1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 struct f2fs_fault_info f2fs_fault; 44 45 char *fault_name[FAULT_MAX] = { 46 [FAULT_KMALLOC] = "kmalloc", 47 [FAULT_PAGE_ALLOC] = "page alloc", 48 [FAULT_ALLOC_NID] = "alloc nid", 49 [FAULT_ORPHAN] = "orphan", 50 [FAULT_BLOCK] = "no more block", 51 [FAULT_DIR_DEPTH] = "too big dir depth", 52 [FAULT_EVICT_INODE] = "evict_inode fail", 53 }; 54 55 static void f2fs_build_fault_attr(unsigned int rate) 56 { 57 if (rate) { 58 atomic_set(&f2fs_fault.inject_ops, 0); 59 f2fs_fault.inject_rate = rate; 60 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1; 61 } else { 62 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info)); 63 } 64 } 65 #endif 66 67 /* f2fs-wide shrinker description */ 68 static struct shrinker f2fs_shrinker_info = { 69 .scan_objects = f2fs_shrink_scan, 70 .count_objects = f2fs_shrink_count, 71 .seeks = DEFAULT_SEEKS, 72 }; 73 74 enum { 75 Opt_gc_background, 76 Opt_disable_roll_forward, 77 Opt_norecovery, 78 Opt_discard, 79 Opt_nodiscard, 80 Opt_noheap, 81 Opt_user_xattr, 82 Opt_nouser_xattr, 83 Opt_acl, 84 Opt_noacl, 85 Opt_active_logs, 86 Opt_disable_ext_identify, 87 Opt_inline_xattr, 88 Opt_inline_data, 89 Opt_inline_dentry, 90 Opt_flush_merge, 91 Opt_noflush_merge, 92 Opt_nobarrier, 93 Opt_fastboot, 94 Opt_extent_cache, 95 Opt_noextent_cache, 96 Opt_noinline_data, 97 Opt_data_flush, 98 Opt_mode, 99 Opt_fault_injection, 100 Opt_lazytime, 101 Opt_nolazytime, 102 Opt_err, 103 }; 104 105 static match_table_t f2fs_tokens = { 106 {Opt_gc_background, "background_gc=%s"}, 107 {Opt_disable_roll_forward, "disable_roll_forward"}, 108 {Opt_norecovery, "norecovery"}, 109 {Opt_discard, "discard"}, 110 {Opt_nodiscard, "nodiscard"}, 111 {Opt_noheap, "no_heap"}, 112 {Opt_user_xattr, "user_xattr"}, 113 {Opt_nouser_xattr, "nouser_xattr"}, 114 {Opt_acl, "acl"}, 115 {Opt_noacl, "noacl"}, 116 {Opt_active_logs, "active_logs=%u"}, 117 {Opt_disable_ext_identify, "disable_ext_identify"}, 118 {Opt_inline_xattr, "inline_xattr"}, 119 {Opt_inline_data, "inline_data"}, 120 {Opt_inline_dentry, "inline_dentry"}, 121 {Opt_flush_merge, "flush_merge"}, 122 {Opt_noflush_merge, "noflush_merge"}, 123 {Opt_nobarrier, "nobarrier"}, 124 {Opt_fastboot, "fastboot"}, 125 {Opt_extent_cache, "extent_cache"}, 126 {Opt_noextent_cache, "noextent_cache"}, 127 {Opt_noinline_data, "noinline_data"}, 128 {Opt_data_flush, "data_flush"}, 129 {Opt_mode, "mode=%s"}, 130 {Opt_fault_injection, "fault_injection=%u"}, 131 {Opt_lazytime, "lazytime"}, 132 {Opt_nolazytime, "nolazytime"}, 133 {Opt_err, NULL}, 134 }; 135 136 /* Sysfs support for f2fs */ 137 enum { 138 GC_THREAD, /* struct f2fs_gc_thread */ 139 SM_INFO, /* struct f2fs_sm_info */ 140 NM_INFO, /* struct f2fs_nm_info */ 141 F2FS_SBI, /* struct f2fs_sb_info */ 142 #ifdef CONFIG_F2FS_FAULT_INJECTION 143 FAULT_INFO_RATE, /* struct f2fs_fault_info */ 144 FAULT_INFO_TYPE, /* struct f2fs_fault_info */ 145 #endif 146 }; 147 148 struct f2fs_attr { 149 struct attribute attr; 150 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 151 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 152 const char *, size_t); 153 int struct_type; 154 int offset; 155 }; 156 157 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 158 { 159 if (struct_type == GC_THREAD) 160 return (unsigned char *)sbi->gc_thread; 161 else if (struct_type == SM_INFO) 162 return (unsigned char *)SM_I(sbi); 163 else if (struct_type == NM_INFO) 164 return (unsigned char *)NM_I(sbi); 165 else if (struct_type == F2FS_SBI) 166 return (unsigned char *)sbi; 167 #ifdef CONFIG_F2FS_FAULT_INJECTION 168 else if (struct_type == FAULT_INFO_RATE || 169 struct_type == FAULT_INFO_TYPE) 170 return (unsigned char *)&f2fs_fault; 171 #endif 172 return NULL; 173 } 174 175 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a, 176 struct f2fs_sb_info *sbi, char *buf) 177 { 178 struct super_block *sb = sbi->sb; 179 180 if (!sb->s_bdev->bd_part) 181 return snprintf(buf, PAGE_SIZE, "0\n"); 182 183 return snprintf(buf, PAGE_SIZE, "%llu\n", 184 (unsigned long long)(sbi->kbytes_written + 185 BD_PART_WRITTEN(sbi))); 186 } 187 188 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 189 struct f2fs_sb_info *sbi, char *buf) 190 { 191 unsigned char *ptr = NULL; 192 unsigned int *ui; 193 194 ptr = __struct_ptr(sbi, a->struct_type); 195 if (!ptr) 196 return -EINVAL; 197 198 ui = (unsigned int *)(ptr + a->offset); 199 200 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 201 } 202 203 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 204 struct f2fs_sb_info *sbi, 205 const char *buf, size_t count) 206 { 207 unsigned char *ptr; 208 unsigned long t; 209 unsigned int *ui; 210 ssize_t ret; 211 212 ptr = __struct_ptr(sbi, a->struct_type); 213 if (!ptr) 214 return -EINVAL; 215 216 ui = (unsigned int *)(ptr + a->offset); 217 218 ret = kstrtoul(skip_spaces(buf), 0, &t); 219 if (ret < 0) 220 return ret; 221 #ifdef CONFIG_F2FS_FAULT_INJECTION 222 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX)) 223 return -EINVAL; 224 #endif 225 *ui = t; 226 return count; 227 } 228 229 static ssize_t f2fs_attr_show(struct kobject *kobj, 230 struct attribute *attr, char *buf) 231 { 232 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 233 s_kobj); 234 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 235 236 return a->show ? a->show(a, sbi, buf) : 0; 237 } 238 239 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 240 const char *buf, size_t len) 241 { 242 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 243 s_kobj); 244 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 245 246 return a->store ? a->store(a, sbi, buf, len) : 0; 247 } 248 249 static void f2fs_sb_release(struct kobject *kobj) 250 { 251 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 252 s_kobj); 253 complete(&sbi->s_kobj_unregister); 254 } 255 256 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 257 static struct f2fs_attr f2fs_attr_##_name = { \ 258 .attr = {.name = __stringify(_name), .mode = _mode }, \ 259 .show = _show, \ 260 .store = _store, \ 261 .struct_type = _struct_type, \ 262 .offset = _offset \ 263 } 264 265 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 266 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 267 f2fs_sbi_show, f2fs_sbi_store, \ 268 offsetof(struct struct_name, elname)) 269 270 #define F2FS_GENERAL_RO_ATTR(name) \ 271 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL) 272 273 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 274 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 275 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 276 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 277 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 278 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 279 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 280 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 281 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 282 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 283 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 284 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); 285 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio); 286 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 287 