1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/f2fs.h> 36 37 static struct proc_dir_entry *f2fs_proc_root; 38 static struct kmem_cache *f2fs_inode_cachep; 39 static struct kset *f2fs_kset; 40 41 enum { 42 Opt_gc_background, 43 Opt_disable_roll_forward, 44 Opt_discard, 45 Opt_noheap, 46 Opt_user_xattr, 47 Opt_nouser_xattr, 48 Opt_acl, 49 Opt_noacl, 50 Opt_active_logs, 51 Opt_disable_ext_identify, 52 Opt_inline_xattr, 53 Opt_inline_data, 54 Opt_flush_merge, 55 Opt_nobarrier, 56 Opt_err, 57 }; 58 59 static match_table_t f2fs_tokens = { 60 {Opt_gc_background, "background_gc=%s"}, 61 {Opt_disable_roll_forward, "disable_roll_forward"}, 62 {Opt_discard, "discard"}, 63 {Opt_noheap, "no_heap"}, 64 {Opt_user_xattr, "user_xattr"}, 65 {Opt_nouser_xattr, "nouser_xattr"}, 66 {Opt_acl, "acl"}, 67 {Opt_noacl, "noacl"}, 68 {Opt_active_logs, "active_logs=%u"}, 69 {Opt_disable_ext_identify, "disable_ext_identify"}, 70 {Opt_inline_xattr, "inline_xattr"}, 71 {Opt_inline_data, "inline_data"}, 72 {Opt_flush_merge, "flush_merge"}, 73 {Opt_nobarrier, "nobarrier"}, 74 {Opt_err, NULL}, 75 }; 76 77 /* Sysfs support for f2fs */ 78 enum { 79 GC_THREAD, /* struct f2fs_gc_thread */ 80 SM_INFO, /* struct f2fs_sm_info */ 81 NM_INFO, /* struct f2fs_nm_info */ 82 F2FS_SBI, /* struct f2fs_sb_info */ 83 }; 84 85 struct f2fs_attr { 86 struct attribute attr; 87 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 88 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 89 const char *, size_t); 90 int struct_type; 91 int offset; 92 }; 93 94 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 95 { 96 if (struct_type == GC_THREAD) 97 return (unsigned char *)sbi->gc_thread; 98 else if (struct_type == SM_INFO) 99 return (unsigned char *)SM_I(sbi); 100 else if (struct_type == NM_INFO) 101 return (unsigned char *)NM_I(sbi); 102 else if (struct_type == F2FS_SBI) 103 return (unsigned char *)sbi; 104 return NULL; 105 } 106 107 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 108 struct f2fs_sb_info *sbi, char *buf) 109 { 110 unsigned char *ptr = NULL; 111 unsigned int *ui; 112 113 ptr = __struct_ptr(sbi, a->struct_type); 114 if (!ptr) 115 return -EINVAL; 116 117 ui = (unsigned int *)(ptr + a->offset); 118 119 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 120 } 121 122 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 123 struct f2fs_sb_info *sbi, 124 const char *buf, size_t count) 125 { 126 unsigned char *ptr; 127 unsigned long t; 128 unsigned int *ui; 129 ssize_t ret; 130 131 ptr = __struct_ptr(sbi, a->struct_type); 132 if (!ptr) 133 return -EINVAL; 134 135 ui = (unsigned int *)(ptr + a->offset); 136 137 ret = kstrtoul(skip_spaces(buf), 0, &t); 138 if (ret < 0) 139 return ret; 140 *ui = t; 141 return count; 142 } 143 144 static ssize_t f2fs_attr_show(struct kobject *kobj, 145 struct attribute *attr, char *buf) 146 { 147 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 148 s_kobj); 149 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 150 151 return a->show ? a->show(a, sbi, buf) : 0; 152 } 153 154 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 155 const char *buf, size_t len) 156 { 157 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 158 s_kobj); 159 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 160 161 return a->store ? a->store(a, sbi, buf, len) : 0; 162 } 163 164 static void f2fs_sb_release(struct kobject *kobj) 165 { 166 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 167 s_kobj); 168 complete(&sbi->s_kobj_unregister); 169 } 170 171 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 172 static struct f2fs_attr f2fs_attr_##_name = { \ 173 .attr = {.name = __stringify(_name), .mode = _mode }, \ 174 .show = _show, \ 175 .store = _store, \ 176 .struct_type = _struct_type, \ 177 .offset = _offset \ 178 } 179 180 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 181 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 182 f2fs_sbi_show, f2fs_sbi_store, \ 183 offsetof(struct struct_name, elname)) 184 185 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 186 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 187 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 