xref: /linux/fs/f2fs/super.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44 
45 char *fault_name[FAULT_MAX] = {
46 	[FAULT_KMALLOC]		= "kmalloc",
47 	[FAULT_PAGE_ALLOC]	= "page alloc",
48 	[FAULT_ALLOC_NID]	= "alloc nid",
49 	[FAULT_ORPHAN]		= "orphan",
50 	[FAULT_BLOCK]		= "no more block",
51 	[FAULT_DIR_DEPTH]	= "too big dir depth",
52 };
53 
54 static void f2fs_build_fault_attr(unsigned int rate)
55 {
56 	if (rate) {
57 		atomic_set(&f2fs_fault.inject_ops, 0);
58 		f2fs_fault.inject_rate = rate;
59 		f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
60 	} else {
61 		memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
62 	}
63 }
64 #endif
65 
66 /* f2fs-wide shrinker description */
67 static struct shrinker f2fs_shrinker_info = {
68 	.scan_objects = f2fs_shrink_scan,
69 	.count_objects = f2fs_shrink_count,
70 	.seeks = DEFAULT_SEEKS,
71 };
72 
73 enum {
74 	Opt_gc_background,
75 	Opt_disable_roll_forward,
76 	Opt_norecovery,
77 	Opt_discard,
78 	Opt_noheap,
79 	Opt_user_xattr,
80 	Opt_nouser_xattr,
81 	Opt_acl,
82 	Opt_noacl,
83 	Opt_active_logs,
84 	Opt_disable_ext_identify,
85 	Opt_inline_xattr,
86 	Opt_inline_data,
87 	Opt_inline_dentry,
88 	Opt_flush_merge,
89 	Opt_nobarrier,
90 	Opt_fastboot,
91 	Opt_extent_cache,
92 	Opt_noextent_cache,
93 	Opt_noinline_data,
94 	Opt_data_flush,
95 	Opt_fault_injection,
96 	Opt_err,
97 };
98 
99 static match_table_t f2fs_tokens = {
100 	{Opt_gc_background, "background_gc=%s"},
101 	{Opt_disable_roll_forward, "disable_roll_forward"},
102 	{Opt_norecovery, "norecovery"},
103 	{Opt_discard, "discard"},
104 	{Opt_noheap, "no_heap"},
105 	{Opt_user_xattr, "user_xattr"},
106 	{Opt_nouser_xattr, "nouser_xattr"},
107 	{Opt_acl, "acl"},
108 	{Opt_noacl, "noacl"},
109 	{Opt_active_logs, "active_logs=%u"},
110 	{Opt_disable_ext_identify, "disable_ext_identify"},
111 	{Opt_inline_xattr, "inline_xattr"},
112 	{Opt_inline_data, "inline_data"},
113 	{Opt_inline_dentry, "inline_dentry"},
114 	{Opt_flush_merge, "flush_merge"},
115 	{Opt_nobarrier, "nobarrier"},
116 	{Opt_fastboot, "fastboot"},
117 	{Opt_extent_cache, "extent_cache"},
118 	{Opt_noextent_cache, "noextent_cache"},
119 	{Opt_noinline_data, "noinline_data"},
120 	{Opt_data_flush, "data_flush"},
121 	{Opt_fault_injection, "fault_injection=%u"},
122 	{Opt_err, NULL},
123 };
124 
125 /* Sysfs support for f2fs */
126 enum {
127 	GC_THREAD,	/* struct f2fs_gc_thread */
128 	SM_INFO,	/* struct f2fs_sm_info */
129 	NM_INFO,	/* struct f2fs_nm_info */
130 	F2FS_SBI,	/* struct f2fs_sb_info */
131 #ifdef CONFIG_F2FS_FAULT_INJECTION
132 	FAULT_INFO_RATE,	/* struct f2fs_fault_info */
133 	FAULT_INFO_TYPE,	/* struct f2fs_fault_info */
134 #endif
135 };
136 
137 struct f2fs_attr {
138 	struct attribute attr;
139 	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
140 	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
141 			 const char *, size_t);
142 	int struct_type;
143 	int offset;
144 };
145 
146 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
147 {
148 	if (struct_type == GC_THREAD)
149 		return (unsigned char *)sbi->gc_thread;
150 	else if (struct_type == SM_INFO)
151 		return (unsigned char *)SM_I(sbi);
152 	else if (struct_type == NM_INFO)
153 		return (unsigned char *)NM_I(sbi);
154 	else if (struct_type == F2FS_SBI)
155 		return (unsigned char *)sbi;
156 #ifdef CONFIG_F2FS_FAULT_INJECTION
157 	else if (struct_type == FAULT_INFO_RATE ||
158 					struct_type == FAULT_INFO_TYPE)
159 		return (unsigned char *)&f2fs_fault;
160 #endif
161 	return NULL;
162 }
163 
164 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
165 		struct f2fs_sb_info *sbi, char *buf)
166 {
167 	struct super_block *sb = sbi->sb;
168 
169 	if (!sb->s_bdev->bd_part)
170 		return snprintf(buf, PAGE_SIZE, "0\n");
171 
172 	return snprintf(buf, PAGE_SIZE, "%llu\n",
173 		(unsigned long long)(sbi->kbytes_written +
174 			BD_PART_WRITTEN(sbi)));
175 }
176 
177 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
178 			struct f2fs_sb_info *sbi, char *buf)
179 {
180 	unsigned char *ptr = NULL;
181 	unsigned int *ui;
182 
183 	ptr = __struct_ptr(sbi, a->struct_type);
184 	if (!ptr)
185 		return -EINVAL;
186 
187 	ui = (unsigned int *)(ptr + a->offset);
188 
189 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
190 }
191 
192 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
193 			struct f2fs_sb_info *sbi,
194 			const char *buf, size_t count)
195 {
196 	unsigned char *ptr;
197 	unsigned long t;
198 	unsigned int *ui;
199 	ssize_t ret;
200 
201 	ptr = __struct_ptr(sbi, a->struct_type);
202 	if (!ptr)
203 		return -EINVAL;
204 
205 	ui = (unsigned int *)(ptr + a->offset);
206 
207 	ret = kstrtoul(skip_spaces(buf), 0, &t);
208 	if (ret < 0)
209 		return ret;
210 #ifdef CONFIG_F2FS_FAULT_INJECTION
211 	if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
212 		return -EINVAL;
213 #endif
214 	*ui = t;
215 	return count;
216 }
217 
218 static ssize_t f2fs_attr_show(struct kobject *kobj,
219 				struct attribute *attr, char *buf)
220 {
221 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
222 								s_kobj);
223 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
224 
225 	return a->show ? a->show(a, sbi, buf) : 0;
226 }
227 
228 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
229 						const char *buf, size_t len)
230 {
231 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
232 									s_kobj);
233 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
234 
235 	return a->store ? a->store(a, sbi, buf, len) : 0;
236 }
237 
238 static void f2fs_sb_release(struct kobject *kobj)
239 {
240 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
241 								s_kobj);
242 	complete(&sbi->s_kobj_unregister);
243 }
244 
245 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
246 static struct f2fs_attr f2fs_attr_##_name = {			\
247 	.attr = {.name = __stringify(_name), .mode = _mode },	\
248 	.show	= _show,					\
249 	.store	= _store,					\
250 	.struct_type = _struct_type,				\
251 	.offset = _offset					\
252 }
253 
254 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
255 	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
256 		f2fs_sbi_show, f2fs_sbi_store,			\
257 		offsetof(struct struct_name, elname))
258 
259 #define F2FS_GENERAL_RO_ATTR(name) \
260 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
261 
262 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
263 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
264 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
265 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
266 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
267 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
268 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
269 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
270 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
271 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
272 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
273 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
274 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
275 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
276 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
277 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
278 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
279 #ifdef CONFIG_F2FS_FAULT_INJECTION
280 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
281 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
