1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 #include <linux/backing-dev.h> 13 14 /* constant macro */ 15 #define NULL_SEGNO ((unsigned int)(~0)) 16 #define NULL_SECNO ((unsigned int)(~0)) 17 18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 20 21 /* L: Logical segment # in volume, R: Relative segment # in main area */ 22 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) 23 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) 24 25 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) 26 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) 27 28 #define IS_CURSEG(sbi, seg) \ 29 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 30 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 31 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 32 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 33 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 34 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 35 36 #define IS_CURSEC(sbi, secno) \ 37 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 38 sbi->segs_per_sec) || \ 39 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 40 sbi->segs_per_sec) || \ 41 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 42 sbi->segs_per_sec) || \ 43 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 44 sbi->segs_per_sec) || \ 45 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 46 sbi->segs_per_sec) || \ 47 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 48 sbi->segs_per_sec)) \ 49 50 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr) 51 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr) 52 53 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 54 #define MAIN_SECS(sbi) (sbi->total_sections) 55 56 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count) 57 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg) 58 59 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 60 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \ 61 sbi->log_blocks_per_seg)) 62 63 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 64 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) 65 66 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 67 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) 68 69 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 70 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 71 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) 72 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 73 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1)) 74 75 #define GET_SEGNO(sbi, blk_addr) \ 76 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ 77 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 78 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 79 #define GET_SECNO(sbi, segno) \ 80 ((segno) / sbi->segs_per_sec) 81 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ 82 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) 83 84 #define GET_SUM_BLOCK(sbi, segno) \ 85 ((sbi->sm_info->ssa_blkaddr) + segno) 86 87 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 88 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) 89 90 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 91 (segno % sit_i->sents_per_block) 92 #define SIT_BLOCK_OFFSET(segno) \ 93 (segno / SIT_ENTRY_PER_BLOCK) 94 #define START_SEGNO(segno) \ 95 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 96 #define SIT_BLK_CNT(sbi) \ 97 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 98 #define f2fs_bitmap_size(nr) \ 99 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 100 101 #define SECTOR_FROM_BLOCK(blk_addr) \ 102 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 103 #define SECTOR_TO_BLOCK(sectors) \ 104 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK) 105 #define MAX_BIO_BLOCKS(sbi) \ 106 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES)) 107 108 /* 109 * indicate a block allocation direction: RIGHT and LEFT. 110 * RIGHT means allocating new sections towards the end of volume. 111 * LEFT means the opposite direction. 112 */ 113 enum { 114 ALLOC_RIGHT = 0, 115 ALLOC_LEFT 116 }; 117 118 /* 119 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 120 * LFS writes data sequentially with cleaning operations. 121 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 122 */ 123 enum { 124 LFS = 0, 125 SSR 126 }; 127 128 /* 129 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 130 * GC_CB is based on cost-benefit algorithm. 131 * GC_GREEDY is based on greedy algorithm. 132 */ 133 enum { 134 GC_CB = 0, 135 GC_GREEDY 136 }; 137 138 /* 139 * BG_GC means the background cleaning job. 140 * FG_GC means the on-demand cleaning job. 141 * FORCE_FG_GC means on-demand cleaning job in background. 