xref: /linux/fs/f2fs/super.c (revision 0a0f0d8be76dcd4390ff538e7060fda34db79717)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38 
39 static struct kmem_cache *f2fs_inode_cachep;
40 
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42 
43 const char *f2fs_fault_name[FAULT_MAX] = {
44 	[FAULT_KMALLOC]		= "kmalloc",
45 	[FAULT_KVMALLOC]	= "kvmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_PAGE_GET]	= "page get",
48 	[FAULT_ALLOC_BIO]	= "alloc bio",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_READ_IO]		= "read IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 	[FAULT_DISCARD]		= "discard error",
58 	[FAULT_WRITE_IO]	= "write IO error",
59 };
60 
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_inlinecrypt,
142 	Opt_checkpoint_disable,
143 	Opt_checkpoint_disable_cap,
144 	Opt_checkpoint_disable_cap_perc,
145 	Opt_checkpoint_enable,
146 	Opt_compress_algorithm,
147 	Opt_compress_log_size,
148 	Opt_compress_extension,
149 	Opt_err,
150 };
151 
152 static match_table_t f2fs_tokens = {
153 	{Opt_gc_background, "background_gc=%s"},
154 	{Opt_disable_roll_forward, "disable_roll_forward"},
155 	{Opt_norecovery, "norecovery"},
156 	{Opt_discard, "discard"},
157 	{Opt_nodiscard, "nodiscard"},
158 	{Opt_noheap, "no_heap"},
159 	{Opt_heap, "heap"},
160 	{Opt_user_xattr, "user_xattr"},
161 	{Opt_nouser_xattr, "nouser_xattr"},
162 	{Opt_acl, "acl"},
163 	{Opt_noacl, "noacl"},
164 	{Opt_active_logs, "active_logs=%u"},
165 	{Opt_disable_ext_identify, "disable_ext_identify"},
166 	{Opt_inline_xattr, "inline_xattr"},
167 	{Opt_noinline_xattr, "noinline_xattr"},
168 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
169 	{Opt_inline_data, "inline_data"},
170 	{Opt_inline_dentry, "inline_dentry"},
171 	{Opt_noinline_dentry, "noinline_dentry"},
172 	{Opt_flush_merge, "flush_merge"},
173 	{Opt_noflush_merge, "noflush_merge"},
174 	{Opt_nobarrier, "nobarrier"},
175 	{Opt_fastboot, "fastboot"},
176 	{Opt_extent_cache, "extent_cache"},
177 	{Opt_noextent_cache, "noextent_cache"},
178 	{Opt_noinline_data, "noinline_data"},
179 	{Opt_data_flush, "data_flush"},
180 	{Opt_reserve_root, "reserve_root=%u"},
181 	{Opt_resgid, "resgid=%u"},
182 	{Opt_resuid, "resuid=%u"},
183 	{Opt_mode, "mode=%s"},
184 	{Opt_io_size_bits, "io_bits=%u"},
185 	{Opt_fault_injection, "fault_injection=%u"},
186 	{Opt_fault_type, "fault_type=%u"},
187 	{Opt_lazytime, "lazytime"},
188 	{Opt_nolazytime, "nolazytime"},
189 	{Opt_quota, "quota"},
190 	{Opt_noquota, "noquota"},
191 	{Opt_usrquota, "usrquota"},
192 	{Opt_grpquota, "grpquota"},
193 	{Opt_prjquota, "prjquota"},
194 	{Opt_usrjquota, "usrjquota=%s"},
195 	{Opt_grpjquota, "grpjquota=%s"},
196 	{Opt_prjjquota, "prjjquota=%s"},
197 	{Opt_offusrjquota, "usrjquota="},
198 	{Opt_offgrpjquota, "grpjquota="},
199 	{Opt_offprjjquota, "prjjquota="},
200 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
201 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
202 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
203 	{Opt_whint, "whint_mode=%s"},
204 	{Opt_alloc, "alloc_mode=%s"},
205 	{Opt_fsync, "fsync_mode=%s"},
206 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
207 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
208 	{Opt_inlinecrypt, "inlinecrypt"},
209 	{Opt_checkpoint_disable, "checkpoint=disable"},
210 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
211 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
212 	{Opt_checkpoint_enable, "checkpoint=enable"},
213 	{Opt_compress_algorithm, "compress_algorithm=%s"},
214 	{Opt_compress_log_size, "compress_log_size=%u"},
215 	{Opt_compress_extension, "compress_extension=%s"},
216 	{Opt_err, NULL},
217 };
218 
219 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
220 {
221 	struct va_format vaf;
222 	va_list args;
223 	int level;
224 
225 	va_start(args, fmt);
226 
227 	level = printk_get_level(fmt);
228 	vaf.fmt = printk_skip_level(fmt);
229 	vaf.va = &args;
230 	printk("%c%cF2FS-fs (%s): %pV\n",
231 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
232 
233 	va_end(args);
234 }
235 
236 #ifdef CONFIG_UNICODE
237 static const struct f2fs_sb_encodings {
238 	__u16 magic;
239 	char *name;
240 	char *version;
241 } f2fs_sb_encoding_map[] = {
242 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
243 };
244 
245 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
246 				 const struct f2fs_sb_encodings **encoding,
247 				 __u16 *flags)
248 {
249 	__u16 magic = le16_to_cpu(sb->s_encoding);
250 	int i;
251 
252 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
253 		if (magic == f2fs_sb_encoding_map[i].magic)
254 			break;
255 
256 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
257 		return -EINVAL;
258 
259 	*encoding = &f2fs_sb_encoding_map[i];
260 	*flags = le16_to_cpu(sb->s_encoding_flags);
261 
262 	return 0;
263 }
264 #endif
265 
266 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
267 {
268 	block_t limit = min((sbi->user_block_count << 1) / 1000,
269 			sbi->user_block_count - sbi->reserved_blocks);
270 
271 	/* limit is 0.2% */
272 	if (test_opt(sbi, RESERVE_ROOT) &&
273 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
274 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
275 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
276 			  F2FS_OPTION(sbi).root_reserved_blocks);
277 	}
278 	if (!test_opt(sbi, RESERVE_ROOT) &&
279 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
280 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
281 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
282 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
283 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
284 			  from_kuid_munged(&init_user_ns,
285 					   F2FS_OPTION(sbi).s_resuid),
286 			  from_kgid_munged(&init_user_ns,
287 					   F2FS_OPTION(sbi).s_resgid));
288 }
289 
290 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
291 {
292 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
293 		return;
294 
295 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
296 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
297 	else
298 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
299 					F2FS_OPTION(sbi).unusable_cap_perc;
300 
301 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
302 			F2FS_OPTION(sbi).unusable_cap,
303 			F2FS_OPTION(sbi).unusable_cap_perc);
304 }
305 
306 static void init_once(void *foo)
307 {
308 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
309 
310 	inode_init_once(&fi->vfs_inode);
311 }
312 
313 #ifdef CONFIG_QUOTA
314 static const char * const quotatypes[] = INITQFNAMES;
315 #define QTYPE2NAME(t) (quotatypes[t])
316 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
317 							substring_t *args)
318 {
319 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
320 	char *qname;
321 	int ret = -EINVAL;
322 
323 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
324 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
325 		return -EINVAL;
326 	}
327 	if (f2fs_sb_has_quota_ino(sbi)) {
328 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
329 		return 0;
330 	}
331 
332 	qname = match_strdup(args);
333 	if (!qname) {
334 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
335 		return -ENOMEM;
336 	}
337 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
338 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
339 			ret = 0;
340 		else
341 			f2fs_err(sbi, "%s quota file already specified",
342 				 QTYPE2NAME(qtype));
343 		goto errout;
344 	}
345 	if (strchr(qname, '/')) {
346 		f2fs_err(sbi, "quotafile must be on filesystem root");
347 		goto errout;
348 	}
349 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
350 	set_opt(sbi, QUOTA);
351 	return 0;
352 errout:
353 	kfree(qname);
354 	return ret;
355 }
356 
357 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
358 {
359 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
360 
361 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
362 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
363 		return -EINVAL;
364 	}
365 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
366 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
367 	return 0;
368 }
369 
370 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
371 {
372 	/*
373 	 * We do the test below only for project quotas. 'usrquota' and
374 	 * 'grpquota' mount options are allowed even without quota feature
375 	 * to support legacy quotas in quota files.
376 	 */
377 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
378 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
379 		return -1;
380 	}
381 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
382 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
383 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
384 		if (test_opt(sbi, USRQUOTA) &&
385 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
386 			clear_opt(sbi, USRQUOTA);
387 
388 		if (test_opt(sbi, GRPQUOTA) &&
389 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
390 			clear_opt(sbi, GRPQUOTA);
391 
392 		if (test_opt(sbi, PRJQUOTA) &&
393 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
394 			clear_opt(sbi, PRJQUOTA);
395 
396 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
397 				test_opt(sbi, PRJQUOTA)) {
398 			f2fs_err(sbi, "old and new quota format mixing");
399 			return -1;
400 		}
401 
402 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
403 			f2fs_err(sbi, "journaled quota format not specified");
404 			return -1;
405 		}
406 	}
407 
408 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
409 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
410 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
411 	}
412 	return 0;
413 }
414 #endif
415 
416 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
417 					  const char *opt,
418 					  const substring_t *arg,
419 					  bool is_remount)
420 {
421 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
422 #ifdef CONFIG_FS_ENCRYPTION
423 	int err;
424 
425 	if (!f2fs_sb_has_encrypt(sbi)) {
426 		f2fs_err(sbi, "Encrypt feature is off");
427 		return -EINVAL;
428 	}
429 
430 	/*
431 	 * This mount option is just for testing, and it's not worthwhile to
432 	 * implement the extra complexity (e.g. RCU protection) that would be
433 	 * needed to allow it to be set or changed during remount.  We do allow
434 	 * it to be specified during remount, but only if there is no change.
435 	 */
436 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_ctx.ctx) {
437 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
438 		return -EINVAL;
439 	}
440 	err = fscrypt_set_test_dummy_encryption(
441 		sb, arg, &F2FS_OPTION(sbi).dummy_enc_ctx);
442 	if (err) {
443 		if (err == -EEXIST)
444 			f2fs_warn(sbi,
445 				  "Can't change test_dummy_encryption on remount");
446 		else if (err == -EINVAL)
447 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
448 				  opt);
449 		else
450 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
451 				  opt, err);
452 		return -EINVAL;
453 	}
454 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
455 #else
456 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
457 #endif
458 	return 0;
459 }
460 
461 static int parse_options(struct super_block *sb, char *options, bool is_remount)
462 {
463 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
464 	substring_t args[MAX_OPT_ARGS];
465 #ifdef CONFIG_F2FS_FS_COMPRESSION
466 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
467 	int ext_cnt;
468 #endif
469 	char *p, *name;
470 	int arg = 0;
471 	kuid_t uid;
472 	kgid_t gid;
473 	int ret;
474 
475 	if (!options)
476 		return 0;
477 
478 	while ((p = strsep(&options, ",")) != NULL) {
479 		int token;
480 		if (!*p)
481 			continue;
482 		/*
483 		 * Initialize args struct so we know whether arg was
484 		 * found; some options take optional arguments.
