONFIG_QUOTA
3530 	sb->dq_op = &f2fs_quota_operations;
3531 	sb->s_qcop = &f2fs_quotactl_ops;
3532 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3533 
3534 	if (f2fs_sb_has_quota_ino(sbi)) {
3535 		for (i = 0; i < MAXQUOTAS; i++) {
3536 			if (f2fs_qf_ino(sbi->sb, i))
3537 				sbi->nquota_files++;
3538 		}
3539 	}
3540 #endif
3541 
3542 	sb->s_op = &f2fs_sops;
3543 #ifdef CONFIG_FS_ENCRYPTION
3544 	sb->s_cop = &f2fs_cryptops;
3545 #endif
3546 #ifdef CONFIG_FS_VERITY
3547 	sb->s_vop = &f2fs_verityops;
3548 #endif
3549 	sb->s_xattr = f2fs_xattr_handlers;
3550 	sb->s_export_op = &f2fs_export_ops;
3551 	sb->s_magic = F2FS_SUPER_MAGIC;
3552 	sb->s_time_gran = 1;
3553 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3554 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3555 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3556 	sb->s_iflags |= SB_I_CGROUPWB;
3557 
3558 	/* init f2fs-specific super block info */
3559 	sbi->valid_super_block = valid_super_block;
3560 	init_rwsem(&sbi->gc_lock);
3561 	mutex_init(&sbi->writepages);
3562 	mutex_init(&sbi->cp_mutex);
3563 	init_rwsem(&sbi->node_write);
3564 	init_rwsem(&sbi->node_change);
3565 
3566 	/* disallow all the data/node/meta page writes */
3567 	set_sbi_flag(sbi, SBI_POR_DOING);
3568 	spin_lock_init(&sbi->stat_lock);
3569 
3570 	/* init iostat info */
3571 	spin_lock_init(&sbi->iostat_lock);
3572 	sbi->iostat_enable = false;
3573 	sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3574 
3575 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3576 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3577 		int j;
3578 
3579 		sbi->write_io[i] =
3580 			f2fs_kmalloc(sbi,
3581 				     array_size(n,
3582 						sizeof(struct f2fs_bio_info)),
3583 				     GFP_KERNEL);
3584 		if (!sbi->write_io[i]) {
3585 			err = -ENOMEM;
3586 			goto free_bio_info;
3587 		}
3588 
3589 		for (j = HOT; j < n; j++) {
3590 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3591 			sbi->write_io[i][j].sbi = sbi;
3592 			sbi->write_io[i][j].bio = NULL;
3593 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3594 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3595 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3596 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3597 		}
3598 	}
3599 
3600 	init_rwsem(&sbi->cp_rwsem);
3601 	init_rwsem(&sbi->quota_sem);
3602 	init_waitqueue_head(&sbi->cp_wait);
3603 	init_sb_info(sbi);
3604 
3605 	err = init_percpu_info(sbi);
3606 	if (err)
3607 		goto free_bio_info;
3608 
3609 	if (F2FS_IO_ALIGNED(sbi)) {
3610 		sbi->write_io_dummy =
3611 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3612 		if (!sbi->write_io_dummy) {
3613 			err = -ENOMEM;
3614 			goto free_percpu;
3615 		}
3616 	}
3617 
3618 	/* init per sbi slab cache */
3619 	err = f2fs_init_xattr_caches(sbi);
3620 	if (err)
3621 		goto free_io_dummy;
3622 	err = f2fs_init_page_array_cache(sbi);
3623 	if (err)
3624 		goto free_xattr_cache;
3625 
3626 	/* get an inode for meta space */
3627 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3628 	if (IS_ERR(sbi->meta_inode)) {
3629 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3630 		err = PTR_ERR(sbi->meta_inode);
3631 		goto free_page_array_cache;
3632 	}
3633 
3634 	err = f2fs_get_valid_checkpoint(sbi);
3635 	if (err) {
3636 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3637 		goto free_meta_inode;
3638 	}
3639 
3640 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3641 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3642 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3643 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3644 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3645 	}
3646 
3647 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3648 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3649 
