xref: /linux/fs/f2fs/super.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/sched/mm.h>
12 #include <linux/statfs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 #include <linux/zstd.h>
29 #include <linux/lz4.h>
30 
31 #include "f2fs.h"
32 #include "node.h"
33 #include "segment.h"
34 #include "xattr.h"
35 #include "gc.h"
36 #include "iostat.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/f2fs.h>
40 
41 static struct kmem_cache *f2fs_inode_cachep;
42 
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 
45 const char *f2fs_fault_name[FAULT_MAX] = {
46 	[FAULT_KMALLOC]		= "kmalloc",
47 	[FAULT_KVMALLOC]	= "kvmalloc",
48 	[FAULT_PAGE_ALLOC]	= "page alloc",
49 	[FAULT_PAGE_GET]	= "page get",
50 	[FAULT_ALLOC_NID]	= "alloc nid",
51 	[FAULT_ORPHAN]		= "orphan",
52 	[FAULT_BLOCK]		= "no more block",
53 	[FAULT_DIR_DEPTH]	= "too big dir depth",
54 	[FAULT_EVICT_INODE]	= "evict_inode fail",
55 	[FAULT_TRUNCATE]	= "truncate fail",
56 	[FAULT_READ_IO]		= "read IO error",
57 	[FAULT_CHECKPOINT]	= "checkpoint error",
58 	[FAULT_DISCARD]		= "discard error",
59 	[FAULT_WRITE_IO]	= "write IO error",
60 	[FAULT_SLAB_ALLOC]	= "slab alloc",
61 	[FAULT_DQUOT_INIT]	= "dquot initialize",
62 	[FAULT_LOCK_OP]		= "lock_op",
63 };
64 
65 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
66 							unsigned int type)
67 {
68 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
69 
70 	if (rate) {
71 		atomic_set(&ffi->inject_ops, 0);
72 		ffi->inject_rate = rate;
73 	}
74 
75 	if (type)
76 		ffi->inject_type = type;
77 
78 	if (!rate && !type)
79 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
80 }
81 #endif
82 
83 /* f2fs-wide shrinker description */
84 static struct shrinker f2fs_shrinker_info = {
85 	.scan_objects = f2fs_shrink_scan,
86 	.count_objects = f2fs_shrink_count,
87 	.seeks = DEFAULT_SEEKS,
88 };
89 
90 enum {
91 	Opt_gc_background,
92 	Opt_disable_roll_forward,
93 	Opt_norecovery,
94 	Opt_discard,
95 	Opt_nodiscard,
96 	Opt_noheap,
97 	Opt_heap,
98 	Opt_user_xattr,
99 	Opt_nouser_xattr,
100 	Opt_acl,
101 	Opt_noacl,
102 	Opt_active_logs,
103 	Opt_disable_ext_identify,
104 	Opt_inline_xattr,
105 	Opt_noinline_xattr,
106 	Opt_inline_xattr_size,
107 	Opt_inline_data,
108 	Opt_inline_dentry,
109 	Opt_noinline_dentry,
110 	Opt_flush_merge,
111 	Opt_noflush_merge,
112 	Opt_nobarrier,
113 	Opt_fastboot,
114 	Opt_extent_cache,
115 	Opt_noextent_cache,
116 	Opt_noinline_data,
117 	Opt_data_flush,
118 	Opt_reserve_root,
119 	Opt_resgid,
120 	Opt_resuid,
121 	Opt_mode,
122 	Opt_io_size_bits,
123 	Opt_fault_injection,
124 	Opt_fault_type,
125 	Opt_lazytime,
126 	Opt_nolazytime,
127 	Opt_quota,
128 	Opt_noquota,
129 	Opt_usrquota,
130 	Opt_grpquota,
131 	Opt_prjquota,
132 	Opt_usrjquota,
133 	Opt_grpjquota,
134 	Opt_prjjquota,
135 	Opt_offusrjquota,
136 	Opt_offgrpjquota,
137 	Opt_offprjjquota,
138 	Opt_jqfmt_vfsold,
139 	Opt_jqfmt_vfsv0,
140 	Opt_jqfmt_vfsv1,
141 	Opt_whint,
142 	Opt_alloc,
143 	Opt_fsync,
144 	Opt_test_dummy_encryption,
145 	Opt_inlinecrypt,
146 	Opt_checkpoint_disable,
147 	Opt_checkpoint_disable_cap,
148 	Opt_checkpoint_disable_cap_perc,
149 	Opt_checkpoint_enable,
150 	Opt_checkpoint_merge,
151 	Opt_nocheckpoint_merge,
152 	Opt_compress_algorithm,
153 	Opt_compress_log_size,
154 	Opt_compress_extension,
155 	Opt_nocompress_extension,
156 	Opt_compress_chksum,
157 	Opt_compress_mode,
158 	Opt_compress_cache,
159 	Opt_atgc,
160 	Opt_gc_merge,
161 	Opt_nogc_merge,
162 	Opt_discard_unit,
163 	Opt_err,
164 };
165 
166 static match_table_t f2fs_tokens = {
167 	{Opt_gc_background, "background_gc=%s"},
168 	{Opt_disable_roll_forward, "disable_roll_forward"},
169 	{Opt_norecovery, "norecovery"},
170 	{Opt_discard, "discard"},
171 	{Opt_nodiscard, "nodiscard"},
172 	{Opt_noheap, "no_heap"},
173 	{Opt_heap, "heap"},
174 	{Opt_user_xattr, "user_xattr"},
175 	{Opt_nouser_xattr, "nouser_xattr"},
176 	{Opt_acl, "acl"},
177 	{Opt_noacl, "noacl"},
178 	{Opt_active_logs, "active_logs=%u"},
179 	{Opt_disable_ext_identify, "disable_ext_identify"},
180 	{Opt_inline_xattr, "inline_xattr"},
181 	{Opt_noinline_xattr, "noinline_xattr"},
182 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
183 	{Opt_inline_data, "inline_data"},
184 	{Opt_inline_dentry, "inline_dentry"},
185 	{Opt_noinline_dentry, "noinline_dentry"},
186 	{Opt_flush_merge, "flush_merge"},
187 	{Opt_noflush_merge, "noflush_merge"},
188 	{Opt_nobarrier, "nobarrier"},
189 	{Opt_fastboot, "fastboot"},
190 	{Opt_extent_cache, "extent_cache"},
191 	{Opt_noextent_cache, "noextent_cache"},
192 	{Opt_noinline_data, "noinline_data"},
193 	{Opt_data_flush, "data_flush"},
194 	{Opt_reserve_root, "reserve_root=%u"},
195 	{Opt_resgid, "resgid=%u"},
196 	{Opt_resuid, "resuid=%u"},
197 	{Opt_mode, "mode=%s"},
198 	{Opt_io_size_bits, "io_bits=%u"},
199 	{Opt_fault_injection, "fault_injection=%u"},
200 	{Opt_fault_type, "fault_type=%u"},
201 	{Opt_lazytime, "lazytime"},
202 	{Opt_nolazytime, "nolazytime"},
203 	{Opt_quota, "quota"},
204 	{Opt_noquota, "noquota"},
205 	{Opt_usrquota, "usrquota"},
206 	{Opt_grpquota, "grpquota"},
207 	{Opt_prjquota, "prjquota"},
208 	{Opt_usrjquota, "usrjquota=%s"},
209 	{Opt_grpjquota, "grpjquota=%s"},
210 	{Opt_prjjquota, "prjjquota=%s"},
211 	{Opt_offusrjquota, "usrjquota="},
212 	{Opt_offgrpjquota, "grpjquota="},
213 	{Opt_offprjjquota, "prjjquota="},
214 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
215 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
216 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
217 	{Opt_whint, "whint_mode=%s"},
218 	{Opt_alloc, "alloc_mode=%s"},
219 	{Opt_fsync, "fsync_mode=%s"},
220 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
221 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
222 	{Opt_inlinecrypt, "inlinecrypt"},
223 	{Opt_checkpoint_disable, "checkpoint=disable"},
224 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
225 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
226 	{Opt_checkpoint_enable, "checkpoint=enable"},
227 	{Opt_checkpoint_merge, "checkpoint_merge"},
228 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
229 	{Opt_compress_algorithm, "compress_algorithm=%s"},
230 	{Opt_compress_log_size, "compress_log_size=%u"},
231 	{Opt_compress_extension, "compress_extension=%s"},
232 	{Opt_nocompress_extension, "nocompress_extension=%s"},
233 	{Opt_compress_chksum, "compress_chksum"},
234 	{Opt_compress_mode, "compress_mode=%s"},
235 	{Opt_compress_cache, "compress_cache"},
236 	{Opt_atgc, "atgc"},
237 	{Opt_gc_merge, "gc_merge"},
238 	{Opt_nogc_merge, "nogc_merge"},
239 	{Opt_discard_unit, "discard_unit=%s"},
240 	{Opt_err, NULL},
241 };
242 
243 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
244 {
245 	struct va_format vaf;
246 	va_list args;
247 	int level;
248 
249 	va_start(args, fmt);
250 
251 	level = printk_get_level(fmt);
252 	vaf.fmt = printk_skip_level(fmt);
253 	vaf.va = &args;
254 	printk("%c%cF2FS-fs (%s): %pV\n",
255 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
256 
257 	va_end(args);
258 }
259 
260 #if IS_ENABLED(CONFIG_UNICODE)
261 static const struct f2fs_sb_encodings {
262 	__u16 magic;
263 	char *name;
264 	unsigned int version;
265 } f2fs_sb_encoding_map[] = {
266 	{F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
267 };
268 
269 static const struct f2fs_sb_encodings *
270 f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
271 {
272 	__u16 magic = le16_to_cpu(sb->s_encoding);
273 	int i;
274 
275 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
276 		if (magic == f2fs_sb_encoding_map[i].magic)
277 			return &f2fs_sb_encoding_map[i];
278 
279 	return NULL;
280 }
281 
282 struct kmem_cache *f2fs_cf_name_slab;
283 static int __init f2fs_create_casefold_cache(void)
284 {
285 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
286 							F2FS_NAME_LEN);
287 	if (!f2fs_cf_name_slab)
288 		return -ENOMEM;
289 	return 0;
290 }
291 
292 static void f2fs_destroy_casefold_cache(void)
293 {
294 	kmem_cache_destroy(f2fs_cf_name_slab);
295 }
296 #else
297 static int __init f2fs_create_casefold_cache(void) { return 0; }
298 static void f2fs_destroy_casefold_cache(void) { }
299 #endif
300 
301 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
302 {
303 	block_t limit = min((sbi->user_block_count << 1) / 1000,
304 			sbi->user_block_count - sbi->reserved_blocks);
305 
306 	/* limit is 0.2% */
307 	if (test_opt(sbi, RESERVE_ROOT) &&
308 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
309 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
310 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
311 			  F2FS_OPTION(sbi).root_reserved_blocks);
312 	}
313 	if (!test_opt(sbi, RESERVE_ROOT) &&
314 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
315 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
316 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
317 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
318 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
319 			  from_kuid_munged(&init_user_ns,
320 					   F2FS_OPTION(sbi).s_resuid),
321 			  from_kgid_munged(&init_user_ns,
322 					   F2FS_OPTION(sbi).s_resgid));
323 }
324 
325 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi)
326 {
327 	unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec;
328 	unsigned int avg_vblocks;
329 	unsigned int wanted_reserved_segments;
330 	block_t avail_user_block_count;
331 
332 	if (!F2FS_IO_ALIGNED(sbi))
333 		return 0;
334 
335 	/* average valid block count in section in worst case */
336 	avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi);
337 
338 	/*
339 	 * we need enough free space when migrating one section in worst case
340 	 */
341 	wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) *
342 						reserved_segments(sbi);
343 	wanted_reserved_segments -= reserved_segments(sbi);
344 
345 	avail_user_block_count = sbi->user_block_count -
346 				sbi->current_reserved_blocks -
347 				F2FS_OPTION(sbi).root_reserved_blocks;
348 
349 	if (wanted_reserved_segments * sbi->blocks_per_seg >
350 					avail_user_block_count) {
351 		f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u",
352 			wanted_reserved_segments,
353 			avail_user_block_count >> sbi->log_blocks_per_seg);
354 		return -ENOSPC;
355 	}
356 
357 	SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments;
358 
359 	f2fs_info(sbi, "IO align feature needs additional reserved segment: %u",
360 			 wanted_reserved_segments);
361 
362 	return 0;
363 }
364 
365 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
366 {
367 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
368 		return;
369 
370 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
371 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
372 	else
373 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
374 					F2FS_OPTION(sbi).unusable_cap_perc;
375 
376 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
377 			F2FS_OPTION(sbi).unusable_cap,
378 			F2FS_OPTION(sbi).unusable_cap_perc);
379 }
380 
381 static void init_once(void *foo)
382 {
383 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
384 
385 	inode_init_once(&fi->vfs_inode);
386 }
387 
388 #ifdef CONFIG_QUOTA
389 static const char * const quotatypes[] = INITQFNAMES;
390 #define QTYPE2NAME(t) (quotatypes[t])
391 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
392 							substring_t *args)
393 {
394 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
395 	char *qname;
396 	int ret = -EINVAL;
397 
398 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
399 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
400 		return -EINVAL;
401 	}
402 	if (f2fs_sb_has_quota_ino(sbi)) {
403 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
404 		return 0;
405 	}
406 
407 	qname = match_strdup(args);
408 	if (!qname) {
409 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
410 		return -ENOMEM;
411 	}
412 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
413 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
414 			ret = 0;
415 		else
416 			f2fs_err(sbi, "%s quota file already specified",
417 				 QTYPE2NAME(qtype));
418 		goto errout;
419 	}
420 	if (strchr(qname, '/')) {
421 		f2fs_err(sbi, "quotafile must be on filesystem root");
422 		goto errout;
423 	}
424 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
425 	set_opt(sbi, QUOTA);
426 	return 0;
427 errout:
428 	kfree(qname);
429 	return ret;
430 }
431 
432 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
433 {
434 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
435 
436 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
437 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
438 		return -EINVAL;
439 	}
440 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
441 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
442 	return 0;
443 }
444 
445 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
446 {
447 	/*
448 	 * We do the test below only for project quotas. 'usrquota' and
449 	 * 'grpquota' mount options are allowed even without quota feature
450 	 * to support legacy quotas in quota files.
451 	 */
452 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
453 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
454 		return -1;
455 	}
456 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
457 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
458 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
459 		if (test_opt(sbi, USRQUOTA) &&
460 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
461 			clear_opt(sbi, USRQUOTA);
462 
463 		if (test_opt(sbi, GRPQUOTA) &&
464 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
465 			clear_opt(sbi, GRPQUOTA);
466 
467 		if (test_opt(sbi, PRJQUOTA) &&
468 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
469 			clear_opt(sbi, PRJQUOTA);
470 
471 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
472 				test_opt(sbi, PRJQUOTA)) {
473 			f2fs_err(sbi, "old and new quota format mixing");
474 			return -1;
475 		}
476 
477 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
478 			f2fs_err(sbi, "journaled quota format not specified");
479 			return -1;
480 		}
481 	}
482 
483 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
484 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
485 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
486 	}
487 	return 0;
488 }
489 #endif
490 
491 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
492 					  const char *opt,
493 					  const substring_t *arg,
494 					  bool is_remount)
495 {
496 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
497 #ifdef CONFIG_FS_ENCRYPTION
498 	int err;
499 
500 	if (!f2fs_sb_has_encrypt(sbi)) {
501 		f2fs_err(sbi, "Encrypt feature is off");
502 		return -EINVAL;
503 	}
504 
505 	/*
506 	 * This mount option is just for testing, and it's not worthwhile to
507 	 * implement the extra complexity (e.g. RCU protection) that would be
508 	 * needed to allow it to be set or changed during remount.  We do allow
509 	 * it to be specified during remount, but only if there is no change.
510 	 */
511 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
512 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
513 		return -EINVAL;
514 	}
515 	err = fscrypt_set_test_dummy_encryption(
516 		sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
517 	if (err) {
518 		if (err == -EEXIST)
519 			f2fs_warn(sbi,
520 				  "Can't change test_dummy_encryption on remount");
521 		else if (err == -EINVAL)
522 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
523 				  opt);
524 		else
525 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
526 				  opt, err);
527 		return -EINVAL;
528 	}
529 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
530 #else
531 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
532 #endif
533 	return 0;
534 }
535 
536 #ifdef CONFIG_F2FS_FS_COMPRESSION
537 /*
538  * 1. The same extension name cannot not appear in both compress and non-compress extension
539  * at the same time.
540  * 2. If the compress extension specifies all files, the types specified by the non-compress
541  * extension will be treated as special cases and will not be compressed.
542  * 3. Don't allow the non-compress extension specifies all files.
543  */
544 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
545 {
546 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
547 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
548 	int ext_cnt, noext_cnt, index = 0, no_index = 0;
549 
550 	ext = F2FS_OPTION(sbi).extensions;
551 	ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
552 	noext = F2FS_OPTION(sbi).noextensions;
553 	noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
554 
555 	if (!noext_cnt)
556 		return 0;
557 
558 	for (no_index = 0; no_index < noext_cnt; no_index++) {
559 		if (!strcasecmp("*", noext[no_index])) {
560 			f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
561 			return -EINVAL;
562 		}
563 		for (index = 0; index < ext_cnt; index++) {
564 			if (!strcasecmp(ext[index], noext[no_index])) {
565 				f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
566 						ext[index]);
567 				return -EINVAL;
568 			}
569 		}
570 	}
571 	return 0;
572 }
573 
574 #ifdef CONFIG_F2FS_FS_LZ4
575 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
576 {
577 #ifdef CONFIG_F2FS_FS_LZ4HC
578 	unsigned int level;
579 #endif
580 
581 	if (strlen(str) == 3) {
582 		F2FS_OPTION(sbi).compress_level = 0;
583 		return 0;
584 	}
585 
586 #ifdef CONFIG_F2FS_FS_LZ4HC
587 	str += 3;
588 
589 	if (str[0] != ':') {
590 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
591 		return -EINVAL;
592 	}
593 	if (kstrtouint(str + 1, 10, &level))
594 		return -EINVAL;
595 
596 	if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) {
597 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
598 		return -EINVAL;
599 	}
600 
601 	F2FS_OPTION(sbi).compress_level = level;
602 	return 0;
603 #else
604 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
605 	return -EINVAL;
606 #endif
607 }
608 #endif
609 
610 #ifdef CONFIG_F2FS_FS_ZSTD
611 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
612 {
613 	unsigned int level;
614 	int len = 4;
615 
616 	if (strlen(str) == len) {
617 		F2FS_OPTION(sbi).compress_level = 0;
618 		return 0;
619 	}
620 
621 	str += len;
622 
623 	if (str[0] != ':') {
624 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
625 		return -EINVAL;
626 	}
627 	if (kstrtouint(str + 1, 10, &level))
628 		return -EINVAL;
629 
630 	if (!level || level > zstd_max_clevel()) {
631 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
632 		return -EINVAL;
633 	}
634 
635 	F2FS_OPTION(sbi).compress_level = level;
636 	return 0;
637 }
638 #endif
639 #endif
640 
641 static int parse_options(struct super_block *sb, char *options, bool is_remount)
642 {
643 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
644 	substring_t args[MAX_OPT_ARGS];
645 #ifdef CONFIG_F2FS_FS_COMPRESSION
646 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
647 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
648 	int ext_cnt, noext_cnt;
649 #endif
650 	char *p, *name;
651 	int arg = 0;
652 	kuid_t uid;
653 	kgid_t gid;
654 	int ret;
655 
656 	if (!options)
657 		goto default_check;
658 
659 	while ((p = strsep(&options, ",")) != NULL) {
660 		int token;
661 
662 		if (!*p)
663 			continue;
664 		/*
665 		 * Initialize args struct so we know whether arg was
666 		 * found; some options take optional arguments.