282 #endif
283 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
284 
285 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
286 static struct attribute *f2fs_attrs[] = {
287 	ATTR_LIST(gc_min_sleep_time),
288 	ATTR_LIST(gc_max_sleep_time),
289 	ATTR_LIST(gc_no_gc_sleep_time),
290 	ATTR_LIST(gc_idle),
291 	ATTR_LIST(reclaim_segments),
292 	ATTR_LIST(max_small_discards),
293 	ATTR_LIST(batched_trim_sections),
294 	ATTR_LIST(ipu_policy),
295 	ATTR_LIST(min_ipu_util),
296 	ATTR_LIST(min_fsync_blocks),
297 	ATTR_LIST(max_victim_search),
298 	ATTR_LIST(dir_level),
299 	ATTR_LIST(ram_thresh),
300 	ATTR_LIST(ra_nid_pages),
301 	ATTR_LIST(dirty_nats_ratio),
302 	ATTR_LIST(cp_interval),
303 	ATTR_LIST(idle_interval),
304 	ATTR_LIST(lifetime_write_kbytes),
305 	NULL,
306 };
307 
308 static const struct sysfs_ops f2fs_attr_ops = {
309 	.show	= f2fs_attr_show,
310 	.store	= f2fs_attr_store,
311 };
312 
313 static struct kobj_type f2fs_ktype = {
314 	.default_attrs	= f2fs_attrs,
315 	.sysfs_ops	= &f2fs_attr_ops,
316 	.release	= f2fs_sb_release,
317 };
318 
319 #ifdef CONFIG_F2FS_FAULT_INJECTION
320 /* sysfs for f2fs fault injection */
321 static struct kobject f2fs_fault_inject;
322 
323 static struct attribute *f2fs_fault_attrs[] = {
324 	ATTR_LIST(inject_rate),
325 	ATTR_LIST(inject_type),
326 	NULL
327 };
328 
329 static struct kobj_type f2fs_fault_ktype = {
330 	.default_attrs	= f2fs_fault_attrs,
331 	.sysfs_ops	= &f2fs_attr_ops,
332 };
333 #endif
334 
335 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
336 {
337 	struct va_format vaf;
338 	va_list args;
339 
340 	va_start(args, fmt);
341 	vaf.fmt = fmt;
342 	vaf.va = &args;
343 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
344 	va_end(args);
345 }
346 
347 static void init_once(void *foo)
348 {
349 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
350 
351 	inode_init_once(&fi->vfs_inode);
352 }
353 
354 static int parse_options(struct super_block *sb, char *options)
355 {
356 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
357 	struct request_queue *q;
358 	substring_t args[MAX_OPT_ARGS];
359 	char *p, *name;
360 	int arg = 0;
361 
362 #ifdef CONFIG_F2FS_FAULT_INJECTION
363 	f2fs_build_fault_attr(0);
364 #endif
365 
366 	if (!options)
367 		return 0;
368 
369 	while ((p = strsep(&options, ",")) != NULL) {
370 		int token;
371 		if (!*p)
372 			continue;
373 		/*
374 		 * Initialize args struct so we know whether arg was
375 		 * found; some options take optional arguments.
376 		 */
377 		args[0].to = args[0].from = NULL;
378 		token = match_token(p, f2fs_tokens, args);
379 
380 		switch (token) {
381 		case Opt_gc_background:
382 			name = match_strdup(&args[0]);
383 
384 			if (!name)
385 				return -ENOMEM;
386 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
387 				set_opt(sbi, BG_GC);
388 				clear_opt(sbi, FORCE_FG_GC);
389 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
390 				clear_opt(sbi, BG_GC);
391 				clear_opt(sbi, FORCE_FG_GC);
392 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
393 				set_opt(sbi, BG_GC);
394 				set_opt(sbi, FORCE_FG_GC);
395 			} else {
396 				kfree(name);
397 				return -EINVAL;
398 			}
399 			kfree(name);
400 			break;
401 		case Opt_disable_roll_forward:
402 			set_opt(sbi, DISABLE_ROLL_FORWARD);
403 			break;
404 		case Opt_norecovery:
405 			/* this option mounts f2fs with ro */
406 			set_opt(sbi, DISABLE_ROLL_FORWARD);
407 			if (!f2fs_readonly(sb))
408 				return -EINVAL;
409 			break;
410 		case Opt_discard:
411 			q = bdev_get_queue(sb->s_bdev);
412 			if (blk_queue_discard(q)) {
413 				set_opt(sbi, DISCARD);
414 			} else {
415 				f2fs_msg(sb, KERN_WARNING,
416 					"mounting with \"discard\" option, but "
417 					"the device does not support discard");
418 			}
419 			break;
420 		case Opt_noheap:
421 			set_opt(sbi, NOHEAP);
422 			break;
423 #ifdef CONFIG_F2FS_FS_XATTR
424 		case Opt_user_xattr:
425 			set_opt(sbi, XATTR_USER);
426 			break;
427 		case Opt_nouser_xattr:
428 			clear_opt(sbi, XATTR_USER);
429 			break;
430 		case Opt_inline_xattr:
431 			set_opt(sbi, INLINE_XATTR);
432 			break;
433 #else
434 		case Opt_user_xattr:
435 			f2fs_msg(sb, KERN_INFO,
436 				"user_xattr options not supported");
437 			break;
438 		case Opt_nouser_xattr:
439 			f2fs_msg(sb, KERN_INFO,
440 				"nouser_xattr options not supported");
441 			break;
442 		case Opt_inline_xattr:
443 			f2fs_msg(sb, KERN_INFO,
444 				"inline_xattr options not supported");
445 			break;
446 #endif
447 #ifdef CONFIG_F2FS_FS_POSIX_ACL
448 		case Opt_acl:
449 			set_opt(sbi, POSIX_ACL);
450 			break;
451 		case Opt_noacl:
452 			clear_opt(sbi, POSIX_ACL);
453 			break;
454 #else
455 		case Opt_acl:
456 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
457 			break;
458 		case Opt_noacl:
459 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
460 			break;
461 #endif
462 		case Opt_active_logs:
463 			if (args->from && match_int(args, &arg))
464 				return -EINVAL;
465 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
466 				return -EINVAL;
467 			sbi->active_logs = arg;
468 			break;
469 		case Opt_disable_ext_identify:
470 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
471 			break;
472 		case Opt_inline_data:
473 			set_opt(sbi, INLINE_DATA);
474 			break;
475 		case Opt_inline_dentry:
476 			set_opt(sbi, INLINE_DENTRY);
477 			break;
478 		case Opt_flush_merge:
479 			set_opt(sbi, FLUSH_MERGE);
480 			break;
481 		case Opt_nobarrier:
482 			set_opt(sbi, NOBARRIER);
483 			break;
484 		case Opt_fastboot:
485 			set_opt(sbi, FASTBOOT);
486 			break;
487 		case Opt_extent_cache:
488 			set_opt(sbi, EXTENT_CACHE);
489 			break;
490 		case Opt_noextent_cache:
491 			clear_opt(sbi, EXTENT_CACHE);
492 			break;
493 		case Opt_noinline_data:
494 			clear_opt(sbi, INLINE_DATA);
495 			break;
496 		case Opt_data_flush:
497 			set_opt(sbi, DATA_FLUSH);
498 			break;
499 		case Opt_fault_injection:
500 			if (args->from && match_int(args, &arg))
501 				return -EINVAL;
502 #ifdef CONFIG_F2FS_FAULT_INJECTION
503 			f2fs_build_fault_attr(arg);
504 #else
505 			f2fs_msg(sb, KERN_INFO,
506 				"FAULT_INJECTION was not selected");
507 #endif
508 			break;
509 		default:
510 			f2fs_msg(sb, KERN_ERR,
511 				"Unrecognized mount option \"%s\" or missing value",
512 				p);
513 			return -EINVAL;
514 		}
515 	}
516 	return 0;
517 }
518 
519 static struct inode *f2fs_alloc_inode(struct super_block *sb)
520 {
521 	struct f2fs_inode_info *fi;
522 
523 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
524 	if (!fi)
525 		return NULL;
526 
527 	init_once((void *) fi);
528 
529 	if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
530 		kmem_cache_free(f2fs_inode_cachep, fi);
531 		return NULL;
532 	}
533 
534 	/* Initialize f2fs-specific inode info */
535 	fi->vfs_inode.i_version = 1;
536 	fi->i_current_depth = 1;
537 	fi->i_advise = 0;
538 	init_rwsem(&fi->i_sem);
539 	INIT_LIST_HEAD(&fi->dirty_list);
540 	INIT_LIST_HEAD(&fi->inmem_pages);
541 	mutex_init(&fi->inmem_lock);
542 
543 	set_inode_flag(fi, FI_NEW_INODE);
544 
545 	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
546 		set_inode_flag(fi, FI_INLINE_XATTR);
547 
548 	/* Will be used by directory only */
549 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
550 	return &fi->vfs_inode;
551 }
552 
553 static int f2fs_drop_inode(struct inode *inode)
554 {
555 	/*
556 	 * This is to avoid a deadlock condition like below.