485 		 */
486 		args[0].to = args[0].from = NULL;
487 		token = match_token(p, f2fs_tokens, args);
488 
489 		switch (token) {
490 		case Opt_gc_background:
491 			name = match_strdup(&args[0]);
492 
493 			if (!name)
494 				return -ENOMEM;
495 			if (!strcmp(name, "on")) {
496 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
497 			} else if (!strcmp(name, "off")) {
498 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
499 			} else if (!strcmp(name, "sync")) {
500 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
501 			} else {
502 				kfree(name);
503 				return -EINVAL;
504 			}
505 			kfree(name);
506 			break;
507 		case Opt_disable_roll_forward:
508 			set_opt(sbi, DISABLE_ROLL_FORWARD);
509 			break;
510 		case Opt_norecovery:
511 			/* this option mounts f2fs with ro */
512 			set_opt(sbi, NORECOVERY);
513 			if (!f2fs_readonly(sb))
514 				return -EINVAL;
515 			break;
516 		case Opt_discard:
517 			set_opt(sbi, DISCARD);
518 			break;
519 		case Opt_nodiscard:
520 			if (f2fs_sb_has_blkzoned(sbi)) {
521 				f2fs_warn(sbi, "discard is required for zoned block devices");
522 				return -EINVAL;
523 			}
524 			clear_opt(sbi, DISCARD);
525 			break;
526 		case Opt_noheap:
527 			set_opt(sbi, NOHEAP);
528 			break;
529 		case Opt_heap:
530 			clear_opt(sbi, NOHEAP);
531 			break;
532 #ifdef CONFIG_F2FS_FS_XATTR
533 		case Opt_user_xattr:
534 			set_opt(sbi, XATTR_USER);
535 			break;
536 		case Opt_nouser_xattr:
537 			clear_opt(sbi, XATTR_USER);
538 			break;
539 		case Opt_inline_xattr:
540 			set_opt(sbi, INLINE_XATTR);
541 			break;
542 		case Opt_noinline_xattr:
543 			clear_opt(sbi, INLINE_XATTR);
544 			break;
545 		case Opt_inline_xattr_size:
546 			if (args->from && match_int(args, &arg))
547 				return -EINVAL;
548 			set_opt(sbi, INLINE_XATTR_SIZE);
549 			F2FS_OPTION(sbi).inline_xattr_size = arg;
550 			break;
551 #else
552 		case Opt_user_xattr:
553 			f2fs_info(sbi, "user_xattr options not supported");
554 			break;
555 		case Opt_nouser_xattr:
556 			f2fs_info(sbi, "nouser_xattr options not supported");
557 			break;
558 		case Opt_inline_xattr:
559 			f2fs_info(sbi, "inline_xattr options not supported");
560 			break;
561 		case Opt_noinline_xattr:
562 			f2fs_info(sbi, "noinline_xattr options not supported");
563 			break;
564 #endif
565 #ifdef CONFIG_F2FS_FS_POSIX_ACL
566 		case Opt_acl:
567 			set_opt(sbi, POSIX_ACL);
568 			break;
569 		case Opt_noacl:
570 			clear_opt(sbi, POSIX_ACL);
571 			break;
572 #else
573 		case Opt_acl:
574 			f2fs_info(sbi, "acl options not supported");
575 			break;
576 		case Opt_noacl:
577 			f2fs_info(sbi, "noacl options not supported");
578 			break;
579 #endif
580 		case Opt_active_logs:
581 			if (args->from && match_int(args, &arg))
582 				return -EINVAL;
583 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
584 				return -EINVAL;
585 			F2FS_OPTION(sbi).active_logs = arg;
586 			break;
587 		case Opt_disable_ext_identify:
588 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
589 			break;
590 		case Opt_inline_data:
591 			set_opt(sbi, INLINE_DATA);
592 			break;
593 		case Opt_inline_dentry:
594 			set_opt(sbi, INLINE_DENTRY);
595 			break;
596 		case Opt_noinline_dentry:
597 			clear_opt(sbi, INLINE_DENTRY);
598 			break;
599 		case Opt_flush_merge:
600 			set_opt(sbi, FLUSH_MERGE);
601 			break;
602 		case Opt_noflush_merge:
603 			clear_opt(sbi, FLUSH_MERGE);
604 			break;
605 		case Opt_nobarrier:
606 			set_opt(sbi, NOBARRIER);
607 			break;
608 		case Opt_fastboot:
609 			set_opt(sbi, FASTBOOT);
610 			break;
611 		case Opt_extent_cache:
612 			set_opt(sbi, EXTENT_CACHE);
613 			break;
614 		case Opt_noextent_cache:
615 			clear_opt(sbi, EXTENT_CACHE);
616 			break;
617 		case Opt_noinline_data:
618 			clear_opt(sbi, INLINE_DATA);
619 			break;
620 		case Opt_data_flush:
621 			set_opt(sbi, DATA_FLUSH);
622 			break;
623 		case Opt_reserve_root:
624 			if (args->from && match_int(args, &arg))
625 				return -EINVAL;
626 			if (test_opt(sbi, RESERVE_ROOT)) {
627 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
628 					  F2FS_OPTION(sbi).root_reserved_blocks);
629 			} else {
630 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
631 				set_opt(sbi, RESERVE_ROOT);
632 			}
633 			break;
634 		case Opt_resuid:
635 			if (args->from && match_int(args, &arg))
636 				return -EINVAL;
637 			uid = make_kuid(current_user_ns(), arg);
638 			if (!uid_valid(uid)) {
639 				f2fs_err(sbi, "Invalid uid value %d", arg);
640 				return -EINVAL;
641 			}
642 			F2FS_OPTION(sbi).s_resuid = uid;
643 			break;
644 		case Opt_resgid:
645 			if (args->from && match_int(args, &arg))
646 				return -EINVAL;
647 			gid = make_kgid(current_user_ns(), arg);
648 			if (!gid_valid(gid)) {
649 				f2fs_err(sbi, "Invalid gid value %d", arg);
650 				return -EINVAL;
651 			}
652 			F2FS_OPTION(sbi).s_resgid = gid;
653 			break;
654 		case Opt_mode:
655 			name = match_strdup(&args[0]);
656 
657 			if (!name)
658 				return -ENOMEM;
659 			if (!strcmp(name, "adaptive")) {
660 				if (f2fs_sb_has_blkzoned(sbi)) {
661 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
662 					kfree(name);
663 					return -EINVAL;
664 				}
665 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
666 			} else if (!strcmp(name, "lfs")) {
667 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
668 			} else {
669 				kfree(name);
670 				return -EINVAL;
671 			}
672 			kfree(name);
673 			break;
674 		case Opt_io_size_bits:
675 			if (args->from && match_int(args, &arg))
676 				return -EINVAL;
677 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
678 				f2fs_warn(sbi, "Not support %d, larger than %d",
679 					  1 << arg, BIO_MAX_PAGES);
680 				return -EINVAL;
681 			}
682 			F2FS_OPTION(sbi).write_io_size_bits = arg;
683 			break;
684 #ifdef CONFIG_F2FS_FAULT_INJECTION
685 		case Opt_fault_injection:
686 			if (args->from && match_int(args, &arg))
687 				return -EINVAL;
688 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
689 			set_opt(sbi, FAULT_INJECTION);
690 			break;
691 
692 		case Opt_fault_type:
693 			if (args->from && match_int(args, &arg))
694 				return -EINVAL;
695 			f2fs_build_fault_attr(sbi, 0, arg);
696 			set_opt(sbi, FAULT_INJECTION);
697 			break;
698 #else
699 		case Opt_fault_injection:
700 			f2fs_info(sbi, "fault_injection options not supported");
701 			break;
702 
703 		case Opt_fault_type:
704 			f2fs_info(sbi, "fault_type options not supported");
705 			break;
706 #endif
707 		case Opt_lazytime:
708 			sb->s_flags |= SB_LAZYTIME;
709 			break;
710 		case Opt_nolazytime:
711 			sb->s_flags &= ~SB_LAZYTIME;
712 			break;
713 #ifdef CONFIG_QUOTA
714 		case Opt_quota:
715 		case Opt_usrquota:
716 			set_opt(sbi, USRQUOTA);
717 			break;
718 		case Opt_grpquota:
719 			set_opt(sbi, GRPQUOTA);
720 			break;
721 		case Opt_prjquota:
722 			set_opt(sbi, PRJQUOTA);
723 			break;
724 		case Opt_usrjquota:
725 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
726 			if (ret)
727 				return ret;
728 			break;
729 		case Opt_grpjquota:
730 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
731 			if (ret)
732 				return ret;
733 			break;
734 		case Opt_prjjquota:
735 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
736 			if (ret)
737 				return ret;
738 			break;
739 		case Opt_offusrjquota:
740 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
741 			if (ret)
742 				return ret;
743 			break;
744 		case Opt_offgrpjquota:
745 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
746 			if (ret)
747 				return ret;
748 			break;
749 		case Opt_offprjjquota:
750 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
751 			if (ret)
752 				return ret;
753 			break;
754 		case Opt_jqfmt_vfsold:
755 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
756 			break;
757 		case Opt_jqfmt_vfsv0:
758 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
759 			break;
760 		case Opt_jqfmt_vfsv1:
761 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
762 			break;
763 		case Opt_noquota:
764 			clear_opt(sbi, QUOTA);
765 			clear_opt(sbi, USRQUOTA);
766 			clear_opt(sbi, GRPQUOTA);
767 			clear_opt(sbi, PRJQUOTA);
768 			break;
769 #else
770 		case Opt_quota:
771 		case Opt_usrquota:
772 		case Opt_grpquota:
773 		case Opt_prjquota:
774 		case Opt_usrjquota:
775 		case Opt_grpjquota:
776 		case Opt_prjjquota:
777 		case Opt_offusrjquota:
778 		case Opt_offgrpjquota:
779 		case Opt_offprjjquota:
780 		case Opt_jqfmt_vfsold:
781 		case Opt_jqfmt_vfsv0:
782 		case Opt_jqfmt_vfsv1:
783 		case Opt_noquota:
784 			f2fs_info(sbi, "quota operations not supported");
785 			break;
786 #endif
787 		case Opt_whint:
788 			name = match_strdup(&args[0]);
789 			if (!name)
790 				return -ENOMEM;
791 			if (!strcmp(name, "user-based")) {
792 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
793 			} else if (!strcmp(name, "off")) {
794 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
795 			} else if (!strcmp(name, "fs-based")) {
796 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
797 			} else {
798 				kfree(name);
799 				return -EINVAL;
800 			}
801 			kfree(name);
802 			break;
803 		case Opt_alloc:
804 			name = match_strdup(&args[0]);
805 			if (!name)
806 				return -ENOMEM;
807 
808 			if (!strcmp(name, "default")) {
809 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
810 			} else if (!strcmp(name, "reuse")) {
811 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
812 			} else {
813 				kfree(name);
814 				return -EINVAL;
815 			}
816 			kfree(name);
817 			break;
818 		case Opt_fsync:
819 			name = match_strdup(&args[0]);
820 			if (!name)
821 				return -ENOMEM;
822 			if (!strcmp(name, "posix")) {
823 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
824 			} else if (!strcmp(name, "strict")) {
825 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
826 			} else if (!strcmp(name, "nobarrier")) {
827 				F2FS_OPTION(sbi).fsync_mode =
828 							FSYNC_MODE_NOBARRIER;
829 			} else {
830 				kfree(name);
831 				return -EINVAL;
832 			}
833 			kfree(name);
834 			break;
835 		case Opt_test_dummy_encryption:
836 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
837 							     is_remount);
838 			if (ret)
839 				return ret;
840 			break;
841 		case Opt_inlinecrypt:
842 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
843 			sb->s_flags |= SB_INLINECRYPT;
844 #else
845 			f2fs_info(sbi, "inline encryption not supported");
846 #endif
847 			break;
848 		case Opt_checkpoint_disable_cap_perc:
849 			if (args->from && match_int(args, &arg))
850 				return -EINVAL;
851 			if (arg < 0 || arg > 100)
852 				return -EINVAL;
853 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
854 			set_opt(sbi, DISABLE_CHECKPOINT);
855 			break;
856 		case Opt_checkpoint_disable_cap:
857 			if (args->from && match_int(args, &arg))
858 				return -EINVAL;
859 			F2FS_OPTION(sbi).unusable_cap = arg;
860 			set_opt(sbi, DISABLE_CHECKPOINT);
861 			break;
862 		case Opt_checkpoint_disable:
863 			set_opt(sbi, DISABLE_CHECKPOINT);
864 			break;
865 		case Opt_checkpoint_enable:
866 			clear_opt(sbi, DISABLE_CHECKPOINT);
867 			break;
868 #ifdef CONFIG_F2FS_FS_COMPRESSION
869 		case Opt_compress_algorithm:
870 			if (!f2fs_sb_has_compression(sbi)) {
871 				f2fs_err(sbi, "Compression feature if off");
872 				return -EINVAL;
873 			}
874 			name = match_strdup(&args[0]);
875 			if (!name)
876 				return -ENOMEM;
877 			if (!strcmp(name, "lzo")) {
878 				F2FS_OPTION(sbi).compress_algorithm =
879 								COMPRESS_LZO;
880 			} else if (!strcmp(name, "lz4")) {
881 				F2FS_OPTION(sbi).compress_algorithm =
882 								COMPRESS_LZ4;
883 			} else if (!strcmp(name, "zstd")) {
884 				F2FS_OPTION(sbi).compress_algorithm =
885 								COMPRESS_ZSTD;
886 			} else if (!strcmp(name, "lzo-rle")) {
887 				F2FS_OPTION(sbi).compress_algorithm =
888 								COMPRESS_LZORLE;
889 			} else {
890 				kfree(name);
891 				return -EINVAL;
892 			}
893 			kfree(name);
894 			break;
895 		case Opt_compress_log_size:
896 			if (!f2fs_sb_has_compression(sbi)) {
897 				f2fs_err(sbi, "Compression feature is off");
898 				return -EINVAL;
899 			}
900 			if (args->from && match_int(args, &arg))
901 				return -EINVAL;
902 			if (arg < MIN_COMPRESS_LOG_SIZE ||
903 				arg > MAX_COMPRESS_LOG_SIZE) {
904 				f2fs_err(sbi,
905 					"Compress cluster log size is out of range");
906 				return -EINVAL;
907 			}
908 			F2FS_OPTION(sbi).compress_log_size = arg;
909 			break;
910 		case Opt_compress_extension:
911 			if (!f2fs_sb_has_compression(sbi)) {
912 				f2fs_err(sbi, "Compression feature is off");
913 				return -EINVAL;
914 			}
915 			name = match_strdup(&args[0]);
916 			if (!name)
917 				return -ENOMEM;
918 
919 			ext = F2FS_OPTION(sbi).extensions;
920 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
921 
922 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
923 				ext_cnt >= COMPRESS_EXT_NUM) {
924 				f2fs_err(sbi,
925 					"invalid extension length/number");
926 				kfree(name);
927 				return -EINVAL;
928 			}
929 
930 			strcpy(ext[ext_cnt], name);
931 			F2FS_OPTION(sbi).compress_ext_cnt++;
932 			kfree(name);
933 			break;
934 #else
935 		case Opt_compress_algorithm:
936 		case Opt_compress_log_size:
937 		case Opt_compress_extension:
938 			f2fs_info(sbi, "compression options not supported");
939 			break;
940 #endif
941 		default:
942 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
943 				 p);
944 			return -EINVAL;
945 		}
946 	}
947 #ifdef CONFIG_QUOTA
948 	if (f2fs_check_quota_options(sbi))
949 		return -EINVAL;
950 #else
951 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
952 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
953 		return -EINVAL;
954 	}
955 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
956 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
957 		return -EINVAL;
958 	}
959 #endif
960 #ifndef CONFIG_UNICODE
961 	if (f2fs_sb_has_casefold(sbi)) {
962 		f2fs_err(sbi,
963 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
964 		return -EINVAL;
965 	}
966 #endif
967 
968 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
969 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
970 			 F2FS_IO_SIZE_KB(sbi));
971 		return -EINVAL;
972 	}
973 
974 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
975 		int min_size, max_size;
976 
977 		if (!f2fs_sb_has_extra_attr(sbi) ||
978 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
979 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
980 			return -EINVAL;
981 		}
982 		if (!test_opt(sbi, INLINE_XATTR)) {
983 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
984 			return -EINVAL;
985 		}
986 
987 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
988 		max_size = MAX_INLINE_XATTR_SIZE;
989 
990 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
991 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
992 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
993 				 min_size, max_size);
994 			return -EINVAL;
995 		}
996 	}
997 
998 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
999 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
1000 		return -EINVAL;
1001 	}
1002 
1003 	/* Not pass down write hints if the number of active logs is lesser
1004 	 * than NR_CURSEG_TYPE.
1005 	 */
1006 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
1007 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1008 	return 0;
1009 }
1010 
1011 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1012 {
1013 	struct f2fs_inode_info *fi;
1014 
1015 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1016 	if (!fi)
1017 		return NULL;
1018 
1019 	init_once((void *) fi);
1020 
1021 	/* Initialize f2fs-specific inode info */
1022 	atomic_set(&fi->dirty_pages, 0);
1023 	init_rwsem(&fi->i_sem);
1024 	spin_lock_init(&fi->i_size_lock);
1025 	INIT_LIST_HEAD(&fi->dirty_list);
1026 	INIT_LIST_HEAD(&fi->gdirty_list);
1027 	INIT_LIST_HEAD(&fi->inmem_ilist);
1028 	INIT_LIST_HEAD(&fi->inmem_pages);
1029 	mutex_init(&fi->inmem_lock);
1030 	init_rwsem(&fi->i_gc_rwsem[READ]);
1031 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1032 	init_rwsem(&fi->i_mmap_sem);
1033 	init_rwsem(&fi->i_xattr_sem);
1034 
1035 	/* Will be used by directory only */
1036 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1037 
1038 	fi->ra_offset = -1;
1039 
1040 	return &fi->vfs_inode;
1041 }
1042 
1043 static int f2fs_drop_inode(struct inode *inode)
1044 {
1045 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1046 	int ret;
1047 
1048 	/*
1049 	 * during filesystem shutdown, if checkpoint is disabled,
1050 	 * drop useless meta/node dirty pages.
1051 	 */
1052 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1053 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1054 			inode->i_ino == F2FS_META_INO(sbi)) {
1055 			trace_f2fs_drop_inode(inode, 1);
1056 			return 1;
1057 		}
1058 	}
1059 
1060 	/*
1061 	 * This is to avoid a deadlock condition like below.