667 		 */
668 		args[0].to = args[0].from = NULL;
669 		token = match_token(p, f2fs_tokens, args);
670 
671 		switch (token) {
672 		case Opt_gc_background:
673 			name = match_strdup(&args[0]);
674 
675 			if (!name)
676 				return -ENOMEM;
677 			if (!strcmp(name, "on")) {
678 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
679 			} else if (!strcmp(name, "off")) {
680 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
681 			} else if (!strcmp(name, "sync")) {
682 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
683 			} else {
684 				kfree(name);
685 				return -EINVAL;
686 			}
687 			kfree(name);
688 			break;
689 		case Opt_disable_roll_forward:
690 			set_opt(sbi, DISABLE_ROLL_FORWARD);
691 			break;
692 		case Opt_norecovery:
693 			/* this option mounts f2fs with ro */
694 			set_opt(sbi, NORECOVERY);
695 			if (!f2fs_readonly(sb))
696 				return -EINVAL;
697 			break;
698 		case Opt_discard:
699 			if (!f2fs_hw_support_discard(sbi)) {
700 				f2fs_warn(sbi, "device does not support discard");
701 				break;
702 			}
703 			set_opt(sbi, DISCARD);
704 			break;
705 		case Opt_nodiscard:
706 			if (f2fs_hw_should_discard(sbi)) {
707 				f2fs_warn(sbi, "discard is required for zoned block devices");
708 				return -EINVAL;
709 			}
710 			clear_opt(sbi, DISCARD);
711 			break;
712 		case Opt_noheap:
713 			set_opt(sbi, NOHEAP);
714 			break;
715 		case Opt_heap:
716 			clear_opt(sbi, NOHEAP);
717 			break;
718 #ifdef CONFIG_F2FS_FS_XATTR
719 		case Opt_user_xattr:
720 			set_opt(sbi, XATTR_USER);
721 			break;
722 		case Opt_nouser_xattr:
723 			clear_opt(sbi, XATTR_USER);
724 			break;
725 		case Opt_inline_xattr:
726 			set_opt(sbi, INLINE_XATTR);
727 			break;
728 		case Opt_noinline_xattr:
729 			clear_opt(sbi, INLINE_XATTR);
730 			break;
731 		case Opt_inline_xattr_size:
732 			if (args->from && match_int(args, &arg))
733 				return -EINVAL;
734 			set_opt(sbi, INLINE_XATTR_SIZE);
735 			F2FS_OPTION(sbi).inline_xattr_size = arg;
736 			break;
737 #else
738 		case Opt_user_xattr:
739 			f2fs_info(sbi, "user_xattr options not supported");
740 			break;
741 		case Opt_nouser_xattr:
742 			f2fs_info(sbi, "nouser_xattr options not supported");
743 			break;
744 		case Opt_inline_xattr:
745 			f2fs_info(sbi, "inline_xattr options not supported");
746 			break;
747 		case Opt_noinline_xattr:
748 			f2fs_info(sbi, "noinline_xattr options not supported");
749 			break;
750 #endif
751 #ifdef CONFIG_F2FS_FS_POSIX_ACL
752 		case Opt_acl:
753 			set_opt(sbi, POSIX_ACL);
754 			break;
755 		case Opt_noacl:
756 			clear_opt(sbi, POSIX_ACL);
757 			break;
758 #else
759 		case Opt_acl:
760 			f2fs_info(sbi, "acl options not supported");
761 			break;
762 		case Opt_noacl:
763 			f2fs_info(sbi, "noacl options not supported");
764 			break;
765 #endif
766 		case Opt_active_logs:
767 			if (args->from && match_int(args, &arg))
768 				return -EINVAL;
769 			if (arg != 2 && arg != 4 &&
770 				arg != NR_CURSEG_PERSIST_TYPE)
771 				return -EINVAL;
772 			F2FS_OPTION(sbi).active_logs = arg;
773 			break;
774 		case Opt_disable_ext_identify:
775 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
776 			break;
777 		case Opt_inline_data:
778 			set_opt(sbi, INLINE_DATA);
779 			break;
780 		case Opt_inline_dentry:
781 			set_opt(sbi, INLINE_DENTRY);
782 			break;
783 		case Opt_noinline_dentry:
784 			clear_opt(sbi, INLINE_DENTRY);
785 			break;
786 		case Opt_flush_merge:
787 			set_opt(sbi, FLUSH_MERGE);
788 			break;
789 		case Opt_noflush_merge:
790 			clear_opt(sbi, FLUSH_MERGE);
791 			break;
792 		case Opt_nobarrier:
793 			set_opt(sbi, NOBARRIER);
794 			break;
795 		case Opt_fastboot:
796 			set_opt(sbi, FASTBOOT);
797 			break;
798 		case Opt_extent_cache:
799 			set_opt(sbi, EXTENT_CACHE);
800 			break;
801 		case Opt_noextent_cache:
802 			clear_opt(sbi, EXTENT_CACHE);
803 			break;
804 		case Opt_noinline_data:
805 			clear_opt(sbi, INLINE_DATA);
806 			break;
807 		case Opt_data_flush:
808 			set_opt(sbi, DATA_FLUSH);
809 			break;
810 		case Opt_reserve_root:
811 			if (args->from && match_int(args, &arg))
812 				return -EINVAL;
813 			if (test_opt(sbi, RESERVE_ROOT)) {
814 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
815 					  F2FS_OPTION(sbi).root_reserved_blocks);
816 			} else {
817 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
818 				set_opt(sbi, RESERVE_ROOT);
819 			}
820 			break;
821 		case Opt_resuid:
822 			if (args->from && match_int(args, &arg))
823 				return -EINVAL;
824 			uid = make_kuid(current_user_ns(), arg);
825 			if (!uid_valid(uid)) {
826 				f2fs_err(sbi, "Invalid uid value %d", arg);
827 				return -EINVAL;
828 			}
829 			F2FS_OPTION(sbi).s_resuid = uid;
830 			break;
831 		case Opt_resgid:
832 			if (args->from && match_int(args, &arg))
833 				return -EINVAL;
834 			gid = make_kgid(current_user_ns(), arg);
835 			if (!gid_valid(gid)) {
836 				f2fs_err(sbi, "Invalid gid value %d", arg);
837 				return -EINVAL;
838 			}
839 			F2FS_OPTION(sbi).s_resgid = gid;
840 			break;
841 		case Opt_mode:
842 			name = match_strdup(&args[0]);
843 
844 			if (!name)
845 				return -ENOMEM;
846 			if (!strcmp(name, "adaptive")) {
847 				if (f2fs_sb_has_blkzoned(sbi)) {
848 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
849 					kfree(name);
850 					return -EINVAL;
851 				}
852 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
853 			} else if (!strcmp(name, "lfs")) {
854 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
855 			} else if (!strcmp(name, "fragment:segment")) {
856 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG;
857 			} else if (!strcmp(name, "fragment:block")) {
858 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK;
859 			} else {
860 				kfree(name);
861 				return -EINVAL;
862 			}
863 			kfree(name);
864 			break;
865 		case Opt_io_size_bits:
866 			if (args->from && match_int(args, &arg))
867 				return -EINVAL;
868 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) {
869 				f2fs_warn(sbi, "Not support %d, larger than %d",
870 					  1 << arg, BIO_MAX_VECS);
871 				return -EINVAL;
872 			}
873 			F2FS_OPTION(sbi).write_io_size_bits = arg;
874 			break;
875 #ifdef CONFIG_F2FS_FAULT_INJECTION
876 		case Opt_fault_injection:
877 			if (args->from && match_int(args, &arg))
878 				return -EINVAL;
879 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
880 			set_opt(sbi, FAULT_INJECTION);
881 			break;
882 
883 		case Opt_fault_type:
884 			if (args->from && match_int(args, &arg))
885 				return -EINVAL;
886 			f2fs_build_fault_attr(sbi, 0, arg);
887 			set_opt(sbi, FAULT_INJECTION);
888 			break;
889 #else
890 		case Opt_fault_injection:
891 			f2fs_info(sbi, "fault_injection options not supported");
892 			break;
893 
894 		case Opt_fault_type:
895 			f2fs_info(sbi, "fault_type options not supported");
896 			break;
897 #endif
898 		case Opt_lazytime:
899 			sb->s_flags |= SB_LAZYTIME;
900 			break;
901 		case Opt_nolazytime:
902 			sb->s_flags &= ~SB_LAZYTIME;
903 			break;
904 #ifdef CONFIG_QUOTA
905 		case Opt_quota:
906 		case Opt_usrquota:
907 			set_opt(sbi, USRQUOTA);
908 			break;
909 		case Opt_grpquota:
910 			set_opt(sbi, GRPQUOTA);
911 			break;
912 		case Opt_prjquota:
913 			set_opt(sbi, PRJQUOTA);
914 			break;
915 		case Opt_usrjquota:
916 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
917 			if (ret)
918 				return ret;
919 			break;
920 		case Opt_grpjquota:
921 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
922 			if (ret)
923 				return ret;
924 			break;
925 		case Opt_prjjquota:
926 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
927 			if (ret)
928 				return ret;
929 			break;
930 		case Opt_offusrjquota:
931 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
932 			if (ret)
933 				return ret;
934 			break;
935 		case Opt_offgrpjquota:
936 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
937 			if (ret)
938 				return ret;
939 			break;
940 		case Opt_offprjjquota:
941 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
942 			if (ret)
943 				return ret;
944 			break;
945 		case Opt_jqfmt_vfsold:
946 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
947 			break;
948 		case Opt_jqfmt_vfsv0:
949 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
950 			break;
951 		case Opt_jqfmt_vfsv1:
952 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
953 			break;
954 		case Opt_noquota:
955 			clear_opt(sbi, QUOTA);
956 			clear_opt(sbi, USRQUOTA);
957 			clear_opt(sbi, GRPQUOTA);
958 			clear_opt(sbi, PRJQUOTA);
959 			break;
960 #else
961 		case Opt_quota:
962 		case Opt_usrquota:
963 		case Opt_grpquota:
964 		case Opt_prjquota:
965 		case Opt_usrjquota:
966 		case Opt_grpjquota:
967 		case Opt_prjjquota:
968 		case Opt_offusrjquota:
969 		case Opt_offgrpjquota:
970 		case Opt_offprjjquota:
971 		case Opt_jqfmt_vfsold:
972 		case Opt_jqfmt_vfsv0:
973 		case Opt_jqfmt_vfsv1:
974 		case Opt_noquota:
975 			f2fs_info(sbi, "quota operations not supported");
976 			break;
977 #endif
978 		case Opt_whint:
979 			name = match_strdup(&args[0]);
980 			if (!name)
981 				return -ENOMEM;
982 			if (!strcmp(name, "user-based")) {
983 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
984 			} else if (!strcmp(name, "off")) {
985 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
986 			} else if (!strcmp(name, "fs-based")) {
987 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
988 			} else {
989 				kfree(name);
990 				return -EINVAL;
991 			}
992 			kfree(name);
993 			break;
994 		case Opt_alloc:
995 			name = match_strdup(&args[0]);
996 			if (!name)
997 				return -ENOMEM;
998 
999 			if (!strcmp(name, "default")) {
1000 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1001 			} else if (!strcmp(name, "reuse")) {
1002 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
1003 			} else {
1004 				kfree(name);
1005 				return -EINVAL;
1006 			}
1007 			kfree(name);
1008 			break;
1009 		case Opt_fsync:
1010 			name = match_strdup(&args[0]);
1011 			if (!name)
1012 				return -ENOMEM;
1013 			if (!strcmp(name, "posix")) {
1014 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1015 			} else if (!strcmp(name, "strict")) {
1016 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
1017 			} else if (!strcmp(name, "nobarrier")) {
1018 				F2FS_OPTION(sbi).fsync_mode =
1019 							FSYNC_MODE_NOBARRIER;
1020 			} else {
1021 				kfree(name);
1022 				return -EINVAL;
1023 			}
1024 			kfree(name);
1025 			break;
1026 		case Opt_test_dummy_encryption:
1027 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
1028 							     is_remount);
1029 			if (ret)
1030 				return ret;
1031 			break;
1032 		case Opt_inlinecrypt:
1033 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1034 			sb->s_flags |= SB_INLINECRYPT;
1035 #else
1036 			f2fs_info(sbi, "inline encryption not supported");
1037 #endif
1038 			break;
1039 		case Opt_checkpoint_disable_cap_perc:
1040 			if (args->from && match_int(args, &arg))
1041 				return -EINVAL;
1042 			if (arg < 0 || arg > 100)
1043 				return -EINVAL;
1044 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
1045 			set_opt(sbi, DISABLE_CHECKPOINT);
1046 			break;
1047 		case Opt_checkpoint_disable_cap:
1048 			if (args->from && match_int(args, &arg))
1049 				return -EINVAL;
1050 			F2FS_OPTION(sbi).unusable_cap = arg;
1051 			set_opt(sbi, DISABLE_CHECKPOINT);
1052 			break;
1053 		case Opt_checkpoint_disable:
1054 			set_opt(sbi, DISABLE_CHECKPOINT);
1055 			break;
1056 		case Opt_checkpoint_enable:
1057 			clear_opt(sbi, DISABLE_CHECKPOINT);
1058 			break;
1059 		case Opt_checkpoint_merge:
1060 			set_opt(sbi, MERGE_CHECKPOINT);
1061 			break;
1062 		case Opt_nocheckpoint_merge:
1063 			clear_opt(sbi, MERGE_CHECKPOINT);
1064 			break;
1065 #ifdef CONFIG_F2FS_FS_COMPRESSION
1066 		case Opt_compress_algorithm:
1067 			if (!f2fs_sb_has_compression(sbi)) {
1068 				f2fs_info(sbi, "Image doesn't support compression");
1069 				break;
1070 			}
1071 			name = match_strdup(&args[0]);
1072 			if (!name)
1073 				return -ENOMEM;
1074 			if (!strcmp(name, "lzo")) {
1075 #ifdef CONFIG_F2FS_FS_LZO
1076 				F2FS_OPTION(sbi).compress_level = 0;
1077 				F2FS_OPTION(sbi).compress_algorithm =
1078 								COMPRESS_LZO;
1079 #else
1080 				f2fs_info(sbi, "kernel doesn't support lzo compression");
1081 #endif
1082 			} else if (!strncmp(name, "lz4", 3)) {
1083 #ifdef CONFIG_F2FS_FS_LZ4
1084 				ret = f2fs_set_lz4hc_level(sbi, name);
1085 				if (ret) {
1086 					kfree(name);
1087 					return -EINVAL;
1088 				}
1089 				F2FS_OPTION(sbi).compress_algorithm =
1090 								COMPRESS_LZ4;
1091 #else
1092 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
1093 #endif
1094 			} else if (!strncmp(name, "zstd", 4)) {
1095 #ifdef CONFIG_F2FS_FS_ZSTD
1096 				ret = f2fs_set_zstd_level(sbi, name);
1097 				if (ret) {
1098 					kfree(name);
1099 					return -EINVAL;
1100 				}
1101 				F2FS_OPTION(sbi).compress_algorithm =
1102 								COMPRESS_ZSTD;
1103 #else
1104 				f2fs_info(sbi, "kernel doesn't support zstd compression");
1105 #endif
1106 			} else if (!strcmp(name, "lzo-rle")) {
1107 #ifdef CONFIG_F2FS_FS_LZORLE
1108 				F2FS_OPTION(sbi).compress_level = 0;
1109 				F2FS_OPTION(sbi).compress_algorithm =
1110 								COMPRESS_LZORLE;
1111 #else
1112 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1113 #endif
1114 			} else {
1115 				kfree(name);
1116 				return -EINVAL;
1117 			}
1118 			kfree(name);
1119 			break;
1120 		case Opt_compress_log_size:
1121 			if (!f2fs_sb_has_compression(sbi)) {
1122 				f2fs_info(sbi, "Image doesn't support compression");
1123 				break;
1124 			}
1125 			if (args->from && match_int(args, &arg))
1126 				return -EINVAL;
1127 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1128 				arg > MAX_COMPRESS_LOG_SIZE) {
1129 				f2fs_err(sbi,
1130 					"Compress cluster log size is out of range");
1131 				return -EINVAL;
1132 			}
1133 			F2FS_OPTION(sbi).compress_log_size = arg;
1134 			break;
1135 		case Opt_compress_extension:
1136 			if (!f2fs_sb_has_compression(sbi)) {
1137 				f2fs_info(sbi, "Image doesn't support compression");
1138 				break;
1139 			}
1140 			name = match_strdup(&args[0]);
1141 			if (!name)
1142 				return -ENOMEM;
1143 
1144 			ext = F2FS_OPTION(sbi).extensions;
1145 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1146 
1147 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1148 				ext_cnt >= COMPRESS_EXT_NUM) {
1149 				f2fs_err(sbi,
1150 					"invalid extension length/number");
1151 				kfree(name);
1152 				return -EINVAL;
1153 			}
1154 
1155 			strcpy(ext[ext_cnt], name);
1156 			F2FS_OPTION(sbi).compress_ext_cnt++;
1157 			kfree(name);
1158 			break;
1159 		case Opt_nocompress_extension:
1160 			if (!f2fs_sb_has_compression(sbi)) {
1161 				f2fs_info(sbi, "Image doesn't support compression");
1162 				break;
1163 			}
1164 			name = match_strdup(&args[0]);
1165 			if (!name)
1166 				return -ENOMEM;
1167 
1168 			noext = F2FS_OPTION(sbi).noextensions;
1169 			noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1170 
1171 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1172 				noext_cnt >= COMPRESS_EXT_NUM) {
1173 				f2fs_err(sbi,
1174 					"invalid extension length/number");
1175 				kfree(name);
1176 				return -EINVAL;
1177 			}
1178 
1179 			strcpy(noext[noext_cnt], name);
1180 			F2FS_OPTION(sbi).nocompress_ext_cnt++;
1181 			kfree(name);
1182 			break;
1183 		case Opt_compress_chksum:
1184 			F2FS_OPTION(sbi).compress_chksum = true;
1185 			break;
1186 		case Opt_compress_mode:
1187 			name = match_strdup(&args[0]);
1188 			if (!name)
1189 				return -ENOMEM;
1190 			if (!strcmp(name, "fs")) {
1191 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1192 			} else if (!strcmp(name, "user")) {
1193 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1194 			} else {
1195 				kfree(name);
1196 				return -EINVAL;
1197 			}
1198 			kfree(name);
1199 			break;
1200 		case Opt_compress_cache:
1201 			set_opt(sbi, COMPRESS_CACHE);
1202 			break;
1203 #else
1204 		case Opt_compress_algorithm:
1205 		case Opt_compress_log_size:
1206 		case Opt_compress_extension:
1207 		case Opt_nocompress_extension:
1208 		case Opt_compress_chksum:
1209 		case Opt_compress_mode:
1210 		case Opt_compress_cache:
1211 			f2fs_info(sbi, "compression options not supported");
1212 			break;
1213 #endif
1214 		case Opt_atgc:
1215 			set_opt(sbi, ATGC);
1216 			break;
1217 		case Opt_gc_merge:
1218 			set_opt(sbi, GC_MERGE);
1219 			break;
1220 		case Opt_nogc_merge:
1221 			clear_opt(sbi, GC_MERGE);
1222 			break;
1223 		case Opt_discard_unit:
1224 			name = match_strdup(&args[0]);
1225 			if (!name)
1226 				return -ENOMEM;
1227 			if (!strcmp(name, "block")) {
1228 				F2FS_OPTION(sbi).discard_unit =
1229 						DISCARD_UNIT_BLOCK;
1230 			} else if (!strcmp(name, "segment")) {
1231 				F2FS_OPTION(sbi).discard_unit =
1232 						DISCARD_UNIT_SEGMENT;
1233 			} else if (!strcmp(name, "section")) {
1234 				F2FS_OPTION(sbi).discard_unit =
1235 						DISCARD_UNIT_SECTION;
1236 			} else {
1237 				kfree(name);
1238 				return -EINVAL;
1239 			}
1240 			kfree(name);
1241 			break;
1242 		default:
1243 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1244 				 p);
1245 			return -EINVAL;
1246 		}
1247 	}
1248 default_check:
1249 #ifdef CONFIG_QUOTA
1250 	if (f2fs_check_quota_options(sbi))
1251 		return -EINVAL;
1252 #else
1253 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1254 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1255 		return -EINVAL;
1256 	}
1257 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1258 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1259 		return -EINVAL;
1260 	}
1261 #endif
1262 #if !IS_ENABLED(CONFIG_UNICODE)
1263 	if (f2fs_sb_has_casefold(sbi)) {
1264 		f2fs_err(sbi,
1265 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1266 		return -EINVAL;
1267 	}
1268 #endif
1269 	/*
1270 	 * The BLKZONED feature indicates that the drive was formatted with
1271 	 * zone alignment optimization. This is optional for host-aware
1272 	 * devices, but mandatory for host-managed zoned block devices.