557 	 * writeback_single_inode(inode)
558 	 *  - f2fs_write_data_page
559 	 *    - f2fs_gc -> iput -> evict
560 	 *       - inode_wait_for_writeback(inode)
561 	 */
562 	if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
563 		if (!inode->i_nlink && !is_bad_inode(inode)) {
564 			/* to avoid evict_inode call simultaneously */
565 			atomic_inc(&inode->i_count);
566 			spin_unlock(&inode->i_lock);
567 
568 			/* some remained atomic pages should discarded */
569 			if (f2fs_is_atomic_file(inode))
570 				drop_inmem_pages(inode);
571 
572 			/* should remain fi->extent_tree for writepage */
573 			f2fs_destroy_extent_node(inode);
574 
575 			sb_start_intwrite(inode->i_sb);
576 			i_size_write(inode, 0);
577 
578 			if (F2FS_HAS_BLOCKS(inode))
579 				f2fs_truncate(inode, true);
580 
581 			sb_end_intwrite(inode->i_sb);
582 
583 			fscrypt_put_encryption_info(inode, NULL);
584 			spin_lock(&inode->i_lock);
585 			atomic_dec(&inode->i_count);
586 		}
587 		return 0;
588 	}
589 	return generic_drop_inode(inode);
590 }
591 
592 /*
593  * f2fs_dirty_inode() is called from __mark_inode_dirty()
594  *
595  * We should call set_dirty_inode to write the dirty inode through write_inode.
596  */
597 static void f2fs_dirty_inode(struct inode *inode, int flags)
598 {
599 	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
600 }
601 
602 static void f2fs_i_callback(struct rcu_head *head)
603 {
604 	struct inode *inode = container_of(head, struct inode, i_rcu);
605 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
606 }
607 
608 static void f2fs_destroy_inode(struct inode *inode)
609 {
610 	percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
611 	call_rcu(&inode->i_rcu, f2fs_i_callback);
612 }
613 
614 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
615 {
616 	int i;
617 
618 	for (i = 0; i < NR_COUNT_TYPE; i++)
619 		percpu_counter_destroy(&sbi->nr_pages[i]);
620 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
621 	percpu_counter_destroy(&sbi->total_valid_inode_count);
622 }
623 
624 static void f2fs_put_super(struct super_block *sb)
625 {
626 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
627 
628 	if (sbi->s_proc) {
629 		remove_proc_entry("segment_info", sbi->s_proc);
630 		remove_proc_entry("segment_bits", sbi->s_proc);
631 		remove_proc_entry(sb->s_id, f2fs_proc_root);
632 	}
633 	kobject_del(&sbi->s_kobj);
634 
635 	stop_gc_thread(sbi);
636 
637 	/* prevent remaining shrinker jobs */
638 	mutex_lock(&sbi->umount_mutex);
639 
640 	/*
641 	 * We don't need to do checkpoint when superblock is clean.
642 	 * But, the previous checkpoint was not done by umount, it needs to do
643 	 * clean checkpoint again.
644 	 */
645 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
646 			!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
647 		struct cp_control cpc = {
648 			.reason = CP_UMOUNT,
649 		};
650 		write_checkpoint(sbi, &cpc);
651 	}
652 
653 	/* write_checkpoint can update stat informaion */
654 	f2fs_destroy_stats(sbi);
655 
656 	/*
657 	 * normally superblock is clean, so we need to release this.
658 	 * In addition, EIO will skip do checkpoint, we need this as well.
659 	 */
660 	release_ino_entry(sbi, true);
661 	release_discard_addrs(sbi);
662 
663 	f2fs_leave_shrinker(sbi);
664 	mutex_unlock(&sbi->umount_mutex);
665 
666 	/* our cp_error case, we can wait for any writeback page */
667 	f2fs_flush_merged_bios(sbi);
668 
669 	iput(sbi->node_inode);
670 	iput(sbi->meta_inode);
671 
672 	/* destroy f2fs internal modules */
673 	destroy_node_manager(sbi);
674 	destroy_segment_manager(sbi);
675 
676 	kfree(sbi->ckpt);
677 	kobject_put(&sbi->s_kobj);
678 	wait_for_completion(&sbi->s_kobj_unregister);
679 
680 	sb->s_fs_info = NULL;
681 	if (sbi->s_chksum_driver)
682 		crypto_free_shash(sbi->s_chksum_driver);
683 	kfree(sbi->raw_super);
684 
685 	destroy_percpu_info(sbi);
686 	kfree(sbi);
687 }
688 
689 int f2fs_sync_fs(struct super_block *sb, int sync)
690 {
691 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
692 	int err = 0;
693 
694 	trace_f2fs_sync_fs(sb, sync);
695 
696 	if (sync) {
697 		struct cp_control cpc;
698 
699 		cpc.reason = __get_cp_reason(sbi);
700 
701 		mutex_lock(&sbi->gc_mutex);
702 		err = write_checkpoint(sbi, &cpc);
703 		mutex_unlock(&sbi->gc_mutex);
704 	}
705 	f2fs_trace_ios(NULL, 1);
706 
707 	return err;
708 }
709 
710 static int f2fs_freeze(struct super_block *sb)
711 {
712 	int err;
713 
714 	if (f2fs_readonly(sb))
715 		return 0;
716 
717 	err = f2fs_sync_fs(sb, 1);
718 	return err;
719 }
720 
721 static int f2fs_unfreeze(struct super_block *sb)
722 {
723 	return 0;
724 }
725 
726 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
727 {
728 	struct super_block *sb = dentry->d_sb;
729 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
730 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
731 	block_t total_count, user_block_count, start_count, ovp_count;
732 
733 	total_count = le64_to_cpu(sbi->raw_super->block_count);
734 	user_block_count = sbi->user_block_count;
735 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
736 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
737 	buf->f_type = F2FS_SUPER_MAGIC;
738 	buf->f_bsize = sbi->blocksize;
739 
740 	buf->f_blocks = total_count - start_count;
741 	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
742 	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
743 
744 	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
745 	buf->f_ffree = buf->f_files - valid_inode_count(sbi);
746 
747 	buf->f_namelen = F2FS_NAME_LEN;
748 	buf->f_fsid.val[0] = (u32)id;
749 	buf->f_fsid.val[1] = (u32)(id >> 32);
750 
751 	return 0;
752 }
753 
754 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
755 {
756 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
757 
758 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
759 		if (test_opt(sbi, FORCE_FG_GC))
760 			seq_printf(seq, ",background_gc=%s", "sync");
761 		else
762 			seq_printf(seq, ",background_gc=%s", "on");
763 	} else {
764 		seq_printf(seq, ",background_gc=%s", "off");
765 	}
766 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
767 		seq_puts(seq, ",disable_roll_forward");
768 	if (test_opt(sbi, DISCARD))