1062 	 * writeback_single_inode(inode)
1063 	 *  - f2fs_write_data_page
1064 	 *    - f2fs_gc -> iput -> evict
1065 	 *       - inode_wait_for_writeback(inode)
1066 	 */
1067 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1068 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1069 			/* to avoid evict_inode call simultaneously */
1070 			atomic_inc(&inode->i_count);
1071 			spin_unlock(&inode->i_lock);
1072 
1073 			/* some remained atomic pages should discarded */
1074 			if (f2fs_is_atomic_file(inode))
1075 				f2fs_drop_inmem_pages(inode);
1076 
1077 			/* should remain fi->extent_tree for writepage */
1078 			f2fs_destroy_extent_node(inode);
1079 
1080 			sb_start_intwrite(inode->i_sb);
1081 			f2fs_i_size_write(inode, 0);
1082 
1083 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1084 					inode, NULL, 0, DATA);
1085 			truncate_inode_pages_final(inode->i_mapping);
1086 
1087 			if (F2FS_HAS_BLOCKS(inode))
1088 				f2fs_truncate(inode);
1089 
1090 			sb_end_intwrite(inode->i_sb);
1091 
1092 			spin_lock(&inode->i_lock);
1093 			atomic_dec(&inode->i_count);
1094 		}
1095 		trace_f2fs_drop_inode(inode, 0);
1096 		return 0;
1097 	}
1098 	ret = generic_drop_inode(inode);
1099 	if (!ret)
1100 		ret = fscrypt_drop_inode(inode);
1101 	trace_f2fs_drop_inode(inode, ret);
1102 	return ret;
1103 }
1104 
1105 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1106 {
1107 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1108 	int ret = 0;
1109 
1110 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1111 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1112 		ret = 1;
1113 	} else {
1114 		set_inode_flag(inode, FI_DIRTY_INODE);
1115 		stat_inc_dirty_inode(sbi, DIRTY_META);
1116 	}
1117 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1118 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1119 				&sbi->inode_list[DIRTY_META]);
1120 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1121 	}
1122 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1123 	return ret;
1124 }
1125 
1126 void f2fs_inode_synced(struct inode *inode)
1127 {
1128 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1129 
1130 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1131 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1132 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1133 		return;
1134 	}
1135 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1136 		list_del_init(&F2FS_I(inode)->gdirty_list);
1137 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1138 	}
1139 	clear_inode_flag(inode, FI_DIRTY_INODE);
1140 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1141 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1142 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1143 }
1144 
1145 /*
1146  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1147  *
1148  * We should call set_dirty_inode to write the dirty inode through write_inode.
1149  */
1150 static void f2fs_dirty_inode(struct inode *inode, int flags)
1151 {
1152 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1153 
1154 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1155 			inode->i_ino == F2FS_META_INO(sbi))
1156 		return;
1157 
1158 	if (flags == I_DIRTY_TIME)
1159 		return;
1160 
1161 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1162 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1163 
1164 	f2fs_inode_dirtied(inode, false);
1165 }
1166 
1167 static void f2fs_free_inode(struct inode *inode)
1168 {
1169 	fscrypt_free_inode(inode);
1170 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1171 }
1172 
1173 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1174 {
1175 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1176 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1177 }
1178 
1179 static void destroy_device_list(struct f2fs_sb_info *sbi)
1180 {
1181 	int i;
1182 
1183 	for (i = 0; i < sbi->s_ndevs; i++) {
1184 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1185 #ifdef CONFIG_BLK_DEV_ZONED
1186 		kvfree(FDEV(i).blkz_seq);
1187 #endif
1188 	}
1189 	kvfree(sbi->devs);
1190 }
1191 
1192 static void f2fs_put_super(struct super_block *sb)
1193 {
1194 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1195 	int i;
1196 	bool dropped;
1197 
1198 	/* unregister procfs/sysfs entries in advance to avoid race case */
1199 	f2fs_unregister_sysfs(sbi);
1200 
1201 	f2fs_quota_off_umount(sb);
1202 
1203 	/* prevent remaining shrinker jobs */
1204 	mutex_lock(&sbi->umount_mutex);
1205 
1206 	/*
1207 	 * We don't need to do checkpoint when superblock is clean.
1208 	 * But, the previous checkpoint was not done by umount, it needs to do
1209 	 * clean checkpoint again.
1210 	 */
1211 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1212 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1213 		struct cp_control cpc = {
1214 			.reason = CP_UMOUNT,
1215 		};
1216 		f2fs_write_checkpoint(sbi, &cpc);
1217 	}
1218 
1219 	/* be sure to wait for any on-going discard commands */
1220 	dropped = f2fs_issue_discard_timeout(sbi);
1221 
1222 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1223 					!sbi->discard_blks && !dropped) {
1224 		struct cp_control cpc = {
1225 			.reason = CP_UMOUNT | CP_TRIMMED,
1226 		};
1227 		f2fs_write_checkpoint(sbi, &cpc);
1228 	}
1229 
1230 	/*
1231 	 * normally superblock is clean, so we need to release this.
1232 	 * In addition, EIO will skip do checkpoint, we need this as well.
1233 	 */
1234 	f2fs_release_ino_entry(sbi, true);
1235 
1236 	f2fs_leave_shrinker(sbi);
1237 	mutex_unlock(&sbi->umount_mutex);
1238 
1239 	/* our cp_error case, we can wait for any writeback page */
1240 	f2fs_flush_merged_writes(sbi);
1241 
1242 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1243 
1244 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1245 
1246 	iput(sbi->node_inode);
1247 	sbi->node_inode = NULL;
1248 
1249 	iput(sbi->meta_inode);
1250 	sbi->meta_inode = NULL;
1251 
1252 	/*
1253 	 * iput() can update stat information, if f2fs_write_checkpoint()
1254 	 * above failed with error.
1255 	 */
1256 	f2fs_destroy_stats(sbi);
1257 
1258 	/* destroy f2fs internal modules */
1259 	f2fs_destroy_node_manager(sbi);
1260 	f2fs_destroy_segment_manager(sbi);
1261 
1262 	f2fs_destroy_post_read_wq(sbi);
1263 
1264 	kvfree(sbi->ckpt);
1265 
1266 	sb->s_fs_info = NULL;
1267 	if (sbi->s_chksum_driver)
1268 		crypto_free_shash(sbi->s_chksum_driver);
1269 	kfree(sbi->raw_super);
1270 
1271 	destroy_device_list(sbi);
1272 	f2fs_destroy_xattr_caches(sbi);
1273 	mempool_destroy(sbi->write_io_dummy);
1274 #ifdef CONFIG_QUOTA
1275 	for (i = 0; i < MAXQUOTAS; i++)
1276 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1277 #endif
1278 	fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx);
1279 	destroy_percpu_info(sbi);
1280 	for (i = 0; i < NR_PAGE_TYPE; i++)
1281 		kvfree(sbi->write_io[i]);
1282 #ifdef CONFIG_UNICODE
1283 	utf8_unload(sbi->s_encoding);
1284 #endif
1285 	kfree(sbi);
1286 }
1287 
1288 int f2fs_sync_fs(struct super_block *sb, int sync)
1289 {
1290 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1291 	int err = 0;
1292 
1293 	if (unlikely(f2fs_cp_error(sbi)))
1294 		return 0;
1295 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1296 		return 0;
1297 
1298 	trace_f2fs_sync_fs(sb, sync);
1299 
1300 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1301 		return -EAGAIN;
1302 
1303 	if (sync) {
1304 		struct cp_control cpc;
1305 
1306 		cpc.reason = __get_cp_reason(sbi);
1307 
1308 		down_write(&sbi->gc_lock);
1309 		err = f2fs_write_checkpoint(sbi, &cpc);
1310 		up_write(&sbi->gc_lock);
1311 	}
1312 	f2fs_trace_ios(NULL, 1);
1313 
1314 	return err;
1315 }
1316 
1317 static int f2fs_freeze(struct super_block *sb)
1318 {
1319 	if (f2fs_readonly(sb))
1320 		return 0;
1321 
1322 	/* IO error happened before */
1323 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1324 		return -EIO;
1325 
1326 	/* must be clean, since sync_filesystem() was already called */
1327 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1328 		return -EINVAL;
1329 	return 0;
1330 }
1331 
1332 static int f2fs_unfreeze(struct super_block *sb)
1333 {
1334 	return 0;
1335 }
1336 
1337 #ifdef CONFIG_QUOTA
1338 static int f2fs_statfs_project(struct super_block *sb,
1339 				kprojid_t projid, struct kstatfs *buf)
1340 {
1341 	struct kqid qid;
1342 	struct dquot *dquot;
1343 	u64 limit;
1344 	u64 curblock;
1345 
1346 	qid = make_kqid_projid(projid);
1347 	dquot = dqget(sb, qid);
1348 	if (IS_ERR(dquot))
1349 		return PTR_ERR(dquot);
1350 	spin_lock(&dquot->dq_dqb_lock);
1351 
1352 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1353 					dquot->dq_dqb.dqb_bhardlimit);
1354 	if (limit)
1355 		limit >>= sb->s_blocksize_bits;
1356 
1357 	if (limit && buf->f_blocks > limit) {
1358 		curblock = (dquot->dq_dqb.dqb_curspace +
1359 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1360 		buf->f_blocks = limit;
1361 		buf->f_bfree = buf->f_bavail =
1362 			(buf->f_blocks > curblock) ?
1363 			 (buf->f_blocks - curblock) : 0;
1364 	}
1365 
1366 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1367 					dquot->dq_dqb.dqb_ihardlimit);
1368 
1369 	if (limit && buf->f_files > limit) {
1370 		buf->f_files = limit;
1371 		buf->f_ffree =
1372 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1373 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1374 	}
1375 
1376 	spin_unlock(&dquot->dq_dqb_lock);
1377 	dqput(dquot);
1378 	return 0;
1379 }
1380 #endif
1381 
1382 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1383 {
1384 	struct super_block *sb = dentry->d_sb;
1385 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1386 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1387 	block_t total_count, user_block_count, start_count;
1388 	u64 avail_node_count;
1389 
1390 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1391 	user_block_count = sbi->user_block_count;
1392 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1393 	buf->f_type = F2FS_SUPER_MAGIC;
1394 	buf->f_bsize = sbi->blocksize;
1395 
1396 	buf->f_blocks = total_count - start_count;
1397 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1398 						sbi->current_reserved_blocks;
1399 
1400 	spin_lock(&sbi->stat_lock);
1401 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1402 		buf->f_bfree = 0;
1403 	else
1404 		buf->f_bfree -= sbi->unusable_block_count;
1405 	spin_unlock(&sbi->stat_lock);
1406 
1407 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1408 		buf->f_bavail = buf->f_bfree -
1409 				F2FS_OPTION(sbi).root_reserved_blocks;
1410 	else
1411 		buf->f_bavail = 0;
1412 
1413 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1414 
1415 	if (avail_node_count > user_block_count) {
1416 		buf->f_files = user_block_count;
1417 		buf->f_ffree = buf->f_bavail;
1418 	} else {
1419 		buf->f_files = avail_node_count;
1420 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1421 					buf->f_bavail);
1422 	}
1423 
1424 	buf->f_namelen = F2FS_NAME_LEN;
1425 	buf->f_fsid.val[0] = (u32)id;
1426 	buf->f_fsid.val[1] = (u32)(id >> 32);
1427 
1428 #ifdef CONFIG_QUOTA
1429 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1430 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1431 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1432 	}
1433 #endif
1434 	return 0;
1435 }
1436 
1437 static inline void f2fs_show_quota_options(struct seq_file *seq,
1438 					   struct super_block *sb)
1439 {
1440 #ifdef CONFIG_QUOTA
1441 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1442 
1443 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1444 		char *fmtname = "";
1445 
1446 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1447 		case QFMT_VFS_OLD:
1448 			fmtname = "vfsold";
1449 			break;
1450 		case QFMT_VFS_V0:
1451 			fmtname = "vfsv0";
1452 			break;
1453 		case QFMT_VFS_V1:
1454 			fmtname = "vfsv1";
1455 			break;
1456 		}
1457 		seq_printf(seq, ",jqfmt=%s", fmtname);
1458 	}
1459 
1460 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1461 		seq_show_option(seq, "usrjquota",
1462 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1463 
1464 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1465 		seq_show_option(seq, "grpjquota",
1466 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1467 
1468 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1469 		seq_show_option(seq, "prjjquota",
1470 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1471 #endif
1472 }
1473 
1474 static inline void f2fs_show_compress_options(struct seq_file *seq,
1475 							struct super_block *sb)
1476 {
1477 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1478 	char *algtype = "";
1479 	int i;
1480 
1481 	if (!f2fs_sb_has_compression(sbi))
1482 		return;
1483 
1484 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1485 	case COMPRESS_LZO:
1486 		algtype = "lzo";
1487 		break;
1488 	case COMPRESS_LZ4:
1489 		algtype = "lz4";
1490 		break;
1491 	case COMPRESS_ZSTD:
1492 		algtype = "zstd";
1493 		break;
1494 	case COMPRESS_LZORLE:
1495 		algtype = "lzo-rle";
1496 		break;
1497 	}
1498 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1499 
1500 	seq_printf(seq, ",compress_log_size=%u",
1501 			F2FS_OPTION(sbi).compress_log_size);
1502 
1503 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1504 		seq_printf(seq, ",compress_extension=%s",
1505 			F2FS_OPTION(sbi).extensions[i]);
1506 	}
1507 }
1508 
1509 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1510 {
1511 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1512 
1513 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1514 		seq_printf(seq, ",background_gc=%s", "sync");
1515 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1516 		seq_printf(seq, ",background_gc=%s", "on");
1517 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1518 		seq_printf(seq, ",background_gc=%s", "off");
1519 
1520 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1521 		seq_puts(seq, ",disable_roll_forward");
1522 	if (test_opt(sbi, NORECOVERY))
1523 		seq_puts(seq, ",norecovery");
1524 	if (test_opt(sbi, DISCARD))
1525 		seq_puts(seq, ",discard");
1526 	else
1527 		seq_puts(seq, ",nodiscard");
1528 	if (test_opt(sbi, NOHEAP))
1529 		seq_puts(seq, ",no_heap");
1530 	else
1531 		seq_puts(seq, ",heap");
1532 #ifdef CONFIG_F2FS_FS_XATTR
1533 	if (test_opt(sbi, XATTR_USER))
1534 		seq_puts(seq, ",user_xattr");
1535 	else
1536 		seq_puts(seq, ",nouser_xattr");
1537 	if (test_opt(sbi, INLINE_XATTR))
1538 		seq_puts(seq, ",inline_xattr");
1539 	else
1540 		seq_puts(seq, ",noinline_xattr");
1541 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1542 		seq_printf(seq, ",inline_xattr_size=%u",
1543 					F2FS_OPTION(sbi).inline_xattr_size);
1544 #endif
1545 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1546 	if (test_opt(sbi, POSIX_ACL))
1547 		seq_puts(seq, ",acl");
1548 	else
1549 		seq_puts(seq, ",noacl");
1550 #endif
1551 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1552 		seq_puts(seq, ",disable_ext_identify");
1553 	if (test_opt(sbi, INLINE_DATA))
1554 		seq_puts(seq, ",inline_data");
1555 	else
1556 		seq_puts(seq, ",noinline_data");
1557 	if (test_opt(sbi, INLINE_DENTRY))
1558 		seq_puts(seq, ",inline_dentry");
1559 	else
1560 		seq_puts(seq, ",noinline_dentry");
1561 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1562 		seq_puts(seq, ",flush_merge");
1563 	if (test_opt(sbi, NOBARRIER))
1564 		seq_puts(seq, ",nobarrier");
1565 	if (test_opt(sbi, FASTBOOT))
1566 		seq_puts(seq, ",fastboot");
1567 	if (test_opt(sbi, EXTENT_CACHE))
1568 		seq_puts(seq, ",extent_cache");
1569 	else
1570 		seq_puts(seq, ",noextent_cache");
1571 	if (test_opt(sbi, DATA_FLUSH))
1572 		seq_puts(seq, ",data_flush");
1573 
1574 	seq_puts(seq, ",mode=");
1575 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1576 		seq_puts(seq, "adaptive");
1577 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1578 		seq_puts(seq, "lfs");
1579 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1580 	if (test_opt(sbi, RESERVE_ROOT))
1581 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1582 				F2FS_OPTION(sbi).root_reserved_blocks,
1583 				from_kuid_munged(&init_user_ns,
1584 					F2FS_OPTION(sbi).s_resuid),
1585 				from_kgid_munged(&init_user_ns,
1586 					F2FS_OPTION(sbi).s_resgid));
1587 	if (F2FS_IO_SIZE_BITS(sbi))
1588 		seq_printf(seq, ",io_bits=%u",
1589 				F2FS_OPTION(sbi).write_io_size_bits);
1590 #ifdef CONFIG_F2FS_FAULT_INJECTION
1591 	if (test_opt(sbi, FAULT_INJECTION)) {
1592 		seq_printf(seq, ",fault_injection=%u",
1593 				F2FS_OPTION(sbi).fault_info.inject_rate);
1594 		seq_printf(seq, ",fault_type=%u",
1595 				F2FS_OPTION(sbi).fault_info.inject_type);
1596 	}
1597 #endif
1598 #ifdef CONFIG_QUOTA
1599 	if (test_opt(sbi, QUOTA))
1600 		seq_puts(seq, ",quota");
1601 	if (test_opt(sbi, USRQUOTA))
1602 		seq_puts(seq, ",usrquota");
1603 	if (test_opt(sbi, GRPQUOTA))
1604 		seq_puts(seq, ",grpquota");
1605 	if (test_opt(sbi, PRJQUOTA))
1606 		seq_puts(seq, ",prjquota");
1607 #endif
1608 	f2fs_show_quota_options(seq, sbi->sb);
1609 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1610 		seq_printf(seq, ",whint_mode=%s", "user-based");
1611 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1612 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1613 
1614 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1615 