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 288 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]); 289 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]); 290 #ifdef CONFIG_F2FS_FAULT_INJECTION 291 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate); 292 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type); 293 #endif 294 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes); 295 296 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 297 static struct attribute *f2fs_attrs[] = { 298 ATTR_LIST(gc_min_sleep_time), 299 ATTR_LIST(gc_max_sleep_time), 300 ATTR_LIST(gc_no_gc_sleep_time), 301 ATTR_LIST(gc_idle), 302 ATTR_LIST(reclaim_segments), 303 ATTR_LIST(max_small_discards), 304 ATTR_LIST(batched_trim_sections), 305 ATTR_LIST(ipu_policy), 306 ATTR_LIST(min_ipu_util), 307 ATTR_LIST(min_fsync_blocks), 308 ATTR_LIST(max_victim_search), 309 ATTR_LIST(dir_level), 310 ATTR_LIST(ram_thresh), 311 ATTR_LIST(ra_nid_pages), 312 ATTR_LIST(dirty_nats_ratio), 313 ATTR_LIST(cp_interval), 314 ATTR_LIST(idle_interval), 315 ATTR_LIST(lifetime_write_kbytes), 316 NULL, 317 }; 318 319 static const struct sysfs_ops f2fs_attr_ops = { 320 .show = f2fs_attr_show, 321 .store = f2fs_attr_store, 322 }; 323 324 static struct kobj_type f2fs_ktype = { 325 .default_attrs = f2fs_attrs, 326 .sysfs_ops = &f2fs_attr_ops, 327 .release = f2fs_sb_release, 328 }; 329 330 #ifdef CONFIG_F2FS_FAULT_INJECTION 331 /* sysfs for f2fs fault injection */ 332 static struct kobject f2fs_fault_inject; 333 334 static struct attribute *f2fs_fault_attrs[] = { 335 ATTR_LIST(inject_rate), 336 ATTR_LIST(inject_type), 337 NULL 338 }; 339 340 static struct kobj_type f2fs_fault_ktype = { 341 .default_attrs = f2fs_fault_attrs, 342 .sysfs_ops = &f2fs_attr_ops, 343 }; 344 #endif 345 346 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 347 { 348 struct va_format vaf; 349 va_list args; 350 351 va_start(args, fmt); 352 vaf.fmt = fmt; 353 vaf.va = &args; 354 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 355 va_end(args); 356 } 357 358 static void init_once(void *foo) 359 { 360 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 361 362 inode_init_once(&fi->vfs_inode); 363 } 364 365 static int parse_options(struct super_block *sb, char *options) 366 { 367 struct f2fs_sb_info *sbi = F2FS_SB(sb); 368 struct request_queue *q; 369 substring_t args[MAX_OPT_ARGS]; 370 char *p, *name; 371 int arg = 0; 372 373 #ifdef CONFIG_F2FS_FAULT_INJECTION 374 f2fs_build_fault_attr(0); 375 #endif 376 377 if (!options) 378 return 0; 379 380 while ((p = strsep(&options, ",")) != NULL) { 381 int token; 382 if (!*p) 383 continue; 384 /* 385 * Initialize args struct so we know whether arg was 386 * found; some options take optional arguments. 387 */ 388 args[0].to = args[0].from = NULL; 389 token = match_token(p, f2fs_tokens, args); 390 391 switch (token) { 392 case Opt_gc_background: 393 name = match_strdup(&args[0]); 394 395 if (!name) 396 return -ENOMEM; 397 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 398 set_opt(sbi, BG_GC); 399 clear_opt(sbi, FORCE_FG_GC); 400 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 401 clear_opt(sbi, BG_GC); 402 clear_opt(sbi, FORCE_FG_GC); 403 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 404 set_opt(sbi, BG_GC); 405 set_opt(sbi, FORCE_FG_GC); 406 } else { 407 kfree(name); 408 return -EINVAL; 409 } 410 kfree(name); 411 break; 412 case Opt_disable_roll_forward: 413 set_opt(sbi, DISABLE_ROLL_FORWARD); 414 break; 415 case Opt_norecovery: 416 /* this option mounts f2fs with ro */ 417 set_opt(sbi, DISABLE_ROLL_FORWARD); 418 if (!f2fs_readonly(sb)) 419 return -EINVAL; 420 break; 421 case Opt_discard: 422 q = bdev_get_queue(sb->s_bdev); 423 if (blk_queue_discard(q)) { 424 set_opt(sbi, DISCARD); 425 } else { 426 f2fs_msg(sb, KERN_WARNING, 427 "mounting with \"discard\" option, but " 428 "the device does not support discard"); 429 } 430 break; 431 case Opt_nodiscard: 432 clear_opt(sbi, DISCARD); 433 case Opt_noheap: 434 set_opt(sbi, NOHEAP); 435 break; 436 #ifdef CONFIG_F2FS_FS_XATTR 437 case Opt_user_xattr: 438 set_opt(sbi, XATTR_USER); 439 break; 440 case Opt_nouser_xattr: 441 clear_opt(sbi, XATTR_USER); 442 break; 443 case Opt_inline_xattr: 444 set_opt(sbi, INLINE_XATTR); 445 break; 446 #else 447 case Opt_user_xattr: 448 f2fs_msg(sb, KERN_INFO, 449 "user_xattr options not supported"); 450 break; 451 case Opt_nouser_xattr: 452 f2fs_msg(sb, KERN_INFO, 453 "nouser_xattr options not supported"); 454 break; 455 case Opt_inline_xattr: 456 f2fs_msg(sb, KERN_INFO, 457 "inline_xattr options not supported"); 458 break; 459 #endif 460 #ifdef CONFIG_F2FS_FS_POSIX_ACL 461 case Opt_acl: 462 set_opt(sbi, POSIX_ACL); 463 break; 464 case Opt_noacl: 465 clear_opt(sbi, POSIX_ACL); 466 break; 467 #else 468 case Opt_acl: 469 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 470 break; 471 case Opt_noacl: 472 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 473 break; 474 #endif 475 case Opt_active_logs: 476 if (args->from && match_int(args, &arg)) 477 return -EINVAL; 478 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 479 return -EINVAL; 480 sbi->active_logs = arg; 481 break; 482 case Opt_disable_ext_identify: 483 set_opt(sbi, DISABLE_EXT_IDENTIFY); 484 break; 485 case Opt_inline_data: 486 set_opt(sbi, INLINE_DATA); 487 break; 488 case Opt_inline_dentry: 489 set_opt(sbi, INLINE_DENTRY); 490 break; 491 case Opt_flush_merge: 492 set_opt(sbi, FLUSH_MERGE); 493 break; 494 case Opt_noflush_merge: 495 clear_opt(sbi, FLUSH_MERGE); 496 break; 497 case Opt_nobarrier: 498 set_opt(sbi, NOBARRIER); 499 break; 500 case Opt_fastboot: 501 set_opt(sbi, FASTBOOT); 502 break; 503 case Opt_extent_cache: 504 set_opt(sbi, EXTENT_CACHE); 505 break; 506 case Opt_noextent_cache: 507 clear_opt(sbi, EXTENT_CACHE); 508 break; 509 case Opt_noinline_data: 510 clear_opt(sbi, INLINE_DATA); 511 break; 512 case Opt_data_flush: 513 set_opt(sbi, DATA_FLUSH); 514 break; 515 case Opt_mode: 516 name = match_strdup(&args[0]); 517 518 if (!name) 519 return -ENOMEM; 520 if (strlen(name) == 8 && 521 !strncmp(name, "adaptive", 8)) { 522 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 523 } else if (strlen(name) == 3 && 524 !strncmp(name, "lfs", 3)) { 525 set_opt_mode(sbi, F2FS_MOUNT_LFS); 526 } else { 527 kfree(name); 528 return -EINVAL; 529 } 530 kfree(name); 531 break; 532 case Opt_fault_injection: 533 if (args->from && match_int(args, &arg)) 534 return -EINVAL; 535 #ifdef CONFIG_F2FS_FAULT_INJECTION 536 f2fs_build_fault_attr(arg); 537 #else 538 f2fs_msg(sb, KERN_INFO, 539 "FAULT_INJECTION was not selected"); 540 #endif 541 break; 542 case Opt_lazytime: 543 sb->s_flags |= MS_LAZYTIME; 544 break; 545 case Opt_nolazytime: 546 sb->s_flags &= ~MS_LAZYTIME; 547 break; 548 default: 549 f2fs_msg(sb, KERN_ERR, 550 "Unrecognized mount option \"%s\" or missing value", 551 p); 552 return -EINVAL; 553 } 554 } 555 return 0; 556 } 557 558 static struct inode *f2fs_alloc_inode(struct super_block *sb) 559 { 560 struct f2fs_inode_info *fi; 561 562 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 563 if (!fi) 564 return NULL; 565 566 init_once((void *) fi); 567 568 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) { 569 kmem_cache_free(f2fs_inode_cachep, fi); 570 return NULL; 571 } 572 573 /* Initialize f2fs-specific inode info */ 574 fi->vfs_inode.i_version = 1; 575 fi->i_current_depth = 1; 576 fi->i_advise = 0; 577 init_rwsem(&fi->i_sem); 578 INIT_LIST_HEAD(&fi->dirty_list); 579 INIT_LIST_HEAD(&fi->gdirty_list); 580 INIT_LIST_HEAD(&fi->inmem_pages); 581 mutex_init(&fi->inmem_lock); 582 init_rwsem(&fi->dio_rwsem[READ]); 583 init_rwsem(&fi->dio_rwsem[WRITE]); 584 585 /* Will be used by directory only */ 586 fi->i_dir_level = F2FS_SB(sb)->dir_level; 587 return &fi->vfs_inode; 588 } 589 590 static int f2fs_drop_inode(struct inode *inode) 591 { 592 /* 593 * This is to avoid a deadlock condition like below. 