142 */ 143 enum { 144 BG_GC = 0, 145 FG_GC, 146 FORCE_FG_GC, 147 }; 148 149 /* for a function parameter to select a victim segment */ 150 struct victim_sel_policy { 151 int alloc_mode; /* LFS or SSR */ 152 int gc_mode; /* GC_CB or GC_GREEDY */ 153 unsigned long *dirty_segmap; /* dirty segment bitmap */ 154 unsigned int max_search; /* maximum # of segments to search */ 155 unsigned int offset; /* last scanned bitmap offset */ 156 unsigned int ofs_unit; /* bitmap search unit */ 157 unsigned int min_cost; /* minimum cost */ 158 unsigned int min_segno; /* segment # having min. cost */ 159 }; 160 161 struct seg_entry { 162 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 163 unsigned int valid_blocks:10; /* # of valid blocks */ 164 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 165 unsigned int padding:6; /* padding */ 166 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 167 /* 168 * # of valid blocks and the validity bitmap stored in the the last 169 * checkpoint pack. This information is used by the SSR mode. 170 */ 171 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 172 unsigned char *discard_map; 173 unsigned long long mtime; /* modification time of the segment */ 174 }; 175 176 struct sec_entry { 177 unsigned int valid_blocks; /* # of valid blocks in a section */ 178 }; 179 180 struct segment_allocation { 181 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 182 }; 183 184 /* 185 * this value is set in page as a private data which indicate that 186 * the page is atomically written, and it is in inmem_pages list. 187 */ 188 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1) 189 190 #define IS_ATOMIC_WRITTEN_PAGE(page) \ 191 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE) 192 193 struct inmem_pages { 194 struct list_head list; 195 struct page *page; 196 block_t old_addr; /* for revoking when fail to commit */ 197 }; 198 199 struct sit_info { 200 const struct segment_allocation *s_ops; 201 202 block_t sit_base_addr; /* start block address of SIT area */ 203 block_t sit_blocks; /* # of blocks used by SIT area */ 204 block_t written_valid_blocks; /* # of valid blocks in main area */ 205 char *sit_bitmap; /* SIT bitmap pointer */ 206 unsigned int bitmap_size; /* SIT bitmap size */ 207 208 unsigned long *tmp_map; /* bitmap for temporal use */ 209 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 210 unsigned int dirty_sentries; /* # of dirty sentries */ 211 unsigned int sents_per_block; /* # of SIT entries per block */ 212 struct mutex sentry_lock; /* to protect SIT cache */ 213 struct seg_entry *sentries; /* SIT segment-level cache */ 214 struct sec_entry *sec_entries; /* SIT section-level cache */ 215 216 /* for cost-benefit algorithm in cleaning procedure */ 217 unsigned long long elapsed_time; /* elapsed time after mount */ 218 unsigned long long mounted_time; /* mount time */ 219 unsigned long long min_mtime; /* min. modification time */ 220 unsigned long long max_mtime; /* max. modification time */ 221 }; 222 223 struct free_segmap_info { 224 unsigned int start_segno; /* start segment number logically */ 225 unsigned int free_segments; /* # of free segments */ 226 unsigned int free_sections; /* # of free sections */ 227 spinlock_t segmap_lock; /* free segmap lock */ 228 unsigned long *free_segmap; /* free segment bitmap */ 229 unsigned long *free_secmap; /* free section bitmap */ 230 }; 231 232 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 233 enum dirty_type { 234 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 235 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 236 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 237 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 238 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 239 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 240 DIRTY, /* to count # of dirty segments */ 241 PRE, /* to count # of entirely obsolete segments */ 242 NR_DIRTY_TYPE 243 }; 244 245 struct dirty_seglist_info { 246 const struct victim_selection *v_ops; /* victim selction operation */ 247 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 248 struct mutex seglist_lock; /* lock for segment bitmaps */ 249 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 250 unsigned long *victim_secmap; /* background GC victims */ 251 }; 252 253 /* victim selection function for cleaning and SSR */ 254 struct victim_selection { 255 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 256 int, int, char); 257 }; 258 259 /* for active log information */ 260 struct curseg_info { 261 struct mutex curseg_mutex; /* lock for consistency */ 262 struct f2fs_summary_block *sum_blk; /* cached summary block */ 263 struct rw_semaphore journal_rwsem; /* protect journal area */ 264 struct f2fs_journal *journal; /* cached journal info */ 265 unsigned char