188 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 189 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 190 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 191 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 192 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 193 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 194 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 195 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 196 197 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 198 static struct attribute *f2fs_attrs[] = { 199 ATTR_LIST(gc_min_sleep_time), 200 ATTR_LIST(gc_max_sleep_time), 201 ATTR_LIST(gc_no_gc_sleep_time), 202 ATTR_LIST(gc_idle), 203 ATTR_LIST(reclaim_segments), 204 ATTR_LIST(max_small_discards), 205 ATTR_LIST(ipu_policy), 206 ATTR_LIST(min_ipu_util), 207 ATTR_LIST(max_victim_search), 208 ATTR_LIST(dir_level), 209 ATTR_LIST(ram_thresh), 210 NULL, 211 }; 212 213 static const struct sysfs_ops f2fs_attr_ops = { 214 .show = f2fs_attr_show, 215 .store = f2fs_attr_store, 216 }; 217 218 static struct kobj_type f2fs_ktype = { 219 .default_attrs = f2fs_attrs, 220 .sysfs_ops = &f2fs_attr_ops, 221 .release = f2fs_sb_release, 222 }; 223 224 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 225 { 226 struct va_format vaf; 227 va_list args; 228 229 va_start(args, fmt); 230 vaf.fmt = fmt; 231 vaf.va = &args; 232 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 233 va_end(args); 234 } 235 236 static void init_once(void *foo) 237 { 238 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 239 240 inode_init_once(&fi->vfs_inode); 241 } 242 243 static int parse_options(struct super_block *sb, char *options) 244 { 245 struct f2fs_sb_info *sbi = F2FS_SB(sb); 246 substring_t args[MAX_OPT_ARGS]; 247 char *p, *name; 248 int arg = 0; 249 250 if (!options) 251 return 0; 252 253 while ((p = strsep(&options, ",")) != NULL) { 254 int token; 255 if (!*p) 256 continue; 257 /* 258 * Initialize args struct so we know whether arg was 259 * found; some options take optional arguments. 260 */ 261 args[0].to = args[0].from = NULL; 262 token = match_token(p, f2fs_tokens, args); 263 264 switch (token) { 265 case Opt_gc_background: 266 name = match_strdup(&args[0]); 267 268 if (!name) 269 return -ENOMEM; 270 if (strlen(name) == 2 && !strncmp(name, "on", 2)) 271 set_opt(sbi, BG_GC); 272 else if (strlen(name) == 3 && !strncmp(name, "off", 3)) 273 clear_opt(sbi, BG_GC); 274 else { 275 kfree(name); 276 return -EINVAL; 277 } 278 kfree(name); 279 break; 280 case Opt_disable_roll_forward: 281 set_opt(sbi, DISABLE_ROLL_FORWARD); 282 break; 283 case Opt_discard: 284 set_opt(sbi, DISCARD); 285 break; 286 case Opt_noheap: 287 set_opt(sbi, NOHEAP); 288 break; 289 #ifdef CONFIG_F2FS_FS_XATTR 290 case Opt_user_xattr: 291 set_opt(sbi, XATTR_USER); 292 break; 293 case Opt_nouser_xattr: 294 clear_opt(sbi, XATTR_USER); 295 break; 296 case Opt_inline_xattr: 297 set_opt(sbi, INLINE_XATTR); 298 break; 299 #else 300 case Opt_user_xattr: 301 f2fs_msg(sb, KERN_INFO, 302 "user_xattr options not supported"); 303 break; 304 case Opt_nouser_xattr: 305 f2fs_msg(sb, KERN_INFO, 306 "nouser_xattr options not supported"); 307 break; 308 case Opt_inline_xattr: 309 f2fs_msg(sb, KERN_INFO, 310 "inline_xattr options not supported"); 311 break; 312 #endif 313 #ifdef CONFIG_F2FS_FS_POSIX_ACL 314 case Opt_acl: 315 set_opt(sbi, POSIX_ACL); 316 break; 317 case Opt_noacl: 318 clear_opt(sbi, POSIX_ACL); 319 break; 320 #else 321 case Opt_acl: 322 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 323 break; 324 case Opt_noacl: 325 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 326 break; 327 #endif 328 case Opt_active_logs: 329 if (args->from && match_int(args, &arg)) 330 return -EINVAL; 331 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 332 return -EINVAL; 333 sbi->active_logs = arg; 334 break; 335 case Opt_disable_ext_identify: 336 set_opt(sbi, DISABLE_EXT_IDENTIFY); 337 break; 338 case Opt_inline_data: 339 set_opt(sbi, INLINE_DATA); 340 break; 341 case Opt_flush_merge: 342 set_opt(sbi, FLUSH_MERGE); 343 break; 344 case Opt_nobarrier: 345 set_opt(sbi, NOBARRIER); 346 