594 * writeback_single_inode(inode) 595 * - f2fs_write_data_page 596 * - f2fs_gc -> iput -> evict 597 * - inode_wait_for_writeback(inode) 598 */ 599 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 600 if (!inode->i_nlink && !is_bad_inode(inode)) { 601 /* to avoid evict_inode call simultaneously */ 602 atomic_inc(&inode->i_count); 603 spin_unlock(&inode->i_lock); 604 605 /* some remained atomic pages should discarded */ 606 if (f2fs_is_atomic_file(inode)) 607 drop_inmem_pages(inode); 608 609 /* should remain fi->extent_tree for writepage */ 610 f2fs_destroy_extent_node(inode); 611 612 sb_start_intwrite(inode->i_sb); 613 f2fs_i_size_write(inode, 0); 614 615 if (F2FS_HAS_BLOCKS(inode)) 616 f2fs_truncate(inode); 617 618 sb_end_intwrite(inode->i_sb); 619 620 fscrypt_put_encryption_info(inode, NULL); 621 spin_lock(&inode->i_lock); 622 atomic_dec(&inode->i_count); 623 } 624 return 0; 625 } 626 627 return generic_drop_inode(inode); 628 } 629 630 int f2fs_inode_dirtied(struct inode *inode) 631 { 632 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 633 634 spin_lock(&sbi->inode_lock[DIRTY_META]); 635 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 636 spin_unlock(&sbi->inode_lock[DIRTY_META]); 637 return 1; 638 } 639 640 set_inode_flag(inode, FI_DIRTY_INODE); 641 list_add_tail(&F2FS_I(inode)->gdirty_list, 642 &sbi->inode_list[DIRTY_META]); 643 inc_page_count(sbi, F2FS_DIRTY_IMETA); 644 stat_inc_dirty_inode(sbi, DIRTY_META); 645 spin_unlock(&sbi->inode_lock[DIRTY_META]); 646 647 return 0; 648 } 649 650 void f2fs_inode_synced(struct inode *inode) 651 { 652 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 653 654 spin_lock(&sbi->inode_lock[DIRTY_META]); 655 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 656 spin_unlock(&sbi->inode_lock[DIRTY_META]); 657 return; 658 } 659 list_del_init(&F2FS_I(inode)->gdirty_list); 660 clear_inode_flag(inode, FI_DIRTY_INODE); 661 clear_inode_flag(inode, FI_AUTO_RECOVER); 662 dec_page_count(sbi, F2FS_DIRTY_IMETA); 663 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 664 spin_unlock(&sbi->inode_lock[DIRTY_META]); 665 } 666 667 /* 668 * f2fs_dirty_inode() is called from __mark_inode_dirty() 669 * 670 * We should call set_dirty_inode to write the dirty inode through write_inode. 671 */ 672 static void f2fs_dirty_inode(struct inode *inode, int flags) 673 { 674 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 675 676 if (inode->i_ino == F2FS_NODE_INO(sbi) || 677 inode->i_ino == F2FS_META_INO(sbi)) 678 return; 679 680 if (flags == I_DIRTY_TIME) 681 return; 682 683 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 684 clear_inode_flag(inode, FI_AUTO_RECOVER); 685 686 f2fs_inode_dirtied(inode); 687 } 688 689 static void f2fs_i_callback(struct rcu_head *head) 690 { 691 struct inode *inode = container_of(head, struct inode, i_rcu); 692 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 693 } 694 695 static void f2fs_destroy_inode(struct inode *inode) 696 { 697 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages); 698 call_rcu(&inode->i_rcu, f2fs_i_callback); 699 } 700 701 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 702 { 703 int i; 704 705 for (i = 0; i < NR_COUNT_TYPE; i++) 706 percpu_counter_destroy(&sbi->nr_pages[i]); 707 percpu_counter_destroy(&sbi->alloc_valid_block_count); 708 percpu_counter_destroy(&sbi->total_valid_inode_count); 709 710 percpu_free_rwsem(&sbi->cp_rwsem); 711 } 712 713 static void f2fs_put_super(struct super_block *sb) 714 { 715 struct f2fs_sb_info *sbi = F2FS_SB(sb); 716 717 if (sbi->s_proc) { 718 remove_proc_entry("segment_info", sbi->s_proc); 719 remove_proc_entry("segment_bits", sbi->s_proc); 720 remove_proc_entry(sb->s_id, f2fs_proc_root); 721 } 722 kobject_del(&sbi->s_kobj); 723 724 stop_gc_thread(sbi); 725 726 /* prevent remaining shrinker jobs */ 727 mutex_lock(&sbi->umount_mutex); 728 729 /* 730 * We don't need to do checkpoint when superblock is clean. 731 * But, the previous checkpoint was not done by umount, it needs to do 732 * clean checkpoint again. 733 */ 734 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 735 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) { 736 struct cp_control cpc = { 737 .reason = CP_UMOUNT, 738 }; 739 write_checkpoint(sbi, &cpc); 740 } 741 742 /* write_checkpoint can update stat informaion */ 743 f2fs_destroy_stats(sbi); 744 745 /* 746 * normally superblock is clean, so we need to release this. 747 * In addition, EIO will skip do checkpoint, we need this as well. 748 */ 749 release_ino_entry(sbi, true); 750 release_discard_addrs(sbi); 751 752 f2fs_leave_shrinker(sbi); 753 mutex_unlock(&sbi->umount_mutex); 754 755 /* our cp_error case, we can wait for any writeback page */ 756 f2fs_flush_merged_bios(sbi); 757 758 iput(sbi->node_inode); 759 iput(sbi->meta_inode); 760 761 /* destroy f2fs internal modules */ 762 destroy_node_manager(sbi); 763 destroy_segment_manager(sbi); 764 765 kfree(sbi->ckpt); 766 kobject_put(&sbi->s_kobj); 767 wait_for_completion(&sbi->s_kobj_unregister); 768 769 sb->s_fs_info = NULL; 770 if (sbi->s_chksum_driver) 771 crypto_free_shash(sbi->s_chksum_driver); 772 kfree(sbi->raw_super); 773 774 destroy_percpu_info(sbi); 775 kfree(sbi); 776 } 777 778 int f2fs_sync_fs(struct super_block *sb, int sync) 779 { 780 struct f2fs_sb_info *sbi = F2FS_SB(sb); 781 int err = 0; 782 783 trace_f2fs_sync_fs(sb, sync); 784 785 if (sync) { 786 struct cp_control cpc; 787 788 cpc.reason = __get_cp_reason(sbi); 789 790 mutex_lock(&sbi->gc_mutex); 791 err = write_checkpoint(sbi, &cpc); 792 mutex_unlock(&sbi->gc_mutex); 793 } 794 f2fs_trace_ios(NULL, 1); 795 796 return err; 797 } 798 799 static int f2fs_freeze(struct super_block *sb) 800 { 801 int err; 802 803 if (f2fs_readonly(sb)) 804 return 0; 805 806 err = f2fs_sync_fs(sb, 1); 807 return err; 808 } 809 810 static int f2fs_unfreeze(struct super_block *sb) 811 { 812 return 0; 813 } 814 815 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 816 { 817 struct super_block *sb = dentry->d_sb; 818 struct f2fs_sb_info *sbi = F2FS_SB(sb); 819 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 820 block_t total_count, user_block_count, start_count, ovp_count; 821 822 total_count = le64_to_cpu(sbi->raw_super->block_count); 823 user_block_count = sbi->user_block_count; 824 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 825 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 826 buf->f_type = F2FS_SUPER_MAGIC; 827 buf->f_bsize = sbi->blocksize; 828 829 buf->f_blocks = total_count - start_count; 830 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count; 831 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 