3650 	/* Initialize device list */
3651 	err = f2fs_scan_devices(sbi);
3652 	if (err) {
3653 		f2fs_err(sbi, "Failed to find devices");
3654 		goto free_devices;
3655 	}
3656 
3657 	err = f2fs_init_post_read_wq(sbi);
3658 	if (err) {
3659 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3660 		goto free_devices;
3661 	}
3662 
3663 	sbi->total_valid_node_count =
3664 				le32_to_cpu(sbi->ckpt->valid_node_count);
3665 	percpu_counter_set(&sbi->total_valid_inode_count,
3666 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3667 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3668 	sbi->total_valid_block_count =
3669 				le64_to_cpu(sbi->ckpt->valid_block_count);
3670 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3671 	sbi->reserved_blocks = 0;
3672 	sbi->current_reserved_blocks = 0;
3673 	limit_reserve_root(sbi);
3674 	adjust_unusable_cap_perc(sbi);
3675 
3676 	for (i = 0; i < NR_INODE_TYPE; i++) {
3677 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3678 		spin_lock_init(&sbi->inode_lock[i]);
3679 	}
3680 	mutex_init(&sbi->flush_lock);
3681 
3682 	f2fs_init_extent_cache_info(sbi);
3683 
3684 	f2fs_init_ino_entry_info(sbi);
3685 
3686 	f2fs_init_fsync_node_info(sbi);
3687 
3688 	/* setup f2fs internal modules */
3689 	err = f2fs_build_segment_manager(sbi);
3690 	if (err) {
3691 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3692 			 err);
3693 		goto free_sm;
3694 	}
3695 	err = f2fs_build_node_manager(sbi);
3696 	if (err) {
3697 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3698 			 err);
3699 		goto free_nm;
3700 	}
3701 
3702 	/* For write statistics */
3703 	if (sb->s_bdev->bd_part)
3704 		sbi->sectors_written_start =
3705 			(u64)part_stat_read(sb->s_bdev->bd_part,
3706 					    sectors[STAT_WRITE]);
3707 
3708 	/* Read accumulated write IO statistics if exists */
3709 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3710 	if (__exist_node_summaries(sbi))
3711 		sbi->kbytes_written =
3712 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3713 
3714 	f2fs_build_gc_manager(sbi);
3715 
3716 	err = f2fs_build_stats(sbi);
3717 	if (err)
3718 		goto free_nm;
3719 
3720 	/* get an inode for node space */
3721 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3722 	if (IS_ERR(sbi->node_inode)) {
3723 		f2fs_err(sbi, "Failed to read node inode");
3724 		err = PTR_ERR(sbi->node_inode);
3725 		goto free_stats;
3726 	}
3727 
3728 	/* read root inode and dentry */
3729 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3730 	if (IS_ERR(root)) {
3731 		f2fs_err(sbi, "Failed to read root inode");
3732 		err = PTR_ERR(root);
3733 		goto free_node_inode;
3734 	}
3735 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3736 			!root->i_size || !root->i_nlink) {
3737 		iput(root);
3738 		err = -EINVAL;
3739 		goto free_node_inode;
3740 	}
3741 
3742 	sb->s_root = d_make_root(root); /* allocate root dentry */
3743 	if (!sb->s_root) {
3744 		err = -ENOMEM;
3745 		goto free_node_inode;
3746 	}
3747 
3748 	err = f2fs_register_sysfs(sbi);
3749 	if (err)
3750 		goto free_root_inode;
3751 
3752 #ifdef CONFIG_QUOTA
3753 	/* Enable quota usage during mount */
3754 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3755 		err = f2fs_enable_quotas(sb);
3756 		if (err)
3757 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3758 	}
3759 #endif
3760 	/* if there are any orphan inodes, free them */
3761 	err = f2fs_recover_orphan_inodes(sbi);
3762 	if (err)
3763 		goto free_meta;
3764 
3765 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3766 		goto reset_checkpoint;
3767 
3768 	/* recover fsynced data */
3769 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3770 			!test_opt(sbi, NORECOVERY)) {
3771 		/*
3772 		 * mount should be failed, when device has readonly mode, and
3773 		 * previous checkpoint was not done by clean system shutdown.