1616 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1617 		seq_puts(seq, ",inlinecrypt");
1618 
1619 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1620 		seq_printf(seq, ",alloc_mode=%s", "default");
1621 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1622 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1623 
1624 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1625 		seq_printf(seq, ",checkpoint=disable:%u",
1626 				F2FS_OPTION(sbi).unusable_cap);
1627 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1628 		seq_printf(seq, ",fsync_mode=%s", "posix");
1629 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1630 		seq_printf(seq, ",fsync_mode=%s", "strict");
1631 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1632 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1633 
1634 #ifdef CONFIG_F2FS_FS_COMPRESSION
1635 	f2fs_show_compress_options(seq, sbi->sb);
1636 #endif
1637 	return 0;
1638 }
1639 
1640 static void default_options(struct f2fs_sb_info *sbi)
1641 {
1642 	/* init some FS parameters */
1643 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1644 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1645 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1646 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1647 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1648 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1649 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1650 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1651 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1652 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1653 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1654 
1655 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
1656 
1657 	set_opt(sbi, INLINE_XATTR);
1658 	set_opt(sbi, INLINE_DATA);
1659 	set_opt(sbi, INLINE_DENTRY);
1660 	set_opt(sbi, EXTENT_CACHE);
1661 	set_opt(sbi, NOHEAP);
1662 	clear_opt(sbi, DISABLE_CHECKPOINT);
1663 	F2FS_OPTION(sbi).unusable_cap = 0;
1664 	sbi->sb->s_flags |= SB_LAZYTIME;
1665 	set_opt(sbi, FLUSH_MERGE);
1666 	set_opt(sbi, DISCARD);
1667 	if (f2fs_sb_has_blkzoned(sbi))
1668 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1669 	else
1670 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1671 
1672 #ifdef CONFIG_F2FS_FS_XATTR
1673 	set_opt(sbi, XATTR_USER);
1674 #endif
1675 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1676 	set_opt(sbi, POSIX_ACL);
1677 #endif
1678 
1679 	f2fs_build_fault_attr(sbi, 0, 0);
1680 }
1681 
1682 #ifdef CONFIG_QUOTA
1683 static int f2fs_enable_quotas(struct super_block *sb);
1684 #endif
1685 
1686 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1687 {
1688 	unsigned int s_flags = sbi->sb->s_flags;
1689 	struct cp_control cpc;
1690 	int err = 0;
1691 	int ret;
1692 	block_t unusable;
1693 
1694 	if (s_flags & SB_RDONLY) {
1695 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1696 		return -EINVAL;
1697 	}
1698 	sbi->sb->s_flags |= SB_ACTIVE;
1699 
1700 	f2fs_update_time(sbi, DISABLE_TIME);
1701 
1702 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1703 		down_write(&sbi->gc_lock);
1704 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1705 		if (err == -ENODATA) {
1706 			err = 0;
1707 			break;
1708 		}
1709 		if (err && err != -EAGAIN)
1710 			break;
1711 	}
1712 
1713 	ret = sync_filesystem(sbi->sb);
1714 	if (ret || err) {
1715 		err = ret ? ret: err;
1716 		goto restore_flag;
1717 	}
1718 
1719 	unusable = f2fs_get_unusable_blocks(sbi);
1720 	if (f2fs_disable_cp_again(sbi, unusable)) {
1721 		err = -EAGAIN;
1722 		goto restore_flag;
1723 	}
1724 
1725 	down_write(&sbi->gc_lock);
1726 	cpc.reason = CP_PAUSE;
1727 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1728 	err = f2fs_write_checkpoint(sbi, &cpc);
1729 	if (err)
1730 		goto out_unlock;
1731 
1732 	spin_lock(&sbi->stat_lock);
1733 	sbi->unusable_block_count = unusable;
1734 	spin_unlock(&sbi->stat_lock);
1735 
1736 out_unlock:
1737 	up_write(&sbi->gc_lock);
1738 restore_flag:
1739 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
1740 	return err;
1741 }
1742 
1743 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1744 {
1745 	down_write(&sbi->gc_lock);
1746 	f2fs_dirty_to_prefree(sbi);
1747 
1748 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1749 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1750 	up_write(&sbi->gc_lock);
1751 
1752 	f2fs_sync_fs(sbi->sb, 1);
1753 }
1754 
1755 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1756 {
1757 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1758 	struct f2fs_mount_info org_mount_opt;
1759 	unsigned long old_sb_flags;
1760 	int err;
1761 	bool need_restart_gc = false;
1762 	bool need_stop_gc = false;
1763 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1764 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1765 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1766 	bool checkpoint_changed;
1767 #ifdef CONFIG_QUOTA
1768 	int i, j;
1769 #endif
1770 
1771 	/*
1772 	 * Save the old mount options in case we
1773 	 * need to restore them.
1774 	 */
1775 	org_mount_opt = sbi->mount_opt;
1776 	old_sb_flags = sb->s_flags;
1777 
1778 #ifdef CONFIG_QUOTA
1779 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1780 	for (i = 0; i < MAXQUOTAS; i++) {
1781 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1782 			org_mount_opt.s_qf_names[i] =
1783 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1784 				GFP_KERNEL);
1785 			if (!org_mount_opt.s_qf_names[i]) {
1786 				for (j = 0; j < i; j++)
1787 					kfree(org_mount_opt.s_qf_names[j]);
1788 				return -ENOMEM;
1789 			}
1790 		} else {
1791 			org_mount_opt.s_qf_names[i] = NULL;
1792 		}
1793 	}
1794 #endif
1795 
1796 	/* recover superblocks we couldn't write due to previous RO mount */
1797 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1798 		err = f2fs_commit_super(sbi, false);
1799 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1800 			  err);
1801 		if (!err)
1802 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1803 	}
1804 
1805 	default_options(sbi);
1806 
1807 	/* parse mount options */
1808 	err = parse_options(sb, data, true);
1809 	if (err)
1810 		goto restore_opts;
1811 	checkpoint_changed =
1812 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1813 
1814 	/*
1815 	 * Previous and new state of filesystem is RO,
1816 	 * so skip checking GC and FLUSH_MERGE conditions.
1817 	 */
1818 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1819 		goto skip;
1820 
1821 #ifdef CONFIG_QUOTA
1822 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1823 		err = dquot_suspend(sb, -1);
1824 		if (err < 0)
1825 			goto restore_opts;
1826 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1827 		/* dquot_resume needs RW */
1828 		sb->s_flags &= ~SB_RDONLY;
1829 		if (sb_any_quota_suspended(sb)) {
1830 			dquot_resume(sb, -1);
1831 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1832 			err = f2fs_enable_quotas(sb);
1833 			if (err)
1834 				goto restore_opts;
1835 		}
1836 	}
1837 #endif
1838 	/* disallow enable/disable extent_cache dynamically */
1839 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1840 		err = -EINVAL;
1841 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1842 		goto restore_opts;
1843 	}
1844 
1845 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1846 		err = -EINVAL;
1847 		f2fs_warn(sbi, "switch io_bits option is not allowed");
1848 		goto restore_opts;
1849 	}
1850 
1851 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1852 		err = -EINVAL;
1853 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1854 		goto restore_opts;
1855 	}
1856 
1857 	/*
1858 	 * We stop the GC thread if FS is mounted as RO
1859 	 * or if background_gc = off is passed in mount
1860 	 * option. Also sync the filesystem.
1861 	 */
1862 	if ((*flags & SB_RDONLY) ||
1863 			F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
1864 		if (sbi->gc_thread) {
1865 			f2fs_stop_gc_thread(sbi);
1866 			need_restart_gc = true;
1867 		}
1868 	} else if (!sbi->gc_thread) {
1869 		err = f2fs_start_gc_thread(sbi);
1870 		if (err)
1871 			goto restore_opts;
1872 		need_stop_gc = true;
1873 	}
1874 
1875 	if (*flags & SB_RDONLY ||
1876 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1877 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1878 		sync_inodes_sb(sb);
1879 
1880 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1881 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1882 		f2fs_sync_fs(sb, 1);
1883 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1884 	}
1885 
1886 	if (checkpoint_changed) {
1887 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1888 			err = f2fs_disable_checkpoint(sbi);
1889 			if (err)
1890 				goto restore_gc;
1891 		} else {
1892 			f2fs_enable_checkpoint(sbi);
1893 		}
1894 	}
1895 
1896 	/*
1897 	 * We stop issue flush thread if FS is mounted as RO
1898 	 * or if flush_merge is not passed in mount option.
1899 	 */
1900 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1901 		clear_opt(sbi, FLUSH_MERGE);
1902 		f2fs_destroy_flush_cmd_control(sbi, false);
1903 	} else {
1904 		err = f2fs_create_flush_cmd_control(sbi);
1905 		if (err)
1906 			goto restore_gc;
1907 	}
1908 skip:
1909 #ifdef CONFIG_QUOTA
1910 	/* Release old quota file names */
1911 	for (i = 0; i < MAXQUOTAS; i++)
1912 		kfree(org_mount_opt.s_qf_names[i]);
1913 #endif
1914 	/* Update the POSIXACL Flag */
1915 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1916 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1917 
1918 	limit_reserve_root(sbi);
1919 	adjust_unusable_cap_perc(sbi);
1920 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1921 	return 0;
1922 restore_gc:
1923 	if (need_restart_gc) {
1924 		if (f2fs_start_gc_thread(sbi))
1925 			f2fs_warn(sbi, "background gc thread has stopped");
1926 	} else if (need_stop_gc) {
1927 		f2fs_stop_gc_thread(sbi);
1928 	}
1929 restore_opts:
1930 #ifdef CONFIG_QUOTA
1931 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1932 	for (i = 0; i < MAXQUOTAS; i++) {
1933 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1934 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1935 	}
1936 #endif
1937 	sbi->mount_opt = org_mount_opt;
1938 	sb->s_flags = old_sb_flags;
1939 	return err;
1940 }
1941 
1942 #ifdef CONFIG_QUOTA
1943 /* Read data from quotafile */
1944 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1945 			       size_t len, loff_t off)
1946 {
1947 	struct inode *inode = sb_dqopt(sb)->files[type];
1948 	struct address_space *mapping = inode->i_mapping;
1949 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1950 	int offset = off & (sb->s_blocksize - 1);
1951 	int tocopy;
1952 	size_t toread;
1953 	loff_t i_size = i_size_read(inode);
1954 	struct page *page;
1955 	char *kaddr;
1956 
1957 	if (off > i_size)
1958 		return 0;
1959 
1960 	if (off + len > i_size)
1961 		len = i_size - off;
1962 	toread = len;
1963 	while (toread > 0) {
1964 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1965 repeat:
1966 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1967 		if (IS_ERR(page)) {
1968 			if (PTR_ERR(page) == -ENOMEM) {
1969 				congestion_wait(BLK_RW_ASYNC,
1970 						DEFAULT_IO_TIMEOUT);
1971 				goto repeat;
1972 			}
1973 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1974 			return PTR_ERR(page);
1975 		}
1976 
1977 		lock_page(page);
1978 
1979 		if (unlikely(page->mapping != mapping)) {
1980 			f2fs_put_page(page, 1);
1981 			goto repeat;
1982 		}
1983 		if (unlikely(!PageUptodate(page))) {
1984 			f2fs_put_page(page, 1);
1985 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1986 			return -EIO;
1987 		}
1988 
1989 		kaddr = kmap_atomic(page);
1990 		memcpy(data, kaddr + offset, tocopy);
1991 		kunmap_atomic(kaddr);
1992 		f2fs_put_page(page, 1);
1993 
1994 		offset = 0;
1995 		toread -= tocopy;
1996 		data += tocopy;
1997 		blkidx++;
1998 	}
1999 	return len;
2000 }
2001 
2002 /* Write to quotafile */
2003 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2004 				const char *data, size_t len, loff_t off)
2005 {
2006 	struct inode *inode = sb_dqopt(sb)->files[type];
2007 	struct address_space *mapping = inode->i_mapping;
2008 	const struct address_space_operations *a_ops = mapping->a_ops;
2009 	int offset = off & (sb->s_blocksize - 1);
2010 	size_t towrite = len;
2011 	struct page *page;
2012 	void *fsdata = NULL;
2013 	char *kaddr;
2014 	int err = 0;
2015 	int tocopy;
2016 
2017 	while (towrite > 0) {
2018 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2019 								towrite);
2020 retry:
2021 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2022 							&page, &fsdata);
2023 		if (unlikely(err)) {
2024 			if (err == -ENOMEM) {
2025 				congestion_wait(BLK_RW_ASYNC,
2026 						DEFAULT_IO_TIMEOUT);
2027 				goto retry;
2028 			}
2029 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2030 			break;
2031 		}
2032 
2033 		kaddr = kmap_atomic(page);
2034 		memcpy(kaddr + offset, data, tocopy);
2035 		kunmap_atomic(kaddr);
2036 		flush_dcache_page(page);
2037 
2038 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2039 						page, fsdata);
2040 		offset = 0;
2041 		towrite -= tocopy;
2042 		off += tocopy;
2043 		data += tocopy;
2044 		cond_resched();
2045 	}
2046 
2047 	if (len == towrite)
2048 		return err;
2049 	inode->i_mtime = inode->i_ctime = current_time(inode);
2050 	f2fs_mark_inode_dirty_sync(inode, false);
2051 	return len - towrite;
2052 }
2053 
2054 static struct dquot **f2fs_get_dquots(struct inode *inode)
2055 {
2056 	return F2FS_I(inode)->i_dquot;
2057 }
2058 
2059 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2060 {
2061 	return &F2FS_I(inode)->i_reserved_quota;
2062 }
2063 
2064 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2065 {
2066 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2067 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2068 		return 0;
2069 	}
2070 
2071 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2072 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2073 }
2074 
2075 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2076 {
2077 	int enabled = 0;
2078 	int i, err;
2079 
2080 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2081 		err = f2fs_enable_quotas(sbi->sb);
2082 		if (err) {
2083 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2084 			return 0;
2085 		}
2086 		return 1;
2087 	}
2088 
2089 	for (i = 0; i < MAXQUOTAS; i++) {
2090 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2091 			err = f2fs_quota_on_mount(sbi, i);
2092 			if (!err) {
2093 				enabled = 1;
2094 				continue;
2095 			}
2096 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2097 				 err, i);
2098 		}
2099 	}
2100 	return enabled;
2101 }
2102 
2103 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2104 			     unsigned int flags)
2105 {
2106 	struct inode *qf_inode;
2107 	unsigned long qf_inum;
2108 	int err;
2109 
2110 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2111 
2112 	qf_inum = f2fs_qf_ino(sb, type);
2113 	if (!qf_inum)
2114 		return -EPERM;
2115 
2116 	qf_inode = f2fs_iget(sb, qf_inum);
2117 	if (IS_ERR(qf_inode)) {
2118 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2119 		return PTR_ERR(qf_inode);
2120 	}
2121 
2122 	/* Don't account quota for quota files to avoid recursion */
2123 	qf_inode->i_flags |= S_NOQUOTA;
2124 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2125 	iput(qf_inode);
2126 	return err;
2127 }
2128 
2129 static int f2fs_enable_quotas(struct super_block *sb)
2130 {
2131 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2132 	int type, err = 0;
2133 	unsigned long qf_inum;
2134 	bool quota_mopt[MAXQUOTAS] = {
2135 		test_opt(sbi, USRQUOTA),
2136 		test_opt(sbi, GRPQUOTA),
2137 		test_opt(sbi, PRJQUOTA),
2138 	};
2139 
2140 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2141 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2142 		return 0;
2143 	}
2144 
2145 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2146 
2147 	for (type = 0; type < MAXQUOTAS; type++) {
2148 		qf_inum = f2fs_qf_ino(sb, type);
2149 		if (qf_inum) {
2150 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2151 				DQUOT_USAGE_ENABLED |
2152 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2153 			if (err) {
2154 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2155 					 type, err);
2156 				for (type--; type >= 0; type--)
2157 					dquot_quota_off(sb, type);
2158 				set_sbi_flag(F2FS_SB(sb),
2159 						SBI_QUOTA_NEED_REPAIR);
2160 				return err;
2161 			}
2162 		}
2163 	}
2164 	return 0;
2165 }
2166 
2167 int f2fs_quota_sync(struct super_block *sb, int type)
2168 {
2169 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2170 	struct quota_info *dqopt = sb_dqopt(sb);
2171 	int cnt;
2172 	int ret;
2173 
2174 	/*
2175 	 * do_quotactl
2176 	 *  f2fs_quota_sync
2177 	 *  down_read(quota_sem)
2178 	 *  dquot_writeback_dquots()
2179 	 *  f2fs_dquot_commit
2180 	 *                            block_operation
2181 	 *                            down_read(quota_sem)
2182 	 */
2183 	f2fs_lock_op(sbi);
2184 
2185 	down_read(&sbi->quota_sem);
2186 	ret = dquot_writeback_dquots(sb, type);
2187 	if (ret)
2188 		goto out;
2189 
2190 	/*
2191 	 * Now when everything is written we can discard the pagecache so
2192 	 * that userspace sees the changes.