1273 	 */
1274 #ifndef CONFIG_BLK_DEV_ZONED
1275 	if (f2fs_sb_has_blkzoned(sbi)) {
1276 		f2fs_err(sbi, "Zoned block device support is not enabled");
1277 		return -EINVAL;
1278 	}
1279 #endif
1280 	if (f2fs_sb_has_blkzoned(sbi)) {
1281 		if (F2FS_OPTION(sbi).discard_unit !=
1282 						DISCARD_UNIT_SECTION) {
1283 			f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1284 			F2FS_OPTION(sbi).discard_unit =
1285 					DISCARD_UNIT_SECTION;
1286 		}
1287 	}
1288 
1289 #ifdef CONFIG_F2FS_FS_COMPRESSION
1290 	if (f2fs_test_compress_extension(sbi)) {
1291 		f2fs_err(sbi, "invalid compress or nocompress extension");
1292 		return -EINVAL;
1293 	}
1294 #endif
1295 
1296 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1297 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1298 			 F2FS_IO_SIZE_KB(sbi));
1299 		return -EINVAL;
1300 	}
1301 
1302 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1303 		int min_size, max_size;
1304 
1305 		if (!f2fs_sb_has_extra_attr(sbi) ||
1306 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1307 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1308 			return -EINVAL;
1309 		}
1310 		if (!test_opt(sbi, INLINE_XATTR)) {
1311 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1312 			return -EINVAL;
1313 		}
1314 
1315 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1316 		max_size = MAX_INLINE_XATTR_SIZE;
1317 
1318 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1319 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1320 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1321 				 min_size, max_size);
1322 			return -EINVAL;
1323 		}
1324 	}
1325 
1326 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1327 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable");
1328 		return -EINVAL;
1329 	}
1330 
1331 	/* Not pass down write hints if the number of active logs is lesser
1332 	 * than NR_CURSEG_PERSIST_TYPE.
1333 	 */
1334 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_PERSIST_TYPE)
1335 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1336 
1337 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1338 		f2fs_err(sbi, "Allow to mount readonly mode only");
1339 		return -EROFS;
1340 	}
1341 	return 0;
1342 }
1343 
1344 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1345 {
1346 	struct f2fs_inode_info *fi;
1347 
1348 	if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) {
1349 		f2fs_show_injection_info(F2FS_SB(sb), FAULT_SLAB_ALLOC);
1350 		return NULL;
1351 	}
1352 
1353 	fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO);
1354 	if (!fi)
1355 		return NULL;
1356 
1357 	init_once((void *) fi);
1358 
1359 	/* Initialize f2fs-specific inode info */
1360 	atomic_set(&fi->dirty_pages, 0);
1361 	atomic_set(&fi->i_compr_blocks, 0);
1362 	init_f2fs_rwsem(&fi->i_sem);
1363 	spin_lock_init(&fi->i_size_lock);
1364 	INIT_LIST_HEAD(&fi->dirty_list);
1365 	INIT_LIST_HEAD(&fi->gdirty_list);
1366 	INIT_LIST_HEAD(&fi->inmem_ilist);
1367 	INIT_LIST_HEAD(&fi->inmem_pages);
1368 	mutex_init(&fi->inmem_lock);
1369 	init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
1370 	init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
1371 	init_f2fs_rwsem(&fi->i_xattr_sem);
1372 
1373 	/* Will be used by directory only */
1374 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1375 
1376 	return &fi->vfs_inode;
1377 }
1378 
1379 static int f2fs_drop_inode(struct inode *inode)
1380 {
1381 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1382 	int ret;
1383 
1384 	/*
1385 	 * during filesystem shutdown, if checkpoint is disabled,
1386 	 * drop useless meta/node dirty pages.
1387 	 */
1388 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1389 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1390 			inode->i_ino == F2FS_META_INO(sbi)) {
1391 			trace_f2fs_drop_inode(inode, 1);
1392 			return 1;
1393 		}
1394 	}
1395 
1396 	/*
1397 	 * This is to avoid a deadlock condition like below.
1398 	 * writeback_single_inode(inode)
1399 	 *  - f2fs_write_data_page
1400 	 *    - f2fs_gc -> iput -> evict
1401 	 *       - inode_wait_for_writeback(inode)
1402 	 */
1403 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1404 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1405 			/* to avoid evict_inode call simultaneously */
1406 			atomic_inc(&inode->i_count);
1407 			spin_unlock(&inode->i_lock);
1408 
1409 			/* some remained atomic pages should discarded */
1410 			if (f2fs_is_atomic_file(inode))
1411 				f2fs_drop_inmem_pages(inode);
1412 
1413 			/* should remain fi->extent_tree for writepage */
1414 			f2fs_destroy_extent_node(inode);
1415 
1416 			sb_start_intwrite(inode->i_sb);
1417 			f2fs_i_size_write(inode, 0);
1418 
1419 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1420 					inode, NULL, 0, DATA);
1421 			truncate_inode_pages_final(inode->i_mapping);
1422 
1423 			if (F2FS_HAS_BLOCKS(inode))
1424 				f2fs_truncate(inode);
1425 
1426 			sb_end_intwrite(inode->i_sb);
1427 
1428 			spin_lock(&inode->i_lock);
1429 			atomic_dec(&inode->i_count);
1430 		}
1431 		trace_f2fs_drop_inode(inode, 0);
1432 		return 0;
1433 	}
1434 	ret = generic_drop_inode(inode);
1435 	if (!ret)
1436 		ret = fscrypt_drop_inode(inode);
1437 	trace_f2fs_drop_inode(inode, ret);
1438 	return ret;
1439 }
1440 
1441 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1442 {
1443 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1444 	int ret = 0;
1445 
1446 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1447 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1448 		ret = 1;
1449 	} else {
1450 		set_inode_flag(inode, FI_DIRTY_INODE);
1451 		stat_inc_dirty_inode(sbi, DIRTY_META);
1452 	}
1453 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1454 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1455 				&sbi->inode_list[DIRTY_META]);
1456 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1457 	}
1458 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1459 	return ret;
1460 }
1461 
1462 void f2fs_inode_synced(struct inode *inode)
1463 {
1464 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1465 
1466 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1467 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1468 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1469 		return;
1470 	}
1471 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1472 		list_del_init(&F2FS_I(inode)->gdirty_list);
1473 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1474 	}
1475 	clear_inode_flag(inode, FI_DIRTY_INODE);
1476 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1477 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1478 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1479 }
1480 
1481 /*
1482  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1483  *
1484  * We should call set_dirty_inode to write the dirty inode through write_inode.
1485  */
1486 static void f2fs_dirty_inode(struct inode *inode, int flags)
1487 {
1488 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1489 
1490 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1491 			inode->i_ino == F2FS_META_INO(sbi))
1492 		return;
1493 
1494 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1495 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1496 
1497 	f2fs_inode_dirtied(inode, false);
1498 }
1499 
1500 static void f2fs_free_inode(struct inode *inode)
1501 {
1502 	fscrypt_free_inode(inode);
1503 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1504 }
1505 
1506 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1507 {
1508 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1509 	percpu_counter_destroy(&sbi->rf_node_block_count);
1510 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1511 }
1512 
1513 static void destroy_device_list(struct f2fs_sb_info *sbi)
1514 {
1515 	int i;
1516 
1517 	for (i = 0; i < sbi->s_ndevs; i++) {
1518 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1519 #ifdef CONFIG_BLK_DEV_ZONED
1520 		kvfree(FDEV(i).blkz_seq);
1521 		kfree(FDEV(i).zone_capacity_blocks);
1522 #endif
1523 	}
1524 	kvfree(sbi->devs);
1525 }
1526 
1527 static void f2fs_put_super(struct super_block *sb)
1528 {
1529 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1530 	int i;
1531 	bool dropped;
1532 
1533 	/* unregister procfs/sysfs entries in advance to avoid race case */
1534 	f2fs_unregister_sysfs(sbi);
1535 
1536 	f2fs_quota_off_umount(sb);
1537 
1538 	/* prevent remaining shrinker jobs */
1539 	mutex_lock(&sbi->umount_mutex);
1540 
1541 	/*
1542 	 * flush all issued checkpoints and stop checkpoint issue thread.
1543 	 * after then, all checkpoints should be done by each process context.
1544 	 */
1545 	f2fs_stop_ckpt_thread(sbi);
1546 
1547 	/*
1548 	 * We don't need to do checkpoint when superblock is clean.
1549 	 * But, the previous checkpoint was not done by umount, it needs to do
1550 	 * clean checkpoint again.
1551 	 */
1552 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1553 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1554 		struct cp_control cpc = {
1555 			.reason = CP_UMOUNT,
1556 		};
1557 		f2fs_write_checkpoint(sbi, &cpc);
1558 	}
1559 
1560 	/* be sure to wait for any on-going discard commands */
1561 	dropped = f2fs_issue_discard_timeout(sbi);
1562 
1563 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1564 					!sbi->discard_blks && !dropped) {
1565 		struct cp_control cpc = {
1566 			.reason = CP_UMOUNT | CP_TRIMMED,
1567 		};
1568 		f2fs_write_checkpoint(sbi, &cpc);
1569 	}
1570 
1571 	/*
1572 	 * normally superblock is clean, so we need to release this.
1573 	 * In addition, EIO will skip do checkpoint, we need this as well.
1574 	 */
1575 	f2fs_release_ino_entry(sbi, true);
1576 
1577 	f2fs_leave_shrinker(sbi);
1578 	mutex_unlock(&sbi->umount_mutex);
1579 
1580 	/* our cp_error case, we can wait for any writeback page */
1581 	f2fs_flush_merged_writes(sbi);
1582 
1583 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1584 
1585 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1586 
1587 	f2fs_destroy_compress_inode(sbi);
1588 
1589 	iput(sbi->node_inode);
1590 	sbi->node_inode = NULL;
1591 
1592 	iput(sbi->meta_inode);
1593 	sbi->meta_inode = NULL;
1594 
1595 	/*
1596 	 * iput() can update stat information, if f2fs_write_checkpoint()
1597 	 * above failed with error.
1598 	 */
1599 	f2fs_destroy_stats(sbi);
1600 
1601 	/* destroy f2fs internal modules */
1602 	f2fs_destroy_node_manager(sbi);
1603 	f2fs_destroy_segment_manager(sbi);
1604 
1605 	f2fs_destroy_post_read_wq(sbi);
1606 
1607 	kvfree(sbi->ckpt);
1608 
1609 	sb->s_fs_info = NULL;
1610 	if (sbi->s_chksum_driver)
1611 		crypto_free_shash(sbi->s_chksum_driver);
1612 	kfree(sbi->raw_super);
1613 
1614 	destroy_device_list(sbi);
1615 	f2fs_destroy_page_array_cache(sbi);
1616 	f2fs_destroy_xattr_caches(sbi);
1617 	mempool_destroy(sbi->write_io_dummy);
1618 #ifdef CONFIG_QUOTA
1619 	for (i = 0; i < MAXQUOTAS; i++)
1620 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1621 #endif
1622 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1623 	destroy_percpu_info(sbi);
1624 	f2fs_destroy_iostat(sbi);
1625 	for (i = 0; i < NR_PAGE_TYPE; i++)
1626 		kvfree(sbi->write_io[i]);
1627 #if IS_ENABLED(CONFIG_UNICODE)
1628 	utf8_unload(sb->s_encoding);
1629 #endif
1630 	kfree(sbi);
1631 }
1632 
1633 int f2fs_sync_fs(struct super_block *sb, int sync)
1634 {
1635 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1636 	int err = 0;
1637 
1638 	if (unlikely(f2fs_cp_error(sbi)))
1639 		return 0;
1640 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1641 		return 0;
1642 
1643 	trace_f2fs_sync_fs(sb, sync);
1644 
1645 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1646 		return -EAGAIN;
1647 
1648 	if (sync)
1649 		err = f2fs_issue_checkpoint(sbi);
1650 
1651 	return err;
1652 }
1653 
1654 static int f2fs_freeze(struct super_block *sb)
1655 {
1656 	if (f2fs_readonly(sb))
1657 		return 0;
1658 
1659 	/* IO error happened before */
1660 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1661 		return -EIO;
1662 
1663 	/* must be clean, since sync_filesystem() was already called */
1664 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1665 		return -EINVAL;
1666 
1667 	/* ensure no checkpoint required */
1668 	if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list))
1669 		return -EINVAL;
1670 
1671 	/* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
1672 	set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1673 	return 0;
1674 }
1675 
1676 static int f2fs_unfreeze(struct super_block *sb)
1677 {
1678 	clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1679 	return 0;
1680 }
1681 
1682 #ifdef CONFIG_QUOTA
1683 static int f2fs_statfs_project(struct super_block *sb,
1684 				kprojid_t projid, struct kstatfs *buf)
1685 {
1686 	struct kqid qid;
1687 	struct dquot *dquot;
1688 	u64 limit;
1689 	u64 curblock;
1690 
1691 	qid = make_kqid_projid(projid);
1692 	dquot = dqget(sb, qid);
1693 	if (IS_ERR(dquot))
1694 		return PTR_ERR(dquot);
1695 	spin_lock(&dquot->dq_dqb_lock);
1696 
1697 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1698 					dquot->dq_dqb.dqb_bhardlimit);
1699 	if (limit)
1700 		limit >>= sb->s_blocksize_bits;
1701 
1702 	if (limit && buf->f_blocks > limit) {
1703 		curblock = (dquot->dq_dqb.dqb_curspace +
1704 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1705 		buf->f_blocks = limit;
1706 		buf->f_bfree = buf->f_bavail =
1707 			(buf->f_blocks > curblock) ?