alloc_type; /* current allocation type */ 266 unsigned int segno; /* current segment number */ 267 unsigned short next_blkoff; /* next block offset to write */ 268 unsigned int zone; /* current zone number */ 269 unsigned int next_segno; /* preallocated segment */ 270 }; 271 272 struct sit_entry_set { 273 struct list_head set_list; /* link with all sit sets */ 274 unsigned int start_segno; /* start segno of sits in set */ 275 unsigned int entry_cnt; /* the # of sit entries in set */ 276 }; 277 278 /* 279 * inline functions 280 */ 281 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 282 { 283 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 284 } 285 286 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 287 unsigned int segno) 288 { 289 struct sit_info *sit_i = SIT_I(sbi); 290 return &sit_i->sentries[segno]; 291 } 292 293 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 294 unsigned int segno) 295 { 296 struct sit_info *sit_i = SIT_I(sbi); 297 return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; 298 } 299 300 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 301 unsigned int segno, int section) 302 { 303 /* 304 * In order to get # of valid blocks in a section instantly from many 305 * segments, f2fs manages two counting structures separately. 306 */ 307 if (section > 1) 308 return get_sec_entry(sbi, segno)->valid_blocks; 309 else 310 return get_seg_entry(sbi, segno)->valid_blocks; 311 } 312 313 static inline void seg_info_from_raw_sit(struct seg_entry *se, 314 struct f2fs_sit_entry *rs) 315 { 316 se->valid_blocks = GET_SIT_VBLOCKS(rs); 317 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 318 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 319 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 320 se->type = GET_SIT_TYPE(rs); 321 se->mtime = le64_to_cpu(rs->mtime); 322 } 323 324 static inline void seg_info_to_raw_sit(struct seg_entry *se, 325 struct f2fs_sit_entry *rs) 326 { 327 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 328 se->valid_blocks; 329 rs->vblocks = cpu_to_le16(raw_vblocks); 330 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 331 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 332 se->ckpt_valid_blocks = se->valid_blocks; 333 rs->mtime = cpu_to_le64(se->mtime); 334 } 335 336 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 337 unsigned int max, unsigned int segno) 338 { 339 unsigned int ret; 340 spin_lock(&free_i->segmap_lock); 341 ret = find_next_bit(free_i->free_segmap, max, segno); 342 spin_unlock(&free_i->segmap_lock); 343 return ret; 344 } 345 346 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 347 { 348 struct free_segmap_info *free_i = FREE_I(sbi); 349 unsigned int secno = segno / sbi->segs_per_sec; 350 unsigned int start_segno = secno * sbi->segs_per_sec; 351 unsigned int next; 352 353 spin_lock(&free_i->segmap_lock); 354 clear_bit(segno, free_i->free_segmap); 355 free_i->free_segments++; 356 357 next = find_next_bit(free_i->free_segmap, 358 start_segno + sbi->segs_per_sec, start_segno); 359 if (next >= start_segno + sbi->segs_per_sec) { 360 clear_bit(secno, free_i->free_secmap); 361 free_i->free_sections++; 362 } 363 spin_unlock(&free_i->segmap_lock); 364 } 365 366 static inline void __set_inuse(struct f2fs_sb_info *sbi, 367 unsigned int segno) 368 { 369 struct free_segmap_info *free_i = FREE_I(sbi); 370 unsigned int secno = segno / sbi->segs_per_sec; 371 set_bit(segno, free_i->free_segmap); 372 free_i->free_segments--; 373 if (!test_and_set_bit(secno, free_i->free_secmap)) 374 free_i->free_sections--; 375 } 376 377 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 378 unsigned int segno) 379 { 380 struct free_segmap_info *free_i = FREE_I(sbi); 381 unsigned int secno = segno / sbi->segs_per_sec; 382 unsigned int start_segno = secno * sbi->segs_per_sec; 383 unsigned int next; 384 385 spin_lock(&free_i->segmap_lock); 386 if (test_and_clear_bit(segno, free_i->free_segmap)) { 387 free_i->free_segments++; 388 389 next = find_next_bit(free_i->free_segmap, 390 start_segno + sbi->segs_per_sec, start_segno); 391 if (next >= start_segno + sbi->segs_per_sec) { 392 if (test_and_clear_bit(secno, free_i->free_secmap)) 393 free_i->free_sections++; 394 } 395 } 396 spin_unlock(&free_i->segmap_lock); 397 } 398 399 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 400 unsigned int segno) 401 { 402 struct free_segmap_info *free_i = FREE_I(sbi); 403 unsigned int secno = segno / sbi->segs_per_sec; 404 spin_lock(&free_i->segmap_lock); 405 if (!test_and_set_bit(segno, free_i->free_segmap)) { 406 free_i->free_segments--; 407 if (!test_and_set_bit(secno, free_i->free_secmap)) 408 free_i->free_sections--; 409 } 410 spin_unlock(&free_i->segmap_lock); 411 } 412 413 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 