xref: /linux/fs/f2fs/super.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/fs_context.h>
12 #include <linux/sched/mm.h>
13 #include <linux/statfs.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 #include <linux/zstd.h>
29 #include <linux/lz4.h>
30 #include <linux/ctype.h>
31 #include <linux/fs_parser.h>
32 
33 #include "f2fs.h"
34 #include "node.h"
35 #include "segment.h"
36 #include "xattr.h"
37 #include "gc.h"
38 #include "iostat.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/f2fs.h>
42 
43 static struct kmem_cache *f2fs_inode_cachep;
44 
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 
47 const char *f2fs_fault_name[FAULT_MAX] = {
48 	[FAULT_KMALLOC]			= "kmalloc",
49 	[FAULT_KVMALLOC]		= "kvmalloc",
50 	[FAULT_PAGE_ALLOC]		= "page alloc",
51 	[FAULT_PAGE_GET]		= "page get",
52 	[FAULT_ALLOC_BIO]		= "alloc bio(obsolete)",
53 	[FAULT_ALLOC_NID]		= "alloc nid",
54 	[FAULT_ORPHAN]			= "orphan",
55 	[FAULT_BLOCK]			= "no more block",
56 	[FAULT_DIR_DEPTH]		= "too big dir depth",
57 	[FAULT_EVICT_INODE]		= "evict_inode fail",
58 	[FAULT_TRUNCATE]		= "truncate fail",
59 	[FAULT_READ_IO]			= "read IO error",
60 	[FAULT_CHECKPOINT]		= "checkpoint error",
61 	[FAULT_DISCARD]			= "discard error",
62 	[FAULT_WRITE_IO]		= "write IO error",
63 	[FAULT_SLAB_ALLOC]		= "slab alloc",
64 	[FAULT_DQUOT_INIT]		= "dquot initialize",
65 	[FAULT_LOCK_OP]			= "lock_op",
66 	[FAULT_BLKADDR_VALIDITY]	= "invalid blkaddr",
67 	[FAULT_BLKADDR_CONSISTENCE]	= "inconsistent blkaddr",
68 	[FAULT_NO_SEGMENT]		= "no free segment",
69 	[FAULT_INCONSISTENT_FOOTER]	= "inconsistent footer",
70 	[FAULT_TIMEOUT]			= "timeout",
71 	[FAULT_VMALLOC]			= "vmalloc",
72 };
73 
74 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
75 				unsigned long type, enum fault_option fo)
76 {
77 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
78 
79 	if (fo & FAULT_ALL) {
80 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
81 		return 0;
82 	}
83 
84 	if (fo & FAULT_RATE) {
85 		if (rate > INT_MAX)
86 			return -EINVAL;
87 		atomic_set(&ffi->inject_ops, 0);
88 		ffi->inject_rate = (int)rate;
89 		f2fs_info(sbi, "build fault injection rate: %lu", rate);
90 	}
91 
92 	if (fo & FAULT_TYPE) {
93 		if (type >= BIT(FAULT_MAX))
94 			return -EINVAL;
95 		ffi->inject_type = (unsigned int)type;
96 		f2fs_info(sbi, "build fault injection type: 0x%lx", type);
97 	}
98 
99 	return 0;
100 }
101 #endif
102 
103 /* f2fs-wide shrinker description */
104 static struct shrinker *f2fs_shrinker_info;
105 
106 static int __init f2fs_init_shrinker(void)
107 {
108 	f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker");
109 	if (!f2fs_shrinker_info)
110 		return -ENOMEM;
111 
112 	f2fs_shrinker_info->count_objects = f2fs_shrink_count;
113 	f2fs_shrinker_info->scan_objects = f2fs_shrink_scan;
114 
115 	shrinker_register(f2fs_shrinker_info);
116 
117 	return 0;
118 }
119 
120 static void f2fs_exit_shrinker(void)
121 {
122 	shrinker_free(f2fs_shrinker_info);
123 }
124 
125 enum {
126 	Opt_gc_background,
127 	Opt_disable_roll_forward,
128 	Opt_norecovery,
129 	Opt_discard,
130 	Opt_noheap,
131 	Opt_heap,
132 	Opt_user_xattr,
133 	Opt_acl,
134 	Opt_active_logs,
135 	Opt_disable_ext_identify,
136 	Opt_inline_xattr,
137 	Opt_inline_xattr_size,
138 	Opt_inline_data,
139 	Opt_inline_dentry,
140 	Opt_flush_merge,
141 	Opt_barrier,
142 	Opt_fastboot,
143 	Opt_extent_cache,
144 	Opt_data_flush,
145 	Opt_reserve_root,
146 	Opt_resgid,
147 	Opt_resuid,
148 	Opt_mode,
149 	Opt_fault_injection,
150 	Opt_fault_type,
151 	Opt_lazytime,
152 	Opt_quota,
153 	Opt_usrquota,
154 	Opt_grpquota,
155 	Opt_prjquota,
156 	Opt_usrjquota,
157 	Opt_grpjquota,
158 	Opt_prjjquota,
159 	Opt_alloc,
160 	Opt_fsync,
161 	Opt_test_dummy_encryption,
162 	Opt_inlinecrypt,
163 	Opt_checkpoint_disable,
164 	Opt_checkpoint_disable_cap,
165 	Opt_checkpoint_disable_cap_perc,
166 	Opt_checkpoint_enable,
167 	Opt_checkpoint_merge,
168 	Opt_compress_algorithm,
169 	Opt_compress_log_size,
170 	Opt_nocompress_extension,
171 	Opt_compress_extension,
172 	Opt_compress_chksum,
173 	Opt_compress_mode,
174 	Opt_compress_cache,
175 	Opt_atgc,
176 	Opt_gc_merge,
177 	Opt_discard_unit,
178 	Opt_memory_mode,
179 	Opt_age_extent_cache,
180 	Opt_errors,
181 	Opt_nat_bits,
182 	Opt_jqfmt,
183 	Opt_checkpoint,
184 	Opt_err,
185 };
186 
187 static const struct constant_table f2fs_param_background_gc[] = {
188 	{"on",		BGGC_MODE_ON},
189 	{"off",		BGGC_MODE_OFF},
190 	{"sync",	BGGC_MODE_SYNC},
191 	{}
192 };
193 
194 static const struct constant_table f2fs_param_mode[] = {
195 	{"adaptive",		FS_MODE_ADAPTIVE},
196 	{"lfs",			FS_MODE_LFS},
197 	{"fragment:segment",	FS_MODE_FRAGMENT_SEG},
198 	{"fragment:block",	FS_MODE_FRAGMENT_BLK},
199 	{}
200 };
201 
202 static const struct constant_table f2fs_param_jqfmt[] = {
203 	{"vfsold",	QFMT_VFS_OLD},
204 	{"vfsv0",	QFMT_VFS_V0},
205 	{"vfsv1",	QFMT_VFS_V1},
206 	{}
207 };
208 
209 static const struct constant_table f2fs_param_alloc_mode[] = {
210 	{"default",	ALLOC_MODE_DEFAULT},
211 	{"reuse",	ALLOC_MODE_REUSE},
212 	{}
213 };
214 static const struct constant_table f2fs_param_fsync_mode[] = {
215 	{"posix",	FSYNC_MODE_POSIX},
216 	{"strict",	FSYNC_MODE_STRICT},
217 	{"nobarrier",	FSYNC_MODE_NOBARRIER},
218 	{}
219 };
220 
221 static const struct constant_table f2fs_param_compress_mode[] = {
222 	{"fs",		COMPR_MODE_FS},
223 	{"user",	COMPR_MODE_USER},
224 	{}
225 };
226 
227 static const struct constant_table f2fs_param_discard_unit[] = {
228 	{"block",	DISCARD_UNIT_BLOCK},
229 	{"segment",	DISCARD_UNIT_SEGMENT},
230 	{"section",	DISCARD_UNIT_SECTION},
231 	{}
232 };
233 
234 static const struct constant_table f2fs_param_memory_mode[] = {
235 	{"normal",	MEMORY_MODE_NORMAL},
236 	{"low",		MEMORY_MODE_LOW},
237 	{}
238 };
239 
240 static const struct constant_table f2fs_param_errors[] = {
241 	{"remount-ro",	MOUNT_ERRORS_READONLY},
242 	{"continue",	MOUNT_ERRORS_CONTINUE},
243 	{"panic",	MOUNT_ERRORS_PANIC},
244 	{}
245 };
246 
247 static const struct fs_parameter_spec f2fs_param_specs[] = {
248 	fsparam_enum("background_gc", Opt_gc_background, f2fs_param_background_gc),
249 	fsparam_flag("disable_roll_forward", Opt_disable_roll_forward),
250 	fsparam_flag("norecovery", Opt_norecovery),
251 	fsparam_flag_no("discard", Opt_discard),
252 	fsparam_flag("no_heap", Opt_noheap),
253 	fsparam_flag("heap", Opt_heap),
254 	fsparam_flag_no("user_xattr", Opt_user_xattr),
255 	fsparam_flag_no("acl", Opt_acl),
256 	fsparam_s32("active_logs", Opt_active_logs),
257 	fsparam_flag("disable_ext_identify", Opt_disable_ext_identify),
258 	fsparam_flag_no("inline_xattr", Opt_inline_xattr),
259 	fsparam_s32("inline_xattr_size", Opt_inline_xattr_size),
260 	fsparam_flag_no("inline_data", Opt_inline_data),
261 	fsparam_flag_no("inline_dentry", Opt_inline_dentry),
262 	fsparam_flag_no("flush_merge", Opt_flush_merge),
263 	fsparam_flag_no("barrier", Opt_barrier),
264 	fsparam_flag("fastboot", Opt_fastboot),
265 	fsparam_flag_no("extent_cache", Opt_extent_cache),
266 	fsparam_flag("data_flush", Opt_data_flush),
267 	fsparam_u32("reserve_root", Opt_reserve_root),
268 	fsparam_gid("resgid", Opt_resgid),
269 	fsparam_uid("resuid", Opt_resuid),
270 	fsparam_enum("mode", Opt_mode, f2fs_param_mode),
271 	fsparam_s32("fault_injection", Opt_fault_injection),
272 	fsparam_u32("fault_type", Opt_fault_type),
273 	fsparam_flag_no("lazytime", Opt_lazytime),
274 	fsparam_flag_no("quota", Opt_quota),
275 	fsparam_flag("usrquota", Opt_usrquota),
276 	fsparam_flag("grpquota", Opt_grpquota),
277 	fsparam_flag("prjquota", Opt_prjquota),
278 	fsparam_string_empty("usrjquota", Opt_usrjquota),
279 	fsparam_string_empty("grpjquota", Opt_grpjquota),
280 	fsparam_string_empty("prjjquota", Opt_prjjquota),
281 	fsparam_flag("nat_bits", Opt_nat_bits),
282 	fsparam_enum("jqfmt", Opt_jqfmt, f2fs_param_jqfmt),
283 	fsparam_enum("alloc_mode", Opt_alloc, f2fs_param_alloc_mode),
284 	fsparam_enum("fsync_mode", Opt_fsync, f2fs_param_fsync_mode),
285 	fsparam_string("test_dummy_encryption", Opt_test_dummy_encryption),
286 	fsparam_flag("test_dummy_encryption", Opt_test_dummy_encryption),
287 	fsparam_flag("inlinecrypt", Opt_inlinecrypt),
288 	fsparam_string("checkpoint", Opt_checkpoint),
289 	fsparam_flag_no("checkpoint_merge", Opt_checkpoint_merge),
290 	fsparam_string("compress_algorithm", Opt_compress_algorithm),
291 	fsparam_u32("compress_log_size", Opt_compress_log_size),
292 	fsparam_string("compress_extension", Opt_compress_extension),
293 	fsparam_string("nocompress_extension", Opt_nocompress_extension),
294 	fsparam_flag("compress_chksum", Opt_compress_chksum),
295 	fsparam_enum("compress_mode", Opt_compress_mode, f2fs_param_compress_mode),
296 	fsparam_flag("compress_cache", Opt_compress_cache),
297 	fsparam_flag("atgc", Opt_atgc),
298 	fsparam_flag_no("gc_merge", Opt_gc_merge),
299 	fsparam_enum("discard_unit", Opt_discard_unit, f2fs_param_discard_unit),
300 	fsparam_enum("memory", Opt_memory_mode, f2fs_param_memory_mode),
301 	fsparam_flag("age_extent_cache", Opt_age_extent_cache),
302 	fsparam_enum("errors", Opt_errors, f2fs_param_errors),
303 	{}
304 };
305 
306 /* Resort to a match_table for this interestingly formatted option */
307 static match_table_t f2fs_checkpoint_tokens = {
308 	{Opt_checkpoint_disable, "disable"},
309 	{Opt_checkpoint_disable_cap, "disable:%u"},
310 	{Opt_checkpoint_disable_cap_perc, "disable:%u%%"},
311 	{Opt_checkpoint_enable, "enable"},
312 	{Opt_err, NULL},
313 };
314 
315 #define F2FS_SPEC_background_gc			(1 << 0)
316 #define F2FS_SPEC_inline_xattr_size		(1 << 1)
317 #define F2FS_SPEC_active_logs			(1 << 2)
318 #define F2FS_SPEC_reserve_root			(1 << 3)
319 #define F2FS_SPEC_resgid			(1 << 4)
320 #define F2FS_SPEC_resuid			(1 << 5)
321 #define F2FS_SPEC_mode				(1 << 6)
322 #define F2FS_SPEC_fault_injection		(1 << 7)
323 #define F2FS_SPEC_fault_type			(1 << 8)
324 #define F2FS_SPEC_jqfmt				(1 << 9)
325 #define F2FS_SPEC_alloc_mode			(1 << 10)
326 #define F2FS_SPEC_fsync_mode			(1 << 11)
327 #define F2FS_SPEC_checkpoint_disable_cap	(1 << 12)
328 #define F2FS_SPEC_checkpoint_disable_cap_perc	(1 << 13)
329 #define F2FS_SPEC_compress_level		(1 << 14)
330 #define F2FS_SPEC_compress_algorithm		(1 << 15)
331 #define F2FS_SPEC_compress_log_size		(1 << 16)
332 #define F2FS_SPEC_compress_extension		(1 << 17)
333 #define F2FS_SPEC_nocompress_extension		(1 << 18)
334 #define F2FS_SPEC_compress_chksum		(1 << 19)
335 #define F2FS_SPEC_compress_mode			(1 << 20)
336 #define F2FS_SPEC_discard_unit			(1 << 21)
337 #define F2FS_SPEC_memory_mode			(1 << 22)
338 #define F2FS_SPEC_errors			(1 << 23)
339 
340 struct f2fs_fs_context {
341 	struct f2fs_mount_info info;
342 	unsigned int	opt_mask;	/* Bits changed */
343 	unsigned int	spec_mask;
344 	unsigned short	qname_mask;
345 };
346 
347 #define F2FS_CTX_INFO(ctx)	((ctx)->info)
348 
349 static inline void ctx_set_opt(struct f2fs_fs_context *ctx,
350 			       unsigned int flag)
351 {
352 	ctx->info.opt |= flag;
353 	ctx->opt_mask |= flag;
354 }
355 
356 static inline void ctx_clear_opt(struct f2fs_fs_context *ctx,
357 				 unsigned int flag)
358 {
359 	ctx->info.opt &= ~flag;
360 	ctx->opt_mask |= flag;
361 }
362 
363 static inline bool ctx_test_opt(struct f2fs_fs_context *ctx,
364 				unsigned int flag)
365 {
366 	return ctx->info.opt & flag;
367 }
368 
369 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate,
370 					const char *fmt, ...)
371 {
372 	struct va_format vaf;
373 	va_list args;
374 	int level;
375 
376 	va_start(args, fmt);
377 
378 	level = printk_get_level(fmt);
379 	vaf.fmt = printk_skip_level(fmt);
380 	vaf.va = &args;
381 	if (limit_rate)
382 		if (sbi)
383 			printk_ratelimited("%c%cF2FS-fs (%s): %pV\n",
384 				KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
385 		else
386 			printk_ratelimited("%c%cF2FS-fs: %pV\n",
387 				KERN_SOH_ASCII, level, &vaf);
388 	else
389 		if (sbi)
390 			printk("%c%cF2FS-fs (%s): %pV\n",
391 				KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
392 		else
393 			printk("%c%cF2FS-fs: %pV\n",
394 				KERN_SOH_ASCII, level, &vaf);
395 
396 	va_end(args);
397 }
398 
399 #if IS_ENABLED(CONFIG_UNICODE)
400 static const struct f2fs_sb_encodings {
401 	__u16 magic;
402 	char *name;
403 	unsigned int version;
404 } f2fs_sb_encoding_map[] = {
405 	{F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
406 };
407 
408 static const struct f2fs_sb_encodings *
409 f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
410 {
411 	__u16 magic = le16_to_cpu(sb->s_encoding);
412 	int i;
413 
414 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
415 		if (magic == f2fs_sb_encoding_map[i].magic)
416 			return &f2fs_sb_encoding_map[i];
417 
418 	return NULL;
419 }
420 
421 struct kmem_cache *f2fs_cf_name_slab;
422 static int __init f2fs_create_casefold_cache(void)
423 {
424 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
425 						   F2FS_NAME_LEN);
426 	return f2fs_cf_name_slab ? 0 : -ENOMEM;
427 }
428 
429 static void f2fs_destroy_casefold_cache(void)
430 {
431 	kmem_cache_destroy(f2fs_cf_name_slab);
432 }
433 #else
434 static int __init f2fs_create_casefold_cache(void) { return 0; }
435 static void f2fs_destroy_casefold_cache(void) { }
436 #endif
437 
438 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
439 {
440 	block_t limit = min((sbi->user_block_count >> 3),
441 			sbi->user_block_count - sbi->reserved_blocks);
442 
443 	/* limit is 12.5% */
444 	if (test_opt(sbi, RESERVE_ROOT) &&
445 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
446 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
447 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
448 			  F2FS_OPTION(sbi).root_reserved_blocks);
449 	}
450 	if (!test_opt(sbi, RESERVE_ROOT) &&
451 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
452 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
453 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
454 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
455 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
456 			  from_kuid_munged(&init_user_ns,
457 					   F2FS_OPTION(sbi).s_resuid),
458 			  from_kgid_munged(&init_user_ns,
459 					   F2FS_OPTION(sbi).s_resgid));
460 }
461 
462 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
463 {
464 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
465 		return;
466 
467 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
468 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
469 	else
470 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
471 					F2FS_OPTION(sbi).unusable_cap_perc;
472 
473 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
474 			F2FS_OPTION(sbi).unusable_cap,
475 			F2FS_OPTION(sbi).unusable_cap_perc);
476 }
477 
478 static void init_once(void *foo)
479 {
480 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
481 
482 	inode_init_once(&fi->vfs_inode);
483 #ifdef CONFIG_FS_ENCRYPTION
484 	fi->i_crypt_info = NULL;
485 #endif
486 #ifdef CONFIG_FS_VERITY
487 	fi->i_verity_info = NULL;
488 #endif
489 }
490 
491 #ifdef CONFIG_QUOTA
492 static const char * const quotatypes[] = INITQFNAMES;
493 #define QTYPE2NAME(t) (quotatypes[t])
494 /*
495  * Note the name of the specified quota file.
496  */
497 static int f2fs_note_qf_name(struct fs_context *fc, int qtype,
498 			     struct fs_parameter *param)
499 {
500 	struct f2fs_fs_context *ctx = fc->fs_private;
501 	char *qname;
502 
503 	if (param->size < 1) {
504 		f2fs_err(NULL, "Missing quota name");
505 		return -EINVAL;
506 	}
507 	if (strchr(param->string, '/')) {
508 		f2fs_err(NULL, "quotafile must be on filesystem root");
509 		return -EINVAL;
510 	}
511 	if (ctx->info.s_qf_names[qtype]) {
512 		if (strcmp(ctx->info.s_qf_names[qtype], param->string) != 0) {
513 			f2fs_err(NULL, "Quota file already specified");
514 			return -EINVAL;
515 		}
516 		return 0;
517 	}
518 
519 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
520 	if (!qname) {
521 		f2fs_err(NULL, "Not enough memory for storing quotafile name");
522 		return -ENOMEM;
523 	}
524 	F2FS_CTX_INFO(ctx).s_qf_names[qtype] = qname;
525 	ctx->qname_mask |= 1 << qtype;
526 	return 0;
527 }
528 
529 /*
530  * Clear the name of the specified quota file.
531  */
532 static int f2fs_unnote_qf_name(struct fs_context *fc, int qtype)
533 {
534 	struct f2fs_fs_context *ctx = fc->fs_private;
535 
536 	kfree(ctx->info.s_qf_names[qtype]);
537 	ctx->info.s_qf_names[qtype] = NULL;
538 	ctx->qname_mask |= 1 << qtype;
539 	return 0;
540 }
541 
542 static void f2fs_unnote_qf_name_all(struct fs_context *fc)
543 {
544 	int i;
545 
546 	for (i = 0; i < MAXQUOTAS; i++)
547 		f2fs_unnote_qf_name(fc, i);
548 }
549 #endif
550 
551 static int f2fs_parse_test_dummy_encryption(const struct fs_parameter *param,
552 					    struct f2fs_fs_context *ctx)
553 {
554 	int err;
555 
556 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
557 		f2fs_warn(NULL, "test_dummy_encryption option not supported");
558 		return -EINVAL;
559 	}
560 	err = fscrypt_parse_test_dummy_encryption(param,
561 					&ctx->info.dummy_enc_policy);
562 	if (err) {
563 		if (err == -EINVAL)
564 			f2fs_warn(NULL, "Value of option \"%s\" is unrecognized",
565 				  param->key);
566 		else if (err == -EEXIST)
567 			f2fs_warn(NULL, "Conflicting test_dummy_encryption options");
568 		else
569 			f2fs_warn(NULL, "Error processing option \"%s\" [%d]",
570 				  param->key, err);
571 		return -EINVAL;
572 	}
573 	return 0;
574 }
575 
576 #ifdef CONFIG_F2FS_FS_COMPRESSION
577 static bool is_compress_extension_exist(struct f2fs_mount_info *info,
578 					const char *new_ext, bool is_ext)
579 {
580 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
581 	int ext_cnt;
582 	int i;
583 
584 	if (is_ext) {
585 		ext = info->extensions;
586 		ext_cnt = info->compress_ext_cnt;
587 	} else {
588 		ext = info->noextensions;
589 		ext_cnt = info->nocompress_ext_cnt;
590 	}
591 
592 	for (i = 0; i < ext_cnt; i++) {
593 		if (!strcasecmp(new_ext, ext[i]))
594 			return true;
595 	}
596 
597 	return false;
598 }
599 
600 /*
601  * 1. The same extension name cannot not appear in both compress and non-compress extension
602  * at the same time.
603  * 2. If the compress extension specifies all files, the types specified by the non-compress
604  * extension will be treated as special cases and will not be compressed.
605  * 3. Don't allow the non-compress extension specifies all files.
