1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 #include <linux/zstd.h> 29 #include <linux/lz4.h> 30 31 #include "f2fs.h" 32 #include "node.h" 33 #include "segment.h" 34 #include "xattr.h" 35 #include "gc.h" 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/f2fs.h> 39 40 static struct kmem_cache *f2fs_inode_cachep; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 44 const char *f2fs_fault_name[FAULT_MAX] = { 45 [FAULT_KMALLOC] = "kmalloc", 46 [FAULT_KVMALLOC] = "kvmalloc", 47 [FAULT_PAGE_ALLOC] = "page alloc", 48 [FAULT_PAGE_GET] = "page get", 49 [FAULT_ALLOC_NID] = "alloc nid", 50 [FAULT_ORPHAN] = "orphan", 51 [FAULT_BLOCK] = "no more block", 52 [FAULT_DIR_DEPTH] = "too big dir depth", 53 [FAULT_EVICT_INODE] = "evict_inode fail", 54 [FAULT_TRUNCATE] = "truncate fail", 55 [FAULT_READ_IO] = "read IO error", 56 [FAULT_CHECKPOINT] = "checkpoint error", 57 [FAULT_DISCARD] = "discard error", 58 [FAULT_WRITE_IO] = "write IO error", 59 }; 60 61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 62 unsigned int type) 63 { 64 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 65 66 if (rate) { 67 atomic_set(&ffi->inject_ops, 0); 68 ffi->inject_rate = rate; 69 } 70 71 if (type) 72 ffi->inject_type = type; 73 74 if (!rate && !type) 75 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 76 } 77 #endif 78 79 /* f2fs-wide shrinker description */ 80 static struct shrinker f2fs_shrinker_info = { 81 .scan_objects = f2fs_shrink_scan, 82 .count_objects = f2fs_shrink_count, 83 .seeks = DEFAULT_SEEKS, 84 }; 85 86 enum { 87 Opt_gc_background, 88 Opt_disable_roll_forward, 89 Opt_norecovery, 90 Opt_discard, 91 Opt_nodiscard, 92 Opt_noheap, 93 Opt_heap, 94 Opt_user_xattr, 95 Opt_nouser_xattr, 96 Opt_acl, 97 Opt_noacl, 98 Opt_active_logs, 99 Opt_disable_ext_identify, 100 Opt_inline_xattr, 101 Opt_noinline_xattr, 102 Opt_inline_xattr_size, 103 Opt_inline_data, 104 Opt_inline_dentry, 105 Opt_noinline_dentry, 106 Opt_flush_merge, 107 Opt_noflush_merge, 108 Opt_nobarrier, 109 Opt_fastboot, 110 Opt_extent_cache, 111 Opt_noextent_cache, 112 Opt_noinline_data, 113 Opt_data_flush, 114 Opt_reserve_root, 115 Opt_resgid, 116 Opt_resuid, 117 Opt_mode, 118 Opt_io_size_bits, 119 Opt_fault_injection, 120 Opt_fault_type, 121 Opt_lazytime, 122 Opt_nolazytime, 123 Opt_quota, 124 Opt_noquota, 125 Opt_usrquota, 126 Opt_grpquota, 127 Opt_prjquota, 128 Opt_usrjquota, 129 Opt_grpjquota, 130 Opt_prjjquota, 131 Opt_offusrjquota, 132 Opt_offgrpjquota, 133 Opt_offprjjquota, 134 Opt_jqfmt_vfsold, 135 Opt_jqfmt_vfsv0, 136 Opt_jqfmt_vfsv1, 137 Opt_whint, 138 Opt_alloc, 139 Opt_fsync, 140 Opt_test_dummy_encryption, 141 Opt_inlinecrypt, 142 Opt_checkpoint_disable, 143 Opt_checkpoint_disable_cap, 144 Opt_checkpoint_disable_cap_perc, 145 Opt_checkpoint_enable, 146 Opt_checkpoint_merge, 147 Opt_nocheckpoint_merge, 148 Opt_compress_algorithm, 149 Opt_compress_log_size, 150 Opt_compress_extension, 151 Opt_nocompress_extension, 152 Opt_compress_chksum, 153 Opt_compress_mode, 154 Opt_compress_cache, 155 Opt_atgc, 156 Opt_gc_merge, 157 Opt_nogc_merge, 158 Opt_err, 159 }; 160 161 static match_table_t f2fs_tokens = { 162 {Opt_gc_background, "background_gc=%s"}, 163 {Opt_disable_roll_forward, "disable_roll_forward"}, 164 {Opt_norecovery, "norecovery"}, 165 {Opt_discard, "discard"}, 166 {Opt_nodiscard, "nodiscard"}, 167 {Opt_noheap, "no_heap"}, 168 {Opt_heap, "heap"}, 169 {Opt_user_xattr, "user_xattr"}, 170 {Opt_nouser_xattr, "nouser_xattr"}, 171 {Opt_acl, "acl"}, 172 {Opt_noacl, "noacl"}, 173 {Opt_active_logs, "active_logs=%u"}, 174 {Opt_disable_ext_identify, "disable_ext_identify"}, 175 {Opt_inline_xattr, "inline_xattr"}, 176 {Opt_noinline_xattr, "noinline_xattr"}, 177 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 178 {Opt_inline_data, "inline_data"}, 179 {Opt_inline_dentry, "inline_dentry"}, 180 {Opt_noinline_dentry, "noinline_dentry"}, 181 {Opt_flush_merge, "flush_merge"}, 182 {Opt_noflush_merge, "noflush_merge"}, 183 {Opt_nobarrier, "nobarrier"}, 184 {Opt_fastboot, "fastboot"}, 185 {Opt_extent_cache, "extent_cache"}, 186 {Opt_noextent_cache, "noextent_cache"}, 187 {Opt_noinline_data, "noinline_data"}, 188 {Opt_data_flush, "data_flush"}, 189 {Opt_reserve_root, "reserve_root=%u"}, 190 {Opt_resgid, "resgid=%u"}, 191 {Opt_resuid, "resuid=%u"}, 192 {Opt_mode, "mode=%s"}, 193 {Opt_io_size_bits, "io_bits=%u"}, 194 {Opt_fault_injection, "fault_injection=%u"}, 195 {Opt_fault_type, "fault_type=%u"}, 196 {Opt_lazytime, "lazytime"}, 197 {Opt_nolazytime, "nolazytime"}, 198 {Opt_quota, "quota"}, 199 {Opt_noquota, "noquota"}, 200 {Opt_usrquota, "usrquota"}, 201 {Opt_grpquota, "grpquota"}, 202 {Opt_prjquota, "prjquota"}, 203 {Opt_usrjquota, "usrjquota=%s"}, 204 {Opt_grpjquota, "grpjquota=%s"}, 205 {Opt_prjjquota, "prjjquota=%s"}, 206 {Opt_offusrjquota, "usrjquota="}, 207 {Opt_offgrpjquota, "grpjquota="}, 208 {Opt_offprjjquota, "prjjquota="}, 209 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 210 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 211 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 212 {Opt_whint, "whint_mode=%s"}, 213 {Opt_alloc, "alloc_mode=%s"}, 214 {Opt_fsync, "fsync_mode=%s"}, 215 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 216 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 217 {Opt_inlinecrypt, "inlinecrypt"}, 218 {Opt_checkpoint_disable, "checkpoint=disable"}, 219 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 220 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 221 {Opt_checkpoint_enable, "checkpoint=enable"}, 222 {Opt_checkpoint_merge, "checkpoint_merge"}, 223 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 224 {Opt_compress_algorithm, "compress_algorithm=%s"}, 225 {Opt_compress_log_size, "compress_log_size=%u"}, 226 {Opt_compress_extension, "compress_extension=%s"}, 227 {Opt_nocompress_extension, "nocompress_extension=%s"}, 228 {Opt_compress_chksum, "compress_chksum"}, 229 {Opt_compress_mode, "compress_mode=%s"}, 230 {Opt_compress_cache, "compress_cache"}, 231 {Opt_atgc, "atgc"}, 232 {Opt_gc_merge, "gc_merge"}, 233 {Opt_nogc_merge, "nogc_merge"}, 234 {Opt_err, NULL}, 235 }; 236 237 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 238 { 239 struct va_format vaf; 240 va_list args; 241 int level; 242 243 va_start(args, fmt); 244 245 level = printk_get_level(fmt); 246 vaf.fmt = printk_skip_level(fmt); 247 vaf.va = &args; 248 printk("%c%cF2FS-fs (%s): %pV\n", 249 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 250 251 va_end(args); 252 } 253 254 #ifdef CONFIG_UNICODE 255 static const struct f2fs_sb_encodings { 256 __u16 magic; 257 char *name; 258 char *version; 259 } f2fs_sb_encoding_map[] = { 260 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"}, 261 }; 262 263 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb, 264 const struct f2fs_sb_encodings **encoding, 265 __u16 *flags) 266 { 267 __u16 magic = le16_to_cpu(sb->s_encoding); 268 int i; 269 270 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 271 if (magic == f2fs_sb_encoding_map[i].magic) 272 break; 273 274 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map)) 275 return -EINVAL; 276 277 *encoding = &f2fs_sb_encoding_map[i]; 278 *flags = le16_to_cpu(sb->s_encoding_flags); 279 280 return 0; 281 } 282 283 struct kmem_cache *f2fs_cf_name_slab; 284 static int __init f2fs_create_casefold_cache(void) 285 { 286 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 287 F2FS_NAME_LEN); 288 if (!f2fs_cf_name_slab) 289 return -ENOMEM; 290 return 0; 291 } 292 293 static void f2fs_destroy_casefold_cache(void) 294 { 295 kmem_cache_destroy(f2fs_cf_name_slab); 296 } 297 #else 298 static int __init f2fs_create_casefold_cache(void) { return 0; } 299 static void f2fs_destroy_casefold_cache(void) { } 300 #endif 301 302 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 303 { 304 block_t limit = min((sbi->user_block_count << 1) / 1000, 305 sbi->user_block_count - sbi->reserved_blocks); 306 307 /* limit is 0.2% */ 308 if (test_opt(sbi, RESERVE_ROOT) && 309 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 310 F2FS_OPTION(sbi).root_reserved_blocks = limit; 311 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 312 F2FS_OPTION(sbi).root_reserved_blocks); 313 } 314 if (!test_opt(sbi, RESERVE_ROOT) && 315 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 316 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 317 !gid_eq(F2FS_OPTION(sbi).s_resgid, 318 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 319 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 320 from_kuid_munged(&init_user_ns, 321 F2FS_OPTION(sbi).s_resuid), 322 from_kgid_munged(&init_user_ns, 323 F2FS_OPTION(sbi).s_resgid)); 324 } 325 326 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 327 { 328 if (!F2FS_OPTION(sbi).unusable_cap_perc) 329 return; 330 331 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 332 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 333 else 334 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 335 F2FS_OPTION(sbi).unusable_cap_perc; 336 337 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 338 F2FS_OPTION(sbi).unusable_cap, 339 F2FS_OPTION(sbi).unusable_cap_perc); 340 } 341 342 static void init_once(void *foo) 343 { 344 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 345 346 inode_init_once(&fi->vfs_inode); 347 } 348 349 #ifdef CONFIG_QUOTA 350 static const char * const quotatypes[] = INITQFNAMES; 351 #define QTYPE2NAME(t) (quotatypes[t]) 352 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 353 substring_t *args) 354 { 355 struct f2fs_sb_info *sbi = F2FS_SB(sb); 356 char *qname; 357 int ret = -EINVAL; 358 359 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 360 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 361 return -EINVAL; 362 } 363 if (f2fs_sb_has_quota_ino(sbi)) { 364 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 365 return 0; 366 } 367 368 qname = match_strdup(args); 369 if (!qname) { 370 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 371 return -ENOMEM; 372 } 373 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 374 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 375 ret = 0; 376 else 377 f2fs_err(sbi, "%s quota file already specified", 378 QTYPE2NAME(qtype)); 379 goto errout; 380 } 381 if (strchr(qname, '/')) { 382 f2fs_err(sbi, "quotafile must be on filesystem root"); 383 goto errout; 384 } 385 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 386 set_opt(sbi, QUOTA); 387 return 0; 388 errout: 389 kfree(qname); 390 return ret; 391 } 392 393 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 394 { 395 struct f2fs_sb_info *sbi = F2FS_SB(sb); 396 397 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 398 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 399 return -EINVAL; 400 } 401 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 402 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 403 return 0; 404 } 405 406 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 407 { 408 /* 409 * We do the test below only for project quotas. 'usrquota' and 410 * 'grpquota' mount options are allowed even without quota feature 411 * to support legacy quotas in quota files. 412 */ 413 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 414 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 415 return -1; 416 } 417 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 418 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 419 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 420 if (test_opt(sbi, USRQUOTA) && 421 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 422 clear_opt(sbi, USRQUOTA); 423 424 if (test_opt(sbi, GRPQUOTA) && 425 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 426 clear_opt(sbi, GRPQUOTA); 427 428 if (test_opt(sbi, PRJQUOTA) && 429 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 430 clear_opt(sbi, PRJQUOTA); 431 432 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 433 test_opt(sbi, PRJQUOTA)) { 434 f2fs_err(sbi, "old and new quota format mixing"); 435 return -1; 436 } 437 438 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 439 f2fs_err(sbi, "journaled quota format not specified"); 440 return -1; 441 } 442 } 443 444 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 445 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 446 F2FS_OPTION(sbi).s_jquota_fmt = 0; 447 } 448 return 0; 449 } 450 #endif 451 452 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 453 const char *opt, 454 const substring_t *arg, 455 bool is_remount) 456 { 457 struct f2fs_sb_info *sbi = F2FS_SB(sb); 458 #ifdef CONFIG_FS_ENCRYPTION 459 int err; 460 461 if (!f2fs_sb_has_encrypt(sbi)) { 462 f2fs_err(sbi, "Encrypt feature is off"); 463 return -EINVAL; 464 } 465 466 /* 467 * This mount option is just for testing, and it's not worthwhile to 468 * implement the extra complexity (e.g. RCU protection) that would be 469 * needed to allow it to be set or changed during remount. We do allow 470 * it to be specified during remount, but only if there is no change. 471 */ 472 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) { 473 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 474 return -EINVAL; 475 } 476 err = fscrypt_set_test_dummy_encryption( 477 sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy); 478 if (err) { 479 if (err == -EEXIST) 480 f2fs_warn(sbi, 481 "Can't change test_dummy_encryption on remount"); 482 else if (err == -EINVAL) 483 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 484 opt); 485 else 486 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 487 opt, err); 488 return -EINVAL; 489 } 490 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 491 #else 492 f2fs_warn(sbi, "Test dummy encryption mount option ignored"); 493 #endif 494 return 0; 495 } 496 497 #ifdef CONFIG_F2FS_FS_COMPRESSION 498 /* 499 * 1. The same extension name cannot not appear in both compress and non-compress extension 500 * at the same time. 501 * 2. If the compress extension specifies all files, the types specified by the non-compress 502 * extension will be treated as special cases and will not be compressed. 503 * 3. Don't allow the non-compress extension specifies all files. 504 */ 505 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 506 { 507 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 508 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 509 int ext_cnt, noext_cnt, index = 0, no_index = 0; 510 511 ext = F2FS_OPTION(sbi).extensions; 512 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 513 noext = F2FS_OPTION(sbi).noextensions; 514 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 515 516 if (!noext_cnt) 517 return 0; 518 519 for (no_index = 0; no_index < noext_cnt; no_index++) { 520 if (!strcasecmp("*", noext[no_index])) { 521 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 522 return -EINVAL; 523 } 524 for (index = 0; index < ext_cnt; index++) { 525 if (!strcasecmp(ext[index], noext[no_index])) { 526 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 527 ext[index]); 528 return -EINVAL; 529 } 530 } 531 } 532 return 0; 533 } 534 535 #ifdef CONFIG_F2FS_FS_LZ4 536 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 537 { 538 #ifdef CONFIG_F2FS_FS_LZ4HC 539 unsigned int level; 540 #endif 541 542 if (strlen(str) == 3) { 543 F2FS_OPTION(sbi).compress_level = 0; 544 return 0; 545 } 546 547 #ifdef CONFIG_F2FS_FS_LZ4HC 548 str += 3; 549 550 if (str[0] != ':') { 551 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 552 return -EINVAL; 553 } 554 if (kstrtouint(str + 1, 10, &level)) 555 return -EINVAL; 556 557 if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) { 558 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 559 return -EINVAL; 560 } 561 562 F2FS_OPTION(sbi).compress_level = level; 563 return 0; 564 #else 565 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 566 return -EINVAL; 567 #endif 568 } 569 #endif 570 571 #ifdef CONFIG_F2FS_FS_ZSTD 572 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 573 { 574 unsigned int level; 575 int len = 4; 576 577 if (strlen(str) == len) { 578 F2FS_OPTION(sbi).compress_level = 0; 579 return 0; 580 } 581 582 str += len; 583 584 if (str[0] != ':') { 585 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 586 return -EINVAL; 587 } 588 if (kstrtouint(str + 1, 10, &level)) 589 return -EINVAL; 590 591 if (!level || level > ZSTD_maxCLevel()) { 592 f2fs_info(sbi, "invalid zstd compress level: %d", level); 593 return -EINVAL; 594 } 595 596 F2FS_OPTION(sbi).compress_level = level; 597 return 0; 598 } 599 #endif 600 #endif 601 602 static int parse_options(struct super_block *sb, char *options, bool is_remount) 603 { 604 struct f2fs_sb_info *sbi = F2FS_SB(sb); 605 substring_t args[MAX_OPT_ARGS]; 606 #ifdef CONFIG_F2FS_FS_COMPRESSION 607 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 608 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 609 int ext_cnt, noext_cnt; 610 #endif 611 char *p, *name; 612 int arg = 0; 613 kuid_t uid; 614 kgid_t gid; 615 int ret; 616 617 if (!options) 618 goto default_check; 619 620 while ((p = strsep(&options, ",")) != NULL) { 621 int token; 622 623 if (!