1708 			 (buf->f_blocks - curblock) : 0;
1709 	}
1710 
1711 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1712 					dquot->dq_dqb.dqb_ihardlimit);
1713 
1714 	if (limit && buf->f_files > limit) {
1715 		buf->f_files = limit;
1716 		buf->f_ffree =
1717 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1718 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1719 	}
1720 
1721 	spin_unlock(&dquot->dq_dqb_lock);
1722 	dqput(dquot);
1723 	return 0;
1724 }
1725 #endif
1726 
1727 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1728 {
1729 	struct super_block *sb = dentry->d_sb;
1730 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1731 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1732 	block_t total_count, user_block_count, start_count;
1733 	u64 avail_node_count;
1734 
1735 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1736 	user_block_count = sbi->user_block_count;
1737 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1738 	buf->f_type = F2FS_SUPER_MAGIC;
1739 	buf->f_bsize = sbi->blocksize;
1740 
1741 	buf->f_blocks = total_count - start_count;
1742 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1743 						sbi->current_reserved_blocks;
1744 
1745 	spin_lock(&sbi->stat_lock);
1746 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1747 		buf->f_bfree = 0;
1748 	else
1749 		buf->f_bfree -= sbi->unusable_block_count;
1750 	spin_unlock(&sbi->stat_lock);
1751 
1752 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1753 		buf->f_bavail = buf->f_bfree -
1754 				F2FS_OPTION(sbi).root_reserved_blocks;
1755 	else
1756 		buf->f_bavail = 0;
1757 
1758 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1759 
1760 	if (avail_node_count > user_block_count) {
1761 		buf->f_files = user_block_count;
1762 		buf->f_ffree = buf->f_bavail;
1763 	} else {
1764 		buf->f_files = avail_node_count;
1765 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1766 					buf->f_bavail);
1767 	}
1768 
1769 	buf->f_namelen = F2FS_NAME_LEN;
1770 	buf->f_fsid    = u64_to_fsid(id);
1771 
1772 #ifdef CONFIG_QUOTA
1773 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1774 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1775 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1776 	}
1777 #endif
1778 	return 0;
1779 }
1780 
1781 static inline void f2fs_show_quota_options(struct seq_file *seq,
1782 					   struct super_block *sb)
1783 {
1784 #ifdef CONFIG_QUOTA
1785 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1786 
1787 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1788 		char *fmtname = "";
1789 
1790 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1791 		case QFMT_VFS_OLD:
1792 			fmtname = "vfsold";
1793 			break;
1794 		case QFMT_VFS_V0:
1795 			fmtname = "vfsv0";
1796 			break;
1797 		case QFMT_VFS_V1:
1798 			fmtname = "vfsv1";
1799 			break;
1800 		}
1801 		seq_printf(seq, ",jqfmt=%s", fmtname);
1802 	}
1803 
1804 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1805 		seq_show_option(seq, "usrjquota",
1806 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1807 
1808 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1809 		seq_show_option(seq, "grpjquota",
1810 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1811 
1812 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1813 		seq_show_option(seq, "prjjquota",
1814 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1815 #endif
1816 }
1817 
1818 #ifdef CONFIG_F2FS_FS_COMPRESSION
1819 static inline void f2fs_show_compress_options(struct seq_file *seq,
1820 							struct super_block *sb)
1821 {
1822 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1823 	char *algtype = "";
1824 	int i;
1825 
1826 	if (!f2fs_sb_has_compression(sbi))
1827 		return;
1828 
1829 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1830 	case COMPRESS_LZO:
1831 		algtype = "lzo";
1832 		break;
1833 	case COMPRESS_LZ4:
1834 		algtype = "lz4";
1835 		break;
1836 	case COMPRESS_ZSTD:
1837 		algtype = "zstd";
1838 		break;
1839 	case COMPRESS_LZORLE:
1840 		algtype = "lzo-rle";
1841 		break;
1842 	}
1843 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1844 
1845 	if (F2FS_OPTION(sbi).compress_level)
1846 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1847 
1848 	seq_printf(seq, ",compress_log_size=%u",
1849 			F2FS_OPTION(sbi).compress_log_size);
1850 
1851 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1852 		seq_printf(seq, ",compress_extension=%s",
1853 			F2FS_OPTION(sbi).extensions[i]);
1854 	}
1855 
1856 	for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1857 		seq_printf(seq, ",nocompress_extension=%s",
1858 			F2FS_OPTION(sbi).noextensions[i]);
1859 	}
1860 
1861 	if (F2FS_OPTION(sbi).compress_chksum)
1862 		seq_puts(seq, ",compress_chksum");
1863 
1864 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1865 		seq_printf(seq, ",compress_mode=%s", "fs");
1866 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1867 		seq_printf(seq, ",compress_mode=%s", "user");
1868 
1869 	if (test_opt(sbi, COMPRESS_CACHE))
1870 		seq_puts(seq, ",compress_cache");
1871 }
1872 #endif
1873 
1874 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1875 {
1876 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1877 
1878 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1879 		seq_printf(seq, ",background_gc=%s", "sync");
1880 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1881 		seq_printf(seq, ",background_gc=%s", "on");
1882 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1883 		seq_printf(seq, ",background_gc=%s", "off");
1884 
1885 	if (test_opt(sbi, GC_MERGE))
1886 		seq_puts(seq, ",gc_merge");
1887 
1888 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1889 		seq_puts(seq, ",disable_roll_forward");
1890 	if (test_opt(sbi, NORECOVERY))
1891 		seq_puts(seq, ",norecovery");
1892 	if (test_opt(sbi, DISCARD))
1893 		seq_puts(seq, ",discard");
1894 	else
1895 		seq_puts(seq, ",nodiscard");
1896 	if (test_opt(sbi, NOHEAP))
1897 		seq_puts(seq, ",no_heap");
1898 	else
1899 		seq_puts(seq, ",heap");
1900 #ifdef CONFIG_F2FS_FS_XATTR
1901 	if (test_opt(sbi, XATTR_USER))
1902 		seq_puts(seq, ",user_xattr");
1903 	else
1904 		seq_puts(seq, ",nouser_xattr");
1905 	if (test_opt(sbi, INLINE_XATTR))
1906 		seq_puts(seq, ",inline_xattr");
1907 	else
1908 		seq_puts(seq, ",noinline_xattr");
1909 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1910 		seq_printf(seq, ",inline_xattr_size=%u",
1911 					F2FS_OPTION(sbi).inline_xattr_size);
1912 #endif
1913 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1914 	if (test_opt(sbi, POSIX_ACL))
1915 		seq_puts(seq, ",acl");
1916 	else
1917 		seq_puts(seq, ",noacl");
1918 #endif
1919 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1920 		seq_puts(seq, ",disable_ext_identify");
1921 	if (test_opt(sbi, INLINE_DATA))
1922 		seq_puts(seq, ",inline_data");
1923 	else
1924 		seq_puts(seq, ",noinline_data");
1925 	if (test_opt(sbi, INLINE_DENTRY))
1926 		seq_puts(seq, ",inline_dentry");
1927 	else
1928 		seq_puts(seq, ",noinline_dentry");
1929 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1930 		seq_puts(seq, ",flush_merge");
1931 	if (test_opt(sbi, NOBARRIER))
1932 		seq_puts(seq, ",nobarrier");
1933 	if (test_opt(sbi, FASTBOOT))
1934 		seq_puts(seq, ",fastboot");
1935 	if (test_opt(sbi, EXTENT_CACHE))
1936 		seq_puts(seq, ",extent_cache");
1937 	else
1938 		seq_puts(seq, ",noextent_cache");
1939 	if (test_opt(sbi, DATA_FLUSH))
1940 		seq_puts(seq, ",data_flush");
1941 
1942 	seq_puts(seq, ",mode=");
1943 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1944 		seq_puts(seq, "adaptive");
1945 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1946 		seq_puts(seq, "lfs");
1947 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
1948 		seq_puts(seq, "fragment:segment");
1949 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
1950 		seq_puts(seq, "fragment:block");
1951 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1952 	if (test_opt(sbi, RESERVE_ROOT))
1953 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1954 				F2FS_OPTION(sbi).root_reserved_blocks,
1955 				from_kuid_munged(&init_user_ns,
1956 					F2FS_OPTION(sbi).s_resuid),
1957 				from_kgid_munged(&init_user_ns,
1958 					F2FS_OPTION(sbi).s_resgid));
1959 	if (F2FS_IO_SIZE_BITS(sbi))
1960 		seq_printf(seq, ",io_bits=%u",
1961 				F2FS_OPTION(sbi).write_io_size_bits);
1962 #ifdef CONFIG_F2FS_FAULT_INJECTION
1963 	if (test_opt(sbi, FAULT_INJECTION)) {
1964 		seq_printf(seq, ",fault_injection=%u",
1965 				F2FS_OPTION(sbi).fault_info.inject_rate);
1966 		seq_printf(seq, ",fault_type=%u",
1967 				F2FS_OPTION(sbi).fault_info.inject_type);
1968 	}
1969 #endif
1970 #ifdef CONFIG_QUOTA
1971 	if (test_opt(sbi, QUOTA))
1972 		seq_puts(seq, ",quota");
1973 	if (test_opt(sbi, USRQUOTA))
1974 		seq_puts(seq, ",usrquota");
1975 	if (test_opt(sbi, GRPQUOTA))
1976 		seq_puts(seq, ",grpquota");
1977 	if (test_opt(sbi, PRJQUOTA))
1978 		seq_puts(seq, ",prjquota");
1979 #endif
1980 	f2fs_show_quota_options(seq, sbi->sb);
1981 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1982 		seq_printf(seq, ",whint_mode=%s", "user-based");
1983 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1984 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1985 
1986 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1987 
1988 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1989 		seq_puts(seq, ",inlinecrypt");
1990 
1991 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1992 		seq_printf(seq, ",alloc_mode=%s", "default");
1993 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1994 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1995 
1996 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1997 		seq_printf(seq, ",checkpoint=disable:%u",
1998 				F2FS_OPTION(sbi).unusable_cap);
1999 	if (test_opt(sbi, MERGE_CHECKPOINT))
2000 		seq_puts(seq, ",checkpoint_merge");
2001 	else
2002 		seq_puts(seq, ",nocheckpoint_merge");
2003 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
2004 		seq_printf(seq, ",fsync_mode=%s", "posix");
2005 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
2006 		seq_printf(seq, ",fsync_mode=%s", "strict");
2007 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
2008 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
2009 
2010 #ifdef CONFIG_F2FS_FS_COMPRESSION
2011 	f2fs_show_compress_options(seq, sbi->sb);
2012 #endif
2013 
2014 	if (test_opt(sbi, ATGC))
2015 		seq_puts(seq, ",atgc");
2016 
2017 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
2018 		seq_printf(seq, ",discard_unit=%s", "block");
2019 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2020 		seq_printf(seq, ",discard_unit=%s", "segment");
2021 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2022 		seq_printf(seq, ",discard_unit=%s", "section");
2023 
2024 	return 0;
2025 }
2026 
2027 static void default_options(struct f2fs_sb_info *sbi)
2028 {
2029 	/* init some FS parameters */
2030 	if (f2fs_sb_has_readonly(sbi))
2031 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
2032 	else
2033 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
2034 
2035 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
2036 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
2037 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
2038 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
2039 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2040 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2041 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
2042 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
2043 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
2044 	F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
2045 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
2046 
2047 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
2048 
2049 	set_opt(sbi, INLINE_XATTR);
2050 	set_opt(sbi, INLINE_DATA);
2051 	set_opt(sbi, INLINE_DENTRY);
2052 	set_opt(sbi, EXTENT_CACHE);
2053 	set_opt(sbi, NOHEAP);
2054 	clear_opt(sbi, DISABLE_CHECKPOINT);
2055 	set_opt(sbi, MERGE_CHECKPOINT);
2056 	F2FS_OPTION(sbi).unusable_cap = 0;
2057 	sbi->sb->s_flags |= SB_LAZYTIME;
2058 	set_opt(sbi, FLUSH_MERGE);
2059 	if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2060 		set_opt(sbi, DISCARD);
2061 	if (f2fs_sb_has_blkzoned(sbi)) {
2062 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2063 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2064 	} else {
2065 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2066 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2067 	}
2068 
2069 #ifdef CONFIG_F2FS_FS_XATTR
2070 	set_opt(sbi, XATTR_USER);
2071 #endif
2072 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2073 	set_opt(sbi, POSIX_ACL);
2074 #endif
2075 
2076 	f2fs_build_fault_attr(sbi, 0, 0);
2077 }
2078 
2079 #ifdef CONFIG_QUOTA
2080 static int f2fs_enable_quotas(struct super_block *sb);
2081 #endif
2082 
2083 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2084 {
2085 	unsigned int s_flags = sbi->sb->s_flags;
2086 	struct cp_control cpc;
2087 	unsigned int gc_mode;
2088 	int err = 0;
2089 	int ret;
2090 	block_t unusable;
2091 
2092 	if (s_flags & SB_RDONLY) {
2093 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
2094 		return -EINVAL;
2095 	}
2096 	sbi->sb->s_flags |= SB_ACTIVE;
2097 
2098 	f2fs_update_time(sbi, DISABLE_TIME);
2099 
2100 	gc_mode = sbi->gc_mode;
2101 	sbi->gc_mode = GC_URGENT_HIGH;
2102 
2103 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2104 		f2fs_down_write(&sbi->gc_lock);
2105 		err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
2106 		if (err == -ENODATA) {
2107 			err = 0;
2108 			break;
2109 		}
2110 		if (err && err != -EAGAIN)
2111 			break;
2112 	}
2113 
2114 	ret = sync_filesystem(sbi->sb);
2115 	if (ret || err) {
2116 		err = ret ? ret : err;
2117 		goto restore_flag;
2118 	}
2119 
2120 	unusable = f2fs_get_unusable_blocks(sbi);
2121 	if (f2fs_disable_cp_again(sbi, unusable)) {
2122 		err = -EAGAIN;
2123 		goto restore_flag;
2124 	}
2125 
2126 	f2fs_down_write(&sbi->gc_lock);
2127 	cpc.reason = CP_PAUSE;
2128 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2129 	err = f2fs_write_checkpoint(sbi, &cpc);
2130 	if (err)
2131 		goto out_unlock;
2132 
2133 	spin_lock(&sbi->stat_lock);
2134 	sbi->unusable_block_count = unusable;
2135 	spin_unlock(&sbi->stat_lock);
2136 
2137 out_unlock:
2138 	f2fs_up_write(&sbi->gc_lock);
2139 restore_flag:
2140 	sbi->gc_mode = gc_mode;
2141 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2142 	return err;
2143 }
2144 
2145 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2146 {
2147 	int retry = DEFAULT_RETRY_IO_COUNT;
2148 
2149 	/* we should flush all the data to keep data consistency */
2150 	do {
2151 		sync_inodes_sb(sbi->sb);
2152 		f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2153 	} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2154 
2155 	if (unlikely(retry < 0))
2156 		f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2157 
2158 	f2fs_down_write(&sbi->gc_lock);
2159 	f2fs_dirty_to_prefree(sbi);
2160 
2161 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2162 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2163 	f2fs_up_write(&sbi->gc_lock);
2164 
2165 	f2fs_sync_fs(sbi->sb, 1);
2166 }
2167 
2168 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2169 {
2170 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2171 	struct f2fs_mount_info org_mount_opt;
2172 	unsigned long old_sb_flags;
2173 	int err;
2174 	bool need_restart_gc = false, need_stop_gc = false;
2175 	bool need_restart_ckpt = false, need_stop_ckpt = false;
2176 	bool need_restart_flush = false, need_stop_flush = false;
2177 	bool need_restart_discard = false, need_stop_discard = false;
2178 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
2179 	bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2180 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
2181 	bool no_atgc = !test_opt(sbi, ATGC);
2182 	bool no_discard = !test_opt(sbi, DISCARD);
2183 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2184 	bool block_unit_discard = f2fs_block_unit_discard(sbi);
2185 	struct discard_cmd_control *dcc;
2186 #ifdef CONFIG_QUOTA
2187 	int i, j;
2188 #endif
2189 
2190 	/*
2191 	 * Save the old mount options in case we
2192 	 * need to restore them.
2193 	 */
2194 	org_mount_opt = sbi->mount_opt;
2195 	old_sb_flags = sb->s_flags;
2196 
2197 #ifdef CONFIG_QUOTA
2198 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2199 	for (i = 0; i < MAXQUOTAS; i++) {
2200 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2201 			org_mount_opt.s_qf_names[i] =
2202 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2203 				GFP_KERNEL);
2204 			if (!org_mount_opt.s_qf_names[i]) {
2205 				for (j = 0; j < i; j++)
2206 					kfree(org_mount_opt.s_qf_names[j]);
2207 				return -ENOMEM;
2208 			}
2209 		} else {
2210 			org_mount_opt.s_qf_names[i] = NULL;
2211 		}
2212 	}
2213 #endif
2214 
2215 	/* recover superblocks we couldn't write due to previous RO mount */
2216 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2217 		err = f2fs_commit_super(sbi, false);
2218 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2219 			  err);
2220 		if (!err)
2221 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2222 	}
2223 
2224 	default_options(sbi);
2225 
2226 	/* parse mount options */
2227 	err = parse_options(sb, data, true);
2228 	if (err)
2229 		goto restore_opts;
2230 
2231 	/*
2232 	 * Previous and new state of filesystem is RO,
2233 	 * so skip checking GC and FLUSH_MERGE conditions.
2234 	 */
2235 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2236 		goto skip;
2237 
2238 	if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) {
2239 		err = -EROFS;
2240 		goto restore_opts;
2241 	}
2242 
2243 #ifdef CONFIG_QUOTA
2244 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2245 		err = dquot_suspend(sb, -1);
2246 		if (err < 0)
2247 			goto restore_opts;
2248 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2249 		/* dquot_resume needs RW */
2250 		sb->s_flags &= ~SB_RDONLY;
2251 		if (sb_any_quota_suspended(sb)) {
2252 			dquot_resume(sb, -1);
2253 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2254 			err = f2fs_enable_quotas(sb);
2255 			if (err)
2256 				goto restore_opts;
2257 		}
2258 	}
2259 #endif
2260 	/* disallow enable atgc dynamically */
2261 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2262 		err = -EINVAL;
2263 		f2fs_warn(sbi, "switch atgc option is not allowed");
2264 		goto restore_opts;
2265 	}
2266 
2267 	/* disallow enable/disable extent_cache dynamically */
2268 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
2269 		err = -EINVAL;
2270 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2271 		goto restore_opts;
2272 	}
2273 
2274 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2275 		err = -EINVAL;
2276 		f2fs_warn(sbi, "switch io_bits option is not allowed");
2277 		goto restore_opts;
2278 	}
2279 
2280 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2281 		err = -EINVAL;
2282 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2283 		goto restore_opts;
2284 	}
2285 
2286 	if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2287 		err = -EINVAL;
2288 		f2fs_warn(sbi, "switch discard_unit option is not allowed");
2289 		goto restore_opts;
2290 	}
2291 
2292 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2293 		err = -EINVAL;
2294 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2295 		goto restore_opts;
2296 	}
2297 
2298 	/*
2299 	 * We stop the GC thread if FS is mounted as RO
2300 	 * or if background_gc = off is passed in mount
2301 	 * option. Also sync the filesystem.