606  */
607 static int f2fs_test_compress_extension(unsigned char (*noext)[F2FS_EXTENSION_LEN],
608 					int noext_cnt,
609 					unsigned char (*ext)[F2FS_EXTENSION_LEN],
610 					int ext_cnt)
611 {
612 	int index = 0, no_index = 0;
613 
614 	if (!noext_cnt)
615 		return 0;
616 
617 	for (no_index = 0; no_index < noext_cnt; no_index++) {
618 		if (strlen(noext[no_index]) == 0)
619 			continue;
620 		if (!strcasecmp("*", noext[no_index])) {
621 			f2fs_info(NULL, "Don't allow the nocompress extension specifies all files");
622 			return -EINVAL;
623 		}
624 		for (index = 0; index < ext_cnt; index++) {
625 			if (strlen(ext[index]) == 0)
626 				continue;
627 			if (!strcasecmp(ext[index], noext[no_index])) {
628 				f2fs_info(NULL, "Don't allow the same extension %s appear in both compress and nocompress extension",
629 						ext[index]);
630 				return -EINVAL;
631 			}
632 		}
633 	}
634 	return 0;
635 }
636 
637 #ifdef CONFIG_F2FS_FS_LZ4
638 static int f2fs_set_lz4hc_level(struct f2fs_fs_context *ctx, const char *str)
639 {
640 #ifdef CONFIG_F2FS_FS_LZ4HC
641 	unsigned int level;
642 
643 	if (strlen(str) == 3) {
644 		F2FS_CTX_INFO(ctx).compress_level = 0;
645 		ctx->spec_mask |= F2FS_SPEC_compress_level;
646 		return 0;
647 	}
648 
649 	str += 3;
650 
651 	if (str[0] != ':') {
652 		f2fs_info(NULL, "wrong format, e.g. <alg_name>:<compr_level>");
653 		return -EINVAL;
654 	}
655 	if (kstrtouint(str + 1, 10, &level))
656 		return -EINVAL;
657 
658 	if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) {
659 		f2fs_info(NULL, "invalid lz4hc compress level: %d", level);
660 		return -EINVAL;
661 	}
662 
663 	F2FS_CTX_INFO(ctx).compress_level = level;
664 	ctx->spec_mask |= F2FS_SPEC_compress_level;
665 	return 0;
666 #else
667 	if (strlen(str) == 3) {
668 		F2FS_CTX_INFO(ctx).compress_level = 0;
669 		ctx->spec_mask |= F2FS_SPEC_compress_level;
670 		return 0;
671 	}
672 	f2fs_info(NULL, "kernel doesn't support lz4hc compression");
673 	return -EINVAL;
674 #endif
675 }
676 #endif
677 
678 #ifdef CONFIG_F2FS_FS_ZSTD
679 static int f2fs_set_zstd_level(struct f2fs_fs_context *ctx, const char *str)
680 {
681 	int level;
682 	int len = 4;
683 
684 	if (strlen(str) == len) {
685 		F2FS_CTX_INFO(ctx).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
686 		ctx->spec_mask |= F2FS_SPEC_compress_level;
687 		return 0;
688 	}
689 
690 	str += len;
691 
692 	if (str[0] != ':') {
693 		f2fs_info(NULL, "wrong format, e.g. <alg_name>:<compr_level>");
694 		return -EINVAL;
695 	}
696 	if (kstrtoint(str + 1, 10, &level))
697 		return -EINVAL;
698 
699 	/* f2fs does not support negative compress level now */
700 	if (level < 0) {
701 		f2fs_info(NULL, "do not support negative compress level: %d", level);
702 		return -ERANGE;
703 	}
704 
705 	if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) {
706 		f2fs_info(NULL, "invalid zstd compress level: %d", level);
707 		return -EINVAL;
708 	}
709 
710 	F2FS_CTX_INFO(ctx).compress_level = level;
711 	ctx->spec_mask |= F2FS_SPEC_compress_level;
712 	return 0;
713 }
714 #endif
715 #endif
716 
717 static int f2fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
718 {
719 	struct f2fs_fs_context *ctx = fc->fs_private;
720 #ifdef CONFIG_F2FS_FS_COMPRESSION
721 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
722 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
723 	int ext_cnt, noext_cnt;
724 	char *name;
725 #endif
726 	substring_t args[MAX_OPT_ARGS];
727 	struct fs_parse_result result;
728 	int token, ret, arg;
729 
730 	token = fs_parse(fc, f2fs_param_specs, param, &result);
731 	if (token < 0)
732 		return token;
733 
734 	switch (token) {
735 	case Opt_gc_background:
736 		F2FS_CTX_INFO(ctx).bggc_mode = result.uint_32;
737 		ctx->spec_mask |= F2FS_SPEC_background_gc;
738 		break;
739 	case Opt_disable_roll_forward:
740 		ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_ROLL_FORWARD);
741 		break;
742 	case Opt_norecovery:
743 		/* requires ro mount, checked in f2fs_validate_options */
744 		ctx_set_opt(ctx, F2FS_MOUNT_NORECOVERY);
745 		break;
746 	case Opt_discard:
747 		if (result.negated)
748 			ctx_clear_opt(ctx, F2FS_MOUNT_DISCARD);
749 		else
750 			ctx_set_opt(ctx, F2FS_MOUNT_DISCARD);
751 		break;
752 	case Opt_noheap:
753 	case Opt_heap:
754 		f2fs_warn(NULL, "heap/no_heap options were deprecated");
755 		break;
756 #ifdef CONFIG_F2FS_FS_XATTR
757 	case Opt_user_xattr:
758 		if (result.negated)
759 			ctx_clear_opt(ctx, F2FS_MOUNT_XATTR_USER);
760 		else
761 			ctx_set_opt(ctx, F2FS_MOUNT_XATTR_USER);
762 		break;
763 	case Opt_inline_xattr:
764 		if (result.negated)
765 			ctx_clear_opt(ctx, F2FS_MOUNT_INLINE_XATTR);
766 		else
767 			ctx_set_opt(ctx, F2FS_MOUNT_INLINE_XATTR);
768 		break;
769 	case Opt_inline_xattr_size:
770 		if (result.int_32 < MIN_INLINE_XATTR_SIZE ||
771 			result.int_32 > MAX_INLINE_XATTR_SIZE) {
772 			f2fs_err(NULL, "inline xattr size is out of range: %u ~ %u",
773 				 (u32)MIN_INLINE_XATTR_SIZE, (u32)MAX_INLINE_XATTR_SIZE);
774 			return -EINVAL;
775 		}
776 		ctx_set_opt(ctx, F2FS_MOUNT_INLINE_XATTR_SIZE);
777 		F2FS_CTX_INFO(ctx).inline_xattr_size = result.int_32;
778 		ctx->spec_mask |= F2FS_SPEC_inline_xattr_size;
779 		break;
780 #else
781 	case Opt_user_xattr:
782 	case Opt_inline_xattr:
783 	case Opt_inline_xattr_size:
784 		f2fs_info(NULL, "%s options not supported", param->key);
785 		break;
786 #endif
787 #ifdef CONFIG_F2FS_FS_POSIX_ACL
788 	case Opt_acl:
789 		if (result.negated)
790 			ctx_clear_opt(ctx, F2FS_MOUNT_POSIX_ACL);
791 		else
792 			ctx_set_opt(ctx, F2FS_MOUNT_POSIX_ACL);
793 		break;
794 #else
795 	case Opt_acl:
796 		f2fs_info(NULL, "%s options not supported", param->key);
797 		break;
798 #endif
799 	case Opt_active_logs:
800 		if (result.int_32 != 2 && result.int_32 != 4 &&
801 			result.int_32 != NR_CURSEG_PERSIST_TYPE)
802 			return -EINVAL;
803 		ctx->spec_mask |= F2FS_SPEC_active_logs;
804 		F2FS_CTX_INFO(ctx).active_logs = result.int_32;
805 		break;
806 	case Opt_disable_ext_identify:
807 		ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_EXT_IDENTIFY);
808 		break;
809 	case Opt_inline_data:
810 		if (result.negated)
811 			ctx_clear_opt(ctx, F2FS_MOUNT_INLINE_DATA);
812 		else
813 			ctx_set_opt(ctx, F2FS_MOUNT_INLINE_DATA);
814 		break;
815 	case Opt_inline_dentry:
816 		if (result.negated)
817 			ctx_clear_opt(ctx, F2FS_MOUNT_INLINE_DENTRY);
818 		else
819 			ctx_set_opt(ctx, F2FS_MOUNT_INLINE_DENTRY);
820 		break;
821 	case Opt_flush_merge:
822 		if (result.negated)
823 			ctx_clear_opt(ctx, F2FS_MOUNT_FLUSH_MERGE);
824 		else
825 			ctx_set_opt(ctx, F2FS_MOUNT_FLUSH_MERGE);
826 		break;
827 	case Opt_barrier:
828 		if (result.negated)
829 			ctx_set_opt(ctx, F2FS_MOUNT_NOBARRIER);
830 		else
831 			ctx_clear_opt(ctx, F2FS_MOUNT_NOBARRIER);
832 		break;
833 	case Opt_fastboot:
834 		ctx_set_opt(ctx, F2FS_MOUNT_FASTBOOT);
835 		break;
836 	case Opt_extent_cache:
837 		if (result.negated)
838 			ctx_clear_opt(ctx, F2FS_MOUNT_READ_EXTENT_CACHE);
839 		else
840 			ctx_set_opt(ctx, F2FS_MOUNT_READ_EXTENT_CACHE);
841 		break;
842 	case Opt_data_flush:
843 		ctx_set_opt(ctx, F2FS_MOUNT_DATA_FLUSH);
844 		break;
845 	case Opt_reserve_root:
846 		ctx_set_opt(ctx, F2FS_MOUNT_RESERVE_ROOT);
847 		F2FS_CTX_INFO(ctx).root_reserved_blocks = result.uint_32;
848 		ctx->spec_mask |= F2FS_SPEC_reserve_root;
849 		break;
850 	case Opt_resuid:
851 		F2FS_CTX_INFO(ctx).s_resuid = result.uid;
852 		ctx->spec_mask |= F2FS_SPEC_resuid;
853 		break;
854 	case Opt_resgid:
855 		F2FS_CTX_INFO(ctx).s_resgid = result.gid;
856 		ctx->spec_mask |= F2FS_SPEC_resgid;
857 		break;
858 	case Opt_mode:
859 		F2FS_CTX_INFO(ctx).fs_mode = result.uint_32;
860 		ctx->spec_mask |= F2FS_SPEC_mode;
861 		break;
862 #ifdef CONFIG_F2FS_FAULT_INJECTION
863 	case Opt_fault_injection:
864 		F2FS_CTX_INFO(ctx).fault_info.inject_rate = result.int_32;
865 		ctx->spec_mask |= F2FS_SPEC_fault_injection;
866 		ctx_set_opt(ctx, F2FS_MOUNT_FAULT_INJECTION);
867 		break;
868 
869 	case Opt_fault_type:
870 		if (result.uint_32 > BIT(FAULT_MAX))
871 			return -EINVAL;
872 		F2FS_CTX_INFO(ctx).fault_info.inject_type = result.uint_32;
873 		ctx->spec_mask |= F2FS_SPEC_fault_type;
874 		ctx_set_opt(ctx, F2FS_MOUNT_FAULT_INJECTION);
875 		break;
876 #else
877 	case Opt_fault_injection:
878 	case Opt_fault_type:
879 		f2fs_info(NULL, "%s options not supported", param->key);
880 		break;
881 #endif
882 	case Opt_lazytime:
883 		if (result.negated)
884 			ctx_clear_opt(ctx, F2FS_MOUNT_LAZYTIME);
885 		else
886 			ctx_set_opt(ctx, F2FS_MOUNT_LAZYTIME);
887 		break;
888 #ifdef CONFIG_QUOTA
889 	case Opt_quota:
890 		if (result.negated) {
891 			ctx_clear_opt(ctx, F2FS_MOUNT_QUOTA);
892 			ctx_clear_opt(ctx, F2FS_MOUNT_USRQUOTA);
893 			ctx_clear_opt(ctx, F2FS_MOUNT_GRPQUOTA);
894 			ctx_clear_opt(ctx, F2FS_MOUNT_PRJQUOTA);
895 		} else
896 			ctx_set_opt(ctx, F2FS_MOUNT_USRQUOTA);
897 		break;
898 	case Opt_usrquota:
899 		ctx_set_opt(ctx, F2FS_MOUNT_USRQUOTA);
900 		break;
901 	case Opt_grpquota:
902 		ctx_set_opt(ctx, F2FS_MOUNT_GRPQUOTA);
903 		break;
904 	case Opt_prjquota:
905 		ctx_set_opt(ctx, F2FS_MOUNT_PRJQUOTA);
906 		break;
907 	case Opt_usrjquota:
908 		if (!*param->string)
909 			ret = f2fs_unnote_qf_name(fc, USRQUOTA);
910 		else
911 			ret = f2fs_note_qf_name(fc, USRQUOTA, param);
912 		if (ret)
913 			return ret;
914 		break;
915 	case Opt_grpjquota:
916 		if (!*param->string)
917 			ret = f2fs_unnote_qf_name(fc, GRPQUOTA);
918 		else
919 			ret = f2fs_note_qf_name(fc, GRPQUOTA, param);
920 		if (ret)
921 			return ret;
922 		break;
923 	case Opt_prjjquota:
924 		if (!*param->string)
925 			ret = f2fs_unnote_qf_name(fc, PRJQUOTA);
926 		else
927 			ret = f2fs_note_qf_name(fc, PRJQUOTA, param);
928 		if (ret)
929 			return ret;
930 		break;
931 	case Opt_jqfmt:
932 		F2FS_CTX_INFO(ctx).s_jquota_fmt = result.int_32;
933 		ctx->spec_mask |= F2FS_SPEC_jqfmt;
934 		break;
935 #else
936 	case Opt_quota:
937 	case Opt_usrquota:
938 	case Opt_grpquota:
939 	case Opt_prjquota:
940 	case Opt_usrjquota:
941 	case Opt_grpjquota:
942 	case Opt_prjjquota:
943 		f2fs_info(NULL, "quota operations not supported");
944 		break;
945 #endif
946 	case Opt_alloc:
947 		F2FS_CTX_INFO(ctx).alloc_mode = result.uint_32;
948 		ctx->spec_mask |= F2FS_SPEC_alloc_mode;
949 		break;
950 	case Opt_fsync:
951 		F2FS_CTX_INFO(ctx).fsync_mode = result.uint_32;
952 		ctx->spec_mask |= F2FS_SPEC_fsync_mode;
953 		break;
954 	case Opt_test_dummy_encryption:
955 		ret = f2fs_parse_test_dummy_encryption(param, ctx);
956 		if (ret)
957 			return ret;
958 		break;
959 	case Opt_inlinecrypt:
960 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
961 		ctx_set_opt(ctx, F2FS_MOUNT_INLINECRYPT);
962 #else
963 		f2fs_info(NULL, "inline encryption not supported");
964 #endif
965 		break;
966 	case Opt_checkpoint:
967 		/*
968 		 * Initialize args struct so we know whether arg was
969 		 * found; some options take optional arguments.
970 		 */
971 		args[0].from = args[0].to = NULL;
972 		arg = 0;
973 
974 		/* revert to match_table for checkpoint= options */
975 		token = match_token(param->string, f2fs_checkpoint_tokens, args);
976 		switch (token) {
977 		case Opt_checkpoint_disable_cap_perc:
978 			if (args->from && match_int(args, &arg))
979 				return -EINVAL;
980 			if (arg < 0 || arg > 100)
981 				return -EINVAL;
982 			F2FS_CTX_INFO(ctx).unusable_cap_perc = arg;
983 			ctx->spec_mask |= F2FS_SPEC_checkpoint_disable_cap_perc;
984 			ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT);
985 			break;
986 		case Opt_checkpoint_disable_cap:
987 			if (args->from && match_int(args, &arg))
988 				return -EINVAL;
989 			F2FS_CTX_INFO(ctx).unusable_cap = arg;
990 			ctx->spec_mask |= F2FS_SPEC_checkpoint_disable_cap;
991 			ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT);
992 			break;
993 		case Opt_checkpoint_disable:
994 			ctx_set_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT);
995 			break;
996 		case Opt_checkpoint_enable:
997 			ctx_clear_opt(ctx, F2FS_MOUNT_DISABLE_CHECKPOINT);
998 			break;
999 		default:
1000 			return -EINVAL;
1001 		}
1002 		break;
1003 	case Opt_checkpoint_merge:
1004 		if (result.negated)
1005 			ctx_clear_opt(ctx, F2FS_MOUNT_MERGE_CHECKPOINT);
1006 		else
1007 			ctx_set_opt(ctx, F2FS_MOUNT_MERGE_CHECKPOINT);
1008 		break;
1009 #ifdef CONFIG_F2FS_FS_COMPRESSION
1010 	case Opt_compress_algorithm:
1011 		name = param->string;
1012 		if (!strcmp(name, "lzo")) {
1013 #ifdef CONFIG_F2FS_FS_LZO
1014 			F2FS_CTX_INFO(ctx).compress_level = 0;
1015 			F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_LZO;
1016 			ctx->spec_mask |= F2FS_SPEC_compress_level;
1017 			ctx->spec_mask |= F2FS_SPEC_compress_algorithm;
1018 #else
1019 			f2fs_info(NULL, "kernel doesn't support lzo compression");
1020 #endif
1021 		} else if (!strncmp(name, "lz4", 3)) {
1022 #ifdef CONFIG_F2FS_FS_LZ4
1023 			ret = f2fs_set_lz4hc_level(ctx, name);
1024 			if (ret)
1025 				return -EINVAL;
1026 			F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_LZ4;
1027 			ctx->spec_mask |= F2FS_SPEC_compress_algorithm;
1028 #else
1029 			f2fs_info(NULL, "kernel doesn't support lz4 compression");
1030 #endif
1031 		} else if (!strncmp(name, "zstd", 4)) {
1032 #ifdef CONFIG_F2FS_FS_ZSTD
1033 			ret = f2fs_set_zstd_level(ctx, name);
1034 			if (ret)
1035 				return -EINVAL;
1036 			F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_ZSTD;
1037 			ctx->spec_mask |= F2FS_SPEC_compress_algorithm;
1038 #else
1039 			f2fs_info(NULL, "kernel doesn't support zstd compression");
1040 #endif
1041 		} else if (!strcmp(name, "lzo-rle")) {
1042 #ifdef CONFIG_F2FS_FS_LZORLE
1043 			F2FS_CTX_INFO(ctx).compress_level = 0;
1044 			F2FS_CTX_INFO(ctx).compress_algorithm = COMPRESS_LZORLE;
1045 			ctx->spec_mask |= F2FS_SPEC_compress_level;
1046 			ctx->spec_mask |= F2FS_SPEC_compress_algorithm;
1047 #else
1048 			f2fs_info(NULL, "kernel doesn't support lzorle compression");
1049 #endif
1050 		} else
1051 			return -EINVAL;
1052 		break;
1053 	case Opt_compress_log_size:
1054 		if (result.uint_32 < MIN_COMPRESS_LOG_SIZE ||
1055 		    result.uint_32 > MAX_COMPRESS_LOG_SIZE) {
1056 			f2fs_err(NULL,
1057 				"Compress cluster log size is out of range");
1058 			return -EINVAL;
1059 		}
1060 		F2FS_CTX_INFO(ctx).compress_log_size = result.uint_32;
1061 		ctx->spec_mask |= F2FS_SPEC_compress_log_size;
1062 		break;
1063 	case Opt_compress_extension:
1064 		name = param->string;
1065 		ext = F2FS_CTX_INFO(ctx).extensions;
1066 		ext_cnt = F2FS_CTX_INFO(ctx).compress_ext_cnt;
1067 
1068 		if (strlen(name) >= F2FS_EXTENSION_LEN ||
1069 		    ext_cnt >= COMPRESS_EXT_NUM) {
1070 			f2fs_err(NULL, "invalid extension length/number");
1071 			return -EINVAL;
1072 		}
1073 
1074 		if (is_compress_extension_exist(&ctx->info, name, true))
1075 			break;
1076 
1077 		ret = strscpy(ext[ext_cnt], name, F2FS_EXTENSION_LEN);
1078 		if (ret < 0)
1079 			return ret;
1080 		F2FS_CTX_INFO(ctx).compress_ext_cnt++;
1081 		ctx->spec_mask |= F2FS_SPEC_compress_extension;
1082 		break;
1083 	case Opt_nocompress_extension:
1084 		name = param->string;
1085 		noext = F2FS_CTX_INFO(ctx).noextensions;
1086 		noext_cnt = F2FS_CTX_INFO(ctx).nocompress_ext_cnt;
1087 
1088 		if (strlen(name) >= F2FS_EXTENSION_LEN ||
1089 			noext_cnt >= COMPRESS_EXT_NUM) {
1090 			f2fs_err(NULL, "invalid extension length/number");
1091 			return -EINVAL;
1092 		}
1093 
1094 		if (is_compress_extension_exist(&ctx->info, name, false))
1095 			break;
1096 
1097 		ret = strscpy(noext[noext_cnt], name, F2FS_EXTENSION_LEN);
1098 		if (ret < 0)
1099 			return ret;
1100 		F2FS_CTX_INFO(ctx).nocompress_ext_cnt++;
1101 		ctx->spec_mask |= F2FS_SPEC_nocompress_extension;
1102 		break;
1103 	case Opt_compress_chksum:
1104 		F2FS_CTX_INFO(ctx).compress_chksum = true;
1105 		ctx->spec_mask |= F2FS_SPEC_compress_chksum;
1106 		break;
1107 	case Opt_compress_mode:
1108 		F2FS_CTX_INFO(ctx).compress_mode = result.uint_32;
1109 		ctx->spec_mask |= F2FS_SPEC_compress_mode;
1110 		break;
1111 	case Opt_compress_cache:
1112 		ctx_set_opt(ctx, F2FS_MOUNT_COMPRESS_CACHE);
1113 		break;
1114 #else
1115 	case Opt_compress_algorithm:
1116 	case Opt_compress_log_size:
1117 	case Opt_compress_extension:
1118 	case Opt_nocompress_extension:
1119 	case Opt_compress_chksum:
1120 	case Opt_compress_mode:
1121 	case Opt_compress_cache:
1122 		f2fs_info(NULL, "compression options not supported");
1123 		break;
1124 #endif
1125 	case Opt_atgc:
1126 		ctx_set_opt(ctx, F2FS_MOUNT_ATGC);
1127 		break;
1128 	case Opt_gc_merge:
1129 		if (result.negated)
1130 			ctx_clear_opt(ctx, F2FS_MOUNT_GC_MERGE);
1131 		else
1132 			ctx_set_opt(ctx, F2FS_MOUNT_GC_MERGE);
1133 		break;
1134 	case Opt_discard_unit:
1135 		F2FS_CTX_INFO(ctx).discard_unit = result.uint_32;
1136 		ctx->spec_mask |= F2FS_SPEC_discard_unit;
1137 		break;
1138 	case Opt_memory_mode:
1139 		F2FS_CTX_INFO(ctx).memory_mode = result.uint_32;
1140 		ctx->spec_mask |= F2FS_SPEC_memory_mode;
1141 		break;
1142 	case Opt_age_extent_cache:
1143 		ctx_set_opt(ctx, F2FS_MOUNT_AGE_EXTENT_CACHE);
1144 		break;
1145 	case Opt_errors:
1146 		F2FS_CTX_INFO(ctx).errors = result.uint_32;
1147 		ctx->spec_mask |= F2FS_SPEC_errors;
1148 		break;
1149 	case Opt_nat_bits:
1150 		ctx_set_opt(ctx, F2FS_MOUNT_NAT_BITS);
1151 		break;
1152 	}
1153 	return 0;
1154 }
1155 
1156 /*
1157  * Check quota settings consistency.
1158  */
1159 static int f2fs_check_quota_consistency(struct fs_context *fc,
1160 					struct super_block *sb)
1161 {
1162 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1163  #ifdef CONFIG_QUOTA
1164 	struct f2fs_fs_context *ctx = fc->fs_private;
1165 	bool quota_feature = f2fs_sb_has_quota_ino(sbi);
1166 	bool quota_turnon = sb_any_quota_loaded(sb);
1167 	char *old_qname, *new_qname;
1168 	bool usr_qf_name, grp_qf_name, prj_qf_name, usrquota, grpquota, prjquota;
1169 	int i;
1170 
1171 	/*
1172 	 * We do the test below only for project quotas. 'usrquota' and
1173 	 * 'grpquota' mount options are allowed even without quota feature
1174 	 * to support legacy quotas in quota files.
1175 	 */
1176 	if (ctx_test_opt(ctx, F2FS_MOUNT_PRJQUOTA) &&
1177 			!f2fs_sb_has_project_quota(sbi)) {
1178 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
1179 		return -EINVAL;
1180 	}
1181 
1182 	if (ctx->qname_mask) {
1183 		for (i = 0; i < MAXQUOTAS; i++) {
1184 			if (!(ctx->qname_mask & (1 << i)))
1185 				continue;
1186 
1187 			old_qname = F2FS_OPTION(sbi).s_qf_names[i];
1188 			new_qname = F2FS_CTX_INFO(ctx).s_qf_names[i];
1189 			if (quota_turnon &&
1190 				!!old_qname != !!new_qname)
1191 				goto err_jquota_change;
1192 
1193 			if (old_qname) {
1194 				if (strcmp(old_qname, new_qname) == 0) {
1195 					ctx->qname_mask &= ~(1 << i);
1196 					continue;
1197 				}
1198 				goto err_jquota_specified;
1199 			}
1200 
1201 			if (quota_feature) {
1202 				f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
1203 				ctx->qname_mask &= ~(1 << i);
1204 				kfree(F2FS_CTX_INFO(ctx).s_qf_names[i]);
1205 				F2FS_CTX_INFO(ctx).s_qf_names[i] = NULL;
1206 			}
1207 		}
1208 	}
1209 
1210 	/* Make sure we don't mix old and new quota format */
1211 	usr_qf_name = F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
1212 			F2FS_CTX_INFO(ctx).s_qf_names[USRQUOTA];
1213 	grp_qf_name = F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
1214 			F2FS_CTX_INFO(ctx).s_qf_names[GRPQUOTA];
1215 	prj_qf_name = F2FS_OPTION(sbi).s_qf_names[PRJQUOTA] ||
1216 			F2FS_CTX_INFO(ctx).s_qf_names[PRJQUOTA];
1217 	usrquota = test_opt(sbi, USRQUOTA) ||
1218 			ctx_test_opt(ctx, F2FS_MOUNT_USRQUOTA);
1219 	grpquota = test_opt(sbi, GRPQUOTA) ||
1220 			ctx_test_opt(ctx, F2FS_MOUNT_GRPQUOTA);
1221 	prjquota = test_opt(sbi, PRJQUOTA) ||
1222 			ctx_test_opt(ctx, F2FS_MOUNT_PRJQUOTA);
1223 
1224 	if (usr_qf_name) {
1225 		ctx_clear_opt(ctx, F2FS_MOUNT_USRQUOTA);
1226 		usrquota = false;
1227 	}
1228 	if (grp_qf_name) {
1229 		ctx_clear_opt(ctx, F2FS_MOUNT_GRPQUOTA);
1230 		grpquota = false;
1231 	}
1232 	if (prj_qf_name) {
1233 		ctx_clear_opt(ctx, F2FS_MOUNT_PRJQUOTA);
1234 		prjquota = false;
1235 	}
1236 	if (usr_qf_name || grp_qf_name || prj_qf_name) {
1237 		if (grpquota || usrquota || prjquota) {
1238 			f2fs_err(sbi, "old and new quota format mixing");
1239 			return -EINVAL;
1240 		}
1241 		if (!(ctx->spec_mask & F2FS_SPEC_jqfmt ||
1242 				F2FS_OPTION(sbi).s_jquota_fmt)) {
1243 			f2fs_err(sbi, "journaled quota format not specified");
1244 			return -EINVAL;
1245 		}
1246 	}
1247 	return 0;
1248 
1249 err_jquota_change:
1250 	f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
1251 	return -EINVAL;
1252 err_jquota_specified:
1253 	f2fs_err(sbi, "%s quota file already specified",
1254 		 QTYPE2NAME(i));
1255 	return -EINVAL;
1256 
1257 #else
1258 	if (f2fs_readonly(sbi->sb))
1259 		return 0;
1260 	if (f2fs_sb_has_quota_ino(sbi)) {
1261 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1262 		return -EINVAL;
1263 	}
1264 	if (f2fs_sb_has_project_quota(sbi)) {
1265 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1266 		return -EINVAL;
1267 	}
1268 
1269 	return 0;
1270 #endif
1271 }
1272 
1273 static int f2fs_check_test_dummy_encryption(struct fs_context *fc,
1274 					    struct super_block *sb)
1275 {
1276 	struct f2fs_fs_context *ctx = fc->fs_private;
1277 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1278 
1279 	if (!fscrypt_is_dummy_policy_set(&F2FS_CTX_INFO(ctx).dummy_enc_policy))
1280 		return 0;
1281 
1282 	if (!f2fs_sb_has_encrypt(sbi)) {
1283 		f2fs_err(sbi, "Encrypt feature is off");
1284 		return -EINVAL;
1285 	}
1286 
1287 	/*
1288 	 * This mount option is just for testing, and it's not worthwhile to
1289 	 * implement the extra complexity (e.g. RCU protection) that would be
1290 	 * needed to allow it to be set or changed during remount.  We do allow
1291 	 * it to be specified during remount, but only if there is no change.