*p) 624 continue; 625 /* 626 * Initialize args struct so we know whether arg was 627 * found; some options take optional arguments. 628 */ 629 args[0].to = args[0].from = NULL; 630 token = match_token(p, f2fs_tokens, args); 631 632 switch (token) { 633 case Opt_gc_background: 634 name = match_strdup(&args[0]); 635 636 if (!name) 637 return -ENOMEM; 638 if (!strcmp(name, "on")) { 639 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 640 } else if (!strcmp(name, "off")) { 641 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 642 } else if (!strcmp(name, "sync")) { 643 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 644 } else { 645 kfree(name); 646 return -EINVAL; 647 } 648 kfree(name); 649 break; 650 case Opt_disable_roll_forward: 651 set_opt(sbi, DISABLE_ROLL_FORWARD); 652 break; 653 case Opt_norecovery: 654 /* this option mounts f2fs with ro */ 655 set_opt(sbi, NORECOVERY); 656 if (!f2fs_readonly(sb)) 657 return -EINVAL; 658 break; 659 case Opt_discard: 660 set_opt(sbi, DISCARD); 661 break; 662 case Opt_nodiscard: 663 if (f2fs_sb_has_blkzoned(sbi)) { 664 f2fs_warn(sbi, "discard is required for zoned block devices"); 665 return -EINVAL; 666 } 667 clear_opt(sbi, DISCARD); 668 break; 669 case Opt_noheap: 670 set_opt(sbi, NOHEAP); 671 break; 672 case Opt_heap: 673 clear_opt(sbi, NOHEAP); 674 break; 675 #ifdef CONFIG_F2FS_FS_XATTR 676 case Opt_user_xattr: 677 set_opt(sbi, XATTR_USER); 678 break; 679 case Opt_nouser_xattr: 680 clear_opt(sbi, XATTR_USER); 681 break; 682 case Opt_inline_xattr: 683 set_opt(sbi, INLINE_XATTR); 684 break; 685 case Opt_noinline_xattr: 686 clear_opt(sbi, INLINE_XATTR); 687 break; 688 case Opt_inline_xattr_size: 689 if (args->from && match_int(args, &arg)) 690 return -EINVAL; 691 set_opt(sbi, INLINE_XATTR_SIZE); 692 F2FS_OPTION(sbi).inline_xattr_size = arg; 693 break; 694 #else 695 case Opt_user_xattr: 696 f2fs_info(sbi, "user_xattr options not supported"); 697 break; 698 case Opt_nouser_xattr: 699 f2fs_info(sbi, "nouser_xattr options not supported"); 700 break; 701 case Opt_inline_xattr: 702 f2fs_info(sbi, "inline_xattr options not supported"); 703 break; 704 case Opt_noinline_xattr: 705 f2fs_info(sbi, "noinline_xattr options not supported"); 706 break; 707 #endif 708 #ifdef CONFIG_F2FS_FS_POSIX_ACL 709 case Opt_acl: 710 set_opt(sbi, POSIX_ACL); 711 break; 712 case Opt_noacl: 713 clear_opt(sbi, POSIX_ACL); 714 break; 715 #else 716 case Opt_acl: 717 f2fs_info(sbi, "acl options not supported"); 718 break; 719 case Opt_noacl: 720 f2fs_info(sbi, "noacl options not supported"); 721 break; 722 #endif 723 case Opt_active_logs: 724 if (args->from && match_int(args, &arg)) 725 return -EINVAL; 726 if (arg != 2 && arg != 4 && 727 arg != NR_CURSEG_PERSIST_TYPE) 728 return -EINVAL; 729 F2FS_OPTION(sbi).active_logs = arg; 730 break; 731 case Opt_disable_ext_identify: 732 set_opt(sbi, DISABLE_EXT_IDENTIFY); 733 break; 734 case Opt_inline_data: 735 set_opt(sbi, INLINE_DATA); 736 break; 737 case Opt_inline_dentry: 738 set_opt(sbi, INLINE_DENTRY); 739 break; 740 case Opt_noinline_dentry: 741 clear_opt(sbi, INLINE_DENTRY); 742 break; 743 case Opt_flush_merge: 744 set_opt(sbi, FLUSH_MERGE); 745 break; 746 case Opt_noflush_merge: 747 clear_opt(sbi, FLUSH_MERGE); 748 break; 749 case Opt_nobarrier: 750 set_opt(sbi, NOBARRIER); 751 break; 752 case Opt_fastboot: 753 set_opt(sbi, FASTBOOT); 754 break; 755 case Opt_extent_cache: 756 set_opt(sbi, EXTENT_CACHE); 757 break; 758 case Opt_noextent_cache: 759 clear_opt(sbi, EXTENT_CACHE); 760 break; 761 case Opt_noinline_data: 762 clear_opt(sbi, INLINE_DATA); 763 break; 764 case Opt_data_flush: 765 set_opt(sbi, DATA_FLUSH); 766 break; 767 case Opt_reserve_root: 768 if (args->from && match_int(args, &arg)) 769 return -EINVAL; 770 if (test_opt(sbi, RESERVE_ROOT)) { 771 f2fs_info(sbi, "Preserve previous reserve_root=%u", 772 F2FS_OPTION(sbi).root_reserved_blocks); 773 } else { 774 F2FS_OPTION(sbi).root_reserved_blocks = arg; 775 set_opt(sbi, RESERVE_ROOT); 776 } 777 break; 778 case Opt_resuid: 779 if (args->from && match_int(args, &arg)) 780 return -EINVAL; 781 uid = make_kuid(current_user_ns(), arg); 782 if (!uid_valid(uid)) { 783 f2fs_err(sbi, "Invalid uid value %d", arg); 784 return -EINVAL; 785 } 786 F2FS_OPTION(sbi).s_resuid = uid; 787 break; 788 case Opt_resgid: 789 if (args->from && match_int(args, &arg)) 790 return -EINVAL; 791 gid = make_kgid(current_user_ns(), arg); 792 if (!gid_valid(gid)) { 793 f2fs_err(sbi, "Invalid gid value %d", arg); 794 return -EINVAL; 795 } 796 F2FS_OPTION(sbi).s_resgid = gid; 797 break; 798 case Opt_mode: 799 name = match_strdup(&args[0]); 800 801 if (!name) 802 return -ENOMEM; 803 if (!strcmp(name, "adaptive")) { 804 if (f2fs_sb_has_blkzoned(sbi)) { 805 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 806 kfree(name); 807 return -EINVAL; 808 } 809 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 810 } else if (!strcmp(name, "lfs")) { 811 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 812 } else { 813 kfree(name); 814 return -EINVAL; 815 } 816 kfree(name); 817 break; 818 case Opt_io_size_bits: 819 if (args->from && match_int(args, &arg)) 820 return -EINVAL; 821 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) { 822 f2fs_warn(sbi, "Not support %d, larger than %d", 823 1 << arg, BIO_MAX_VECS); 824 return -EINVAL; 825 } 826 F2FS_OPTION(sbi).write_io_size_bits = arg; 827 break; 828 #ifdef CONFIG_F2FS_FAULT_INJECTION 829 case Opt_fault_injection: 830 if (args->from && match_int(args, &arg)) 831 return -EINVAL; 832 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 833 set_opt(sbi, FAULT_INJECTION); 834 break; 835 836 case Opt_fault_type: 837 if (args->from && match_int(args, &arg)) 838 return -EINVAL; 839 f2fs_build_fault_attr(sbi, 0, arg); 840 set_opt(sbi, FAULT_INJECTION); 841 break; 842 #else 843 case Opt_fault_injection: 844 f2fs_info(sbi, "fault_injection options not supported"); 845 break; 846 847 case Opt_fault_type: 848 f2fs_info(sbi, "fault_type options not supported"); 849 break; 850 #endif 851 case Opt_lazytime: 852 sb->s_flags |= SB_LAZYTIME; 853 break; 854 case Opt_nolazytime: 855 sb->s_flags &= ~SB_LAZYTIME; 856 break; 857 #ifdef CONFIG_QUOTA 858 case Opt_quota: 859 case Opt_usrquota: 860 set_opt(sbi, USRQUOTA); 861 break; 862 case Opt_grpquota: 863 set_opt(sbi, GRPQUOTA); 864 break; 865 case Opt_prjquota: 866 set_opt(sbi, PRJQUOTA); 867 break; 868 case Opt_usrjquota: 869 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 870 if (ret) 871 return ret; 872 break; 873 case Opt_grpjquota: 874 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 875 if (ret) 876 return ret; 877 break; 878 case Opt_prjjquota: 879 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 880 if (ret) 881 return ret; 882 break; 883 case Opt_offusrjquota: 884 ret = f2fs_clear_qf_name(sb, USRQUOTA); 885 if (ret) 886 return ret; 887 break; 888 case Opt_offgrpjquota: 889 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 890 if (ret) 891 return ret; 892 break; 893 case Opt_offprjjquota: 894 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 895 if (ret) 896 return ret; 897 break; 898 case Opt_jqfmt_vfsold: 899 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 900 break; 901 case Opt_jqfmt_vfsv0: 902 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 903 break; 904 case Opt_jqfmt_vfsv1: 905 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 906 break; 907 case Opt_noquota: 908 clear_opt(sbi, QUOTA); 909 clear_opt(sbi, USRQUOTA); 910 clear_opt(sbi, GRPQUOTA); 911 clear_opt(sbi, PRJQUOTA); 912 break; 913 #else 914 case Opt_quota: 915 case Opt_usrquota: 916 case Opt_grpquota: 917 case Opt_prjquota: 918 case Opt_usrjquota: 919 case Opt_grpjquota: 920 case Opt_prjjquota: 921 case Opt_offusrjquota: 922 case Opt_offgrpjquota: 923 case Opt_offprjjquota: 924 case Opt_jqfmt_vfsold: 925 case Opt_jqfmt_vfsv0: 926 case Opt_jqfmt_vfsv1: 927 case Opt_noquota: 928 f2fs_info(sbi, "quota operations not supported"); 929 break; 930 #endif 931 case Opt_whint: 932 name = match_strdup(&args[0]); 933 if (!name) 934 return -ENOMEM; 935 if (!strcmp(name, "user-based")) { 936 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 937 } else if (!strcmp(name, "off")) { 938 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 939 } else if (!strcmp(name, "fs-based")) { 940 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 941 } else { 942 kfree(name); 943 return -EINVAL; 944 } 945 kfree(name); 946 break; 947 case Opt_alloc: 948 name = match_strdup(&args[0]); 949 if (!name) 950 return -ENOMEM; 951 952 if (!strcmp(name, "default")) { 953 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 954 } else if (!strcmp(name, "reuse")) { 955 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 956 } else { 957 kfree(name); 958 return -EINVAL; 959 } 960 kfree(name); 961 break; 962 case Opt_fsync: 963 name = match_strdup(&args[0]); 964 if (!name) 965 return -ENOMEM; 966 if (!strcmp(name, "posix")) { 967 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 968 } else if (!strcmp(name, "strict")) { 969 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 970 } else if (!strcmp(name, "nobarrier")) { 971 F2FS_OPTION(sbi).fsync_mode = 972 FSYNC_MODE_NOBARRIER; 973 } else { 974 kfree(name); 975 return -EINVAL; 976 } 977 kfree(name); 978 break; 979 case Opt_test_dummy_encryption: 980 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 981 is_remount); 982 if (ret) 983 return ret; 984 break; 985 case Opt_inlinecrypt: 986 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 987 sb->s_flags |= SB_INLINECRYPT; 988 #else 989 f2fs_info(sbi, "inline encryption not supported"); 990 #endif 991 break; 992 case Opt_checkpoint_disable_cap_perc: 993 if (args->from && match_int(args, &arg)) 994 return -EINVAL; 995 if (arg < 0 || arg > 100) 996 return -EINVAL; 997 F2FS_OPTION(sbi).unusable_cap_perc = arg; 998 set_opt(sbi, DISABLE_CHECKPOINT); 999 break; 1000 case Opt_checkpoint_disable_cap: 1001 if (args->from && match_int(args, &arg)) 1002 return -EINVAL; 1003 F2FS_OPTION(sbi).unusable_cap = arg; 1004 set_opt(sbi, DISABLE_CHECKPOINT); 1005 break; 1006 case Opt_checkpoint_disable: 1007 set_opt(sbi, DISABLE_CHECKPOINT); 1008 break; 1009 case Opt_checkpoint_enable: 1010 clear_opt(sbi, DISABLE_CHECKPOINT); 1011 break; 1012 case Opt_checkpoint_merge: 1013 set_opt(sbi, MERGE_CHECKPOINT); 1014 break; 1015 case Opt_nocheckpoint_merge: 1016 clear_opt(sbi, MERGE_CHECKPOINT); 1017 break; 1018 #ifdef CONFIG_F2FS_FS_COMPRESSION 1019 case Opt_compress_algorithm: 1020 if (!f2fs_sb_has_compression(sbi)) { 1021 f2fs_info(sbi, "Image doesn't support compression"); 1022 break; 1023 } 1024 name = match_strdup(&args[0]); 1025 if (!name) 1026 return -ENOMEM; 1027 if (!strcmp(name, "lzo")) { 1028 #ifdef CONFIG_F2FS_FS_LZO 1029 F2FS_OPTION(sbi).compress_level = 0; 1030 F2FS_OPTION(sbi).compress_algorithm = 1031 COMPRESS_LZO; 1032 #else 1033 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1034 #endif 1035 } else if (!strncmp(name, "lz4", 3)) { 1036 #ifdef CONFIG_F2FS_FS_LZ4 1037 ret = f2fs_set_lz4hc_level(sbi, name); 1038 if (ret) { 1039 kfree(name); 1040 return -EINVAL; 1041 } 1042 F2FS_OPTION(sbi).compress_algorithm = 1043 COMPRESS_LZ4; 1044 #else 1045 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1046 #endif 1047 } else if (!strncmp(name, "zstd", 4)) { 1048 #ifdef CONFIG_F2FS_FS_ZSTD 1049 ret = f2fs_set_zstd_level(sbi, name); 1050 if (ret) { 1051 kfree(name); 1052 return -EINVAL; 1053 } 1054 F2FS_OPTION(sbi).compress_algorithm = 1055 COMPRESS_ZSTD; 1056 #else 1057 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1058 #endif 1059 } else if (!strcmp(name, "lzo-rle")) { 1060 #ifdef CONFIG_F2FS_FS_LZORLE 1061 F2FS_OPTION(sbi).compress_level = 0; 1062 F2FS_OPTION(sbi).compress_algorithm = 1063 COMPRESS_LZORLE; 1064 #else 1065 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1066 #endif 1067 } else { 1068 kfree(name); 1069 return -EINVAL; 1070 } 1071 kfree(name); 1072 break; 1073 case Opt_compress_log_size: 1074 if (!f2fs_sb_has_compression(sbi)) { 1075 f2fs_info(sbi, "Image doesn't support compression"); 1076 break; 1077 } 1078 if (args->from && match_int(args, &arg)) 1079 return -EINVAL; 1080 if (arg < MIN_COMPRESS_LOG_SIZE || 1081 arg > MAX_COMPRESS_LOG_SIZE) { 1082 f2fs_err(sbi, 1083 "Compress cluster log size is out of range"); 1084 return -EINVAL; 1085 } 1086 F2FS_OPTION(sbi).compress_log_size = arg; 1087 break; 1088 case Opt_compress_extension: 1089 if (!f2fs_sb_has_compression(sbi)) { 1090 f2fs_info(sbi, "Image doesn't support compression"); 1091 break; 1092 } 1093 name = match_strdup(&args[0]); 1094 if (!name) 1095 return -ENOMEM; 1096 1097 ext = F2FS_OPTION(sbi).extensions; 1098 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1099 1100 if (strlen(name) >= F2FS_EXTENSION_LEN || 1101 ext_cnt >= COMPRESS_EXT_NUM) { 1102 f2fs_err(sbi, 1103 "invalid extension length/number"); 1104 kfree(name); 1105 return -EINVAL; 1106 } 1107 1108 strcpy(ext[ext_cnt], name); 1109 F2FS_OPTION(sbi).compress_ext_cnt++; 1110 kfree(name); 1111 break; 1112 case Opt_nocompress_extension: 1113 if (!f2fs_sb_has_compression(sbi)) { 1114 f2fs_info(sbi, "Image doesn't support compression"); 1115 break; 1116 } 1117 name = match_strdup(&args[0]); 1118 if (!name) 1119 return -ENOMEM; 1120 1121 noext = F2FS_OPTION(sbi).noextensions; 1122 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1123 1124 if (strlen(name) >= F2FS_EXTENSION_LEN || 1125 noext_cnt >= COMPRESS_EXT_NUM) { 1126 f2fs_err(sbi, 1127 "invalid extension length/number"); 1128 kfree(name); 1129 return -EINVAL; 1130 } 1131 1132 strcpy(noext[noext_cnt], name); 1133 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1134 kfree(name); 1135 break; 1136 case Opt_compress_chksum: 1137 F2FS_OPTION(sbi).compress_chksum = true; 1138 break; 1139 case Opt_compress_mode: 1140 name = match_strdup(&args[0]); 1141 if (!name) 1142 return -ENOMEM; 1143 if (!strcmp(name, "fs")) { 1144 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1145 } else if (!strcmp(name, "user")) { 1146 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1147 } else { 1148 kfree(name); 1149 return -EINVAL; 1150 } 1151 kfree(name); 1152 break; 1153 case Opt_compress_cache: 1154 set_opt(sbi, COMPRESS_CACHE); 1155 break; 1156 #else 1157 case Opt_compress_algorithm: 1158 case Opt_compress_log_size: 1159 case Opt_compress_extension: 1160 case Opt_nocompress_extension: 1161 case Opt_compress_chksum: 1162 case Opt_compress_mode: 1163 case Opt_compress_cache: 1164 f2fs_info(sbi, "compression options not supported"); 1165 break; 1166 #endif 1167 case Opt_atgc: 1168 set_opt(sbi, ATGC); 1169 break; 1170 case Opt_gc_merge: 1171 set_opt(sbi, GC_MERGE); 1172 break; 1173 case Opt_nogc_merge: 1174 clear_opt(sbi, GC_MERGE); 1175 break; 1176 default: 1177 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1178 p); 1179 return -EINVAL; 1180 } 1181 } 1182 default_check: 1183 #ifdef CONFIG_QUOTA 1184 if (f2fs_check_quota_options(sbi)) 1185 return -EINVAL; 1186 #else 1187 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1188 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1189 return -EINVAL; 1190 } 1191 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1192 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1193 return -EINVAL; 1194 } 1195 #endif 1196 #ifndef CONFIG_UNICODE 1197 if (f2fs_sb_has_casefold(sbi)) { 1198 f2fs_err(sbi, 1199 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1200 return -EINVAL; 1201 } 1202 #endif 1203 /* 1204 * The BLKZONED feature indicates that the drive was formatted with 1205 * zone alignment optimization. This is optional for host-aware 1206 * devices, but mandatory for host-managed zoned block devices. 