832 833 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 834 buf->f_ffree = buf->f_files - valid_inode_count(sbi); 835 836 buf->f_namelen = F2FS_NAME_LEN; 837 buf->f_fsid.val[0] = (u32)id; 838 buf->f_fsid.val[1] = (u32)(id >> 32); 839 840 return 0; 841 } 842 843 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 844 { 845 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 846 847 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 848 if (test_opt(sbi, FORCE_FG_GC)) 849 seq_printf(seq, ",background_gc=%s", "sync"); 850 else 851 seq_printf(seq, ",background_gc=%s", "on"); 852 } else { 853 seq_printf(seq, ",background_gc=%s", "off"); 854 } 855 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 856 seq_puts(seq, ",disable_roll_forward"); 857 if (test_opt(sbi, DISCARD)) 858 seq_puts(seq, ",discard"); 859 if (test_opt(sbi, NOHEAP)) 860 seq_puts(seq, ",no_heap_alloc"); 861 #ifdef CONFIG_F2FS_FS_XATTR 862 if (test_opt(sbi, XATTR_USER)) 863 seq_puts(seq, ",user_xattr"); 864 else 865 seq_puts(seq, ",nouser_xattr"); 866 if (test_opt(sbi, INLINE_XATTR)) 867 seq_puts(seq, ",inline_xattr"); 868 #endif 869 #ifdef CONFIG_F2FS_FS_POSIX_ACL 870 if (test_opt(sbi, POSIX_ACL)) 871 seq_puts(seq, ",acl"); 872 else 873 seq_puts(seq, ",noacl"); 874 #endif 875 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 876 seq_puts(seq, ",disable_ext_identify"); 877 if (test_opt(sbi, INLINE_DATA)) 878 seq_puts(seq, ",inline_data"); 879 else 880 seq_puts(seq, ",noinline_data"); 881 if (test_opt(sbi, INLINE_DENTRY)) 882 seq_puts(seq, ",inline_dentry"); 883 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 884 seq_puts(seq, ",flush_merge"); 885 if (test_opt(sbi, NOBARRIER)) 886 seq_puts(seq, ",nobarrier"); 887 if (test_opt(sbi, FASTBOOT)) 888 seq_puts(seq, ",fastboot"); 889 if (test_opt(sbi, EXTENT_CACHE)) 890 seq_puts(seq, ",extent_cache"); 891 else 892 seq_puts(seq, ",noextent_cache"); 893 if (test_opt(sbi, DATA_FLUSH)) 894 seq_puts(seq, ",data_flush"); 895 896 seq_puts(seq, ",mode="); 897 if (test_opt(sbi, ADAPTIVE)) 898 seq_puts(seq, "adaptive"); 899 else if (test_opt(sbi, LFS)) 900 seq_puts(seq, "lfs"); 901 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 902 903 return 0; 904 } 905 906 static int segment_info_seq_show(struct seq_file *seq, void *offset) 907 { 908 struct super_block *sb = seq->private; 909 struct f2fs_sb_info *sbi = F2FS_SB(sb); 910 unsigned int total_segs = 911 le32_to_cpu(sbi->raw_super->segment_count_main); 912 int i; 913 914 seq_puts(seq, "format: segment_type|valid_blocks\n" 915 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 916 917 for (i = 0; i < total_segs; i++) { 918 struct seg_entry *se = get_seg_entry(sbi, i); 919 920 if ((i % 10) == 0) 921 seq_printf(seq, "%-10d", i); 922 seq_printf(seq, "%d|%-3u", se->type, 923 get_valid_blocks(sbi, i, 1)); 924 if ((i % 10) == 9 || i == (total_segs - 1)) 925 seq_putc(seq, '\n'); 926 else 927 seq_putc(seq, ' '); 928 } 929 930 return 0; 931 } 932 933 static int segment_bits_seq_show(struct seq_file *seq, void *offset) 934 { 935 struct super_block *sb = seq->private; 936 struct f2fs_sb_info *sbi = F2FS_SB(sb); 937 unsigned int total_segs = 938 le32_to_cpu(sbi->raw_super->segment_count_main); 939 int i, j; 940 941 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n" 942 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 943 944 for (i = 0; i < total_segs; i++) { 945 struct seg_entry *se = get_seg_entry(sbi, i); 946 947 seq_printf(seq, "%-10d", i); 948 seq_printf(seq, "%d|%-3u|", se->type, 949 get_valid_blocks(sbi, i, 1)); 950 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) 951 seq_printf(seq, "%x ", se->cur_valid_map[j]); 952 seq_putc(seq, '\n'); 953 } 954 return 0; 955 } 956 957 #define F2FS_PROC_FILE_DEF(_name) \ 958 static int _name##_open_fs(struct inode *inode, struct file *file) \ 959 { \ 960 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \ 961 } \ 962 \ 963 static const struct file_operations f2fs_seq_##_name##_fops = { \ 964 .open = _name##_open_fs, \ 965 .read = seq_read, \ 966 .llseek = seq_lseek, \ 967 .release = single_release, \ 968 }; 969 970 F2FS_PROC_FILE_DEF(segment_info); 971 F2FS_PROC_FILE_DEF(segment_bits); 972 973 static void default_options(struct f2fs_sb_info *sbi) 974 { 975 /* init some FS parameters */ 976 sbi->active_logs = NR_CURSEG_TYPE; 977 978 set_opt(sbi, BG_GC); 979 set_opt(sbi, INLINE_DATA); 980 set_opt(sbi, EXTENT_CACHE); 981 sbi->sb->s_flags |= MS_LAZYTIME; 982 set_opt(sbi, FLUSH_MERGE); 983 if (f2fs_sb_mounted_hmsmr(sbi->sb)) { 984 set_opt_mode(sbi, F2FS_MOUNT_LFS); 985 set_opt(sbi, DISCARD); 986 } else { 987 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 988 } 989 990 #ifdef CONFIG_F2FS_FS_XATTR 991 set_opt(sbi, XATTR_USER); 992 #endif 993 #ifdef CONFIG_F2FS_FS_POSIX_ACL 994 set_opt(sbi, POSIX_ACL); 995 #endif 996 } 997 998 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 999 { 1000 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1001 struct f2fs_mount_info org_mount_opt; 1002 int err, active_logs; 1003 bool need_restart_gc = false; 1004 bool need_stop_gc = false; 1005 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1006 1007 /* 1008 * Save the old mount options in case we 1009 * need to restore them. 1010 */ 1011 org_mount_opt = sbi->mount_opt; 1012 active_logs = sbi->active_logs; 1013 1014 /* recover superblocks we couldn't write due to previous RO mount */ 1015 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1016 err = f2fs_commit_super(sbi, false); 1017 f2fs_msg(sb, KERN_INFO, 1018 "Try to recover all the superblocks, ret: %d", err); 1019 if (!err) 1020 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1021 } 1022 1023 sbi->mount_opt.opt = 0; 1024 default_options(sbi); 1025 1026 /* parse mount options */ 1027 err = parse_options(sb, data); 1028 if (err) 1029 goto restore_opts; 1030 1031 /* 1032 * Previous and new state of filesystem is RO, 1033 * so skip checking GC and FLUSH_MERGE conditions. 1034 */ 1035 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 1036 goto skip; 1037 1038 /* disallow enable/disable extent_cache dynamically */ 1039 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1040 err = -EINVAL; 1041 f2fs_msg(sbi->sb, KERN_WARNING, 1042 "switch extent_cache option is not allowed"); 1043 goto restore_opts; 1044 } 1045 1046 /* 1047 * We stop the GC thread if FS is mounted as RO 1048 * or if background_gc = off is passed in mount 1049 * option. Also sync the filesystem. 1050 */ 1051 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 1052 if (sbi->gc_thread) { 1053 stop_gc_thread(sbi); 1054 need_restart_gc = true; 1055 } 1056 } else if (!sbi->gc_thread) { 1057 err = start_gc_thread(sbi); 1058 if (err) 1059 goto restore_opts; 1060 need_stop_gc = true; 1061 } 1062 1063 if (*flags & MS_RDONLY) { 1064 writeback_inodes_sb(sb, WB_REASON_SYNC); 1065 sync_inodes_sb(sb); 1066 1067 set_sbi_flag(sbi, SBI_IS_DIRTY); 1068 set_sbi_flag(sbi, SBI_IS_CLOSE); 1069 f2fs_sync_fs(sb, 1); 1070 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1071 } 1072 1073 /* 1074 * We stop issue flush thread if FS is mounted as RO 1075 * or if flush_merge is not passed in mount option. 