3774 		 */
3775 		if (f2fs_hw_is_readonly(sbi)) {
3776 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3777 				err = -EROFS;
3778 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3779 				goto free_meta;
3780 			}
3781 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3782 			goto reset_checkpoint;
3783 		}
3784 
3785 		if (need_fsck)
3786 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3787 
3788 		if (skip_recovery)
3789 			goto reset_checkpoint;
3790 
3791 		err = f2fs_recover_fsync_data(sbi, false);
3792 		if (err < 0) {
3793 			if (err != -ENOMEM)
3794 				skip_recovery = true;
3795 			need_fsck = true;
3796 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3797 				 err);
3798 			goto free_meta;
3799 		}
3800 	} else {
3801 		err = f2fs_recover_fsync_data(sbi, true);
3802 
3803 		if (!f2fs_readonly(sb) && err > 0) {
3804 			err = -EINVAL;
3805 			f2fs_err(sbi, "Need to recover fsync data");
3806 			goto free_meta;
3807 		}
3808 	}
3809 
3810 	/*
3811 	 * If the f2fs is not readonly and fsync data recovery succeeds,
3812 	 * check zoned block devices' write pointer consistency.
3813 	 */
3814 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3815 		err = f2fs_check_write_pointer(sbi);
3816 		if (err)
3817 			goto free_meta;
3818 	}
3819 
3820 reset_checkpoint:
3821 	f2fs_init_inmem_curseg(sbi);
3822 
3823 	/* f2fs_recover_fsync_data() cleared this already */
3824 	clear_sbi_flag(sbi, SBI_POR_DOING);
3825 
3826 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3827 		err = f2fs_disable_checkpoint(sbi);
3828 		if (err)
3829 			goto sync_free_meta;
3830 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3831 		f2fs_enable_checkpoint(sbi);
3832 	}
3833 
3834 	/*
3835 	 * If filesystem is not mounted as read-only then
3836 	 * do start the gc_thread.
3837 	 */
3838 	if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3839 		/* After POR, we can run background GC thread.*/
3840 		err = f2fs_start_gc_thread(sbi);
3841 		if (err)
3842 			goto sync_free_meta;
3843 	}
3844 	kvfree(options);
3845 
3846 	/* recover broken superblock */
3847 	if (recovery) {
3848 		err = f2fs_commit_super(sbi, true);
3849 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3850 			  sbi->valid_super_block ? 1 : 2, err);
3851 	}
3852 
3853 	f2fs_join_shrinker(sbi);
3854 
3855 	f2fs_tuning_parameters(sbi);
3856 
3857 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3858 		    cur_cp_version(F2FS_CKPT(sbi)));
3859 	f2fs_update_time(sbi, CP_TIME);
3860 	f2fs_update_time(sbi, REQ_TIME);
3861 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3862 	return 0;
3863 
3864 sync_free_meta:
3865 	/* safe to flush all the data */
3866 	sync_filesystem(sbi->sb);
3867 	retry_cnt = 0;
3868 
3869 free_meta:
3870 #ifdef CONFIG_QUOTA
3871 	f2fs_truncate_quota_inode_pages(sb);
3872 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3873 		f2fs_quota_off_umount(sbi->sb);
3874 #endif
3875 	/*
3876 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3877 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3878 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3879 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3880 	 */
3881 	truncate_inode_pages_final(META_MAPPING(sbi));
3882 	/* evict some inodes being cached by GC */