1292 	 */
1293 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
1294 		if (fscrypt_dummy_policies_equal(&F2FS_OPTION(sbi).dummy_enc_policy,
1295 				&F2FS_CTX_INFO(ctx).dummy_enc_policy))
1296 			return 0;
1297 		f2fs_warn(sbi, "Can't set or change test_dummy_encryption on remount");
1298 		return -EINVAL;
1299 	}
1300 	return 0;
1301 }
1302 
1303 static inline bool test_compression_spec(unsigned int mask)
1304 {
1305 	return mask & (F2FS_SPEC_compress_algorithm
1306 			| F2FS_SPEC_compress_log_size
1307 			| F2FS_SPEC_compress_extension
1308 			| F2FS_SPEC_nocompress_extension
1309 			| F2FS_SPEC_compress_chksum
1310 			| F2FS_SPEC_compress_mode);
1311 }
1312 
1313 static inline void clear_compression_spec(struct f2fs_fs_context *ctx)
1314 {
1315 	ctx->spec_mask &= ~(F2FS_SPEC_compress_algorithm
1316 						| F2FS_SPEC_compress_log_size
1317 						| F2FS_SPEC_compress_extension
1318 						| F2FS_SPEC_nocompress_extension
1319 						| F2FS_SPEC_compress_chksum
1320 						| F2FS_SPEC_compress_mode);
1321 }
1322 
1323 static int f2fs_check_compression(struct fs_context *fc,
1324 				  struct super_block *sb)
1325 {
1326 #ifdef CONFIG_F2FS_FS_COMPRESSION
1327 	struct f2fs_fs_context *ctx = fc->fs_private;
1328 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1329 	int i, cnt;
1330 
1331 	if (!f2fs_sb_has_compression(sbi)) {
1332 		if (test_compression_spec(ctx->spec_mask) ||
1333 			ctx_test_opt(ctx, F2FS_MOUNT_COMPRESS_CACHE))
1334 			f2fs_info(sbi, "Image doesn't support compression");
1335 		clear_compression_spec(ctx);
1336 		ctx->opt_mask &= ~F2FS_MOUNT_COMPRESS_CACHE;
1337 		return 0;
1338 	}
1339 	if (ctx->spec_mask & F2FS_SPEC_compress_extension) {
1340 		cnt = F2FS_CTX_INFO(ctx).compress_ext_cnt;
1341 		for (i = 0; i < F2FS_CTX_INFO(ctx).compress_ext_cnt; i++) {
1342 			if (is_compress_extension_exist(&F2FS_OPTION(sbi),
1343 					F2FS_CTX_INFO(ctx).extensions[i], true)) {
1344 				F2FS_CTX_INFO(ctx).extensions[i][0] = '\0';
1345 				cnt--;
1346 			}
1347 		}
1348 		if (F2FS_OPTION(sbi).compress_ext_cnt + cnt > COMPRESS_EXT_NUM) {
1349 			f2fs_err(sbi, "invalid extension length/number");
1350 			return -EINVAL;
1351 		}
1352 	}
1353 	if (ctx->spec_mask & F2FS_SPEC_nocompress_extension) {
1354 		cnt = F2FS_CTX_INFO(ctx).nocompress_ext_cnt;
1355 		for (i = 0; i < F2FS_CTX_INFO(ctx).nocompress_ext_cnt; i++) {
1356 			if (is_compress_extension_exist(&F2FS_OPTION(sbi),
1357 					F2FS_CTX_INFO(ctx).noextensions[i], false)) {
1358 				F2FS_CTX_INFO(ctx).noextensions[i][0] = '\0';
1359 				cnt--;
1360 			}
1361 		}
1362 		if (F2FS_OPTION(sbi).nocompress_ext_cnt + cnt > COMPRESS_EXT_NUM) {
1363 			f2fs_err(sbi, "invalid noextension length/number");
1364 			return -EINVAL;
1365 		}
1366 	}
1367 
1368 	if (f2fs_test_compress_extension(F2FS_CTX_INFO(ctx).noextensions,
1369 				F2FS_CTX_INFO(ctx).nocompress_ext_cnt,
1370 				F2FS_CTX_INFO(ctx).extensions,
1371 				F2FS_CTX_INFO(ctx).compress_ext_cnt)) {
1372 		f2fs_err(sbi, "new noextensions conflicts with new extensions");
1373 		return -EINVAL;
1374 	}
1375 	if (f2fs_test_compress_extension(F2FS_CTX_INFO(ctx).noextensions,
1376 				F2FS_CTX_INFO(ctx).nocompress_ext_cnt,
1377 				F2FS_OPTION(sbi).extensions,
1378 				F2FS_OPTION(sbi).compress_ext_cnt)) {
1379 		f2fs_err(sbi, "new noextensions conflicts with old extensions");
1380 		return -EINVAL;
1381 	}
1382 	if (f2fs_test_compress_extension(F2FS_OPTION(sbi).noextensions,
1383 				F2FS_OPTION(sbi).nocompress_ext_cnt,
1384 				F2FS_CTX_INFO(ctx).extensions,
1385 				F2FS_CTX_INFO(ctx).compress_ext_cnt)) {
1386 		f2fs_err(sbi, "new extensions conflicts with old noextensions");
1387 		return -EINVAL;
1388 	}
1389 #endif
1390 	return 0;
1391 }
1392 
1393 static int f2fs_check_opt_consistency(struct fs_context *fc,
1394 				      struct super_block *sb)
1395 {
1396 	struct f2fs_fs_context *ctx = fc->fs_private;
1397 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1398 	int err;
1399 
1400 	if (ctx_test_opt(ctx, F2FS_MOUNT_NORECOVERY) && !f2fs_readonly(sb))
1401 		return -EINVAL;
1402 
1403 	if (f2fs_hw_should_discard(sbi) &&
1404 			(ctx->opt_mask & F2FS_MOUNT_DISCARD) &&
1405 			!ctx_test_opt(ctx, F2FS_MOUNT_DISCARD)) {
1406 		f2fs_warn(sbi, "discard is required for zoned block devices");
1407 		return -EINVAL;
1408 	}
1409 
1410 	if (!f2fs_hw_support_discard(sbi) &&
1411 			(ctx->opt_mask & F2FS_MOUNT_DISCARD) &&
1412 			ctx_test_opt(ctx, F2FS_MOUNT_DISCARD)) {
1413 		f2fs_warn(sbi, "device does not support discard");
1414 		ctx_clear_opt(ctx, F2FS_MOUNT_DISCARD);
1415 		ctx->opt_mask &= ~F2FS_MOUNT_DISCARD;
1416 	}
1417 
1418 	if (f2fs_sb_has_device_alias(sbi) &&
1419 			(ctx->opt_mask & F2FS_MOUNT_READ_EXTENT_CACHE) &&
1420 			!ctx_test_opt(ctx, F2FS_MOUNT_READ_EXTENT_CACHE)) {
1421 		f2fs_err(sbi, "device aliasing requires extent cache");
1422 		return -EINVAL;
1423 	}
1424 
1425 	if (test_opt(sbi, RESERVE_ROOT) &&
1426 			(ctx->opt_mask & F2FS_MOUNT_RESERVE_ROOT) &&
1427 			ctx_test_opt(ctx, F2FS_MOUNT_RESERVE_ROOT)) {
1428 		f2fs_info(sbi, "Preserve previous reserve_root=%u",
1429 			F2FS_OPTION(sbi).root_reserved_blocks);
1430 		ctx_clear_opt(ctx, F2FS_MOUNT_RESERVE_ROOT);
1431 		ctx->opt_mask &= ~F2FS_MOUNT_RESERVE_ROOT;
1432 	}
1433 
1434 	err = f2fs_check_test_dummy_encryption(fc, sb);
1435 	if (err)
1436 		return err;
1437 
1438 	err = f2fs_check_compression(fc, sb);
1439 	if (err)
1440 		return err;
1441 
1442 	err = f2fs_check_quota_consistency(fc, sb);
1443 	if (err)
1444 		return err;
1445 
1446 	if (!IS_ENABLED(CONFIG_UNICODE) && f2fs_sb_has_casefold(sbi)) {
1447 		f2fs_err(sbi,
1448 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1449 		return -EINVAL;
1450 	}
1451 
1452 	/*
1453 	 * The BLKZONED feature indicates that the drive was formatted with
1454 	 * zone alignment optimization. This is optional for host-aware
1455 	 * devices, but mandatory for host-managed zoned block devices.
1456 	 */
1457 	if (f2fs_sb_has_blkzoned(sbi)) {
1458 		if (F2FS_CTX_INFO(ctx).bggc_mode == BGGC_MODE_OFF) {
1459 			f2fs_warn(sbi, "zoned devices need bggc");
1460 			return -EINVAL;
1461 		}
1462 #ifdef CONFIG_BLK_DEV_ZONED
1463 		if ((ctx->spec_mask & F2FS_SPEC_discard_unit) &&
1464 		F2FS_CTX_INFO(ctx).discard_unit != DISCARD_UNIT_SECTION) {
1465 			f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1466 			F2FS_CTX_INFO(ctx).discard_unit = DISCARD_UNIT_SECTION;
1467 		}
1468 
1469 		if ((ctx->spec_mask & F2FS_SPEC_mode) &&
1470 		F2FS_CTX_INFO(ctx).fs_mode != FS_MODE_LFS) {
1471 			f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature");
1472 			return -EINVAL;
1473 		}
1474 #else
1475 		f2fs_err(sbi, "Zoned block device support is not enabled");
1476 		return -EINVAL;
1477 #endif
1478 	}
1479 
1480 	if (ctx_test_opt(ctx, F2FS_MOUNT_INLINE_XATTR_SIZE)) {
1481 		if (!f2fs_sb_has_extra_attr(sbi) ||
1482 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1483 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1484 			return -EINVAL;
1485 		}
1486 		if (!ctx_test_opt(ctx, F2FS_MOUNT_INLINE_XATTR) && !test_opt(sbi, INLINE_XATTR)) {
1487 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1488 			return -EINVAL;
1489 		}
1490 	}
1491 
1492 	if (ctx_test_opt(ctx, F2FS_MOUNT_ATGC) &&
1493 	    F2FS_CTX_INFO(ctx).fs_mode == FS_MODE_LFS) {
1494 		f2fs_err(sbi, "LFS is not compatible with ATGC");
1495 		return -EINVAL;
1496 	}
1497 
1498 	if (f2fs_is_readonly(sbi) && ctx_test_opt(ctx, F2FS_MOUNT_FLUSH_MERGE)) {
1499 		f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode");
1500 		return -EINVAL;
1501 	}
1502 
1503 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1504 		f2fs_err(sbi, "Allow to mount readonly mode only");
1505 		return -EROFS;
1506 	}
1507 	return 0;
1508 }
1509 
1510 static void f2fs_apply_quota_options(struct fs_context *fc,
1511 				     struct super_block *sb)
1512 {
1513 #ifdef CONFIG_QUOTA
1514 	struct f2fs_fs_context *ctx = fc->fs_private;
1515 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1516 	bool quota_feature = f2fs_sb_has_quota_ino(sbi);
1517 	char *qname;
1518 	int i;
1519 
1520 	if (quota_feature)
1521 		return;
1522 
1523 	for (i = 0; i < MAXQUOTAS; i++) {
1524 		if (!(ctx->qname_mask & (1 << i)))
1525 			continue;
1526 
1527 		qname = F2FS_CTX_INFO(ctx).s_qf_names[i];
1528 		if (qname) {
1529 			qname = kstrdup(F2FS_CTX_INFO(ctx).s_qf_names[i],
1530 					GFP_KERNEL | __GFP_NOFAIL);
1531 			set_opt(sbi, QUOTA);
1532 		}
1533 		F2FS_OPTION(sbi).s_qf_names[i] = qname;
1534 	}
1535 
1536 	if (ctx->spec_mask & F2FS_SPEC_jqfmt)
1537 		F2FS_OPTION(sbi).s_jquota_fmt = F2FS_CTX_INFO(ctx).s_jquota_fmt;
1538 
1539 	if (quota_feature && F2FS_OPTION(sbi).s_jquota_fmt) {
1540 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
1541 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
1542 	}
1543 #endif
1544 }
1545 
1546 static void f2fs_apply_test_dummy_encryption(struct fs_context *fc,
1547 					     struct super_block *sb)
1548 {
1549 	struct f2fs_fs_context *ctx = fc->fs_private;
1550 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1551 
1552 	if (!fscrypt_is_dummy_policy_set(&F2FS_CTX_INFO(ctx).dummy_enc_policy) ||
1553 		/* if already set, it was already verified to be the same */
1554 		fscrypt_is_dummy_policy_set(&F2FS_OPTION(sbi).dummy_enc_policy))
1555 		return;
1556 	swap(F2FS_OPTION(sbi).dummy_enc_policy, F2FS_CTX_INFO(ctx).dummy_enc_policy);
1557 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
1558 }
1559 
1560 static void f2fs_apply_compression(struct fs_context *fc,
1561 				   struct super_block *sb)
1562 {
1563 #ifdef CONFIG_F2FS_FS_COMPRESSION
1564 	struct f2fs_fs_context *ctx = fc->fs_private;
1565 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1566 	unsigned char (*ctx_ext)[F2FS_EXTENSION_LEN];
1567 	unsigned char (*sbi_ext)[F2FS_EXTENSION_LEN];
1568 	int ctx_cnt, sbi_cnt, i;
1569 
1570 	if (ctx->spec_mask & F2FS_SPEC_compress_level)
1571 		F2FS_OPTION(sbi).compress_level =
1572 					F2FS_CTX_INFO(ctx).compress_level;
1573 	if (ctx->spec_mask & F2FS_SPEC_compress_algorithm)
1574 		F2FS_OPTION(sbi).compress_algorithm =
1575 					F2FS_CTX_INFO(ctx).compress_algorithm;
1576 	if (ctx->spec_mask & F2FS_SPEC_compress_log_size)
1577 		F2FS_OPTION(sbi).compress_log_size =
1578 					F2FS_CTX_INFO(ctx).compress_log_size;
1579 	if (ctx->spec_mask & F2FS_SPEC_compress_chksum)
1580 		F2FS_OPTION(sbi).compress_chksum =
1581 					F2FS_CTX_INFO(ctx).compress_chksum;
1582 	if (ctx->spec_mask & F2FS_SPEC_compress_mode)
1583 		F2FS_OPTION(sbi).compress_mode =
1584 					F2FS_CTX_INFO(ctx).compress_mode;
1585 	if (ctx->spec_mask & F2FS_SPEC_compress_extension) {
1586 		ctx_ext = F2FS_CTX_INFO(ctx).extensions;
1587 		ctx_cnt = F2FS_CTX_INFO(ctx).compress_ext_cnt;
1588 		sbi_ext = F2FS_OPTION(sbi).extensions;
1589 		sbi_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1590 		for (i = 0; i < ctx_cnt; i++) {
1591 			if (strlen(ctx_ext[i]) == 0)
1592 				continue;
1593 			strscpy(sbi_ext[sbi_cnt], ctx_ext[i]);
1594 			sbi_cnt++;
1595 		}
1596 		F2FS_OPTION(sbi).compress_ext_cnt = sbi_cnt;
1597 	}
1598 	if (ctx->spec_mask & F2FS_SPEC_nocompress_extension) {
1599 		ctx_ext = F2FS_CTX_INFO(ctx).noextensions;
1600 		ctx_cnt = F2FS_CTX_INFO(ctx).nocompress_ext_cnt;
1601 		sbi_ext = F2FS_OPTION(sbi).noextensions;
1602 		sbi_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1603 		for (i = 0; i < ctx_cnt; i++) {
1604 			if (strlen(ctx_ext[i]) == 0)
1605 				continue;
1606 			strscpy(sbi_ext[sbi_cnt], ctx_ext[i]);
1607 			sbi_cnt++;
1608 		}
1609 		F2FS_OPTION(sbi).nocompress_ext_cnt = sbi_cnt;
1610 	}
1611 #endif
1612 }
1613 
1614 static void f2fs_apply_options(struct fs_context *fc, struct super_block *sb)
1615 {
1616 	struct f2fs_fs_context *ctx = fc->fs_private;
1617 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1618 
1619 	F2FS_OPTION(sbi).opt &= ~ctx->opt_mask;
1620 	F2FS_OPTION(sbi).opt |= F2FS_CTX_INFO(ctx).opt;
1621 
1622 	if (ctx->spec_mask & F2FS_SPEC_background_gc)
1623 		F2FS_OPTION(sbi).bggc_mode = F2FS_CTX_INFO(ctx).bggc_mode;
1624 	if (ctx->spec_mask & F2FS_SPEC_inline_xattr_size)
1625 		F2FS_OPTION(sbi).inline_xattr_size =
1626 					F2FS_CTX_INFO(ctx).inline_xattr_size;
1627 	if (ctx->spec_mask & F2FS_SPEC_active_logs)
1628 		F2FS_OPTION(sbi).active_logs = F2FS_CTX_INFO(ctx).active_logs;
1629 	if (ctx->spec_mask & F2FS_SPEC_reserve_root)
1630 		F2FS_OPTION(sbi).root_reserved_blocks =
1631 					F2FS_CTX_INFO(ctx).root_reserved_blocks;
1632 	if (ctx->spec_mask & F2FS_SPEC_resgid)
1633 		F2FS_OPTION(sbi).s_resgid = F2FS_CTX_INFO(ctx).s_resgid;
1634 	if (ctx->spec_mask & F2FS_SPEC_resuid)
1635 		F2FS_OPTION(sbi).s_resuid = F2FS_CTX_INFO(ctx).s_resuid;
1636 	if (ctx->spec_mask & F2FS_SPEC_mode)
1637 		F2FS_OPTION(sbi).fs_mode = F2FS_CTX_INFO(ctx).fs_mode;
1638 #ifdef CONFIG_F2FS_FAULT_INJECTION
1639 	if (ctx->spec_mask & F2FS_SPEC_fault_injection)
1640 		(void)f2fs_build_fault_attr(sbi,
1641 		F2FS_CTX_INFO(ctx).fault_info.inject_rate, 0, FAULT_RATE);
1642 	if (ctx->spec_mask & F2FS_SPEC_fault_type)
1643 		(void)f2fs_build_fault_attr(sbi, 0,
1644 			F2FS_CTX_INFO(ctx).fault_info.inject_type, FAULT_TYPE);
1645 #endif
1646 	if (ctx->spec_mask & F2FS_SPEC_alloc_mode)
1647 		F2FS_OPTION(sbi).alloc_mode = F2FS_CTX_INFO(ctx).alloc_mode;
1648 	if (ctx->spec_mask & F2FS_SPEC_fsync_mode)
1649 		F2FS_OPTION(sbi).fsync_mode = F2FS_CTX_INFO(ctx).fsync_mode;
1650 	if (ctx->spec_mask & F2FS_SPEC_checkpoint_disable_cap)
1651 		F2FS_OPTION(sbi).unusable_cap = F2FS_CTX_INFO(ctx).unusable_cap;
1652 	if (ctx->spec_mask & F2FS_SPEC_checkpoint_disable_cap_perc)
1653 		F2FS_OPTION(sbi).unusable_cap_perc =
1654 					F2FS_CTX_INFO(ctx).unusable_cap_perc;
1655 	if (ctx->spec_mask & F2FS_SPEC_discard_unit)
1656 		F2FS_OPTION(sbi).discard_unit = F2FS_CTX_INFO(ctx).discard_unit;
1657 	if (ctx->spec_mask & F2FS_SPEC_memory_mode)
1658 		F2FS_OPTION(sbi).memory_mode = F2FS_CTX_INFO(ctx).memory_mode;
1659 	if (ctx->spec_mask & F2FS_SPEC_errors)
1660 		F2FS_OPTION(sbi).errors = F2FS_CTX_INFO(ctx).errors;
1661 
1662 	f2fs_apply_compression(fc, sb);
1663 	f2fs_apply_test_dummy_encryption(fc, sb);
1664 	f2fs_apply_quota_options(fc, sb);
1665 }
1666 
1667 static int f2fs_sanity_check_options(struct f2fs_sb_info *sbi, bool remount)
1668 {
1669 	if (f2fs_sb_has_device_alias(sbi) &&
1670 	    !test_opt(sbi, READ_EXTENT_CACHE)) {
1671 		f2fs_err(sbi, "device aliasing requires extent cache");
1672 		return -EINVAL;
1673 	}
1674 
1675 	if (!remount)
1676 		return 0;
1677 
1678 #ifdef CONFIG_BLK_DEV_ZONED
1679 	if (f2fs_sb_has_blkzoned(sbi) &&
1680 	    sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) {
1681 		f2fs_err(sbi,
1682 			"zoned: max open zones %u is too small, need at least %u open zones",
1683 				 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs);
1684 		return -EINVAL;
1685 	}
1686 #endif
1687 	if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) {
1688 		f2fs_warn(sbi, "LFS is not compatible with IPU");
1689 		return -EINVAL;
1690 	}
1691 	return 0;
1692 }
1693 
1694 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1695 {
1696 	struct f2fs_inode_info *fi;
1697 
1698 	if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC))
1699 		return NULL;
1700 
1701 	fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO);
1702 	if (!fi)
1703 		return NULL;
1704 
1705 	init_once((void *) fi);
1706 
1707 	/* Initialize f2fs-specific inode info */
1708 	atomic_set(&fi->dirty_pages, 0);
1709 	atomic_set(&fi->i_compr_blocks, 0);
1710 	atomic_set(&fi->open_count, 0);
1711 	init_f2fs_rwsem(&fi->i_sem);
1712 	spin_lock_init(&fi->i_size_lock);
1713 	INIT_LIST_HEAD(&fi->dirty_list);
1714 	INIT_LIST_HEAD(&fi->gdirty_list);
1715 	INIT_LIST_HEAD(&fi->gdonate_list);
1716 	init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
1717 	init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
1718 	init_f2fs_rwsem(&fi->i_xattr_sem);
1719 
1720 	/* Will be used by directory only */
1721 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1722 
1723 	return &fi->vfs_inode;
1724 }
1725 
1726 static int f2fs_drop_inode(struct inode *inode)
1727 {
1728 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1729 	int ret;
1730 
1731 	/*
1732 	 * during filesystem shutdown, if checkpoint is disabled,
1733 	 * drop useless meta/node dirty pages.
1734 	 */
1735 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1736 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1737 			inode->i_ino == F2FS_META_INO(sbi)) {
1738 			trace_f2fs_drop_inode(inode, 1);
1739 			return 1;
1740 		}
1741 	}
1742 
1743 	/*
1744 	 * This is to avoid a deadlock condition like below.