1207 */ 1208 #ifndef CONFIG_BLK_DEV_ZONED 1209 if (f2fs_sb_has_blkzoned(sbi)) { 1210 f2fs_err(sbi, "Zoned block device support is not enabled"); 1211 return -EINVAL; 1212 } 1213 #endif 1214 1215 #ifdef CONFIG_F2FS_FS_COMPRESSION 1216 if (f2fs_test_compress_extension(sbi)) { 1217 f2fs_err(sbi, "invalid compress or nocompress extension"); 1218 return -EINVAL; 1219 } 1220 #endif 1221 1222 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1223 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 1224 F2FS_IO_SIZE_KB(sbi)); 1225 return -EINVAL; 1226 } 1227 1228 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1229 int min_size, max_size; 1230 1231 if (!f2fs_sb_has_extra_attr(sbi) || 1232 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1233 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1234 return -EINVAL; 1235 } 1236 if (!test_opt(sbi, INLINE_XATTR)) { 1237 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1238 return -EINVAL; 1239 } 1240 1241 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 1242 max_size = MAX_INLINE_XATTR_SIZE; 1243 1244 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1245 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1246 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1247 min_size, max_size); 1248 return -EINVAL; 1249 } 1250 } 1251 1252 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1253 f2fs_err(sbi, "LFS not compatible with checkpoint=disable"); 1254 return -EINVAL; 1255 } 1256 1257 /* Not pass down write hints if the number of active logs is lesser 1258 * than NR_CURSEG_PERSIST_TYPE. 1259 */ 1260 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 1261 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1262 1263 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1264 f2fs_err(sbi, "Allow to mount readonly mode only"); 1265 return -EROFS; 1266 } 1267 return 0; 1268 } 1269 1270 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1271 { 1272 struct f2fs_inode_info *fi; 1273 1274 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 1275 if (!fi) 1276 return NULL; 1277 1278 init_once((void *) fi); 1279 1280 /* Initialize f2fs-specific inode info */ 1281 atomic_set(&fi->dirty_pages, 0); 1282 atomic_set(&fi->i_compr_blocks, 0); 1283 init_rwsem(&fi->i_sem); 1284 spin_lock_init(&fi->i_size_lock); 1285 INIT_LIST_HEAD(&fi->dirty_list); 1286 INIT_LIST_HEAD(&fi->gdirty_list); 1287 INIT_LIST_HEAD(&fi->inmem_ilist); 1288 INIT_LIST_HEAD(&fi->inmem_pages); 1289 mutex_init(&fi->inmem_lock); 1290 init_rwsem(&fi->i_gc_rwsem[READ]); 1291 init_rwsem(&fi->i_gc_rwsem[WRITE]); 1292 init_rwsem(&fi->i_xattr_sem); 1293 1294 /* Will be used by directory only */ 1295 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1296 1297 return &fi->vfs_inode; 1298 } 1299 1300 static int f2fs_drop_inode(struct inode *inode) 1301 { 1302 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1303 int ret; 1304 1305 /* 1306 * during filesystem shutdown, if checkpoint is disabled, 1307 * drop useless meta/node dirty pages. 1308 */ 1309 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1310 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1311 inode->i_ino == F2FS_META_INO(sbi)) { 1312 trace_f2fs_drop_inode(inode, 1); 1313 return 1; 1314 } 1315 } 1316 1317 /* 1318 * This is to avoid a deadlock condition like below. 1319 * writeback_single_inode(inode) 1320 * - f2fs_write_data_page 1321 * - f2fs_gc -> iput -> evict 1322 * - inode_wait_for_writeback(inode) 1323 */ 1324 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1325 if (!inode->i_nlink && !is_bad_inode(inode)) { 1326 /* to avoid evict_inode call simultaneously */ 1327 atomic_inc(&inode->i_count); 1328 spin_unlock(&inode->i_lock); 1329 1330 /* some remained atomic pages should discarded */ 1331 if (f2fs_is_atomic_file(inode)) 1332 f2fs_drop_inmem_pages(inode); 1333 1334 /* should remain fi->extent_tree for writepage */ 1335 f2fs_destroy_extent_node(inode); 1336 1337 sb_start_intwrite(inode->i_sb); 1338 f2fs_i_size_write(inode, 0); 1339 1340 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1341 inode, NULL, 0, DATA); 1342 truncate_inode_pages_final(inode->i_mapping); 1343 1344 if (F2FS_HAS_BLOCKS(inode)) 1345 f2fs_truncate(inode); 1346 1347 sb_end_intwrite(inode->i_sb); 1348 1349 spin_lock(&inode->i_lock); 1350 atomic_dec(&inode->i_count); 1351 } 1352 trace_f2fs_drop_inode(inode, 0); 1353 return 0; 1354 } 1355 ret = generic_drop_inode(inode); 1356 if (!ret) 1357 ret = fscrypt_drop_inode(inode); 1358 trace_f2fs_drop_inode(inode, ret); 1359 return ret; 1360 } 1361 1362 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1363 { 1364 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1365 int ret = 0; 1366 1367 spin_lock(&sbi->inode_lock[DIRTY_META]); 1368 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1369 ret = 1; 1370 } else { 1371 set_inode_flag(inode, FI_DIRTY_INODE); 1372 stat_inc_dirty_inode(sbi, DIRTY_META); 1373 } 1374 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1375 list_add_tail(&F2FS_I(inode)->gdirty_list, 1376 &sbi->inode_list[DIRTY_META]); 1377 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1378 } 1379 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1380 return ret; 1381 } 1382 1383 void f2fs_inode_synced(struct inode *inode) 1384 { 1385 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1386 1387 spin_lock(&sbi->inode_lock[DIRTY_META]); 1388 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1389 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1390 return; 1391 } 1392 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1393 list_del_init(&F2FS_I(inode)->gdirty_list); 1394 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1395 } 1396 clear_inode_flag(inode, FI_DIRTY_INODE); 1397 clear_inode_flag(inode, FI_AUTO_RECOVER); 1398 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1399 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1400 } 1401 1402 /* 1403 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1404 * 1405 * We should call set_dirty_inode to write the dirty inode through write_inode. 1406 */ 1407 static void f2fs_dirty_inode(struct inode *inode, int flags) 1408 { 1409 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1410 1411 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1412 inode->i_ino == F2FS_META_INO(sbi)) 1413 return; 1414 1415 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1416 clear_inode_flag(inode, FI_AUTO_RECOVER); 1417 1418 f2fs_inode_dirtied(inode, false); 1419 } 1420 1421 static void f2fs_free_inode(struct inode *inode) 1422 { 1423 fscrypt_free_inode(inode); 1424 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1425 } 1426 1427 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1428 { 1429 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1430 percpu_counter_destroy(&sbi->total_valid_inode_count); 1431 } 1432 1433 static void destroy_device_list(struct f2fs_sb_info *sbi) 1434 { 1435 int i; 1436 1437 for (i = 0; i < sbi->s_ndevs; i++) { 1438 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1439 #ifdef CONFIG_BLK_DEV_ZONED 1440 kvfree(FDEV(i).blkz_seq); 1441 kfree(FDEV(i).zone_capacity_blocks); 1442 #endif 1443 } 1444 kvfree(sbi->devs); 1445 } 1446 1447 static void f2fs_put_super(struct super_block *sb) 1448 { 1449 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1450 int i; 1451 bool dropped; 1452 1453 /* unregister procfs/sysfs entries in advance to avoid race case */ 1454 f2fs_unregister_sysfs(sbi); 1455 1456 f2fs_quota_off_umount(sb); 1457 1458 /* prevent remaining shrinker jobs */ 1459 mutex_lock(&sbi->umount_mutex); 1460 1461 /* 1462 * flush all issued checkpoints and stop checkpoint issue thread. 1463 * after then, all checkpoints should be done by each process context. 1464 */ 1465 f2fs_stop_ckpt_thread(sbi); 1466 1467 /* 1468 * We don't need to do checkpoint when superblock is clean. 1469 * But, the previous checkpoint was not done by umount, it needs to do 1470 * clean checkpoint again. 1471 */ 1472 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1473 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1474 struct cp_control cpc = { 1475 .reason = CP_UMOUNT, 1476 }; 1477 f2fs_write_checkpoint(sbi, &cpc); 1478 } 1479 1480 /* be sure to wait for any on-going discard commands */ 1481 dropped = f2fs_issue_discard_timeout(sbi); 1482 1483 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1484 !sbi->discard_blks && !dropped) { 1485 struct cp_control cpc = { 1486 .reason = CP_UMOUNT | CP_TRIMMED, 1487 }; 1488 f2fs_write_checkpoint(sbi, &cpc); 1489 } 1490 1491 /* 1492 * normally superblock is clean, so we need to release this. 1493 * In addition, EIO will skip do checkpoint, we need this as well. 1494 */ 1495 f2fs_release_ino_entry(sbi, true); 1496 1497 f2fs_leave_shrinker(sbi); 1498 mutex_unlock(&sbi->umount_mutex); 1499 1500 /* our cp_error case, we can wait for any writeback page */ 1501 f2fs_flush_merged_writes(sbi); 1502 1503 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1504 1505 f2fs_bug_on(sbi, sbi->fsync_node_num); 1506 1507 f2fs_destroy_compress_inode(sbi); 1508 1509 iput(sbi->node_inode); 1510 sbi->node_inode = NULL; 1511 1512 iput(sbi->meta_inode); 1513 sbi->meta_inode = NULL; 1514 1515 /* 1516 * iput() can update stat information, if f2fs_write_checkpoint() 1517 * above failed with error. 1518 */ 1519 f2fs_destroy_stats(sbi); 1520 1521 /* destroy f2fs internal modules */ 1522 f2fs_destroy_node_manager(sbi); 1523 f2fs_destroy_segment_manager(sbi); 1524 1525 f2fs_destroy_post_read_wq(sbi); 1526 1527 kvfree(sbi->ckpt); 1528 1529 sb->s_fs_info = NULL; 1530 if (sbi->s_chksum_driver) 1531 crypto_free_shash(sbi->s_chksum_driver); 1532 kfree(sbi->raw_super); 1533 1534 destroy_device_list(sbi); 1535 f2fs_destroy_page_array_cache(sbi); 1536 f2fs_destroy_xattr_caches(sbi); 1537 mempool_destroy(sbi->write_io_dummy); 1538 #ifdef CONFIG_QUOTA 1539 for (i = 0; i < MAXQUOTAS; i++) 1540 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1541 #endif 1542 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1543 destroy_percpu_info(sbi); 1544 for (i = 0; i < NR_PAGE_TYPE; i++) 1545 kvfree(sbi->write_io[i]); 1546 #ifdef CONFIG_UNICODE 1547 utf8_unload(sb->s_encoding); 1548 #endif 1549 kfree(sbi); 1550 } 1551 1552 int f2fs_sync_fs(struct super_block *sb, int sync) 1553 { 1554 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1555 int err = 0; 1556 1557 if (unlikely(f2fs_cp_error(sbi))) 1558 return 0; 1559 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1560 return 0; 1561 1562 trace_f2fs_sync_fs(sb, sync); 1563 1564 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1565 return -EAGAIN; 1566 1567 if (sync) 1568 err = f2fs_issue_checkpoint(sbi); 1569 1570 return err; 1571 } 1572 1573 static int f2fs_freeze(struct super_block *sb) 1574 { 1575 if (f2fs_readonly(sb)) 1576 return 0; 1577 1578 /* IO error happened before */ 1579 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1580 return -EIO; 1581 1582 /* must be clean, since sync_filesystem() was already called */ 1583 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1584 return -EINVAL; 1585 1586 /* ensure no checkpoint required */ 1587 if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list)) 1588 return -EINVAL; 1589 return 0; 1590 } 1591 1592 static int f2fs_unfreeze(struct super_block *sb) 1593 { 1594 return 0; 1595 } 1596 1597 #ifdef CONFIG_QUOTA 1598 static int f2fs_statfs_project(struct super_block *sb, 1599 kprojid_t projid, struct kstatfs *buf) 1600 { 1601 struct kqid qid; 1602 struct dquot *dquot; 1603 u64 limit; 1604 u64 curblock; 1605 1606 qid = make_kqid_projid(projid); 1607 dquot = dqget(sb, qid); 1608 if (IS_ERR(dquot)) 1609 return PTR_ERR(dquot); 1610 spin_lock(&dquot->dq_dqb_lock); 1611 1612 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1613 dquot->dq_dqb.dqb_bhardlimit); 1614 if (limit) 1615 limit >>= sb->s_blocksize_bits; 1616 1617 if (limit && buf->f_blocks > limit) { 1618 curblock = (dquot->dq_dqb.dqb_curspace + 1619 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1620 buf->f_blocks = limit; 1621 buf->f_bfree = buf->f_bavail = 1622 (buf->f_blocks > curblock) ? 1623 (buf->f_blocks - curblock) : 0; 1624 } 1625 1626 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1627 dquot->dq_dqb.dqb_ihardlimit); 1628 1629 if (limit && buf->f_files > limit) { 1630 buf->f_files = limit; 1631 buf->f_ffree = 1632 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1633 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1634 } 1635 1636 spin_unlock(&dquot->dq_dqb_lock); 1637 dqput(dquot); 1638 return 0; 1639 } 1640 #endif 1641 1642 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1643 { 1644 struct super_block *sb = dentry->d_sb; 1645 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1646 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1647 block_t total_count, user_block_count, start_count; 1648 u64 avail_node_count; 1649 1650 total_count = le64_to_cpu(sbi->raw_super->block_count); 1651 user_block_count = sbi->user_block_count; 1652 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1653 buf->f_type = F2FS_SUPER_MAGIC; 1654 buf->f_bsize = sbi->blocksize; 1655 1656 buf->f_blocks = total_count - start_count; 1657 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1658 sbi->current_reserved_blocks; 1659 1660 spin_lock(&sbi->stat_lock); 1661 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1662 buf->f_bfree = 0; 1663 else 1664 buf->f_bfree -= sbi->unusable_block_count; 1665 spin_unlock(&sbi->stat_lock); 1666 1667 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1668 buf->f_bavail = buf->f_bfree - 1669 F2FS_OPTION(sbi).root_reserved_blocks; 1670 else 1671 buf->f_bavail = 0; 1672 1673 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1674 1675 if (avail_node_count > user_block_count) { 1676 buf->f_files = user_block_count; 1677 buf->f_ffree = buf->f_bavail; 1678 } else { 1679 buf->f_files = avail_node_count; 1680 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1681 buf->f_bavail); 1682 } 1683 1684 buf->f_namelen = F2FS_NAME_LEN; 1685 buf->f_fsid = u64_to_fsid(id); 1686 1687 #ifdef CONFIG_QUOTA 1688 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1689 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1690 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1691 } 1692 #endif 1693 return 0; 1694 } 1695 1696 static inline void f2fs_show_quota_options(struct seq_file *seq, 1697 struct super_block *sb) 1698 { 1699 #ifdef CONFIG_QUOTA 1700 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1701 1702 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1703 char *fmtname = ""; 1704 1705 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1706 case QFMT_VFS_OLD: 1707 fmtname = "vfsold"; 1708 break; 1709 case QFMT_VFS_V0: 1710 fmtname = "vfsv0"; 1711 break; 1712 case QFMT_VFS_V1: 1713 fmtname = "vfsv1"; 1714 break; 1715 } 1716 seq_printf(seq, ",jqfmt=%s", fmtname); 1717 } 1718 1719 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1720 seq_show_option(seq, "usrjquota", 1721 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1722 1723 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1724 seq_show_option(seq, "grpjquota", 1725 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1726 1727 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1728 seq_show_option(seq, "prjjquota", 1729 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1730 #endif 1731 } 1732 1733 #ifdef CONFIG_F2FS_FS_COMPRESSION 1734 static inline void f2fs_show_compress_options(struct seq_file *seq, 1735 struct super_block *sb) 1736 { 1737 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1738 char *algtype = ""; 1739 int i; 1740 1741 if (!f2fs_sb_has_compression(sbi)) 1742 return; 1743 1744 switch (F2FS_OPTION(sbi).compress_algorithm) { 1745 case COMPRESS_LZO: 1746 algtype = "lzo"; 1747 break; 1748 case COMPRESS_LZ4: 1749 algtype = "lz4"; 1750 break; 1751 case COMPRESS_ZSTD: 1752 algtype = "zstd"; 1753 break; 1754 case COMPRESS_LZORLE: 1755 algtype = "lzo-rle"; 1756 break; 1757 } 1758 seq_printf(seq, ",compress_algorithm=%s", algtype); 1759 1760 if (F2FS_OPTION(sbi).compress_level) 1761 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1762 1763 seq_printf(seq, ",compress_log_size=%u", 