1076 */ 1077 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1078 destroy_flush_cmd_control(sbi); 1079 } else if (!SM_I(sbi)->cmd_control_info) { 1080 err = create_flush_cmd_control(sbi); 1081 if (err) 1082 goto restore_gc; 1083 } 1084 skip: 1085 /* Update the POSIXACL Flag */ 1086 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1087 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1088 1089 return 0; 1090 restore_gc: 1091 if (need_restart_gc) { 1092 if (start_gc_thread(sbi)) 1093 f2fs_msg(sbi->sb, KERN_WARNING, 1094 "background gc thread has stopped"); 1095 } else if (need_stop_gc) { 1096 stop_gc_thread(sbi); 1097 } 1098 restore_opts: 1099 sbi->mount_opt = org_mount_opt; 1100 sbi->active_logs = active_logs; 1101 return err; 1102 } 1103 1104 static struct super_operations f2fs_sops = { 1105 .alloc_inode = f2fs_alloc_inode, 1106 .drop_inode = f2fs_drop_inode, 1107 .destroy_inode = f2fs_destroy_inode, 1108 .write_inode = f2fs_write_inode, 1109 .dirty_inode = f2fs_dirty_inode, 1110 .show_options = f2fs_show_options, 1111 .evict_inode = f2fs_evict_inode, 1112 .put_super = f2fs_put_super, 1113 .sync_fs = f2fs_sync_fs, 1114 .freeze_fs = f2fs_freeze, 1115 .unfreeze_fs = f2fs_unfreeze, 1116 .statfs = f2fs_statfs, 1117 .remount_fs = f2fs_remount, 1118 }; 1119 1120 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1121 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1122 { 1123 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1124 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1125 ctx, len, NULL); 1126 } 1127 1128 static int f2fs_key_prefix(struct inode *inode, u8 **key) 1129 { 1130 *key = F2FS_I_SB(inode)->key_prefix; 1131 return F2FS_I_SB(inode)->key_prefix_size; 1132 } 1133 1134 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1135 void *fs_data) 1136 { 1137 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1138 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1139 ctx, len, fs_data, XATTR_CREATE); 1140 } 1141 1142 static unsigned f2fs_max_namelen(struct inode *inode) 1143 { 1144 return S_ISLNK(inode->i_mode) ? 1145 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1146 } 1147 1148 static struct fscrypt_operations f2fs_cryptops = { 1149 .get_context = f2fs_get_context, 1150 .key_prefix = f2fs_key_prefix, 1151 .set_context = f2fs_set_context, 1152 .is_encrypted = f2fs_encrypted_inode, 1153 .empty_dir = f2fs_empty_dir, 1154 .max_namelen = f2fs_max_namelen, 1155 }; 1156 #else 1157 static struct fscrypt_operations f2fs_cryptops = { 1158 .is_encrypted = f2fs_encrypted_inode, 1159 }; 1160 #endif 1161 1162 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1163 u64 ino, u32 generation) 1164 { 1165 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1166 struct inode *inode; 1167 1168 if (check_nid_range(sbi, ino)) 1169 return ERR_PTR(-ESTALE); 1170 1171 /* 1172 * f2fs_iget isn't quite right if the inode is currently unallocated! 1173 * However f2fs_iget currently does appropriate checks to handle stale 1174 * inodes so everything is OK. 1175 */ 1176 inode = f2fs_iget(sb, ino); 1177 if (IS_ERR(inode)) 1178 return ERR_CAST(inode); 1179 if (unlikely(generation && inode->i_generation != generation)) { 1180 /* we didn't find the right inode.. */ 1181 iput(inode); 1182 return ERR_PTR(-ESTALE); 1183 } 1184 return inode; 1185 } 1186 1187 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1188 int fh_len, int fh_type) 1189 { 1190 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1191 f2fs_nfs_get_inode); 1192 } 1193 1194 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1195 int fh_len, int fh_type) 1196 { 1197 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1198 f2fs_nfs_get_inode); 1199 } 1200 1201 static const struct export_operations f2fs_export_ops = { 1202 .fh_to_dentry = f2fs_fh_to_dentry, 1203 .fh_to_parent = f2fs_fh_to_parent, 1204 .get_parent = f2fs_get_parent, 1205 }; 1206 1207 static loff_t max_file_blocks(void) 1208 { 1209 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 1210 loff_t leaf_count = ADDRS_PER_BLOCK; 1211 1212 /* two direct node blocks */ 1213 result += (leaf_count * 2); 1214 1215 /* two indirect node blocks */ 1216 leaf_count *= NIDS_PER_BLOCK; 1217 result += (leaf_count * 2); 1218 1219 /* one double indirect node block */ 1220 leaf_count *= NIDS_PER_BLOCK; 1221 result += leaf_count; 1222 1223 return result; 1224 } 1225 1226 static int __f2fs_commit_super(struct buffer_head *bh, 1227 struct f2fs_super_block *super) 1228 { 1229 lock_buffer(bh); 1230 if (super) 1231 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 1232 set_buffer_uptodate(bh); 1233 set_buffer_dirty(bh); 1234 unlock_buffer(bh); 1235 1236 /* it's rare case, we can do fua all the time */ 1237 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA); 1238 } 1239 1240 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 1241 struct buffer_head *bh) 1242 { 1243 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1244 (bh->b_data + F2FS_SUPER_OFFSET); 1245 struct super_block *sb = sbi->sb; 1246 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1247 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 1248 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 1249 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 1250 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1251 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1252 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 1253 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 1254 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 1255 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 1256 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 1257 u32 segment_count = le32_to_cpu(raw_super->segment_count); 1258 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1259 u64 main_end_blkaddr = main_blkaddr + 1260 (segment_count_main << log_blocks_per_seg); 1261 u64 seg_end_blkaddr = segment0_blkaddr + 1262 (segment_count << log_blocks_per_seg); 1263 1264 if (segment0_blkaddr != cp_blkaddr) { 1265 f2fs_msg(sb, KERN_INFO, 1266 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 1267 segment0_blkaddr, cp_blkaddr); 1268 return true; 1269 } 1270 1271 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 1272 sit_blkaddr) { 1273 f2fs_msg(sb, KERN_INFO, 1274 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 1275 cp_blkaddr, sit_blkaddr, 1276 segment_count_ckpt << log_blocks_per_seg); 1277 return true; 1278 } 1279 1280 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 1281 nat_blkaddr) { 1282 f2fs_msg(sb, KERN_INFO, 1283 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 1284 sit_blkaddr, nat_blkaddr, 1285 segment_count_sit << log_blocks_per_seg); 1286 return true; 1287 } 1288 1289 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 1290 ssa_blkaddr) { 1291 f2fs_msg(sb, KERN_INFO, 1292 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 1293 nat_blkaddr, ssa_blkaddr, 1294 segment_count_nat << log_blocks_per_seg); 1295 return true; 1296 } 1297 1298 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 1299 main_blkaddr) { 1300 f2fs_msg(sb, KERN_INFO, 1301 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 1302 ssa_blkaddr, main_blkaddr, 1303 segment_count_ssa << log_blocks_per_seg); 1304 return true; 1305 } 1306 1307 if (main_end_blkaddr > seg_end_blkaddr) { 1308 