1745 	 * writeback_single_inode(inode)
1746 	 *  - f2fs_write_data_page
1747 	 *    - f2fs_gc -> iput -> evict
1748 	 *       - inode_wait_for_writeback(inode)
1749 	 */
1750 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1751 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1752 			/* to avoid evict_inode call simultaneously */
1753 			__iget(inode);
1754 			spin_unlock(&inode->i_lock);
1755 
1756 			/* should remain fi->extent_tree for writepage */
1757 			f2fs_destroy_extent_node(inode);
1758 
1759 			sb_start_intwrite(inode->i_sb);
1760 			f2fs_i_size_write(inode, 0);
1761 
1762 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1763 					inode, NULL, 0, DATA);
1764 			truncate_inode_pages_final(inode->i_mapping);
1765 
1766 			if (F2FS_HAS_BLOCKS(inode))
1767 				f2fs_truncate(inode);
1768 
1769 			sb_end_intwrite(inode->i_sb);
1770 
1771 			spin_lock(&inode->i_lock);
1772 			iput(inode);
1773 		}
1774 		trace_f2fs_drop_inode(inode, 0);
1775 		return 0;
1776 	}
1777 	ret = inode_generic_drop(inode);
1778 	if (!ret)
1779 		ret = fscrypt_drop_inode(inode);
1780 	trace_f2fs_drop_inode(inode, ret);
1781 	return ret;
1782 }
1783 
1784 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1785 {
1786 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1787 	int ret = 0;
1788 
1789 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1790 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1791 		ret = 1;
1792 	} else {
1793 		set_inode_flag(inode, FI_DIRTY_INODE);
1794 		stat_inc_dirty_inode(sbi, DIRTY_META);
1795 	}
1796 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1797 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1798 				&sbi->inode_list[DIRTY_META]);
1799 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1800 	}
1801 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1802 
1803 	/* if atomic write is not committed, set inode w/ atomic dirty */
1804 	if (!ret && f2fs_is_atomic_file(inode) &&
1805 			!is_inode_flag_set(inode, FI_ATOMIC_COMMITTED))
1806 		set_inode_flag(inode, FI_ATOMIC_DIRTIED);
1807 
1808 	return ret;
1809 }
1810 
1811 void f2fs_inode_synced(struct inode *inode)
1812 {
1813 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1814 
1815 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1816 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1817 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1818 		return;
1819 	}
1820 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1821 		list_del_init(&F2FS_I(inode)->gdirty_list);
1822 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1823 	}
1824 	clear_inode_flag(inode, FI_DIRTY_INODE);
1825 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1826 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1827 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1828 }
1829 
1830 /*
1831  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1832  *
1833  * We should call set_dirty_inode to write the dirty inode through write_inode.
1834  */
1835 static void f2fs_dirty_inode(struct inode *inode, int flags)
1836 {
1837 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1838 
1839 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1840 			inode->i_ino == F2FS_META_INO(sbi))
1841 		return;
1842 
1843 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1844 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1845 
1846 	f2fs_inode_dirtied(inode, false);
1847 }
1848 
1849 static void f2fs_free_inode(struct inode *inode)
1850 {
1851 	fscrypt_free_inode(inode);
1852 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1853 }
1854 
1855 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1856 {
1857 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1858 	percpu_counter_destroy(&sbi->rf_node_block_count);
1859 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1860 }
1861 
1862 static void destroy_device_list(struct f2fs_sb_info *sbi)
1863 {
1864 	int i;
1865 
1866 	for (i = 0; i < sbi->s_ndevs; i++) {
1867 		if (i > 0)
1868 			bdev_fput(FDEV(i).bdev_file);
1869 #ifdef CONFIG_BLK_DEV_ZONED
1870 		kvfree(FDEV(i).blkz_seq);
1871 #endif
1872 	}
1873 	kvfree(sbi->devs);
1874 }
1875 
1876 static void f2fs_put_super(struct super_block *sb)
1877 {
1878 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1879 	int i;
1880 	int err = 0;
1881 	bool done;
1882 
1883 	/* unregister procfs/sysfs entries in advance to avoid race case */
1884 	f2fs_unregister_sysfs(sbi);
1885 
1886 	f2fs_quota_off_umount(sb);
1887 
1888 	/* prevent remaining shrinker jobs */
1889 	mutex_lock(&sbi->umount_mutex);
1890 
1891 	/*
1892 	 * flush all issued checkpoints and stop checkpoint issue thread.
1893 	 * after then, all checkpoints should be done by each process context.
1894 	 */
1895 	f2fs_stop_ckpt_thread(sbi);
1896 
1897 	/*
1898 	 * We don't need to do checkpoint when superblock is clean.
1899 	 * But, the previous checkpoint was not done by umount, it needs to do
1900 	 * clean checkpoint again.
1901 	 */
1902 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1903 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1904 		struct cp_control cpc = {
1905 			.reason = CP_UMOUNT,
1906 		};
1907 		stat_inc_cp_call_count(sbi, TOTAL_CALL);
1908 		err = f2fs_write_checkpoint(sbi, &cpc);
1909 	}
1910 
1911 	/* be sure to wait for any on-going discard commands */
1912 	done = f2fs_issue_discard_timeout(sbi);
1913 	if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) {
1914 		struct cp_control cpc = {
1915 			.reason = CP_UMOUNT | CP_TRIMMED,
1916 		};
1917 		stat_inc_cp_call_count(sbi, TOTAL_CALL);
1918 		err = f2fs_write_checkpoint(sbi, &cpc);
1919 	}
1920 
1921 	/*
1922 	 * normally superblock is clean, so we need to release this.
1923 	 * In addition, EIO will skip do checkpoint, we need this as well.
1924 	 */
1925 	f2fs_release_ino_entry(sbi, true);
1926 
1927 	f2fs_leave_shrinker(sbi);
1928 	mutex_unlock(&sbi->umount_mutex);
1929 
1930 	/* our cp_error case, we can wait for any writeback page */
1931 	f2fs_flush_merged_writes(sbi);
1932 
1933 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1934 
1935 	if (err || f2fs_cp_error(sbi)) {
1936 		truncate_inode_pages_final(NODE_MAPPING(sbi));
1937 		truncate_inode_pages_final(META_MAPPING(sbi));
1938 	}
1939 
1940 	for (i = 0; i < NR_COUNT_TYPE; i++) {
1941 		if (!get_pages(sbi, i))
1942 			continue;
1943 		f2fs_err(sbi, "detect filesystem reference count leak during "
1944 			"umount, type: %d, count: %lld", i, get_pages(sbi, i));
1945 		f2fs_bug_on(sbi, 1);
1946 	}
1947 
1948 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1949 
1950 	f2fs_destroy_compress_inode(sbi);
1951 
1952 	iput(sbi->node_inode);
1953 	sbi->node_inode = NULL;
1954 
1955 	iput(sbi->meta_inode);
1956 	sbi->meta_inode = NULL;
1957 
1958 	/*
1959 	 * iput() can update stat information, if f2fs_write_checkpoint()
1960 	 * above failed with error.
1961 	 */
1962 	f2fs_destroy_stats(sbi);
1963 
1964 	/* destroy f2fs internal modules */
1965 	f2fs_destroy_node_manager(sbi);
1966 	f2fs_destroy_segment_manager(sbi);
1967 
1968 	/* flush s_error_work before sbi destroy */
1969 	flush_work(&sbi->s_error_work);
1970 
1971 	f2fs_destroy_post_read_wq(sbi);
1972 
1973 	kvfree(sbi->ckpt);
1974 
1975 	kfree(sbi->raw_super);
1976 
1977 	f2fs_destroy_page_array_cache(sbi);
1978 	f2fs_destroy_xattr_caches(sbi);
1979 #ifdef CONFIG_QUOTA
1980 	for (i = 0; i < MAXQUOTAS; i++)
1981 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1982 #endif
1983 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1984 	destroy_percpu_info(sbi);
1985 	f2fs_destroy_iostat(sbi);
1986 	for (i = 0; i < NR_PAGE_TYPE; i++)
1987 		kfree(sbi->write_io[i]);
1988 #if IS_ENABLED(CONFIG_UNICODE)
1989 	utf8_unload(sb->s_encoding);
1990 #endif
1991 }
1992 
1993 int f2fs_sync_fs(struct super_block *sb, int sync)
1994 {
1995 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1996 	int err = 0;
1997 
1998 	if (unlikely(f2fs_cp_error(sbi)))
1999 		return 0;
2000 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2001 		return 0;
2002 
2003 	trace_f2fs_sync_fs(sb, sync);
2004 
2005 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2006 		return -EAGAIN;
2007 
2008 	if (sync) {
2009 		stat_inc_cp_call_count(sbi, TOTAL_CALL);
2010 		err = f2fs_issue_checkpoint(sbi);
2011 	}
2012 
2013 	return err;
2014 }
2015 
2016 static int f2fs_freeze(struct super_block *sb)
2017 {
2018 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2019 
2020 	if (f2fs_readonly(sb))
2021 		return 0;
2022 
2023 	/* IO error happened before */
2024 	if (unlikely(f2fs_cp_error(sbi)))
2025 		return -EIO;
2026 
2027 	/* must be clean, since sync_filesystem() was already called */
2028 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY))
2029 		return -EINVAL;
2030 
2031 	sbi->umount_lock_holder = current;
2032 
2033 	/* Let's flush checkpoints and stop the thread. */
2034 	f2fs_flush_ckpt_thread(sbi);
2035 
2036 	sbi->umount_lock_holder = NULL;
2037 
2038 	/* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
2039 	set_sbi_flag(sbi, SBI_IS_FREEZING);
2040 	return 0;
2041 }
2042 
2043 static int f2fs_unfreeze(struct super_block *sb)
2044 {
2045 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2046 
2047 	/*
2048 	 * It will update discard_max_bytes of mounted lvm device to zero
2049 	 * after creating snapshot on this lvm device, let's drop all
2050 	 * remained discards.
2051 	 * We don't need to disable real-time discard because discard_max_bytes
2052 	 * will recover after removal of snapshot.
2053 	 */
2054 	if (test_opt(sbi, DISCARD) && !f2fs_hw_support_discard(sbi))
2055 		f2fs_issue_discard_timeout(sbi);
2056 
2057 	clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
2058 	return 0;
2059 }
2060 
2061 #ifdef CONFIG_QUOTA
2062 static int f2fs_statfs_project(struct super_block *sb,
2063 				kprojid_t projid, struct kstatfs *buf)
2064 {
2065 	struct kqid qid;
2066 	struct dquot *dquot;
2067 	u64 limit;
2068 	u64 curblock;
2069 
2070 	qid = make_kqid_projid(projid);
2071 	dquot = dqget(sb, qid);
2072 	if (IS_ERR(dquot))
2073 		return PTR_ERR(dquot);
2074 	spin_lock(&dquot->dq_dqb_lock);
2075 
2076 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
2077 					dquot->dq_dqb.dqb_bhardlimit);
2078 	limit >>= sb->s_blocksize_bits;
2079 
2080 	if (limit) {
2081 		uint64_t remaining = 0;
2082 
2083 		curblock = (dquot->dq_dqb.dqb_curspace +
2084 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
2085 		if (limit > curblock)
2086 			remaining = limit - curblock;
2087 
2088 		buf->f_blocks = min(buf->f_blocks, limit);
2089 		buf->f_bfree = min(buf->f_bfree, remaining);
2090 		buf->f_bavail = min(buf->f_bavail, remaining);
2091 	}
2092 
2093 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
2094 					dquot->dq_dqb.dqb_ihardlimit);
2095 
2096 	if (limit) {
2097 		uint64_t remaining = 0;
2098 
2099 		if (limit > dquot->dq_dqb.dqb_curinodes)
2100 			remaining = limit - dquot->dq_dqb.dqb_curinodes;
2101 
2102 		buf->f_files = min(buf->f_files, limit);
2103 		buf->f_ffree = min(buf->f_ffree, remaining);
2104 	}
2105 
2106 	spin_unlock(&dquot->dq_dqb_lock);
2107 	dqput(dquot);
2108 	return 0;
2109 }
2110 #endif
2111 
2112 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
2113 {
2114 	struct super_block *sb = dentry->d_sb;
2115 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2116 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2117 	block_t total_count, user_block_count, start_count;
2118 	u64 avail_node_count;
2119 	unsigned int total_valid_node_count;
2120 
2121 	total_count = le64_to_cpu(sbi->raw_super->block_count);
2122 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
2123 	buf->f_type = F2FS_SUPER_MAGIC;
2124 	buf->f_bsize = sbi->blocksize;
2125 
2126 	buf->f_blocks = total_count - start_count;
2127 
2128 	spin_lock(&sbi->stat_lock);
2129 	if (sbi->carve_out)
2130 		buf->f_blocks -= sbi->current_reserved_blocks;
2131 	user_block_count = sbi->user_block_count;
2132 	total_valid_node_count = valid_node_count(sbi);
2133 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2134 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
2135 						sbi->current_reserved_blocks;
2136 
2137 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
2138 		buf->f_bfree = 0;
2139 	else
2140 		buf->f_bfree -= sbi->unusable_block_count;
2141 	spin_unlock(&sbi->stat_lock);
2142 
2143 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
2144 		buf->f_bavail = buf->f_bfree -
2145 				F2FS_OPTION(sbi).root_reserved_blocks;
2146 	else
2147 		buf->f_bavail = 0;
2148 
2149 	if (avail_node_count > user_block_count) {
2150 		buf->f_files = user_block_count;
2151 		buf->f_ffree = buf->f_bavail;
2152 	} else {
2153 		buf->f_files = avail_node_count;
2154 		buf->f_ffree = min(avail_node_count - total_valid_node_count,
2155 					buf->f_bavail);
2156 	}
2157 
2158 	buf->f_namelen = F2FS_NAME_LEN;
2159 	buf->f_fsid    = u64_to_fsid(id);
2160 
2161 #ifdef CONFIG_QUOTA
2162 	if (is_inode_flag_set(d_inode(dentry), FI_PROJ_INHERIT) &&
2163 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
2164 		f2fs_statfs_project(sb, F2FS_I(d_inode(dentry))->i_projid, buf);
2165 	}
2166 #endif
2167 	return 0;
2168 }
2169 
2170 static inline void f2fs_show_quota_options(struct seq_file *seq,
2171 					   struct super_block *sb)
2172 {
2173 #ifdef CONFIG_QUOTA
2174 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2175 
2176 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
2177 		char *fmtname = "";
2178 
2179 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
2180 		case QFMT_VFS_OLD:
2181 			fmtname = "vfsold";
2182 			break;
2183 		case QFMT_VFS_V0:
2184 			fmtname = "vfsv0";
2185 			break;
2186 		case QFMT_VFS_V1:
2187 			fmtname = "vfsv1";
2188 			break;
2189 		}
2190 		seq_printf(seq, ",jqfmt=%s", fmtname);
2191 	}
2192 
2193 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
2194 		seq_show_option(seq, "usrjquota",
2195 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
2196 
2197 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
2198 		seq_show_option(seq, "grpjquota",
2199 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
2200 
2201 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
2202 		seq_show_option(seq, "prjjquota",
2203 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
2204 #endif
2205 }
2206 
2207 #ifdef CONFIG_F2FS_FS_COMPRESSION
2208 static inline void f2fs_show_compress_options(struct seq_file *seq,
2209 							struct super_block *sb)
2210 {
2211 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2212 	char *algtype = "";
2213 	int i;
2214 
2215 	if (!f2fs_sb_has_compression(sbi))
2216 		return;
2217 
2218 	switch (F2FS_OPTION(sbi).compress_algorithm) {
2219 	case COMPRESS_LZO:
2220 		algtype = "lzo";
2221 		break;
2222 	case COMPRESS_LZ4:
2223 		algtype = "lz4";
2224 		break;
2225 	case COMPRESS_ZSTD:
2226 		algtype = "zstd";
2227 		break;
2228 	case COMPRESS_LZORLE:
2229 		algtype = "lzo-rle";
2230 		break;
2231 	}
2232 	seq_printf(seq, ",compress_algorithm=%s", algtype);
2233 
2234 	if (F2FS_OPTION(sbi).compress_level)
2235 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
2236 
2237 	seq_printf(seq, ",compress_log_size=%u",
2238 			F2FS_OPTION(sbi).compress_log_size);
2239 
2240 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
2241 		seq_printf(seq, ",compress_extension=%s",
2242 			F2FS_OPTION(sbi).extensions[i]);
2243 	}
2244 
2245 	for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
2246 		seq_printf(seq, ",nocompress_extension=%s",
2247 			F2FS_OPTION(sbi).noextensions[i]);
2248 	}
2249 
2250 	if (F2FS_OPTION(sbi).compress_chksum)
2251 		seq_puts(seq, ",compress_chksum");
2252 
2253 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
2254 		seq_printf(seq, ",compress_mode=%s", "fs");
2255 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
2256 		seq_printf(seq, ",compress_mode=%s", "user");
2257 
2258 	if (test_opt(sbi, COMPRESS_CACHE))
2259 		seq_puts(seq, ",compress_cache");
2260 }
2261 #endif
2262 
2263 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
2264 {
2265 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
2266 
2267 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
2268 		seq_printf(seq, ",background_gc=%s", "sync");
2269 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
2270 		seq_printf(seq, ",background_gc=%s", "on");
2271 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
2272 		seq_printf(seq, ",background_gc=%s", "off");
2273 
2274 	if (test_opt(sbi, GC_MERGE))
2275 		seq_puts(seq, ",gc_merge");
2276 	else
2277 		seq_puts(seq, ",nogc_merge");
2278 
2279 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
2280 		seq_puts(seq, ",disable_roll_forward");
2281 	if (test_opt(sbi, NORECOVERY))
2282 		seq_puts(seq, ",norecovery");
2283 	if (test_opt(sbi, DISCARD)) {
2284 		seq_puts(seq, ",discard");
2285 		if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
2286 			seq_printf(seq, ",discard_unit=%s", "block");
2287 		else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2288 			seq_printf(seq, ",discard_unit=%s", "segment");
2289 		else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2290 			seq_printf(seq, ",discard_unit=%s", "section");
2291 	} else {
2292 		seq_puts(seq, ",nodiscard");
2293 	}
2294 #ifdef CONFIG_F2FS_FS_XATTR
2295 	if (test_opt(sbi, XATTR_USER))
2296 		seq_puts(seq, ",user_xattr");
2297 	else
2298 		seq_puts(seq, ",nouser_xattr");
2299 	if (test_opt(sbi, INLINE_XATTR))
2300 		seq_puts(seq, ",inline_xattr");
2301 	else
2302 		seq_puts(seq, ",noinline_xattr");
2303 	if (test_opt(sbi, INLINE_XATTR_SIZE))
2304 		seq_printf(seq, ",inline_xattr_size=%u",
2305 					F2FS_OPTION(sbi).inline_xattr_size);
2306 #endif
2307 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2308 	if (test_opt(sbi, POSIX_ACL))
2309 		seq_puts(seq, ",acl");
2310 	else
2311 		seq_puts(seq, ",noacl");
2312 #endif
2313 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
2314 		seq_puts(seq, ",disable_ext_identify");
2315 	if (test_opt(sbi, INLINE_DATA))
2316 		seq_puts(seq, ",inline_data");
2317 	else
2318 		seq_puts(seq, ",noinline_data");
2319 	if (test_opt(sbi, INLINE_DENTRY))
2320 		seq_puts(seq, ",inline_dentry");
2321 	else
2322 		seq_puts(seq, ",noinline_dentry");
2323 	if (test_opt(sbi, FLUSH_MERGE))
2324 		seq_puts(seq, ",flush_merge");
2325 	else
2326 		seq_puts(seq, ",noflush_merge");
2327 	if (test_opt(sbi, NOBARRIER))
2328 		seq_puts(seq, ",nobarrier");
2329 	else
2330 		seq_puts(seq, ",barrier");
2331 	if (test_opt(sbi, FASTBOOT))
2332 		seq_puts(seq, ",fastboot");
2333 	if (test_opt(sbi, READ_EXTENT_CACHE))
2334 		seq_puts(seq, ",extent_cache");
2335 	else
2336 		seq_puts(seq, ",noextent_cache");
2337 	if (test_opt(sbi, AGE_EXTENT_CACHE))
2338 		seq_puts(seq, ",age_extent_cache");
2339 	if (test_opt(sbi, DATA_FLUSH))
2340 		seq_puts(seq, ",data_flush");
2341 
2342 	seq_puts(seq, ",mode=");
2343 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
2344 		seq_puts(seq, "adaptive");
2345 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
2346 		seq_puts(seq, "lfs");
2347 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
2348 		seq_puts(seq, "fragment:segment");
2349 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2350 		seq_puts(seq, "fragment:block");
2351 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
2352 	if (test_opt(sbi, RESERVE_ROOT))
2353 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
2354 				F2FS_OPTION(sbi).root_reserved_blocks,
2355 				from_kuid_munged(&init_user_ns,
2356 					F2FS_OPTION(sbi).s_resuid),
2357 				from_kgid_munged(&init_user_ns,
2358 					F2FS_OPTION(sbi).s_resgid));
2359 #ifdef CONFIG_F2FS_FAULT_INJECTION
2360 	if (test_opt(sbi, FAULT_INJECTION)) {
2361 		seq_printf(seq, ",fault_injection=%u",
2362 				F2FS_OPTION(sbi).fault_info.inject_rate);
2363 		seq_printf(seq, ",fault_type=%u",
2364 				F2FS_OPTION(sbi).fault_info.inject_type);
2365 	}
2366 #endif
2367 #ifdef CONFIG_QUOTA
2368 	if (test_opt(sbi, QUOTA))
2369 		seq_puts(seq, ",quota");
2370 	if (test_opt(sbi, USRQUOTA))
2371 		seq_puts(seq, ",usrquota");
2372 	if (test_opt(sbi, GRPQUOTA))
2373 		seq_puts(seq, ",grpquota");
2374 	if (test_opt(sbi, PRJQUOTA))
2375 		seq_puts(seq, ",prjquota");
2376 #endif
2377 	f2fs_show_quota_options(seq, sbi->sb);
2378 
2379 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
2380 
2381 	if (sbi->sb->s_flags & SB_INLINECRYPT)
2382 		seq_puts(seq, ",inlinecrypt");
2383 
2384 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
2385 		seq_printf(seq, ",alloc_mode=%s", "default");
2386 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2387 		seq_printf(seq, ",alloc_mode=%s", "reuse");
2388 
2389 	if (test_opt(sbi, DISABLE_CHECKPOINT))
2390 		seq_printf(seq, ",checkpoint=disable:%u",
2391 				F2FS_OPTION(sbi).unusable_cap);
2392 	if (test_opt(sbi, MERGE_CHECKPOINT))
2393 		seq_puts(seq, ",checkpoint_merge");
2394 	else
2395 		seq_puts(seq, ",nocheckpoint_merge");
2396 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
2397 		seq_printf(seq, ",fsync_mode=%s", "posix");
2398 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
2399 		seq_printf(seq, ",fsync_mode=%s", "strict");
2400 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
2401 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
2402 
2403 #ifdef CONFIG_F2FS_FS_COMPRESSION
2404 	f2fs_show_compress_options(seq, sbi->sb);
2405 #endif
2406 
2407 	if (test_opt(sbi, ATGC))
2408 		seq_puts(seq, ",atgc");
2409 
2410 	if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL)
2411 		seq_printf(seq, ",memory=%s", "normal");
2412 	else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW)
2413 		seq_printf(seq, ",memory=%s", "low");
2414 
2415 	if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2416 		seq_printf(seq, ",errors=%s", "remount-ro");
2417 	else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE)
2418 		seq_printf(seq, ",errors=%s", "continue");
2419 	else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC)
2420 		seq_printf(seq, ",errors=%s", "panic");
2421 
2422 	if (test_opt(sbi, NAT_BITS))
2423 		seq_puts(seq, ",nat_bits");
2424 
2425 	return 0;
2426 }
2427 
2428 static void default_options(struct f2fs_sb_info *sbi, bool remount)
2429 {
2430 	/* init some FS parameters */
2431 	if (!remount) {
2432 		set_opt(sbi, READ_EXTENT_CACHE);
2433 		clear_opt(sbi, DISABLE_CHECKPOINT);
2434 
2435 		if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2436 			set_opt(sbi, DISCARD);
2437 
2438 		if (f2fs_sb_has_blkzoned(sbi))
2439 			F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2440 		else
2441 			F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2442 	}
2443 
2444 	if (f2fs_sb_has_readonly(sbi))
2445 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
2446 	else
2447 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
2448 
2449 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
2450 	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <=
2451 							SMALL_VOLUME_SEGMENTS)
2452 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2453 	else
2454 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
2455 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
2456 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2457 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2458 	if (f2fs_sb_has_compression(sbi)) {
2459 		F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
2460 		F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
2461 		F2FS_OPTION(sbi).compress_ext_cnt = 0;
2462 		F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
2463 	}
2464 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
2465 	F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL;
2466 	F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE;
2467 
2468 	set_opt(sbi, INLINE_XATTR);
2469 	set_opt(sbi, INLINE_DATA);
2470 	set_opt(sbi, INLINE_DENTRY);
2471 	set_opt(sbi, MERGE_CHECKPOINT);
2472 	set_opt(sbi, LAZYTIME);
2473 	F2FS_OPTION(sbi).unusable_cap = 0;
2474 	if (!f2fs_is_readonly(sbi))
2475 		set_opt(sbi, FLUSH_MERGE);
2476 	if (f2fs_sb_has_blkzoned(sbi))
2477 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2478 	else
2479 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2480 
2481 #ifdef CONFIG_F2FS_FS_XATTR
2482 	set_opt(sbi, XATTR_USER);
2483 #endif
2484 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2485 	set_opt(sbi, POSIX_ACL);
2486 #endif
2487 
2488 	f2fs_build_fault_attr(sbi, 0, 0, FAULT_ALL);
2489 }
2490 
2491 #ifdef CONFIG_QUOTA
2492 static int f2fs_enable_quotas(struct super_block *sb);
2493 #endif
2494 
2495 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2496 {
2497 	unsigned int s_flags = sbi->sb->s_flags;
2498 	struct cp_control cpc;
2499 	unsigned int gc_mode = sbi->gc_mode;
2500 	int err = 0;
2501 	int ret;
2502 	block_t unusable;
2503 
2504 	if (s_flags & SB_RDONLY) {
2505 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
2506 		return -EINVAL;
2507 	}
2508 	sbi->sb->s_flags |= SB_ACTIVE;
2509 
2510 	/* check if we need more GC first */
2511 	unusable = f2fs_get_unusable_blocks(sbi);
2512 	if (!f2fs_disable_cp_again(sbi, unusable))
2513 		goto skip_gc;
2514 
2515 	f2fs_update_time(sbi, DISABLE_TIME);
2516 
2517 	sbi->gc_mode = GC_URGENT_HIGH;
2518 
2519 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2520 		struct f2fs_gc_control gc_control = {
2521 			.victim_segno = NULL_SEGNO,
2522 			.init_gc_type = FG_GC,
2523 			.should_migrate_blocks = false,
2524 			.err_gc_skipped = true,
2525 			.no_bg_gc = true,
2526 			.nr_free_secs = 1 };
2527 
2528 		f2fs_down_write(&sbi->gc_lock);
2529 		stat_inc_gc_call_count(sbi, FOREGROUND);
2530 		err = f2fs_gc(sbi, &gc_control);
2531 		if (err == -ENODATA) {
2532 			err = 0;
2533 			break;
2534 		}
2535 		if (err && err != -EAGAIN)
2536 			break;
2537 	}
2538 
2539 	ret = sync_filesystem(sbi->sb);
2540 	if (ret || err) {
2541 		err = ret ? ret : err;
2542 		goto restore_flag;
2543 	}
2544 
2545 	unusable = f2fs_get_unusable_blocks(sbi);
2546 	if (f2fs_disable_cp_again(sbi, unusable)) {
2547 		err = -EAGAIN;
2548 		goto restore_flag;
2549 	}
2550 
2551 skip_gc:
2552 	f2fs_down_write(&sbi->gc_lock);
2553 	cpc.reason = CP_PAUSE;
2554 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2555 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
2556 	err = f2fs_write_checkpoint(sbi, &cpc);
2557 	if (err)
2558 		goto out_unlock;
2559 
2560 	spin_lock(&sbi->stat_lock);
2561 	sbi->unusable_block_count = unusable;
2562 	spin_unlock(&sbi->stat_lock);
2563 
2564 out_unlock:
2565 	f2fs_up_write(&sbi->gc_lock);
2566 restore_flag:
2567 	sbi->gc_mode = gc_mode;
2568 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2569 	return err;
2570 }
2571 
2572 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2573 {
2574 	int retry = DEFAULT_RETRY_IO_COUNT;
2575 
2576 	/* we should flush all the data to keep data consistency */
2577 	do {
2578 		sync_inodes_sb(sbi->sb);
2579 		f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2580 	} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2581 
2582 	if (unlikely(retry < 0))
2583 		f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2584 
2585 	f2fs_down_write(&sbi->gc_lock);
2586 	f2fs_dirty_to_prefree(sbi);
2587 
2588 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2589 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2590 	f2fs_up_write(&sbi->gc_lock);
2591 
2592 	f2fs_sync_fs(sbi->sb, 1);
2593 
2594 	/* Let's ensure there's no pending checkpoint anymore */
2595 	f2fs_flush_ckpt_thread(sbi);
2596 }
2597 
2598 static int __f2fs_remount(struct fs_context *fc, struct super_block *sb)
2599 {
2600 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2601 	struct f2fs_mount_info org_mount_opt;
2602 	unsigned long old_sb_flags;
2603 	unsigned int flags = fc->sb_flags;
2604 	int err;
2605 	bool need_restart_gc = false, need_stop_gc = false;
2606 	bool need_restart_flush = false, need_stop_flush = false;
2607 	bool need_restart_discard = false, need_stop_discard = false;
2608 	bool need_enable_checkpoint = false, need_disable_checkpoint = false;
2609 	bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE);
2610 	bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE);
2611 	bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2612 	bool no_atgc = !test_opt(sbi, ATGC);
2613 	bool no_discard = !test_opt(sbi, DISCARD);
2614 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2615 	bool block_unit_discard = f2fs_block_unit_discard(sbi);
2616 	bool no_nat_bits = !test_opt(sbi, NAT_BITS);
2617 #ifdef CONFIG_QUOTA
2618 	int i, j;
2619 #endif
2620 
2621 	/*
2622 	 * Save the old mount options in case we
2623 	 * need to restore them.