1764 F2FS_OPTION(sbi).compress_log_size); 1765 1766 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1767 seq_printf(seq, ",compress_extension=%s", 1768 F2FS_OPTION(sbi).extensions[i]); 1769 } 1770 1771 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1772 seq_printf(seq, ",nocompress_extension=%s", 1773 F2FS_OPTION(sbi).noextensions[i]); 1774 } 1775 1776 if (F2FS_OPTION(sbi).compress_chksum) 1777 seq_puts(seq, ",compress_chksum"); 1778 1779 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1780 seq_printf(seq, ",compress_mode=%s", "fs"); 1781 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1782 seq_printf(seq, ",compress_mode=%s", "user"); 1783 1784 if (test_opt(sbi, COMPRESS_CACHE)) 1785 seq_puts(seq, ",compress_cache"); 1786 } 1787 #endif 1788 1789 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1790 { 1791 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1792 1793 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1794 seq_printf(seq, ",background_gc=%s", "sync"); 1795 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1796 seq_printf(seq, ",background_gc=%s", "on"); 1797 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1798 seq_printf(seq, ",background_gc=%s", "off"); 1799 1800 if (test_opt(sbi, GC_MERGE)) 1801 seq_puts(seq, ",gc_merge"); 1802 1803 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1804 seq_puts(seq, ",disable_roll_forward"); 1805 if (test_opt(sbi, NORECOVERY)) 1806 seq_puts(seq, ",norecovery"); 1807 if (test_opt(sbi, DISCARD)) 1808 seq_puts(seq, ",discard"); 1809 else 1810 seq_puts(seq, ",nodiscard"); 1811 if (test_opt(sbi, NOHEAP)) 1812 seq_puts(seq, ",no_heap"); 1813 else 1814 seq_puts(seq, ",heap"); 1815 #ifdef CONFIG_F2FS_FS_XATTR 1816 if (test_opt(sbi, XATTR_USER)) 1817 seq_puts(seq, ",user_xattr"); 1818 else 1819 seq_puts(seq, ",nouser_xattr"); 1820 if (test_opt(sbi, INLINE_XATTR)) 1821 seq_puts(seq, ",inline_xattr"); 1822 else 1823 seq_puts(seq, ",noinline_xattr"); 1824 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1825 seq_printf(seq, ",inline_xattr_size=%u", 1826 F2FS_OPTION(sbi).inline_xattr_size); 1827 #endif 1828 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1829 if (test_opt(sbi, POSIX_ACL)) 1830 seq_puts(seq, ",acl"); 1831 else 1832 seq_puts(seq, ",noacl"); 1833 #endif 1834 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1835 seq_puts(seq, ",disable_ext_identify"); 1836 if (test_opt(sbi, INLINE_DATA)) 1837 seq_puts(seq, ",inline_data"); 1838 else 1839 seq_puts(seq, ",noinline_data"); 1840 if (test_opt(sbi, INLINE_DENTRY)) 1841 seq_puts(seq, ",inline_dentry"); 1842 else 1843 seq_puts(seq, ",noinline_dentry"); 1844 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1845 seq_puts(seq, ",flush_merge"); 1846 if (test_opt(sbi, NOBARRIER)) 1847 seq_puts(seq, ",nobarrier"); 1848 if (test_opt(sbi, FASTBOOT)) 1849 seq_puts(seq, ",fastboot"); 1850 if (test_opt(sbi, EXTENT_CACHE)) 1851 seq_puts(seq, ",extent_cache"); 1852 else 1853 seq_puts(seq, ",noextent_cache"); 1854 if (test_opt(sbi, DATA_FLUSH)) 1855 seq_puts(seq, ",data_flush"); 1856 1857 seq_puts(seq, ",mode="); 1858 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 1859 seq_puts(seq, "adaptive"); 1860 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 1861 seq_puts(seq, "lfs"); 1862 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1863 if (test_opt(sbi, RESERVE_ROOT)) 1864 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1865 F2FS_OPTION(sbi).root_reserved_blocks, 1866 from_kuid_munged(&init_user_ns, 1867 F2FS_OPTION(sbi).s_resuid), 1868 from_kgid_munged(&init_user_ns, 1869 F2FS_OPTION(sbi).s_resgid)); 1870 if (F2FS_IO_SIZE_BITS(sbi)) 1871 seq_printf(seq, ",io_bits=%u", 1872 F2FS_OPTION(sbi).write_io_size_bits); 1873 #ifdef CONFIG_F2FS_FAULT_INJECTION 1874 if (test_opt(sbi, FAULT_INJECTION)) { 1875 seq_printf(seq, ",fault_injection=%u", 1876 F2FS_OPTION(sbi).fault_info.inject_rate); 1877 seq_printf(seq, ",fault_type=%u", 1878 F2FS_OPTION(sbi).fault_info.inject_type); 1879 } 1880 #endif 1881 #ifdef CONFIG_QUOTA 1882 if (test_opt(sbi, QUOTA)) 1883 seq_puts(seq, ",quota"); 1884 if (test_opt(sbi, USRQUOTA)) 1885 seq_puts(seq, ",usrquota"); 1886 if (test_opt(sbi, GRPQUOTA)) 1887 seq_puts(seq, ",grpquota"); 1888 if (test_opt(sbi, PRJQUOTA)) 1889 seq_puts(seq, ",prjquota"); 1890 #endif 1891 f2fs_show_quota_options(seq, sbi->sb); 1892 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1893 seq_printf(seq, ",whint_mode=%s", "user-based"); 1894 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1895 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1896 1897 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 1898 1899 if (sbi->sb->s_flags & SB_INLINECRYPT) 1900 seq_puts(seq, ",inlinecrypt"); 1901 1902 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1903 seq_printf(seq, ",alloc_mode=%s", "default"); 1904 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1905 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1906 1907 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1908 seq_printf(seq, ",checkpoint=disable:%u", 1909 F2FS_OPTION(sbi).unusable_cap); 1910 if (test_opt(sbi, MERGE_CHECKPOINT)) 1911 seq_puts(seq, ",checkpoint_merge"); 1912 else 1913 seq_puts(seq, ",nocheckpoint_merge"); 1914 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1915 seq_printf(seq, ",fsync_mode=%s", "posix"); 1916 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1917 seq_printf(seq, ",fsync_mode=%s", "strict"); 1918 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1919 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1920 1921 #ifdef CONFIG_F2FS_FS_COMPRESSION 1922 f2fs_show_compress_options(seq, sbi->sb); 1923 #endif 1924 1925 if (test_opt(sbi, ATGC)) 1926 seq_puts(seq, ",atgc"); 1927 return 0; 1928 } 1929 1930 static void default_options(struct f2fs_sb_info *sbi) 1931 { 1932 /* init some FS parameters */ 1933 if (f2fs_sb_has_readonly(sbi)) 1934 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 1935 else 1936 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 1937 1938 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1939 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1940 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1941 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1942 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1943 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1944 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 1945 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 1946 F2FS_OPTION(sbi).compress_ext_cnt = 0; 1947 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1948 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 1949 1950 sbi->sb->s_flags &= ~SB_INLINECRYPT; 1951 1952 set_opt(sbi, INLINE_XATTR); 1953 set_opt(sbi, INLINE_DATA); 1954 set_opt(sbi, INLINE_DENTRY); 1955 set_opt(sbi, EXTENT_CACHE); 1956 set_opt(sbi, NOHEAP); 1957 clear_opt(sbi, DISABLE_CHECKPOINT); 1958 set_opt(sbi, MERGE_CHECKPOINT); 1959 F2FS_OPTION(sbi).unusable_cap = 0; 1960 sbi->sb->s_flags |= SB_LAZYTIME; 1961 set_opt(sbi, FLUSH_MERGE); 1962 set_opt(sbi, DISCARD); 1963 if (f2fs_sb_has_blkzoned(sbi)) 1964 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 1965 else 1966 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 1967 1968 #ifdef CONFIG_F2FS_FS_XATTR 1969 set_opt(sbi, XATTR_USER); 1970 #endif 1971 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1972 set_opt(sbi, POSIX_ACL); 1973 #endif 1974 1975 f2fs_build_fault_attr(sbi, 0, 0); 1976 } 1977 1978 #ifdef CONFIG_QUOTA 1979 static int f2fs_enable_quotas(struct super_block *sb); 1980 #endif 1981 1982 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1983 { 1984 unsigned int s_flags = sbi->sb->s_flags; 1985 struct cp_control cpc; 1986 int err = 0; 1987 int ret; 1988 block_t unusable; 1989 1990 if (s_flags & SB_RDONLY) { 1991 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 1992 return -EINVAL; 1993 } 1994 sbi->sb->s_flags |= SB_ACTIVE; 1995 1996 f2fs_update_time(sbi, DISABLE_TIME); 1997 1998 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1999 down_write(&sbi->gc_lock); 2000 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO); 2001 if (err == -ENODATA) { 2002 err = 0; 2003 break; 2004 } 2005 if (err && err != -EAGAIN) 2006 break; 2007 } 2008 2009 ret = sync_filesystem(sbi->sb); 2010 if (ret || err) { 2011 err = ret ? ret : err; 2012 goto restore_flag; 2013 } 2014 2015 unusable = f2fs_get_unusable_blocks(sbi); 2016 if (f2fs_disable_cp_again(sbi, unusable)) { 2017 err = -EAGAIN; 2018 goto restore_flag; 2019 } 2020 2021 down_write(&sbi->gc_lock); 2022 cpc.reason = CP_PAUSE; 2023 set_sbi_flag(sbi, SBI_CP_DISABLED); 2024 err = f2fs_write_checkpoint(sbi, &cpc); 2025 if (err) 2026 goto out_unlock; 2027 2028 spin_lock(&sbi->stat_lock); 2029 sbi->unusable_block_count = unusable; 2030 spin_unlock(&sbi->stat_lock); 2031 2032 out_unlock: 2033 up_write(&sbi->gc_lock); 2034 restore_flag: 2035 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2036 return err; 2037 } 2038 2039 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2040 { 2041 /* we should flush all the data to keep data consistency */ 2042 sync_inodes_sb(sbi->sb); 2043 2044 down_write(&sbi->gc_lock); 2045 f2fs_dirty_to_prefree(sbi); 2046 2047 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2048 set_sbi_flag(sbi, SBI_IS_DIRTY); 2049 up_write(&sbi->gc_lock); 2050 2051 f2fs_sync_fs(sbi->sb, 1); 2052 } 2053 2054 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2055 { 2056 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2057 struct f2fs_mount_info org_mount_opt; 2058 unsigned long old_sb_flags; 2059 int err; 2060 bool need_restart_gc = false, need_stop_gc = false; 2061 bool need_restart_ckpt = false, need_stop_ckpt = false; 2062 bool need_restart_flush = false, need_stop_flush = false; 2063 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 2064 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 2065 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 2066 bool no_atgc = !test_opt(sbi, ATGC); 2067 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2068 bool checkpoint_changed; 2069 #ifdef CONFIG_QUOTA 2070 int i, j; 2071 #endif 2072 2073 /* 2074 * Save the old mount options in case we 2075 * need to restore them. 2076 */ 2077 org_mount_opt = sbi->mount_opt; 2078 old_sb_flags = sb->s_flags; 2079 2080 #ifdef CONFIG_QUOTA 2081 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2082 for (i = 0; i < MAXQUOTAS; i++) { 2083 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2084 org_mount_opt.s_qf_names[i] = 2085 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2086 GFP_KERNEL); 2087 if (!org_mount_opt.s_qf_names[i]) { 2088 for (j = 0; j < i; j++) 2089 kfree(org_mount_opt.s_qf_names[j]); 2090 return -ENOMEM; 2091 } 2092 } else { 2093 org_mount_opt.s_qf_names[i] = NULL; 2094 } 2095 } 2096 #endif 2097 2098 /* recover superblocks we couldn't write due to previous RO mount */ 2099 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2100 err = f2fs_commit_super(sbi, false); 2101 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2102 err); 2103 if (!err) 2104 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2105 } 2106 2107 default_options(sbi); 2108 2109 /* parse mount options */ 2110 err = parse_options(sb, data, true); 2111 if (err) 2112 goto restore_opts; 2113 checkpoint_changed = 2114 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 2115 2116 /* 2117 * Previous and new state of filesystem is RO, 2118 * so skip checking GC and FLUSH_MERGE conditions. 2119 */ 2120 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2121 goto skip; 2122 2123 if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) { 2124 err = -EROFS; 2125 goto restore_opts; 2126 } 2127 2128 #ifdef CONFIG_QUOTA 2129 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2130 err = dquot_suspend(sb, -1); 2131 if (err < 0) 2132 goto restore_opts; 2133 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2134 /* dquot_resume needs RW */ 2135 sb->s_flags &= ~SB_RDONLY; 2136 if (sb_any_quota_suspended(sb)) { 2137 dquot_resume(sb, -1); 2138 } else if (f2fs_sb_has_quota_ino(sbi)) { 2139 err = f2fs_enable_quotas(sb); 2140 if (err) 2141 goto restore_opts; 2142 } 2143 } 2144 #endif 2145 /* disallow enable atgc dynamically */ 2146 if (no_atgc == !!test_opt(sbi, ATGC)) { 2147 err = -EINVAL; 2148 f2fs_warn(sbi, "switch atgc option is not allowed"); 2149 goto restore_opts; 2150 } 2151 2152 /* disallow enable/disable extent_cache dynamically */ 2153 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 2154 err = -EINVAL; 2155 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2156 goto restore_opts; 2157 } 2158 2159 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 2160 err = -EINVAL; 2161 f2fs_warn(sbi, "switch io_bits option is not allowed"); 2162 goto restore_opts; 2163 } 2164 2165 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2166 err = -EINVAL; 2167 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2168 goto restore_opts; 2169 } 2170 2171 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2172 err = -EINVAL; 2173 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2174 goto restore_opts; 2175 } 2176 2177 /* 2178 * We stop the GC thread if FS is mounted as RO 2179 * or if background_gc = off is passed in mount 2180 * option. Also sync the filesystem. 2181 */ 2182 if ((*flags & SB_RDONLY) || 2183 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2184 !test_opt(sbi, GC_MERGE))) { 2185 if (sbi->gc_thread) { 2186 f2fs_stop_gc_thread(sbi); 2187 need_restart_gc = true; 2188 } 2189 } else if (!sbi->gc_thread) { 2190 err = f2fs_start_gc_thread(sbi); 2191 if (err) 2192 goto restore_opts; 2193 need_stop_gc = true; 2194 } 2195 2196 if (*flags & SB_RDONLY || 2197 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 2198 sync_inodes_sb(sb); 2199 2200 set_sbi_flag(sbi, SBI_IS_DIRTY); 2201 set_sbi_flag(sbi, SBI_IS_CLOSE); 2202 f2fs_sync_fs(sb, 1); 2203 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2204 } 2205 2206 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2207 !test_opt(sbi, MERGE_CHECKPOINT)) { 2208 f2fs_stop_ckpt_thread(sbi); 2209 need_restart_ckpt = true; 2210 } else { 2211 err = f2fs_start_ckpt_thread(sbi); 2212 if (err) { 2213 f2fs_err(sbi, 2214 "Failed to start F2FS issue_checkpoint_thread (%d)", 2215 err); 2216 goto restore_gc; 2217 } 2218 need_stop_ckpt = true; 2219 } 2220 2221 /* 2222 * We stop issue flush thread if FS is mounted as RO 2223 * or if flush_merge is not passed in mount option. 