414 void *dst_addr) 415 { 416 struct sit_info *sit_i = SIT_I(sbi); 417 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 418 } 419 420 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 421 { 422 return SIT_I(sbi)->written_valid_blocks; 423 } 424 425 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 426 { 427 return FREE_I(sbi)->free_segments; 428 } 429 430 static inline int reserved_segments(struct f2fs_sb_info *sbi) 431 { 432 return SM_I(sbi)->reserved_segments; 433 } 434 435 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 436 { 437 return FREE_I(sbi)->free_sections; 438 } 439 440 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 441 { 442 return DIRTY_I(sbi)->nr_dirty[PRE]; 443 } 444 445 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 446 { 447 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 448 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 449 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 450 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 451 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 452 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 453 } 454 455 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 456 { 457 return SM_I(sbi)->ovp_segments; 458 } 459 460 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 461 { 462 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; 463 } 464 465 static inline int reserved_sections(struct f2fs_sb_info *sbi) 466 { 467 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; 468 } 469 470 static inline bool need_SSR(struct f2fs_sb_info *sbi) 471 { 472 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 473 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 474 475 if (test_opt(sbi, LFS)) 476 return false; 477 478 return free_sections(sbi) <= (node_secs + 2 * dent_secs + 479 reserved_sections(sbi) + 1); 480 } 481 482 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 483 int freed, int needed) 484 { 485 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 486 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 487 488 node_secs += get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 489 490 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 491 return false; 492 493 return (free_sections(sbi) + freed) <= 494 (node_secs + 2 * dent_secs + reserved_sections(sbi) + needed); 495 } 496 497 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 498 { 499 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 500 } 501 502 static inline int utilization(struct f2fs_sb_info *sbi) 503 { 504 return div_u64((u64)valid_user_blocks(sbi) * 100, 505 sbi->user_block_count); 506 } 507 508 /* 509 * Sometimes f2fs may be better to drop out-of-place update policy. 510 * And, users can control the policy through sysfs entries. 511 * There are five policies with triggering conditions as follows. 512 * F2FS_IPU_FORCE - all the time, 513 * F2FS_IPU_SSR - if SSR mode is activated, 514 * F2FS_IPU_UTIL - if FS utilization is over threashold, 515 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 516 * threashold, 517 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 518 * storages. IPU will be triggered only if the # of dirty 519 * pages over min_fsync_blocks. 520 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 521 */ 522 #define DEF_MIN_IPU_UTIL 70 523 #define DEF_MIN_FSYNC_BLOCKS 8 524 525 enum { 526 F2FS_IPU_FORCE, 527 F2FS_IPU_SSR, 528 F2FS_IPU_UTIL, 529 F2FS_IPU_SSR_UTIL, 530 F2FS_IPU_FSYNC, 531 }; 532 533 static inline bool need_inplace_update(struct inode *inode) 534 { 535 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 536 unsigned int policy = SM_I(sbi)->ipu_policy; 537 538 /* IPU can be done only for the user data */ 539 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode)) 540 return false; 541 542 if (test_opt(sbi, LFS)) 543 return false; 544 545 if (policy & (0x1 << F2FS_IPU_FORCE)) 546 return true; 547 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) 548 return true; 549 if (policy & (0x1 << F2FS_IPU_UTIL) && 550 utilization(sbi) > SM_I(sbi)->min_ipu_util) 551 return true; 552 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && 553 utilization(sbi) > SM_I(sbi)->min_ipu_util) 554 return true; 555 556 /* this is only set during fdatasync */ 557 if (policy & (0x1 << F2FS_IPU_FSYNC) && 558 is_inode_flag_set(inode, FI_NEED_IPU)) 559 return true; 560 561 return false; 562 } 563 564 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 565 int type) 566 { 567 struct curseg_info *curseg = CURSEG_I(sbi, type); 568 return curseg->segno; 569 } 570 571 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 572 int type) 573 { 574 struct curseg_info *curseg = CURSEG_I(sbi, type); 575 return curseg->alloc_type; 576 } 577 