2302 	 */
2303 	if ((*flags & SB_RDONLY) ||
2304 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2305 			!test_opt(sbi, GC_MERGE))) {
2306 		if (sbi->gc_thread) {
2307 			f2fs_stop_gc_thread(sbi);
2308 			need_restart_gc = true;
2309 		}
2310 	} else if (!sbi->gc_thread) {
2311 		err = f2fs_start_gc_thread(sbi);
2312 		if (err)
2313 			goto restore_opts;
2314 		need_stop_gc = true;
2315 	}
2316 
2317 	if (*flags & SB_RDONLY ||
2318 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
2319 		sync_inodes_sb(sb);
2320 
2321 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2322 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2323 		f2fs_sync_fs(sb, 1);
2324 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2325 	}
2326 
2327 	if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2328 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2329 		f2fs_stop_ckpt_thread(sbi);
2330 		need_restart_ckpt = true;
2331 	} else {
2332 		err = f2fs_start_ckpt_thread(sbi);
2333 		if (err) {
2334 			f2fs_err(sbi,
2335 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2336 			    err);
2337 			goto restore_gc;
2338 		}
2339 		need_stop_ckpt = true;
2340 	}
2341 
2342 	/*
2343 	 * We stop issue flush thread if FS is mounted as RO
2344 	 * or if flush_merge is not passed in mount option.
2345 	 */
2346 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2347 		clear_opt(sbi, FLUSH_MERGE);
2348 		f2fs_destroy_flush_cmd_control(sbi, false);
2349 		need_restart_flush = true;
2350 	} else {
2351 		err = f2fs_create_flush_cmd_control(sbi);
2352 		if (err)
2353 			goto restore_ckpt;
2354 		need_stop_flush = true;
2355 	}
2356 
2357 	if (no_discard == !!test_opt(sbi, DISCARD)) {
2358 		if (test_opt(sbi, DISCARD)) {
2359 			err = f2fs_start_discard_thread(sbi);
2360 			if (err)
2361 				goto restore_flush;
2362 			need_stop_discard = true;
2363 		} else {
2364 			dcc = SM_I(sbi)->dcc_info;
2365 			f2fs_stop_discard_thread(sbi);
2366 			if (atomic_read(&dcc->discard_cmd_cnt))
2367 				f2fs_issue_discard_timeout(sbi);
2368 			need_restart_discard = true;
2369 		}
2370 	}
2371 
2372 	if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2373 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2374 			err = f2fs_disable_checkpoint(sbi);
2375 			if (err)
2376 				goto restore_discard;
2377 		} else {
2378 			f2fs_enable_checkpoint(sbi);
2379 		}
2380 	}
2381 
2382 skip:
2383 #ifdef CONFIG_QUOTA
2384 	/* Release old quota file names */
2385 	for (i = 0; i < MAXQUOTAS; i++)
2386 		kfree(org_mount_opt.s_qf_names[i]);
2387 #endif
2388 	/* Update the POSIXACL Flag */
2389 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2390 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2391 
2392 	limit_reserve_root(sbi);
2393 	adjust_unusable_cap_perc(sbi);
2394 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2395 	return 0;
2396 restore_discard:
2397 	if (need_restart_discard) {
2398 		if (f2fs_start_discard_thread(sbi))
2399 			f2fs_warn(sbi, "discard has been stopped");
2400 	} else if (need_stop_discard) {
2401 		f2fs_stop_discard_thread(sbi);
2402 	}
2403 restore_flush:
2404 	if (need_restart_flush) {
2405 		if (f2fs_create_flush_cmd_control(sbi))
2406 			f2fs_warn(sbi, "background flush thread has stopped");
2407 	} else if (need_stop_flush) {
2408 		clear_opt(sbi, FLUSH_MERGE);
2409 		f2fs_destroy_flush_cmd_control(sbi, false);
2410 	}
2411 restore_ckpt:
2412 	if (need_restart_ckpt) {
2413 		if (f2fs_start_ckpt_thread(sbi))
2414 			f2fs_warn(sbi, "background ckpt thread has stopped");
2415 	} else if (need_stop_ckpt) {
2416 		f2fs_stop_ckpt_thread(sbi);
2417 	}
2418 restore_gc:
2419 	if (need_restart_gc) {
2420 		if (f2fs_start_gc_thread(sbi))
2421 			f2fs_warn(sbi, "background gc thread has stopped");
2422 	} else if (need_stop_gc) {
2423 		f2fs_stop_gc_thread(sbi);
2424 	}
2425 restore_opts:
2426 #ifdef CONFIG_QUOTA
2427 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2428 	for (i = 0; i < MAXQUOTAS; i++) {
2429 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2430 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2431 	}
2432 #endif
2433 	sbi->mount_opt = org_mount_opt;
2434 	sb->s_flags = old_sb_flags;
2435 	return err;
2436 }
2437 
2438 #ifdef CONFIG_QUOTA
2439 /* Read data from quotafile */
2440 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2441 			       size_t len, loff_t off)
2442 {
2443 	struct inode *inode = sb_dqopt(sb)->files[type];
2444 	struct address_space *mapping = inode->i_mapping;
2445 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2446 	int offset = off & (sb->s_blocksize - 1);
2447 	int tocopy;
2448 	size_t toread;
2449 	loff_t i_size = i_size_read(inode);
2450 	struct page *page;
2451 	char *kaddr;
2452 
2453 	if (off > i_size)
2454 		return 0;
2455 
2456 	if (off + len > i_size)
2457 		len = i_size - off;
2458 	toread = len;
2459 	while (toread > 0) {
2460 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2461 repeat:
2462 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2463 		if (IS_ERR(page)) {
2464 			if (PTR_ERR(page) == -ENOMEM) {
2465 				memalloc_retry_wait(GFP_NOFS);
2466 				goto repeat;
2467 			}
2468 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2469 			return PTR_ERR(page);
2470 		}
2471 
2472 		lock_page(page);
2473 
2474 		if (unlikely(page->mapping != mapping)) {
2475 			f2fs_put_page(page, 1);
2476 			goto repeat;
2477 		}
2478 		if (unlikely(!PageUptodate(page))) {
2479 			f2fs_put_page(page, 1);
2480 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2481 			return -EIO;
2482 		}
2483 
2484 		kaddr = kmap_atomic(page);
2485 		memcpy(data, kaddr + offset, tocopy);
2486 		kunmap_atomic(kaddr);
2487 		f2fs_put_page(page, 1);
2488 
2489 		offset = 0;
2490 		toread -= tocopy;
2491 		data += tocopy;
2492 		blkidx++;
2493 	}
2494 	return len;
2495 }
2496 
2497 /* Write to quotafile */
2498 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2499 				const char *data, size_t len, loff_t off)
2500 {
2501 	struct inode *inode = sb_dqopt(sb)->files[type];
2502 	struct address_space *mapping = inode->i_mapping;
2503 	const struct address_space_operations *a_ops = mapping->a_ops;
2504 	int offset = off & (sb->s_blocksize - 1);
2505 	size_t towrite = len;
2506 	struct page *page;
2507 	void *fsdata = NULL;
2508 	char *kaddr;
2509 	int err = 0;
2510 	int tocopy;
2511 
2512 	while (towrite > 0) {
2513 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2514 								towrite);
2515 retry:
2516 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2517 							&page, &fsdata);
2518 		if (unlikely(err)) {
2519 			if (err == -ENOMEM) {
2520 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2521 				goto retry;
2522 			}
2523 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2524 			break;
2525 		}
2526 
2527 		kaddr = kmap_atomic(page);
2528 		memcpy(kaddr + offset, data, tocopy);
2529 		kunmap_atomic(kaddr);
2530 		flush_dcache_page(page);
2531 
2532 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2533 						page, fsdata);
2534 		offset = 0;
2535 		towrite -= tocopy;
2536 		off += tocopy;
2537 		data += tocopy;
2538 		cond_resched();
2539 	}
2540 
2541 	if (len == towrite)
2542 		return err;
2543 	inode->i_mtime = inode->i_ctime = current_time(inode);
2544 	f2fs_mark_inode_dirty_sync(inode, false);
2545 	return len - towrite;
2546 }
2547 
2548 int f2fs_dquot_initialize(struct inode *inode)
2549 {
2550 	if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) {
2551 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_DQUOT_INIT);
2552 		return -ESRCH;
2553 	}
2554 
2555 	return dquot_initialize(inode);
2556 }
2557 
2558 static struct dquot **f2fs_get_dquots(struct inode *inode)
2559 {
2560 	return F2FS_I(inode)->i_dquot;
2561 }
2562 
2563 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2564 {
2565 	return &F2FS_I(inode)->i_reserved_quota;
2566 }
2567 
2568 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2569 {
2570 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2571 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2572 		return 0;
2573 	}
2574 
2575 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2576 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2577 }
2578 
2579 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2580 {
2581 	int enabled = 0;
2582 	int i, err;
2583 
2584 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2585 		err = f2fs_enable_quotas(sbi->sb);
2586 		if (err) {
2587 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2588 			return 0;
2589 		}
2590 		return 1;
2591 	}
2592 
2593 	for (i = 0; i < MAXQUOTAS; i++) {
2594 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2595 			err = f2fs_quota_on_mount(sbi, i);
2596 			if (!err) {
2597 				enabled = 1;
2598 				continue;
2599 			}
2600 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2601 				 err, i);
2602 		}
2603 	}
2604 	return enabled;
2605 }
2606 
2607 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2608 			     unsigned int flags)
2609 {
2610 	struct inode *qf_inode;
2611 	unsigned long qf_inum;
2612 	int err;
2613 
2614 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2615 
2616 	qf_inum = f2fs_qf_ino(sb, type);
2617 	if (!qf_inum)
2618 		return -EPERM;
2619 
2620 	qf_inode = f2fs_iget(sb, qf_inum);
2621 	if (IS_ERR(qf_inode)) {
2622 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2623 		return PTR_ERR(qf_inode);
2624 	}
2625 
2626 	/* Don't account quota for quota files to avoid recursion */
2627 	qf_inode->i_flags |= S_NOQUOTA;
2628 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2629 	iput(qf_inode);
2630 	return err;
2631 }
2632 
2633 static int f2fs_enable_quotas(struct super_block *sb)
2634 {
2635 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2636 	int type, err = 0;
2637 	unsigned long qf_inum;
2638 	bool quota_mopt[MAXQUOTAS] = {
2639 		test_opt(sbi, USRQUOTA),
2640 		test_opt(sbi, GRPQUOTA),
2641 		test_opt(sbi, PRJQUOTA),
2642 	};
2643 
2644 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2645 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2646 		return 0;
2647 	}
2648 
2649 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2650 
2651 	for (type = 0; type < MAXQUOTAS; type++) {
2652 		qf_inum = f2fs_qf_ino(sb, type);
2653 		if (qf_inum) {
2654 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2655 				DQUOT_USAGE_ENABLED |
2656 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2657 			if (err) {
2658 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2659 					 type, err);
2660 				for (type--; type >= 0; type--)
2661 					dquot_quota_off(sb, type);
2662 				set_sbi_flag(F2FS_SB(sb),
2663 						SBI_QUOTA_NEED_REPAIR);
2664 				return err;
2665 			}
2666 		}
2667 	}
2668 	return 0;
2669 }
2670 
2671 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2672 {
2673 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
2674 	struct address_space *mapping = dqopt->files[type]->i_mapping;
2675 	int ret = 0;
2676 
2677 	ret = dquot_writeback_dquots(sbi->sb, type);
2678 	if (ret)
2679 		goto out;
2680 
2681 	ret = filemap_fdatawrite(mapping);
2682 	if (ret)
2683 		goto out;
2684 
2685 	/* if we are using journalled quota */
2686 	if (is_journalled_quota(sbi))
2687 		goto out;
2688 
2689 	ret = filemap_fdatawait(mapping);
2690 
2691 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2692 out:
2693 	if (ret)
2694 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2695 	return ret;
2696 }
2697 
2698 int f2fs_quota_sync(struct super_block *sb, int type)
2699 {
2700 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2701 	struct quota_info *dqopt = sb_dqopt(sb);
2702 	int cnt;
2703 	int ret = 0;
2704 
2705 	/*
2706 	 * Now when everything is written we can discard the pagecache so
2707 	 * that userspace sees the changes.
2708 	 */
2709 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2710 
2711 		if (type != -1 && cnt != type)
2712 			continue;
2713 
2714 		if (!sb_has_quota_active(sb, cnt))
2715 			continue;
2716 
2717 		inode_lock(dqopt->files[cnt]);
2718 
2719 		/*
2720 		 * do_quotactl
2721 		 *  f2fs_quota_sync
2722 		 *  f2fs_down_read(quota_sem)
2723 		 *  dquot_writeback_dquots()
2724 		 *  f2fs_dquot_commit
2725 		 *			      block_operation
2726 		 *			      f2fs_down_read(quota_sem)
2727 		 */
2728 		f2fs_lock_op(sbi);
2729 		f2fs_down_read(&sbi->quota_sem);
2730 
2731 		ret = f2fs_quota_sync_file(sbi, cnt);
2732 
2733 		f2fs_up_read(&sbi->quota_sem);
2734 		f2fs_unlock_op(sbi);
2735 
2736 		inode_unlock(dqopt->files[cnt]);
2737 
2738 		if (ret)
2739 			break;
2740 	}
2741 	return ret;
2742 }
2743 
2744 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2745 							const struct path *path)
2746 {
2747 	struct inode *inode;
2748 	int err;
2749 
2750 	/* if quota sysfile exists, deny enabling quota with specific file */
2751 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2752 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2753 		return -EBUSY;
2754 	}
2755 
2756 	err = f2fs_quota_sync(sb, type);
2757 	if (err)
2758 		return err;
2759 
2760 	err = dquot_quota_on(sb, type, format_id, path);
2761 	if (err)
2762 		return err;
2763 
2764 	inode = d_inode(path->dentry);
2765 
2766 	inode_lock(inode);
2767 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2768 	f2fs_set_inode_flags(inode);
2769 	inode_unlock(inode);
2770 	f2fs_mark_inode_dirty_sync(inode, false);
2771 
2772 	return 0;
2773 }
2774 
2775 static int __f2fs_quota_off(struct super_block *sb, int type)
2776 {
2777 	struct inode *inode = sb_dqopt(sb)->files[type];
2778 	int err;
2779 
2780 	if (!inode || !igrab(inode))
2781 		return dquot_quota_off(sb, type);
2782 
2783 	err = f2fs_quota_sync(sb, type);
2784 	if (err)
2785 		goto out_put;
2786 
2787 	err = dquot_quota_off(sb, type);
2788 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2789 		goto out_put;
2790 
2791 	inode_lock(inode);
2792 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2793 	f2fs_set_inode_flags(inode);
2794 	inode_unlock(inode);
2795 	f2fs_mark_inode_dirty_sync(inode, false);
2796 out_put:
2797 	iput(inode);
2798 	return err;
2799 }
2800 
2801 static int f2fs_quota_off(struct super_block *sb, int type)
2802 {
2803 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2804 	int err;
2805 
2806 	err = __f2fs_quota_off(sb, type);
2807 
2808 	/*
2809 	 * quotactl can shutdown journalled quota, result in inconsistence
2810 	 * between quota record and fs data by following updates, tag the
2811 	 * flag to let fsck be aware of it.
2812 	 */
2813 	if (is_journalled_quota(sbi))
2814 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2815 	return err;
2816 }
2817 
2818 void f2fs_quota_off_umount(struct super_block *sb)
2819 {
2820 	int type;
2821 	int err;
2822 
2823 	for (type = 0; type < MAXQUOTAS; type++) {
2824 		err = __f2fs_quota_off(sb, type);
2825 		if (err) {
2826 			int ret = dquot_quota_off(sb, type);
2827 
2828 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2829 				 type, err, ret);
2830 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2831 		}
2832 	}
2833 	/*
2834 	 * In case of checkpoint=disable, we must flush quota blocks.
2835 	 * This can cause NULL exception for node_inode in end_io, since
2836 	 * put_super already dropped it.
2837 	 */
2838 	sync_filesystem(sb);
2839 }
2840 
2841 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2842 {
2843 	struct quota_info *dqopt = sb_dqopt(sb);
2844 	int type;
2845 
2846 	for (type = 0; type < MAXQUOTAS; type++) {
2847 		if (!dqopt->files[type])
2848 			continue;
2849 		f2fs_inode_synced(dqopt->files[type]);
2850 	}
2851 }
2852 
2853 static int f2fs_dquot_commit(struct dquot *dquot)
2854 {
2855 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2856 	int ret;
2857 
2858 	f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2859 	ret = dquot_commit(dquot);
2860 	if (ret < 0)
2861 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2862 	f2fs_up_read(&sbi->quota_sem);
2863 	return ret;
2864 }
2865 
2866 static int f2fs_dquot_acquire(struct dquot *dquot)
2867 {
2868 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2869 	int ret;
2870 
2871 	f2fs_down_read(&sbi->quota_sem);
2872 	ret = dquot_acquire(dquot);
2873 	if (ret < 0)
2874 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2875 	f2fs_up_read(&sbi->quota_sem);
2876 	return ret;
2877 }
2878 
2879 static int f2fs_dquot_release(struct dquot *dquot)
2880 {
2881 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2882 	int ret = dquot_release(dquot);
2883 
2884 	if (ret < 0)
2885 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2886 	return ret;
2887 }
2888 
2889 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2890 {
2891 	struct super_block *sb = dquot->dq_sb;
2892 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2893 	int ret = dquot_mark_dquot_dirty(dquot);
2894 
2895 	/* if we are using journalled quota */
2896 	if (is_journalled_quota(sbi))
2897 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2898 
2899 	return ret;
2900 }
2901 
2902 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2903 {
2904 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2905 	int ret = dquot_commit_info(sb, type);
2906 
2907 	if (ret < 0)
2908 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2909 	return ret;
2910 }
2911 
2912 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2913 {
2914 	*projid = F2FS_I(inode)->i_projid;
2915 	return 0;
2916 }
2917 
2918 static const struct dquot_operations f2fs_quota_operations = {
2919 	.get_reserved_space = f2fs_get_reserved_space,
2920 	.write_dquot	= f2fs_dquot_commit,
2921 	.acquire_dquot	= f2fs_dquot_acquire,
2922 	.release_dquot	= f2fs_dquot_release,
2923 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2924 	.write_info	= f2fs_dquot_commit_info,
2925 	.alloc_dquot	= dquot_alloc,
2926 	.destroy_dquot	= dquot_destroy,
2927 	.get_projid	= f2fs_get_projid,
2928 	.get_next_id	= dquot_get_next_id,
2929 };
2930 
2931 static const struct quotactl_ops f2fs_quotactl_ops = {
2932 	.quota_on	= f2fs_quota_on,
2933 	.quota_off	= f2fs_quota_off,
2934 	.quota_sync	= f2fs_quota_sync,
2935 	.get_state	= dquot_get_state,
2936 	.set_info	= dquot_set_dqinfo,
2937 	.get_dqblk	= dquot_get_dqblk,
2938 	.set_dqblk	= dquot_set_dqblk,
2939 	.get_nextdqblk	= dquot_get_next_dqblk,
2940 };
2941 #else
2942 int f2fs_dquot_initialize(struct inode *inode)
2943 {
2944 	return 0;
2945 }
2946 
2947 int f2fs_quota_sync(struct super_block *sb, int type)
2948 {
2949 	return 0;
2950 }
2951 
2952 void f2fs_quota_off_umount(struct super_block *sb)
2953 {
2954 }
2955 #endif
2956 
2957 static const struct super_operations f2fs_sops = {
2958 	.alloc_inode	= f2fs_alloc_inode,
2959 	.free_inode	= f2fs_free_inode,
2960 	.drop_inode	= f2fs_drop_inode,
2961 	.write_inode	= f2fs_write_inode,
2962 	.dirty_inode	= f2fs_dirty_inode,
2963 	.show_options	= f2fs_show_options,
2964 #ifdef CONFIG_QUOTA
2965 	.quota_read	= f2fs_quota_read,
2966 	.quota_write	= f2fs_quota_write,
2967 	.get_dquots	= f2fs_get_dquots,
2968 #endif
2969 	.evict_inode	= f2fs_evict_inode,
2970 	.put_super	= f2fs_put_super,
2971 	.sync_fs	= f2fs_sync_fs,
2972 	.freeze_fs	= f2fs_freeze,
2973 	.unfreeze_fs	= f2fs_unfreeze,
2974 	.statfs		= f2fs_statfs,
2975 	.remount_fs	= f2fs_remount,
2976 };
2977 
2978 #ifdef CONFIG_FS_ENCRYPTION
2979 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2980 {
2981 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2982 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2983 				ctx, len, NULL);
2984 }
2985 
2986 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2987 							void *fs_data)
2988 {
2989 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2990 
2991 	/*
2992 	 * Encrypting the root directory is not allowed because fsck
2993 	 * expects lost+found directory to exist and remain unencrypted
2994 	 * if LOST_FOUND feature is enabled.