f2fs_msg(sb, KERN_INFO, 1309 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 1310 main_blkaddr, 1311 segment0_blkaddr + 1312 (segment_count << log_blocks_per_seg), 1313 segment_count_main << log_blocks_per_seg); 1314 return true; 1315 } else if (main_end_blkaddr < seg_end_blkaddr) { 1316 int err = 0; 1317 char *res; 1318 1319 /* fix in-memory information all the time */ 1320 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 1321 segment0_blkaddr) >> log_blocks_per_seg); 1322 1323 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 1324 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1325 res = "internally"; 1326 } else { 1327 err = __f2fs_commit_super(bh, NULL); 1328 res = err ? "failed" : "done"; 1329 } 1330 f2fs_msg(sb, KERN_INFO, 1331 "Fix alignment : %s, start(%u) end(%u) block(%u)", 1332 res, main_blkaddr, 1333 segment0_blkaddr + 1334 (segment_count << log_blocks_per_seg), 1335 segment_count_main << log_blocks_per_seg); 1336 if (err) 1337 return true; 1338 } 1339 return false; 1340 } 1341 1342 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 1343 struct buffer_head *bh) 1344 { 1345 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1346 (bh->b_data + F2FS_SUPER_OFFSET); 1347 struct super_block *sb = sbi->sb; 1348 unsigned int blocksize; 1349 1350 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 1351 f2fs_msg(sb, KERN_INFO, 1352 "Magic Mismatch, valid(0x%x) - read(0x%x)", 1353 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 1354 return 1; 1355 } 1356 1357 /* Currently, support only 4KB page cache size */ 1358 if (F2FS_BLKSIZE != PAGE_SIZE) { 1359 f2fs_msg(sb, KERN_INFO, 1360 "Invalid page_cache_size (%lu), supports only 4KB\n", 1361 PAGE_SIZE); 1362 return 1; 1363 } 1364 1365 /* Currently, support only 4KB block size */ 1366 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 1367 if (blocksize != F2FS_BLKSIZE) { 1368 f2fs_msg(sb, KERN_INFO, 1369 "Invalid blocksize (%u), supports only 4KB\n", 1370 blocksize); 1371 return 1; 1372 } 1373 1374 /* check log blocks per segment */ 1375 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 1376 f2fs_msg(sb, KERN_INFO, 1377 "Invalid log blocks per segment (%u)\n", 1378 le32_to_cpu(raw_super->log_blocks_per_seg)); 1379 return 1; 1380 } 1381 1382 /* Currently, support 512/1024/2048/4096 bytes sector size */ 1383 if (le32_to_cpu(raw_super->log_sectorsize) > 1384 F2FS_MAX_LOG_SECTOR_SIZE || 1385 le32_to_cpu(raw_super->log_sectorsize) < 1386 F2FS_MIN_LOG_SECTOR_SIZE) { 1387 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 1388 le32_to_cpu(raw_super->log_sectorsize)); 1389 return 1; 1390 } 1391 if (le32_to_cpu(raw_super->log_sectors_per_block) + 1392 le32_to_cpu(raw_super->log_sectorsize) != 1393 F2FS_MAX_LOG_SECTOR_SIZE) { 1394 f2fs_msg(sb, KERN_INFO, 1395 "Invalid log sectors per block(%u) log sectorsize(%u)", 1396 le32_to_cpu(raw_super->log_sectors_per_block), 1397 le32_to_cpu(raw_super->log_sectorsize)); 1398 return 1; 1399 } 1400 1401 /* check reserved ino info */ 1402 if (le32_to_cpu(raw_super->node_ino) != 1 || 1403 le32_to_cpu(raw_super->meta_ino) != 2 || 1404 le32_to_cpu(raw_super->root_ino) != 3) { 1405 f2fs_msg(sb, KERN_INFO, 1406 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 1407 le32_to_cpu(raw_super->node_ino), 1408 le32_to_cpu(raw_super->meta_ino), 1409 le32_to_cpu(raw_super->root_ino)); 1410 return 1; 1411 } 1412 1413 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 1414 if (sanity_check_area_boundary(sbi, bh)) 1415 return 1; 1416 1417 return 0; 1418 } 1419 1420 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 1421 { 1422 unsigned int total, fsmeta; 1423 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1424 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1425 1426 total = le32_to_cpu(raw_super->segment_count); 1427 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 1428 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 1429 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 1430 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 1431 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 1432 1433 if (unlikely(fsmeta >= total)) 1434 return 1; 1435 1436 if (unlikely(f2fs_cp_error(sbi))) { 1437 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 1438 return 1; 1439 } 1440 return 0; 1441 } 1442 1443 static void init_sb_info(struct f2fs_sb_info *sbi) 1444 { 1445 struct f2fs_super_block *raw_super = sbi->raw_super; 1446 1447 sbi->log_sectors_per_block = 1448 le32_to_cpu(raw_super->log_sectors_per_block); 1449 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1450 sbi->blocksize = 1 << sbi->log_blocksize; 1451 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1452 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1453 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1454 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1455 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1456 sbi->total_node_count = 1457 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1458 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1459 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1460 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1461 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1462 sbi->cur_victim_sec = NULL_SECNO; 1463 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1464 1465 sbi->dir_level = DEF_DIR_LEVEL; 1466 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 1467 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 1468 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1469 1470 INIT_LIST_HEAD(&sbi->s_list); 1471 mutex_init(&sbi->umount_mutex); 1472 mutex_init(&sbi->wio_mutex[NODE]); 1473 mutex_init(&sbi->wio_mutex[DATA]); 1474 1475 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1476 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX, 1477 F2FS_KEY_DESC_PREFIX_SIZE); 1478 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE; 1479 #endif 1480 } 1481 1482 static int init_percpu_info(struct f2fs_sb_info *sbi) 1483 { 1484 int i, err; 1485 1486 if (percpu_init_rwsem(&sbi->cp_rwsem)) 1487 return -ENOMEM; 1488 1489 for (i = 0; i < NR_COUNT_TYPE; i++) { 1490 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL); 1491 if (err) 1492 return err; 1493 } 1494 1495 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 1496 if (err) 1497 return err; 1498 1499 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 1500 GFP_KERNEL); 1501 } 1502 1503 /* 1504 * Read f2fs raw super block. 1505 * Because we have two copies of super block, so read both of them 1506 * to get the first valid one. If any one of them is broken, we pass 1507 * them recovery flag back to the caller. 1508 */ 1509 static int read_raw_super_block(struct f2fs_sb_info *sbi, 1510 struct f2fs_super_block **raw_super, 1511 int *valid_super_block, int *recovery) 1512 { 1513 struct super_block *sb = sbi->sb; 1514 int block; 1515 struct buffer_head *bh; 1516 struct f2fs_super_block *super; 1517 int err = 0; 1518 1519 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 1520 if (!super) 1521 return -ENOMEM; 1522 1523 for (block = 0; block < 2; block++) { 1524 bh = sb_bread(sb, block); 1525 if (!bh) { 1526 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1527 block + 1); 1528 err = -EIO; 1529 continue; 1530 } 1531 1532 /* sanity checking of raw super */ 1533 if (sanity_check_raw_super(sbi, bh)) { 1534 f2fs_msg(sb, KERN_ERR, 1535 "Can't find valid F2FS filesystem in %dth superblock", 1536 block + 1); 1537 err = -EINVAL; 1538 brelse(bh); 1539 continue; 1540 } 1541 1542 if (!