2193 	 */
2194 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2195 		struct address_space *mapping;
2196 
2197 		if (type != -1 && cnt != type)
2198 			continue;
2199 		if (!sb_has_quota_active(sb, cnt))
2200 			continue;
2201 
2202 		mapping = dqopt->files[cnt]->i_mapping;
2203 
2204 		ret = filemap_fdatawrite(mapping);
2205 		if (ret)
2206 			goto out;
2207 
2208 		/* if we are using journalled quota */
2209 		if (is_journalled_quota(sbi))
2210 			continue;
2211 
2212 		ret = filemap_fdatawait(mapping);
2213 		if (ret)
2214 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2215 
2216 		inode_lock(dqopt->files[cnt]);
2217 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2218 		inode_unlock(dqopt->files[cnt]);
2219 	}
2220 out:
2221 	if (ret)
2222 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2223 	up_read(&sbi->quota_sem);
2224 	f2fs_unlock_op(sbi);
2225 	return ret;
2226 }
2227 
2228 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2229 							const struct path *path)
2230 {
2231 	struct inode *inode;
2232 	int err;
2233 
2234 	/* if quota sysfile exists, deny enabling quota with specific file */
2235 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2236 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2237 		return -EBUSY;
2238 	}
2239 
2240 	err = f2fs_quota_sync(sb, type);
2241 	if (err)
2242 		return err;
2243 
2244 	err = dquot_quota_on(sb, type, format_id, path);
2245 	if (err)
2246 		return err;
2247 
2248 	inode = d_inode(path->dentry);
2249 
2250 	inode_lock(inode);
2251 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2252 	f2fs_set_inode_flags(inode);
2253 	inode_unlock(inode);
2254 	f2fs_mark_inode_dirty_sync(inode, false);
2255 
2256 	return 0;
2257 }
2258 
2259 static int __f2fs_quota_off(struct super_block *sb, int type)
2260 {
2261 	struct inode *inode = sb_dqopt(sb)->files[type];
2262 	int err;
2263 
2264 	if (!inode || !igrab(inode))
2265 		return dquot_quota_off(sb, type);
2266 
2267 	err = f2fs_quota_sync(sb, type);
2268 	if (err)
2269 		goto out_put;
2270 
2271 	err = dquot_quota_off(sb, type);
2272 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2273 		goto out_put;
2274 
2275 	inode_lock(inode);
2276 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2277 	f2fs_set_inode_flags(inode);
2278 	inode_unlock(inode);
2279 	f2fs_mark_inode_dirty_sync(inode, false);
2280 out_put:
2281 	iput(inode);
2282 	return err;
2283 }
2284 
2285 static int f2fs_quota_off(struct super_block *sb, int type)
2286 {
2287 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2288 	int err;
2289 
2290 	err = __f2fs_quota_off(sb, type);
2291 
2292 	/*
2293 	 * quotactl can shutdown journalled quota, result in inconsistence
2294 	 * between quota record and fs data by following updates, tag the
2295 	 * flag to let fsck be aware of it.
2296 	 */
2297 	if (is_journalled_quota(sbi))
2298 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2299 	return err;
2300 }
2301 
2302 void f2fs_quota_off_umount(struct super_block *sb)
2303 {
2304 	int type;
2305 	int err;
2306 
2307 	for (type = 0; type < MAXQUOTAS; type++) {
2308 		err = __f2fs_quota_off(sb, type);
2309 		if (err) {
2310 			int ret = dquot_quota_off(sb, type);
2311 
2312 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2313 				 type, err, ret);
2314 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2315 		}
2316 	}
2317 	/*
2318 	 * In case of checkpoint=disable, we must flush quota blocks.
2319 	 * This can cause NULL exception for node_inode in end_io, since
2320 	 * put_super already dropped it.
2321 	 */
2322 	sync_filesystem(sb);
2323 }
2324 
2325 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2326 {
2327 	struct quota_info *dqopt = sb_dqopt(sb);
2328 	int type;
2329 
2330 	for (type = 0; type < MAXQUOTAS; type++) {
2331 		if (!dqopt->files[type])
2332 			continue;
2333 		f2fs_inode_synced(dqopt->files[type]);
2334 	}
2335 }
2336 
2337 static int f2fs_dquot_commit(struct dquot *dquot)
2338 {
2339 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2340 	int ret;
2341 
2342 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2343 	ret = dquot_commit(dquot);
2344 	if (ret < 0)
2345 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2346 	up_read(&sbi->quota_sem);
2347 	return ret;
2348 }
2349 
2350 static int f2fs_dquot_acquire(struct dquot *dquot)
2351 {
2352 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2353 	int ret;
2354 
2355 	down_read(&sbi->quota_sem);
2356 	ret = dquot_acquire(dquot);
2357 	if (ret < 0)
2358 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2359 	up_read(&sbi->quota_sem);
2360 	return ret;
2361 }
2362 
2363 static int f2fs_dquot_release(struct dquot *dquot)
2364 {
2365 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2366 	int ret = dquot_release(dquot);
2367 
2368 	if (ret < 0)
2369 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2370 	return ret;
2371 }
2372 
2373 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2374 {
2375 	struct super_block *sb = dquot->dq_sb;
2376 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2377 	int ret = dquot_mark_dquot_dirty(dquot);
2378 
2379 	/* if we are using journalled quota */
2380 	if (is_journalled_quota(sbi))
2381 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2382 
2383 	return ret;
2384 }
2385 
2386 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2387 {
2388 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2389 	int ret = dquot_commit_info(sb, type);
2390 
2391 	if (ret < 0)
2392 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2393 	return ret;
2394 }
2395 
2396 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2397 {
2398 	*projid = F2FS_I(inode)->i_projid;
2399 	return 0;
2400 }
2401 
2402 static const struct dquot_operations f2fs_quota_operations = {
2403 	.get_reserved_space = f2fs_get_reserved_space,
2404 	.write_dquot	= f2fs_dquot_commit,
2405 	.acquire_dquot	= f2fs_dquot_acquire,
2406 	.release_dquot	= f2fs_dquot_release,
2407 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2408 	.write_info	= f2fs_dquot_commit_info,
2409 	.alloc_dquot	= dquot_alloc,
2410 	.destroy_dquot	= dquot_destroy,
2411 	.get_projid	= f2fs_get_projid,
2412 	.get_next_id	= dquot_get_next_id,
2413 };
2414 
2415 static const struct quotactl_ops f2fs_quotactl_ops = {
2416 	.quota_on	= f2fs_quota_on,
2417 	.quota_off	= f2fs_quota_off,
2418 	.quota_sync	= f2fs_quota_sync,
2419 	.get_state	= dquot_get_state,
2420 	.set_info	= dquot_set_dqinfo,
2421 	.get_dqblk	= dquot_get_dqblk,
2422 	.set_dqblk	= dquot_set_dqblk,
2423 	.get_nextdqblk	= dquot_get_next_dqblk,
2424 };
2425 #else
2426 int f2fs_quota_sync(struct super_block *sb, int type)
2427 {
2428 	return 0;
2429 }
2430 
2431 void f2fs_quota_off_umount(struct super_block *sb)
2432 {
2433 }
2434 #endif
2435 
2436 static const struct super_operations f2fs_sops = {
2437 	.alloc_inode	= f2fs_alloc_inode,
2438 	.free_inode	= f2fs_free_inode,
2439 	.drop_inode	= f2fs_drop_inode,
2440 	.write_inode	= f2fs_write_inode,
2441 	.dirty_inode	= f2fs_dirty_inode,
2442 	.show_options	= f2fs_show_options,
2443 #ifdef CONFIG_QUOTA
2444 	.quota_read	= f2fs_quota_read,
2445 	.quota_write	= f2fs_quota_write,
2446 	.get_dquots	= f2fs_get_dquots,
2447 #endif
2448 	.evict_inode	= f2fs_evict_inode,
2449 	.put_super	= f2fs_put_super,
2450 	.sync_fs	= f2fs_sync_fs,
2451 	.freeze_fs	= f2fs_freeze,
2452 	.unfreeze_fs	= f2fs_unfreeze,
2453 	.statfs		= f2fs_statfs,
2454 	.remount_fs	= f2fs_remount,
2455 };
2456 
2457 #ifdef CONFIG_FS_ENCRYPTION
2458 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2459 {
2460 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2461 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2462 				ctx, len, NULL);
2463 }
2464 
2465 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2466 							void *fs_data)
2467 {
2468 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2469 
2470 	/*
2471 	 * Encrypting the root directory is not allowed because fsck
2472 	 * expects lost+found directory to exist and remain unencrypted
2473 	 * if LOST_FOUND feature is enabled.
2474 	 *
2475 	 */
2476 	if (f2fs_sb_has_lost_found(sbi) &&
2477 			inode->i_ino == F2FS_ROOT_INO(sbi))
2478 		return -EPERM;
2479 
2480 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2481 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2482 				ctx, len, fs_data, XATTR_CREATE);
2483 }
2484 
2485 static const union fscrypt_context *
2486 f2fs_get_dummy_context(struct super_block *sb)
2487 {
2488 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_ctx.ctx;
2489 }
2490 
2491 static bool f2fs_has_stable_inodes(struct super_block *sb)
2492 {
2493 	return true;
2494 }
2495 
2496 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2497 				       int *ino_bits_ret, int *lblk_bits_ret)
2498 {
2499 	*ino_bits_ret = 8 * sizeof(nid_t);
2500 	*lblk_bits_ret = 8 * sizeof(block_t);
2501 }
2502 
2503 static int f2fs_get_num_devices(struct super_block *sb)
2504 {
2505 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2506 
2507 	if (f2fs_is_multi_device(sbi))
2508 		return sbi->s_ndevs;
2509 	return 1;
2510 }
2511 
2512 static void f2fs_get_devices(struct super_block *sb,
2513 			     struct request_queue **devs)
2514 {
2515 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2516 	int i;
2517 
2518 	for (i = 0; i < sbi->s_ndevs; i++)
2519 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2520 }
2521 
2522 static const struct fscrypt_operations f2fs_cryptops = {
2523 	.key_prefix		= "f2fs:",
2524 	.get_context		= f2fs_get_context,
2525 	.set_context		= f2fs_set_context,
2526 	.get_dummy_context	= f2fs_get_dummy_context,
2527 	.empty_dir		= f2fs_empty_dir,
2528 	.max_namelen		= F2FS_NAME_LEN,
2529 	.has_stable_inodes	= f2fs_has_stable_inodes,
2530 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2531 	.get_num_devices	= f2fs_get_num_devices,
2532 	.get_devices		= f2fs_get_devices,
2533 };
2534 #endif
2535 
2536 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2537 		u64 ino, u32 generation)
2538 {
2539 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2540 	struct inode *inode;
2541 
2542 	if (f2fs_check_nid_range(sbi, ino))
2543 		return ERR_PTR(-ESTALE);
2544 
2545 	/*
2546 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2547 	 * However f2fs_iget currently does appropriate checks to handle stale
2548 	 * inodes so everything is OK.