578 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 579 { 580 struct curseg_info *curseg = CURSEG_I(sbi, type); 581 return curseg->next_blkoff; 582 } 583 584 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 585 { 586 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 587 } 588 589 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 590 { 591 BUG_ON(blk_addr < SEG0_BLKADDR(sbi) 592 || blk_addr >= MAX_BLKADDR(sbi)); 593 } 594 595 /* 596 * Summary block is always treated as an invalid block 597 */ 598 static inline void check_block_count(struct f2fs_sb_info *sbi, 599 int segno, struct f2fs_sit_entry *raw_sit) 600 { 601 #ifdef CONFIG_F2FS_CHECK_FS 602 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 603 int valid_blocks = 0; 604 int cur_pos = 0, next_pos; 605 606 /* check bitmap with valid block count */ 607 do { 608 if (is_valid) { 609 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 610 sbi->blocks_per_seg, 611 cur_pos); 612 valid_blocks += next_pos - cur_pos; 613 } else 614 next_pos = find_next_bit_le(&raw_sit->valid_map, 615 sbi->blocks_per_seg, 616 cur_pos); 617 cur_pos = next_pos; 618 is_valid = !is_valid; 619 } while (cur_pos < sbi->blocks_per_seg); 620 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 621 #endif 622 /* check segment usage, and check boundary of a given segment number */ 623 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg 624 || segno > TOTAL_SEGS(sbi) - 1); 625 } 626 627 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 628 unsigned int start) 629 { 630 struct sit_info *sit_i = SIT_I(sbi); 631 unsigned int offset = SIT_BLOCK_OFFSET(start); 632 block_t blk_addr = sit_i->sit_base_addr + offset; 633 634 check_seg_range(sbi, start); 635 636 /* calculate sit block address */ 637 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 638 blk_addr += sit_i->sit_blocks; 639 640 return blk_addr; 641 } 642 643 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 644 pgoff_t block_addr) 645 { 646 struct sit_info *sit_i = SIT_I(sbi); 647 block_addr -= sit_i->sit_base_addr; 648 if (block_addr < sit_i->sit_blocks) 649 block_addr += sit_i->sit_blocks; 650 else 651 block_addr -= sit_i->sit_blocks; 652 653 return block_addr + sit_i->sit_base_addr; 654 } 655 656 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 657 { 658 unsigned int block_off = SIT_BLOCK_OFFSET(start); 659 660 f2fs_change_bit(block_off, sit_i->sit_bitmap); 661 } 662 663 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 664 { 665 struct sit_info *sit_i = SIT_I(sbi); 666 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - 667 sit_i->mounted_time; 668 } 669 670 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 671 unsigned int ofs_in_node, unsigned char version) 672 { 673 sum->nid = cpu_to_le32(nid); 674 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 675 sum->version = version; 676 } 677 678 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 679 { 680 return __start_cp_addr(sbi) + 681 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 682 } 683 684 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 685 { 686 return __start_cp_addr(sbi) + 687 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 688 - (base + 1) + type; 689 } 690 691 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 692 { 693 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 694 return true; 695 return false; 696 } 697 698 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) 699 { 700 struct block_device *bdev = sbi->sb->s_bdev; 701 struct request_queue *q = bdev_get_queue(bdev); 702 return SECTOR_TO_BLOCK(queue_max_sectors(q)); 703 } 704 705 /* 706 * It is very important to gather dirty pages and write at once, so that we can 707 * submit a big bio without interfering other data writes. 708 * By default, 512 pages for directory data, 709 * 512 pages (2MB) * 3 for three types of nodes, and 710 * max_bio_blocks for meta are set. 711 */ 712 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 713 { 714 if (sbi->sb->s_bdi->wb.dirty_exceeded) 715 return 0; 716 717 if (type == DATA) 718 return sbi->blocks_per_seg; 719 else if (type == NODE) 720 return 8 * sbi->blocks_per_seg; 721 else if (type == META) 722 return 8 * MAX_BIO_BLOCKS(sbi); 723 else 724 return 0; 725 } 726 727 /* 728 * When writing pages, it'd better align nr_to_write for segment size. 729 */ 730 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 731 struct writeback_control *wbc) 732 { 733 long nr_to_write, desired; 734 735 if (wbc->sync_mode != WB_SYNC_NONE) 736 return 0; 737 738 nr_to_write = wbc->nr_to_write; 739 740 if (type == NODE) 741 desired = 2 * max_hw_blocks(sbi); 742 else 743 desired = MAX_BIO_BLOCKS(sbi); 744 745 wbc->nr_to_write = desired; 746 return desired - nr_to_write; 747 } 748