769 		seq_puts(seq, ",discard");
770 	if (test_opt(sbi, NOHEAP))
771 		seq_puts(seq, ",no_heap_alloc");
772 #ifdef CONFIG_F2FS_FS_XATTR
773 	if (test_opt(sbi, XATTR_USER))
774 		seq_puts(seq, ",user_xattr");
775 	else
776 		seq_puts(seq, ",nouser_xattr");
777 	if (test_opt(sbi, INLINE_XATTR))
778 		seq_puts(seq, ",inline_xattr");
779 #endif
780 #ifdef CONFIG_F2FS_FS_POSIX_ACL
781 	if (test_opt(sbi, POSIX_ACL))
782 		seq_puts(seq, ",acl");
783 	else
784 		seq_puts(seq, ",noacl");
785 #endif
786 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
787 		seq_puts(seq, ",disable_ext_identify");
788 	if (test_opt(sbi, INLINE_DATA))
789 		seq_puts(seq, ",inline_data");
790 	else
791 		seq_puts(seq, ",noinline_data");
792 	if (test_opt(sbi, INLINE_DENTRY))
793 		seq_puts(seq, ",inline_dentry");
794 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
795 		seq_puts(seq, ",flush_merge");
796 	if (test_opt(sbi, NOBARRIER))
797 		seq_puts(seq, ",nobarrier");
798 	if (test_opt(sbi, FASTBOOT))
799 		seq_puts(seq, ",fastboot");
800 	if (test_opt(sbi, EXTENT_CACHE))
801 		seq_puts(seq, ",extent_cache");
802 	else
803 		seq_puts(seq, ",noextent_cache");
804 	if (test_opt(sbi, DATA_FLUSH))
805 		seq_puts(seq, ",data_flush");
806 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
807 
808 	return 0;
809 }
810 
811 static int segment_info_seq_show(struct seq_file *seq, void *offset)
812 {
813 	struct super_block *sb = seq->private;
814 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
815 	unsigned int total_segs =
816 			le32_to_cpu(sbi->raw_super->segment_count_main);
817 	int i;
818 
819 	seq_puts(seq, "format: segment_type|valid_blocks\n"
820 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
821 
822 	for (i = 0; i < total_segs; i++) {
823 		struct seg_entry *se = get_seg_entry(sbi, i);
824 
825 		if ((i % 10) == 0)
826 			seq_printf(seq, "%-10d", i);
827 		seq_printf(seq, "%d|%-3u", se->type,
828 					get_valid_blocks(sbi, i, 1));
829 		if ((i % 10) == 9 || i == (total_segs - 1))
830 			seq_putc(seq, '\n');
831 		else
832 			seq_putc(seq, ' ');
833 	}
834 
835 	return 0;
836 }
837 
838 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
839 {
840 	struct super_block *sb = seq->private;
841 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
842 	unsigned int total_segs =
843 			le32_to_cpu(sbi->raw_super->segment_count_main);
844 	int i, j;
845 
846 	seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
847 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
848 
849 	for (i = 0; i < total_segs; i++) {
850 		struct seg_entry *se = get_seg_entry(sbi, i);
851 
852 		seq_printf(seq, "%-10d", i);
853 		seq_printf(seq, "%d|%-3u|", se->type,
854 					get_valid_blocks(sbi, i, 1));
855 		for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
856 			seq_printf(seq, "%x ", se->cur_valid_map[j]);
857 		seq_putc(seq, '\n');
858 	}
859 	return 0;
860 }
861 
862 #define F2FS_PROC_FILE_DEF(_name)					\
863 static int _name##_open_fs(struct inode *inode, struct file *file)	\
864 {									\
865 	return single_open(file, _name##_seq_show, PDE_DATA(inode));	\
866 }									\
867 									\
868 static const struct file_operations f2fs_seq_##_name##_fops = {		\
869 	.owner = THIS_MODULE,						\
870 	.open = _name##_open_fs,					\
871 	.read = seq_read,						\
872 	.llseek = seq_lseek,						\
873 	.release = single_release,					\
874 };
875 
876 F2FS_PROC_FILE_DEF(segment_info);
877 F2FS_PROC_FILE_DEF(segment_bits);
878 
879 static void default_options(struct f2fs_sb_info *sbi)
880 {
881 	/* init some FS parameters */
882 	sbi->active_logs = NR_CURSEG_TYPE;
883 
884 	set_opt(sbi, BG_GC);
885 	set_opt(sbi, INLINE_DATA);
886 	set_opt(sbi, EXTENT_CACHE);
887 
888 #ifdef CONFIG_F2FS_FS_XATTR
889 	set_opt(sbi, XATTR_USER);
890 #endif
891 #ifdef CONFIG_F2FS_FS_POSIX_ACL
892 	set_opt(sbi, POSIX_ACL);
893 #endif
894 }
895 
896 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
897 {
898 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
899 	struct f2fs_mount_info org_mount_opt;
900 	int err, active_logs;
901 	bool need_restart_gc = false;
902 	bool need_stop_gc = false;
903 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
904 
905 	/*
906 	 * Save the old mount options in case we
907 	 * need to restore them.
908 	 */
909 	org_mount_opt = sbi->mount_opt;
910 	active_logs = sbi->active_logs;
911 
912 	/* recover superblocks we couldn't write due to previous RO mount */
913 	if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
914 		err = f2fs_commit_super(sbi, false);
915 		f2fs_msg(sb, KERN_INFO,
916 			"Try to recover all the superblocks, ret: %d", err);
917 		if (!err)
918 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
919 	}
920 
921 	sbi->mount_opt.opt = 0;
922 	default_options(sbi);
923 
924 	/* parse mount options */
925 	err = parse_options(sb, data);
926 	if (err)
927 		goto restore_opts;
928 
929 	/*
930 	 * Previous and new state of filesystem is RO,
931 	 * so skip checking GC and FLUSH_MERGE conditions.
932 	 */
933 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
934 		goto skip;
935 
936 	/* disallow enable/disable extent_cache dynamically */
937 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
938 		err = -EINVAL;
939 		f2fs_msg(sbi->sb, KERN_WARNING,
940 				"switch extent_cache option is not allowed");
941 		goto restore_opts;
942 	}
943 
944 	/*
945 	 * We stop the GC thread if FS is mounted as RO
946 	 * or if background_gc = off is passed in mount
947 	 * option. Also sync the filesystem.
948 	 */
949 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
950 		if (sbi->gc_thread) {
951 			stop_gc_thread(sbi);
952 			need_restart_gc = true;
953 		}
954 	} else if (!sbi->gc_thread) {
955 		err = start_gc_thread(sbi);
956 		if (err)
957 			goto restore_opts;
958 		need_stop_gc = true;
959 	}
960 
961 	if (*flags & MS_RDONLY) {
962 		writeback_inodes_sb(sb, WB_REASON_SYNC);
963 		sync_inodes_sb(sb);
964 
965 		set_sbi_flag(sbi, SBI_IS_DIRTY);
966 		set_sbi_flag(sbi, SBI_IS_CLOSE);
967 		f2fs_sync_fs(sb, 1);
968 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
969 	}
970 
971 	/*
972 	 * We stop issue flush thread if FS is mounted as RO
973 	 * or if flush_merge is not passed in mount option.