2549 	 */
2550 	inode = f2fs_iget(sb, ino);
2551 	if (IS_ERR(inode))
2552 		return ERR_CAST(inode);
2553 	if (unlikely(generation && inode->i_generation != generation)) {
2554 		/* we didn't find the right inode.. */
2555 		iput(inode);
2556 		return ERR_PTR(-ESTALE);
2557 	}
2558 	return inode;
2559 }
2560 
2561 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2562 		int fh_len, int fh_type)
2563 {
2564 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2565 				    f2fs_nfs_get_inode);
2566 }
2567 
2568 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2569 		int fh_len, int fh_type)
2570 {
2571 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2572 				    f2fs_nfs_get_inode);
2573 }
2574 
2575 static const struct export_operations f2fs_export_ops = {
2576 	.fh_to_dentry = f2fs_fh_to_dentry,
2577 	.fh_to_parent = f2fs_fh_to_parent,
2578 	.get_parent = f2fs_get_parent,
2579 };
2580 
2581 static loff_t max_file_blocks(void)
2582 {
2583 	loff_t result = 0;
2584 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2585 
2586 	/*
2587 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2588 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2589 	 * space in inode.i_addr, it will be more safe to reassign
2590 	 * result as zero.
2591 	 */
2592 
2593 	/* two direct node blocks */
2594 	result += (leaf_count * 2);
2595 
2596 	/* two indirect node blocks */
2597 	leaf_count *= NIDS_PER_BLOCK;
2598 	result += (leaf_count * 2);
2599 
2600 	/* one double indirect node block */
2601 	leaf_count *= NIDS_PER_BLOCK;
2602 	result += leaf_count;
2603 
2604 	return result;
2605 }
2606 
2607 static int __f2fs_commit_super(struct buffer_head *bh,
2608 			struct f2fs_super_block *super)
2609 {
2610 	lock_buffer(bh);
2611 	if (super)
2612 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2613 	set_buffer_dirty(bh);
2614 	unlock_buffer(bh);
2615 
2616 	/* it's rare case, we can do fua all the time */
2617 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2618 }
2619 
2620 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2621 					struct buffer_head *bh)
2622 {
2623 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2624 					(bh->b_data + F2FS_SUPER_OFFSET);
2625 	struct super_block *sb = sbi->sb;
2626 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2627 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2628 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2629 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2630 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2631 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2632 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2633 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2634 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2635 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2636 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2637 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2638 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2639 	u64 main_end_blkaddr = main_blkaddr +
2640 				(segment_count_main << log_blocks_per_seg);
2641 	u64 seg_end_blkaddr = segment0_blkaddr +
2642 				(segment_count << log_blocks_per_seg);
2643 
2644 	if (segment0_blkaddr != cp_blkaddr) {
2645 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2646 			  segment0_blkaddr, cp_blkaddr);
2647 		return true;
2648 	}
2649 
2650 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2651 							sit_blkaddr) {
2652 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2653 			  cp_blkaddr, sit_blkaddr,
2654 			  segment_count_ckpt << log_blocks_per_seg);
2655 		return true;
2656 	}
2657 
2658 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2659 							nat_blkaddr) {
2660 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2661 			  sit_blkaddr, nat_blkaddr,
2662 			  segment_count_sit << log_blocks_per_seg);
2663 		return true;
2664 	}
2665 
2666 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2667 							ssa_blkaddr) {
2668 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2669 			  nat_blkaddr, ssa_blkaddr,
2670 			  segment_count_nat << log_blocks_per_seg);
2671 		return true;
2672 	}
2673 
2674 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2675 							main_blkaddr) {
2676 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2677 			  ssa_blkaddr, main_blkaddr,
2678 			  segment_count_ssa << log_blocks_per_seg);
2679 		return true;
2680 	}
2681 
2682 	if (main_end_blkaddr > seg_end_blkaddr) {
2683 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2684 			  main_blkaddr,
2685 			  segment0_blkaddr +
2686 			  (segment_count << log_blocks_per_seg),
2687 			  segment_count_main << log_blocks_per_seg);
2688 		return true;
2689 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2690 		int err = 0;
2691 		char *res;
2692 
2693 		/* fix in-memory information all the time */
2694 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2695 				segment0_blkaddr) >> log_blocks_per_seg);
2696 
2697 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2698 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2699 			res = "internally";
2700 		} else {
2701 			err = __f2fs_commit_super(bh, NULL);
2702 			res = err ? "failed" : "done";
2703 		}
2704 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2705 			  res, main_blkaddr,
2706 			  segment0_blkaddr +
2707 			  (segment_count << log_blocks_per_seg),
2708 			  segment_count_main << log_blocks_per_seg);
2709 		if (err)
2710 			return true;
2711 	}
2712 	return false;
2713 }
2714 
2715 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2716 				struct buffer_head *bh)
2717 {
2718 	block_t segment_count, segs_per_sec, secs_per_zone;
2719 	block_t total_sections, blocks_per_seg;
2720 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2721 					(bh->b_data + F2FS_SUPER_OFFSET);
2722 	unsigned int blocksize;
2723 	size_t crc_offset = 0;
2724 	__u32 crc = 0;
2725 
2726 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2727 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2728 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2729 		return -EINVAL;
2730 	}
2731 
2732 	/* Check checksum_offset and crc in superblock */
2733 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2734 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2735 		if (crc_offset !=
2736 			offsetof(struct f2fs_super_block, crc)) {
2737 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2738 				  crc_offset);
2739 			return -EFSCORRUPTED;
2740 		}
2741 		crc = le32_to_cpu(raw_super->crc);
2742 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2743 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2744 			return -EFSCORRUPTED;
2745 		}
2746 	}
2747 
2748 	/* Currently, support only 4KB page cache size */
2749 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2750 		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2751 			  PAGE_SIZE);
2752 		return -EFSCORRUPTED;
2753 	}
2754 
2755 	/* Currently, support only 4KB block size */
2756 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2757 	if (blocksize != F2FS_BLKSIZE) {
2758 		f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2759 			  blocksize);
2760 		return -EFSCORRUPTED;
2761 	}
2762 
2763 	/* check log blocks per segment */
2764 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2765 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2766 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2767 		return -EFSCORRUPTED;
2768 	}
2769 
2770 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2771 	if (le32_to_cpu(raw_super->log_sectorsize) >
2772 				F2FS_MAX_LOG_SECTOR_SIZE ||
2773 		le32_to_cpu(raw_super->log_sectorsize) <
2774 				F2FS_MIN_LOG_SECTOR_SIZE) {
2775 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2776 			  le32_to_cpu(raw_super->log_sectorsize));
2777 		return -EFSCORRUPTED;
2778 	}
2779 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2780 		le32_to_cpu(raw_super->log_sectorsize) !=
2781 			F2FS_MAX_LOG_SECTOR_SIZE) {
2782 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2783 			  le32_to_cpu(raw_super->log_sectors_per_block),
2784 			  le32_to_cpu(raw_super->log_sectorsize));
2785 		return -EFSCORRUPTED;
2786 	}
2787 
2788 	segment_count = le32_to_cpu(raw_super->segment_count);
2789 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2790 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2791 	total_sections = le32_to_cpu(raw_super->section_count);
2792 
2793 	/* blocks_per_seg should be 512, given the above check */
2794 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2795 
2796 	if (segment_count > F2FS_MAX_SEGMENT ||
2797 				segment_count < F2FS_MIN_SEGMENTS) {
2798 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2799 		return -EFSCORRUPTED;
2800 	}
2801 
2802 	if (total_sections > segment_count ||
2803 			total_sections < F2FS_MIN_SEGMENTS ||
2804 			segs_per_sec > segment_count || !segs_per_sec) {
2805 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2806 			  segment_count, total_sections, segs_per_sec);
2807 		return -EFSCORRUPTED;
2808 	}
2809 
2810 	if ((segment_count / segs_per_sec) < total_sections) {
2811 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2812 			  segment_count, segs_per_sec, total_sections);
2813 		return -EFSCORRUPTED;
2814 	}
2815 
2816 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2817 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2818 			  segment_count, le64_to_cpu(raw_super->block_count));
2819 		return -EFSCORRUPTED;
2820 	}
2821 
2822 	if (RDEV(0).path[0]) {
2823 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2824 		int i = 1;
2825 
2826 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
2827 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2828 			i++;
2829 		}
2830 		if (segment_count != dev_seg_count) {
2831 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2832 					segment_count, dev_seg_count);
2833 			return -EFSCORRUPTED;
2834 		}
2835 	}
2836 
2837 	if (secs_per_zone > total_sections || !secs_per_zone) {
2838 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2839 			  secs_per_zone, total_sections);
2840 		return -EFSCORRUPTED;
2841 	}
2842 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2843 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2844 			(le32_to_cpu(raw_super->extension_count) +
2845 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2846 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2847 			  le32_to_cpu(raw_super->extension_count),
2848 			  raw_super->hot_ext_count,
2849 			  F2FS_MAX_EXTENSION);
2850 		return -EFSCORRUPTED;
2851 	}
2852 
2853 	if (le32_to_cpu(raw_super->cp_payload) >
2854 				(blocks_per_seg - F2FS_CP_PACKS)) {
2855 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2856 			  le32_to_cpu(raw_super->cp_payload),
2857 			  blocks_per_seg - F2FS_CP_PACKS);
2858 		return -EFSCORRUPTED;
2859 	}
2860 
2861 	/* check reserved ino info */
2862 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2863 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2864 		le32_to_cpu(raw_super->root_ino) != 3) {
2865 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2866 			  le32_to_cpu(raw_super->node_ino),
2867 			  le32_to_cpu(raw_super->meta_ino),
2868 			  le32_to_cpu(raw_super->root_ino));
2869 		return -EFSCORRUPTED;
2870 	}
2871 
2872 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2873 	if (sanity_check_area_boundary(sbi, bh))
2874 		return -EFSCORRUPTED;
2875 
2876 	return 0;
2877 }
2878 
2879 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2880 {
2881 	unsigned int total, fsmeta;
2882 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2883 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2884 	unsigned int ovp_segments, reserved_segments;
2885 	unsigned int main_segs, blocks_per_seg;
2886 	unsigned int sit_segs, nat_segs;
2887 	unsigned int sit_bitmap_size, nat_bitmap_size;
2888 	unsigned int log_blocks_per_seg;
2889 	unsigned int segment_count_main;
2890 	unsigned int cp_pack_start_sum, cp_payload;
2891 	block_t user_block_count, valid_user_blocks;
2892 	block_t avail_node_count, valid_node_count;
2893 	int i, j;
2894 
2895 	total = le32_to_cpu(raw_super->segment_count);
2896 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2897 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2898 	fsmeta += sit_segs;
2899 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2900 	fsmeta += nat_segs;
2901 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2902 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2903 
2904 	if (unlikely(fsmeta >= total))
2905 		return 1;
2906 
2907 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2908 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2909 
2910 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2911 			ovp_segments == 0 || reserved_segments == 0)) {
2912 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2913 		return 1;
2914 	}
2915 
2916 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2917 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2918 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2919 	if (!user_block_count || user_block_count >=
2920 			segment_count_main << log_blocks_per_seg) {
2921 		f2fs_err(sbi, "Wrong user_block_count: %u",
2922 			 user_block_count);
2923 		return 1;
2924 	}
2925 
2926 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2927 	if (valid_user_blocks > user_block_count) {
2928 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2929 			 valid_user_blocks, user_block_count);
2930 		return 1;
2931 	}
2932 
2933 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2934 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2935 	if (valid_node_count > avail_node_count) {
2936 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2937 			 valid_node_count, avail_node_count);
2938 		return 1;
2939 	}
2940 
2941 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2942 	blocks_per_seg = sbi->blocks_per_seg;
2943 
2944 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2945 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2946 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2947 			return 1;
2948 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2949 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2950 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2951 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2952 					 i, j,
2953 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2954 				return 1;
2955 			}
2956 		}
2957 	}
2958 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2959 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2960 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2961 			return 1;
2962 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2963 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2964 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2965 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2966 					 i, j,
2967 					 le32_to_cpu(ckpt->cur_data_segno[i]));
2968 				return 1;
2969 			}
2970 		}
2971 	}
2972 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2973 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2974 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2975 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2976 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
2977 					 i, j,
2978 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2979 				return 1;
2980 			}
2981 		}
2982 	}
2983 
2984 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2985 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2986 
2987 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2988 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2989 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2990 			 sit_bitmap_size, nat_bitmap_size);
2991 		return 1;
2992 	}
2993 
2994 	cp_pack_start_sum = __start_sum_addr(sbi);
2995 	cp_payload = __cp_payload(sbi);
2996 	if (cp_pack_start_sum < cp_payload + 1 ||
2997 		cp_pack_start_sum > blocks_per_seg - 1 -
2998 			NR_CURSEG_TYPE) {
2999 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3000 			 cp_pack_start_sum);
3001 		return 1;
3002 	}
3003 
3004 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3005 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3006 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3007 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3008 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3009 			  le32_to_cpu(ckpt->checksum_offset));
3010 		return 1;
3011 	}
3012 
3013 	if (unlikely(f2fs_cp_error(sbi))) {
3014 		f2fs_err(sbi, "A bug case: need to run fsck");
3015 		return 1;
3016 	}
3017 	return 0;
3018 }
3019 
3020 static void init_sb_info(struct f2fs_sb_info *sbi)
3021 {
3022 	struct f2fs_super_block *raw_super = sbi->raw_super;
3023 	int i;
3024 
3025 	sbi->log_sectors_per_block =
3026 		le32_to_cpu(raw_super->log_sectors_per_block);
3027 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3028 	sbi->blocksize = 1 << sbi->log_blocksize;
3029 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3030 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3031 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3032 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3033 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3034 	sbi->total_node_count =
3035 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3036 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3037 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
3038 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
3039 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
3040 	sbi->cur_victim_sec = NULL_SECNO;
3041 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3042 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3043 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3044 	sbi->migration_granularity = sbi->segs_per_sec;
3045 
3046 	sbi->dir_level = DEF_DIR_LEVEL;
3047 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3048 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3049 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3050 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3051 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3052 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3053 				DEF_UMOUNT_DISCARD_TIMEOUT;
3054 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3055 
3056 	for (i = 0; i < NR_COUNT_TYPE; i++)
3057 		atomic_set(&sbi->nr_pages[i], 0);
3058 
3059 	for (i = 0; i < META; i++)
3060 		atomic_set(&sbi->wb_sync_req[i], 0);
3061 
3062 	INIT_LIST_HEAD(&sbi->s_list);
3063 	mutex_init(&sbi->umount_mutex);
3064 	init_rwsem(&sbi->io_order_lock);
3065 	spin_lock_init(&sbi->cp_lock);
3066 
3067 	sbi->dirty_device = 0;
3068 	spin_lock_init(&sbi->dev_lock);
3069 
3070 	init_rwsem(&sbi->sb_lock);
3071 	init_rwsem(&sbi->pin_sem);
3072 }
3073 
3074 static int init_percpu_info(struct f2fs_sb_info *sbi)
3075 {
3076 	int err;
3077 
3078 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3079 	if (err)
3080 		return err;
3081 
3082 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3083 								GFP_KERNEL);
3084 	if (err)
3085 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3086 
3087 	return err;
3088 }
3089 
3090 #ifdef CONFIG_BLK_DEV_ZONED
3091 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3092 			       void *data)
3093 {
3094 	struct f2fs_dev_info *dev = data;
3095 
3096 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
3097 		set_bit(idx, dev->blkz_seq);
3098 	return 0;
3099 }
3100 
3101 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3102 {
3103 	struct block_device *bdev = FDEV(devi).bdev;
3104 	sector_t nr_sectors = bdev->bd_part->nr_sects;
3105 	int ret;
3106 
3107 	if (!f2fs_sb_has_blkzoned(sbi))
3108 		return 0;
3109 
3110 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3111 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3112 		return -EINVAL;
3113 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3114 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3115 				__ilog2_u32(sbi->blocks_per_blkz))
3116 		return -EINVAL;
3117 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3118 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3119 					sbi->log_blocks_per_blkz;
3120 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3121 		FDEV(devi).nr_blkz++;
3122 
3123 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3124 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3125 					* sizeof(unsigned long),
3126 					GFP_KERNEL);
3127 	if (!FDEV(devi).blkz_seq)
3128 		return -ENOMEM;
3129 
3130 	/* Get block zones type */
3131 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3132 				  &FDEV(devi));
3133 	if (ret < 0)
3134 		return ret;
3135 
3136 	return 0;
3137 }
3138 #endif
3139 
3140 /*
3141  * Read f2fs raw super block.