2995 	 *
2996 	 */
2997 	if (f2fs_sb_has_lost_found(sbi) &&
2998 			inode->i_ino == F2FS_ROOT_INO(sbi))
2999 		return -EPERM;
3000 
3001 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3002 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3003 				ctx, len, fs_data, XATTR_CREATE);
3004 }
3005 
3006 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
3007 {
3008 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
3009 }
3010 
3011 static bool f2fs_has_stable_inodes(struct super_block *sb)
3012 {
3013 	return true;
3014 }
3015 
3016 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
3017 				       int *ino_bits_ret, int *lblk_bits_ret)
3018 {
3019 	*ino_bits_ret = 8 * sizeof(nid_t);
3020 	*lblk_bits_ret = 8 * sizeof(block_t);
3021 }
3022 
3023 static int f2fs_get_num_devices(struct super_block *sb)
3024 {
3025 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3026 
3027 	if (f2fs_is_multi_device(sbi))
3028 		return sbi->s_ndevs;
3029 	return 1;
3030 }
3031 
3032 static void f2fs_get_devices(struct super_block *sb,
3033 			     struct request_queue **devs)
3034 {
3035 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3036 	int i;
3037 
3038 	for (i = 0; i < sbi->s_ndevs; i++)
3039 		devs[i] = bdev_get_queue(FDEV(i).bdev);
3040 }
3041 
3042 static const struct fscrypt_operations f2fs_cryptops = {
3043 	.key_prefix		= "f2fs:",
3044 	.get_context		= f2fs_get_context,
3045 	.set_context		= f2fs_set_context,
3046 	.get_dummy_policy	= f2fs_get_dummy_policy,
3047 	.empty_dir		= f2fs_empty_dir,
3048 	.has_stable_inodes	= f2fs_has_stable_inodes,
3049 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
3050 	.get_num_devices	= f2fs_get_num_devices,
3051 	.get_devices		= f2fs_get_devices,
3052 };
3053 #endif
3054 
3055 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3056 		u64 ino, u32 generation)
3057 {
3058 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3059 	struct inode *inode;
3060 
3061 	if (f2fs_check_nid_range(sbi, ino))
3062 		return ERR_PTR(-ESTALE);
3063 
3064 	/*
3065 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
3066 	 * However f2fs_iget currently does appropriate checks to handle stale
3067 	 * inodes so everything is OK.
3068 	 */
3069 	inode = f2fs_iget(sb, ino);
3070 	if (IS_ERR(inode))
3071 		return ERR_CAST(inode);
3072 	if (unlikely(generation && inode->i_generation != generation)) {
3073 		/* we didn't find the right inode.. */
3074 		iput(inode);
3075 		return ERR_PTR(-ESTALE);
3076 	}
3077 	return inode;
3078 }
3079 
3080 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3081 		int fh_len, int fh_type)
3082 {
3083 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3084 				    f2fs_nfs_get_inode);
3085 }
3086 
3087 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3088 		int fh_len, int fh_type)
3089 {
3090 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3091 				    f2fs_nfs_get_inode);
3092 }
3093 
3094 static const struct export_operations f2fs_export_ops = {
3095 	.fh_to_dentry = f2fs_fh_to_dentry,
3096 	.fh_to_parent = f2fs_fh_to_parent,
3097 	.get_parent = f2fs_get_parent,
3098 };
3099 
3100 loff_t max_file_blocks(struct inode *inode)
3101 {
3102 	loff_t result = 0;
3103 	loff_t leaf_count;
3104 
3105 	/*
3106 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3107 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3108 	 * space in inode.i_addr, it will be more safe to reassign
3109 	 * result as zero.
3110 	 */
3111 
3112 	if (inode && f2fs_compressed_file(inode))
3113 		leaf_count = ADDRS_PER_BLOCK(inode);
3114 	else
3115 		leaf_count = DEF_ADDRS_PER_BLOCK;
3116 
3117 	/* two direct node blocks */
3118 	result += (leaf_count * 2);
3119 
3120 	/* two indirect node blocks */
3121 	leaf_count *= NIDS_PER_BLOCK;
3122 	result += (leaf_count * 2);
3123 
3124 	/* one double indirect node block */
3125 	leaf_count *= NIDS_PER_BLOCK;
3126 	result += leaf_count;
3127 
3128 	return result;
3129 }
3130 
3131 static int __f2fs_commit_super(struct buffer_head *bh,
3132 			struct f2fs_super_block *super)
3133 {
3134 	lock_buffer(bh);
3135 	if (super)
3136 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
3137 	set_buffer_dirty(bh);
3138 	unlock_buffer(bh);
3139 
3140 	/* it's rare case, we can do fua all the time */
3141 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
3142 }
3143 
3144 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3145 					struct buffer_head *bh)
3146 {
3147 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3148 					(bh->b_data + F2FS_SUPER_OFFSET);
3149 	struct super_block *sb = sbi->sb;
3150 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3151 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3152 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3153 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3154 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3155 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3156 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3157 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3158 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3159 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3160 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3161 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
3162 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3163 	u64 main_end_blkaddr = main_blkaddr +
3164 				(segment_count_main << log_blocks_per_seg);
3165 	u64 seg_end_blkaddr = segment0_blkaddr +
3166 				(segment_count << log_blocks_per_seg);
3167 
3168 	if (segment0_blkaddr != cp_blkaddr) {
3169 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3170 			  segment0_blkaddr, cp_blkaddr);
3171 		return true;
3172 	}
3173 
3174 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3175 							sit_blkaddr) {
3176 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3177 			  cp_blkaddr, sit_blkaddr,
3178 			  segment_count_ckpt << log_blocks_per_seg);
3179 		return true;
3180 	}
3181 
3182 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3183 							nat_blkaddr) {
3184 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3185 			  sit_blkaddr, nat_blkaddr,
3186 			  segment_count_sit << log_blocks_per_seg);
3187 		return true;
3188 	}
3189 
3190 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3191 							ssa_blkaddr) {
3192 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3193 			  nat_blkaddr, ssa_blkaddr,
3194 			  segment_count_nat << log_blocks_per_seg);
3195 		return true;
3196 	}
3197 
3198 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3199 							main_blkaddr) {
3200 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3201 			  ssa_blkaddr, main_blkaddr,
3202 			  segment_count_ssa << log_blocks_per_seg);
3203 		return true;
3204 	}
3205 
3206 	if (main_end_blkaddr > seg_end_blkaddr) {
3207 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3208 			  main_blkaddr, seg_end_blkaddr,
3209 			  segment_count_main << log_blocks_per_seg);
3210 		return true;
3211 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3212 		int err = 0;
3213 		char *res;
3214 
3215 		/* fix in-memory information all the time */
3216 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3217 				segment0_blkaddr) >> log_blocks_per_seg);
3218 
3219 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
3220 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3221 			res = "internally";
3222 		} else {
3223 			err = __f2fs_commit_super(bh, NULL);
3224 			res = err ? "failed" : "done";
3225 		}
3226 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3227 			  res, main_blkaddr, seg_end_blkaddr,
3228 			  segment_count_main << log_blocks_per_seg);
3229 		if (err)
3230 			return true;
3231 	}
3232 	return false;
3233 }
3234 
3235 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3236 				struct buffer_head *bh)
3237 {
3238 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3239 	block_t total_sections, blocks_per_seg;
3240 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3241 					(bh->b_data + F2FS_SUPER_OFFSET);
3242 	size_t crc_offset = 0;
3243 	__u32 crc = 0;
3244 
3245 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3246 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3247 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3248 		return -EINVAL;
3249 	}
3250 
3251 	/* Check checksum_offset and crc in superblock */
3252 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3253 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3254 		if (crc_offset !=
3255 			offsetof(struct f2fs_super_block, crc)) {
3256 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3257 				  crc_offset);
3258 			return -EFSCORRUPTED;
3259 		}
3260 		crc = le32_to_cpu(raw_super->crc);
3261 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3262 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3263 			return -EFSCORRUPTED;
3264 		}
3265 	}
3266 
3267 	/* Currently, support only 4KB block size */
3268 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3269 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3270 			  le32_to_cpu(raw_super->log_blocksize),
3271 			  F2FS_BLKSIZE_BITS);
3272 		return -EFSCORRUPTED;
3273 	}
3274 
3275 	/* check log blocks per segment */
3276 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3277 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3278 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3279 		return -EFSCORRUPTED;
3280 	}
3281 
3282 	/* Currently, support 512/1024/2048/4096 bytes sector size */
3283 	if (le32_to_cpu(raw_super->log_sectorsize) >
3284 				F2FS_MAX_LOG_SECTOR_SIZE ||
3285 		le32_to_cpu(raw_super->log_sectorsize) <
3286 				F2FS_MIN_LOG_SECTOR_SIZE) {
3287 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3288 			  le32_to_cpu(raw_super->log_sectorsize));
3289 		return -EFSCORRUPTED;
3290 	}
3291 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3292 		le32_to_cpu(raw_super->log_sectorsize) !=
3293 			F2FS_MAX_LOG_SECTOR_SIZE) {
3294 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3295 			  le32_to_cpu(raw_super->log_sectors_per_block),
3296 			  le32_to_cpu(raw_super->log_sectorsize));
3297 		return -EFSCORRUPTED;
3298 	}
3299 
3300 	segment_count = le32_to_cpu(raw_super->segment_count);
3301 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3302 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3303 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3304 	total_sections = le32_to_cpu(raw_super->section_count);
3305 
3306 	/* blocks_per_seg should be 512, given the above check */
3307 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
3308 
3309 	if (segment_count > F2FS_MAX_SEGMENT ||
3310 				segment_count < F2FS_MIN_SEGMENTS) {
3311 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3312 		return -EFSCORRUPTED;
3313 	}
3314 
3315 	if (total_sections > segment_count_main || total_sections < 1 ||
3316 			segs_per_sec > segment_count || !segs_per_sec) {
3317 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3318 			  segment_count, total_sections, segs_per_sec);
3319 		return -EFSCORRUPTED;
3320 	}
3321 
3322 	if (segment_count_main != total_sections * segs_per_sec) {
3323 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3324 			  segment_count_main, total_sections, segs_per_sec);
3325 		return -EFSCORRUPTED;
3326 	}
3327 
3328 	if ((segment_count / segs_per_sec) < total_sections) {
3329 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3330 			  segment_count, segs_per_sec, total_sections);
3331 		return -EFSCORRUPTED;
3332 	}
3333 
3334 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3335 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3336 			  segment_count, le64_to_cpu(raw_super->block_count));
3337 		return -EFSCORRUPTED;
3338 	}
3339 
3340 	if (RDEV(0).path[0]) {
3341 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3342 		int i = 1;
3343 
3344 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3345 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3346 			i++;
3347 		}
3348 		if (segment_count != dev_seg_count) {
3349 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3350 					segment_count, dev_seg_count);
3351 			return -EFSCORRUPTED;
3352 		}
3353 	} else {
3354 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3355 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3356 			f2fs_info(sbi, "Zoned block device path is missing");
3357 			return -EFSCORRUPTED;
3358 		}
3359 	}
3360 
3361 	if (secs_per_zone > total_sections || !secs_per_zone) {
3362 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3363 			  secs_per_zone, total_sections);
3364 		return -EFSCORRUPTED;
3365 	}
3366 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3367 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3368 			(le32_to_cpu(raw_super->extension_count) +
3369 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3370 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3371 			  le32_to_cpu(raw_super->extension_count),
3372 			  raw_super->hot_ext_count,
3373 			  F2FS_MAX_EXTENSION);
3374 		return -EFSCORRUPTED;
3375 	}
3376 
3377 	if (le32_to_cpu(raw_super->cp_payload) >=
3378 				(blocks_per_seg - F2FS_CP_PACKS -
3379 				NR_CURSEG_PERSIST_TYPE)) {
3380 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3381 			  le32_to_cpu(raw_super->cp_payload),
3382 			  blocks_per_seg - F2FS_CP_PACKS -
3383 			  NR_CURSEG_PERSIST_TYPE);
3384 		return -EFSCORRUPTED;
3385 	}
3386 
3387 	/* check reserved ino info */
3388 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3389 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3390 		le32_to_cpu(raw_super->root_ino) != 3) {
3391 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3392 			  le32_to_cpu(raw_super->node_ino),
3393 			  le32_to_cpu(raw_super->meta_ino),
3394 			  le32_to_cpu(raw_super->root_ino));
3395 		return -EFSCORRUPTED;
3396 	}
3397 
3398 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3399 	if (sanity_check_area_boundary(sbi, bh))
3400 		return -EFSCORRUPTED;
3401 
3402 	return 0;
3403 }
3404 
3405 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3406 {
3407 	unsigned int total, fsmeta;
3408 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3409 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3410 	unsigned int ovp_segments, reserved_segments;
3411 	unsigned int main_segs, blocks_per_seg;
3412 	unsigned int sit_segs, nat_segs;
3413 	unsigned int sit_bitmap_size, nat_bitmap_size;
3414 	unsigned int log_blocks_per_seg;
3415 	unsigned int segment_count_main;
3416 	unsigned int cp_pack_start_sum, cp_payload;
3417 	block_t user_block_count, valid_user_blocks;
3418 	block_t avail_node_count, valid_node_count;
3419 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3420 	int i, j;
3421 
3422 	total = le32_to_cpu(raw_super->segment_count);
3423 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3424 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3425 	fsmeta += sit_segs;
3426 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3427 	fsmeta += nat_segs;
3428 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3429 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3430 
3431 	if (unlikely(fsmeta >= total))
3432 		return 1;
3433 
3434 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3435 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3436 
3437 	if (!f2fs_sb_has_readonly(sbi) &&
3438 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3439 			ovp_segments == 0 || reserved_segments == 0)) {
3440 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3441 		return 1;
3442 	}
3443 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3444 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3445 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
3446 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3447 	if (!user_block_count || user_block_count >=
3448 			segment_count_main << log_blocks_per_seg) {
3449 		f2fs_err(sbi, "Wrong user_block_count: %u",
3450 			 user_block_count);
3451 		return 1;
3452 	}
3453 
3454 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3455 	if (valid_user_blocks > user_block_count) {
3456 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3457 			 valid_user_blocks, user_block_count);
3458 		return 1;
3459 	}
3460 
3461 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3462 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3463 	if (valid_node_count > avail_node_count) {
3464 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3465 			 valid_node_count, avail_node_count);
3466 		return 1;
3467 	}
3468 
3469 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3470 	blocks_per_seg = sbi->blocks_per_seg;
3471 
3472 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3473 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3474 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3475 			return 1;
3476 
3477 		if (f2fs_sb_has_readonly(sbi))
3478 			goto check_data;
3479 
3480 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3481 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3482 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3483 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3484 					 i, j,
3485 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3486 				return 1;
3487 			}
3488 		}
3489 	}
3490 check_data:
3491 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3492 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3493 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3494 			return 1;
3495 
3496 		if (f2fs_sb_has_readonly(sbi))
3497 			goto skip_cross;
3498 
3499 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3500 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3501 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3502 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3503 					 i, j,
3504 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3505 				return 1;
3506 			}
3507 		}
3508 	}
3509 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3510 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3511 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3512 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3513 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3514 					 i, j,
3515 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3516 				return 1;
3517 			}
3518 		}
3519 	}
3520 skip_cross:
3521 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3522 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3523 
3524 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3525 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3526 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3527 			 sit_bitmap_size, nat_bitmap_size);
3528 		return 1;
3529 	}
3530 
3531 	cp_pack_start_sum = __start_sum_addr(sbi);
3532 	cp_payload = __cp_payload(sbi);
3533 	if (cp_pack_start_sum < cp_payload + 1 ||
3534 		cp_pack_start_sum > blocks_per_seg - 1 -
3535 			NR_CURSEG_PERSIST_TYPE) {
3536 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3537 			 cp_pack_start_sum);
3538 		return 1;
3539 	}
3540 
3541 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3542 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3543 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3544 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3545 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3546 			  le32_to_cpu(ckpt->checksum_offset));
3547 		return 1;
3548 	}
3549 
3550 	nat_blocks = nat_segs << log_blocks_per_seg;
3551 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3552 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3553 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3554 		(cp_payload + F2FS_CP_PACKS +
3555 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3556 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3557 			  cp_payload, nat_bits_blocks);
3558 		return 1;
3559 	}
3560 
3561 	if (unlikely(f2fs_cp_error(sbi))) {
3562 		f2fs_err(sbi, "A bug case: need to run fsck");
3563 		return 1;
3564 	}
3565 	return 0;
3566 }
3567 
3568 static void init_sb_info(struct f2fs_sb_info *sbi)
3569 {
3570 	struct f2fs_super_block *raw_super = sbi->raw_super;
3571 	int i;
3572 
3573 	sbi->log_sectors_per_block =
3574 		le32_to_cpu(raw_super->log_sectors_per_block);
3575 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3576 	sbi->blocksize = 1 << sbi->log_blocksize;
3577 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3578 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3579 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3580 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3581 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3582 	sbi->total_node_count =
3583 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3584 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3585 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3586 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3587 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3588 	sbi->cur_victim_sec = NULL_SECNO;
3589 	sbi->gc_mode = GC_NORMAL;
3590 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3591 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3592 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3593 	sbi->migration_granularity = sbi->segs_per_sec;
3594 	sbi->seq_file_ra_mul = MIN_RA_MUL;
3595 	sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
3596 	sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
3597 	spin_lock_init(&sbi->gc_urgent_high_lock);
3598 
3599 	sbi->dir_level = DEF_DIR_LEVEL;
3600 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3601 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3602 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3603 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3604 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3605 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3606 				DEF_UMOUNT_DISCARD_TIMEOUT;
3607 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3608 
3609 	for (i = 0; i < NR_COUNT_TYPE; i++)
3610 		atomic_set(&sbi->nr_pages[i], 0);
3611 
3612 	for (i = 0; i < META; i++)
3613 		atomic_set(&sbi->wb_sync_req[i], 0);
3614 
3615 	INIT_LIST_HEAD(&sbi->s_list);
3616 	mutex_init(&sbi->umount_mutex);
3617 	init_f2fs_rwsem(&sbi->io_order_lock);
3618 	spin_lock_init(&sbi->cp_lock);
3619 
3620 	sbi->dirty_device = 0;
3621 	spin_lock_init(&sbi->dev_lock);
3622 
3623 	init_f2fs_rwsem(&sbi->sb_lock);
3624 	init_f2fs_rwsem(&sbi->pin_sem);
3625 }
3626 
3627 static int init_percpu_info(struct f2fs_sb_info *sbi)
3628 {
3629 	int err;
3630 
3631 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3632 	if (err)
3633 		return err;
3634 
3635 	err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL);
3636 	if (err)
3637 		goto err_valid_block;
3638 
3639 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3640 								GFP_KERNEL);
3641 	if (err)
3642 		goto err_node_block;
3643 	return 0;
3644 
3645 err_node_block:
3646 	percpu_counter_destroy(&sbi->rf_node_block_count);
3647 err_valid_block:
3648 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
3649 	return err;
3650 }
3651 
3652 #ifdef CONFIG_BLK_DEV_ZONED
3653 
3654 struct f2fs_report_zones_args {
3655 	struct f2fs_dev_info *dev;
3656 	bool zone_cap_mismatch;
3657 };
3658 
3659 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3660 			      void *data)
3661 {
3662 	struct f2fs_report_zones_args *rz_args = data;
3663 
3664 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3665 		return 0;
3666 
3667 	set_bit(idx, rz_args->dev->blkz_seq);
3668 	rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3669 						F2FS_LOG_SECTORS_PER_BLOCK;
3670 	if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3671 		rz_args->zone_cap_mismatch = true;
3672 
3673 	return 0;
3674 }
3675 
3676 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3677 {
3678 	struct block_device *bdev = FDEV(devi).bdev;
3679 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3680 	struct f2fs_report_zones_args rep_zone_arg;
3681 	int ret;
3682 
3683 	if (!f2fs_sb_has_blkzoned(sbi))
3684 		return 0;
3685 
3686 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3687 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3688 		return -EINVAL;
3689 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3690 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3691 				__ilog2_u32(sbi->blocks_per_blkz))
3692 		return -EINVAL;
3693 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3694 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3695 					sbi->log_blocks_per_blkz;
3696 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3697 		FDEV(devi).nr_blkz++;
3698 
3699 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3700 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3701 					* sizeof(unsigned long),
3702 					GFP_KERNEL);
3703 	if (!FDEV(devi).blkz_seq)
3704 		return -ENOMEM;
3705 
3706 	/* Get block zones type and zone-capacity */
3707 	FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3708 					FDEV(devi).nr_blkz * sizeof(block_t),
3709 					GFP_KERNEL);
3710 	if (!FDEV(devi).zone_capacity_blocks)
3711 		return -ENOMEM;
3712 
3713 	rep_zone_arg.dev = &FDEV(devi);
3714 	rep_zone_arg.zone_cap_mismatch = false;
3715 
3716 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3717 				  &rep_zone_arg);
3718 	if (ret < 0)
3719 		return ret;
3720 
3721 	if (!rep_zone_arg.zone_cap_mismatch) {
3722 		kfree(FDEV(devi).zone_capacity_blocks);
3723 		FDEV(devi).zone_capacity_blocks = NULL;
3724 	}
3725 
3726 	return 0;
3727 }
3728 #endif
3729 
3730 /*
3731  * Read f2fs raw super block.