2224 */ 2225 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2226 clear_opt(sbi, FLUSH_MERGE); 2227 f2fs_destroy_flush_cmd_control(sbi, false); 2228 need_restart_flush = true; 2229 } else { 2230 err = f2fs_create_flush_cmd_control(sbi); 2231 if (err) 2232 goto restore_ckpt; 2233 need_stop_flush = true; 2234 } 2235 2236 if (checkpoint_changed) { 2237 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2238 err = f2fs_disable_checkpoint(sbi); 2239 if (err) 2240 goto restore_flush; 2241 } else { 2242 f2fs_enable_checkpoint(sbi); 2243 } 2244 } 2245 2246 skip: 2247 #ifdef CONFIG_QUOTA 2248 /* Release old quota file names */ 2249 for (i = 0; i < MAXQUOTAS; i++) 2250 kfree(org_mount_opt.s_qf_names[i]); 2251 #endif 2252 /* Update the POSIXACL Flag */ 2253 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2254 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2255 2256 limit_reserve_root(sbi); 2257 adjust_unusable_cap_perc(sbi); 2258 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2259 return 0; 2260 restore_flush: 2261 if (need_restart_flush) { 2262 if (f2fs_create_flush_cmd_control(sbi)) 2263 f2fs_warn(sbi, "background flush thread has stopped"); 2264 } else if (need_stop_flush) { 2265 clear_opt(sbi, FLUSH_MERGE); 2266 f2fs_destroy_flush_cmd_control(sbi, false); 2267 } 2268 restore_ckpt: 2269 if (need_restart_ckpt) { 2270 if (f2fs_start_ckpt_thread(sbi)) 2271 f2fs_warn(sbi, "background ckpt thread has stopped"); 2272 } else if (need_stop_ckpt) { 2273 f2fs_stop_ckpt_thread(sbi); 2274 } 2275 restore_gc: 2276 if (need_restart_gc) { 2277 if (f2fs_start_gc_thread(sbi)) 2278 f2fs_warn(sbi, "background gc thread has stopped"); 2279 } else if (need_stop_gc) { 2280 f2fs_stop_gc_thread(sbi); 2281 } 2282 restore_opts: 2283 #ifdef CONFIG_QUOTA 2284 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2285 for (i = 0; i < MAXQUOTAS; i++) { 2286 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2287 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2288 } 2289 #endif 2290 sbi->mount_opt = org_mount_opt; 2291 sb->s_flags = old_sb_flags; 2292 return err; 2293 } 2294 2295 #ifdef CONFIG_QUOTA 2296 /* Read data from quotafile */ 2297 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2298 size_t len, loff_t off) 2299 { 2300 struct inode *inode = sb_dqopt(sb)->files[type]; 2301 struct address_space *mapping = inode->i_mapping; 2302 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2303 int offset = off & (sb->s_blocksize - 1); 2304 int tocopy; 2305 size_t toread; 2306 loff_t i_size = i_size_read(inode); 2307 struct page *page; 2308 char *kaddr; 2309 2310 if (off > i_size) 2311 return 0; 2312 2313 if (off + len > i_size) 2314 len = i_size - off; 2315 toread = len; 2316 while (toread > 0) { 2317 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2318 repeat: 2319 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2320 if (IS_ERR(page)) { 2321 if (PTR_ERR(page) == -ENOMEM) { 2322 congestion_wait(BLK_RW_ASYNC, 2323 DEFAULT_IO_TIMEOUT); 2324 goto repeat; 2325 } 2326 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2327 return PTR_ERR(page); 2328 } 2329 2330 lock_page(page); 2331 2332 if (unlikely(page->mapping != mapping)) { 2333 f2fs_put_page(page, 1); 2334 goto repeat; 2335 } 2336 if (unlikely(!PageUptodate(page))) { 2337 f2fs_put_page(page, 1); 2338 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2339 return -EIO; 2340 } 2341 2342 kaddr = kmap_atomic(page); 2343 memcpy(data, kaddr + offset, tocopy); 2344 kunmap_atomic(kaddr); 2345 f2fs_put_page(page, 1); 2346 2347 offset = 0; 2348 toread -= tocopy; 2349 data += tocopy; 2350 blkidx++; 2351 } 2352 return len; 2353 } 2354 2355 /* Write to quotafile */ 2356 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2357 const char *data, size_t len, loff_t off) 2358 { 2359 struct inode *inode = sb_dqopt(sb)->files[type]; 2360 struct address_space *mapping = inode->i_mapping; 2361 const struct address_space_operations *a_ops = mapping->a_ops; 2362 int offset = off & (sb->s_blocksize - 1); 2363 size_t towrite = len; 2364 struct page *page; 2365 void *fsdata = NULL; 2366 char *kaddr; 2367 int err = 0; 2368 int tocopy; 2369 2370 while (towrite > 0) { 2371 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2372 towrite); 2373 retry: 2374 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 2375 &page, &fsdata); 2376 if (unlikely(err)) { 2377 if (err == -ENOMEM) { 2378 congestion_wait(BLK_RW_ASYNC, 2379 DEFAULT_IO_TIMEOUT); 2380 goto retry; 2381 } 2382 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2383 break; 2384 } 2385 2386 kaddr = kmap_atomic(page); 2387 memcpy(kaddr + offset, data, tocopy); 2388 kunmap_atomic(kaddr); 2389 flush_dcache_page(page); 2390 2391 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2392 page, fsdata); 2393 offset = 0; 2394 towrite -= tocopy; 2395 off += tocopy; 2396 data += tocopy; 2397 cond_resched(); 2398 } 2399 2400 if (len == towrite) 2401 return err; 2402 inode->i_mtime = inode->i_ctime = current_time(inode); 2403 f2fs_mark_inode_dirty_sync(inode, false); 2404 return len - towrite; 2405 } 2406 2407 static struct dquot **f2fs_get_dquots(struct inode *inode) 2408 { 2409 return F2FS_I(inode)->i_dquot; 2410 } 2411 2412 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2413 { 2414 return &F2FS_I(inode)->i_reserved_quota; 2415 } 2416 2417 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2418 { 2419 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2420 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2421 return 0; 2422 } 2423 2424 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2425 F2FS_OPTION(sbi).s_jquota_fmt, type); 2426 } 2427 2428 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2429 { 2430 int enabled = 0; 2431 int i, err; 2432 2433 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2434 err = f2fs_enable_quotas(sbi->sb); 2435 if (err) { 2436 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2437 return 0; 2438 } 2439 return 1; 2440 } 2441 2442 for (i = 0; i < MAXQUOTAS; i++) { 2443 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2444 err = f2fs_quota_on_mount(sbi, i); 2445 if (!err) { 2446 enabled = 1; 2447 continue; 2448 } 2449 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2450 err, i); 2451 } 2452 } 2453 return enabled; 2454 } 2455 2456 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2457 unsigned int flags) 2458 { 2459 struct inode *qf_inode; 2460 unsigned long qf_inum; 2461 int err; 2462 2463 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2464 2465 qf_inum = f2fs_qf_ino(sb, type); 2466 if (!qf_inum) 2467 return -EPERM; 2468 2469 qf_inode = f2fs_iget(sb, qf_inum); 2470 if (IS_ERR(qf_inode)) { 2471 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2472 return PTR_ERR(qf_inode); 2473 } 2474 2475 /* Don't account quota for quota files to avoid recursion */ 2476 qf_inode->i_flags |= S_NOQUOTA; 2477 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2478 iput(qf_inode); 2479 return err; 2480 } 2481 2482 static int f2fs_enable_quotas(struct super_block *sb) 2483 { 2484 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2485 int type, err = 0; 2486 unsigned long qf_inum; 2487 bool quota_mopt[MAXQUOTAS] = { 2488 test_opt(sbi, USRQUOTA), 2489 test_opt(sbi, GRPQUOTA), 2490 test_opt(sbi, PRJQUOTA), 2491 }; 2492 2493 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2494 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2495 return 0; 2496 } 2497 2498 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2499 2500 for (type = 0; type < MAXQUOTAS; type++) { 2501 qf_inum = f2fs_qf_ino(sb, type); 2502 if (qf_inum) { 2503 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2504 DQUOT_USAGE_ENABLED | 2505 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2506 if (err) { 2507 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2508 type, err); 2509 for (type--; type >= 0; type--) 2510 dquot_quota_off(sb, type); 2511 set_sbi_flag(F2FS_SB(sb), 2512 SBI_QUOTA_NEED_REPAIR); 2513 return err; 2514 } 2515 } 2516 } 2517 return 0; 2518 } 2519 2520 int f2fs_quota_sync(struct super_block *sb, int type) 2521 { 2522 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2523 struct quota_info *dqopt = sb_dqopt(sb); 2524 int cnt; 2525 int ret; 2526 2527 /* 2528 * do_quotactl 2529 * f2fs_quota_sync 2530 * down_read(quota_sem) 2531 * dquot_writeback_dquots() 2532 * f2fs_dquot_commit 2533 * block_operation 2534 * down_read(quota_sem) 2535 */ 2536 f2fs_lock_op(sbi); 2537 2538 down_read(&sbi->quota_sem); 2539 ret = dquot_writeback_dquots(sb, type); 2540 if (ret) 2541 goto out; 2542 2543 /* 2544 * Now when everything is written we can discard the pagecache so 2545 * that userspace sees the changes. 2546 */ 2547 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2548 struct address_space *mapping; 2549 2550 if (type != -1 && cnt != type) 2551 continue; 2552 if (!sb_has_quota_active(sb, cnt)) 2553 continue; 2554 2555 mapping = dqopt->files[cnt]->i_mapping; 2556 2557 ret = filemap_fdatawrite(mapping); 2558 if (ret) 2559 goto out; 2560 2561 /* if we are using journalled quota */ 2562 if (is_journalled_quota(sbi)) 2563 continue; 2564 2565 ret = filemap_fdatawait(mapping); 2566 if (ret) 2567 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2568 2569 inode_lock(dqopt->files[cnt]); 2570 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 2571 inode_unlock(dqopt->files[cnt]); 2572 } 2573 out: 2574 if (ret) 2575 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2576 up_read(&sbi->quota_sem); 2577 f2fs_unlock_op(sbi); 2578 return ret; 2579 } 2580 2581 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2582 const struct path *path) 2583 { 2584 struct inode *inode; 2585 int err; 2586 2587 /* if quota sysfile exists, deny enabling quota with specific file */ 2588 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2589 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2590 return -EBUSY; 2591 } 2592 2593 err = f2fs_quota_sync(sb, type); 2594 if (err) 2595 return err; 2596 2597 err = dquot_quota_on(sb, type, format_id, path); 2598 if (err) 2599 return err; 2600 2601 inode = d_inode(path->dentry); 2602 2603 inode_lock(inode); 2604 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2605 f2fs_set_inode_flags(inode); 2606 inode_unlock(inode); 2607 f2fs_mark_inode_dirty_sync(inode, false); 2608 2609 return 0; 2610 } 2611 2612 static int __f2fs_quota_off(struct super_block *sb, int type) 2613 { 2614 struct inode *inode = sb_dqopt(sb)->files[type]; 2615 int err; 2616 2617 if (!inode || !igrab(inode)) 2618 return dquot_quota_off(sb, type); 2619 2620 err = f2fs_quota_sync(sb, type); 2621 if (err) 2622 goto out_put; 2623 2624 err = dquot_quota_off(sb, type); 2625 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2626 goto out_put; 2627 2628 inode_lock(inode); 2629 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2630 f2fs_set_inode_flags(inode); 2631 inode_unlock(inode); 2632 f2fs_mark_inode_dirty_sync(inode, false); 2633 out_put: 2634 iput(inode); 2635 return err; 2636 } 2637 2638 static int f2fs_quota_off(struct super_block *sb, int type) 2639 { 2640 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2641 int err; 2642 2643 err = __f2fs_quota_off(sb, type); 2644 2645 /* 2646 * quotactl can shutdown journalled quota, result in inconsistence 2647 * between quota record and fs data by following updates, tag the 2648 * flag to let fsck be aware of it. 2649 */ 2650 if (is_journalled_quota(sbi)) 2651 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2652 return err; 2653 } 2654 2655 void f2fs_quota_off_umount(struct super_block *sb) 2656 { 2657 int type; 2658 int err; 2659 2660 for (type = 0; type < MAXQUOTAS; type++) { 2661 err = __f2fs_quota_off(sb, type); 2662 if (err) { 2663 int ret = dquot_quota_off(sb, type); 2664 2665 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2666 type, err, ret); 2667 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2668 } 2669 } 2670 /* 2671 * In case of checkpoint=disable, we must flush quota blocks. 2672 * This can cause NULL exception for node_inode in end_io, since 2673 * put_super already dropped it. 2674 */ 2675 sync_filesystem(sb); 2676 } 2677 2678 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2679 { 2680 struct quota_info *dqopt = sb_dqopt(sb); 2681 int type; 2682 2683 for (type = 0; type < MAXQUOTAS; type++) { 2684 if (!dqopt->files[type]) 2685 continue; 2686 f2fs_inode_synced(dqopt->files[type]); 2687 } 2688 } 2689 2690 static int f2fs_dquot_commit(struct dquot *dquot) 2691 { 2692 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2693 int ret; 2694 2695 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 2696 ret = dquot_commit(dquot); 2697 if (ret < 0) 2698 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2699 up_read(&sbi->quota_sem); 2700 return ret; 2701 } 2702 2703 static int f2fs_dquot_acquire(struct dquot *dquot) 2704 { 2705 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2706 int ret; 2707 2708 down_read(&sbi->quota_sem); 2709 ret = dquot_acquire(dquot); 2710 if (ret < 0) 2711 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2712 up_read(&sbi->quota_sem); 2713 return ret; 2714 } 2715 2716 static int f2fs_dquot_release(struct dquot *dquot) 2717 { 2718 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2719 int ret = dquot_release(dquot); 2720 2721 if (ret < 0) 2722 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2723 return ret; 2724 } 2725 2726 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2727 { 2728 struct super_block *sb = dquot->dq_sb; 2729 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2730 int ret = dquot_mark_dquot_dirty(dquot); 2731 2732 /* if we are using journalled quota */ 2733 if (is_journalled_quota(sbi)) 2734 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2735 2736 return ret; 2737 } 2738 2739 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2740 { 2741 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2742 int ret = dquot_commit_info(sb, type); 2743 2744 if (ret < 0) 2745 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2746 return ret; 2747 } 2748 2749 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2750 { 2751 *projid = F2FS_I(inode)->i_projid; 2752 return 0; 2753 } 2754 2755 static const struct dquot_operations f2fs_quota_operations = { 2756 .get_reserved_space = f2fs_get_reserved_space, 2757 .write_dquot = f2fs_dquot_commit, 2758 .acquire_dquot = f2fs_dquot_acquire, 2759 .release_dquot = f2fs_dquot_release, 2760 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2761 .write_info = f2fs_dquot_commit_info, 2762 .alloc_dquot = dquot_alloc, 2763 .destroy_dquot = dquot_destroy, 2764 .get_projid = f2fs_get_projid, 2765 .get_next_id = dquot_get_next_id, 2766 }; 2767 2768 static const struct quotactl_ops f2fs_quotactl_ops = { 2769 .quota_on = f2fs_quota_on, 2770 .quota_off = f2fs_quota_off, 2771 .quota_sync = f2fs_quota_sync, 2772 .get_state = dquot_get_state, 2773 .set_info = dquot_set_dqinfo, 2774 .get_dqblk = dquot_get_dqblk, 2775 .set_dqblk = dquot_set_dqblk, 2776 .get_nextdqblk = dquot_get_next_dqblk, 2777 }; 2778 #else 2779 int f2fs_quota_sync(struct super_block *sb, int type) 2780 { 2781 return 0; 2782 } 2783 2784 void f2fs_quota_off_umount(struct super_block *sb) 2785 { 2786 } 2787 #endif 2788 2789 static const struct super_operations f2fs_sops = { 2790 .alloc_inode = f2fs_alloc_inode, 2791 .free_inode = f2fs_free_inode, 2792 .drop_inode = f2fs_drop_inode, 2793 .write_inode = f2fs_write_inode, 2794 .dirty_inode = f2fs_dirty_inode, 2795 .show_options = f2fs_show_options, 2796 #ifdef CONFIG_QUOTA 2797 .quota_read = f2fs_quota_read, 2798 .quota_write = f2fs_quota_write, 2799 .get_dquots = f2fs_get_dquots, 2800 #endif 2801 .evict_inode = f2fs_evict_inode, 2802 .put_super = f2fs_put_super, 2803 .sync_fs = f2fs_sync_fs, 2804 .freeze_fs = f2fs_freeze, 2805 .unfreeze_fs = f2fs_unfreeze, 2806 .statfs = f2fs_statfs, 2807 .remount_fs = f2fs_remount, 2808 }; 2809 2810 #ifdef CONFIG_FS_ENCRYPTION 2811 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2812 { 2813 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2814 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2815 ctx, len, NULL); 2816 } 2817 2818 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2819 void *fs_data) 2820 { 2821 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2822 2823 /* 2824 * Encrypting the root directory is not allowed because fsck 2825 * expects lost+found directory to exist and remain unencrypted 2826 * if LOST_FOUND feature is enabled. 2827 * 2828 */ 2829 if (f2fs_sb_has_lost_found(sbi) && 2830 inode->i_ino == F2FS_ROOT_INO(sbi)) 2831 return -EPERM; 2832 2833 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2834 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2835 ctx, len, fs_data, XATTR_CREATE); 2836 } 2837 2838 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 2839 { 2840 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 2841 } 2842 2843 static bool f2fs_has_stable_inodes(struct super_block *sb) 2844 { 2845 return true; 2846 } 2847 2848 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 2849 int *ino_bits_ret, int *lblk_bits_ret) 2850 { 2851 *ino_bits_ret = 8 * sizeof(nid_t); 2852 *lblk_bits_ret = 8 * sizeof(block_t); 2853 } 2854 2855 static int f2fs_get_num_devices(struct super_block *sb) 2856 { 2857 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2858 2859 if (f2fs_is_multi_device(sbi)) 2860 return sbi->s_ndevs; 2861 return 1; 2862 } 2863 2864 static void f2fs_get_devices(struct super_block *sb, 2865 struct request_queue **devs) 2866 { 2867 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2868 int i; 2869 2870 for (i = 0; i < sbi->s_ndevs; i++) 2871 devs[i] = bdev_get_queue(FDEV(i).bdev); 2872 } 2873 2874 static const struct fscrypt_operations f2fs_cryptops = { 2875 .key_prefix = "f2fs:", 2876 .get_context = f2fs_get_context, 2877 .set_context = f2fs_set_context, 2878 .get_dummy_policy = f2fs_get_dummy_policy, 2879 .empty_dir = f2fs_empty_dir, 2880 .max_namelen = F2FS_NAME_LEN, 2881 .has_stable_inodes = f2fs_has_stable_inodes, 2882 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 2883 .get_num_devices = f2fs_get_num_devices, 2884 .get_devices = f2fs_get_devices, 2885 }; 2886 #endif 2887 2888 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2889 u64 ino, u32 generation) 2890 { 2891 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2892 struct inode *inode; 2893 2894 if (f2fs_check_nid_range(sbi, ino)) 2895 return ERR_PTR(-ESTALE); 2896 2897 /* 2898 * f2fs_iget isn't quite right if the inode is currently unallocated! 