break; 347 default: 348 f2fs_msg(sb, KERN_ERR, 349 "Unrecognized mount option \"%s\" or missing value", 350 p); 351 return -EINVAL; 352 } 353 } 354 return 0; 355 } 356 357 static struct inode *f2fs_alloc_inode(struct super_block *sb) 358 { 359 struct f2fs_inode_info *fi; 360 361 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 362 if (!fi) 363 return NULL; 364 365 init_once((void *) fi); 366 367 /* Initialize f2fs-specific inode info */ 368 fi->vfs_inode.i_version = 1; 369 atomic_set(&fi->dirty_dents, 0); 370 fi->i_current_depth = 1; 371 fi->i_advise = 0; 372 rwlock_init(&fi->ext.ext_lock); 373 init_rwsem(&fi->i_sem); 374 375 set_inode_flag(fi, FI_NEW_INODE); 376 377 if (test_opt(F2FS_SB(sb), INLINE_XATTR)) 378 set_inode_flag(fi, FI_INLINE_XATTR); 379 380 /* Will be used by directory only */ 381 fi->i_dir_level = F2FS_SB(sb)->dir_level; 382 383 return &fi->vfs_inode; 384 } 385 386 static int f2fs_drop_inode(struct inode *inode) 387 { 388 /* 389 * This is to avoid a deadlock condition like below. 390 * writeback_single_inode(inode) 391 * - f2fs_write_data_page 392 * - f2fs_gc -> iput -> evict 393 * - inode_wait_for_writeback(inode) 394 */ 395 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) 396 return 0; 397 return generic_drop_inode(inode); 398 } 399 400 /* 401 * f2fs_dirty_inode() is called from __mark_inode_dirty() 402 * 403 * We should call set_dirty_inode to write the dirty inode through write_inode. 404 */ 405 static void f2fs_dirty_inode(struct inode *inode, int flags) 406 { 407 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 408 } 409 410 static void f2fs_i_callback(struct rcu_head *head) 411 { 412 struct inode *inode = container_of(head, struct inode, i_rcu); 413 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 414 } 415 416 static void f2fs_destroy_inode(struct inode *inode) 417 { 418 call_rcu(&inode->i_rcu, f2fs_i_callback); 419 } 420 421 static void f2fs_put_super(struct super_block *sb) 422 { 423 struct f2fs_sb_info *sbi = F2FS_SB(sb); 424 425 if (sbi->s_proc) { 426 remove_proc_entry("segment_info", sbi->s_proc); 427 remove_proc_entry(sb->s_id, f2fs_proc_root); 428 } 429 kobject_del(&sbi->s_kobj); 430 431 f2fs_destroy_stats(sbi); 432 stop_gc_thread(sbi); 433 434 /* We don't need to do checkpoint when it's clean */ 435 if (sbi->s_dirty) 436 write_checkpoint(sbi, true); 437 438 /* 439 * normally superblock is clean, so we need to release this. 440 * In addition, EIO will skip do checkpoint, we need this as well. 441 */ 442 release_dirty_inode(sbi); 443 444 iput(sbi->node_inode); 445 iput(sbi->meta_inode); 446 447 /* destroy f2fs internal modules */ 448 destroy_node_manager(sbi); 449 destroy_segment_manager(sbi); 450 451 kfree(sbi->ckpt); 452 kobject_put(&sbi->s_kobj); 453 wait_for_completion(&sbi->s_kobj_unregister); 454 455 sb->s_fs_info = NULL; 456 brelse(sbi->raw_super_buf); 457 kfree(sbi); 458 } 459 460 int f2fs_sync_fs(struct super_block *sb, int sync) 461 { 462 struct f2fs_sb_info *sbi = F2FS_SB(sb); 463 464 trace_f2fs_sync_fs(sb, sync); 465 466 if (sync) { 467 mutex_lock(&sbi->gc_mutex); 468 write_checkpoint(sbi, false); 469 mutex_unlock(&sbi->gc_mutex); 470 } else { 471 f2fs_balance_fs(sbi); 472 } 473 474 return 0; 475 } 476 477 static int f2fs_freeze(struct super_block *sb) 478 { 479 int err; 480 481 if (f2fs_readonly(sb)) 482 return 0; 483 484 err = f2fs_sync_fs(sb, 1); 485 return err; 486 } 487 488 static int f2fs_unfreeze(struct super_block *sb) 489 { 490 return 0; 491 } 492 493 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 494 { 495 struct super_block *sb = dentry->d_sb; 496 struct f2fs_sb_info *sbi = F2FS_SB(sb); 497 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 498 block_t total_count, user_block_count, start_count, ovp_count; 499 500 total_count = le64_to_cpu(sbi->raw_super->block_count); 501 user_block_count = sbi->user_block_count; 502 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 503 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 504 buf->f_type = F2FS_SUPER_MAGIC; 505 buf->f_bsize = sbi->blocksize; 506 507 buf->f_blocks = total_count - start_count; 508 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; 