xref: /linux/fs/f2fs/segment.h (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13 
14 /* constant macro */
15 #define NULL_SEGNO			((unsigned int)(~0))
16 #define NULL_SECNO			((unsigned int)(~0))
17 
18 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
20 
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
24 
25 #define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
27 
28 #define IS_CURSEG(sbi, seg)						\
29 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
30 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
31 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
32 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
33 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
34 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
35 
36 #define IS_CURSEC(sbi, secno)						\
37 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
38 	  sbi->segs_per_sec) ||	\
39 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
40 	  sbi->segs_per_sec) ||	\
41 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
42 	  sbi->segs_per_sec) ||	\
43 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
44 	  sbi->segs_per_sec) ||	\
45 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
46 	  sbi->segs_per_sec) ||	\
47 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
48 	  sbi->segs_per_sec))	\
49 
50 #define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
51 #define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
52 
53 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
54 #define MAIN_SECS(sbi)	(sbi->total_sections)
55 
56 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
57 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
58 
59 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
60 #define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
61 					sbi->log_blocks_per_seg))
62 
63 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
64 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
65 
66 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
67 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
68 
69 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
70 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
71 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
72 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
73 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
74 
75 #define GET_SEGNO(sbi, blk_addr)					\
76 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
77 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
78 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
79 #define GET_SECNO(sbi, segno)					\
80 	((segno) / sbi->segs_per_sec)
81 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
82 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
83 
84 #define GET_SUM_BLOCK(sbi, segno)				\
85 	((sbi->sm_info->ssa_blkaddr) + segno)
86 
87 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
88 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
89 
90 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
91 	(segno % sit_i->sents_per_block)
92 #define SIT_BLOCK_OFFSET(segno)					\
93 	(segno / SIT_ENTRY_PER_BLOCK)
94 #define	START_SEGNO(segno)		\
95 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
96 #define SIT_BLK_CNT(sbi)			\
97 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
98 #define f2fs_bitmap_size(nr)			\
99 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
100 
101 #define SECTOR_FROM_BLOCK(blk_addr)					\
102 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
103 #define SECTOR_TO_BLOCK(sectors)					\
104 	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
105 #define MAX_BIO_BLOCKS(sbi)						\
106 	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
107 
108 /*
109  * indicate a block allocation direction: RIGHT and LEFT.
110  * RIGHT means allocating new sections towards the end of volume.
111  * LEFT means the opposite direction.
112  */
113 enum {
114 	ALLOC_RIGHT = 0,
115 	ALLOC_LEFT
116 };
117 
118 /*
119  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
120  * LFS writes data sequentially with cleaning operations.
121  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
122  */
123 enum {
124 	LFS = 0,
125 	SSR
126 };
127 
128 /*
129  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
130  * GC_CB is based on cost-benefit algorithm.
131  * GC_GREEDY is based on greedy algorithm.
132  */
133 enum {
134 	GC_CB = 0,
135 	GC_GREEDY
136 };
137 
138 /*
139  * BG_GC means the background cleaning job.
140  * FG_GC means the on-demand cleaning job.
141  * FORCE_FG_GC means on-demand cleaning job in background.
142  */
143 enum {
144 	BG_GC = 0,
145 	FG_GC,
146 	FORCE_FG_GC,
147 };
148 
149 /* for a function parameter to select a victim segment */
150 struct victim_sel_policy {
151 	int alloc_mode;			/* LFS or SSR */
152 	int gc_mode;			/* GC_CB or GC_GREEDY */
153 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
154 	unsigned int max_search;	/* maximum # of segments to search */
155 	unsigned int offset;		/* last scanned bitmap offset */
156 	unsigned int ofs_unit;		/* bitmap search unit */
157 	unsigned int min_cost;		/* minimum cost */
158 	unsigned int min_segno;		/* segment # having min. cost */
159 };
160 
161 struct seg_entry {
162 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
163 	unsigned int valid_blocks:10;	/* # of valid blocks */
164 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
165 	unsigned int padding:6;		/* padding */
166 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
167 	/*
168 	 * # of valid blocks and the validity bitmap stored in the the last
169 	 * checkpoint pack. This information is used by the SSR mode.