974 	 */
975 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
976 		destroy_flush_cmd_control(sbi);
977 	} else if (!SM_I(sbi)->cmd_control_info) {
978 		err = create_flush_cmd_control(sbi);
979 		if (err)
980 			goto restore_gc;
981 	}
982 skip:
983 	/* Update the POSIXACL Flag */
984 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
985 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
986 
987 	return 0;
988 restore_gc:
989 	if (need_restart_gc) {
990 		if (start_gc_thread(sbi))
991 			f2fs_msg(sbi->sb, KERN_WARNING,
992 				"background gc thread has stopped");
993 	} else if (need_stop_gc) {
994 		stop_gc_thread(sbi);
995 	}
996 restore_opts:
997 	sbi->mount_opt = org_mount_opt;
998 	sbi->active_logs = active_logs;
999 	return err;
1000 }
1001 
1002 static struct super_operations f2fs_sops = {
1003 	.alloc_inode	= f2fs_alloc_inode,
1004 	.drop_inode	= f2fs_drop_inode,
1005 	.destroy_inode	= f2fs_destroy_inode,
1006 	.write_inode	= f2fs_write_inode,
1007 	.dirty_inode	= f2fs_dirty_inode,
1008 	.show_options	= f2fs_show_options,
1009 	.evict_inode	= f2fs_evict_inode,
1010 	.put_super	= f2fs_put_super,
1011 	.sync_fs	= f2fs_sync_fs,
1012 	.freeze_fs	= f2fs_freeze,
1013 	.unfreeze_fs	= f2fs_unfreeze,
1014 	.statfs		= f2fs_statfs,
1015 	.remount_fs	= f2fs_remount,
1016 };
1017 
1018 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1019 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1020 {
1021 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1022 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1023 				ctx, len, NULL);
1024 }
1025 
1026 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1027 {
1028 	*key = F2FS_I_SB(inode)->key_prefix;
1029 	return F2FS_I_SB(inode)->key_prefix_size;
1030 }
1031 
1032 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1033 							void *fs_data)
1034 {
1035 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1036 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1037 				ctx, len, fs_data, XATTR_CREATE);
1038 }
1039 
1040 static unsigned f2fs_max_namelen(struct inode *inode)
1041 {
1042 	return S_ISLNK(inode->i_mode) ?
1043 			inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1044 }
1045 
1046 static struct fscrypt_operations f2fs_cryptops = {
1047 	.get_context	= f2fs_get_context,
1048 	.key_prefix	= f2fs_key_prefix,
1049 	.set_context	= f2fs_set_context,
1050 	.is_encrypted	= f2fs_encrypted_inode,
1051 	.empty_dir	= f2fs_empty_dir,
1052 	.max_namelen	= f2fs_max_namelen,
1053 };
1054 #else
1055 static struct fscrypt_operations f2fs_cryptops = {
1056 	.is_encrypted	= f2fs_encrypted_inode,
1057 };
1058 #endif
1059 
1060 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1061 		u64 ino, u32 generation)
1062 {
1063 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1064 	struct inode *inode;
1065 
1066 	if (check_nid_range(sbi, ino))
1067 		return ERR_PTR(-ESTALE);
1068 
1069 	/*
1070 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1071 	 * However f2fs_iget currently does appropriate checks to handle stale
1072 	 * inodes so everything is OK.
1073 	 */
1074 	inode = f2fs_iget(sb, ino);
1075 	if (IS_ERR(inode))
1076 		return ERR_CAST(inode);
1077 	if (unlikely(generation && inode->i_generation != generation)) {
1078 		/* we didn't find the right inode.. */
1079 		iput(inode);
1080 		return ERR_PTR(-ESTALE);
1081 	}
1082 	return inode;
1083 }
1084 
1085 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1086 		int fh_len, int fh_type)
1087 {
1088 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1089 				    f2fs_nfs_get_inode);
1090 }
1091 
1092 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1093 		int fh_len, int fh_type)
1094 {
1095 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1096 				    f2fs_nfs_get_inode);
1097 }
1098 
1099 static const struct export_operations f2fs_export_ops = {
1100 	.fh_to_dentry = f2fs_fh_to_dentry,
1101 	.fh_to_parent = f2fs_fh_to_parent,
1102 	.get_parent = f2fs_get_parent,
1103 };
1104 
1105 static loff_t max_file_blocks(void)
1106 {
1107 	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1108 	loff_t leaf_count = ADDRS_PER_BLOCK;
1109 
1110 	/* two direct node blocks */
1111 	result += (leaf_count * 2);
1112 
1113 	/* two indirect node blocks */
1114 	leaf_count *= NIDS_PER_BLOCK;
1115 	result += (leaf_count * 2);
1116 
1117 	/* one double indirect node block */
1118 	leaf_count *= NIDS_PER_BLOCK;
1119 	result += leaf_count;
1120 
1121 	return result;
1122 }
1123 
1124 static int __f2fs_commit_super(struct buffer_head *bh,
1125 			struct f2fs_super_block *super)
1126 {
1127 	lock_buffer(bh);
1128 	if (super)
1129 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1130 	set_buffer_uptodate(bh);
1131 	set_buffer_dirty(bh);
1132 	unlock_buffer(bh);
1133 
1134 	/* it's rare case, we can do fua all the time */
1135 	return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1136 }
1137 
1138 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1139 					struct buffer_head *bh)
1140 {
1141 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1142 					(bh->b_data + F2FS_SUPER_OFFSET);
1143 	struct super_block *sb = sbi->sb;
1144 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1145 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1146 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1147 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1148 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1149 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1150 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1151 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1152 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1153 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1154 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1155 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
1156 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1157 	u64 main_end_blkaddr = main_blkaddr +
1158 				(segment_count_main << log_blocks_per_seg);
1159 	u64 seg_end_blkaddr = segment0_blkaddr +
1160 				(segment_count << log_blocks_per_seg);
1161 
1162 	if (segment0_blkaddr != cp_blkaddr) {
1163 		f2fs_msg(sb, KERN_INFO,
1164 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1165 			segment0_blkaddr, cp_blkaddr);
1166 		return true;
1167 	}
1168 
1169 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1170 							sit_blkaddr) {
1171 		f2fs_msg(sb, KERN_INFO,
1172 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1173 			cp_blkaddr, sit_blkaddr,
1174 			segment_count_ckpt << log_blocks_per_seg);
1175 		return true;
1176 	}
1177 
1178 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1179 							nat_blkaddr) {
1180 		f2fs_msg(sb, KERN_INFO,
1181 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1182 			sit_blkaddr, nat_blkaddr,
1183 			segment_count_sit << log_blocks_per_seg);
1184 		return true;
1185 	}
1186 
1187 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1188 							ssa_blkaddr) {
1189 		f2fs_msg(sb, KERN_INFO,
1190 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1191 			nat_blkaddr, ssa_blkaddr,
1192 			segment_count_nat << log_blocks_per_seg);
1193 		return true;
1194 	}
1195 
1196 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1197 							main_blkaddr) {
1198 		f2fs_msg(sb, KERN_INFO,
1199 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1200 			ssa_blkaddr, main_blkaddr,
1201 			segment_count_ssa << log_blocks_per_seg);
1202 		return true;
1203 	}
1204 
1205 	if (main_end_blkaddr > seg_end_blkaddr) {
1206 		f2fs_msg(sb, KERN_INFO,
1207 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1208 			main_blkaddr,
1209 			segment0_blkaddr +
1210 				(segment_count << log_blocks_per_seg),
1211 			segment_count_main << log_blocks_per_seg);
1212 		return true;
1213 	} else if (main_end_blkaddr < seg_end_blkaddr) {