509 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 510 511 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 512 buf->f_ffree = buf->f_files - valid_inode_count(sbi); 513 514 buf->f_namelen = F2FS_NAME_LEN; 515 buf->f_fsid.val[0] = (u32)id; 516 buf->f_fsid.val[1] = (u32)(id >> 32); 517 518 return 0; 519 } 520 521 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 522 { 523 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 524 525 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) 526 seq_printf(seq, ",background_gc=%s", "on"); 527 else 528 seq_printf(seq, ",background_gc=%s", "off"); 529 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 530 seq_puts(seq, ",disable_roll_forward"); 531 if (test_opt(sbi, DISCARD)) 532 seq_puts(seq, ",discard"); 533 if (test_opt(sbi, NOHEAP)) 534 seq_puts(seq, ",no_heap_alloc"); 535 #ifdef CONFIG_F2FS_FS_XATTR 536 if (test_opt(sbi, XATTR_USER)) 537 seq_puts(seq, ",user_xattr"); 538 else 539 seq_puts(seq, ",nouser_xattr"); 540 if (test_opt(sbi, INLINE_XATTR)) 541 seq_puts(seq, ",inline_xattr"); 542 #endif 543 #ifdef CONFIG_F2FS_FS_POSIX_ACL 544 if (test_opt(sbi, POSIX_ACL)) 545 seq_puts(seq, ",acl"); 546 else 547 seq_puts(seq, ",noacl"); 548 #endif 549 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 550 seq_puts(seq, ",disable_ext_identify"); 551 if (test_opt(sbi, INLINE_DATA)) 552 seq_puts(seq, ",inline_data"); 553 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 554 seq_puts(seq, ",flush_merge"); 555 if (test_opt(sbi, NOBARRIER)) 556 seq_puts(seq, ",nobarrier"); 557 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 558 559 return 0; 560 } 561 562 static int segment_info_seq_show(struct seq_file *seq, void *offset) 563 { 564 struct super_block *sb = seq->private; 565 struct f2fs_sb_info *sbi = F2FS_SB(sb); 566 unsigned int total_segs = 567 le32_to_cpu(sbi->raw_super->segment_count_main); 568 int i; 569 570 seq_puts(seq, "format: segment_type|valid_blocks\n" 571 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 572 573 for (i = 0; i < total_segs; i++) { 574 struct seg_entry *se = get_seg_entry(sbi, i); 575 576 if ((i % 10) == 0) 577 seq_printf(seq, "%-5d", i); 578 seq_printf(seq, "%d|%-3u", se->type, 579 get_valid_blocks(sbi, i, 1)); 580 if ((i % 10) == 9 || i == (total_segs - 1)) 581 seq_putc(seq, '\n'); 582 else 583 seq_putc(seq, ' '); 584 } 585 586 return 0; 587 } 588 589 static int segment_info_open_fs(struct inode *inode, struct file *file) 590 { 591 return single_open(file, segment_info_seq_show, PDE_DATA(inode)); 592 } 593 594 static const struct file_operations f2fs_seq_segment_info_fops = { 595 .owner = THIS_MODULE, 596 .open = segment_info_open_fs, 597 .read = seq_read, 598 .llseek = seq_lseek, 599 .release = single_release, 600 }; 601 602 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 603 { 604 struct f2fs_sb_info *sbi = F2FS_SB(sb); 605 struct f2fs_mount_info org_mount_opt; 606 int err, active_logs; 607 bool need_restart_gc = false; 608 bool need_stop_gc = false; 609 610 sync_filesystem(sb); 611 612 /* 613 * Save the old mount options in case we 614 * need to restore them. 615 */ 616 org_mount_opt = sbi->mount_opt; 617 active_logs = sbi->active_logs; 618 619 /* parse mount options */ 620 err = parse_options(sb, data); 621 if (err) 622 goto restore_opts; 623 624 /* 625 * Previous and new state of filesystem is RO, 626 * so skip checking GC and FLUSH_MERGE conditions. 627 */ 628 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 629 goto skip; 630 631 /* 632 * We stop the GC thread if FS is mounted as RO 633 * or if background_gc = off is passed in mount 634 * option. Also sync the filesystem. 635 */ 636 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 637 if (sbi->gc_thread) { 638 stop_gc_thread(sbi); 639 f2fs_sync_fs(sb, 1); 640 need_restart_gc = true; 641 } 642 } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) { 643 err = start_gc_thread(sbi); 644 if (err) 645 goto restore_opts; 646 need_stop_gc = true; 647 } 648 649 /* 650 * We stop issue flush thread if FS is mounted as RO 651 * or if flush_merge is not passed in mount option. 