170 	 */
171 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
172 	unsigned char *discard_map;
173 	unsigned long long mtime;	/* modification time of the segment */
174 };
175 
176 struct sec_entry {
177 	unsigned int valid_blocks;	/* # of valid blocks in a section */
178 };
179 
180 struct segment_allocation {
181 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
182 };
183 
184 /*
185  * this value is set in page as a private data which indicate that
186  * the page is atomically written, and it is in inmem_pages list.
187  */
188 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
189 
190 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
191 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
192 
193 struct inmem_pages {
194 	struct list_head list;
195 	struct page *page;
196 	block_t old_addr;		/* for revoking when fail to commit */
197 };
198 
199 struct sit_info {
200 	const struct segment_allocation *s_ops;
201 
202 	block_t sit_base_addr;		/* start block address of SIT area */
203 	block_t sit_blocks;		/* # of blocks used by SIT area */
204 	block_t written_valid_blocks;	/* # of valid blocks in main area */
205 	char *sit_bitmap;		/* SIT bitmap pointer */
206 	unsigned int bitmap_size;	/* SIT bitmap size */
207 
208 	unsigned long *tmp_map;			/* bitmap for temporal use */
209 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
210 	unsigned int dirty_sentries;		/* # of dirty sentries */
211 	unsigned int sents_per_block;		/* # of SIT entries per block */
212 	struct mutex sentry_lock;		/* to protect SIT cache */
213 	struct seg_entry *sentries;		/* SIT segment-level cache */
214 	struct sec_entry *sec_entries;		/* SIT section-level cache */
215 
216 	/* for cost-benefit algorithm in cleaning procedure */
217 	unsigned long long elapsed_time;	/* elapsed time after mount */
218 	unsigned long long mounted_time;	/* mount time */
219 	unsigned long long min_mtime;		/* min. modification time */
220 	unsigned long long max_mtime;		/* max. modification time */
221 };
222 
223 struct free_segmap_info {
224 	unsigned int start_segno;	/* start segment number logically */
225 	unsigned int free_segments;	/* # of free segments */
226 	unsigned int free_sections;	/* # of free sections */
227 	spinlock_t segmap_lock;		/* free segmap lock */
228 	unsigned long *free_segmap;	/* free segment bitmap */
229 	unsigned long *free_secmap;	/* free section bitmap */
230 };
231 
232 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
233 enum dirty_type {
234 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
235 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
236 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
237 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
238 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
239 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
240 	DIRTY,			/* to count # of dirty segments */
241 	PRE,			/* to count # of entirely obsolete segments */
242 	NR_DIRTY_TYPE
243 };
244 
245 struct dirty_seglist_info {
246 	const struct victim_selection *v_ops;	/* victim selction operation */
247 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
248 	struct mutex seglist_lock;		/* lock for segment bitmaps */
249 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
250 	unsigned long *victim_secmap;		/* background GC victims */
251 };
252 
253 /* victim selection function for cleaning and SSR */
254 struct victim_selection {
255 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
256 							int, int, char);
257 };
258 
259 /* for active log information */
260 struct curseg_info {
261 	struct mutex curseg_mutex;		/* lock for consistency */
262 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
263 	struct rw_semaphore journal_rwsem;	/* protect journal area */
264 	struct f2fs_journal *journal;		/* cached journal info */
265 	unsigned char alloc_type;		/* current allocation type */
266 	unsigned int segno;			/* current segment number */
267 	unsigned short next_blkoff;		/* next block offset to write */
268 	unsigned int zone;			/* current zone number */
269 	unsigned int next_segno;		/* preallocated segment */
270 };
271 
272 struct sit_entry_set {
273 	struct list_head set_list;	/* link with all sit sets */
274 	unsigned int start_segno;	/* start segno of sits in set */
275 	unsigned int entry_cnt;		/* the # of sit entries in set */
276 };
277 
278 /*
279  * inline functions
280  */
281 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
282 {
283 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
284 }
285 
286 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
287 						unsigned int segno)
288 {
289 	struct sit_info *sit_i = SIT_I(sbi);
290 	return &sit_i->sentries[segno];
291 }
292 
293 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
294 						unsigned int segno)
295 {
296 	struct sit_info *sit_i = SIT_I(sbi);
297 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
298 }
299 
300 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
301 				unsigned int segno, int section)
302 {
303 	/*
304 	 * In order to get # of valid blocks in a section instantly from many
305 	 * segments, f2fs manages two counting structures separately.