2624 	 */
2625 	org_mount_opt = sbi->mount_opt;
2626 	old_sb_flags = sb->s_flags;
2627 
2628 	sbi->umount_lock_holder = current;
2629 
2630 #ifdef CONFIG_QUOTA
2631 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2632 	for (i = 0; i < MAXQUOTAS; i++) {
2633 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2634 			org_mount_opt.s_qf_names[i] =
2635 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2636 				GFP_KERNEL);
2637 			if (!org_mount_opt.s_qf_names[i]) {
2638 				for (j = 0; j < i; j++)
2639 					kfree(org_mount_opt.s_qf_names[j]);
2640 				return -ENOMEM;
2641 			}
2642 		} else {
2643 			org_mount_opt.s_qf_names[i] = NULL;
2644 		}
2645 	}
2646 #endif
2647 
2648 	/* recover superblocks we couldn't write due to previous RO mount */
2649 	if (!(flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2650 		err = f2fs_commit_super(sbi, false);
2651 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2652 			  err);
2653 		if (!err)
2654 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2655 	}
2656 
2657 	default_options(sbi, true);
2658 
2659 	err = f2fs_check_opt_consistency(fc, sb);
2660 	if (err)
2661 		goto restore_opts;
2662 
2663 	f2fs_apply_options(fc, sb);
2664 
2665 	err = f2fs_sanity_check_options(sbi, true);
2666 	if (err)
2667 		goto restore_opts;
2668 
2669 	/* flush outstanding errors before changing fs state */
2670 	flush_work(&sbi->s_error_work);
2671 
2672 	/*
2673 	 * Previous and new state of filesystem is RO,
2674 	 * so skip checking GC and FLUSH_MERGE conditions.
2675 	 */
2676 	if (f2fs_readonly(sb) && (flags & SB_RDONLY))
2677 		goto skip;
2678 
2679 	if (f2fs_dev_is_readonly(sbi) && !(flags & SB_RDONLY)) {
2680 		err = -EROFS;
2681 		goto restore_opts;
2682 	}
2683 
2684 #ifdef CONFIG_QUOTA
2685 	if (!f2fs_readonly(sb) && (flags & SB_RDONLY)) {
2686 		err = dquot_suspend(sb, -1);
2687 		if (err < 0)
2688 			goto restore_opts;
2689 	} else if (f2fs_readonly(sb) && !(flags & SB_RDONLY)) {
2690 		/* dquot_resume needs RW */
2691 		sb->s_flags &= ~SB_RDONLY;
2692 		if (sb_any_quota_suspended(sb)) {
2693 			dquot_resume(sb, -1);
2694 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2695 			err = f2fs_enable_quotas(sb);
2696 			if (err)
2697 				goto restore_opts;
2698 		}
2699 	}
2700 #endif
2701 	/* disallow enable atgc dynamically */
2702 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2703 		err = -EINVAL;
2704 		f2fs_warn(sbi, "switch atgc option is not allowed");
2705 		goto restore_opts;
2706 	}
2707 
2708 	/* disallow enable/disable extent_cache dynamically */
2709 	if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) {
2710 		err = -EINVAL;
2711 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2712 		goto restore_opts;
2713 	}
2714 	/* disallow enable/disable age extent_cache dynamically */
2715 	if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) {
2716 		err = -EINVAL;
2717 		f2fs_warn(sbi, "switch age_extent_cache option is not allowed");
2718 		goto restore_opts;
2719 	}
2720 
2721 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2722 		err = -EINVAL;
2723 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2724 		goto restore_opts;
2725 	}
2726 
2727 	if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2728 		err = -EINVAL;
2729 		f2fs_warn(sbi, "switch discard_unit option is not allowed");
2730 		goto restore_opts;
2731 	}
2732 
2733 	if (no_nat_bits == !!test_opt(sbi, NAT_BITS)) {
2734 		err = -EINVAL;
2735 		f2fs_warn(sbi, "switch nat_bits option is not allowed");
2736 		goto restore_opts;
2737 	}
2738 
2739 	if ((flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2740 		err = -EINVAL;
2741 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2742 		goto restore_opts;
2743 	}
2744 
2745 	/*
2746 	 * We stop the GC thread if FS is mounted as RO
2747 	 * or if background_gc = off is passed in mount
2748 	 * option. Also sync the filesystem.
2749 	 */
2750 	if ((flags & SB_RDONLY) ||
2751 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2752 			!test_opt(sbi, GC_MERGE))) {
2753 		if (sbi->gc_thread) {
2754 			f2fs_stop_gc_thread(sbi);
2755 			need_restart_gc = true;
2756 		}
2757 	} else if (!sbi->gc_thread) {
2758 		err = f2fs_start_gc_thread(sbi);
2759 		if (err)
2760 			goto restore_opts;
2761 		need_stop_gc = true;
2762 	}
2763 
2764 	if (flags & SB_RDONLY) {
2765 		sync_inodes_sb(sb);
2766 
2767 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2768 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2769 		f2fs_sync_fs(sb, 1);
2770 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2771 	}
2772 
2773 	/*
2774 	 * We stop issue flush thread if FS is mounted as RO
2775 	 * or if flush_merge is not passed in mount option.
2776 	 */
2777 	if ((flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2778 		clear_opt(sbi, FLUSH_MERGE);
2779 		f2fs_destroy_flush_cmd_control(sbi, false);
2780 		need_restart_flush = true;
2781 	} else {
2782 		err = f2fs_create_flush_cmd_control(sbi);
2783 		if (err)
2784 			goto restore_gc;
2785 		need_stop_flush = true;
2786 	}
2787 
2788 	if (no_discard == !!test_opt(sbi, DISCARD)) {
2789 		if (test_opt(sbi, DISCARD)) {
2790 			err = f2fs_start_discard_thread(sbi);
2791 			if (err)
2792 				goto restore_flush;
2793 			need_stop_discard = true;
2794 		} else {
2795 			f2fs_stop_discard_thread(sbi);
2796 			f2fs_issue_discard_timeout(sbi);
2797 			need_restart_discard = true;
2798 		}
2799 	}
2800 
2801 	adjust_unusable_cap_perc(sbi);
2802 	if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2803 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2804 			err = f2fs_disable_checkpoint(sbi);
2805 			if (err)
2806 				goto restore_discard;
2807 			need_enable_checkpoint = true;
2808 		} else {
2809 			f2fs_enable_checkpoint(sbi);
2810 			need_disable_checkpoint = true;
2811 		}
2812 	}
2813 
2814 	/*
2815 	 * Place this routine at the end, since a new checkpoint would be
2816 	 * triggered while remount and we need to take care of it before
2817 	 * returning from remount.
2818 	 */
2819 	if ((flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2820 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2821 		f2fs_stop_ckpt_thread(sbi);
2822 	} else {
2823 		/* Flush if the previous checkpoint, if exists. */
2824 		f2fs_flush_ckpt_thread(sbi);
2825 
2826 		err = f2fs_start_ckpt_thread(sbi);
2827 		if (err) {
2828 			f2fs_err(sbi,
2829 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2830 			    err);
2831 			goto restore_checkpoint;
2832 		}
2833 	}
2834 
2835 skip:
2836 #ifdef CONFIG_QUOTA
2837 	/* Release old quota file names */
2838 	for (i = 0; i < MAXQUOTAS; i++)
2839 		kfree(org_mount_opt.s_qf_names[i]);
2840 #endif
2841 	/* Update the POSIXACL Flag */
2842 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2843 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2844 
2845 	limit_reserve_root(sbi);
2846 	fc->sb_flags = (flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2847 
2848 	sbi->umount_lock_holder = NULL;
2849 	return 0;
2850 restore_checkpoint:
2851 	if (need_enable_checkpoint) {
2852 		f2fs_enable_checkpoint(sbi);
2853 	} else if (need_disable_checkpoint) {
2854 		if (f2fs_disable_checkpoint(sbi))
2855 			f2fs_warn(sbi, "checkpoint has not been disabled");
2856 	}
2857 restore_discard:
2858 	if (need_restart_discard) {
2859 		if (f2fs_start_discard_thread(sbi))
2860 			f2fs_warn(sbi, "discard has been stopped");
2861 	} else if (need_stop_discard) {
2862 		f2fs_stop_discard_thread(sbi);
2863 	}
2864 restore_flush:
2865 	if (need_restart_flush) {
2866 		if (f2fs_create_flush_cmd_control(sbi))
2867 			f2fs_warn(sbi, "background flush thread has stopped");
2868 	} else if (need_stop_flush) {
2869 		clear_opt(sbi, FLUSH_MERGE);
2870 		f2fs_destroy_flush_cmd_control(sbi, false);
2871 	}
2872 restore_gc:
2873 	if (need_restart_gc) {
2874 		if (f2fs_start_gc_thread(sbi))
2875 			f2fs_warn(sbi, "background gc thread has stopped");
2876 	} else if (need_stop_gc) {
2877 		f2fs_stop_gc_thread(sbi);
2878 	}
2879 restore_opts:
2880 #ifdef CONFIG_QUOTA
2881 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2882 	for (i = 0; i < MAXQUOTAS; i++) {
2883 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2884 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2885 	}
2886 #endif
2887 	sbi->mount_opt = org_mount_opt;
2888 	sb->s_flags = old_sb_flags;
2889 
2890 	sbi->umount_lock_holder = NULL;
2891 	return err;
2892 }
2893 
2894 static void f2fs_shutdown(struct super_block *sb)
2895 {
2896 	f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false);
2897 }
2898 
2899 #ifdef CONFIG_QUOTA
2900 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi)
2901 {
2902 	/* need to recovery orphan */
2903 	if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
2904 		return true;
2905 	/* need to recovery data */
2906 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
2907 		return false;
2908 	if (test_opt(sbi, NORECOVERY))
2909 		return false;
2910 	return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG);
2911 }
2912 
2913 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi)
2914 {
2915 	bool readonly = f2fs_readonly(sbi->sb);
2916 
2917 	if (!f2fs_need_recovery(sbi))
2918 		return false;
2919 
2920 	/* it doesn't need to check f2fs_sb_has_readonly() */
2921 	if (f2fs_hw_is_readonly(sbi))
2922 		return false;
2923 
2924 	if (readonly) {
2925 		sbi->sb->s_flags &= ~SB_RDONLY;
2926 		set_sbi_flag(sbi, SBI_IS_WRITABLE);
2927 	}
2928 
2929 	/*
2930 	 * Turn on quotas which were not enabled for read-only mounts if
2931 	 * filesystem has quota feature, so that they are updated correctly.
2932 	 */
2933 	return f2fs_enable_quota_files(sbi, readonly);
2934 }
2935 
2936 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi,
2937 						bool quota_enabled)
2938 {
2939 	if (quota_enabled)
2940 		f2fs_quota_off_umount(sbi->sb);
2941 
2942 	if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) {
2943 		clear_sbi_flag(sbi, SBI_IS_WRITABLE);
2944 		sbi->sb->s_flags |= SB_RDONLY;
2945 	}
2946 }
2947 
2948 /* Read data from quotafile */
2949 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2950 			       size_t len, loff_t off)
2951 {
2952 	struct inode *inode = sb_dqopt(sb)->files[type];
2953 	struct address_space *mapping = inode->i_mapping;
2954 	int tocopy;
2955 	size_t toread;
2956 	loff_t i_size = i_size_read(inode);
2957 
2958 	if (off > i_size)
2959 		return 0;
2960 
2961 	if (off + len > i_size)
2962 		len = i_size - off;
2963 	toread = len;
2964 	while (toread > 0) {
2965 		struct folio *folio;
2966 		size_t offset;
2967 
2968 repeat:
2969 		folio = mapping_read_folio_gfp(mapping, off >> PAGE_SHIFT,
2970 				GFP_NOFS);
2971 		if (IS_ERR(folio)) {
2972 			if (PTR_ERR(folio) == -ENOMEM) {
2973 				memalloc_retry_wait(GFP_NOFS);
2974 				goto repeat;
2975 			}
2976 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2977 			return PTR_ERR(folio);
2978 		}
2979 		offset = offset_in_folio(folio, off);
2980 		tocopy = min(folio_size(folio) - offset, toread);
2981 
2982 		folio_lock(folio);
2983 
2984 		if (unlikely(folio->mapping != mapping)) {
2985 			f2fs_folio_put(folio, true);
2986 			goto repeat;
2987 		}
2988 
2989 		/*
2990 		 * should never happen, just leave f2fs_bug_on() here to catch
2991 		 * any potential bug.
2992 		 */
2993 		f2fs_bug_on(F2FS_SB(sb), !folio_test_uptodate(folio));
2994 
2995 		memcpy_from_folio(data, folio, offset, tocopy);
2996 		f2fs_folio_put(folio, true);
2997 
2998 		toread -= tocopy;
2999 		data += tocopy;
3000 		off += tocopy;
3001 	}
3002 	return len;
3003 }
3004 
3005 /* Write to quotafile */
3006 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
3007 				const char *data, size_t len, loff_t off)
3008 {
3009 	struct inode *inode = sb_dqopt(sb)->files[type];
3010 	struct address_space *mapping = inode->i_mapping;
3011 	const struct address_space_operations *a_ops = mapping->a_ops;
3012 	int offset = off & (sb->s_blocksize - 1);
3013 	size_t towrite = len;
3014 	struct folio *folio;
3015 	void *fsdata = NULL;
3016 	int err = 0;
3017 	int tocopy;
3018 
3019 	while (towrite > 0) {
3020 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
3021 								towrite);
3022 retry:
3023 		err = a_ops->write_begin(NULL, mapping, off, tocopy,
3024 							&folio, &fsdata);
3025 		if (unlikely(err)) {
3026 			if (err == -ENOMEM) {
3027 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3028 				goto retry;
3029 			}
3030 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
3031 			break;
3032 		}
3033 
3034 		memcpy_to_folio(folio, offset_in_folio(folio, off), data, tocopy);
3035 
3036 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
3037 						folio, fsdata);
3038 		offset = 0;
3039 		towrite -= tocopy;
3040 		off += tocopy;
3041 		data += tocopy;
3042 		cond_resched();
3043 	}
3044 
3045 	if (len == towrite)
3046 		return err;
3047 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
3048 	f2fs_mark_inode_dirty_sync(inode, false);
3049 	return len - towrite;
3050 }
3051 
3052 int f2fs_dquot_initialize(struct inode *inode)
3053 {
3054 	if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT))
3055 		return -ESRCH;
3056 
3057 	return dquot_initialize(inode);
3058 }
3059 
3060 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode)
3061 {
3062 	return F2FS_I(inode)->i_dquot;
3063 }
3064 
3065 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
3066 {
3067 	return &F2FS_I(inode)->i_reserved_quota;
3068 }
3069 
3070 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
3071 {
3072 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
3073 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
3074 		return 0;
3075 	}
3076 
3077 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
3078 					F2FS_OPTION(sbi).s_jquota_fmt, type);
3079 }
3080 
3081 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
3082 {
3083 	int enabled = 0;
3084 	int i, err;
3085 
3086 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
3087 		err = f2fs_enable_quotas(sbi->sb);
3088 		if (err) {
3089 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
3090 			return 0;
3091 		}
3092 		return 1;
3093 	}
3094 
3095 	for (i = 0; i < MAXQUOTAS; i++) {
3096 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
3097 			err = f2fs_quota_on_mount(sbi, i);
3098 			if (!err) {
3099 				enabled = 1;
3100 				continue;
3101 			}
3102 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
3103 				 err, i);
3104 		}
3105 	}
3106 	return enabled;
3107 }
3108 
3109 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
3110 			     unsigned int flags)
3111 {
3112 	struct inode *qf_inode;
3113 	unsigned long qf_inum;
3114 	unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL;
3115 	int err;
3116 
3117 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
3118 
3119 	qf_inum = f2fs_qf_ino(sb, type);
3120 	if (!qf_inum)
3121 		return -EPERM;
3122 
3123 	qf_inode = f2fs_iget(sb, qf_inum);
3124 	if (IS_ERR(qf_inode)) {
3125 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
3126 		return PTR_ERR(qf_inode);
3127 	}
3128 
3129 	/* Don't account quota for quota files to avoid recursion */
3130 	inode_lock(qf_inode);
3131 	qf_inode->i_flags |= S_NOQUOTA;
3132 
3133 	if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) {
3134 		F2FS_I(qf_inode)->i_flags |= qf_flag;
3135 		f2fs_set_inode_flags(qf_inode);
3136 	}
3137 	inode_unlock(qf_inode);
3138 
3139 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
3140 	iput(qf_inode);
3141 	return err;
3142 }
3143 
3144 static int f2fs_enable_quotas(struct super_block *sb)
3145 {
3146 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3147 	int type, err = 0;
3148 	unsigned long qf_inum;
3149 	bool quota_mopt[MAXQUOTAS] = {
3150 		test_opt(sbi, USRQUOTA),
3151 		test_opt(sbi, GRPQUOTA),
3152 		test_opt(sbi, PRJQUOTA),
3153 	};
3154 
3155 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
3156 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
3157 		return 0;
3158 	}
3159 
3160 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
3161 
3162 	for (type = 0; type < MAXQUOTAS; type++) {
3163 		qf_inum = f2fs_qf_ino(sb, type);
3164 		if (qf_inum) {
3165 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
3166 				DQUOT_USAGE_ENABLED |
3167 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
3168 			if (err) {
3169 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
3170 					 type, err);
3171 				for (type--; type >= 0; type--)
3172 					dquot_quota_off(sb, type);
3173 				set_sbi_flag(F2FS_SB(sb),
3174 						SBI_QUOTA_NEED_REPAIR);
3175 				return err;
3176 			}
3177 		}
3178 	}
3179 	return 0;
3180 }
3181 
3182 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
3183 {
3184 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
3185 	struct address_space *mapping = dqopt->files[type]->i_mapping;
3186 	int ret = 0;
3187 
3188 	ret = dquot_writeback_dquots(sbi->sb, type);
3189 	if (ret)
3190 		goto out;
3191 
3192 	ret = filemap_fdatawrite(mapping);
3193 	if (ret)
3194 		goto out;
3195 
3196 	/* if we are using journalled quota */
3197 	if (is_journalled_quota(sbi))
3198 		goto out;
3199 
3200 	ret = filemap_fdatawait(mapping);
3201 
3202 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
3203 out:
3204 	if (ret)
3205 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3206 	return ret;
3207 }
3208 
3209 int f2fs_do_quota_sync(struct super_block *sb, int type)
3210 {
3211 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3212 	struct quota_info *dqopt = sb_dqopt(sb);
3213 	int cnt;
3214 	int ret = 0;
3215 
3216 	/*
3217 	 * Now when everything is written we can discard the pagecache so
3218 	 * that userspace sees the changes.
3219 	 */
3220 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
3221 
3222 		if (type != -1 && cnt != type)
3223 			continue;
3224 
3225 		if (!sb_has_quota_active(sb, cnt))
3226 			continue;
3227 
3228 		if (!f2fs_sb_has_quota_ino(sbi))
3229 			inode_lock(dqopt->files[cnt]);
3230 
3231 		/*
3232 		 * do_quotactl
3233 		 *  f2fs_quota_sync
3234 		 *  f2fs_down_read(quota_sem)
3235 		 *  dquot_writeback_dquots()
3236 		 *  f2fs_dquot_commit
3237 		 *			      block_operation
3238 		 *			      f2fs_down_read(quota_sem)
3239 		 */
3240 		f2fs_lock_op(sbi);
3241 		f2fs_down_read(&sbi->quota_sem);
3242 
3243 		ret = f2fs_quota_sync_file(sbi, cnt);
3244 
3245 		f2fs_up_read(&sbi->quota_sem);
3246 		f2fs_unlock_op(sbi);
3247 
3248 		if (!f2fs_sb_has_quota_ino(sbi))
3249 			inode_unlock(dqopt->files[cnt]);
3250 
3251 		if (ret)
3252 			break;
3253 	}
3254 	return ret;
3255 }
3256 
3257 static int f2fs_quota_sync(struct super_block *sb, int type)
3258 {
3259 	int ret;
3260 
3261 	F2FS_SB(sb)->umount_lock_holder = current;
3262 	ret = f2fs_do_quota_sync(sb, type);
3263 	F2FS_SB(sb)->umount_lock_holder = NULL;
3264 	return ret;
3265 }
3266 
3267 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
3268 							const struct path *path)
3269 {
3270 	struct inode *inode;
3271 	int err = 0;
3272 
3273 	/* if quota sysfile exists, deny enabling quota with specific file */
3274 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
3275 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
3276 		return -EBUSY;
3277 	}
3278 
3279 	if (path->dentry->d_sb != sb)
3280 		return -EXDEV;
3281 
3282 	F2FS_SB(sb)->umount_lock_holder = current;
3283 
3284 	err = f2fs_do_quota_sync(sb, type);
3285 	if (err)
3286 		goto out;
3287 
3288 	inode = d_inode(path->dentry);
3289 
3290 	err = filemap_fdatawrite(inode->i_mapping);
3291 	if (err)
3292 		goto out;
3293 
3294 	err = filemap_fdatawait(inode->i_mapping);
3295 	if (err)
3296 		goto out;
3297 
3298 	err = dquot_quota_on(sb, type, format_id, path);
3299 	if (err)
3300 		goto out;
3301 
3302 	inode_lock(inode);
3303 	F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL;
3304 	f2fs_set_inode_flags(inode);
3305 	inode_unlock(inode);
3306 	f2fs_mark_inode_dirty_sync(inode, false);
3307 out:
3308 	F2FS_SB(sb)->umount_lock_holder = NULL;
3309 	return err;
3310 }
3311 
3312 static int __f2fs_quota_off(struct super_block *sb, int type)
3313 {
3314 	struct inode *inode = sb_dqopt(sb)->files[type];
3315 	int err;
3316 
3317 	if (!inode || !igrab(inode))
3318 		return dquot_quota_off(sb, type);
3319 
3320 	err = f2fs_do_quota_sync(sb, type);
3321 	if (err)
3322 		goto out_put;
3323 
3324 	err = dquot_quota_off(sb, type);
3325 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
3326 		goto out_put;
3327 
3328 	inode_lock(inode);
3329 	F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL;
3330 	f2fs_set_inode_flags(inode);
3331 	inode_unlock(inode);
3332 	f2fs_mark_inode_dirty_sync(inode, false);
3333 out_put:
3334 	iput(inode);
3335 	return err;
3336 }
3337 
3338 static int f2fs_quota_off(struct super_block *sb, int type)
3339 {
3340 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3341 	int err;
3342 
3343 	F2FS_SB(sb)->umount_lock_holder = current;
3344 
3345 	err = __f2fs_quota_off(sb, type);
3346 
3347 	/*
3348 	 * quotactl can shutdown journalled quota, result in inconsistence
3349 	 * between quota record and fs data by following updates, tag the
3350 	 * flag to let fsck be aware of it.