*raw_super) { 1543 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 1544 sizeof(*super)); 1545 *valid_super_block = block; 1546 *raw_super = super; 1547 } 1548 brelse(bh); 1549 } 1550 1551 /* Fail to read any one of the superblocks*/ 1552 if (err < 0) 1553 *recovery = 1; 1554 1555 /* No valid superblock */ 1556 if (!*raw_super) 1557 kfree(super); 1558 else 1559 err = 0; 1560 1561 return err; 1562 } 1563 1564 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1565 { 1566 struct buffer_head *bh; 1567 int err; 1568 1569 if ((recover && f2fs_readonly(sbi->sb)) || 1570 bdev_read_only(sbi->sb->s_bdev)) { 1571 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1572 return -EROFS; 1573 } 1574 1575 /* write back-up superblock first */ 1576 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); 1577 if (!bh) 1578 return -EIO; 1579 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1580 brelse(bh); 1581 1582 /* if we are in recovery path, skip writing valid superblock */ 1583 if (recover || err) 1584 return err; 1585 1586 /* write current valid superblock */ 1587 bh = sb_getblk(sbi->sb, sbi->valid_super_block); 1588 if (!bh) 1589 return -EIO; 1590 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1591 brelse(bh); 1592 return err; 1593 } 1594 1595 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1596 { 1597 struct f2fs_sb_info *sbi; 1598 struct f2fs_super_block *raw_super; 1599 struct inode *root; 1600 int err; 1601 bool retry = true, need_fsck = false; 1602 char *options = NULL; 1603 int recovery, i, valid_super_block; 1604 struct curseg_info *seg_i; 1605 1606 try_onemore: 1607 err = -EINVAL; 1608 raw_super = NULL; 1609 valid_super_block = -1; 1610 recovery = 0; 1611 1612 /* allocate memory for f2fs-specific super block info */ 1613 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1614 if (!sbi) 1615 return -ENOMEM; 1616 1617 sbi->sb = sb; 1618 1619 /* Load the checksum driver */ 1620 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 1621 if (IS_ERR(sbi->s_chksum_driver)) { 1622 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 1623 err = PTR_ERR(sbi->s_chksum_driver); 1624 sbi->s_chksum_driver = NULL; 1625 goto free_sbi; 1626 } 1627 1628 /* set a block size */ 1629 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1630 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1631 goto free_sbi; 1632 } 1633 1634 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 1635 &recovery); 1636 if (err) 1637 goto free_sbi; 1638 1639 sb->s_fs_info = sbi; 1640 sbi->raw_super = raw_super; 1641 1642 default_options(sbi); 1643 /* parse mount options */ 1644 options = kstrdup((const char *)data, GFP_KERNEL); 1645 if (data && !options) { 1646 err = -ENOMEM; 1647 goto free_sb_buf; 1648 } 1649 1650 err = parse_options(sb, options); 1651 if (err) 1652 goto free_options; 1653 1654 sbi->max_file_blocks = max_file_blocks(); 1655 sb->s_maxbytes = sbi->max_file_blocks << 1656 le32_to_cpu(raw_super->log_blocksize); 1657 sb->s_max_links = F2FS_LINK_MAX; 1658 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1659 1660 sb->s_op = &f2fs_sops; 1661 sb->s_cop = &f2fs_cryptops; 1662 sb->s_xattr = f2fs_xattr_handlers; 1663 sb->s_export_op = &f2fs_export_ops; 1664 sb->s_magic = F2FS_SUPER_MAGIC; 1665 sb->s_time_gran = 1; 1666 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1667 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1668 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1669 1670 /* init f2fs-specific super block info */ 1671 sbi->valid_super_block = valid_super_block; 1672 mutex_init(&sbi->gc_mutex); 1673 mutex_init(&sbi->cp_mutex); 1674 init_rwsem(&sbi->node_write); 1675 1676 /* disallow all the data/node/meta page writes */ 1677 set_sbi_flag(sbi, SBI_POR_DOING); 1678 spin_lock_init(&sbi->stat_lock); 1679 1680 init_rwsem(&sbi->read_io.io_rwsem); 1681 sbi->read_io.sbi = sbi; 1682 sbi->read_io.bio = NULL; 1683 for (i = 0; i < NR_PAGE_TYPE; i++) { 1684 init_rwsem(&sbi->write_io[i].io_rwsem); 1685 sbi->write_io[i].sbi = sbi; 1686 sbi->write_io[i].bio = NULL; 1687 } 1688 1689 init_waitqueue_head(&sbi->cp_wait); 1690 init_sb_info(sbi); 1691 1692 err = init_percpu_info(sbi); 1693 if (err) 1694 goto free_options; 1695 1696 /* get an inode for meta space */ 1697 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1698 if (IS_ERR(sbi->meta_inode)) { 1699 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1700 err = PTR_ERR(sbi->meta_inode); 1701 goto free_options; 1702 } 1703 1704 err = get_valid_checkpoint(sbi); 1705 if (err) { 1706 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1707 goto free_meta_inode; 1708 } 1709 1710 sbi->total_valid_node_count = 1711 le32_to_cpu(sbi->ckpt->valid_node_count); 1712 percpu_counter_set(&sbi->total_valid_inode_count, 1713 le32_to_cpu(sbi->ckpt->valid_inode_count)); 1714 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1715 sbi->total_valid_block_count = 1716 le64_to_cpu(sbi->ckpt->valid_block_count); 1717 sbi->last_valid_block_count = sbi->total_valid_block_count; 1718 1719 for (i = 0; i < NR_INODE_TYPE; i++) { 1720 INIT_LIST_HEAD(&sbi->inode_list[i]); 1721 spin_lock_init(&sbi->inode_lock[i]); 1722 } 1723 1724 init_extent_cache_info(sbi); 1725 1726 init_ino_entry_info(sbi); 1727 1728 /* setup f2fs internal modules */ 1729 err = build_segment_manager(sbi); 1730 if (err) { 1731 f2fs_msg(sb, KERN_ERR, 1732 "Failed to initialize F2FS segment manager"); 1733 goto free_sm; 1734 } 1735 err = build_node_manager(sbi); 1736 if (err) { 1737 f2fs_msg(sb, KERN_ERR, 1738 "Failed to initialize F2FS node manager"); 1739 goto free_nm; 1740 } 1741 1742 /* For write statistics */ 1743 if (sb->s_bdev->bd_part) 1744 sbi->sectors_written_start = 1745 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 1746 1747 /* Read accumulated write IO statistics if exists */ 1748 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1749 if (__exist_node_summaries(sbi)) 1750 sbi->kbytes_written = 1751 le64_to_cpu(seg_i->journal->info.kbytes_written); 1752 1753 build_gc_manager(sbi); 1754 1755 /* get an inode for node space */ 1756 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1757 if (IS_ERR(sbi->node_inode)) { 1758 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1759 err = PTR_ERR(sbi->node_inode); 1760 goto free_nm; 1761 } 1762 1763 f2fs_join_shrinker(sbi); 1764 1765 /* if there are nt orphan nodes free them */ 1766 err = recover_orphan_inodes(sbi); 1767 if (err) 1768 goto free_node_inode; 1769 1770 /* read root inode and dentry */ 1771 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1772 if (IS_ERR(root)) { 1773 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1774 err = PTR_ERR(root); 1775 goto free_node_inode; 1776 } 1777 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1778 iput(root); 1779 err = -EINVAL; 1780 goto free_node_inode; 1781 } 1782 1783 sb->s_root = d_make_root(root); /* allocate root dentry */ 1784 if (!sb->s_root) { 1785 err = -ENOMEM; 1786 goto free_root_inode; 1787 } 1788 1789 err = f2fs_build_stats(sbi); 1790 if (err) 1791 goto free_root_inode; 1792 1793 if (f2fs_proc_root) 1794 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1795 1796 if (sbi->s_proc) { 1797 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1798 &f2fs_seq_segment_info_fops, sb); 1799 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc, 1800 &f2fs_seq_segment_bits_fops, sb); 1801 } 1802 1803 sbi->s_kobj.kset = f2fs_kset; 1804 init_completion(&sbi->s_kobj_unregister); 1805 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1806 "%s", sb->s_id); 1807 if (err) 1808 goto free_proc; 1809 1810 /* recover fsynced data */ 1811 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1812 /* 1813 * mount should be failed, when device has readonly mode, and 1814 * previous checkpoint was not done by clean system shutdown. 