652 */ 653 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 654 destroy_flush_cmd_control(sbi); 655 } else if (test_opt(sbi, FLUSH_MERGE) && !SM_I(sbi)->cmd_control_info) { 656 err = create_flush_cmd_control(sbi); 657 if (err) 658 goto restore_gc; 659 } 660 skip: 661 /* Update the POSIXACL Flag */ 662 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 663 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 664 return 0; 665 restore_gc: 666 if (need_restart_gc) { 667 if (start_gc_thread(sbi)) 668 f2fs_msg(sbi->sb, KERN_WARNING, 669 "background gc thread has stopped"); 670 } else if (need_stop_gc) { 671 stop_gc_thread(sbi); 672 } 673 restore_opts: 674 sbi->mount_opt = org_mount_opt; 675 sbi->active_logs = active_logs; 676 return err; 677 } 678 679 static struct super_operations f2fs_sops = { 680 .alloc_inode = f2fs_alloc_inode, 681 .drop_inode = f2fs_drop_inode, 682 .destroy_inode = f2fs_destroy_inode, 683 .write_inode = f2fs_write_inode, 684 .dirty_inode = f2fs_dirty_inode, 685 .show_options = f2fs_show_options, 686 .evict_inode = f2fs_evict_inode, 687 .put_super = f2fs_put_super, 688 .sync_fs = f2fs_sync_fs, 689 .freeze_fs = f2fs_freeze, 690 .unfreeze_fs = f2fs_unfreeze, 691 .statfs = f2fs_statfs, 692 .remount_fs = f2fs_remount, 693 }; 694 695 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 696 u64 ino, u32 generation) 697 { 698 struct f2fs_sb_info *sbi = F2FS_SB(sb); 699 struct inode *inode; 700 701 if (check_nid_range(sbi, ino)) 702 return ERR_PTR(-ESTALE); 703 704 /* 705 * f2fs_iget isn't quite right if the inode is currently unallocated! 706 * However f2fs_iget currently does appropriate checks to handle stale 707 * inodes so everything is OK. 708 */ 709 inode = f2fs_iget(sb, ino); 710 if (IS_ERR(inode)) 711 return ERR_CAST(inode); 712 if (unlikely(generation && inode->i_generation != generation)) { 713 /* we didn't find the right inode.. */ 714 iput(inode); 715 return ERR_PTR(-ESTALE); 716 } 717 return inode; 718 } 719 720 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 721 int fh_len, int fh_type) 722 { 723 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 724 f2fs_nfs_get_inode); 725 } 726 727 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 728 int fh_len, int fh_type) 729 { 730 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 731 f2fs_nfs_get_inode); 732 } 733 734 static const struct export_operations f2fs_export_ops = { 735 .fh_to_dentry = f2fs_fh_to_dentry, 736 .fh_to_parent = f2fs_fh_to_parent, 737 .get_parent = f2fs_get_parent, 738 }; 739 740 static loff_t max_file_size(unsigned bits) 741 { 742 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 743 loff_t leaf_count = ADDRS_PER_BLOCK; 744 745 /* two direct node blocks */ 746 result += (leaf_count * 2); 747 748 /* two indirect node blocks */ 749 leaf_count *= NIDS_PER_BLOCK; 750 result += (leaf_count * 2); 751 752 /* one double indirect node block */ 753 leaf_count *= NIDS_PER_BLOCK; 754 result += leaf_count; 755 756 result <<= bits; 757 return result; 758 } 759 760 static int sanity_check_raw_super(struct super_block *sb, 761 struct f2fs_super_block *raw_super) 762 { 763 unsigned int blocksize; 764 765 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 766 f2fs_msg(sb, KERN_INFO, 767 "Magic Mismatch, valid(0x%x) - read(0x%x)", 768 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 769 return 1; 770 } 771 772 /* Currently, support only 4KB page cache size */ 773 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) { 774 f2fs_msg(sb, KERN_INFO, 775 "Invalid page_cache_size (%lu), supports only 4KB\n", 776 PAGE_CACHE_SIZE); 777 return 1; 778 } 779 780 /* Currently, support only 4KB block size */ 781 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 782 if (blocksize != F2FS_BLKSIZE) { 783 f2fs_msg(sb, KERN_INFO, 784 "Invalid blocksize (%u), supports only 4KB\n", 785 blocksize); 786 return 1; 787 } 788 789 if (le32_to_cpu(raw_super->log_sectorsize) != 790 F2FS_LOG_SECTOR_SIZE) { 791 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize"); 792 return 1; 793 } 794 if (le32_to_cpu(raw_super->log_sectors_per_block) != 795 F2FS_LOG_SECTORS_PER_BLOCK) { 796 f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block"); 