3351 	 */
3352 	if (is_journalled_quota(sbi))
3353 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3354 
3355 	F2FS_SB(sb)->umount_lock_holder = NULL;
3356 
3357 	return err;
3358 }
3359 
3360 void f2fs_quota_off_umount(struct super_block *sb)
3361 {
3362 	int type;
3363 	int err;
3364 
3365 	for (type = 0; type < MAXQUOTAS; type++) {
3366 		err = __f2fs_quota_off(sb, type);
3367 		if (err) {
3368 			int ret = dquot_quota_off(sb, type);
3369 
3370 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
3371 				 type, err, ret);
3372 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
3373 		}
3374 	}
3375 	/*
3376 	 * In case of checkpoint=disable, we must flush quota blocks.
3377 	 * This can cause NULL exception for node_inode in end_io, since
3378 	 * put_super already dropped it.
3379 	 */
3380 	sync_filesystem(sb);
3381 }
3382 
3383 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
3384 {
3385 	struct quota_info *dqopt = sb_dqopt(sb);
3386 	int type;
3387 
3388 	for (type = 0; type < MAXQUOTAS; type++) {
3389 		if (!dqopt->files[type])
3390 			continue;
3391 		f2fs_inode_synced(dqopt->files[type]);
3392 	}
3393 }
3394 
3395 static int f2fs_dquot_commit(struct dquot *dquot)
3396 {
3397 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3398 	int ret;
3399 
3400 	f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
3401 	ret = dquot_commit(dquot);
3402 	if (ret < 0)
3403 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3404 	f2fs_up_read(&sbi->quota_sem);
3405 	return ret;
3406 }
3407 
3408 static int f2fs_dquot_acquire(struct dquot *dquot)
3409 {
3410 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3411 	int ret;
3412 
3413 	f2fs_down_read(&sbi->quota_sem);
3414 	ret = dquot_acquire(dquot);
3415 	if (ret < 0)
3416 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3417 	f2fs_up_read(&sbi->quota_sem);
3418 	return ret;
3419 }
3420 
3421 static int f2fs_dquot_release(struct dquot *dquot)
3422 {
3423 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3424 	int ret = dquot_release(dquot);
3425 
3426 	if (ret < 0)
3427 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3428 	return ret;
3429 }
3430 
3431 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
3432 {
3433 	struct super_block *sb = dquot->dq_sb;
3434 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3435 	int ret = dquot_mark_dquot_dirty(dquot);
3436 
3437 	/* if we are using journalled quota */
3438 	if (is_journalled_quota(sbi))
3439 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
3440 
3441 	return ret;
3442 }
3443 
3444 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
3445 {
3446 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3447 	int ret = dquot_commit_info(sb, type);
3448 
3449 	if (ret < 0)
3450 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3451 	return ret;
3452 }
3453 
3454 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
3455 {
3456 	*projid = F2FS_I(inode)->i_projid;
3457 	return 0;
3458 }
3459 
3460 static const struct dquot_operations f2fs_quota_operations = {
3461 	.get_reserved_space = f2fs_get_reserved_space,
3462 	.write_dquot	= f2fs_dquot_commit,
3463 	.acquire_dquot	= f2fs_dquot_acquire,
3464 	.release_dquot	= f2fs_dquot_release,
3465 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
3466 	.write_info	= f2fs_dquot_commit_info,
3467 	.alloc_dquot	= dquot_alloc,
3468 	.destroy_dquot	= dquot_destroy,
3469 	.get_projid	= f2fs_get_projid,
3470 	.get_next_id	= dquot_get_next_id,
3471 };
3472 
3473 static const struct quotactl_ops f2fs_quotactl_ops = {
3474 	.quota_on	= f2fs_quota_on,
3475 	.quota_off	= f2fs_quota_off,
3476 	.quota_sync	= f2fs_quota_sync,
3477 	.get_state	= dquot_get_state,
3478 	.set_info	= dquot_set_dqinfo,
3479 	.get_dqblk	= dquot_get_dqblk,
3480 	.set_dqblk	= dquot_set_dqblk,
3481 	.get_nextdqblk	= dquot_get_next_dqblk,
3482 };
3483 #else
3484 int f2fs_dquot_initialize(struct inode *inode)
3485 {
3486 	return 0;
3487 }
3488 
3489 int f2fs_do_quota_sync(struct super_block *sb, int type)
3490 {
3491 	return 0;
3492 }
3493 
3494 void f2fs_quota_off_umount(struct super_block *sb)
3495 {
3496 }
3497 #endif
3498 
3499 static const struct super_operations f2fs_sops = {
3500 	.alloc_inode	= f2fs_alloc_inode,
3501 	.free_inode	= f2fs_free_inode,
3502 	.drop_inode	= f2fs_drop_inode,
3503 	.write_inode	= f2fs_write_inode,
3504 	.dirty_inode	= f2fs_dirty_inode,
3505 	.show_options	= f2fs_show_options,
3506 #ifdef CONFIG_QUOTA
3507 	.quota_read	= f2fs_quota_read,
3508 	.quota_write	= f2fs_quota_write,
3509 	.get_dquots	= f2fs_get_dquots,
3510 #endif
3511 	.evict_inode	= f2fs_evict_inode,
3512 	.put_super	= f2fs_put_super,
3513 	.sync_fs	= f2fs_sync_fs,
3514 	.freeze_fs	= f2fs_freeze,
3515 	.unfreeze_fs	= f2fs_unfreeze,
3516 	.statfs		= f2fs_statfs,
3517 	.shutdown	= f2fs_shutdown,
3518 };
3519 
3520 #ifdef CONFIG_FS_ENCRYPTION
3521 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
3522 {
3523 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3524 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3525 				ctx, len, NULL);
3526 }
3527 
3528 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
3529 							void *fs_data)
3530 {
3531 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3532 
3533 	/*
3534 	 * Encrypting the root directory is not allowed because fsck
3535 	 * expects lost+found directory to exist and remain unencrypted
3536 	 * if LOST_FOUND feature is enabled.
3537 	 *
3538 	 */
3539 	if (f2fs_sb_has_lost_found(sbi) &&
3540 			inode->i_ino == F2FS_ROOT_INO(sbi))
3541 		return -EPERM;
3542 
3543 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3544 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3545 				ctx, len, fs_data, XATTR_CREATE);
3546 }
3547 
3548 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
3549 {
3550 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
3551 }
3552 
3553 static bool f2fs_has_stable_inodes(struct super_block *sb)
3554 {
3555 	return true;
3556 }
3557 
3558 static struct block_device **f2fs_get_devices(struct super_block *sb,
3559 					      unsigned int *num_devs)
3560 {
3561 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3562 	struct block_device **devs;
3563 	int i;
3564 
3565 	if (!f2fs_is_multi_device(sbi))
3566 		return NULL;
3567 
3568 	devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL);
3569 	if (!devs)
3570 		return ERR_PTR(-ENOMEM);
3571 
3572 	for (i = 0; i < sbi->s_ndevs; i++)
3573 		devs[i] = FDEV(i).bdev;
3574 	*num_devs = sbi->s_ndevs;
3575 	return devs;
3576 }
3577 
3578 static const struct fscrypt_operations f2fs_cryptops = {
3579 	.inode_info_offs	= (int)offsetof(struct f2fs_inode_info, i_crypt_info) -
3580 				  (int)offsetof(struct f2fs_inode_info, vfs_inode),
3581 	.needs_bounce_pages	= 1,
3582 	.has_32bit_inodes	= 1,
3583 	.supports_subblock_data_units = 1,
3584 	.legacy_key_prefix	= "f2fs:",
3585 	.get_context		= f2fs_get_context,
3586 	.set_context		= f2fs_set_context,
3587 	.get_dummy_policy	= f2fs_get_dummy_policy,
3588 	.empty_dir		= f2fs_empty_dir,
3589 	.has_stable_inodes	= f2fs_has_stable_inodes,
3590 	.get_devices		= f2fs_get_devices,
3591 };
3592 #endif /* CONFIG_FS_ENCRYPTION */
3593 
3594 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3595 		u64 ino, u32 generation)
3596 {
3597 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3598 	struct inode *inode;
3599 
3600 	if (f2fs_check_nid_range(sbi, ino))
3601 		return ERR_PTR(-ESTALE);
3602 
3603 	/*
3604 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
3605 	 * However f2fs_iget currently does appropriate checks to handle stale
3606 	 * inodes so everything is OK.
3607 	 */
3608 	inode = f2fs_iget(sb, ino);
3609 	if (IS_ERR(inode))
3610 		return ERR_CAST(inode);
3611 	if (unlikely(generation && inode->i_generation != generation)) {
3612 		/* we didn't find the right inode.. */
3613 		iput(inode);
3614 		return ERR_PTR(-ESTALE);
3615 	}
3616 	return inode;
3617 }
3618 
3619 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3620 		int fh_len, int fh_type)
3621 {
3622 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3623 				    f2fs_nfs_get_inode);
3624 }
3625 
3626 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3627 		int fh_len, int fh_type)
3628 {
3629 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3630 				    f2fs_nfs_get_inode);
3631 }
3632 
3633 static const struct export_operations f2fs_export_ops = {
3634 	.encode_fh = generic_encode_ino32_fh,
3635 	.fh_to_dentry = f2fs_fh_to_dentry,
3636 	.fh_to_parent = f2fs_fh_to_parent,
3637 	.get_parent = f2fs_get_parent,
3638 };
3639 
3640 loff_t max_file_blocks(struct inode *inode)
3641 {
3642 	loff_t result = 0;
3643 	loff_t leaf_count;
3644 
3645 	/*
3646 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3647 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3648 	 * space in inode.i_addr, it will be more safe to reassign
3649 	 * result as zero.
3650 	 */
3651 
3652 	if (inode && f2fs_compressed_file(inode))
3653 		leaf_count = ADDRS_PER_BLOCK(inode);
3654 	else
3655 		leaf_count = DEF_ADDRS_PER_BLOCK;
3656 
3657 	/* two direct node blocks */
3658 	result += (leaf_count * 2);
3659 
3660 	/* two indirect node blocks */
3661 	leaf_count *= NIDS_PER_BLOCK;
3662 	result += (leaf_count * 2);
3663 
3664 	/* one double indirect node block */
3665 	leaf_count *= NIDS_PER_BLOCK;
3666 	result += leaf_count;
3667 
3668 	/*
3669 	 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with
3670 	 * a 4K crypto data unit, we must restrict the max filesize to what can
3671 	 * fit within U32_MAX + 1 data units.
3672 	 */
3673 
3674 	result = umin(result, F2FS_BYTES_TO_BLK(((loff_t)U32_MAX + 1) * 4096));
3675 
3676 	return result;
3677 }
3678 
3679 static int __f2fs_commit_super(struct f2fs_sb_info *sbi, struct folio *folio,
3680 						pgoff_t index, bool update)
3681 {
3682 	struct bio *bio;
3683 	/* it's rare case, we can do fua all the time */
3684 	blk_opf_t opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA;
3685 	int ret;
3686 
3687 	folio_lock(folio);
3688 	folio_wait_writeback(folio);
3689 	if (update)
3690 		memcpy(F2FS_SUPER_BLOCK(folio, index), F2FS_RAW_SUPER(sbi),
3691 					sizeof(struct f2fs_super_block));
3692 	folio_mark_dirty(folio);
3693 	folio_clear_dirty_for_io(folio);
3694 	folio_start_writeback(folio);
3695 	folio_unlock(folio);
3696 
3697 	bio = bio_alloc(sbi->sb->s_bdev, 1, opf, GFP_NOFS);
3698 
3699 	/* it doesn't need to set crypto context for superblock update */
3700 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(folio->index);
3701 
3702 	if (!bio_add_folio(bio, folio, folio_size(folio), 0))
3703 		f2fs_bug_on(sbi, 1);
3704 
3705 	ret = submit_bio_wait(bio);
3706 	bio_put(bio);
3707 	folio_end_writeback(folio);
3708 
3709 	return ret;
3710 }
3711 
3712 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3713 					struct folio *folio, pgoff_t index)
3714 {
3715 	struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index);
3716 	struct super_block *sb = sbi->sb;
3717 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3718 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3719 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3720 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3721 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3722 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3723 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3724 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3725 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3726 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3727 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3728 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
3729 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3730 	u64 main_end_blkaddr = main_blkaddr +
3731 				((u64)segment_count_main << log_blocks_per_seg);
3732 	u64 seg_end_blkaddr = segment0_blkaddr +
3733 				((u64)segment_count << log_blocks_per_seg);
3734 
3735 	if (segment0_blkaddr != cp_blkaddr) {
3736 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3737 			  segment0_blkaddr, cp_blkaddr);
3738 		return true;
3739 	}
3740 
3741 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3742 							sit_blkaddr) {
3743 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3744 			  cp_blkaddr, sit_blkaddr,
3745 			  segment_count_ckpt << log_blocks_per_seg);
3746 		return true;
3747 	}
3748 
3749 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3750 							nat_blkaddr) {
3751 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3752 			  sit_blkaddr, nat_blkaddr,
3753 			  segment_count_sit << log_blocks_per_seg);
3754 		return true;
3755 	}
3756 
3757 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3758 							ssa_blkaddr) {
3759 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3760 			  nat_blkaddr, ssa_blkaddr,
3761 			  segment_count_nat << log_blocks_per_seg);
3762 		return true;
3763 	}
3764 
3765 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3766 							main_blkaddr) {
3767 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3768 			  ssa_blkaddr, main_blkaddr,
3769 			  segment_count_ssa << log_blocks_per_seg);
3770 		return true;
3771 	}
3772 
3773 	if (main_end_blkaddr > seg_end_blkaddr) {
3774 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3775 			  main_blkaddr, seg_end_blkaddr,
3776 			  segment_count_main << log_blocks_per_seg);
3777 		return true;
3778 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3779 		int err = 0;
3780 		char *res;
3781 
3782 		/* fix in-memory information all the time */
3783 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3784 				segment0_blkaddr) >> log_blocks_per_seg);
3785 
3786 		if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) {
3787 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3788 			res = "internally";
3789 		} else {
3790 			err = __f2fs_commit_super(sbi, folio, index, false);
3791 			res = err ? "failed" : "done";
3792 		}
3793 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3794 			  res, main_blkaddr, seg_end_blkaddr,
3795 			  segment_count_main << log_blocks_per_seg);
3796 		if (err)
3797 			return true;
3798 	}
3799 	return false;
3800 }
3801 
3802 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3803 					struct folio *folio, pgoff_t index)
3804 {
3805 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3806 	block_t total_sections, blocks_per_seg;
3807 	struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index);
3808 	size_t crc_offset = 0;
3809 	__u32 crc = 0;
3810 
3811 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3812 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3813 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3814 		return -EINVAL;
3815 	}
3816 
3817 	/* Check checksum_offset and crc in superblock */
3818 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3819 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3820 		if (crc_offset !=
3821 			offsetof(struct f2fs_super_block, crc)) {
3822 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3823 				  crc_offset);
3824 			return -EFSCORRUPTED;
3825 		}
3826 		crc = le32_to_cpu(raw_super->crc);
3827 		if (crc != f2fs_crc32(raw_super, crc_offset)) {
3828 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3829 			return -EFSCORRUPTED;
3830 		}
3831 	}
3832 
3833 	/* only support block_size equals to PAGE_SIZE */
3834 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3835 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3836 			  le32_to_cpu(raw_super->log_blocksize),
3837 			  F2FS_BLKSIZE_BITS);
3838 		return -EFSCORRUPTED;
3839 	}
3840 
3841 	/* check log blocks per segment */
3842 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3843 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3844 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3845 		return -EFSCORRUPTED;
3846 	}
3847 
3848 	/* Currently, support 512/1024/2048/4096/16K bytes sector size */
3849 	if (le32_to_cpu(raw_super->log_sectorsize) >
3850 				F2FS_MAX_LOG_SECTOR_SIZE ||
3851 		le32_to_cpu(raw_super->log_sectorsize) <
3852 				F2FS_MIN_LOG_SECTOR_SIZE) {
3853 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3854 			  le32_to_cpu(raw_super->log_sectorsize));
3855 		return -EFSCORRUPTED;
3856 	}
3857 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3858 		le32_to_cpu(raw_super->log_sectorsize) !=
3859 			F2FS_MAX_LOG_SECTOR_SIZE) {
3860 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3861 			  le32_to_cpu(raw_super->log_sectors_per_block),
3862 			  le32_to_cpu(raw_super->log_sectorsize));
3863 		return -EFSCORRUPTED;
3864 	}
3865 
3866 	segment_count = le32_to_cpu(raw_super->segment_count);
3867 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3868 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3869 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3870 	total_sections = le32_to_cpu(raw_super->section_count);
3871 
3872 	/* blocks_per_seg should be 512, given the above check */
3873 	blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg));
3874 
3875 	if (segment_count > F2FS_MAX_SEGMENT ||
3876 				segment_count < F2FS_MIN_SEGMENTS) {
3877 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3878 		return -EFSCORRUPTED;
3879 	}
3880 
3881 	if (total_sections > segment_count_main || total_sections < 1 ||
3882 			segs_per_sec > segment_count || !segs_per_sec) {
3883 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3884 			  segment_count, total_sections, segs_per_sec);
3885 		return -EFSCORRUPTED;
3886 	}
3887 
3888 	if (segment_count_main != total_sections * segs_per_sec) {
3889 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3890 			  segment_count_main, total_sections, segs_per_sec);
3891 		return -EFSCORRUPTED;
3892 	}
3893 
3894 	if ((segment_count / segs_per_sec) < total_sections) {
3895 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3896 			  segment_count, segs_per_sec, total_sections);
3897 		return -EFSCORRUPTED;
3898 	}
3899 
3900 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3901 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3902 			  segment_count, le64_to_cpu(raw_super->block_count));
3903 		return -EFSCORRUPTED;
3904 	}
3905 
3906 	if (RDEV(0).path[0]) {
3907 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3908 		int i = 1;
3909 
3910 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3911 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3912 			i++;
3913 		}
3914 		if (segment_count != dev_seg_count) {
3915 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3916 					segment_count, dev_seg_count);
3917 			return -EFSCORRUPTED;
3918 		}
3919 	} else {
3920 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3921 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3922 			f2fs_info(sbi, "Zoned block device path is missing");
3923 			return -EFSCORRUPTED;
3924 		}
3925 	}
3926 
3927 	if (secs_per_zone > total_sections || !secs_per_zone) {
3928 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3929 			  secs_per_zone, total_sections);
3930 		return -EFSCORRUPTED;
3931 	}
3932 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3933 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3934 			(le32_to_cpu(raw_super->extension_count) +
3935 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3936 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3937 			  le32_to_cpu(raw_super->extension_count),
3938 			  raw_super->hot_ext_count,
3939 			  F2FS_MAX_EXTENSION);
3940 		return -EFSCORRUPTED;
3941 	}
3942 
3943 	if (le32_to_cpu(raw_super->cp_payload) >=
3944 				(blocks_per_seg - F2FS_CP_PACKS -
3945 				NR_CURSEG_PERSIST_TYPE)) {
3946 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3947 			  le32_to_cpu(raw_super->cp_payload),
3948 			  blocks_per_seg - F2FS_CP_PACKS -
3949 			  NR_CURSEG_PERSIST_TYPE);
3950 		return -EFSCORRUPTED;
3951 	}
3952 
3953 	/* check reserved ino info */
3954 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3955 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3956 		le32_to_cpu(raw_super->root_ino) != 3) {
3957 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3958 			  le32_to_cpu(raw_super->node_ino),
3959 			  le32_to_cpu(raw_super->meta_ino),
3960 			  le32_to_cpu(raw_super->root_ino));
3961 		return -EFSCORRUPTED;
3962 	}
3963 
3964 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3965 	if (sanity_check_area_boundary(sbi, folio, index))
3966 		return -EFSCORRUPTED;
3967 
3968 	return 0;
3969 }
3970 
3971 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3972 {
3973 	unsigned int total, fsmeta;
3974 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3975 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3976 	unsigned int ovp_segments, reserved_segments;
3977 	unsigned int main_segs, blocks_per_seg;
3978 	unsigned int sit_segs, nat_segs;
3979 	unsigned int sit_bitmap_size, nat_bitmap_size;
3980 	unsigned int log_blocks_per_seg;
3981 	unsigned int segment_count_main;
3982 	unsigned int cp_pack_start_sum, cp_payload;
3983 	block_t user_block_count, valid_user_blocks;
3984 	block_t avail_node_count, valid_node_count;
3985 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3986 	unsigned int sit_blk_cnt;
3987 	int i, j;
3988 
3989 	total = le32_to_cpu(raw_super->segment_count);
3990 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3991 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3992 	fsmeta += sit_segs;
3993 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3994 	fsmeta += nat_segs;
3995 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3996 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3997 
3998 	if (unlikely(fsmeta >= total))
3999 		return 1;
4000 
4001 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4002 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4003 
4004 	if (!f2fs_sb_has_readonly(sbi) &&
4005 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
4006 			ovp_segments == 0 || reserved_segments == 0)) {
4007 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
4008 		return 1;
4009 	}
4010 	user_block_count = le64_to_cpu(ckpt->user_block_count);
4011 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
4012 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
4013 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
4014 	if (!user_block_count || user_block_count >=
4015 			segment_count_main << log_blocks_per_seg) {
4016 		f2fs_err(sbi, "Wrong user_block_count: %u",
4017 			 user_block_count);
4018 		return 1;
4019 	}
4020 
4021 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
4022 	if (valid_user_blocks > user_block_count) {
4023 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
4024 			 valid_user_blocks, user_block_count);
4025 		return 1;
4026 	}
4027 
4028 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
4029 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
4030 	if (valid_node_count > avail_node_count) {
4031 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
4032 			 valid_node_count, avail_node_count);
4033 		return 1;
4034 	}
4035 
4036 	main_segs = le32_to_cpu(raw_super->segment_count_main);
4037 	blocks_per_seg = BLKS_PER_SEG(sbi);
4038 
4039 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
4040 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
4041 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
4042 			return 1;
4043 
4044 		if (f2fs_sb_has_readonly(sbi))
4045 			goto check_data;
4046 
4047 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
4048 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
4049 				le32_to_cpu(ckpt->cur_node_segno[j])) {
4050 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
4051 					 i, j,
4052 					 le32_to_cpu(ckpt->cur_node_segno[i]));
4053 				return 1;
4054 			}
4055 		}
4056 	}
4057 check_data:
4058 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
4059 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
4060 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
4061 			return 1;
4062 
4063 		if (f2fs_sb_has_readonly(sbi))
4064 			goto skip_cross;
4065 
4066 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
4067 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
4068 				le32_to_cpu(ckpt->cur_data_segno[j])) {
4069 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
4070 					 i, j,
4071 					 le32_to_cpu(ckpt->cur_data_segno[i]));
4072 				return 1;
4073 			}
4074 		}
4075 	}
4076 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
4077 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
4078 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
4079 				le32_to_cpu(ckpt->cur_data_segno[j])) {
4080 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
4081 					 i, j,
4082 					 le32_to_cpu(ckpt->cur_node_segno[i]));
4083 				return 1;
4084 			}
4085 		}
4086 	}
4087 skip_cross:
4088 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
4089 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
4090 
4091 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
4092 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
4093 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
4094 			 sit_bitmap_size, nat_bitmap_size);
4095 		return 1;
4096 	}
4097 
4098 	sit_blk_cnt = DIV_ROUND_UP(main_segs, SIT_ENTRY_PER_BLOCK);
4099 	if (sit_bitmap_size * 8 < sit_blk_cnt) {
4100 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, sit_blk_cnt:%u",
4101 			 sit_bitmap_size, sit_blk_cnt);
4102 		return 1;
4103 	}
4104 
4105 	cp_pack_start_sum = __start_sum_addr(sbi);
4106 	cp_payload = __cp_payload(sbi);
4107 	if (cp_pack_start_sum < cp_payload + 1 ||
4108 		cp_pack_start_sum > blocks_per_seg - 1 -
4109 			NR_CURSEG_PERSIST_TYPE) {
4110 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
4111 			 cp_pack_start_sum);
4112 		return 1;
4113 	}
4114 
4115 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
4116 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
4117 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
4118 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
4119 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
4120 			  le32_to_cpu(ckpt->checksum_offset));
4121 		return 1;
4122 	}
4123 
4124 	nat_blocks = nat_segs << log_blocks_per_seg;
4125 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
4126 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
4127 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
4128 		(cp_payload + F2FS_CP_PACKS +
4129 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
4130 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
4131 			  cp_payload, nat_bits_blocks);
4132 		return 1;
4133 	}
4134 
4135 	if (unlikely(f2fs_cp_error(sbi))) {
4136 		f2fs_err(sbi, "A bug case: need to run fsck");
4137 		return 1;
4138 	}
4139 	return 0;
4140 }
4141 
4142 static void init_sb_info(struct f2fs_sb_info *sbi)
4143 {
4144 	struct f2fs_super_block *raw_super = sbi->raw_super;
4145 	int i;
4146 
4147 	sbi->log_sectors_per_block =
4148 		le32_to_cpu(raw_super->log_sectors_per_block);
4149 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
4150 	sbi->blocksize = BIT(sbi->log_blocksize);
4151 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
4152 	sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg);
4153 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
4154 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
4155 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
4156 	sbi->total_node_count = SEGS_TO_BLKS(sbi,
4157 			((le32_to_cpu(raw_super->segment_count_nat) / 2) *
4158 			NAT_ENTRY_PER_BLOCK));
4159 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
4160 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
4161 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
4162 	sbi->cur_victim_sec = NULL_SECNO;
4163 	sbi->gc_mode = GC_NORMAL;
4164 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
4165 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
4166 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
4167 	sbi->migration_granularity = SEGS_PER_SEC(sbi);
4168 	sbi->migration_window_granularity = f2fs_sb_has_blkzoned(sbi) ?