3142  * Because we have two copies of super block, so read both of them
3143  * to get the first valid one. If any one of them is broken, we pass
3144  * them recovery flag back to the caller.
3145  */
3146 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3147 			struct f2fs_super_block **raw_super,
3148 			int *valid_super_block, int *recovery)
3149 {
3150 	struct super_block *sb = sbi->sb;
3151 	int block;
3152 	struct buffer_head *bh;
3153 	struct f2fs_super_block *super;
3154 	int err = 0;
3155 
3156 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3157 	if (!super)
3158 		return -ENOMEM;
3159 
3160 	for (block = 0; block < 2; block++) {
3161 		bh = sb_bread(sb, block);
3162 		if (!bh) {
3163 			f2fs_err(sbi, "Unable to read %dth superblock",
3164 				 block + 1);
3165 			err = -EIO;
3166 			*recovery = 1;
3167 			continue;
3168 		}
3169 
3170 		/* sanity checking of raw super */
3171 		err = sanity_check_raw_super(sbi, bh);
3172 		if (err) {
3173 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3174 				 block + 1);
3175 			brelse(bh);
3176 			*recovery = 1;
3177 			continue;
3178 		}
3179 
3180 		if (!*raw_super) {
3181 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3182 							sizeof(*super));
3183 			*valid_super_block = block;
3184 			*raw_super = super;
3185 		}
3186 		brelse(bh);
3187 	}
3188 
3189 	/* No valid superblock */
3190 	if (!*raw_super)
3191 		kfree(super);
3192 	else
3193 		err = 0;
3194 
3195 	return err;
3196 }
3197 
3198 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3199 {
3200 	struct buffer_head *bh;
3201 	__u32 crc = 0;
3202 	int err;
3203 
3204 	if ((recover && f2fs_readonly(sbi->sb)) ||
3205 				bdev_read_only(sbi->sb->s_bdev)) {
3206 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3207 		return -EROFS;
3208 	}
3209 
3210 	/* we should update superblock crc here */
3211 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3212 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3213 				offsetof(struct f2fs_super_block, crc));
3214 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3215 	}
3216 
3217 	/* write back-up superblock first */
3218 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3219 	if (!bh)
3220 		return -EIO;
3221 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3222 	brelse(bh);
3223 
3224 	/* if we are in recovery path, skip writing valid superblock */
3225 	if (recover || err)
3226 		return err;
3227 
3228 	/* write current valid superblock */
3229 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3230 	if (!bh)
3231 		return -EIO;
3232 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3233 	brelse(bh);
3234 	return err;
3235 }
3236 
3237 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3238 {
3239 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3240 	unsigned int max_devices = MAX_DEVICES;
3241 	int i;
3242 
3243 	/* Initialize single device information */
3244 	if (!RDEV(0).path[0]) {
3245 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3246 			return 0;
3247 		max_devices = 1;
3248 	}
3249 
3250 	/*
3251 	 * Initialize multiple devices information, or single
3252 	 * zoned block device information.
3253 	 */
3254 	sbi->devs = f2fs_kzalloc(sbi,
3255 				 array_size(max_devices,
3256 					    sizeof(struct f2fs_dev_info)),
3257 				 GFP_KERNEL);
3258 	if (!sbi->devs)
3259 		return -ENOMEM;
3260 
3261 	for (i = 0; i < max_devices; i++) {
3262 
3263 		if (i > 0 && !RDEV(i).path[0])
3264 			break;
3265 
3266 		if (max_devices == 1) {
3267 			/* Single zoned block device mount */
3268 			FDEV(0).bdev =
3269 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3270 					sbi->sb->s_mode, sbi->sb->s_type);
3271 		} else {
3272 			/* Multi-device mount */
3273 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3274 			FDEV(i).total_segments =
3275 				le32_to_cpu(RDEV(i).total_segments);
3276 			if (i == 0) {
3277 				FDEV(i).start_blk = 0;
3278 				FDEV(i).end_blk = FDEV(i).start_blk +
3279 				    (FDEV(i).total_segments <<
3280 				    sbi->log_blocks_per_seg) - 1 +
3281 				    le32_to_cpu(raw_super->segment0_blkaddr);
3282 			} else {
3283 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3284 				FDEV(i).end_blk = FDEV(i).start_blk +
3285 					(FDEV(i).total_segments <<
3286 					sbi->log_blocks_per_seg) - 1;
3287 			}
3288 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3289 					sbi->sb->s_mode, sbi->sb->s_type);
3290 		}
3291 		if (IS_ERR(FDEV(i).bdev))
3292 			return PTR_ERR(FDEV(i).bdev);
3293 
3294 		/* to release errored devices */
3295 		sbi->s_ndevs = i + 1;
3296 
3297 #ifdef CONFIG_BLK_DEV_ZONED
3298 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3299 				!f2fs_sb_has_blkzoned(sbi)) {
3300 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3301 			return -EINVAL;
3302 		}
3303 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3304 			if (init_blkz_info(sbi, i)) {
3305 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3306 				return -EINVAL;
3307 			}
3308 			if (max_devices == 1)
3309 				break;
3310 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3311 				  i, FDEV(i).path,
3312 				  FDEV(i).total_segments,
3313 				  FDEV(i).start_blk, FDEV(i).end_blk,
3314 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3315 				  "Host-aware" : "Host-managed");
3316 			continue;
3317 		}
3318 #endif
3319 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3320 			  i, FDEV(i).path,
3321 			  FDEV(i).total_segments,
3322 			  FDEV(i).start_blk, FDEV(i).end_blk);
3323 	}
3324 	f2fs_info(sbi,
3325 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3326 	return 0;
3327 }
3328 
3329 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3330 {
3331 #ifdef CONFIG_UNICODE
3332 	if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) {
3333 		const struct f2fs_sb_encodings *encoding_info;
3334 		struct unicode_map *encoding;
3335 		__u16 encoding_flags;
3336 
3337 		if (f2fs_sb_has_encrypt(sbi)) {
3338 			f2fs_err(sbi,
3339 				"Can't mount with encoding and encryption");
3340 			return -EINVAL;
3341 		}
3342 
3343 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3344 					  &encoding_flags)) {
3345 			f2fs_err(sbi,
3346 				 "Encoding requested by superblock is unknown");
3347 			return -EINVAL;
3348 		}
3349 
3350 		encoding = utf8_load(encoding_info->version);
3351 		if (IS_ERR(encoding)) {
3352 			f2fs_err(sbi,
3353 				 "can't mount with superblock charset: %s-%s "
3354 				 "not supported by the kernel. flags: 0x%x.",
3355 				 encoding_info->name, encoding_info->version,
3356 				 encoding_flags);
3357 			return PTR_ERR(encoding);
3358 		}
3359 		f2fs_info(sbi, "Using encoding defined by superblock: "
3360 			 "%s-%s with flags 0x%hx", encoding_info->name,
3361 			 encoding_info->version?:"\b", encoding_flags);
3362 
3363 		sbi->s_encoding = encoding;
3364 		sbi->s_encoding_flags = encoding_flags;
3365 		sbi->sb->s_d_op = &f2fs_dentry_ops;
3366 	}
3367 #else
3368 	if (f2fs_sb_has_casefold(sbi)) {
3369 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3370 		return -EINVAL;
3371 	}
3372 #endif
3373 	return 0;
3374 }
3375 
3376 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3377 {
3378 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3379 
3380 	/* adjust parameters according to the volume size */
3381 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3382 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3383 		sm_i->dcc_info->discard_granularity = 1;
3384 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3385 	}
3386 
3387 	sbi->readdir_ra = 1;
3388 }
3389 
3390 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3391 {
3392 	struct f2fs_sb_info *sbi;
3393 	struct f2fs_super_block *raw_super;
3394 	struct inode *root;
3395 	int err;
3396 	bool skip_recovery = false, need_fsck = false;
3397 	char *options = NULL;
3398 	int recovery, i, valid_super_block;
3399 	struct curseg_info *seg_i;
3400 	int retry_cnt = 1;
3401 
3402 try_onemore:
3403 	err = -EINVAL;
3404 	raw_super = NULL;
3405 	valid_super_block = -1;
3406 	recovery = 0;
3407 
3408 	/* allocate memory for f2fs-specific super block info */
3409 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3410 	if (!sbi)
3411 		return -ENOMEM;
3412 
3413 	sbi->sb = sb;
3414 
3415 	/* Load the checksum driver */
3416 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3417 	if (IS_ERR(sbi->s_chksum_driver)) {
3418 		f2fs_err(sbi, "Cannot load crc32 driver.");
3419 		err = PTR_ERR(sbi->s_chksum_driver);
3420 		sbi->s_chksum_driver = NULL;
3421 		goto free_sbi;
3422 	}
3423 
3424 	/* set a block size */
3425 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3426 		f2fs_err(sbi, "unable to set blocksize");
3427 		goto free_sbi;
3428 	}
3429 
3430 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3431 								&recovery);
3432 	if (err)
3433 		goto free_sbi;
3434 
3435 	sb->s_fs_info = sbi;
3436 	sbi->raw_super = raw_super;
3437 
3438 	/* precompute checksum seed for metadata */
3439 	if (f2fs_sb_has_inode_chksum(sbi))
3440 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3441 						sizeof(raw_super->uuid));
3442 
3443 	/*
3444 	 * The BLKZONED feature indicates that the drive was formatted with
3445 	 * zone alignment optimization. This is optional for host-aware
3446 	 * devices, but mandatory for host-managed zoned block devices.
3447 	 */
3448 #ifndef CONFIG_BLK_DEV_ZONED
3449 	if (f2fs_sb_has_blkzoned(sbi)) {
3450 		f2fs_err(sbi, "Zoned block device support is not enabled");
3451 		err = -EOPNOTSUPP;
3452 		goto free_sb_buf;
3453 	}
3454 #endif
3455 	default_options(sbi);
3456 	/* parse mount options */
3457 	options = kstrdup((const char *)data, GFP_KERNEL);
3458 	if (data && !options) {
3459 		err = -ENOMEM;
3460 		goto free_sb_buf;
3461 	}
3462 
3463 	err = parse_options(sb, options, false);
3464 	if (err)
3465 		goto free_options;
3466 
3467 	sbi->max_file_blocks = max_file_blocks();
3468 	sb->s_maxbytes = sbi->max_file_blocks <<
3469 				le32_to_cpu(raw_super->log_blocksize);
3470 	sb->s_max_links = F2FS_LINK_MAX;
3471 
3472 	err = f2fs_setup_casefold(sbi);
3473 	if (err)
3474 		goto free_options;
3475 
3476 #ifdef CONFIG_QUOTA
3477 	sb->dq_op = &f2fs_quota_operations;
3478 	sb->s_qcop = &f2fs_quotactl_ops;
3479 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3480 
3481 	if (f2fs_sb_has_quota_ino(sbi)) {
3482 		for (i = 0; i < MAXQUOTAS; i++) {
3483 			if (f2fs_qf_ino(sbi->sb, i))
3484 				sbi->nquota_files++;
3485 		}
3486 	}
3487 #endif
3488 
3489 	sb->s_op = &f2fs_sops;
3490 #ifdef CONFIG_FS_ENCRYPTION
3491 	sb->s_cop = &f2fs_cryptops;
3492 #endif
3493 #ifdef CONFIG_FS_VERITY
3494 	sb->s_vop = &f2fs_verityops;
3495 #endif
3496 	sb->s_xattr = f2fs_xattr_handlers;
3497 	sb->s_export_op = &f2fs_export_ops;
3498 	sb->s_magic = F2FS_SUPER_MAGIC;
3499 	sb->s_time_gran = 1;
3500 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3501 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3502 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3503 	sb->s_iflags |= SB_I_CGROUPWB;
3504 
3505 	/* init f2fs-specific super block info */
3506 	sbi->valid_super_block = valid_super_block;
3507 	init_rwsem(&sbi->gc_lock);
3508 	mutex_init(&sbi->writepages);
3509 	mutex_init(&sbi->cp_mutex);
3510 	init_rwsem(&sbi->node_write);
3511 	init_rwsem(&sbi->node_change);
3512 
3513 	/* disallow all the data/node/meta page writes */
3514 	set_sbi_flag(sbi, SBI_POR_DOING);
3515 	spin_lock_init(&sbi->stat_lock);
3516 
3517 	/* init iostat info */
3518 	spin_lock_init(&sbi->iostat_lock);
3519 	sbi->iostat_enable = false;
3520 	sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3521 
3522 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3523 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3524 		int j;
3525 
3526 		sbi->write_io[i] =
3527 			f2fs_kmalloc(sbi,
3528 				     array_size(n,
3529 						sizeof(struct f2fs_bio_info)),
3530 				     GFP_KERNEL);
3531 		if (!sbi->write_io[i]) {
3532 			err = -ENOMEM;
3533 			goto free_bio_info;
3534 		}
3535 
3536 		for (j = HOT; j < n; j++) {
3537 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3538 			sbi->write_io[i][j].sbi = sbi;
3539 			sbi->write_io[i][j].bio = NULL;
3540 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3541 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3542 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3543 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3544 		}
3545 	}
3546 
3547 	init_rwsem(&sbi->cp_rwsem);
3548 	init_rwsem(&sbi->quota_sem);
3549 	init_waitqueue_head(&sbi->cp_wait);
3550 	init_sb_info(sbi);
3551 
3552 	err = init_percpu_info(sbi);
3553 	if (err)
3554 		goto free_bio_info;
3555 
3556 	if (F2FS_IO_ALIGNED(sbi)) {
3557 		sbi->write_io_dummy =
3558 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3559 		if (!sbi->write_io_dummy) {
3560 			err = -ENOMEM;
3561 			goto free_percpu;
3562 		}
3563 	}
3564 
3565 	/* init per sbi slab cache */
3566 	err = f2fs_init_xattr_caches(sbi);
3567 	if (err)
3568 		goto free_io_dummy;
3569 
3570 	/* get an inode for meta space */
3571 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3572 	if (IS_ERR(sbi->meta_inode)) {
3573 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3574 		err = PTR_ERR(sbi->meta_inode);
3575 		goto free_xattr_cache;
3576 	}
3577 
3578 	err = f2fs_get_valid_checkpoint(sbi);
3579 	if (err) {
3580 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3581 		goto free_meta_inode;
3582 	}
3583 
3584 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3585 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3586 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3587 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3588 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3589 	}
3590 
3591 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3592 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3593 
3594 	/* Initialize device list */
3595 	err = f2fs_scan_devices(sbi);
3596 	if (err) {
3597 		f2fs_err(sbi, "Failed to find devices");
3598 		goto free_devices;
3599 	}
3600 
3601 	err = f2fs_init_post_read_wq(sbi);
3602 	if (err) {
3603 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3604 		goto free_devices;
3605 	}
3606 
3607 	sbi->total_valid_node_count =
3608 				le32_to_cpu(sbi->ckpt->valid_node_count);
3609 	percpu_counter_set(&sbi->total_valid_inode_count,
3610 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3611 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3612 	sbi->total_valid_block_count =
3613 				le64_to_cpu(sbi->ckpt->valid_block_count);
3614 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3615 	sbi->reserved_blocks = 0;
3616 	sbi->current_reserved_blocks = 0;
3617 	limit_reserve_root(sbi);
3618 	adjust_unusable_cap_perc(sbi);
3619 
3620 	for (i = 0; i < NR_INODE_TYPE; i++) {
3621 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3622 		spin_lock_init(&sbi->inode_lock[i]);
3623 	}
3624 	mutex_init(&sbi->flush_lock);
3625 
3626 	f2fs_init_extent_cache_info(sbi);
3627 
3628 	f2fs_init_ino_entry_info(sbi);
3629 
3630 	f2fs_init_fsync_node_info(sbi);
3631 
3632 	/* setup f2fs internal modules */
3633 	err = f2fs_build_segment_manager(sbi);
3634 	if (err) {
3635 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3636 			 err);
3637 		goto free_sm;
3638 	}
3639 	err = f2fs_build_node_manager(sbi);
3640 	if (err) {
3641 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3642 			 err);
3643 		goto free_nm;
3644 	}
3645 
3646 	/* For write statistics */
3647 	if (sb->s_bdev->bd_part)
3648 		sbi->sectors_written_start =
3649 			(u64)part_stat_read(sb->s_bdev->bd_part,
3650 					    sectors[STAT_WRITE]);
3651 
3652 	/* Read accumulated write IO statistics if exists */
3653 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3654 	if (__exist_node_summaries(sbi))
3655 		sbi->kbytes_written =
3656 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3657 
3658 	f2fs_build_gc_manager(sbi);
3659 
3660 	err = f2fs_build_stats(sbi);
3661 	if (err)
3662 		goto free_nm;
3663 
3664 	/* get an inode for node space */
3665 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3666 	if (IS_ERR(sbi->node_inode)) {
3667 		f2fs_err(sbi, "Failed to read node inode");
3668 		err = PTR_ERR(sbi->node_inode);
3669 		goto free_stats;
3670 	}
3671 
3672 	/* read root inode and dentry */
3673 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3674 	if (IS_ERR(root)) {
3675 		f2fs_err(sbi, "Failed to read root inode");
3676 		err = PTR_ERR(root);
3677 		goto free_node_inode;
3678 	}
3679 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3680 			!root->i_size || !root->i_nlink) {
3681 		iput(root);
3682 		err = -EINVAL;
3683 		goto free_node_inode;
3684 	}
3685 
3686 	sb->s_root = d_make_root(root); /* allocate root dentry */
3687 	if (!sb->s_root) {
3688 		err = -ENOMEM;
3689 		goto free_node_inode;
3690 	}
3691 
3692 	err = f2fs_register_sysfs(sbi);
3693 	if (err)
3694 		goto free_root_inode;
3695 
3696 #ifdef CONFIG_QUOTA
3697 	/* Enable quota usage during mount */
3698 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3699 		err = f2fs_enable_quotas(sb);
3700 		if (err)
3701 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3702 	}
3703 #endif
3704 	/* if there are any orphan inodes, free them */
3705 	err = f2fs_recover_orphan_inodes(sbi);
3706 	if (err)
3707 		goto free_meta;
3708 
3709 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3710 		goto reset_checkpoint;
3711 
3712 	/* recover fsynced data */
3713 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3714 			!test_opt(sbi, NORECOVERY)) {
3715 		/*
3716 		 * mount should be failed, when device has readonly mode, and
3717 		 * previous checkpoint was not done by clean system shutdown.