2899 * However f2fs_iget currently does appropriate checks to handle stale 2900 * inodes so everything is OK. 2901 */ 2902 inode = f2fs_iget(sb, ino); 2903 if (IS_ERR(inode)) 2904 return ERR_CAST(inode); 2905 if (unlikely(generation && inode->i_generation != generation)) { 2906 /* we didn't find the right inode.. */ 2907 iput(inode); 2908 return ERR_PTR(-ESTALE); 2909 } 2910 return inode; 2911 } 2912 2913 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2914 int fh_len, int fh_type) 2915 { 2916 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2917 f2fs_nfs_get_inode); 2918 } 2919 2920 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2921 int fh_len, int fh_type) 2922 { 2923 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2924 f2fs_nfs_get_inode); 2925 } 2926 2927 static const struct export_operations f2fs_export_ops = { 2928 .fh_to_dentry = f2fs_fh_to_dentry, 2929 .fh_to_parent = f2fs_fh_to_parent, 2930 .get_parent = f2fs_get_parent, 2931 }; 2932 2933 loff_t max_file_blocks(struct inode *inode) 2934 { 2935 loff_t result = 0; 2936 loff_t leaf_count; 2937 2938 /* 2939 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2940 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2941 * space in inode.i_addr, it will be more safe to reassign 2942 * result as zero. 2943 */ 2944 2945 if (inode && f2fs_compressed_file(inode)) 2946 leaf_count = ADDRS_PER_BLOCK(inode); 2947 else 2948 leaf_count = DEF_ADDRS_PER_BLOCK; 2949 2950 /* two direct node blocks */ 2951 result += (leaf_count * 2); 2952 2953 /* two indirect node blocks */ 2954 leaf_count *= NIDS_PER_BLOCK; 2955 result += (leaf_count * 2); 2956 2957 /* one double indirect node block */ 2958 leaf_count *= NIDS_PER_BLOCK; 2959 result += leaf_count; 2960 2961 return result; 2962 } 2963 2964 static int __f2fs_commit_super(struct buffer_head *bh, 2965 struct f2fs_super_block *super) 2966 { 2967 lock_buffer(bh); 2968 if (super) 2969 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2970 set_buffer_dirty(bh); 2971 unlock_buffer(bh); 2972 2973 /* it's rare case, we can do fua all the time */ 2974 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2975 } 2976 2977 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2978 struct buffer_head *bh) 2979 { 2980 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2981 (bh->b_data + F2FS_SUPER_OFFSET); 2982 struct super_block *sb = sbi->sb; 2983 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2984 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2985 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2986 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2987 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2988 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2989 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2990 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2991 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2992 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2993 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2994 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2995 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2996 u64 main_end_blkaddr = main_blkaddr + 2997 (segment_count_main << log_blocks_per_seg); 2998 u64 seg_end_blkaddr = segment0_blkaddr + 2999 (segment_count << log_blocks_per_seg); 3000 3001 if (segment0_blkaddr != cp_blkaddr) { 3002 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3003 segment0_blkaddr, cp_blkaddr); 3004 return true; 3005 } 3006 3007 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3008 sit_blkaddr) { 3009 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3010 cp_blkaddr, sit_blkaddr, 3011 segment_count_ckpt << log_blocks_per_seg); 3012 return true; 3013 } 3014 3015 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3016 nat_blkaddr) { 3017 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3018 sit_blkaddr, nat_blkaddr, 3019 segment_count_sit << log_blocks_per_seg); 3020 return true; 3021 } 3022 3023 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3024 ssa_blkaddr) { 3025 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3026 nat_blkaddr, ssa_blkaddr, 3027 segment_count_nat << log_blocks_per_seg); 3028 return true; 3029 } 3030 3031 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3032 main_blkaddr) { 3033 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3034 ssa_blkaddr, main_blkaddr, 3035 segment_count_ssa << log_blocks_per_seg); 3036 return true; 3037 } 3038 3039 if (main_end_blkaddr > seg_end_blkaddr) { 3040 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3041 main_blkaddr, seg_end_blkaddr, 3042 segment_count_main << log_blocks_per_seg); 3043 return true; 3044 } else if (main_end_blkaddr < seg_end_blkaddr) { 3045 int err = 0; 3046 char *res; 3047 3048 /* fix in-memory information all the time */ 3049 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3050 segment0_blkaddr) >> log_blocks_per_seg); 3051 3052 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 3053 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3054 res = "internally"; 3055 } else { 3056 err = __f2fs_commit_super(bh, NULL); 3057 res = err ? "failed" : "done"; 3058 } 3059 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3060 res, main_blkaddr, seg_end_blkaddr, 3061 segment_count_main << log_blocks_per_seg); 3062 if (err) 3063 return true; 3064 } 3065 return false; 3066 } 3067 3068 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3069 struct buffer_head *bh) 3070 { 3071 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3072 block_t total_sections, blocks_per_seg; 3073 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3074 (bh->b_data + F2FS_SUPER_OFFSET); 3075 size_t crc_offset = 0; 3076 __u32 crc = 0; 3077 3078 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3079 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3080 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3081 return -EINVAL; 3082 } 3083 3084 /* Check checksum_offset and crc in superblock */ 3085 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3086 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3087 if (crc_offset != 3088 offsetof(struct f2fs_super_block, crc)) { 3089 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3090 crc_offset); 3091 return -EFSCORRUPTED; 3092 } 3093 crc = le32_to_cpu(raw_super->crc); 3094 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3095 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3096 return -EFSCORRUPTED; 3097 } 3098 } 3099 3100 /* Currently, support only 4KB block size */ 3101 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3102 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3103 le32_to_cpu(raw_super->log_blocksize), 3104 F2FS_BLKSIZE_BITS); 3105 return -EFSCORRUPTED; 3106 } 3107 3108 /* check log blocks per segment */ 3109 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3110 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3111 le32_to_cpu(raw_super->log_blocks_per_seg)); 3112 return -EFSCORRUPTED; 3113 } 3114 3115 /* Currently, support 512/1024/2048/4096 bytes sector size */ 3116 if (le32_to_cpu(raw_super->log_sectorsize) > 3117 F2FS_MAX_LOG_SECTOR_SIZE || 3118 le32_to_cpu(raw_super->log_sectorsize) < 3119 F2FS_MIN_LOG_SECTOR_SIZE) { 3120 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3121 le32_to_cpu(raw_super->log_sectorsize)); 3122 return -EFSCORRUPTED; 3123 } 3124 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3125 le32_to_cpu(raw_super->log_sectorsize) != 3126 F2FS_MAX_LOG_SECTOR_SIZE) { 3127 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3128 le32_to_cpu(raw_super->log_sectors_per_block), 3129 le32_to_cpu(raw_super->log_sectorsize)); 3130 return -EFSCORRUPTED; 3131 } 3132 3133 segment_count = le32_to_cpu(raw_super->segment_count); 3134 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3135 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3136 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3137 total_sections = le32_to_cpu(raw_super->section_count); 3138 3139 /* blocks_per_seg should be 512, given the above check */ 3140 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 3141 3142 if (segment_count > F2FS_MAX_SEGMENT || 3143 segment_count < F2FS_MIN_SEGMENTS) { 3144 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3145 return -EFSCORRUPTED; 3146 } 3147 3148 if (total_sections > segment_count_main || total_sections < 1 || 3149 segs_per_sec > segment_count || !segs_per_sec) { 3150 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3151 segment_count, total_sections, segs_per_sec); 3152 return -EFSCORRUPTED; 3153 } 3154 3155 if (segment_count_main != total_sections * segs_per_sec) { 3156 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3157 segment_count_main, total_sections, segs_per_sec); 3158 return -EFSCORRUPTED; 3159 } 3160 3161 if ((segment_count / segs_per_sec) < total_sections) { 3162 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3163 segment_count, segs_per_sec, total_sections); 3164 return -EFSCORRUPTED; 3165 } 3166 3167 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3168 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3169 segment_count, le64_to_cpu(raw_super->block_count)); 3170 return -EFSCORRUPTED; 3171 } 3172 3173 if (RDEV(0).path[0]) { 3174 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3175 int i = 1; 3176 3177 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3178 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3179 i++; 3180 } 3181 if (segment_count != dev_seg_count) { 3182 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3183 segment_count, dev_seg_count); 3184 return -EFSCORRUPTED; 3185 } 3186 } else { 3187 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3188 !bdev_is_zoned(sbi->sb->s_bdev)) { 3189 f2fs_info(sbi, "Zoned block device path is missing"); 3190 return -EFSCORRUPTED; 3191 } 3192 } 3193 3194 if (secs_per_zone > total_sections || !secs_per_zone) { 3195 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3196 secs_per_zone, total_sections); 3197 return -EFSCORRUPTED; 3198 } 3199 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3200 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3201 (le32_to_cpu(raw_super->extension_count) + 3202 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3203 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3204 le32_to_cpu(raw_super->extension_count), 3205 raw_super->hot_ext_count, 3206 F2FS_MAX_EXTENSION); 3207 return -EFSCORRUPTED; 3208 } 3209 3210 if (le32_to_cpu(raw_super->cp_payload) > 3211 (blocks_per_seg - F2FS_CP_PACKS)) { 3212 f2fs_info(sbi, "Insane cp_payload (%u > %u)", 3213 le32_to_cpu(raw_super->cp_payload), 3214 blocks_per_seg - F2FS_CP_PACKS); 3215 return -EFSCORRUPTED; 3216 } 3217 3218 /* check reserved ino info */ 3219 if (le32_to_cpu(raw_super->node_ino) != 1 || 3220 le32_to_cpu(raw_super->meta_ino) != 2 || 3221 le32_to_cpu(raw_super->root_ino) != 3) { 3222 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3223 le32_to_cpu(raw_super->node_ino), 3224 le32_to_cpu(raw_super->meta_ino), 3225 le32_to_cpu(raw_super->root_ino)); 3226 return -EFSCORRUPTED; 3227 } 3228 3229 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3230 if (sanity_check_area_boundary(sbi, bh)) 3231 return -EFSCORRUPTED; 3232 3233 return 0; 3234 } 3235 3236 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3237 { 3238 unsigned int total, fsmeta; 3239 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3240 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3241 unsigned int ovp_segments, reserved_segments; 3242 unsigned int main_segs, blocks_per_seg; 3243 unsigned int sit_segs, nat_segs; 3244 unsigned int sit_bitmap_size, nat_bitmap_size; 3245 unsigned int log_blocks_per_seg; 3246 unsigned int segment_count_main; 3247 unsigned int cp_pack_start_sum, cp_payload; 3248 block_t user_block_count, valid_user_blocks; 3249 block_t avail_node_count, valid_node_count; 3250 int i, j; 3251 3252 total = le32_to_cpu(raw_super->segment_count); 3253 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3254 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3255 fsmeta += sit_segs; 3256 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3257 fsmeta += nat_segs; 3258 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3259 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3260 3261 if (unlikely(fsmeta >= total)) 3262 return 1; 3263 3264 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3265 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3266 3267 if (!f2fs_sb_has_readonly(sbi) && 3268 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3269 ovp_segments == 0 || reserved_segments == 0)) { 3270 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3271 return 1; 3272 } 3273 user_block_count = le64_to_cpu(ckpt->user_block_count); 3274 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3275 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3276 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3277 if (!user_block_count || user_block_count >= 3278 segment_count_main << log_blocks_per_seg) { 3279 f2fs_err(sbi, "Wrong user_block_count: %u", 3280 user_block_count); 3281 return 1; 3282 } 3283 3284 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3285 if (valid_user_blocks > user_block_count) { 3286 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3287 valid_user_blocks, user_block_count); 3288 return 1; 3289 } 3290 3291 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3292 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3293 if (valid_node_count > avail_node_count) { 3294 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3295 valid_node_count, avail_node_count); 3296 return 1; 3297 } 3298 3299 main_segs = le32_to_cpu(raw_super->segment_count_main); 3300 blocks_per_seg = sbi->blocks_per_seg; 3301 3302 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3303 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3304 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3305 return 1; 3306 3307 if (f2fs_sb_has_readonly(sbi)) 3308 goto check_data; 3309 3310 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3311 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3312 le32_to_cpu(ckpt->cur_node_segno[j])) { 3313 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3314 i, j, 3315 le32_to_cpu(ckpt->cur_node_segno[i])); 3316 return 1; 3317 } 3318 } 3319 } 3320 check_data: 3321 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3322 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3323 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3324 return 1; 3325 3326 if (f2fs_sb_has_readonly(sbi)) 3327 goto skip_cross; 3328 3329 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3330 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3331 le32_to_cpu(ckpt->cur_data_segno[j])) { 3332 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3333 i, j, 3334 le32_to_cpu(ckpt->cur_data_segno[i])); 3335 return 1; 3336 } 3337 } 3338 } 3339 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3340 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3341 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3342 le32_to_cpu(ckpt->cur_data_segno[j])) { 3343 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3344 i, j, 3345 le32_to_cpu(ckpt->cur_node_segno[i])); 3346 return 1; 3347 } 3348 } 3349 } 3350 skip_cross: 3351 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3352 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3353 3354 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3355 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3356 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3357 sit_bitmap_size, nat_bitmap_size); 3358 return 1; 3359 } 3360 3361 cp_pack_start_sum = __start_sum_addr(sbi); 3362 cp_payload = __cp_payload(sbi); 3363 if (cp_pack_start_sum < cp_payload + 1 || 3364 cp_pack_start_sum > blocks_per_seg - 1 - 3365 NR_CURSEG_PERSIST_TYPE) { 3366 