3732  * Because we have two copies of super block, so read both of them
3733  * to get the first valid one. If any one of them is broken, we pass
3734  * them recovery flag back to the caller.
3735  */
3736 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3737 			struct f2fs_super_block **raw_super,
3738 			int *valid_super_block, int *recovery)
3739 {
3740 	struct super_block *sb = sbi->sb;
3741 	int block;
3742 	struct buffer_head *bh;
3743 	struct f2fs_super_block *super;
3744 	int err = 0;
3745 
3746 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3747 	if (!super)
3748 		return -ENOMEM;
3749 
3750 	for (block = 0; block < 2; block++) {
3751 		bh = sb_bread(sb, block);
3752 		if (!bh) {
3753 			f2fs_err(sbi, "Unable to read %dth superblock",
3754 				 block + 1);
3755 			err = -EIO;
3756 			*recovery = 1;
3757 			continue;
3758 		}
3759 
3760 		/* sanity checking of raw super */
3761 		err = sanity_check_raw_super(sbi, bh);
3762 		if (err) {
3763 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3764 				 block + 1);
3765 			brelse(bh);
3766 			*recovery = 1;
3767 			continue;
3768 		}
3769 
3770 		if (!*raw_super) {
3771 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3772 							sizeof(*super));
3773 			*valid_super_block = block;
3774 			*raw_super = super;
3775 		}
3776 		brelse(bh);
3777 	}
3778 
3779 	/* No valid superblock */
3780 	if (!*raw_super)
3781 		kfree(super);
3782 	else
3783 		err = 0;
3784 
3785 	return err;
3786 }
3787 
3788 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3789 {
3790 	struct buffer_head *bh;
3791 	__u32 crc = 0;
3792 	int err;
3793 
3794 	if ((recover && f2fs_readonly(sbi->sb)) ||
3795 				bdev_read_only(sbi->sb->s_bdev)) {
3796 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3797 		return -EROFS;
3798 	}
3799 
3800 	/* we should update superblock crc here */
3801 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3802 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3803 				offsetof(struct f2fs_super_block, crc));
3804 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3805 	}
3806 
3807 	/* write back-up superblock first */
3808 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3809 	if (!bh)
3810 		return -EIO;
3811 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3812 	brelse(bh);
3813 
3814 	/* if we are in recovery path, skip writing valid superblock */
3815 	if (recover || err)
3816 		return err;
3817 
3818 	/* write current valid superblock */
3819 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3820 	if (!bh)
3821 		return -EIO;
3822 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3823 	brelse(bh);
3824 	return err;
3825 }
3826 
3827 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3828 {
3829 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3830 	unsigned int max_devices = MAX_DEVICES;
3831 	unsigned int logical_blksize;
3832 	int i;
3833 
3834 	/* Initialize single device information */
3835 	if (!RDEV(0).path[0]) {
3836 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3837 			return 0;
3838 		max_devices = 1;
3839 	}
3840 
3841 	/*
3842 	 * Initialize multiple devices information, or single
3843 	 * zoned block device information.
3844 	 */
3845 	sbi->devs = f2fs_kzalloc(sbi,
3846 				 array_size(max_devices,
3847 					    sizeof(struct f2fs_dev_info)),
3848 				 GFP_KERNEL);
3849 	if (!sbi->devs)
3850 		return -ENOMEM;
3851 
3852 	logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
3853 	sbi->aligned_blksize = true;
3854 
3855 	for (i = 0; i < max_devices; i++) {
3856 
3857 		if (i > 0 && !RDEV(i).path[0])
3858 			break;
3859 
3860 		if (max_devices == 1) {
3861 			/* Single zoned block device mount */
3862 			FDEV(0).bdev =
3863 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3864 					sbi->sb->s_mode, sbi->sb->s_type);
3865 		} else {
3866 			/* Multi-device mount */
3867 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3868 			FDEV(i).total_segments =
3869 				le32_to_cpu(RDEV(i).total_segments);
3870 			if (i == 0) {
3871 				FDEV(i).start_blk = 0;
3872 				FDEV(i).end_blk = FDEV(i).start_blk +
3873 				    (FDEV(i).total_segments <<
3874 				    sbi->log_blocks_per_seg) - 1 +
3875 				    le32_to_cpu(raw_super->segment0_blkaddr);
3876 			} else {
3877 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3878 				FDEV(i).end_blk = FDEV(i).start_blk +
3879 					(FDEV(i).total_segments <<
3880 					sbi->log_blocks_per_seg) - 1;
3881 			}
3882 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3883 					sbi->sb->s_mode, sbi->sb->s_type);
3884 		}
3885 		if (IS_ERR(FDEV(i).bdev))
3886 			return PTR_ERR(FDEV(i).bdev);
3887 
3888 		/* to release errored devices */
3889 		sbi->s_ndevs = i + 1;
3890 
3891 		if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
3892 			sbi->aligned_blksize = false;
3893 
3894 #ifdef CONFIG_BLK_DEV_ZONED
3895 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3896 				!f2fs_sb_has_blkzoned(sbi)) {
3897 			f2fs_err(sbi, "Zoned block device feature not enabled");
3898 			return -EINVAL;
3899 		}
3900 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3901 			if (init_blkz_info(sbi, i)) {
3902 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3903 				return -EINVAL;
3904 			}
3905 			if (max_devices == 1)
3906 				break;
3907 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3908 				  i, FDEV(i).path,
3909 				  FDEV(i).total_segments,
3910 				  FDEV(i).start_blk, FDEV(i).end_blk,
3911 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3912 				  "Host-aware" : "Host-managed");
3913 			continue;
3914 		}
3915 #endif
3916 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3917 			  i, FDEV(i).path,
3918 			  FDEV(i).total_segments,
3919 			  FDEV(i).start_blk, FDEV(i).end_blk);
3920 	}
3921 	f2fs_info(sbi,
3922 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3923 	return 0;
3924 }
3925 
3926 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3927 {
3928 #if IS_ENABLED(CONFIG_UNICODE)
3929 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3930 		const struct f2fs_sb_encodings *encoding_info;
3931 		struct unicode_map *encoding;
3932 		__u16 encoding_flags;
3933 
3934 		encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
3935 		if (!encoding_info) {
3936 			f2fs_err(sbi,
3937 				 "Encoding requested by superblock is unknown");
3938 			return -EINVAL;
3939 		}
3940 
3941 		encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
3942 		encoding = utf8_load(encoding_info->version);
3943 		if (IS_ERR(encoding)) {
3944 			f2fs_err(sbi,
3945 				 "can't mount with superblock charset: %s-%u.%u.%u "
3946 				 "not supported by the kernel. flags: 0x%x.",
3947 				 encoding_info->name,
3948 				 unicode_major(encoding_info->version),
3949 				 unicode_minor(encoding_info->version),
3950 				 unicode_rev(encoding_info->version),
3951 				 encoding_flags);
3952 			return PTR_ERR(encoding);
3953 		}
3954 		f2fs_info(sbi, "Using encoding defined by superblock: "
3955 			 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
3956 			 unicode_major(encoding_info->version),
3957 			 unicode_minor(encoding_info->version),
3958 			 unicode_rev(encoding_info->version),
3959 			 encoding_flags);
3960 
3961 		sbi->sb->s_encoding = encoding;
3962 		sbi->sb->s_encoding_flags = encoding_flags;
3963 	}
3964 #else
3965 	if (f2fs_sb_has_casefold(sbi)) {
3966 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3967 		return -EINVAL;
3968 	}
3969 #endif
3970 	return 0;
3971 }
3972 
3973 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3974 {
3975 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3976 
3977 	/* adjust parameters according to the volume size */
3978 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3979 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3980 		if (f2fs_block_unit_discard(sbi))
3981 			sm_i->dcc_info->discard_granularity = 1;
3982 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE |
3983 					1 << F2FS_IPU_HONOR_OPU_WRITE;
3984 	}
3985 
3986 	sbi->readdir_ra = 1;
3987 }
3988 
3989 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3990 {
3991 	struct f2fs_sb_info *sbi;
3992 	struct f2fs_super_block *raw_super;
3993 	struct inode *root;
3994 	int err;
3995 	bool skip_recovery = false, need_fsck = false;
3996 	char *options = NULL;
3997 	int recovery, i, valid_super_block;
3998 	struct curseg_info *seg_i;
3999 	int retry_cnt = 1;
4000 
4001 try_onemore:
4002 	err = -EINVAL;
4003 	raw_super = NULL;
4004 	valid_super_block = -1;
4005 	recovery = 0;
4006 
4007 	/* allocate memory for f2fs-specific super block info */
4008 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
4009 	if (!sbi)
4010 		return -ENOMEM;
4011 
4012 	sbi->sb = sb;
4013 
4014 	/* Load the checksum driver */
4015 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
4016 	if (IS_ERR(sbi->s_chksum_driver)) {
4017 		f2fs_err(sbi, "Cannot load crc32 driver.");
4018 		err = PTR_ERR(sbi->s_chksum_driver);
4019 		sbi->s_chksum_driver = NULL;
4020 		goto free_sbi;
4021 	}
4022 
4023 	/* set a block size */
4024 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
4025 		f2fs_err(sbi, "unable to set blocksize");
4026 		goto free_sbi;
4027 	}
4028 
4029 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
4030 								&recovery);
4031 	if (err)
4032 		goto free_sbi;
4033 
4034 	sb->s_fs_info = sbi;
4035 	sbi->raw_super = raw_super;
4036 
4037 	/* precompute checksum seed for metadata */
4038 	if (f2fs_sb_has_inode_chksum(sbi))
4039 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
4040 						sizeof(raw_super->uuid));
4041 
4042 	default_options(sbi);
4043 	/* parse mount options */
4044 	options = kstrdup((const char *)data, GFP_KERNEL);
4045 	if (data && !options) {
4046 		err = -ENOMEM;
4047 		goto free_sb_buf;
4048 	}
4049 
4050 	err = parse_options(sb, options, false);
4051 	if (err)
4052 		goto free_options;
4053 
4054 	sb->s_maxbytes = max_file_blocks(NULL) <<
4055 				le32_to_cpu(raw_super->log_blocksize);
4056 	sb->s_max_links = F2FS_LINK_MAX;
4057 
4058 	err = f2fs_setup_casefold(sbi);
4059 	if (err)
4060 		goto free_options;
4061 
4062 #ifdef CONFIG_QUOTA
4063 	sb->dq_op = &f2fs_quota_operations;
4064 	sb->s_qcop = &f2fs_quotactl_ops;
4065 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4066 
4067 	if (f2fs_sb_has_quota_ino(sbi)) {
4068 		for (i = 0; i < MAXQUOTAS; i++) {
4069 			if (f2fs_qf_ino(sbi->sb, i))
4070 				sbi->nquota_files++;
4071 		}
4072 	}
4073 #endif
4074 
4075 	sb->s_op = &f2fs_sops;
4076 #ifdef CONFIG_FS_ENCRYPTION
4077 	sb->s_cop = &f2fs_cryptops;
4078 #endif
4079 #ifdef CONFIG_FS_VERITY
4080 	sb->s_vop = &f2fs_verityops;
4081 #endif
4082 	sb->s_xattr = f2fs_xattr_handlers;
4083 	sb->s_export_op = &f2fs_export_ops;
4084 	sb->s_magic = F2FS_SUPER_MAGIC;
4085 	sb->s_time_gran = 1;
4086 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4087 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4088 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
4089 	sb->s_iflags |= SB_I_CGROUPWB;
4090 
4091 	/* init f2fs-specific super block info */
4092 	sbi->valid_super_block = valid_super_block;
4093 	init_f2fs_rwsem(&sbi->gc_lock);
4094 	mutex_init(&sbi->writepages);
4095 	init_f2fs_rwsem(&sbi->cp_global_sem);
4096 	init_f2fs_rwsem(&sbi->node_write);
4097 	init_f2fs_rwsem(&sbi->node_change);
4098 
4099 	/* disallow all the data/node/meta page writes */
4100 	set_sbi_flag(sbi, SBI_POR_DOING);
4101 	spin_lock_init(&sbi->stat_lock);
4102 
4103 	for (i = 0; i < NR_PAGE_TYPE; i++) {
4104 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
4105 		int j;
4106 
4107 		sbi->write_io[i] =
4108 			f2fs_kmalloc(sbi,
4109 				     array_size(n,
4110 						sizeof(struct f2fs_bio_info)),
4111 				     GFP_KERNEL);
4112 		if (!sbi->write_io[i]) {
4113 			err = -ENOMEM;
4114 			goto free_bio_info;
4115 		}
4116 
4117 		for (j = HOT; j < n; j++) {
4118 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
4119 			sbi->write_io[i][j].sbi = sbi;
4120 			sbi->write_io[i][j].bio = NULL;
4121 			spin_lock_init(&sbi->write_io[i][j].io_lock);
4122 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
4123 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
4124 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
4125 		}
4126 	}
4127 
4128 	init_f2fs_rwsem(&sbi->cp_rwsem);
4129 	init_f2fs_rwsem(&sbi->quota_sem);
4130 	init_waitqueue_head(&sbi->cp_wait);
4131 	init_sb_info(sbi);
4132 
4133 	err = f2fs_init_iostat(sbi);
4134 	if (err)
4135 		goto free_bio_info;
4136 
4137 	err = init_percpu_info(sbi);
4138 	if (err)
4139 		goto free_iostat;
4140 
4141 	if (F2FS_IO_ALIGNED(sbi)) {
4142 		sbi->write_io_dummy =
4143 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
4144 		if (!sbi->write_io_dummy) {
4145 			err = -ENOMEM;
4146 			goto free_percpu;
4147 		}
4148 	}
4149 
4150 	/* init per sbi slab cache */
4151 	err = f2fs_init_xattr_caches(sbi);
4152 	if (err)
4153 		goto free_io_dummy;
4154 	err = f2fs_init_page_array_cache(sbi);
4155 	if (err)
4156 		goto free_xattr_cache;
4157 
4158 	/* get an inode for meta space */
4159 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4160 	if (IS_ERR(sbi->meta_inode)) {
4161 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
4162 		err = PTR_ERR(sbi->meta_inode);
4163 		goto free_page_array_cache;
4164 	}
4165 
4166 	err = f2fs_get_valid_checkpoint(sbi);
4167 	if (err) {
4168 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4169 		goto free_meta_inode;
4170 	}
4171 
4172 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4173 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4174 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4175 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4176 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4177 	}
4178 
4179 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4180 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4181 
4182 	/* Initialize device list */
4183 	err = f2fs_scan_devices(sbi);
4184 	if (err) {
4185 		f2fs_err(sbi, "Failed to find devices");
4186 		goto free_devices;
4187 	}
4188 
4189 	err = f2fs_init_post_read_wq(sbi);
4190 	if (err) {
4191 		f2fs_err(sbi, "Failed to initialize post read workqueue");
4192 		goto free_devices;
4193 	}
4194 
4195 	sbi->total_valid_node_count =
4196 				le32_to_cpu(sbi->ckpt->valid_node_count);
4197 	percpu_counter_set(&sbi->total_valid_inode_count,
4198 				le32_to_cpu(sbi->ckpt->valid_inode_count));
4199 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4200 	sbi->total_valid_block_count =
4201 				le64_to_cpu(sbi->ckpt->valid_block_count);
4202 	sbi->last_valid_block_count = sbi->total_valid_block_count;
4203 	sbi->reserved_blocks = 0;
4204 	sbi->current_reserved_blocks = 0;
4205 	limit_reserve_root(sbi);
4206 	adjust_unusable_cap_perc(sbi);
4207 
4208 	for (i = 0; i < NR_INODE_TYPE; i++) {
4209 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4210 		spin_lock_init(&sbi->inode_lock[i]);
4211 	}
4212 	mutex_init(&sbi->flush_lock);
4213 
4214 	f2fs_init_extent_cache_info(sbi);
4215 
4216 	f2fs_init_ino_entry_info(sbi);
4217 
4218 	f2fs_init_fsync_node_info(sbi);
4219 
4220 	/* setup checkpoint request control and start checkpoint issue thread */
4221 	f2fs_init_ckpt_req_control(sbi);
4222 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4223 			test_opt(sbi, MERGE_CHECKPOINT)) {
4224 		err = f2fs_start_ckpt_thread(sbi);
4225 		if (err) {
4226 			f2fs_err(sbi,
4227 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4228 			    err);
4229 			goto stop_ckpt_thread;
4230 		}
4231 	}
4232 
4233 	/* setup f2fs internal modules */
4234 	err = f2fs_build_segment_manager(sbi);
4235 	if (err) {
4236 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4237 			 err);
4238 		goto free_sm;
4239 	}
4240 	err = f2fs_build_node_manager(sbi);
4241 	if (err) {
4242 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4243 			 err);
4244 		goto free_nm;
4245 	}
4246 
4247 	err = adjust_reserved_segment(sbi);
4248 	if (err)
4249 		goto free_nm;
4250 
4251 	/* For write statistics */
4252 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4253 
4254 	/* Read accumulated write IO statistics if exists */
4255 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4256 	if (__exist_node_summaries(sbi))
4257 		sbi->kbytes_written =
4258 			le64_to_cpu(seg_i->journal->info.kbytes_written);
4259 
4260 	f2fs_build_gc_manager(sbi);
4261 
4262 	err = f2fs_build_stats(sbi);
4263 	if (err)
4264 		goto free_nm;
4265 
4266 	/* get an inode for node space */
4267 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4268 	if (IS_ERR(sbi->node_inode)) {
4269 		f2fs_err(sbi, "Failed to read node inode");
4270 		err = PTR_ERR(sbi->node_inode);
4271 		goto free_stats;
4272 	}
4273 
4274 	/* read root inode and dentry */
4275 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4276 	if (IS_ERR(root)) {
4277 		f2fs_err(sbi, "Failed to read root inode");
4278 		err = PTR_ERR(root);
4279 		goto free_node_inode;
4280 	}
4281 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4282 			!root->i_size || !root->i_nlink) {
4283 		iput(root);
4284 		err = -EINVAL;
4285 		goto free_node_inode;
4286 	}
4287 
4288 	sb->s_root = d_make_root(root); /* allocate root dentry */
4289 	if (!sb->s_root) {
4290 		err = -ENOMEM;
4291 		goto free_node_inode;
4292 	}
4293 
4294 	err = f2fs_init_compress_inode(sbi);
4295 	if (err)
4296 		goto free_root_inode;
4297 
4298 	err = f2fs_register_sysfs(sbi);
4299 	if (err)
4300 		goto free_compress_inode;
4301 
4302 #ifdef CONFIG_QUOTA
4303 	/* Enable quota usage during mount */
4304 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4305 		err = f2fs_enable_quotas(sb);
4306 		if (err)
4307 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4308 	}
4309 #endif
4310 	/* if there are any orphan inodes, free them */
4311 	err = f2fs_recover_orphan_inodes(sbi);
4312 	if (err)
4313 		goto free_meta;
4314 
4315 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4316 		goto reset_checkpoint;
4317 
4318 	/* recover fsynced data */
4319 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4320 			!test_opt(sbi, NORECOVERY)) {
4321 		/*
4322 		 * mount should be failed, when device has readonly mode, and
4323 		 * previous checkpoint was not done by clean system shutdown.