4169 		DEF_MIGRATION_WINDOW_GRANULARITY_ZONED : SEGS_PER_SEC(sbi);
4170 	sbi->seq_file_ra_mul = MIN_RA_MUL;
4171 	sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
4172 	sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
4173 	spin_lock_init(&sbi->gc_remaining_trials_lock);
4174 	atomic64_set(&sbi->current_atomic_write, 0);
4175 
4176 	sbi->dir_level = DEF_DIR_LEVEL;
4177 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
4178 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
4179 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
4180 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
4181 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
4182 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
4183 				DEF_UMOUNT_DISCARD_TIMEOUT;
4184 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
4185 
4186 	for (i = 0; i < NR_COUNT_TYPE; i++)
4187 		atomic_set(&sbi->nr_pages[i], 0);
4188 
4189 	for (i = 0; i < META; i++)
4190 		atomic_set(&sbi->wb_sync_req[i], 0);
4191 
4192 	INIT_LIST_HEAD(&sbi->s_list);
4193 	mutex_init(&sbi->umount_mutex);
4194 	init_f2fs_rwsem(&sbi->io_order_lock);
4195 	spin_lock_init(&sbi->cp_lock);
4196 
4197 	sbi->dirty_device = 0;
4198 	spin_lock_init(&sbi->dev_lock);
4199 
4200 	init_f2fs_rwsem(&sbi->sb_lock);
4201 	init_f2fs_rwsem(&sbi->pin_sem);
4202 }
4203 
4204 static int init_percpu_info(struct f2fs_sb_info *sbi)
4205 {
4206 	int err;
4207 
4208 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
4209 	if (err)
4210 		return err;
4211 
4212 	err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL);
4213 	if (err)
4214 		goto err_valid_block;
4215 
4216 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
4217 								GFP_KERNEL);
4218 	if (err)
4219 		goto err_node_block;
4220 	return 0;
4221 
4222 err_node_block:
4223 	percpu_counter_destroy(&sbi->rf_node_block_count);
4224 err_valid_block:
4225 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
4226 	return err;
4227 }
4228 
4229 #ifdef CONFIG_BLK_DEV_ZONED
4230 
4231 struct f2fs_report_zones_args {
4232 	struct f2fs_sb_info *sbi;
4233 	struct f2fs_dev_info *dev;
4234 };
4235 
4236 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
4237 			      void *data)
4238 {
4239 	struct f2fs_report_zones_args *rz_args = data;
4240 	block_t unusable_blocks = (zone->len - zone->capacity) >>
4241 					F2FS_LOG_SECTORS_PER_BLOCK;
4242 
4243 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
4244 		return 0;
4245 
4246 	set_bit(idx, rz_args->dev->blkz_seq);
4247 	if (!rz_args->sbi->unusable_blocks_per_sec) {
4248 		rz_args->sbi->unusable_blocks_per_sec = unusable_blocks;
4249 		return 0;
4250 	}
4251 	if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) {
4252 		f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n");
4253 		return -EINVAL;
4254 	}
4255 	return 0;
4256 }
4257 
4258 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
4259 {
4260 	struct block_device *bdev = FDEV(devi).bdev;
4261 	sector_t nr_sectors = bdev_nr_sectors(bdev);
4262 	struct f2fs_report_zones_args rep_zone_arg;
4263 	u64 zone_sectors;
4264 	unsigned int max_open_zones;
4265 	int ret;
4266 
4267 	if (!f2fs_sb_has_blkzoned(sbi))
4268 		return 0;
4269 
4270 	if (bdev_is_zoned(FDEV(devi).bdev)) {
4271 		max_open_zones = bdev_max_open_zones(bdev);
4272 		if (max_open_zones && (max_open_zones < sbi->max_open_zones))
4273 			sbi->max_open_zones = max_open_zones;
4274 		if (sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) {
4275 			f2fs_err(sbi,
4276 				"zoned: max open zones %u is too small, need at least %u open zones",
4277 				sbi->max_open_zones, F2FS_OPTION(sbi).active_logs);
4278 			return -EINVAL;
4279 		}
4280 	}
4281 
4282 	zone_sectors = bdev_zone_sectors(bdev);
4283 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
4284 				SECTOR_TO_BLOCK(zone_sectors))
4285 		return -EINVAL;
4286 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors);
4287 	FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors),
4288 					sbi->blocks_per_blkz);
4289 	if (nr_sectors & (zone_sectors - 1))
4290 		FDEV(devi).nr_blkz++;
4291 
4292 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
4293 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
4294 					* sizeof(unsigned long),
4295 					GFP_KERNEL);
4296 	if (!FDEV(devi).blkz_seq)
4297 		return -ENOMEM;
4298 
4299 	rep_zone_arg.sbi = sbi;
4300 	rep_zone_arg.dev = &FDEV(devi);
4301 
4302 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
4303 				  &rep_zone_arg);
4304 	if (ret < 0)
4305 		return ret;
4306 	return 0;
4307 }
4308 #endif
4309 
4310 /*
4311  * Read f2fs raw super block.
4312  * Because we have two copies of super block, so read both of them
4313  * to get the first valid one. If any one of them is broken, we pass
4314  * them recovery flag back to the caller.
4315  */
4316 static int read_raw_super_block(struct f2fs_sb_info *sbi,
4317 			struct f2fs_super_block **raw_super,
4318 			int *valid_super_block, int *recovery)
4319 {
4320 	struct super_block *sb = sbi->sb;
4321 	int block;
4322 	struct folio *folio;
4323 	struct f2fs_super_block *super;
4324 	int err = 0;
4325 
4326 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
4327 	if (!super)
4328 		return -ENOMEM;
4329 
4330 	for (block = 0; block < 2; block++) {
4331 		folio = read_mapping_folio(sb->s_bdev->bd_mapping, block, NULL);
4332 		if (IS_ERR(folio)) {
4333 			f2fs_err(sbi, "Unable to read %dth superblock",
4334 				 block + 1);
4335 			err = PTR_ERR(folio);
4336 			*recovery = 1;
4337 			continue;
4338 		}
4339 
4340 		/* sanity checking of raw super */
4341 		err = sanity_check_raw_super(sbi, folio, block);
4342 		if (err) {
4343 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
4344 				 block + 1);
4345 			folio_put(folio);
4346 			*recovery = 1;
4347 			continue;
4348 		}
4349 
4350 		if (!*raw_super) {
4351 			memcpy(super, F2FS_SUPER_BLOCK(folio, block),
4352 							sizeof(*super));
4353 			*valid_super_block = block;
4354 			*raw_super = super;
4355 		}
4356 		folio_put(folio);
4357 	}
4358 
4359 	/* No valid superblock */
4360 	if (!*raw_super)
4361 		kfree(super);
4362 	else
4363 		err = 0;
4364 
4365 	return err;
4366 }
4367 
4368 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
4369 {
4370 	struct folio *folio;
4371 	pgoff_t index;
4372 	__u32 crc = 0;
4373 	int err;
4374 
4375 	if ((recover && f2fs_readonly(sbi->sb)) ||
4376 				f2fs_hw_is_readonly(sbi)) {
4377 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
4378 		return -EROFS;
4379 	}
4380 
4381 	/* we should update superblock crc here */
4382 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
4383 		crc = f2fs_crc32(F2FS_RAW_SUPER(sbi),
4384 				offsetof(struct f2fs_super_block, crc));
4385 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
4386 	}
4387 
4388 	/* write back-up superblock first */
4389 	index = sbi->valid_super_block ? 0 : 1;
4390 	folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL);
4391 	if (IS_ERR(folio))
4392 		return PTR_ERR(folio);
4393 	err = __f2fs_commit_super(sbi, folio, index, true);
4394 	folio_put(folio);
4395 
4396 	/* if we are in recovery path, skip writing valid superblock */
4397 	if (recover || err)
4398 		return err;
4399 
4400 	/* write current valid superblock */
4401 	index = sbi->valid_super_block;
4402 	folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL);
4403 	if (IS_ERR(folio))
4404 		return PTR_ERR(folio);
4405 	err = __f2fs_commit_super(sbi, folio, index, true);
4406 	folio_put(folio);
4407 	return err;
4408 }
4409 
4410 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason)
4411 {
4412 	unsigned long flags;
4413 
4414 	spin_lock_irqsave(&sbi->error_lock, flags);
4415 	if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0))
4416 		sbi->stop_reason[reason]++;
4417 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4418 }
4419 
4420 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi)
4421 {
4422 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4423 	unsigned long flags;
4424 	int err;
4425 
4426 	f2fs_down_write(&sbi->sb_lock);
4427 
4428 	spin_lock_irqsave(&sbi->error_lock, flags);
4429 	if (sbi->error_dirty) {
4430 		memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4431 							MAX_F2FS_ERRORS);
4432 		sbi->error_dirty = false;
4433 	}
4434 	memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON);
4435 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4436 
4437 	err = f2fs_commit_super(sbi, false);
4438 
4439 	f2fs_up_write(&sbi->sb_lock);
4440 	if (err)
4441 		f2fs_err_ratelimited(sbi,
4442 			"f2fs_commit_super fails to record stop_reason, err:%d",
4443 			err);
4444 }
4445 
4446 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag)
4447 {
4448 	unsigned long flags;
4449 
4450 	spin_lock_irqsave(&sbi->error_lock, flags);
4451 	if (!test_bit(flag, (unsigned long *)sbi->errors)) {
4452 		set_bit(flag, (unsigned long *)sbi->errors);
4453 		sbi->error_dirty = true;
4454 	}
4455 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4456 }
4457 
4458 static bool f2fs_update_errors(struct f2fs_sb_info *sbi)
4459 {
4460 	unsigned long flags;
4461 	bool need_update = false;
4462 
4463 	spin_lock_irqsave(&sbi->error_lock, flags);
4464 	if (sbi->error_dirty) {
4465 		memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4466 							MAX_F2FS_ERRORS);
4467 		sbi->error_dirty = false;
4468 		need_update = true;
4469 	}
4470 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4471 
4472 	return need_update;
4473 }
4474 
4475 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error)
4476 {
4477 	int err;
4478 
4479 	f2fs_down_write(&sbi->sb_lock);
4480 
4481 	if (!f2fs_update_errors(sbi))
4482 		goto out_unlock;
4483 
4484 	err = f2fs_commit_super(sbi, false);
4485 	if (err)
4486 		f2fs_err_ratelimited(sbi,
4487 			"f2fs_commit_super fails to record errors:%u, err:%d",
4488 			error, err);
4489 out_unlock:
4490 	f2fs_up_write(&sbi->sb_lock);
4491 }
4492 
4493 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error)
4494 {
4495 	f2fs_save_errors(sbi, error);
4496 	f2fs_record_errors(sbi, error);
4497 }
4498 
4499 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error)
4500 {
4501 	f2fs_save_errors(sbi, error);
4502 
4503 	if (!sbi->error_dirty)
4504 		return;
4505 	if (!test_bit(error, (unsigned long *)sbi->errors))
4506 		return;
4507 	schedule_work(&sbi->s_error_work);
4508 }
4509 
4510 static bool system_going_down(void)
4511 {
4512 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
4513 		|| system_state == SYSTEM_RESTART;
4514 }
4515 
4516 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason)
4517 {
4518 	struct super_block *sb = sbi->sb;
4519 	bool shutdown = reason == STOP_CP_REASON_SHUTDOWN;
4520 	bool continue_fs = !shutdown &&
4521 			F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE;
4522 
4523 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
4524 
4525 	if (!f2fs_hw_is_readonly(sbi)) {
4526 		save_stop_reason(sbi, reason);
4527 
4528 		/*
4529 		 * always create an asynchronous task to record stop_reason
4530 		 * in order to avoid potential deadlock when running into
4531 		 * f2fs_record_stop_reason() synchronously.
4532 		 */
4533 		schedule_work(&sbi->s_error_work);
4534 	}
4535 
4536 	/*
4537 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
4538 	 * could panic during 'reboot -f' as the underlying device got already
4539 	 * disabled.
4540 	 */
4541 	if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC &&
4542 				!shutdown && !system_going_down() &&
4543 				!is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
4544 		panic("F2FS-fs (device %s): panic forced after error\n",
4545 							sb->s_id);
4546 
4547 	if (shutdown)
4548 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
4549 	else
4550 		dump_stack();
4551 
4552 	/*
4553 	 * Continue filesystem operators if errors=continue. Should not set
4554 	 * RO by shutdown, since RO bypasses thaw_super which can hang the
4555 	 * system.
4556 	 */
4557 	if (continue_fs || f2fs_readonly(sb) || shutdown) {
4558 		f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason);
4559 		return;
4560 	}
4561 
4562 	f2fs_warn(sbi, "Remounting filesystem read-only");
4563 
4564 	/*
4565 	 * We have already set CP_ERROR_FLAG flag to stop all updates
4566 	 * to filesystem, so it doesn't need to set SB_RDONLY flag here
4567 	 * because the flag should be set covered w/ sb->s_umount semaphore
4568 	 * via remount procedure, otherwise, it will confuse code like
4569 	 * freeze_super() which will lead to deadlocks and other problems.
4570 	 */
4571 }
4572 
4573 static void f2fs_record_error_work(struct work_struct *work)
4574 {
4575 	struct f2fs_sb_info *sbi = container_of(work,
4576 					struct f2fs_sb_info, s_error_work);
4577 
4578 	f2fs_record_stop_reason(sbi);
4579 }
4580 
4581 static inline unsigned int get_first_seq_zone_segno(struct f2fs_sb_info *sbi)
4582 {
4583 #ifdef CONFIG_BLK_DEV_ZONED
4584 	unsigned int zoneno, total_zones;
4585 	int devi;
4586 
4587 	if (!f2fs_sb_has_blkzoned(sbi))
4588 		return NULL_SEGNO;
4589 
4590 	for (devi = 0; devi < sbi->s_ndevs; devi++) {
4591 		if (!bdev_is_zoned(FDEV(devi).bdev))
4592 			continue;
4593 
4594 		total_zones = GET_ZONE_FROM_SEG(sbi, FDEV(devi).total_segments);
4595 
4596 		for (zoneno = 0; zoneno < total_zones; zoneno++) {
4597 			unsigned int segs, blks;
4598 
4599 			if (!f2fs_zone_is_seq(sbi, devi, zoneno))
4600 				continue;
4601 
4602 			segs = GET_SEG_FROM_SEC(sbi,
4603 					zoneno * sbi->secs_per_zone);
4604 			blks = SEGS_TO_BLKS(sbi, segs);
4605 			return GET_SEGNO(sbi, FDEV(devi).start_blk + blks);
4606 		}
4607 	}
4608 #endif
4609 	return NULL_SEGNO;
4610 }
4611 
4612 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
4613 {
4614 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4615 	unsigned int max_devices = MAX_DEVICES;
4616 	unsigned int logical_blksize;
4617 	blk_mode_t mode = sb_open_mode(sbi->sb->s_flags);
4618 	int i;
4619 
4620 	/* Initialize single device information */
4621 	if (!RDEV(0).path[0]) {
4622 		if (!bdev_is_zoned(sbi->sb->s_bdev))
4623 			return 0;
4624 		max_devices = 1;
4625 	}
4626 
4627 	/*
4628 	 * Initialize multiple devices information, or single
4629 	 * zoned block device information.
4630 	 */
4631 	sbi->devs = f2fs_kzalloc(sbi,
4632 				 array_size(max_devices,
4633 					    sizeof(struct f2fs_dev_info)),
4634 				 GFP_KERNEL);
4635 	if (!sbi->devs)
4636 		return -ENOMEM;
4637 
4638 	logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
4639 	sbi->aligned_blksize = true;
4640 #ifdef CONFIG_BLK_DEV_ZONED
4641 	sbi->max_open_zones = UINT_MAX;
4642 	sbi->blkzone_alloc_policy = BLKZONE_ALLOC_PRIOR_SEQ;
4643 #endif
4644 
4645 	for (i = 0; i < max_devices; i++) {
4646 		if (max_devices == 1) {
4647 			FDEV(i).total_segments =
4648 				le32_to_cpu(raw_super->segment_count_main);
4649 			FDEV(i).start_blk = 0;
4650 			FDEV(i).end_blk = FDEV(i).total_segments *
4651 						BLKS_PER_SEG(sbi);
4652 		}
4653 
4654 		if (i == 0)
4655 			FDEV(0).bdev_file = sbi->sb->s_bdev_file;
4656 		else if (!RDEV(i).path[0])
4657 			break;
4658 
4659 		if (max_devices > 1) {
4660 			/* Multi-device mount */
4661 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
4662 			FDEV(i).total_segments =
4663 				le32_to_cpu(RDEV(i).total_segments);
4664 			if (i == 0) {
4665 				FDEV(i).start_blk = 0;
4666 				FDEV(i).end_blk = FDEV(i).start_blk +
4667 					SEGS_TO_BLKS(sbi,
4668 					FDEV(i).total_segments) - 1 +
4669 					le32_to_cpu(raw_super->segment0_blkaddr);
4670 			} else {
4671 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
4672 				FDEV(i).end_blk = FDEV(i).start_blk +
4673 						SEGS_TO_BLKS(sbi,
4674 						FDEV(i).total_segments) - 1;
4675 				FDEV(i).bdev_file = bdev_file_open_by_path(
4676 					FDEV(i).path, mode, sbi->sb, NULL);
4677 			}
4678 		}
4679 		if (IS_ERR(FDEV(i).bdev_file))
4680 			return PTR_ERR(FDEV(i).bdev_file);
4681 
4682 		FDEV(i).bdev = file_bdev(FDEV(i).bdev_file);
4683 		/* to release errored devices */
4684 		sbi->s_ndevs = i + 1;
4685 
4686 		if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
4687 			sbi->aligned_blksize = false;
4688 
4689 #ifdef CONFIG_BLK_DEV_ZONED
4690 		if (bdev_is_zoned(FDEV(i).bdev)) {
4691 			if (!f2fs_sb_has_blkzoned(sbi)) {
4692 				f2fs_err(sbi, "Zoned block device feature not enabled");
4693 				return -EINVAL;
4694 			}
4695 			if (init_blkz_info(sbi, i)) {
4696 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
4697 				return -EINVAL;
4698 			}
4699 			if (max_devices == 1)
4700 				break;
4701 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)",
4702 				  i, FDEV(i).path,
4703 				  FDEV(i).total_segments,
4704 				  FDEV(i).start_blk, FDEV(i).end_blk);
4705 			continue;
4706 		}
4707 #endif
4708 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
4709 			  i, FDEV(i).path,
4710 			  FDEV(i).total_segments,
4711 			  FDEV(i).start_blk, FDEV(i).end_blk);
4712 	}
4713 	return 0;
4714 }
4715 
4716 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
4717 {
4718 #if IS_ENABLED(CONFIG_UNICODE)
4719 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
4720 		const struct f2fs_sb_encodings *encoding_info;
4721 		struct unicode_map *encoding;
4722 		__u16 encoding_flags;
4723 
4724 		encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
4725 		if (!encoding_info) {
4726 			f2fs_err(sbi,
4727 				 "Encoding requested by superblock is unknown");
4728 			return -EINVAL;
4729 		}
4730 
4731 		encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
4732 		encoding = utf8_load(encoding_info->version);
4733 		if (IS_ERR(encoding)) {
4734 			f2fs_err(sbi,
4735 				 "can't mount with superblock charset: %s-%u.%u.%u "
4736 				 "not supported by the kernel. flags: 0x%x.",
4737 				 encoding_info->name,
4738 				 unicode_major(encoding_info->version),
4739 				 unicode_minor(encoding_info->version),
4740 				 unicode_rev(encoding_info->version),
4741 				 encoding_flags);
4742 			return PTR_ERR(encoding);
4743 		}
4744 		f2fs_info(sbi, "Using encoding defined by superblock: "
4745 			 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4746 			 unicode_major(encoding_info->version),
4747 			 unicode_minor(encoding_info->version),
4748 			 unicode_rev(encoding_info->version),
4749 			 encoding_flags);
4750 
4751 		sbi->sb->s_encoding = encoding;
4752 		sbi->sb->s_encoding_flags = encoding_flags;
4753 	}
4754 #else
4755 	if (f2fs_sb_has_casefold(sbi)) {
4756 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
4757 		return -EINVAL;
4758 	}
4759 #endif
4760 	return 0;
4761 }
4762 
4763 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
4764 {
4765 	/* adjust parameters according to the volume size */
4766 	if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) {
4767 		if (f2fs_block_unit_discard(sbi))
4768 			SM_I(sbi)->dcc_info->discard_granularity =
4769 						MIN_DISCARD_GRANULARITY;
4770 		if (!f2fs_lfs_mode(sbi))
4771 			SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) |
4772 						BIT(F2FS_IPU_HONOR_OPU_WRITE);
4773 	}
4774 
4775 	sbi->readdir_ra = true;
4776 }
4777 
4778 static int f2fs_fill_super(struct super_block *sb, struct fs_context *fc)
4779 {
4780 	struct f2fs_fs_context *ctx = fc->fs_private;
4781 	struct f2fs_sb_info *sbi;
4782 	struct f2fs_super_block *raw_super;
4783 	struct inode *root;
4784 	int err;
4785 	bool skip_recovery = false, need_fsck = false;
4786 	int recovery, i, valid_super_block;
4787 	struct curseg_info *seg_i;
4788 	int retry_cnt = 1;
4789 #ifdef CONFIG_QUOTA
4790 	bool quota_enabled = false;
4791 #endif
4792 
4793 try_onemore:
4794 	err = -EINVAL;
4795 	raw_super = NULL;
4796 	valid_super_block = -1;
4797 	recovery = 0;
4798 
4799 	/* allocate memory for f2fs-specific super block info */
4800 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
4801 	if (!sbi)
4802 		return -ENOMEM;
4803 
4804 	sbi->sb = sb;
4805 
4806 	/* initialize locks within allocated memory */
4807 	init_f2fs_rwsem(&sbi->gc_lock);
4808 	mutex_init(&sbi->writepages);
4809 	init_f2fs_rwsem(&sbi->cp_global_sem);
4810 	init_f2fs_rwsem(&sbi->node_write);
4811 	init_f2fs_rwsem(&sbi->node_change);
4812 	spin_lock_init(&sbi->stat_lock);
4813 	init_f2fs_rwsem(&sbi->cp_rwsem);
4814 	init_f2fs_rwsem(&sbi->quota_sem);
4815 	init_waitqueue_head(&sbi->cp_wait);
4816 	spin_lock_init(&sbi->error_lock);
4817 
4818 	for (i = 0; i < NR_INODE_TYPE; i++) {
4819 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4820 		spin_lock_init(&sbi->inode_lock[i]);
4821 	}
4822 	mutex_init(&sbi->flush_lock);
4823 
4824 	/* set a block size */
4825 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
4826 		f2fs_err(sbi, "unable to set blocksize");
4827 		goto free_sbi;
4828 	}
4829 
4830 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
4831 								&recovery);
4832 	if (err)
4833 		goto free_sbi;
4834 
4835 	sb->s_fs_info = sbi;
4836 	sbi->raw_super = raw_super;
4837 
4838 	INIT_WORK(&sbi->s_error_work, f2fs_record_error_work);
4839 	memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS);
4840 	memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON);
4841 
4842 	/* precompute checksum seed for metadata */
4843 	if (f2fs_sb_has_inode_chksum(sbi))
4844 		sbi->s_chksum_seed = f2fs_chksum(~0, raw_super->uuid,
4845 						 sizeof(raw_super->uuid));
4846 
4847 	default_options(sbi, false);
4848 
4849 	err = f2fs_check_opt_consistency(fc, sb);
4850 	if (err)
4851 		goto free_sb_buf;
4852 
4853 	f2fs_apply_options(fc, sb);
4854 
4855 	err = f2fs_sanity_check_options(sbi, false);
4856 	if (err)
4857 		goto free_options;
4858 
4859 	sb->s_maxbytes = max_file_blocks(NULL) <<
4860 				le32_to_cpu(raw_super->log_blocksize);
4861 	sb->s_max_links = F2FS_LINK_MAX;
4862 
4863 	err = f2fs_setup_casefold(sbi);
4864 	if (err)
4865 		goto free_options;
4866 
4867 #ifdef CONFIG_QUOTA
4868 	sb->dq_op = &f2fs_quota_operations;
4869 	sb->s_qcop = &f2fs_quotactl_ops;
4870 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4871 
4872 	if (f2fs_sb_has_quota_ino(sbi)) {
4873 		for (i = 0; i < MAXQUOTAS; i++) {
4874 			if (f2fs_qf_ino(sbi->sb, i))
4875 				sbi->nquota_files++;
4876 		}
4877 	}
4878 #endif
4879 
4880 	sb->s_op = &f2fs_sops;
4881 #ifdef CONFIG_FS_ENCRYPTION
4882 	sb->s_cop = &f2fs_cryptops;
4883 #endif
4884 #ifdef CONFIG_FS_VERITY
4885 	sb->s_vop = &f2fs_verityops;
4886 #endif
4887 	sb->s_xattr = f2fs_xattr_handlers;
4888 	sb->s_export_op = &f2fs_export_ops;
4889 	sb->s_magic = F2FS_SUPER_MAGIC;
4890 	sb->s_time_gran = 1;
4891 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4892 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4893 	if (test_opt(sbi, INLINECRYPT))
4894 		sb->s_flags |= SB_INLINECRYPT;
4895 
4896 	if (test_opt(sbi, LAZYTIME))
4897 		sb->s_flags |= SB_LAZYTIME;
4898 	else
4899 		sb->s_flags &= ~SB_LAZYTIME;
4900 
4901 	super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid));
4902 	super_set_sysfs_name_bdev(sb);
4903 	sb->s_iflags |= SB_I_CGROUPWB;
4904 
4905 	/* init f2fs-specific super block info */
4906 	sbi->valid_super_block = valid_super_block;
4907 
4908 	/* disallow all the data/node/meta page writes */
4909 	set_sbi_flag(sbi, SBI_POR_DOING);
4910 
4911 	err = f2fs_init_write_merge_io(sbi);
4912 	if (err)
4913 		goto free_bio_info;
4914 
4915 	init_sb_info(sbi);
4916 
4917 	err = f2fs_init_iostat(sbi);
4918 	if (err)
4919 		goto free_bio_info;
4920 
4921 	err = init_percpu_info(sbi);
4922 	if (err)
4923 		goto free_iostat;
4924 
4925 	/* init per sbi slab cache */
4926 	err = f2fs_init_xattr_caches(sbi);
4927 	if (err)
4928 		goto free_percpu;
4929 	err = f2fs_init_page_array_cache(sbi);
4930 	if (err)
4931 		goto free_xattr_cache;
4932 
4933 	/* get an inode for meta space */
4934 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4935 	if (IS_ERR(sbi->meta_inode)) {
4936 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
4937 		err = PTR_ERR(sbi->meta_inode);
4938 		goto free_page_array_cache;
4939 	}
4940 
4941 	err = f2fs_get_valid_checkpoint(sbi);
4942 	if (err) {
4943 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4944 		goto free_meta_inode;
4945 	}
4946 
4947 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4948 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4949 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4950 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4951 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4952 	}
4953 
4954 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4955 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4956 
4957 	/* Initialize device list */
4958 	err = f2fs_scan_devices(sbi);
4959 	if (err) {
4960 		f2fs_err(sbi, "Failed to find devices");
4961 		goto free_devices;
4962 	}
4963 
4964 	err = f2fs_init_post_read_wq(sbi);
4965 	if (err) {
4966 		f2fs_err(sbi, "Failed to initialize post read workqueue");
4967 		goto free_devices;
4968 	}
4969 
4970 	sbi->total_valid_node_count =
4971 				le32_to_cpu(sbi->ckpt->valid_node_count);
4972 	percpu_counter_set(&sbi->total_valid_inode_count,
4973 				le32_to_cpu(sbi->ckpt->valid_inode_count));
4974 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4975 	sbi->total_valid_block_count =
4976 				le64_to_cpu(sbi->ckpt->valid_block_count);
4977 	sbi->last_valid_block_count = sbi->total_valid_block_count;
4978 	sbi->reserved_blocks = 0;
4979 	sbi->current_reserved_blocks = 0;
4980 	limit_reserve_root(sbi);
4981 	adjust_unusable_cap_perc(sbi);
4982 
4983 	f2fs_init_extent_cache_info(sbi);
4984 
4985 	f2fs_init_ino_entry_info(sbi);
4986 
4987 	f2fs_init_fsync_node_info(sbi);
4988 
4989 	/* setup checkpoint request control and start checkpoint issue thread */
4990 	f2fs_init_ckpt_req_control(sbi);
4991 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4992 			test_opt(sbi, MERGE_CHECKPOINT)) {
4993 		err = f2fs_start_ckpt_thread(sbi);
4994 		if (err) {
4995 			f2fs_err(sbi,
4996 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4997 			    err);
4998 			goto stop_ckpt_thread;
4999 		}
5000 	}
5001 
5002 	/* setup f2fs internal modules */
5003 	err = f2fs_build_segment_manager(sbi);
5004 	if (err) {
5005 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
5006 			 err);
5007 		goto free_sm;
5008 	}
5009 	err = f2fs_build_node_manager(sbi);
5010 	if (err) {
5011 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
5012 			 err);
5013 		goto free_nm;
5014 	}
5015 
5016 	/* For write statistics */
5017 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
5018 
5019 	/* get segno of first zoned block device */
5020 	sbi->first_seq_zone_segno = get_first_seq_zone_segno(sbi);
5021 
5022 	sbi->reserved_pin_section = f2fs_sb_has_blkzoned(sbi) ?