1214 		int err = 0;
1215 		char *res;
1216 
1217 		/* fix in-memory information all the time */
1218 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1219 				segment0_blkaddr) >> log_blocks_per_seg);
1220 
1221 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1222 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1223 			res = "internally";
1224 		} else {
1225 			err = __f2fs_commit_super(bh, NULL);
1226 			res = err ? "failed" : "done";
1227 		}
1228 		f2fs_msg(sb, KERN_INFO,
1229 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
1230 			res, main_blkaddr,
1231 			segment0_blkaddr +
1232 				(segment_count << log_blocks_per_seg),
1233 			segment_count_main << log_blocks_per_seg);
1234 		if (err)
1235 			return true;
1236 	}
1237 	return false;
1238 }
1239 
1240 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1241 				struct buffer_head *bh)
1242 {
1243 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1244 					(bh->b_data + F2FS_SUPER_OFFSET);
1245 	struct super_block *sb = sbi->sb;
1246 	unsigned int blocksize;
1247 
1248 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1249 		f2fs_msg(sb, KERN_INFO,
1250 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
1251 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1252 		return 1;
1253 	}
1254 
1255 	/* Currently, support only 4KB page cache size */
1256 	if (F2FS_BLKSIZE != PAGE_SIZE) {
1257 		f2fs_msg(sb, KERN_INFO,
1258 			"Invalid page_cache_size (%lu), supports only 4KB\n",
1259 			PAGE_SIZE);
1260 		return 1;
1261 	}
1262 
1263 	/* Currently, support only 4KB block size */
1264 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1265 	if (blocksize != F2FS_BLKSIZE) {
1266 		f2fs_msg(sb, KERN_INFO,
1267 			"Invalid blocksize (%u), supports only 4KB\n",
1268 			blocksize);
1269 		return 1;
1270 	}
1271 
1272 	/* check log blocks per segment */
1273 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1274 		f2fs_msg(sb, KERN_INFO,
1275 			"Invalid log blocks per segment (%u)\n",
1276 			le32_to_cpu(raw_super->log_blocks_per_seg));
1277 		return 1;
1278 	}
1279 
1280 	/* Currently, support 512/1024/2048/4096 bytes sector size */
1281 	if (le32_to_cpu(raw_super->log_sectorsize) >
1282 				F2FS_MAX_LOG_SECTOR_SIZE ||
1283 		le32_to_cpu(raw_super->log_sectorsize) <
1284 				F2FS_MIN_LOG_SECTOR_SIZE) {
1285 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1286 			le32_to_cpu(raw_super->log_sectorsize));
1287 		return 1;
1288 	}
1289 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
1290 		le32_to_cpu(raw_super->log_sectorsize) !=
1291 			F2FS_MAX_LOG_SECTOR_SIZE) {
1292 		f2fs_msg(sb, KERN_INFO,
1293 			"Invalid log sectors per block(%u) log sectorsize(%u)",
1294 			le32_to_cpu(raw_super->log_sectors_per_block),
1295 			le32_to_cpu(raw_super->log_sectorsize));
1296 		return 1;
1297 	}
1298 
1299 	/* check reserved ino info */
1300 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
1301 		le32_to_cpu(raw_super->meta_ino) != 2 ||
1302 		le32_to_cpu(raw_super->root_ino) != 3) {
1303 		f2fs_msg(sb, KERN_INFO,
1304 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1305 			le32_to_cpu(raw_super->node_ino),
1306 			le32_to_cpu(raw_super->meta_ino),
1307 			le32_to_cpu(raw_super->root_ino));
1308 		return 1;
1309 	}
1310 
1311 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1312 	if (sanity_check_area_boundary(sbi, bh))
1313 		return 1;
1314 
1315 	return 0;
1316 }
1317 
1318 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1319 {
1320 	unsigned int total, fsmeta;
1321 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1322 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1323 
1324 	total = le32_to_cpu(raw_super->segment_count);
1325 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1326 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1327 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1328 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1329 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1330 
1331 	if (unlikely(fsmeta >= total))
1332 		return 1;
1333 
1334 	if (unlikely(f2fs_cp_error(sbi))) {
1335 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1336 		return 1;
1337 	}
1338 	return 0;
1339 }
1340 
1341 static void init_sb_info(struct f2fs_sb_info *sbi)
1342 {
1343 	struct f2fs_super_block *raw_super = sbi->raw_super;
1344 
1345 	sbi->log_sectors_per_block =
1346 		le32_to_cpu(raw_super->log_sectors_per_block);
1347 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1348 	sbi->blocksize = 1 << sbi->log_blocksize;
1349 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1350 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1351 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1352 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1353 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
1354 	sbi->total_node_count =
1355 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
1356 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1357 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1358 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1359 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1360 	sbi->cur_victim_sec = NULL_SECNO;
1361 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1362 
1363 	sbi->dir_level = DEF_DIR_LEVEL;
1364 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1365 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1366 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
1367 
1368 	INIT_LIST_HEAD(&sbi->s_list);
1369 	mutex_init(&sbi->umount_mutex);
1370 
1371 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1372 	memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1373 				F2FS_KEY_DESC_PREFIX_SIZE);
1374 	sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1375 #endif
1376 }
1377 
1378 static int init_percpu_info(struct f2fs_sb_info *sbi)
1379 {
1380 	int i, err;
1381 
1382 	for (i = 0; i < NR_COUNT_TYPE; i++) {
1383 		err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1384 		if (err)
1385 			return err;
1386 	}
1387 
1388 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1389 	if (err)
1390 		return err;
1391 
1392 	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1393 								GFP_KERNEL);
1394 }
1395 
1396 /*
1397  * Read f2fs raw super block.
1398  * Because we have two copies of super block, so read both of them
1399  * to get the first valid one. If any one of them is broken, we pass
1400  * them recovery flag back to the caller.
1401  */
1402 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1403 			struct f2fs_super_block **raw_super,
1404 			int *valid_super_block, int *recovery)
1405 {
1406 	struct super_block *sb = sbi->sb;
1407 	int block;
1408 	struct buffer_head *bh;
1409 	struct f2fs_super_block *super;
1410 	int err = 0;
1411 
1412 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1413 	if (!super)
1414 		return -ENOMEM;
1415 
1416 	for (block = 0; block < 2; block++) {
1417 		bh = sb_bread(sb, block);
1418 		if (!bh) {
1419 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1420 				block + 1);
1421 			err = -EIO;
1422 			continue;
1423 		}
1424 
1425 		/* sanity checking of raw super */
1426 		if (sanity_check_raw_super(sbi, bh)) {
1427 			f2fs_msg(sb, KERN_ERR,
1428 				"Can't find valid F2FS filesystem in %dth superblock",
1429 				block + 1);
1430 			err = -EINVAL;
1431 			brelse(bh);
1432 			continue;
1433 		}
1434 
1435 		if (!*raw_super) {
1436 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1437 							sizeof(*super));
1438 			*valid_super_block = block;
1439 			*raw_super = super;
1440 		}
1441 		brelse(bh);
1442 	}
1443 
1444 	/* Fail to read any one of the superblocks*/
1445 	if (err < 0)
1446 		*recovery = 1;
1447 
1448 	/* No valid superblock */
1449 	if (!*raw_super)
1450 		kfree(super);