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3367 cp_pack_start_sum); 3368 return 1; 3369 } 3370 3371 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3372 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3373 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3374 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3375 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3376 le32_to_cpu(ckpt->checksum_offset)); 3377 return 1; 3378 } 3379 3380 if (unlikely(f2fs_cp_error(sbi))) { 3381 f2fs_err(sbi, "A bug case: need to run fsck"); 3382 return 1; 3383 } 3384 return 0; 3385 } 3386 3387 static void init_sb_info(struct f2fs_sb_info *sbi) 3388 { 3389 struct f2fs_super_block *raw_super = sbi->raw_super; 3390 int i; 3391 3392 sbi->log_sectors_per_block = 3393 le32_to_cpu(raw_super->log_sectors_per_block); 3394 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3395 sbi->blocksize = 1 << sbi->log_blocksize; 3396 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3397 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 3398 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3399 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3400 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3401 sbi->total_node_count = 3402 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3403 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3404 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3405 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3406 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3407 sbi->cur_victim_sec = NULL_SECNO; 3408 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3409 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3410 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3411 sbi->migration_granularity = sbi->segs_per_sec; 3412 3413 sbi->dir_level = DEF_DIR_LEVEL; 3414 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3415 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3416 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3417 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3418 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3419 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3420 DEF_UMOUNT_DISCARD_TIMEOUT; 3421 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3422 3423 for (i = 0; i < NR_COUNT_TYPE; i++) 3424 atomic_set(&sbi->nr_pages[i], 0); 3425 3426 for (i = 0; i < META; i++) 3427 atomic_set(&sbi->wb_sync_req[i], 0); 3428 3429 INIT_LIST_HEAD(&sbi->s_list); 3430 mutex_init(&sbi->umount_mutex); 3431 init_rwsem(&sbi->io_order_lock); 3432 spin_lock_init(&sbi->cp_lock); 3433 3434 sbi->dirty_device = 0; 3435 spin_lock_init(&sbi->dev_lock); 3436 3437 init_rwsem(&sbi->sb_lock); 3438 init_rwsem(&sbi->pin_sem); 3439 } 3440 3441 static int init_percpu_info(struct f2fs_sb_info *sbi) 3442 { 3443 int err; 3444 3445 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3446 if (err) 3447 return err; 3448 3449 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3450 GFP_KERNEL); 3451 if (err) 3452 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3453 3454 return err; 3455 } 3456 3457 #ifdef CONFIG_BLK_DEV_ZONED 3458 3459 struct f2fs_report_zones_args { 3460 struct f2fs_dev_info *dev; 3461 bool zone_cap_mismatch; 3462 }; 3463 3464 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3465 void *data) 3466 { 3467 struct f2fs_report_zones_args *rz_args = data; 3468 3469 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3470 return 0; 3471 3472 set_bit(idx, rz_args->dev->blkz_seq); 3473 rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >> 3474 F2FS_LOG_SECTORS_PER_BLOCK; 3475 if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch) 3476 rz_args->zone_cap_mismatch = true; 3477 3478 return 0; 3479 } 3480 3481 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3482 { 3483 struct block_device *bdev = FDEV(devi).bdev; 3484 sector_t nr_sectors = bdev_nr_sectors(bdev); 3485 struct f2fs_report_zones_args rep_zone_arg; 3486 int ret; 3487 3488 if (!f2fs_sb_has_blkzoned(sbi)) 3489 return 0; 3490 3491 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3492 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 3493 return -EINVAL; 3494 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 3495 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 3496 __ilog2_u32(sbi->blocks_per_blkz)) 3497 return -EINVAL; 3498 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 3499 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 3500 sbi->log_blocks_per_blkz; 3501 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 3502 FDEV(devi).nr_blkz++; 3503 3504 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3505 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3506 * sizeof(unsigned long), 3507 GFP_KERNEL); 3508 if (!FDEV(devi).blkz_seq) 3509 return -ENOMEM; 3510 3511 /* Get block zones type and zone-capacity */ 3512 FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi, 3513 FDEV(devi).nr_blkz * sizeof(block_t), 3514 GFP_KERNEL); 3515 if (!FDEV(devi).zone_capacity_blocks) 3516 return -ENOMEM; 3517 3518 rep_zone_arg.dev = &FDEV(devi); 3519 rep_zone_arg.zone_cap_mismatch = false; 3520 3521 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3522 &rep_zone_arg); 3523 if (ret < 0) 3524 return ret; 3525 3526 if (!rep_zone_arg.zone_cap_mismatch) { 3527 kfree(FDEV(devi).zone_capacity_blocks); 3528 FDEV(devi).zone_capacity_blocks = NULL; 3529 } 3530 3531 return 0; 3532 } 3533 #endif 3534 3535 /* 3536 * Read f2fs raw super block. 3537 * Because we have two copies of super block, so read both of them 3538 * to get the first valid one. If any one of them is broken, we pass 3539 * them recovery flag back to the caller. 3540 */ 3541 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3542 struct f2fs_super_block **raw_super, 3543 int *valid_super_block, int *recovery) 3544 { 3545 struct super_block *sb = sbi->sb; 3546 int block; 3547 struct buffer_head *bh; 3548 struct f2fs_super_block *super; 3549 int err = 0; 3550 3551 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3552 if (!super) 3553 return -ENOMEM; 3554 3555 for (block = 0; block < 2; block++) { 3556 bh = sb_bread(sb, block); 3557 if (!bh) { 3558 f2fs_err(sbi, "Unable to read %dth superblock", 3559 block + 1); 3560 err = -EIO; 3561 *recovery = 1; 3562 continue; 3563 } 3564 3565 /* sanity checking of raw super */ 3566 err = sanity_check_raw_super(sbi, bh); 3567 if (err) { 3568 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3569 block + 1); 3570 brelse(bh); 3571 *recovery = 1; 3572 continue; 3573 } 3574 3575 if (!*raw_super) { 3576 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3577 sizeof(*super)); 3578 *valid_super_block = block; 3579 *raw_super = super; 3580 } 3581 brelse(bh); 3582 } 3583 3584 /* No valid superblock */ 3585 if (!*raw_super) 3586 kfree(super); 3587 else 3588 err = 0; 3589 3590 return err; 3591 } 3592 3593 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3594 { 3595 struct buffer_head *bh; 3596 __u32 crc = 0; 3597 int err; 3598 3599 if ((recover && f2fs_readonly(sbi->sb)) || 3600 bdev_read_only(sbi->sb->s_bdev)) { 3601 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3602 return -EROFS; 3603 } 3604 3605 /* we should update superblock crc here */ 3606 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3607 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3608 offsetof(struct f2fs_super_block, crc)); 3609 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3610 } 3611 3612 /* write back-up superblock first */ 3613 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3614 if (!bh) 3615 return -EIO; 3616 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3617 brelse(bh); 3618 3619 /* if we are in recovery path, skip writing valid superblock */ 3620 if (recover || err) 3621 return err; 3622 3623 /* write current valid superblock */ 3624 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3625 if (!bh) 3626 return -EIO; 3627 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3628 brelse(bh); 3629 return err; 3630 } 3631 3632 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3633 { 3634 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3635 unsigned int max_devices = MAX_DEVICES; 3636 int i; 3637 3638 /* Initialize single device information */ 3639 if (!RDEV(0).path[0]) { 3640 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3641 return 0; 3642 max_devices = 1; 3643 } 3644 3645 /* 3646 * Initialize multiple devices information, or single 3647 * zoned block device information. 3648 */ 3649 sbi->devs = f2fs_kzalloc(sbi, 3650 array_size(max_devices, 3651 sizeof(struct f2fs_dev_info)), 3652 GFP_KERNEL); 3653 if (!sbi->devs) 3654 return -ENOMEM; 3655 3656 for (i = 0; i < max_devices; i++) { 3657 3658 if (i > 0 && !RDEV(i).path[0]) 3659 break; 3660 3661 if (max_devices == 1) { 3662 /* Single zoned block device mount */ 3663 FDEV(0).bdev = 3664 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3665 sbi->sb->s_mode, sbi->sb->s_type); 3666 } else { 3667 /* Multi-device mount */ 3668 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3669 FDEV(i).total_segments = 3670 le32_to_cpu(RDEV(i).total_segments); 3671 if (i == 0) { 3672 FDEV(i).start_blk = 0; 3673 FDEV(i).end_blk = FDEV(i).start_blk + 3674 (FDEV(i).total_segments << 3675 sbi->log_blocks_per_seg) - 1 + 3676 le32_to_cpu(raw_super->segment0_blkaddr); 3677 } else { 3678 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3679 FDEV(i).end_blk = FDEV(i).start_blk + 3680 (FDEV(i).total_segments << 3681 sbi->log_blocks_per_seg) - 1; 3682 } 3683 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3684 sbi->sb->s_mode, sbi->sb->s_type); 3685 } 3686 if (IS_ERR(FDEV(i).bdev)) 3687 return PTR_ERR(FDEV(i).bdev); 3688 3689 /* to release errored devices */ 3690 sbi->s_ndevs = i + 1; 3691 3692 #ifdef CONFIG_BLK_DEV_ZONED 3693 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3694 !f2fs_sb_has_blkzoned(sbi)) { 3695 f2fs_err(sbi, "Zoned block device feature not enabled"); 3696 return -EINVAL; 3697 } 3698 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3699 if (init_blkz_info(sbi, i)) { 3700 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3701 return -EINVAL; 3702 } 3703 if (max_devices == 1) 3704 break; 3705 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3706 i, FDEV(i).path, 3707 FDEV(i).total_segments, 3708 FDEV(i).start_blk, FDEV(i).end_blk, 3709 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3710 "Host-aware" : "Host-managed"); 3711 continue; 3712 } 3713 #endif 3714 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3715 i, FDEV(i).path, 3716 FDEV(i).total_segments, 3717 FDEV(i).start_blk, FDEV(i).end_blk); 3718 } 3719 f2fs_info(sbi, 3720 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3721 return 0; 3722 } 3723 3724 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3725 { 3726 #ifdef CONFIG_UNICODE 3727 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 3728 const struct f2fs_sb_encodings *encoding_info; 3729 struct unicode_map *encoding; 3730 __u16 encoding_flags; 3731 3732 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info, 3733 &encoding_flags)) { 3734 f2fs_err(sbi, 3735 "Encoding requested by superblock is unknown"); 3736 return -EINVAL; 3737 } 3738 3739 encoding = utf8_load(encoding_info->version); 3740 if (IS_ERR(encoding)) { 3741 f2fs_err(sbi, 3742 "can't mount with superblock charset: %s-%s " 3743 "not supported by the kernel. flags: 0x%x.", 3744 encoding_info->name, encoding_info->version, 3745 encoding_flags); 3746 return PTR_ERR(encoding); 3747 } 3748 f2fs_info(sbi, "Using encoding defined by superblock: " 3749 "%s-%s with flags 0x%hx", encoding_info->name, 3750 encoding_info->version?:"\b", encoding_flags); 3751 3752 sbi->sb->s_encoding = encoding; 3753 sbi->sb->s_encoding_flags = encoding_flags; 3754 } 3755 #else 3756 if (f2fs_sb_has_casefold(sbi)) { 3757 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3758 return -EINVAL; 3759 } 3760 #endif 3761 return 0; 3762 } 3763 3764 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3765 { 3766 struct f2fs_sm_info *sm_i = SM_I(sbi); 3767 3768 /* adjust parameters according to the volume size */ 3769 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3770 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3771 sm_i->dcc_info->discard_granularity = 1; 3772 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3773 } 3774 3775 sbi->readdir_ra = 1; 3776 } 3777 3778 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3779 { 3780 struct f2fs_sb_info *sbi; 3781 struct f2fs_super_block *raw_super; 3782 struct inode *root; 3783 int err; 3784 bool skip_recovery = false, need_fsck = false; 3785 char *options = NULL; 3786 int recovery, i, valid_super_block; 3787 struct curseg_info *seg_i; 3788 int retry_cnt = 1; 3789 3790 try_onemore: 3791 err = -EINVAL; 3792 raw_super = NULL; 3793 valid_super_block = -1; 3794 recovery = 0; 3795 3796 /* allocate memory for f2fs-specific super block info */ 3797 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3798 if (!sbi) 3799 return -ENOMEM; 3800 3801 sbi->sb = sb; 3802 3803 /* Load the checksum driver */ 3804 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3805 if (IS_ERR(sbi->s_chksum_driver)) { 3806 f2fs_err(sbi, "Cannot load crc32 driver."); 3807 err = PTR_ERR(sbi->s_chksum_driver); 3808 sbi->s_chksum_driver = NULL; 3809 goto free_sbi; 3810 } 3811 3812 /* set a block size */ 3813 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3814 f2fs_err(sbi, "unable to set blocksize"); 3815 goto free_sbi; 3816 } 3817 3818 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3819 &recovery); 3820 if (err) 3821 goto free_sbi; 3822 3823 sb->s_fs_info = sbi; 3824 sbi->raw_super = raw_super; 3825 3826 /* precompute checksum seed for metadata */ 3827 if (f2fs_sb_has_inode_chksum(sbi)) 3828 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3829 sizeof(raw_super->uuid)); 3830 3831 default_options(sbi); 3832 /* parse mount options */ 3833 options = kstrdup((const char *)data, GFP_KERNEL); 3834 if (data && !options) { 3835 err = -ENOMEM; 3836 goto free_sb_buf; 3837 } 3838 3839 err = parse_options(sb, options, false); 3840 if (err) 3841 goto free_options; 3842 3843 sb->s_maxbytes = max_file_blocks(NULL) << 3844 le32_to_cpu(raw_super->log_blocksize); 3845 sb->s_max_links = F2FS_LINK_MAX; 3846 3847 err = f2fs_setup_casefold(sbi); 3848 if (err) 3849 goto free_options; 3850 3851 #ifdef CONFIG_QUOTA 3852 sb->dq_op = &f2fs_quota_operations; 3853 sb->s_qcop = &f2fs_quotactl_ops; 3854 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3855 3856 if (f2fs_sb_has_quota_ino(sbi)) { 3857 for (i = 0; i < MAXQUOTAS; i++) { 3858 if (f2fs_qf_ino(sbi->sb, i)) 3859 sbi->nquota_files++; 3860 } 3861 } 3862 #endif 3863 3864 sb->s_op = &f2fs_sops; 3865 #ifdef CONFIG_FS_ENCRYPTION 3866 sb->s_cop = &f2fs_cryptops; 3867 #endif 3868 #ifdef CONFIG_FS_VERITY 3869 sb->s_vop = &f2fs_verityops; 3870 #endif 3871 sb->s_xattr = f2fs_xattr_handlers; 3872 sb->s_export_op = &f2fs_export_ops; 3873 sb->s_magic = F2FS_SUPER_MAGIC; 3874 sb->s_time_gran = 1; 3875 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3876 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3877 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3878 sb->s_iflags |= SB_I_CGROUPWB; 3879 3880 /* init f2fs-specific super block info */ 3881 sbi->valid_super_block = valid_super_block; 3882 init_rwsem(&sbi->gc_lock); 3883 mutex_init(&sbi->writepages); 3884 init_rwsem(&sbi->cp_global_sem); 3885 init_rwsem(&sbi->node_write); 3886 init_rwsem(&sbi->node_change); 3887 3888 /* disallow all the data/node/meta page writes */ 3889 set_sbi_flag(sbi, SBI_POR_DOING); 3890 spin_lock_init(&sbi->stat_lock); 3891 3892 /* init iostat info */ 3893 spin_lock_init(&sbi->iostat_lock); 3894 sbi->iostat_enable = false; 3895 sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS; 3896 3897 for (i = 0; i < NR_PAGE_TYPE; i++) { 3898 int n = (i == META) ? 