3883 	evict_inodes(sb);
3884 	f2fs_unregister_sysfs(sbi);
3885 free_root_inode:
3886 	dput(sb->s_root);
3887 	sb->s_root = NULL;
3888 free_node_inode:
3889 	f2fs_release_ino_entry(sbi, true);
3890 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3891 	iput(sbi->node_inode);
3892 	sbi->node_inode = NULL;
3893 free_stats:
3894 	f2fs_destroy_stats(sbi);
3895 free_nm:
3896 	f2fs_destroy_node_manager(sbi);
3897 free_sm:
3898 	f2fs_destroy_segment_manager(sbi);
3899 	f2fs_destroy_post_read_wq(sbi);
3900 free_devices:
3901 	destroy_device_list(sbi);
3902 	kvfree(sbi->ckpt);
3903 free_meta_inode:
3904 	make_bad_inode(sbi->meta_inode);
3905 	iput(sbi->meta_inode);
3906 	sbi->meta_inode = NULL;
3907 free_page_array_cache:
3908 	f2fs_destroy_page_array_cache(sbi);
3909 free_xattr_cache:
3910 	f2fs_destroy_xattr_caches(sbi);
3911 free_io_dummy:
3912 	mempool_destroy(sbi->write_io_dummy);
3913 free_percpu:
3914 	destroy_percpu_info(sbi);
3915 free_bio_info:
3916 	for (i = 0; i < NR_PAGE_TYPE; i++)
3917 		kvfree(sbi->write_io[i]);
3918 
3919 #ifdef CONFIG_UNICODE
3920 	utf8_unload(sb->s_encoding);
3921 #endif
3922 free_options:
3923 #ifdef CONFIG_QUOTA
3924 	for (i = 0; i < MAXQUOTAS; i++)
3925 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3926 #endif
3927 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
3928 	kvfree(options);
3929 free_sb_buf:
3930 	kfree(raw_super);
3931 free_sbi:
3932 	if (sbi->s_chksum_driver)
3933 		crypto_free_shash(sbi->s_chksum_driver);
3934 	kfree(sbi);
3935 
3936 	/* give only one another chance */
3937 	if (retry_cnt > 0 && skip_recovery) {
3938 		retry_cnt--;
3939 		shrink_dcache_sb(sb);
3940 		goto try_onemore;
3941 	}
3942 	return err;
3943 }
3944 
3945 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3946 			const char *dev_name, void *data)
3947 {
3948 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3949 }
3950 
3951 static void kill_f2fs_super(struct super_block *sb)
3952 {
3953 	if (sb->s_root) {
3954 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3955 
3956 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3957 		f2fs_stop_gc_thread(sbi);
3958 		f2fs_stop_discard_thread(sbi);
3959 
3960 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3961 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3962 			struct cp_control cpc = {
3963 				.reason = CP_UMOUNT,
3964 			};
3965 			f2fs_write_checkpoint(sbi, &cpc);
3966 		}
3967 
3968 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3969 			sb->s_flags &= ~SB_RDONLY;
3970 	}
3971 	kill_block_super(sb);
3972 }
3973 
3974 static struct file_system_type f2fs_fs_type = {
3975 	.owner		= THIS_MODULE,
3976 	.name		= "f2fs",
3977 	.mount		= f2fs_mount,
3978 	.kill_sb	= kill_f2fs_super,
3979 	.fs_flags	= FS_REQUIRES_DEV,
3980 };
3981 MODULE_ALIAS_FS("f2fs");
3982 
3983 static int __init init_inodecache(void)
3984 {
3985 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3986 			sizeof(struct f2fs_inode_info), 0,
3987 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3988 	if (!f2fs_inode_cachep)
3989 		return -ENOMEM;
3990 	return 0;
3991 }
3992 
3993 static void destroy_inodecache(void)
3994 {
3995 	/*
3996 	 * Make sure all delayed rcu free inodes are flushed before we
3997 	 * destroy cache.