797 return 1; 798 } 799 return 0; 800 } 801 802 static int sanity_check_ckpt(struct f2fs_sb_info *sbi) 803 { 804 unsigned int total, fsmeta; 805 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 806 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 807 808 total = le32_to_cpu(raw_super->segment_count); 809 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 810 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 811 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 812 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 813 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 814 815 if (unlikely(fsmeta >= total)) 816 return 1; 817 818 if (unlikely(f2fs_cp_error(sbi))) { 819 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 820 return 1; 821 } 822 return 0; 823 } 824 825 static void init_sb_info(struct f2fs_sb_info *sbi) 826 { 827 struct f2fs_super_block *raw_super = sbi->raw_super; 828 int i; 829 830 sbi->log_sectors_per_block = 831 le32_to_cpu(raw_super->log_sectors_per_block); 832 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 833 sbi->blocksize = 1 << sbi->log_blocksize; 834 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 835 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 836 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 837 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 838 sbi->total_sections = le32_to_cpu(raw_super->section_count); 839 sbi->total_node_count = 840 (le32_to_cpu(raw_super->segment_count_nat) / 2) 841 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 842 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 843 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 844 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 845 sbi->cur_victim_sec = NULL_SECNO; 846 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 847 848 for (i = 0; i < NR_COUNT_TYPE; i++) 849 atomic_set(&sbi->nr_pages[i], 0); 850 851 sbi->dir_level = DEF_DIR_LEVEL; 852 } 853 854 /* 855 * Read f2fs raw super block. 856 * Because we have two copies of super block, so read the first one at first, 857 * if the first one is invalid, move to read the second one. 858 */ 859 static int read_raw_super_block(struct super_block *sb, 860 struct f2fs_super_block **raw_super, 861 struct buffer_head **raw_super_buf) 862 { 863 int block = 0; 864 865 retry: 866 *raw_super_buf = sb_bread(sb, block); 867 if (!*raw_super_buf) { 868 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 869 block + 1); 870 if (block == 0) { 871 block++; 872 goto retry; 873 } else { 874 return -EIO; 875 } 876 } 877 878 *raw_super = (struct f2fs_super_block *) 879 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET); 880 881 /* sanity checking of raw super */ 882 if (sanity_check_raw_super(sb, *raw_super)) { 883 brelse(*raw_super_buf); 884 f2fs_msg(sb, KERN_ERR, 885 "Can't find valid F2FS filesystem in %dth superblock", 886 block + 1); 887 if (block == 0) { 888 block++; 889 goto retry; 890 } else { 891 return -EINVAL; 892 } 893 } 894 895 return 0; 896 } 897 898 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 899 { 900 struct f2fs_sb_info *sbi; 901 struct f2fs_super_block *raw_super; 902 struct buffer_head *raw_super_buf; 903 struct inode *root; 904 long err = -EINVAL; 905 bool retry = true; 906 int i; 907 908 try_onemore: 909 /* allocate memory for f2fs-specific super block info */ 910 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 911 if (!sbi) 912 return -ENOMEM; 913 914 /* set a block size */ 915 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 916 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 917 goto free_sbi; 918 } 919 920 err = read_raw_super_block(sb, &raw_super, &raw_super_buf); 921 if (err) 922 goto free_sbi; 923 924 sb->s_fs_info = sbi; 925 /* init some FS parameters */ 926 sbi->active_logs = NR_CURSEG_TYPE; 927 928 set_opt(sbi, BG_GC); 929 930 #ifdef CONFIG_F2FS_FS_XATTR 931 set_opt(sbi, XATTR_USER); 932 #endif 933 #ifdef CONFIG_F2FS_FS_POSIX_ACL 934 set_opt(sbi, POSIX_ACL); 935 #endif 936 /* parse mount options */ 937 err = parse_options(sb, (char *)data); 938 if (err) 939 goto free_sb_buf; 940 941 