3718 		 */
3719 		if (f2fs_hw_is_readonly(sbi)) {
3720 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3721 				err = -EROFS;
3722 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3723 				goto free_meta;
3724 			}
3725 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3726 			goto reset_checkpoint;
3727 		}
3728 
3729 		if (need_fsck)
3730 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3731 
3732 		if (skip_recovery)
3733 			goto reset_checkpoint;
3734 
3735 		err = f2fs_recover_fsync_data(sbi, false);
3736 		if (err < 0) {
3737 			if (err != -ENOMEM)
3738 				skip_recovery = true;
3739 			need_fsck = true;
3740 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3741 				 err);
3742 			goto free_meta;
3743 		}
3744 	} else {
3745 		err = f2fs_recover_fsync_data(sbi, true);
3746 
3747 		if (!f2fs_readonly(sb) && err > 0) {
3748 			err = -EINVAL;
3749 			f2fs_err(sbi, "Need to recover fsync data");
3750 			goto free_meta;
3751 		}
3752 	}
3753 
3754 	/*
3755 	 * If the f2fs is not readonly and fsync data recovery succeeds,
3756 	 * check zoned block devices' write pointer consistency.
3757 	 */
3758 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3759 		err = f2fs_check_write_pointer(sbi);
3760 		if (err)
3761 			goto free_meta;
3762 	}
3763 
3764 reset_checkpoint:
3765 	/* f2fs_recover_fsync_data() cleared this already */
3766 	clear_sbi_flag(sbi, SBI_POR_DOING);
3767 
3768 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3769 		err = f2fs_disable_checkpoint(sbi);
3770 		if (err)
3771 			goto sync_free_meta;
3772 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3773 		f2fs_enable_checkpoint(sbi);
3774 	}
3775 
3776 	/*
3777 	 * If filesystem is not mounted as read-only then
3778 	 * do start the gc_thread.
3779 	 */
3780 	if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3781 		/* After POR, we can run background GC thread.*/
3782 		err = f2fs_start_gc_thread(sbi);
3783 		if (err)
3784 			goto sync_free_meta;
3785 	}
3786 	kvfree(options);
3787 
3788 	/* recover broken superblock */
3789 	if (recovery) {
3790 		err = f2fs_commit_super(sbi, true);
3791 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3792 			  sbi->valid_super_block ? 1 : 2, err);
3793 	}
3794 
3795 	f2fs_join_shrinker(sbi);
3796 
3797 	f2fs_tuning_parameters(sbi);
3798 
3799 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3800 		    cur_cp_version(F2FS_CKPT(sbi)));
3801 	f2fs_update_time(sbi, CP_TIME);
3802 	f2fs_update_time(sbi, REQ_TIME);
3803 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3804 	return 0;
3805 
3806 sync_free_meta:
3807 	/* safe to flush all the data */
3808 	sync_filesystem(sbi->sb);
3809 	retry_cnt = 0;
3810 
3811 free_meta:
3812 #ifdef CONFIG_QUOTA
3813 	f2fs_truncate_quota_inode_pages(sb);
3814 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3815 		f2fs_quota_off_umount(sbi->sb);
3816 #endif
3817 	/*
3818 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3819 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3820 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3821 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3822 	 */
3823 	truncate_inode_pages_final(META_MAPPING(sbi));
3824 	/* evict some inodes being cached by GC */
3825 	evict_inodes(sb);
3826 	f2fs_unregister_sysfs(sbi);
3827 free_root_inode:
3828 	dput(sb->s_root);
3829 	sb->s_root = NULL;
3830 free_node_inode:
3831 	f2fs_release_ino_entry(sbi, true);
3832 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3833 	iput(sbi->node_inode);
3834 	sbi->node_inode = NULL;
3835 free_stats:
3836 	f2fs_destroy_stats(sbi);
3837 free_nm:
3838 	f2fs_destroy_node_manager(sbi);
3839 free_sm:
3840 	f2fs_destroy_segment_manager(sbi);
3841 	f2fs_destroy_post_read_wq(sbi);
3842 free_devices:
3843 	destroy_device_list(sbi);
3844 	kvfree(sbi->ckpt);
3845 free_meta_inode:
3846 	make_bad_inode(sbi->meta_inode);
3847 	iput(sbi->meta_inode);
3848 	sbi->meta_inode = NULL;
3849 free_xattr_cache:
3850 	f2fs_destroy_xattr_caches(sbi);
3851 free_io_dummy:
3852 	mempool_destroy(sbi->write_io_dummy);
3853 free_percpu:
3854 	destroy_percpu_info(sbi);
3855 free_bio_info:
3856 	for (i = 0; i < NR_PAGE_TYPE; i++)
3857 		kvfree(sbi->write_io[i]);
3858 
3859 #ifdef CONFIG_UNICODE
3860 	utf8_unload(sbi->s_encoding);
3861 #endif
3862 free_options:
3863 #ifdef CONFIG_QUOTA
3864 	for (i = 0; i < MAXQUOTAS; i++)
3865 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3866 #endif
3867 	fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx);
3868 	kvfree(options);
3869 free_sb_buf:
3870 	kfree(raw_super);
3871 free_sbi:
3872 	if (sbi->s_chksum_driver)
3873 		crypto_free_shash(sbi->s_chksum_driver);
3874 	kfree(sbi);
3875 
3876 	/* give only one another chance */
3877 	if (retry_cnt > 0 && skip_recovery) {
3878 		retry_cnt--;
3879 		shrink_dcache_sb(sb);
3880 		goto try_onemore;
3881 	}
3882 	return err;
3883 }
3884 
3885 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3886 			const char *dev_name, void *data)
3887 {
3888 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3889 }
3890 
3891 static void kill_f2fs_super(struct super_block *sb)
3892 {
3893 	if (sb->s_root) {
3894 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3895 
3896 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3897 		f2fs_stop_gc_thread(sbi);
3898 		f2fs_stop_discard_thread(sbi);
3899 
3900 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3901 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3902 			struct cp_control cpc = {
3903 				.reason = CP_UMOUNT,
3904 			};
3905 			f2fs_write_checkpoint(sbi, &cpc);
3906 		}
3907 
3908 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3909 			sb->s_flags &= ~SB_RDONLY;
3910 	}
3911 	kill_block_super(sb);
3912 }
3913 
3914 static struct file_system_type f2fs_fs_type = {
3915 	.owner		= THIS_MODULE,
3916 	.name		= "f2fs",
3917 	.mount		= f2fs_mount,
3918 	.kill_sb	= kill_f2fs_super,
3919 	.fs_flags	= FS_REQUIRES_DEV,
3920 };
3921 MODULE_ALIAS_FS("f2fs");
3922 
3923 static int __init init_inodecache(void)
3924 {
3925 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3926 			sizeof(struct f2fs_inode_info), 0,
3927 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3928 	if (!f2fs_inode_cachep)
3929 		return -ENOMEM;
3930 	return 0;
3931 }
3932 
3933 static void destroy_inodecache(void)
3934 {
3935 	/*
3936 	 * Make sure all delayed rcu free inodes are flushed before we
3937 	 * destroy cache.
3938 	 */
3939 	rcu_barrier();
3940 	kmem_cache_destroy(f2fs_inode_cachep);
3941 }
3942 
3943 static int __init init_f2fs_fs(void)
3944 {
3945 	int err;
3946 
3947 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3948 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3949 				PAGE_SIZE, F2FS_BLKSIZE);
3950 		return -EINVAL;
3951 	}
3952 
3953 	f2fs_build_trace_ios();
3954 
3955 	err = init_inodecache();
3956 	if (err)
3957 		goto fail;
3958 	err = f2fs_create_node_manager_caches();
3959 	if (err)
3960 		goto free_inodecache;
3961 	err = f2fs_create_segment_manager_caches();
3962 	if (err)
3963 		goto free_node_manager_caches;
3964 	err = f2fs_create_checkpoint_caches();
3965 	if (err)
3966 		goto free_segment_manager_caches;
3967 	err = f2fs_create_extent_cache();
3968 	if (err)
3969 		goto free_checkpoint_caches;
3970 	err = f2fs_init_sysfs();
3971 	if (err)
3972 		goto free_extent_cache;
3973 	err = register_shrinker(&f2fs_shrinker_info);
3974 	if (err)
3975 		goto free_sysfs;
3976 	err = register_filesystem(&f2fs_fs_type);
3977 	if (err)
3978 		goto free_shrinker;
3979 	f2fs_create_root_stats();
3980 	err = f2fs_init_post_read_processing();
3981 	if (err)
3982 		goto free_root_stats;
3983 	err = f2fs_init_bio_entry_cache();
3984 	if (err)
3985 		goto free_post_read;
3986 	err = f2fs_init_bioset();
3987 	if (err)
3988 		goto free_bio_enrty_cache;
3989 	err = f2fs_init_compress_mempool();
3990 	if (err)
3991 		goto free_bioset;
3992 	return 0;
3993 free_bioset:
3994 	f2fs_destroy_bioset();
3995 free_bio_enrty_cache:
3996 	f2fs_destroy_bio_entry_cache();
3997 free_post_read:
3998 	f2fs_destroy_post_read_processing();
3999 free_root_stats:
4000 	f2fs_destroy_root_stats();
4001 	unregister_filesystem(&f2fs_fs_type);
4002 free_shrinker:
4003 	unregister_shrinker(&f2fs_shrinker_info);
4004 free_sysfs:
4005 	f2fs_exit_sysfs();
4006 free_extent_cache:
4007 	f2fs_destroy_extent_cache();
4008 free_checkpoint_caches:
4009 	f2fs_destroy_checkpoint_caches();
4010 free_segment_manager_caches:
4011 	f2fs_destroy_segment_manager_caches();
4012 free_node_manager_caches:
4013 	f2fs_destroy_node_manager_caches();
4014 free_inodecache:
4015 	destroy_inodecache();
4016 fail:
4017 	return err;
4018 }
4019 
4020 static void __exit exit_f2fs_fs(void)
4021 {
4022 	f2fs_destroy_compress_mempool();
4023 	f2fs_destroy_bioset();
4024 	f2fs_destroy_bio_entry_cache();
4025 	f2fs_destroy_post_read_processing();
4026 	f2fs_destroy_root_stats();
4027 	unregister_filesystem(&f2fs_fs_type);
4028 	unregister_shrinker(&f2fs_shrinker_info);
4029 	f2fs_exit_sysfs();
4030 	f2fs_destroy_extent_cache();
4031 	f2fs_destroy_checkpoint_caches();
4032 	f2fs_destroy_segment_manager_caches();
4033 	f2fs_destroy_node_manager_caches();
4034 	destroy_inodecache();
4035 	f2fs_destroy_trace_ios();
4036 }
4037 
4038 module_init(init_f2fs_fs)
4039 module_exit(exit_f2fs_fs)
4040 
4041 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4042 MODULE_DESCRIPTION("Flash Friendly File System");
4043 MODULE_LICENSE("GPL");
4044 
4045