3998 	 */
3999 	rcu_barrier();
4000 	kmem_cache_destroy(f2fs_inode_cachep);
4001 }
4002 
4003 static int __init init_f2fs_fs(void)
4004 {
4005 	int err;
4006 
4007 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4008 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4009 				PAGE_SIZE, F2FS_BLKSIZE);
4010 		return -EINVAL;
4011 	}
4012 
4013 	f2fs_build_trace_ios();
4014 
4015 	err = init_inodecache();
4016 	if (err)
4017 		goto fail;
4018 	err = f2fs_create_node_manager_caches();
4019 	if (err)
4020 		goto free_inodecache;
4021 	err = f2fs_create_segment_manager_caches();
4022 	if (err)
4023 		goto free_node_manager_caches;
4024 	err = f2fs_create_checkpoint_caches();
4025 	if (err)
4026 		goto free_segment_manager_caches;
4027 	err = f2fs_create_extent_cache();
4028 	if (err)
4029 		goto free_checkpoint_caches;
4030 	err = f2fs_create_garbage_collection_cache();
4031 	if (err)
4032 		goto free_extent_cache;
4033 	err = f2fs_init_sysfs();
4034 	if (err)
4035 		goto free_garbage_collection_cache;
4036 	err = register_shrinker(&f2fs_shrinker_info);
4037 	if (err)
4038 		goto free_sysfs;
4039 	err = register_filesystem(&f2fs_fs_type);
4040 	if (err)
4041 		goto free_shrinker;
4042 	f2fs_create_root_stats();
4043 	err = f2fs_init_post_read_processing();
4044 	if (err)
4045 		goto free_root_stats;
4046 	err = f2fs_init_bio_entry_cache();
4047 	if (err)
4048 		goto free_post_read;
4049 	err = f2fs_init_bioset();
4050 	if (err)
4051 		goto free_bio_enrty_cache;
4052 	err = f2fs_init_compress_mempool();
4053 	if (err)
4054 		goto free_bioset;
4055 	err = f2fs_init_compress_cache();
4056 	if (err)
4057 		goto free_compress_mempool;
4058 	return 0;
4059 free_compress_mempool:
4060 	f2fs_destroy_compress_mempool();
4061 free_bioset:
4062 	f2fs_destroy_bioset();
4063 free_bio_enrty_cache:
4064 	f2fs_destroy_bio_entry_cache();
4065 free_post_read:
4066 	f2fs_destroy_post_read_processing();
4067 free_root_stats:
4068 	f2fs_destroy_root_stats();
4069 	unregister_filesystem(&f2fs_fs_type);
4070 free_shrinker:
4071 	unregister_shrinker(&f2fs_shrinker_info);
4072 free_sysfs:
4073 	f2fs_exit_sysfs();
4074 free_garbage_collection_cache:
4075 	f2fs_destroy_garbage_collection_cache();
4076 free_extent_cache:
4077 	f2fs_destroy_extent_cache();
4078 free_checkpoint_caches:
4079 	f2fs_destroy_checkpoint_caches();
4080 free_segment_manager_caches:
4081 	f2fs_destroy_segment_manager_caches();
4082 free_node_manager_caches:
4083 	f2fs_destroy_node_manager_caches();
4084 free_inodecache:
4085 	destroy_inodecache();
4086 fail:
4087 	return err;
4088 }
4089 
4090 static void __exit exit_f2fs_fs(void)
4091 {
4092 	f2fs_destroy_compress_cache();
4093 	f2fs_destroy_compress_mempool();
4094 	f2fs_destroy_bioset();
4095 	f2fs_destroy_bio_entry_cache();
4096 	f2fs_destroy_post_read_processing();
4097 	f2fs_destroy_root_stats();
4098 	unregister_filesystem(&f2fs_fs_type);
4099 	unregister_shrinker(&f2fs_shrinker_info);
4100 	f2fs_exit_sysfs();
4101 	f2fs_destroy_garbage_collection_cache();
4102 	f2fs_destroy_extent_cache();
4103 	f2fs_destroy_checkpoint_caches();
4104 	f2fs_destroy_segment_manager_caches();
4105 	f2fs_destroy_node_manager_caches();
4106 	destroy_inodecache();
4107 	f2fs_destroy_trace_ios();
4108 }
4109 
4110 module_init(init_f2fs_fs)
4111 module_exit(exit_f2fs_fs)
4112 
4113 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4114 MODULE_DESCRIPTION("Flash Friendly File System");
4115 MODULE_LICENSE("GPL");
4116 
4117