306 	 */
307 	if (section > 1)
308 		return get_sec_entry(sbi, segno)->valid_blocks;
309 	else
310 		return get_seg_entry(sbi, segno)->valid_blocks;
311 }
312 
313 static inline void seg_info_from_raw_sit(struct seg_entry *se,
314 					struct f2fs_sit_entry *rs)
315 {
316 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
317 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
318 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
319 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
320 	se->type = GET_SIT_TYPE(rs);
321 	se->mtime = le64_to_cpu(rs->mtime);
322 }
323 
324 static inline void seg_info_to_raw_sit(struct seg_entry *se,
325 					struct f2fs_sit_entry *rs)
326 {
327 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
328 					se->valid_blocks;
329 	rs->vblocks = cpu_to_le16(raw_vblocks);
330 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
331 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
332 	se->ckpt_valid_blocks = se->valid_blocks;
333 	rs->mtime = cpu_to_le64(se->mtime);
334 }
335 
336 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
337 		unsigned int max, unsigned int segno)
338 {
339 	unsigned int ret;
340 	spin_lock(&free_i->segmap_lock);
341 	ret = find_next_bit(free_i->free_segmap, max, segno);
342 	spin_unlock(&free_i->segmap_lock);
343 	return ret;
344 }
345 
346 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
347 {
348 	struct free_segmap_info *free_i = FREE_I(sbi);
349 	unsigned int secno = segno / sbi->segs_per_sec;
350 	unsigned int start_segno = secno * sbi->segs_per_sec;
351 	unsigned int next;
352 
353 	spin_lock(&free_i->segmap_lock);
354 	clear_bit(segno, free_i->free_segmap);
355 	free_i->free_segments++;
356 
357 	next = find_next_bit(free_i->free_segmap,
358 			start_segno + sbi->segs_per_sec, start_segno);
359 	if (next >= start_segno + sbi->segs_per_sec) {
360 		clear_bit(secno, free_i->free_secmap);
361 		free_i->free_sections++;
362 	}
363 	spin_unlock(&free_i->segmap_lock);
364 }
365 
366 static inline void __set_inuse(struct f2fs_sb_info *sbi,
367 		unsigned int segno)
368 {
369 	struct free_segmap_info *free_i = FREE_I(sbi);
370 	unsigned int secno = segno / sbi->segs_per_sec;
371 	set_bit(segno, free_i->free_segmap);
372 	free_i->free_segments--;
373 	if (!test_and_set_bit(secno, free_i->free_secmap))
374 		free_i->free_sections--;
375 }
376 
377 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
378 		unsigned int segno)
379 {
380 	struct free_segmap_info *free_i = FREE_I(sbi);
381 	unsigned int secno = segno / sbi->segs_per_sec;
382 	unsigned int start_segno = secno * sbi->segs_per_sec;
383 	unsigned int next;
384 
385 	spin_lock(&free_i->segmap_lock);
386 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
387 		free_i->free_segments++;
388 
389 		next = find_next_bit(free_i->free_segmap,
390 				start_segno + sbi->segs_per_sec, start_segno);
391 		if (next >= start_segno + sbi->segs_per_sec) {
392 			if (test_and_clear_bit(secno, free_i->free_secmap))
393 				free_i->free_sections++;
394 		}
395 	}
396 	spin_unlock(&free_i->segmap_lock);
397 }
398 
399 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
400 		unsigned int segno)
401 {
402 	struct free_segmap_info *free_i = FREE_I(sbi);
403 	unsigned int secno = segno / sbi->segs_per_sec;
404 	spin_lock(&free_i->segmap_lock);
405 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
406 		free_i->free_segments--;
407 		if (!test_and_set_bit(secno, free_i->free_secmap))
408 			free_i->free_sections--;
409 	}
410 	spin_unlock(&free_i->segmap_lock);
411 }
412 
413 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
414 		void *dst_addr)
415 {
416 	struct sit_info *sit_i = SIT_I(sbi);
417 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
418 }
419 
420 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
421 {
422 	return SIT_I(sbi)->written_valid_blocks;
423 }
424 
425 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
426 {
427 	return FREE_I(sbi)->free_segments;
428 }
429 
430 static inline int reserved_segments(struct f2fs_sb_info *sbi)
431 {
432 	return SM_I(sbi)->reserved_segments;
433 }
434 
435 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
436 {
437 	return FREE_I(sbi)->free_sections;
438 }
439 
440 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
441 {
442 	return DIRTY_I(sbi)->nr_dirty[PRE];
443 }
444 
445 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
446 {
447 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
448 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