1451 	else
1452 		err = 0;
1453 
1454 	return err;
1455 }
1456 
1457 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1458 {
1459 	struct buffer_head *bh;
1460 	int err;
1461 
1462 	if ((recover && f2fs_readonly(sbi->sb)) ||
1463 				bdev_read_only(sbi->sb->s_bdev)) {
1464 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1465 		return -EROFS;
1466 	}
1467 
1468 	/* write back-up superblock first */
1469 	bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1470 	if (!bh)
1471 		return -EIO;
1472 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1473 	brelse(bh);
1474 
1475 	/* if we are in recovery path, skip writing valid superblock */
1476 	if (recover || err)
1477 		return err;
1478 
1479 	/* write current valid superblock */
1480 	bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1481 	if (!bh)
1482 		return -EIO;
1483 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1484 	brelse(bh);
1485 	return err;
1486 }
1487 
1488 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1489 {
1490 	struct f2fs_sb_info *sbi;
1491 	struct f2fs_super_block *raw_super;
1492 	struct inode *root;
1493 	int err;
1494 	bool retry = true, need_fsck = false;
1495 	char *options = NULL;
1496 	int recovery, i, valid_super_block;
1497 	struct curseg_info *seg_i;
1498 
1499 try_onemore:
1500 	err = -EINVAL;
1501 	raw_super = NULL;
1502 	valid_super_block = -1;
1503 	recovery = 0;
1504 
1505 	/* allocate memory for f2fs-specific super block info */
1506 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1507 	if (!sbi)
1508 		return -ENOMEM;
1509 
1510 	sbi->sb = sb;
1511 
1512 	/* Load the checksum driver */
1513 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1514 	if (IS_ERR(sbi->s_chksum_driver)) {
1515 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1516 		err = PTR_ERR(sbi->s_chksum_driver);
1517 		sbi->s_chksum_driver = NULL;
1518 		goto free_sbi;
1519 	}
1520 
1521 	/* set a block size */
1522 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1523 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1524 		goto free_sbi;
1525 	}
1526 
1527 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1528 								&recovery);
1529 	if (err)
1530 		goto free_sbi;
1531 
1532 	sb->s_fs_info = sbi;
1533 	default_options(sbi);
1534 	/* parse mount options */
1535 	options = kstrdup((const char *)data, GFP_KERNEL);
1536 	if (data && !options) {
1537 		err = -ENOMEM;
1538 		goto free_sb_buf;
1539 	}
1540 
1541 	err = parse_options(sb, options);
1542 	if (err)
1543 		goto free_options;
1544 
1545 	sbi->max_file_blocks = max_file_blocks();
1546 	sb->s_maxbytes = sbi->max_file_blocks <<
1547 				le32_to_cpu(raw_super->log_blocksize);
1548 	sb->s_max_links = F2FS_LINK_MAX;
1549 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1550 
1551 	sb->s_op = &f2fs_sops;
1552 	sb->s_cop = &f2fs_cryptops;
1553 	sb->s_xattr = f2fs_xattr_handlers;
1554 	sb->s_export_op = &f2fs_export_ops;
1555 	sb->s_magic = F2FS_SUPER_MAGIC;
1556 	sb->s_time_gran = 1;
1557 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1558 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1559 	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1560 
1561 	/* init f2fs-specific super block info */
1562 	sbi->raw_super = raw_super;
1563 	sbi->valid_super_block = valid_super_block;
1564 	mutex_init(&sbi->gc_mutex);
1565 	mutex_init(&sbi->writepages);
1566 	mutex_init(&sbi->cp_mutex);
1567 	init_rwsem(&sbi->node_write);
1568 
1569 	/* disallow all the data/node/meta page writes */
1570 	set_sbi_flag(sbi, SBI_POR_DOING);
1571 	spin_lock_init(&sbi->stat_lock);
1572 
1573 	init_rwsem(&sbi->read_io.io_rwsem);
1574 	sbi->read_io.sbi = sbi;
1575 	sbi->read_io.bio = NULL;
1576 	for (i = 0; i < NR_PAGE_TYPE; i++) {
1577 		init_rwsem(&sbi->write_io[i].io_rwsem);
1578 		sbi->write_io[i].sbi = sbi;
1579 		sbi->write_io[i].bio = NULL;
1580 	}
1581 
1582 	init_rwsem(&sbi->cp_rwsem);
1583 	init_waitqueue_head(&sbi->cp_wait);
1584 	init_sb_info(sbi);
1585 
1586 	err = init_percpu_info(sbi);
1587 	if (err)
1588 		goto free_options;
1589 
1590 	/* get an inode for meta space */
1591 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1592 	if (IS_ERR(sbi->meta_inode)) {
1593 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1594 		err = PTR_ERR(sbi->meta_inode);
1595 		goto free_options;
1596 	}
1597 
1598 	err = get_valid_checkpoint(sbi);
1599 	if (err) {
1600 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1601 		goto free_meta_inode;
1602 	}
1603 
1604 	sbi->total_valid_node_count =
1605 				le32_to_cpu(sbi->ckpt->valid_node_count);
1606 	percpu_counter_set(&sbi->total_valid_inode_count,
1607 				le32_to_cpu(sbi->ckpt->valid_inode_count));
1608 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1609 	sbi->total_valid_block_count =
1610 				le64_to_cpu(sbi->ckpt->valid_block_count);
1611 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1612 
1613 	for (i = 0; i < NR_INODE_TYPE; i++) {
1614 		INIT_LIST_HEAD(&sbi->inode_list[i]);
1615 		spin_lock_init(&sbi->inode_lock[i]);
1616 	}
1617 
1618 	init_extent_cache_info(sbi);
1619 
1620 	init_ino_entry_info(sbi);
1621 
1622 	/* setup f2fs internal modules */
1623 	err = build_segment_manager(sbi);
1624 	if (err) {
1625 		f2fs_msg(sb, KERN_ERR,
1626 			"Failed to initialize F2FS segment manager");
1627 		goto free_sm;
1628 	}
1629 	err = build_node_manager(sbi);
1630 	if (err) {
1631 		f2fs_msg(sb, KERN_ERR,
1632 			"Failed to initialize F2FS node manager");
1633 		goto free_nm;
1634 	}
1635 
1636 	/* For write statistics */
1637 	if (sb->s_bdev->bd_part)
1638 		sbi->sectors_written_start =
1639 			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1640 
1641 	/* Read accumulated write IO statistics if exists */
1642 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1643 	if (__exist_node_summaries(sbi))
1644 		sbi->kbytes_written =
1645 			le64_to_cpu(seg_i->journal->info.kbytes_written);
1646 
1647 	build_gc_manager(sbi);
1648 
1649 	/* get an inode for node space */
1650 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1651 	if (IS_ERR(sbi->node_inode)) {
1652 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1653 		err = PTR_ERR(sbi->node_inode);
1654 		goto free_nm;
1655 	}
1656 
1657 	f2fs_join_shrinker(sbi);
1658 
1659 	/* if there are nt orphan nodes free them */
1660 	err = recover_orphan_inodes(sbi);
1661 	if (err)
1662 		goto free_node_inode;
1663 
1664 	/* read root inode and dentry */
1665 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1666 	if (IS_ERR(root)) {
1667 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1668 		err = PTR_ERR(root);
1669 		goto free_node_inode;
1670 	}
1671 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1672 		iput(root);
1673 		err = -EINVAL;
1674 		goto free_node_inode;
1675 	}
1676 
1677 	sb->s_root = d_make_root(root); /* allocate root dentry */
1678 	if (!sb->s_root) {
1679 		err = -ENOMEM;
1680 		goto free_root_inode;
1681 	}
1682 
1683 	err = f2fs_build_stats(sbi);
1684 	if (err)
1685 		goto free_root_inode;
1686 
1687 	if (f2fs_proc_root)
1688 		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1689 
1690 	if (sbi->s_proc) {
1691 		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1692 				 &f2fs_seq_segment_info_fops, sb);
1693 		proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1694 				 &f2fs_seq_segment_bits_fops, sb);
1695 	}
1696 
1697 	sbi->s_kobj.kset = f2fs_kset;
1698 	init_completion(&sbi->s_kobj_unregister);
1699 	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1700 							"%s", sb->s_id);
1701 	if (err)
1702 		goto free_proc;
1703 
1704 	/* recover fsynced data */
1705 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1706 		/*
1707 		 * mount should be failed, when device has readonly mode, and
1708 		 * previous checkpoint was not done by clean system shutdown.