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize)); 942 sb->s_max_links = F2FS_LINK_MAX; 943 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 944 945 sb->s_op = &f2fs_sops; 946 sb->s_xattr = f2fs_xattr_handlers; 947 sb->s_export_op = &f2fs_export_ops; 948 sb->s_magic = F2FS_SUPER_MAGIC; 949 sb->s_time_gran = 1; 950 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 951 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 952 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 953 954 /* init f2fs-specific super block info */ 955 sbi->sb = sb; 956 sbi->raw_super = raw_super; 957 sbi->raw_super_buf = raw_super_buf; 958 mutex_init(&sbi->gc_mutex); 959 mutex_init(&sbi->writepages); 960 mutex_init(&sbi->cp_mutex); 961 init_rwsem(&sbi->node_write); 962 sbi->por_doing = false; 963 spin_lock_init(&sbi->stat_lock); 964 965 init_rwsem(&sbi->read_io.io_rwsem); 966 sbi->read_io.sbi = sbi; 967 sbi->read_io.bio = NULL; 968 for (i = 0; i < NR_PAGE_TYPE; i++) { 969 init_rwsem(&sbi->write_io[i].io_rwsem); 970 sbi->write_io[i].sbi = sbi; 971 sbi->write_io[i].bio = NULL; 972 } 973 974 init_rwsem(&sbi->cp_rwsem); 975 init_waitqueue_head(&sbi->cp_wait); 976 init_sb_info(sbi); 977 978 /* get an inode for meta space */ 979 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 980 if (IS_ERR(sbi->meta_inode)) { 981 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 982 err = PTR_ERR(sbi->meta_inode); 983 goto free_sb_buf; 984 } 985 986 err = get_valid_checkpoint(sbi); 987 if (err) { 988 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 989 goto free_meta_inode; 990 } 991 992 /* sanity checking of checkpoint */ 993 err = -EINVAL; 994 if (sanity_check_ckpt(sbi)) { 995 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint"); 996 goto free_cp; 997 } 998 999 sbi->total_valid_node_count = 1000 le32_to_cpu(sbi->ckpt->valid_node_count); 1001 sbi->total_valid_inode_count = 1002 le32_to_cpu(sbi->ckpt->valid_inode_count); 1003 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1004 sbi->total_valid_block_count = 1005 le64_to_cpu(sbi->ckpt->valid_block_count); 1006 sbi->last_valid_block_count = sbi->total_valid_block_count; 1007 sbi->alloc_valid_block_count = 0; 1008 INIT_LIST_HEAD(&sbi->dir_inode_list); 1009 spin_lock_init(&sbi->dir_inode_lock); 1010 1011 init_ino_entry_info(sbi); 1012 1013 /* setup f2fs internal modules */ 1014 err = build_segment_manager(sbi); 1015 if (err) { 1016 f2fs_msg(sb, KERN_ERR, 1017 "Failed to initialize F2FS segment manager"); 1018 goto free_sm; 1019 } 1020 err = build_node_manager(sbi); 1021 if (err) { 1022 f2fs_msg(sb, KERN_ERR, 1023 "Failed to initialize F2FS node manager"); 1024 goto free_nm; 1025 } 1026 1027 build_gc_manager(sbi); 1028 1029 /* get an inode for node space */ 1030 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1031 if (IS_ERR(sbi->node_inode)) { 1032 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1033 err = PTR_ERR(sbi->node_inode); 1034 goto free_nm; 1035 } 1036 1037 /* if there are nt orphan nodes free them */ 1038 recover_orphan_inodes(sbi); 1039 1040 /* read root inode and dentry */ 1041 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1042 if (IS_ERR(root)) { 1043 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1044 err = PTR_ERR(root); 1045 goto free_node_inode; 1046 } 1047 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1048 iput(root); 1049 err = -EINVAL; 1050 goto free_node_inode; 1051 } 1052 1053 sb->s_root = d_make_root(root); /* allocate root dentry */ 1054 if (!sb->s_root) { 1055 err = -ENOMEM; 1056 goto free_root_inode; 1057 } 1058 1059 err = f2fs_build_stats(sbi); 1060 if (err) 1061 goto free_root_inode; 1062 1063 if (f2fs_proc_root) 1064 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1065 1066 if (sbi->s_proc) 1067 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1068 &f2fs_seq_segment_info_fops, sb); 1069 1070 if (test_opt(sbi, DISCARD)) { 1071 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1072 if (!blk_queue_discard(q)) 1073 f2fs_msg(sb, KERN_WARNING, 1074 "mounting with \"discard\" option, but " 1075 "the device does not support discard"); 1076 } 1077 1078 sbi->s_kobj.kset = f2fs_kset; 1079 init_completion(&sbi->s_kobj_unregister); 1080 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1081 "%s", sb->s_id); 1082 if (err) 1083 goto free_proc; 1084 1085 /* recover fsynced data */ 1086 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1087 err = recover_fsync_data(sbi); 1088 if (err) { 1089 f2fs_msg(sb, KERN_ERR, 1090 "Cannot recover all fsync data errno=%ld", err); 1091 goto free_kobj; 1092 } 1093 } 1094 1095 /* 1096 * If filesystem is not mounted as read-only then 1097 * do start the gc_thread. 