1815 */ 1816 if (bdev_read_only(sb->s_bdev) && 1817 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) { 1818 err = -EROFS; 1819 goto free_kobj; 1820 } 1821 1822 if (need_fsck) 1823 set_sbi_flag(sbi, SBI_NEED_FSCK); 1824 1825 err = recover_fsync_data(sbi, false); 1826 if (err < 0) { 1827 need_fsck = true; 1828 f2fs_msg(sb, KERN_ERR, 1829 "Cannot recover all fsync data errno=%d", err); 1830 goto free_kobj; 1831 } 1832 } else { 1833 err = recover_fsync_data(sbi, true); 1834 1835 if (!f2fs_readonly(sb) && err > 0) { 1836 err = -EINVAL; 1837 f2fs_msg(sb, KERN_ERR, 1838 "Need to recover fsync data"); 1839 goto free_kobj; 1840 } 1841 } 1842 1843 /* recover_fsync_data() cleared this already */ 1844 clear_sbi_flag(sbi, SBI_POR_DOING); 1845 1846 /* 1847 * If filesystem is not mounted as read-only then 1848 * do start the gc_thread. 1849 */ 1850 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 1851 /* After POR, we can run background GC thread.*/ 1852 err = start_gc_thread(sbi); 1853 if (err) 1854 goto free_kobj; 1855 } 1856 kfree(options); 1857 1858 /* recover broken superblock */ 1859 if (recovery) { 1860 err = f2fs_commit_super(sbi, true); 1861 f2fs_msg(sb, KERN_INFO, 1862 "Try to recover %dth superblock, ret: %d", 1863 sbi->valid_super_block ? 1 : 2, err); 1864 } 1865 1866 f2fs_update_time(sbi, CP_TIME); 1867 f2fs_update_time(sbi, REQ_TIME); 1868 return 0; 1869 1870 free_kobj: 1871 f2fs_sync_inode_meta(sbi); 1872 kobject_del(&sbi->s_kobj); 1873 kobject_put(&sbi->s_kobj); 1874 wait_for_completion(&sbi->s_kobj_unregister); 1875 free_proc: 1876 if (sbi->s_proc) { 1877 remove_proc_entry("segment_info", sbi->s_proc); 1878 remove_proc_entry("segment_bits", sbi->s_proc); 1879 remove_proc_entry(sb->s_id, f2fs_proc_root); 1880 } 1881 f2fs_destroy_stats(sbi); 1882 free_root_inode: 1883 dput(sb->s_root); 1884 sb->s_root = NULL; 1885 free_node_inode: 1886 mutex_lock(&sbi->umount_mutex); 1887 f2fs_leave_shrinker(sbi); 1888 iput(sbi->node_inode); 1889 mutex_unlock(&sbi->umount_mutex); 1890 free_nm: 1891 destroy_node_manager(sbi); 1892 free_sm: 1893 destroy_segment_manager(sbi); 1894 kfree(sbi->ckpt); 1895 free_meta_inode: 1896 make_bad_inode(sbi->meta_inode); 1897 iput(sbi->meta_inode); 1898 free_options: 1899 destroy_percpu_info(sbi); 1900 kfree(options); 1901 free_sb_buf: 1902 kfree(raw_super); 1903 free_sbi: 1904 if (sbi->s_chksum_driver) 1905 crypto_free_shash(sbi->s_chksum_driver); 1906 kfree(sbi); 1907 1908 /* give only one another chance */ 1909 if (retry) { 1910 retry = false; 1911 shrink_dcache_sb(sb); 1912 goto try_onemore; 1913 } 1914 return err; 1915 } 1916 1917 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1918 const char *dev_name, void *data) 1919 { 1920 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1921 } 1922 1923 static void kill_f2fs_super(struct super_block *sb) 1924 { 1925 if (sb->s_root) 1926 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 1927 kill_block_super(sb); 1928 } 1929 1930 static struct file_system_type f2fs_fs_type = { 1931 .owner = THIS_MODULE, 1932 .name = "f2fs", 1933 .mount = f2fs_mount, 1934 .kill_sb = kill_f2fs_super, 1935 .fs_flags = FS_REQUIRES_DEV, 1936 }; 1937 MODULE_ALIAS_FS("f2fs"); 1938 1939 static int __init init_inodecache(void) 1940 { 1941 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 1942 sizeof(struct f2fs_inode_info), 0, 1943 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 1944 if (!f2fs_inode_cachep) 1945 return -ENOMEM; 1946 return 0; 1947 } 1948 1949 static void destroy_inodecache(void) 1950 { 1951 /* 1952 * Make sure all delayed rcu free inodes are flushed before we 1953 * destroy cache. 1954 */ 1955 rcu_barrier(); 1956 kmem_cache_destroy(f2fs_inode_cachep); 1957 } 1958 1959 static int __init init_f2fs_fs(void) 1960 { 1961 int err; 1962 1963 f2fs_build_trace_ios(); 1964 1965 err = init_inodecache(); 1966 if (err) 1967 goto fail; 1968 err = create_node_manager_caches(); 1969 if (err) 1970 goto free_inodecache; 1971 err = create_segment_manager_caches(); 1972 if (err) 1973 goto free_node_manager_caches; 1974 err = create_checkpoint_caches(); 1975 if (err) 1976 goto free_segment_manager_caches; 1977 err = create_extent_cache(); 1978 if (err) 1979 goto free_checkpoint_caches; 1980 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1981 if (!f2fs_kset) { 1982 err = -ENOMEM; 1983 goto free_extent_cache; 1984 } 1985 #ifdef CONFIG_F2FS_FAULT_INJECTION 1986 f2fs_fault_inject.kset = f2fs_kset; 1987 f2fs_build_fault_attr(0); 1988 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype, 1989 NULL, "fault_injection"); 1990 if (err) { 1991 f2fs_fault_inject.kset = NULL; 1992 goto free_kset; 1993 } 1994 #endif 1995 err = register_shrinker(&f2fs_shrinker_info); 1996 if (err) 1997 goto free_kset; 1998 1999 err = register_filesystem(&f2fs_fs_type); 2000 if (err) 2001 goto free_shrinker; 2002 err = f2fs_create_root_stats(); 2003 if (err) 2004 goto free_filesystem; 2005 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 2006 return 0; 2007 2008 free_filesystem: 2009 unregister_filesystem(&f2fs_fs_type); 2010 free_shrinker: 2011 unregister_shrinker(&f2fs_shrinker_info); 2012 free_kset: 2013 #ifdef CONFIG_F2FS_FAULT_INJECTION 2014 if (f2fs_fault_inject.kset) 2015 kobject_put(&f2fs_fault_inject); 2016 #endif 2017 kset_unregister(f2fs_kset); 2018 free_extent_cache: 2019 destroy_extent_cache(); 2020 free_checkpoint_caches: 2021 destroy_checkpoint_caches(); 2022 free_segment_manager_caches: 2023 destroy_segment_manager_caches(); 2024 free_node_manager_caches: 2025 destroy_node_manager_caches(); 2026 free_inodecache: 2027 destroy_inodecache(); 2028 fail: 2029 return err; 2030 } 2031 2032 static void __exit exit_f2fs_fs(void) 2033 { 2034 remove_proc_entry("fs/f2fs", NULL); 2035 f2fs_destroy_root_stats(); 2036 unregister_filesystem(&f2fs_fs_type); 2037 unregister_shrinker(&f2fs_shrinker_info); 2038 #ifdef CONFIG_F2FS_FAULT_INJECTION 2039 kobject_put(&f2fs_fault_inject); 2040 #endif 2041 kset_unregister(f2fs_kset); 2042 destroy_extent_cache(); 2043 destroy_checkpoint_caches(); 2044 destroy_segment_manager_caches(); 2045 destroy_node_manager_caches(); 2046 destroy_inodecache(); 2047 f2fs_destroy_trace_ios(); 2048 } 2049 2050 module_init(init_f2fs_fs) 2051 module_exit(exit_f2fs_fs) 2052 2053 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 2054 MODULE_DESCRIPTION("Flash Friendly File System"); 2055 MODULE_LICENSE("GPL"); 2056