1 : NR_TEMP_TYPE; 3899 int j; 3900 3901 sbi->write_io[i] = 3902 f2fs_kmalloc(sbi, 3903 array_size(n, 3904 sizeof(struct f2fs_bio_info)), 3905 GFP_KERNEL); 3906 if (!sbi->write_io[i]) { 3907 err = -ENOMEM; 3908 goto free_bio_info; 3909 } 3910 3911 for (j = HOT; j < n; j++) { 3912 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3913 sbi->write_io[i][j].sbi = sbi; 3914 sbi->write_io[i][j].bio = NULL; 3915 spin_lock_init(&sbi->write_io[i][j].io_lock); 3916 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3917 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 3918 init_rwsem(&sbi->write_io[i][j].bio_list_lock); 3919 } 3920 } 3921 3922 init_rwsem(&sbi->cp_rwsem); 3923 init_rwsem(&sbi->quota_sem); 3924 init_waitqueue_head(&sbi->cp_wait); 3925 init_sb_info(sbi); 3926 3927 err = init_percpu_info(sbi); 3928 if (err) 3929 goto free_bio_info; 3930 3931 if (F2FS_IO_ALIGNED(sbi)) { 3932 sbi->write_io_dummy = 3933 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3934 if (!sbi->write_io_dummy) { 3935 err = -ENOMEM; 3936 goto free_percpu; 3937 } 3938 } 3939 3940 /* init per sbi slab cache */ 3941 err = f2fs_init_xattr_caches(sbi); 3942 if (err) 3943 goto free_io_dummy; 3944 err = f2fs_init_page_array_cache(sbi); 3945 if (err) 3946 goto free_xattr_cache; 3947 3948 /* get an inode for meta space */ 3949 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3950 if (IS_ERR(sbi->meta_inode)) { 3951 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 3952 err = PTR_ERR(sbi->meta_inode); 3953 goto free_page_array_cache; 3954 } 3955 3956 err = f2fs_get_valid_checkpoint(sbi); 3957 if (err) { 3958 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 3959 goto free_meta_inode; 3960 } 3961 3962 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3963 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3964 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3965 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3966 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3967 } 3968 3969 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 3970 set_sbi_flag(sbi, SBI_NEED_FSCK); 3971 3972 /* Initialize device list */ 3973 err = f2fs_scan_devices(sbi); 3974 if (err) { 3975 f2fs_err(sbi, "Failed to find devices"); 3976 goto free_devices; 3977 } 3978 3979 err = f2fs_init_post_read_wq(sbi); 3980 if (err) { 3981 f2fs_err(sbi, "Failed to initialize post read workqueue"); 3982 goto free_devices; 3983 } 3984 3985 sbi->total_valid_node_count = 3986 le32_to_cpu(sbi->ckpt->valid_node_count); 3987 percpu_counter_set(&sbi->total_valid_inode_count, 3988 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3989 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3990 sbi->total_valid_block_count = 3991 le64_to_cpu(sbi->ckpt->valid_block_count); 3992 sbi->last_valid_block_count = sbi->total_valid_block_count; 3993 sbi->reserved_blocks = 0; 3994 sbi->current_reserved_blocks = 0; 3995 limit_reserve_root(sbi); 3996 adjust_unusable_cap_perc(sbi); 3997 3998 for (i = 0; i < NR_INODE_TYPE; i++) { 3999 INIT_LIST_HEAD(&sbi->inode_list[i]); 4000 spin_lock_init(&sbi->inode_lock[i]); 4001 } 4002 mutex_init(&sbi->flush_lock); 4003 4004 f2fs_init_extent_cache_info(sbi); 4005 4006 f2fs_init_ino_entry_info(sbi); 4007 4008 f2fs_init_fsync_node_info(sbi); 4009 4010 /* setup checkpoint request control and start checkpoint issue thread */ 4011 f2fs_init_ckpt_req_control(sbi); 4012 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4013 test_opt(sbi, MERGE_CHECKPOINT)) { 4014 err = f2fs_start_ckpt_thread(sbi); 4015 if (err) { 4016 f2fs_err(sbi, 4017 "Failed to start F2FS issue_checkpoint_thread (%d)", 4018 err); 4019 goto stop_ckpt_thread; 4020 } 4021 } 4022 4023 /* setup f2fs internal modules */ 4024 err = f2fs_build_segment_manager(sbi); 4025 if (err) { 4026 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4027 err); 4028 goto free_sm; 4029 } 4030 err = f2fs_build_node_manager(sbi); 4031 if (err) { 4032 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4033 err); 4034 goto free_nm; 4035 } 4036 4037 /* For write statistics */ 4038 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4039 4040 /* Read accumulated write IO statistics if exists */ 4041 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4042 if (__exist_node_summaries(sbi)) 4043 sbi->kbytes_written = 4044 le64_to_cpu(seg_i->journal->info.kbytes_written); 4045 4046 f2fs_build_gc_manager(sbi); 4047 4048 err = f2fs_build_stats(sbi); 4049 if (err) 4050 goto free_nm; 4051 4052 /* get an inode for node space */ 4053 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4054 if (IS_ERR(sbi->node_inode)) { 4055 f2fs_err(sbi, "Failed to read node inode"); 4056 err = PTR_ERR(sbi->node_inode); 4057 goto free_stats; 4058 } 4059 4060 /* read root inode and dentry */ 4061 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4062 if (IS_ERR(root)) { 4063 f2fs_err(sbi, "Failed to read root inode"); 4064 err = PTR_ERR(root); 4065 goto free_node_inode; 4066 } 4067 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4068 !root->i_size || !root->i_nlink) { 4069 iput(root); 4070 err = -EINVAL; 4071 goto free_node_inode; 4072 } 4073 4074 sb->s_root = d_make_root(root); /* allocate root dentry */ 4075 if (!sb->s_root) { 4076 err = -ENOMEM; 4077 goto free_node_inode; 4078 } 4079 4080 err = f2fs_init_compress_inode(sbi); 4081 if (err) 4082 goto free_root_inode; 4083 4084 err = f2fs_register_sysfs(sbi); 4085 if (err) 4086 goto free_compress_inode; 4087 4088 #ifdef CONFIG_QUOTA 4089 /* Enable quota usage during mount */ 4090 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4091 err = f2fs_enable_quotas(sb); 4092 if (err) 4093 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4094 } 4095 #endif 4096 /* if there are any orphan inodes, free them */ 4097 err = f2fs_recover_orphan_inodes(sbi); 4098 if (err) 4099 goto free_meta; 4100 4101 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4102 goto reset_checkpoint; 4103 4104 /* recover fsynced data */ 4105 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4106 !test_opt(sbi, NORECOVERY)) { 4107 /* 4108 * mount should be failed, when device has readonly mode, and 4109 * previous checkpoint was not done by clean system shutdown. 4110 */ 4111 if (f2fs_hw_is_readonly(sbi)) { 4112 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4113 err = f2fs_recover_fsync_data(sbi, true); 4114 if (err > 0) { 4115 err = -EROFS; 4116 f2fs_err(sbi, "Need to recover fsync data, but " 4117 "write access unavailable, please try " 4118 "mount w/ disable_roll_forward or norecovery"); 4119 } 4120 if (err < 0) 4121 goto free_meta; 4122 } 4123 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4124 goto reset_checkpoint; 4125 } 4126 4127 if (need_fsck) 4128 set_sbi_flag(sbi, SBI_NEED_FSCK); 4129 4130 if (skip_recovery) 4131 goto reset_checkpoint; 4132 4133 err = f2fs_recover_fsync_data(sbi, false); 4134 if (err < 0) { 4135 if (err != -ENOMEM) 4136 skip_recovery = true; 4137 need_fsck = true; 4138 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4139 err); 4140 goto free_meta; 4141 } 4142 } else { 4143 err = f2fs_recover_fsync_data(sbi, true); 4144 4145 if (!f2fs_readonly(sb) && err > 0) { 4146 err = -EINVAL; 4147 f2fs_err(sbi, "Need to recover fsync data"); 4148 goto free_meta; 4149 } 4150 } 4151 4152 /* 4153 * If the f2fs is not readonly and fsync data recovery succeeds, 4154 * check zoned block devices' write pointer consistency. 4155 */ 4156 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 4157 err = f2fs_check_write_pointer(sbi); 4158 if (err) 4159 goto free_meta; 4160 } 4161 4162 reset_checkpoint: 4163 f2fs_init_inmem_curseg(sbi); 4164 4165 /* f2fs_recover_fsync_data() cleared this already */ 4166 clear_sbi_flag(sbi, SBI_POR_DOING); 4167 4168 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4169 err = f2fs_disable_checkpoint(sbi); 4170 if (err) 4171 goto sync_free_meta; 4172 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4173 f2fs_enable_checkpoint(sbi); 4174 } 4175 4176 /* 4177 * If filesystem is not mounted as read-only then 4178 * do start the gc_thread. 4179 */ 4180 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4181 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4182 /* After POR, we can run background GC thread.*/ 4183 err = f2fs_start_gc_thread(sbi); 4184 if (err) 4185 goto sync_free_meta; 4186 } 4187 kvfree(options); 4188 4189 /* recover broken superblock */ 4190 if (recovery) { 4191 err = f2fs_commit_super(sbi, true); 4192 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4193 sbi->valid_super_block ? 1 : 2, err); 4194 } 4195 4196 f2fs_join_shrinker(sbi); 4197 4198 f2fs_tuning_parameters(sbi); 4199 4200 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4201 cur_cp_version(F2FS_CKPT(sbi))); 4202 f2fs_update_time(sbi, CP_TIME); 4203 f2fs_update_time(sbi, REQ_TIME); 4204 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4205 return 0; 4206 4207 sync_free_meta: 4208 /* safe to flush all the data */ 4209 sync_filesystem(sbi->sb); 4210 retry_cnt = 0; 4211 4212 free_meta: 4213 #ifdef CONFIG_QUOTA 4214 f2fs_truncate_quota_inode_pages(sb); 4215 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4216 f2fs_quota_off_umount(sbi->sb); 4217 #endif 4218 /* 4219 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4220 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4221 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4222 * falls into an infinite loop in f2fs_sync_meta_pages(). 4223 */ 4224 truncate_inode_pages_final(META_MAPPING(sbi)); 4225 /* evict some inodes being cached by GC */ 4226 evict_inodes(sb); 4227 f2fs_unregister_sysfs(sbi); 4228 free_compress_inode: 4229 f2fs_destroy_compress_inode(sbi); 4230 free_root_inode: 4231 dput(sb->s_root); 4232 sb->s_root = NULL; 4233 free_node_inode: 4234 f2fs_release_ino_entry(sbi, true); 4235 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4236 iput(sbi->node_inode); 4237 sbi->node_inode = NULL; 4238 free_stats: 4239 f2fs_destroy_stats(sbi); 4240 free_nm: 4241 f2fs_destroy_node_manager(sbi); 4242 free_sm: 4243 f2fs_destroy_segment_manager(sbi); 4244 f2fs_destroy_post_read_wq(sbi); 4245 stop_ckpt_thread: 4246 f2fs_stop_ckpt_thread(sbi); 4247 free_devices: 4248 destroy_device_list(sbi); 4249 kvfree(sbi->ckpt); 4250 free_meta_inode: 4251 make_bad_inode(sbi->meta_inode); 4252 iput(sbi->meta_inode); 4253 sbi->meta_inode = NULL; 4254 free_page_array_cache: 4255 f2fs_destroy_page_array_cache(sbi); 4256 free_xattr_cache: 4257 f2fs_destroy_xattr_caches(sbi); 4258 free_io_dummy: 4259 mempool_destroy(sbi->write_io_dummy); 4260 free_percpu: 4261 destroy_percpu_info(sbi); 4262 free_bio_info: 4263 for (i = 0; i < NR_PAGE_TYPE; i++) 4264 kvfree(sbi->write_io[i]); 4265 4266 #ifdef CONFIG_UNICODE 4267 utf8_unload(sb->s_encoding); 4268 sb->s_encoding = NULL; 4269 #endif 4270 free_options: 4271 #ifdef CONFIG_QUOTA 4272 for (i = 0; i < MAXQUOTAS; i++) 4273 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4274 #endif 4275 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4276 kvfree(options); 4277 free_sb_buf: 4278 kfree(raw_super); 4279 free_sbi: 4280 if (sbi->s_chksum_driver) 4281 crypto_free_shash(sbi->s_chksum_driver); 4282 kfree(sbi); 4283 4284 /* give only one another chance */ 4285 if (retry_cnt > 0 && skip_recovery) { 4286 retry_cnt--; 4287 shrink_dcache_sb(sb); 4288 goto try_onemore; 4289 } 4290 return err; 4291 } 4292 4293 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4294 const char *dev_name, void *data) 4295 { 4296 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4297 } 4298 4299 static void kill_f2fs_super(struct super_block *sb) 4300 { 4301 if (sb->s_root) { 4302 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4303 4304 set_sbi_flag(sbi, SBI_IS_CLOSE); 4305 f2fs_stop_gc_thread(sbi); 4306 f2fs_stop_discard_thread(sbi); 4307 4308 #ifdef CONFIG_F2FS_FS_COMPRESSION 4309 /* 4310 * latter evict_inode() can bypass checking and invalidating 4311 * compress inode cache. 4312 */ 4313 if (test_opt(sbi, COMPRESS_CACHE)) 4314 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4315 #endif 4316 4317 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4318 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4319 struct cp_control cpc = { 4320 .reason = CP_UMOUNT, 4321 }; 4322 f2fs_write_checkpoint(sbi, &cpc); 4323 } 4324 4325 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4326 sb->s_flags &= ~SB_RDONLY; 4327 } 4328 kill_block_super(sb); 4329 } 4330 4331 static struct file_system_type f2fs_fs_type = { 4332 .owner = THIS_MODULE, 4333 .name = "f2fs", 4334 .mount = f2fs_mount, 4335 .kill_sb = kill_f2fs_super, 4336 .fs_flags = FS_REQUIRES_DEV, 4337 }; 4338 MODULE_ALIAS_FS("f2fs"); 4339 4340 static int __init init_inodecache(void) 4341 { 4342 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4343 sizeof(struct f2fs_inode_info), 0, 4344 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4345 if (!f2fs_inode_cachep) 4346 return -ENOMEM; 4347 return 0; 4348 } 4349 4350 static void destroy_inodecache(void) 4351 { 4352 /* 4353 * Make sure all delayed rcu free inodes are flushed before we 4354 * destroy cache. 4355 */ 4356 rcu_barrier(); 4357 kmem_cache_destroy(f2fs_inode_cachep); 4358 } 4359 4360 static int __init init_f2fs_fs(void) 4361 { 4362 int err; 4363 4364 if (PAGE_SIZE != F2FS_BLKSIZE) { 4365 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4366 PAGE_SIZE, F2FS_BLKSIZE); 4367 return -EINVAL; 4368 } 4369 4370 err = init_inodecache(); 4371 if (err) 4372 goto fail; 4373 err = f2fs_create_node_manager_caches(); 4374 if (err) 4375 goto free_inodecache; 4376 err = f2fs_create_segment_manager_caches(); 4377 if (err) 4378 goto free_node_manager_caches; 4379 err = f2fs_create_checkpoint_caches(); 4380 if (err) 4381 goto free_segment_manager_caches; 4382 err = f2fs_create_recovery_cache(); 4383 if (err) 4384 goto free_checkpoint_caches; 4385 err = f2fs_create_extent_cache(); 4386 if (err) 4387 goto free_recovery_cache; 4388 err = f2fs_create_garbage_collection_cache(); 4389 if (err) 4390 goto free_extent_cache; 4391 err = f2fs_init_sysfs(); 4392 if (err) 4393 goto free_garbage_collection_cache; 4394 err = register_shrinker(&f2fs_shrinker_info); 4395 if (err) 4396 goto free_sysfs; 4397 err = register_filesystem(&f2fs_fs_type); 4398 if (err) 4399 goto free_shrinker; 4400 f2fs_create_root_stats(); 4401 err = f2fs_init_post_read_processing(); 4402 if (err) 4403 goto free_root_stats; 4404 err = f2fs_init_bio_entry_cache(); 4405 if (err) 4406 goto free_post_read; 4407 err = f2fs_init_bioset(); 4408 if (err) 4409 goto free_bio_enrty_cache; 4410 err = f2fs_init_compress_mempool(); 4411 if (err) 4412 goto free_bioset; 4413 err = f2fs_init_compress_cache(); 4414 if (err) 4415 goto free_compress_mempool; 4416 err = f2fs_create_casefold_cache(); 4417 if (err) 4418 goto free_compress_cache; 4419 return 0; 4420 free_compress_cache: 4421 f2fs_destroy_compress_cache(); 4422 free_compress_mempool: 4423 f2fs_destroy_compress_mempool(); 4424 free_bioset: 4425 f2fs_destroy_bioset(); 4426 free_bio_enrty_cache: 4427 f2fs_destroy_bio_entry_cache(); 4428 free_post_read: 4429 f2fs_destroy_post_read_processing(); 4430 free_root_stats: 4431 f2fs_destroy_root_stats(); 4432 unregister_filesystem(&f2fs_fs_type); 4433 free_shrinker: 4434 unregister_shrinker(&f2fs_shrinker_info); 4435 free_sysfs: 4436 f2fs_exit_sysfs(); 4437 free_garbage_collection_cache: 4438 f2fs_destroy_garbage_collection_cache(); 4439 free_extent_cache: 4440 f2fs_destroy_extent_cache(); 4441 free_recovery_cache: 4442 f2fs_destroy_recovery_cache(); 4443 free_checkpoint_caches: 4444 f2fs_destroy_checkpoint_caches(); 4445 free_segment_manager_caches: 4446 f2fs_destroy_segment_manager_caches(); 4447 free_node_manager_caches: 4448 f2fs_destroy_node_manager_caches(); 4449 free_inodecache: 4450 destroy_inodecache(); 4451 fail: 4452 return err; 4453 } 4454 4455 static void __exit exit_f2fs_fs(void) 4456 { 4457 f2fs_destroy_casefold_cache(); 4458 f2fs_destroy_compress_cache(); 4459 f2fs_destroy_compress_mempool(); 4460 f2fs_destroy_bioset(); 4461 f2fs_destroy_bio_entry_cache(); 4462 f2fs_destroy_post_read_processing(); 4463 f2fs_destroy_root_stats(); 4464 unregister_filesystem(&f2fs_fs_type); 4465 unregister_shrinker(&f2fs_shrinker_info); 4466 f2fs_exit_sysfs(); 4467 f2fs_destroy_garbage_collection_cache(); 4468 f2fs_destroy_extent_cache(); 4469 f2fs_destroy_recovery_cache(); 4470 f2fs_destroy_checkpoint_caches(); 4471 f2fs_destroy_segment_manager_caches(); 4472 f2fs_destroy_node_manager_caches(); 4473 destroy_inodecache(); 4474 } 4475 4476 module_init(init_f2fs_fs) 4477 module_exit(exit_f2fs_fs) 4478 4479 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 4480 MODULE_DESCRIPTION("Flash Friendly File System"); 4481 MODULE_LICENSE("GPL"); 4482 MODULE_SOFTDEP("pre: crc32"); 4483 4484