1098 */ 1099 if (!f2fs_readonly(sb)) { 1100 /* After POR, we can run background GC thread.*/ 1101 err = start_gc_thread(sbi); 1102 if (err) 1103 goto free_kobj; 1104 } 1105 return 0; 1106 1107 free_kobj: 1108 kobject_del(&sbi->s_kobj); 1109 free_proc: 1110 if (sbi->s_proc) { 1111 remove_proc_entry("segment_info", sbi->s_proc); 1112 remove_proc_entry(sb->s_id, f2fs_proc_root); 1113 } 1114 f2fs_destroy_stats(sbi); 1115 free_root_inode: 1116 dput(sb->s_root); 1117 sb->s_root = NULL; 1118 free_node_inode: 1119 iput(sbi->node_inode); 1120 free_nm: 1121 destroy_node_manager(sbi); 1122 free_sm: 1123 destroy_segment_manager(sbi); 1124 free_cp: 1125 kfree(sbi->ckpt); 1126 free_meta_inode: 1127 make_bad_inode(sbi->meta_inode); 1128 iput(sbi->meta_inode); 1129 free_sb_buf: 1130 brelse(raw_super_buf); 1131 free_sbi: 1132 kfree(sbi); 1133 1134 /* give only one another chance */ 1135 if (retry) { 1136 retry = 0; 1137 shrink_dcache_sb(sb); 1138 goto try_onemore; 1139 } 1140 return err; 1141 } 1142 1143 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1144 const char *dev_name, void *data) 1145 { 1146 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1147 } 1148 1149 static struct file_system_type f2fs_fs_type = { 1150 .owner = THIS_MODULE, 1151 .name = "f2fs", 1152 .mount = f2fs_mount, 1153 .kill_sb = kill_block_super, 1154 .fs_flags = FS_REQUIRES_DEV, 1155 }; 1156 MODULE_ALIAS_FS("f2fs"); 1157 1158 static int __init init_inodecache(void) 1159 { 1160 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache", 1161 sizeof(struct f2fs_inode_info)); 1162 if (!f2fs_inode_cachep) 1163 return -ENOMEM; 1164 return 0; 1165 } 1166 1167 static void destroy_inodecache(void) 1168 { 1169 /* 1170 * Make sure all delayed rcu free inodes are flushed before we 1171 * destroy cache. 1172 */ 1173 rcu_barrier(); 1174 kmem_cache_destroy(f2fs_inode_cachep); 1175 } 1176 1177 static int __init init_f2fs_fs(void) 1178 { 1179 int err; 1180 1181 err = init_inodecache(); 1182 if (err) 1183 goto fail; 1184 err = create_node_manager_caches(); 1185 if (err) 1186 goto free_inodecache; 1187 err = create_segment_manager_caches(); 1188 if (err) 1189 goto free_node_manager_caches; 1190 err = create_gc_caches(); 1191 if (err) 1192 goto free_segment_manager_caches; 1193 err = create_checkpoint_caches(); 1194 if (err) 1195 goto free_gc_caches; 1196 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1197 if (!f2fs_kset) { 1198 err = -ENOMEM; 1199 goto free_checkpoint_caches; 1200 } 1201 err = register_filesystem(&f2fs_fs_type); 1202 if (err) 1203 goto free_kset; 1204 f2fs_create_root_stats(); 1205 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 1206 return 0; 1207 1208 free_kset: 1209 kset_unregister(f2fs_kset); 1210 free_checkpoint_caches: 1211 destroy_checkpoint_caches(); 1212 free_gc_caches: 1213 destroy_gc_caches(); 1214 free_segment_manager_caches: 1215 destroy_segment_manager_caches(); 1216 free_node_manager_caches: 1217 destroy_node_manager_caches(); 1218 free_inodecache: 1219 destroy_inodecache(); 1220 fail: 1221 return err; 1222 } 1223 1224 static void __exit exit_f2fs_fs(void) 1225 { 1226 remove_proc_entry("fs/f2fs", NULL); 1227 f2fs_destroy_root_stats(); 1228 unregister_filesystem(&f2fs_fs_type); 1229 destroy_checkpoint_caches(); 1230 destroy_gc_caches(); 1231 destroy_segment_manager_caches(); 1232 destroy_node_manager_caches(); 1233 destroy_inodecache(); 1234 kset_unregister(f2fs_kset); 1235 } 1236 1237 module_init(init_f2fs_fs) 1238 module_exit(exit_f2fs_fs) 1239 1240 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 1241 MODULE_DESCRIPTION("Flash Friendly File System"); 1242 MODULE_LICENSE("GPL"); 1243