449 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
450 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
451 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
452 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
453 }
454 
455 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
456 {
457 	return SM_I(sbi)->ovp_segments;
458 }
459 
460 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
461 {
462 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
463 }
464 
465 static inline int reserved_sections(struct f2fs_sb_info *sbi)
466 {
467 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
468 }
469 
470 static inline bool need_SSR(struct f2fs_sb_info *sbi)
471 {
472 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
473 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
474 
475 	if (test_opt(sbi, LFS))
476 		return false;
477 
478 	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
479 						reserved_sections(sbi) + 1);
480 }
481 
482 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
483 					int freed, int needed)
484 {
485 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
486 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
487 
488 	node_secs += get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
489 
490 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
491 		return false;
492 
493 	return (free_sections(sbi) + freed) <=
494 		(node_secs + 2 * dent_secs + reserved_sections(sbi) + needed);
495 }
496 
497 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
498 {
499 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
500 }
501 
502 static inline int utilization(struct f2fs_sb_info *sbi)
503 {
504 	return div_u64((u64)valid_user_blocks(sbi) * 100,
505 					sbi->user_block_count);
506 }
507 
508 /*
509  * Sometimes f2fs may be better to drop out-of-place update policy.
510  * And, users can control the policy through sysfs entries.
511  * There are five policies with triggering conditions as follows.
512  * F2FS_IPU_FORCE - all the time,
513  * F2FS_IPU_SSR - if SSR mode is activated,
514  * F2FS_IPU_UTIL - if FS utilization is over threashold,
515  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
516  *                     threashold,
517  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
518  *                     storages. IPU will be triggered only if the # of dirty
519  *                     pages over min_fsync_blocks.
520  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
521  */
522 #define DEF_MIN_IPU_UTIL	70
523 #define DEF_MIN_FSYNC_BLOCKS	8
524 
525 enum {
526 	F2FS_IPU_FORCE,
527 	F2FS_IPU_SSR,
528 	F2FS_IPU_UTIL,
529 	F2FS_IPU_SSR_UTIL,
530 	F2FS_IPU_FSYNC,
531 };
532 
533 static inline bool need_inplace_update(struct inode *inode)
534 {
535 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
536 	unsigned int policy = SM_I(sbi)->ipu_policy;
537 
538 	/* IPU can be done only for the user data */
539 	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
540 		return false;
541 
542 	if (test_opt(sbi, LFS))
543 		return false;
544 
545 	if (policy & (0x1 << F2FS_IPU_FORCE))
546 		return true;
547 	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
548 		return true;
549 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
550 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
551 		return true;
552 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
553 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
554 		return true;
555 
556 	/* this is only set during fdatasync */
557 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
558 			is_inode_flag_set(inode, FI_NEED_IPU))
559 		return true;
560 
561 	return false;
562 }
563 
564 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
565 		int type)
566 {
567 	struct curseg_info *curseg = CURSEG_I(sbi, type);
568 	return curseg->segno;
569 }
570 
571 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
572 		int type)
573 {
574 	struct curseg_info *curseg = CURSEG_I(sbi, type);
575 	return curseg->alloc_type;
576 }
577 
578 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
579 {
580 	struct curseg_info *curseg = CURSEG_I(sbi, type);
581 	return curseg->next_blkoff;
582 }
583 
584 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
585 {
586 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
587 }
588 
589 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
590 {
591 	BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
592 			|| blk_addr >= MAX_BLKADDR(sbi));