4324 		 */
4325 		if (f2fs_hw_is_readonly(sbi)) {
4326 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4327 				err = f2fs_recover_fsync_data(sbi, true);
4328 				if (err > 0) {
4329 					err = -EROFS;
4330 					f2fs_err(sbi, "Need to recover fsync data, but "
4331 						"write access unavailable, please try "
4332 						"mount w/ disable_roll_forward or norecovery");
4333 				}
4334 				if (err < 0)
4335 					goto free_meta;
4336 			}
4337 			f2fs_info(sbi, "write access unavailable, skipping recovery");
4338 			goto reset_checkpoint;
4339 		}
4340 
4341 		if (need_fsck)
4342 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4343 
4344 		if (skip_recovery)
4345 			goto reset_checkpoint;
4346 
4347 		err = f2fs_recover_fsync_data(sbi, false);
4348 		if (err < 0) {
4349 			if (err != -ENOMEM)
4350 				skip_recovery = true;
4351 			need_fsck = true;
4352 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4353 				 err);
4354 			goto free_meta;
4355 		}
4356 	} else {
4357 		err = f2fs_recover_fsync_data(sbi, true);
4358 
4359 		if (!f2fs_readonly(sb) && err > 0) {
4360 			err = -EINVAL;
4361 			f2fs_err(sbi, "Need to recover fsync data");
4362 			goto free_meta;
4363 		}
4364 	}
4365 
4366 	/*
4367 	 * If the f2fs is not readonly and fsync data recovery succeeds,
4368 	 * check zoned block devices' write pointer consistency.
4369 	 */
4370 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4371 		err = f2fs_check_write_pointer(sbi);
4372 		if (err)
4373 			goto free_meta;
4374 	}
4375 
4376 reset_checkpoint:
4377 	f2fs_init_inmem_curseg(sbi);
4378 
4379 	/* f2fs_recover_fsync_data() cleared this already */
4380 	clear_sbi_flag(sbi, SBI_POR_DOING);
4381 
4382 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4383 		err = f2fs_disable_checkpoint(sbi);
4384 		if (err)
4385 			goto sync_free_meta;
4386 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4387 		f2fs_enable_checkpoint(sbi);
4388 	}
4389 
4390 	/*
4391 	 * If filesystem is not mounted as read-only then
4392 	 * do start the gc_thread.
4393 	 */
4394 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4395 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4396 		/* After POR, we can run background GC thread.*/
4397 		err = f2fs_start_gc_thread(sbi);
4398 		if (err)
4399 			goto sync_free_meta;
4400 	}
4401 	kvfree(options);
4402 
4403 	/* recover broken superblock */
4404 	if (recovery) {
4405 		err = f2fs_commit_super(sbi, true);
4406 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4407 			  sbi->valid_super_block ? 1 : 2, err);
4408 	}
4409 
4410 	f2fs_join_shrinker(sbi);
4411 
4412 	f2fs_tuning_parameters(sbi);
4413 
4414 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4415 		    cur_cp_version(F2FS_CKPT(sbi)));
4416 	f2fs_update_time(sbi, CP_TIME);
4417 	f2fs_update_time(sbi, REQ_TIME);
4418 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4419 	return 0;
4420 
4421 sync_free_meta:
4422 	/* safe to flush all the data */
4423 	sync_filesystem(sbi->sb);
4424 	retry_cnt = 0;
4425 
4426 free_meta:
4427 #ifdef CONFIG_QUOTA
4428 	f2fs_truncate_quota_inode_pages(sb);
4429 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4430 		f2fs_quota_off_umount(sbi->sb);
4431 #endif
4432 	/*
4433 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4434 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4435 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4436 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4437 	 */
4438 	truncate_inode_pages_final(META_MAPPING(sbi));
4439 	/* evict some inodes being cached by GC */
4440 	evict_inodes(sb);
4441 	f2fs_unregister_sysfs(sbi);
4442 free_compress_inode:
4443 	f2fs_destroy_compress_inode(sbi);
4444 free_root_inode:
4445 	dput(sb->s_root);
4446 	sb->s_root = NULL;
4447 free_node_inode:
4448 	f2fs_release_ino_entry(sbi, true);
4449 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4450 	iput(sbi->node_inode);
4451 	sbi->node_inode = NULL;
4452 free_stats:
4453 	f2fs_destroy_stats(sbi);
4454 free_nm:
4455 	/* stop discard thread before destroying node manager */
4456 	f2fs_stop_discard_thread(sbi);
4457 	f2fs_destroy_node_manager(sbi);
4458 free_sm:
4459 	f2fs_destroy_segment_manager(sbi);
4460 	f2fs_destroy_post_read_wq(sbi);
4461 stop_ckpt_thread:
4462 	f2fs_stop_ckpt_thread(sbi);
4463 free_devices:
4464 	destroy_device_list(sbi);
4465 	kvfree(sbi->ckpt);
4466 free_meta_inode:
4467 	make_bad_inode(sbi->meta_inode);
4468 	iput(sbi->meta_inode);
4469 	sbi->meta_inode = NULL;
4470 free_page_array_cache:
4471 	f2fs_destroy_page_array_cache(sbi);
4472 free_xattr_cache:
4473 	f2fs_destroy_xattr_caches(sbi);
4474 free_io_dummy:
4475 	mempool_destroy(sbi->write_io_dummy);
4476 free_percpu:
4477 	destroy_percpu_info(sbi);
4478 free_iostat:
4479 	f2fs_destroy_iostat(sbi);
4480 free_bio_info:
4481 	for (i = 0; i < NR_PAGE_TYPE; i++)
4482 		kvfree(sbi->write_io[i]);
4483 
4484 #if IS_ENABLED(CONFIG_UNICODE)
4485 	utf8_unload(sb->s_encoding);
4486 	sb->s_encoding = NULL;
4487 #endif
4488 free_options:
4489 #ifdef CONFIG_QUOTA
4490 	for (i = 0; i < MAXQUOTAS; i++)
4491 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4492 #endif
4493 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4494 	kvfree(options);
4495 free_sb_buf:
4496 	kfree(raw_super);
4497 free_sbi:
4498 	if (sbi->s_chksum_driver)
4499 		crypto_free_shash(sbi->s_chksum_driver);
4500 	kfree(sbi);
4501 
4502 	/* give only one another chance */
4503 	if (retry_cnt > 0 && skip_recovery) {
4504 		retry_cnt--;
4505 		shrink_dcache_sb(sb);
4506 		goto try_onemore;
4507 	}
4508 	return err;
4509 }
4510 
4511 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4512 			const char *dev_name, void *data)
4513 {
4514 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4515 }
4516 
4517 static void kill_f2fs_super(struct super_block *sb)
4518 {
4519 	if (sb->s_root) {
4520 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4521 
4522 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4523 		f2fs_stop_gc_thread(sbi);
4524 		f2fs_stop_discard_thread(sbi);
4525 
4526 #ifdef CONFIG_F2FS_FS_COMPRESSION
4527 		/*
4528 		 * latter evict_inode() can bypass checking and invalidating
4529 		 * compress inode cache.
4530 		 */
4531 		if (test_opt(sbi, COMPRESS_CACHE))
4532 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4533 #endif
4534 
4535 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4536 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4537 			struct cp_control cpc = {
4538 				.reason = CP_UMOUNT,
4539 			};
4540 			f2fs_write_checkpoint(sbi, &cpc);
4541 		}
4542 
4543 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4544 			sb->s_flags &= ~SB_RDONLY;
4545 	}
4546 	kill_block_super(sb);
4547 }
4548 
4549 static struct file_system_type f2fs_fs_type = {
4550 	.owner		= THIS_MODULE,
4551 	.name		= "f2fs",
4552 	.mount		= f2fs_mount,
4553 	.kill_sb	= kill_f2fs_super,
4554 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
4555 };
4556 MODULE_ALIAS_FS("f2fs");
4557 
4558 static int __init init_inodecache(void)
4559 {
4560 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4561 			sizeof(struct f2fs_inode_info), 0,
4562 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4563 	if (!f2fs_inode_cachep)
4564 		return -ENOMEM;
4565 	return 0;
4566 }
4567 
4568 static void destroy_inodecache(void)
4569 {
4570 	/*
4571 	 * Make sure all delayed rcu free inodes are flushed before we
4572 	 * destroy cache.
4573 	 */
4574 	rcu_barrier();
4575 	kmem_cache_destroy(f2fs_inode_cachep);
4576 }
4577 
4578 static int __init init_f2fs_fs(void)
4579 {
4580 	int err;
4581 
4582 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4583 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4584 				PAGE_SIZE, F2FS_BLKSIZE);
4585 		return -EINVAL;
4586 	}
4587 
4588 	err = init_inodecache();
4589 	if (err)
4590 		goto fail;
4591 	err = f2fs_create_node_manager_caches();
4592 	if (err)
4593 		goto free_inodecache;
4594 	err = f2fs_create_segment_manager_caches();
4595 	if (err)
4596 		goto free_node_manager_caches;
4597 	err = f2fs_create_checkpoint_caches();
4598 	if (err)
4599 		goto free_segment_manager_caches;
4600 	err = f2fs_create_recovery_cache();
4601 	if (err)
4602 		goto free_checkpoint_caches;
4603 	err = f2fs_create_extent_cache();
4604 	if (err)
4605 		goto free_recovery_cache;
4606 	err = f2fs_create_garbage_collection_cache();
4607 	if (err)
4608 		goto free_extent_cache;
4609 	err = f2fs_init_sysfs();
4610 	if (err)
4611 		goto free_garbage_collection_cache;
4612 	err = register_shrinker(&f2fs_shrinker_info);
4613 	if (err)
4614 		goto free_sysfs;
4615 	err = register_filesystem(&f2fs_fs_type);
4616 	if (err)
4617 		goto free_shrinker;
4618 	f2fs_create_root_stats();
4619 	err = f2fs_init_post_read_processing();
4620 	if (err)
4621 		goto free_root_stats;
4622 	err = f2fs_init_iostat_processing();
4623 	if (err)
4624 		goto free_post_read;
4625 	err = f2fs_init_bio_entry_cache();
4626 	if (err)
4627 		goto free_iostat;
4628 	err = f2fs_init_bioset();
4629 	if (err)
4630 		goto free_bio_enrty_cache;
4631 	err = f2fs_init_compress_mempool();
4632 	if (err)
4633 		goto free_bioset;
4634 	err = f2fs_init_compress_cache();
4635 	if (err)
4636 		goto free_compress_mempool;
4637 	err = f2fs_create_casefold_cache();
4638 	if (err)
4639 		goto free_compress_cache;
4640 	return 0;
4641 free_compress_cache:
4642 	f2fs_destroy_compress_cache();
4643 free_compress_mempool:
4644 	f2fs_destroy_compress_mempool();
4645 free_bioset:
4646 	f2fs_destroy_bioset();
4647 free_bio_enrty_cache:
4648 	f2fs_destroy_bio_entry_cache();
4649 free_iostat:
4650 	f2fs_destroy_iostat_processing();
4651 free_post_read:
4652 	f2fs_destroy_post_read_processing();
4653 free_root_stats:
4654 	f2fs_destroy_root_stats();
4655 	unregister_filesystem(&f2fs_fs_type);
4656 free_shrinker:
4657 	unregister_shrinker(&f2fs_shrinker_info);
4658 free_sysfs:
4659 	f2fs_exit_sysfs();
4660 free_garbage_collection_cache:
4661 	f2fs_destroy_garbage_collection_cache();
4662 free_extent_cache:
4663 	f2fs_destroy_extent_cache();
4664 free_recovery_cache:
4665 	f2fs_destroy_recovery_cache();
4666 free_checkpoint_caches:
4667 	f2fs_destroy_checkpoint_caches();
4668 free_segment_manager_caches:
4669 	f2fs_destroy_segment_manager_caches();
4670 free_node_manager_caches:
4671 	f2fs_destroy_node_manager_caches();
4672 free_inodecache:
4673 	destroy_inodecache();
4674 fail:
4675 	return err;
4676 }
4677 
4678 static void __exit exit_f2fs_fs(void)
4679 {
4680 	f2fs_destroy_casefold_cache();
4681 	f2fs_destroy_compress_cache();
4682 	f2fs_destroy_compress_mempool();
4683 	f2fs_destroy_bioset();
4684 	f2fs_destroy_bio_entry_cache();
4685 	f2fs_destroy_iostat_processing();
4686 	f2fs_destroy_post_read_processing();
4687 	f2fs_destroy_root_stats();
4688 	unregister_filesystem(&f2fs_fs_type);
4689 	unregister_shrinker(&f2fs_shrinker_info);
4690 	f2fs_exit_sysfs();
4691 	f2fs_destroy_garbage_collection_cache();
4692 	f2fs_destroy_extent_cache();
4693 	f2fs_destroy_recovery_cache();
4694 	f2fs_destroy_checkpoint_caches();
4695 	f2fs_destroy_segment_manager_caches();
4696 	f2fs_destroy_node_manager_caches();
4697 	destroy_inodecache();
4698 }
4699 
4700 module_init(init_f2fs_fs)
4701 module_exit(exit_f2fs_fs)
4702 
4703 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4704 MODULE_DESCRIPTION("Flash Friendly File System");
4705 MODULE_LICENSE("GPL");
4706 MODULE_SOFTDEP("pre: crc32");
4707 
4708