5023 			ZONED_PIN_SEC_REQUIRED_COUNT :
5024 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi));
5025 
5026 	/* Read accumulated write IO statistics if exists */
5027 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
5028 	if (__exist_node_summaries(sbi))
5029 		sbi->kbytes_written =
5030 			le64_to_cpu(seg_i->journal->info.kbytes_written);
5031 
5032 	f2fs_build_gc_manager(sbi);
5033 
5034 	err = f2fs_build_stats(sbi);
5035 	if (err)
5036 		goto free_nm;
5037 
5038 	/* get an inode for node space */
5039 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
5040 	if (IS_ERR(sbi->node_inode)) {
5041 		f2fs_err(sbi, "Failed to read node inode");
5042 		err = PTR_ERR(sbi->node_inode);
5043 		goto free_stats;
5044 	}
5045 
5046 	/* read root inode and dentry */
5047 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
5048 	if (IS_ERR(root)) {
5049 		f2fs_err(sbi, "Failed to read root inode");
5050 		err = PTR_ERR(root);
5051 		goto free_node_inode;
5052 	}
5053 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
5054 			!root->i_size || !root->i_nlink) {
5055 		iput(root);
5056 		err = -EINVAL;
5057 		goto free_node_inode;
5058 	}
5059 
5060 	generic_set_sb_d_ops(sb);
5061 	sb->s_root = d_make_root(root); /* allocate root dentry */
5062 	if (!sb->s_root) {
5063 		err = -ENOMEM;
5064 		goto free_node_inode;
5065 	}
5066 
5067 	err = f2fs_init_compress_inode(sbi);
5068 	if (err)
5069 		goto free_root_inode;
5070 
5071 	err = f2fs_register_sysfs(sbi);
5072 	if (err)
5073 		goto free_compress_inode;
5074 
5075 	sbi->umount_lock_holder = current;
5076 #ifdef CONFIG_QUOTA
5077 	/* Enable quota usage during mount */
5078 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
5079 		err = f2fs_enable_quotas(sb);
5080 		if (err)
5081 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
5082 	}
5083 
5084 	quota_enabled = f2fs_recover_quota_begin(sbi);
5085 #endif
5086 	/* if there are any orphan inodes, free them */
5087 	err = f2fs_recover_orphan_inodes(sbi);
5088 	if (err)
5089 		goto free_meta;
5090 
5091 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) {
5092 		skip_recovery = true;
5093 		goto reset_checkpoint;
5094 	}
5095 
5096 	/* recover fsynced data */
5097 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
5098 			!test_opt(sbi, NORECOVERY)) {
5099 		/*
5100 		 * mount should be failed, when device has readonly mode, and
5101 		 * previous checkpoint was not done by clean system shutdown.
5102 		 */
5103 		if (f2fs_hw_is_readonly(sbi)) {
5104 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5105 				err = f2fs_recover_fsync_data(sbi, true);
5106 				if (err > 0) {
5107 					err = -EROFS;
5108 					f2fs_err(sbi, "Need to recover fsync data, but "
5109 						"write access unavailable, please try "
5110 						"mount w/ disable_roll_forward or norecovery");
5111 				}
5112 				if (err < 0)
5113 					goto free_meta;
5114 			}
5115 			f2fs_info(sbi, "write access unavailable, skipping recovery");
5116 			goto reset_checkpoint;
5117 		}
5118 
5119 		if (need_fsck)
5120 			set_sbi_flag(sbi, SBI_NEED_FSCK);
5121 
5122 		if (skip_recovery)
5123 			goto reset_checkpoint;
5124 
5125 		err = f2fs_recover_fsync_data(sbi, false);
5126 		if (err < 0) {
5127 			if (err != -ENOMEM)
5128 				skip_recovery = true;
5129 			need_fsck = true;
5130 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
5131 				 err);
5132 			goto free_meta;
5133 		}
5134 	} else {
5135 		err = f2fs_recover_fsync_data(sbi, true);
5136 
5137 		if (!f2fs_readonly(sb) && err > 0) {
5138 			err = -EINVAL;
5139 			f2fs_err(sbi, "Need to recover fsync data");
5140 			goto free_meta;
5141 		}
5142 	}
5143 
5144 reset_checkpoint:
5145 #ifdef CONFIG_QUOTA
5146 	f2fs_recover_quota_end(sbi, quota_enabled);
5147 #endif
5148 	/*
5149 	 * If the f2fs is not readonly and fsync data recovery succeeds,
5150 	 * write pointer consistency of cursegs and other zones are already
5151 	 * checked and fixed during recovery. However, if recovery fails,
5152 	 * write pointers are left untouched, and retry-mount should check
5153 	 * them here.
5154 	 */
5155 	if (skip_recovery)
5156 		err = f2fs_check_and_fix_write_pointer(sbi);
5157 	if (err)
5158 		goto free_meta;
5159 
5160 	/* f2fs_recover_fsync_data() cleared this already */
5161 	clear_sbi_flag(sbi, SBI_POR_DOING);
5162 
5163 	err = f2fs_init_inmem_curseg(sbi);
5164 	if (err)
5165 		goto sync_free_meta;
5166 
5167 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
5168 		err = f2fs_disable_checkpoint(sbi);
5169 		if (err)
5170 			goto sync_free_meta;
5171 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
5172 		f2fs_enable_checkpoint(sbi);
5173 	}
5174 
5175 	/*
5176 	 * If filesystem is not mounted as read-only then
5177 	 * do start the gc_thread.
5178 	 */
5179 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
5180 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
5181 		/* After POR, we can run background GC thread.*/
5182 		err = f2fs_start_gc_thread(sbi);
5183 		if (err)
5184 			goto sync_free_meta;
5185 	}
5186 
5187 	/* recover broken superblock */
5188 	if (recovery) {
5189 		err = f2fs_commit_super(sbi, true);
5190 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
5191 			  sbi->valid_super_block ? 1 : 2, err);
5192 	}
5193 
5194 	f2fs_join_shrinker(sbi);
5195 
5196 	f2fs_tuning_parameters(sbi);
5197 
5198 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
5199 		    cur_cp_version(F2FS_CKPT(sbi)));
5200 	f2fs_update_time(sbi, CP_TIME);
5201 	f2fs_update_time(sbi, REQ_TIME);
5202 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
5203 
5204 	sbi->umount_lock_holder = NULL;
5205 	return 0;
5206 
5207 sync_free_meta:
5208 	/* safe to flush all the data */
5209 	sync_filesystem(sbi->sb);
5210 	retry_cnt = 0;
5211 
5212 free_meta:
5213 #ifdef CONFIG_QUOTA
5214 	f2fs_truncate_quota_inode_pages(sb);
5215 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
5216 		f2fs_quota_off_umount(sbi->sb);
5217 #endif
5218 	/*
5219 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
5220 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
5221 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
5222 	 * falls into an infinite loop in f2fs_sync_meta_pages().
5223 	 */
5224 	truncate_inode_pages_final(META_MAPPING(sbi));
5225 	/* evict some inodes being cached by GC */
5226 	evict_inodes(sb);
5227 	f2fs_unregister_sysfs(sbi);
5228 free_compress_inode:
5229 	f2fs_destroy_compress_inode(sbi);
5230 free_root_inode:
5231 	dput(sb->s_root);
5232 	sb->s_root = NULL;
5233 free_node_inode:
5234 	f2fs_release_ino_entry(sbi, true);
5235 	truncate_inode_pages_final(NODE_MAPPING(sbi));
5236 	iput(sbi->node_inode);
5237 	sbi->node_inode = NULL;
5238 free_stats:
5239 	f2fs_destroy_stats(sbi);
5240 free_nm:
5241 	/* stop discard thread before destroying node manager */
5242 	f2fs_stop_discard_thread(sbi);
5243 	f2fs_destroy_node_manager(sbi);
5244 free_sm:
5245 	f2fs_destroy_segment_manager(sbi);
5246 stop_ckpt_thread:
5247 	f2fs_stop_ckpt_thread(sbi);
5248 	/* flush s_error_work before sbi destroy */
5249 	flush_work(&sbi->s_error_work);
5250 	f2fs_destroy_post_read_wq(sbi);
5251 free_devices:
5252 	destroy_device_list(sbi);
5253 	kvfree(sbi->ckpt);
5254 free_meta_inode:
5255 	make_bad_inode(sbi->meta_inode);
5256 	iput(sbi->meta_inode);
5257 	sbi->meta_inode = NULL;
5258 free_page_array_cache:
5259 	f2fs_destroy_page_array_cache(sbi);
5260 free_xattr_cache:
5261 	f2fs_destroy_xattr_caches(sbi);
5262 free_percpu:
5263 	destroy_percpu_info(sbi);
5264 free_iostat:
5265 	f2fs_destroy_iostat(sbi);
5266 free_bio_info:
5267 	for (i = 0; i < NR_PAGE_TYPE; i++)
5268 		kfree(sbi->write_io[i]);
5269 
5270 #if IS_ENABLED(CONFIG_UNICODE)
5271 	utf8_unload(sb->s_encoding);
5272 	sb->s_encoding = NULL;
5273 #endif
5274 free_options:
5275 #ifdef CONFIG_QUOTA
5276 	for (i = 0; i < MAXQUOTAS; i++)
5277 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
5278 #endif
5279 	/* no need to free dummy_enc_policy, we just keep it in ctx when failed */
5280 	swap(F2FS_CTX_INFO(ctx).dummy_enc_policy, F2FS_OPTION(sbi).dummy_enc_policy);
5281 free_sb_buf:
5282 	kfree(raw_super);
5283 free_sbi:
5284 	kfree(sbi);
5285 	sb->s_fs_info = NULL;
5286 
5287 	/* give only one another chance */
5288 	if (retry_cnt > 0 && skip_recovery) {
5289 		retry_cnt--;
5290 		shrink_dcache_sb(sb);
5291 		goto try_onemore;
5292 	}
5293 	return err;
5294 }
5295 
5296 static int f2fs_get_tree(struct fs_context *fc)
5297 {
5298 	return get_tree_bdev(fc, f2fs_fill_super);
5299 }
5300 
5301 static int f2fs_reconfigure(struct fs_context *fc)
5302 {
5303 	struct super_block *sb = fc->root->d_sb;
5304 
5305 	return __f2fs_remount(fc, sb);
5306 }
5307 
5308 static void f2fs_fc_free(struct fs_context *fc)
5309 {
5310 	struct f2fs_fs_context *ctx = fc->fs_private;
5311 
5312 	if (!ctx)
5313 		return;
5314 
5315 #ifdef CONFIG_QUOTA
5316 	f2fs_unnote_qf_name_all(fc);
5317 #endif
5318 	fscrypt_free_dummy_policy(&F2FS_CTX_INFO(ctx).dummy_enc_policy);
5319 	kfree(ctx);
5320 }
5321 
5322 static const struct fs_context_operations f2fs_context_ops = {
5323 	.parse_param	= f2fs_parse_param,
5324 	.get_tree	= f2fs_get_tree,
5325 	.reconfigure = f2fs_reconfigure,
5326 	.free	= f2fs_fc_free,
5327 };
5328 
5329 static void kill_f2fs_super(struct super_block *sb)
5330 {
5331 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
5332 
5333 	if (sb->s_root) {
5334 		sbi->umount_lock_holder = current;
5335 
5336 		set_sbi_flag(sbi, SBI_IS_CLOSE);
5337 		f2fs_stop_gc_thread(sbi);
5338 		f2fs_stop_discard_thread(sbi);
5339 
5340 #ifdef CONFIG_F2FS_FS_COMPRESSION
5341 		/*
5342 		 * latter evict_inode() can bypass checking and invalidating
5343 		 * compress inode cache.
5344 		 */
5345 		if (test_opt(sbi, COMPRESS_CACHE))
5346 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
5347 #endif
5348 
5349 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
5350 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5351 			struct cp_control cpc = {
5352 				.reason = CP_UMOUNT,
5353 			};
5354 			stat_inc_cp_call_count(sbi, TOTAL_CALL);
5355 			f2fs_write_checkpoint(sbi, &cpc);
5356 		}
5357 
5358 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
5359 			sb->s_flags &= ~SB_RDONLY;
5360 	}
5361 	kill_block_super(sb);
5362 	/* Release block devices last, after fscrypt_destroy_keyring(). */
5363 	if (sbi) {
5364 		destroy_device_list(sbi);
5365 		kfree(sbi);
5366 		sb->s_fs_info = NULL;
5367 	}
5368 }
5369 
5370 static int f2fs_init_fs_context(struct fs_context *fc)
5371 {
5372 	struct f2fs_fs_context *ctx;
5373 
5374 	ctx = kzalloc(sizeof(struct f2fs_fs_context), GFP_KERNEL);
5375 	if (!ctx)
5376 		return -ENOMEM;
5377 
5378 	fc->fs_private = ctx;
5379 	fc->ops = &f2fs_context_ops;
5380 
5381 	return 0;
5382 }
5383 
5384 static struct file_system_type f2fs_fs_type = {
5385 	.owner		= THIS_MODULE,
5386 	.name		= "f2fs",
5387 	.init_fs_context = f2fs_init_fs_context,
5388 	.kill_sb	= kill_f2fs_super,
5389 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
5390 };
5391 MODULE_ALIAS_FS("f2fs");
5392 
5393 static int __init init_inodecache(void)
5394 {
5395 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
5396 			sizeof(struct f2fs_inode_info), 0,
5397 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
5398 	return f2fs_inode_cachep ? 0 : -ENOMEM;
5399 }
5400 
5401 static void destroy_inodecache(void)
5402 {
5403 	/*
5404 	 * Make sure all delayed rcu free inodes are flushed before we
5405 	 * destroy cache.
5406 	 */
5407 	rcu_barrier();
5408 	kmem_cache_destroy(f2fs_inode_cachep);
5409 }
5410 
5411 static int __init init_f2fs_fs(void)
5412 {
5413 	int err;
5414 
5415 	err = init_inodecache();
5416 	if (err)
5417 		goto fail;
5418 	err = f2fs_create_node_manager_caches();
5419 	if (err)
5420 		goto free_inodecache;
5421 	err = f2fs_create_segment_manager_caches();
5422 	if (err)
5423 		goto free_node_manager_caches;
5424 	err = f2fs_create_checkpoint_caches();
5425 	if (err)
5426 		goto free_segment_manager_caches;
5427 	err = f2fs_create_recovery_cache();
5428 	if (err)
5429 		goto free_checkpoint_caches;
5430 	err = f2fs_create_extent_cache();
5431 	if (err)
5432 		goto free_recovery_cache;
5433 	err = f2fs_create_garbage_collection_cache();
5434 	if (err)
5435 		goto free_extent_cache;
5436 	err = f2fs_init_sysfs();
5437 	if (err)
5438 		goto free_garbage_collection_cache;
5439 	err = f2fs_init_shrinker();
5440 	if (err)
5441 		goto free_sysfs;
5442 	f2fs_create_root_stats();
5443 	err = f2fs_init_post_read_processing();
5444 	if (err)
5445 		goto free_root_stats;
5446 	err = f2fs_init_iostat_processing();
5447 	if (err)
5448 		goto free_post_read;
5449 	err = f2fs_init_bio_entry_cache();
5450 	if (err)
5451 		goto free_iostat;
5452 	err = f2fs_init_bioset();
5453 	if (err)
5454 		goto free_bio_entry_cache;
5455 	err = f2fs_init_compress_mempool();
5456 	if (err)
5457 		goto free_bioset;
5458 	err = f2fs_init_compress_cache();
5459 	if (err)
5460 		goto free_compress_mempool;
5461 	err = f2fs_create_casefold_cache();
5462 	if (err)
5463 		goto free_compress_cache;
5464 	err = register_filesystem(&f2fs_fs_type);
5465 	if (err)
5466 		goto free_casefold_cache;
5467 	return 0;
5468 free_casefold_cache:
5469 	f2fs_destroy_casefold_cache();
5470 free_compress_cache:
5471 	f2fs_destroy_compress_cache();
5472 free_compress_mempool:
5473 	f2fs_destroy_compress_mempool();
5474 free_bioset:
5475 	f2fs_destroy_bioset();
5476 free_bio_entry_cache:
5477 	f2fs_destroy_bio_entry_cache();
5478 free_iostat:
5479 	f2fs_destroy_iostat_processing();
5480 free_post_read:
5481 	f2fs_destroy_post_read_processing();
5482 free_root_stats:
5483 	f2fs_destroy_root_stats();
5484 	f2fs_exit_shrinker();
5485 free_sysfs:
5486 	f2fs_exit_sysfs();
5487 free_garbage_collection_cache:
5488 	f2fs_destroy_garbage_collection_cache();
5489 free_extent_cache:
5490 	f2fs_destroy_extent_cache();
5491 free_recovery_cache:
5492 	f2fs_destroy_recovery_cache();
5493 free_checkpoint_caches:
5494 	f2fs_destroy_checkpoint_caches();
5495 free_segment_manager_caches:
5496 	f2fs_destroy_segment_manager_caches();
5497 free_node_manager_caches:
5498 	f2fs_destroy_node_manager_caches();
5499 free_inodecache:
5500 	destroy_inodecache();
5501 fail:
5502 	return err;
5503 }
5504 
5505 static void __exit exit_f2fs_fs(void)
5506 {
5507 	unregister_filesystem(&f2fs_fs_type);
5508 	f2fs_destroy_casefold_cache();
5509 	f2fs_destroy_compress_cache();
5510 	f2fs_destroy_compress_mempool();
5511 	f2fs_destroy_bioset();
5512 	f2fs_destroy_bio_entry_cache();
5513 	f2fs_destroy_iostat_processing();
5514 	f2fs_destroy_post_read_processing();
5515 	f2fs_destroy_root_stats();
5516 	f2fs_exit_shrinker();
5517 	f2fs_exit_sysfs();
5518 	f2fs_destroy_garbage_collection_cache();
5519 	f2fs_destroy_extent_cache();
5520 	f2fs_destroy_recovery_cache();
5521 	f2fs_destroy_checkpoint_caches();
5522 	f2fs_destroy_segment_manager_caches();
5523 	f2fs_destroy_node_manager_caches();
5524 	destroy_inodecache();
5525 }
5526 
5527 module_init(init_f2fs_fs)
5528 module_exit(exit_f2fs_fs)
5529 
5530 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
5531 MODULE_DESCRIPTION("Flash Friendly File System");
5532 MODULE_LICENSE("GPL");
5533