593 }
594 
595 /*
596  * Summary block is always treated as an invalid block
597  */
598 static inline void check_block_count(struct f2fs_sb_info *sbi,
599 		int segno, struct f2fs_sit_entry *raw_sit)
600 {
601 #ifdef CONFIG_F2FS_CHECK_FS
602 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
603 	int valid_blocks = 0;
604 	int cur_pos = 0, next_pos;
605 
606 	/* check bitmap with valid block count */
607 	do {
608 		if (is_valid) {
609 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
610 					sbi->blocks_per_seg,
611 					cur_pos);
612 			valid_blocks += next_pos - cur_pos;
613 		} else
614 			next_pos = find_next_bit_le(&raw_sit->valid_map,
615 					sbi->blocks_per_seg,
616 					cur_pos);
617 		cur_pos = next_pos;
618 		is_valid = !is_valid;
619 	} while (cur_pos < sbi->blocks_per_seg);
620 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
621 #endif
622 	/* check segment usage, and check boundary of a given segment number */
623 	f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
624 					|| segno > TOTAL_SEGS(sbi) - 1);
625 }
626 
627 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
628 						unsigned int start)
629 {
630 	struct sit_info *sit_i = SIT_I(sbi);
631 	unsigned int offset = SIT_BLOCK_OFFSET(start);
632 	block_t blk_addr = sit_i->sit_base_addr + offset;
633 
634 	check_seg_range(sbi, start);
635 
636 	/* calculate sit block address */
637 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
638 		blk_addr += sit_i->sit_blocks;
639 
640 	return blk_addr;
641 }
642 
643 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
644 						pgoff_t block_addr)
645 {
646 	struct sit_info *sit_i = SIT_I(sbi);
647 	block_addr -= sit_i->sit_base_addr;
648 	if (block_addr < sit_i->sit_blocks)
649 		block_addr += sit_i->sit_blocks;
650 	else
651 		block_addr -= sit_i->sit_blocks;
652 
653 	return block_addr + sit_i->sit_base_addr;
654 }
655 
656 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
657 {
658 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
659 
660 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
661 }
662 
663 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
664 {
665 	struct sit_info *sit_i = SIT_I(sbi);
666 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
667 						sit_i->mounted_time;
668 }
669 
670 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
671 			unsigned int ofs_in_node, unsigned char version)
672 {
673 	sum->nid = cpu_to_le32(nid);
674 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
675 	sum->version = version;
676 }
677 
678 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
679 {
680 	return __start_cp_addr(sbi) +
681 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
682 }
683 
684 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
685 {
686 	return __start_cp_addr(sbi) +
687 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
688 				- (base + 1) + type;
689 }
690 
691 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
692 {
693 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
694 		return true;
695 	return false;
696 }
697 
698 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
699 {
700 	struct block_device *bdev = sbi->sb->s_bdev;
701 	struct request_queue *q = bdev_get_queue(bdev);
702 	return SECTOR_TO_BLOCK(queue_max_sectors(q));
703 }
704 
705 /*
706  * It is very important to gather dirty pages and write at once, so that we can
707  * submit a big bio without interfering other data writes.
708  * By default, 512 pages for directory data,
709  * 512 pages (2MB) * 3 for three types of nodes, and
710  * max_bio_blocks for meta are set.
711  */
712 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
713 {
714 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
715 		return 0;
716 
717 	if (type == DATA)
718 		return sbi->blocks_per_seg;
719 	else if (type == NODE)
720 		return 8 * sbi->blocks_per_seg;
721 	else if (type == META)
722 		return 8 * MAX_BIO_BLOCKS(sbi);
723 	else
724 		return 0;
725 }
726 
727 /*
728  * When writing pages, it'd better align nr_to_write for segment size.
729  */
730 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
731 					struct writeback_control *wbc)
732 {
733 	long nr_to_write, desired;
734 
735 	if (wbc->sync_mode != WB_SYNC_NONE)
736 		return 0;
737 
738 	nr_to_write = wbc->nr_to_write;
739 
740 	if (type == NODE)
741 		desired = 2 * max_hw_blocks(sbi);
742 	else
743 		desired = MAX_BIO_BLOCKS(sbi);
744 
745 	wbc->nr_to_write = desired;
746 	return desired - nr_to_write;
747 }
748