1709 		 */
1710 		if (bdev_read_only(sb->s_bdev) &&
1711 				!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1712 			err = -EROFS;
1713 			goto free_kobj;
1714 		}
1715 
1716 		if (need_fsck)
1717 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1718 
1719 		err = recover_fsync_data(sbi, false);
1720 		if (err < 0) {
1721 			need_fsck = true;
1722 			f2fs_msg(sb, KERN_ERR,
1723 				"Cannot recover all fsync data errno=%d", err);
1724 			goto free_kobj;
1725 		}
1726 	} else {
1727 		err = recover_fsync_data(sbi, true);
1728 
1729 		if (!f2fs_readonly(sb) && err > 0) {
1730 			err = -EINVAL;
1731 			f2fs_msg(sb, KERN_ERR,
1732 				"Need to recover fsync data");
1733 			goto free_kobj;
1734 		}
1735 	}
1736 
1737 	/* recover_fsync_data() cleared this already */
1738 	clear_sbi_flag(sbi, SBI_POR_DOING);
1739 
1740 	/*
1741 	 * If filesystem is not mounted as read-only then
1742 	 * do start the gc_thread.
1743 	 */
1744 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1745 		/* After POR, we can run background GC thread.*/
1746 		err = start_gc_thread(sbi);
1747 		if (err)
1748 			goto free_kobj;
1749 	}
1750 	kfree(options);
1751 
1752 	/* recover broken superblock */
1753 	if (recovery) {
1754 		err = f2fs_commit_super(sbi, true);
1755 		f2fs_msg(sb, KERN_INFO,
1756 			"Try to recover %dth superblock, ret: %d",
1757 			sbi->valid_super_block ? 1 : 2, err);
1758 	}
1759 
1760 	f2fs_update_time(sbi, CP_TIME);
1761 	f2fs_update_time(sbi, REQ_TIME);
1762 	return 0;
1763 
1764 free_kobj:
1765 	kobject_del(&sbi->s_kobj);
1766 	kobject_put(&sbi->s_kobj);
1767 	wait_for_completion(&sbi->s_kobj_unregister);
1768 free_proc:
1769 	if (sbi->s_proc) {
1770 		remove_proc_entry("segment_info", sbi->s_proc);
1771 		remove_proc_entry("segment_bits", sbi->s_proc);
1772 		remove_proc_entry(sb->s_id, f2fs_proc_root);
1773 	}
1774 	f2fs_destroy_stats(sbi);
1775 free_root_inode:
1776 	dput(sb->s_root);
1777 	sb->s_root = NULL;
1778 free_node_inode:
1779 	mutex_lock(&sbi->umount_mutex);
1780 	f2fs_leave_shrinker(sbi);
1781 	iput(sbi->node_inode);
1782 	mutex_unlock(&sbi->umount_mutex);
1783 free_nm:
1784 	destroy_node_manager(sbi);
1785 free_sm:
1786 	destroy_segment_manager(sbi);
1787 	kfree(sbi->ckpt);
1788 free_meta_inode:
1789 	make_bad_inode(sbi->meta_inode);
1790 	iput(sbi->meta_inode);
1791 free_options:
1792 	destroy_percpu_info(sbi);
1793 	kfree(options);
1794 free_sb_buf:
1795 	kfree(raw_super);
1796 free_sbi:
1797 	if (sbi->s_chksum_driver)
1798 		crypto_free_shash(sbi->s_chksum_driver);
1799 	kfree(sbi);
1800 
1801 	/* give only one another chance */
1802 	if (retry) {
1803 		retry = false;
1804 		shrink_dcache_sb(sb);
1805 		goto try_onemore;
1806 	}
1807 	return err;
1808 }
1809 
1810 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1811 			const char *dev_name, void *data)
1812 {
1813 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1814 }
1815 
1816 static void kill_f2fs_super(struct super_block *sb)
1817 {
1818 	if (sb->s_root)
1819 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1820 	kill_block_super(sb);
1821 }
1822 
1823 static struct file_system_type f2fs_fs_type = {
1824 	.owner		= THIS_MODULE,
1825 	.name		= "f2fs",
1826 	.mount		= f2fs_mount,
1827 	.kill_sb	= kill_f2fs_super,
1828 	.fs_flags	= FS_REQUIRES_DEV,
1829 };
1830 MODULE_ALIAS_FS("f2fs");
1831 
1832 static int __init init_inodecache(void)
1833 {
1834 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1835 			sizeof(struct f2fs_inode_info), 0,
1836 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1837 	if (!f2fs_inode_cachep)
1838 		return -ENOMEM;
1839 	return 0;
1840 }
1841 
1842 static void destroy_inodecache(void)
1843 {
1844 	/*
1845 	 * Make sure all delayed rcu free inodes are flushed before we
1846 	 * destroy cache.
1847 	 */
1848 	rcu_barrier();
1849 	kmem_cache_destroy(f2fs_inode_cachep);
1850 }
1851 
1852 static int __init init_f2fs_fs(void)
1853 {
1854 	int err;
1855 
1856 	f2fs_build_trace_ios();
1857 
1858 	err = init_inodecache();
1859 	if (err)
1860 		goto fail;
1861 	err = create_node_manager_caches();
1862 	if (err)
1863 		goto free_inodecache;
1864 	err = create_segment_manager_caches();
1865 	if (err)
1866 		goto free_node_manager_caches;
1867 	err = create_checkpoint_caches();
1868 	if (err)
1869 		goto free_segment_manager_caches;
1870 	err = create_extent_cache();
1871 	if (err)
1872 		goto free_checkpoint_caches;
1873 	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1874 	if (!f2fs_kset) {
1875 		err = -ENOMEM;
1876 		goto free_extent_cache;
1877 	}
1878 #ifdef CONFIG_F2FS_FAULT_INJECTION
1879 	f2fs_fault_inject.kset = f2fs_kset;
1880 	f2fs_build_fault_attr(0);
1881 	err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1882 				NULL, "fault_injection");
1883 	if (err) {
1884 		f2fs_fault_inject.kset = NULL;
1885 		goto free_kset;
1886 	}
1887 #endif
1888 	err = register_shrinker(&f2fs_shrinker_info);
1889 	if (err)
1890 		goto free_kset;
1891 
1892 	err = register_filesystem(&f2fs_fs_type);
1893 	if (err)
1894 		goto free_shrinker;
1895 	err = f2fs_create_root_stats();
1896 	if (err)
1897 		goto free_filesystem;
1898 	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1899 	return 0;
1900 
1901 free_filesystem:
1902 	unregister_filesystem(&f2fs_fs_type);
1903 free_shrinker:
1904 	unregister_shrinker(&f2fs_shrinker_info);
1905 free_kset:
1906 #ifdef CONFIG_F2FS_FAULT_INJECTION
1907 	if (f2fs_fault_inject.kset)
1908 		kobject_put(&f2fs_fault_inject);
1909 #endif
1910 	kset_unregister(f2fs_kset);
1911 free_extent_cache:
1912 	destroy_extent_cache();
1913 free_checkpoint_caches:
1914 	destroy_checkpoint_caches();
1915 free_segment_manager_caches:
1916 	destroy_segment_manager_caches();
1917 free_node_manager_caches:
1918 	destroy_node_manager_caches();
1919 free_inodecache:
1920 	destroy_inodecache();
1921 fail:
1922 	return err;
1923 }
1924 
1925 static void __exit exit_f2fs_fs(void)
1926 {
1927 	remove_proc_entry("fs/f2fs", NULL);
1928 	f2fs_destroy_root_stats();
1929 	unregister_filesystem(&f2fs_fs_type);
1930 	unregister_shrinker(&f2fs_shrinker_info);
1931 #ifdef CONFIG_F2FS_FAULT_INJECTION
1932 	kobject_put(&f2fs_fault_inject);
1933 #endif
1934 	kset_unregister(f2fs_kset);
1935 	destroy_extent_cache();
1936 	destroy_checkpoint_caches();
1937 	destroy_segment_manager_caches();
1938 	destroy_node_manager_caches();
1939 	destroy_inodecache();
1940 	f2fs_destroy_trace_ios();
1941 }
1942 
1943 module_init(init_f2fs_fs)
1944 module_exit(exit_f2fs_fs)
1945 
1946 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1947 MODULE_DESCRIPTION("Flash Friendly File System");
1948 MODULE_LICENSE("GPL");
1949