xref: /linux/fs/f2fs/segment.h (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20 
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24 
25 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
28 
29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 						unsigned short seg_type)
31 {
32 	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34 
35 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38 
39 #define IS_CURSEG(sbi, seg)						\
40 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
41 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
42 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
43 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
44 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
45 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
46 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
47 	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48 
49 #define IS_CURSEC(sbi, secno)						\
50 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
51 	  SEGS_PER_SEC(sbi)) ||	\
52 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
53 	  SEGS_PER_SEC(sbi)) ||	\
54 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
55 	  SEGS_PER_SEC(sbi)) ||	\
56 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
57 	  SEGS_PER_SEC(sbi)) ||	\
58 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
59 	  SEGS_PER_SEC(sbi)) ||	\
60 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
61 	  SEGS_PER_SEC(sbi)) ||	\
62 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
63 	  SEGS_PER_SEC(sbi)) ||	\
64 	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
65 	  SEGS_PER_SEC(sbi)))
66 
67 #define MAIN_BLKADDR(sbi)						\
68 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
69 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi)						\
71 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
72 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73 
74 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi)	((sbi)->total_sections)
76 
77 #define TOTAL_SEGS(sbi)							\
78 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
79 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi)	(SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
81 
82 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
84 					(sbi)->log_blocks_per_seg))
85 
86 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
87 	 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
88 
89 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
90 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91 
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
94 	(BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
96 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
97 
98 #define GET_SEGNO(sbi, blk_addr)					\
99 	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define CAP_BLKS_PER_SEC(sbi)					\
103 	(BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
104 #define CAP_SEGS_PER_SEC(sbi)					\
105 	(SEGS_PER_SEC(sbi) -					\
106 	BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
107 #define GET_SEC_FROM_SEG(sbi, segno)				\
108 	(((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
109 #define GET_SEG_FROM_SEC(sbi, secno)				\
110 	((secno) * SEGS_PER_SEC(sbi))
111 #define GET_ZONE_FROM_SEC(sbi, secno)				\
112 	(((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
113 #define GET_ZONE_FROM_SEG(sbi, segno)				\
114 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115 
116 #define GET_SUM_BLOCK(sbi, segno)				\
117 	((sbi)->sm_info->ssa_blkaddr + (segno))
118 
119 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121 
122 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
123 	((segno) % (sit_i)->sents_per_block)
124 #define SIT_BLOCK_OFFSET(segno)					\
125 	((segno) / SIT_ENTRY_PER_BLOCK)
126 #define	START_SEGNO(segno)		\
127 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128 #define SIT_BLK_CNT(sbi)			\
129 	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130 #define f2fs_bitmap_size(nr)			\
131 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
132 
133 #define SECTOR_FROM_BLOCK(blk_addr)					\
134 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135 #define SECTOR_TO_BLOCK(sectors)					\
136 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137 
138 /*
139  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
140  * LFS writes data sequentially with cleaning operations.
141  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
142  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
143  * fragmented segment which has similar aging degree.
144  */
145 enum {
146 	LFS = 0,
147 	SSR,
148 	AT_SSR,
149 };
150 
151 /*
152  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
153  * GC_CB is based on cost-benefit algorithm.
154  * GC_GREEDY is based on greedy algorithm.
155  * GC_AT is based on age-threshold algorithm.
156  */
157 enum {
158 	GC_CB = 0,
159 	GC_GREEDY,
160 	GC_AT,
161 	ALLOC_NEXT,
162 	FLUSH_DEVICE,
163 	MAX_GC_POLICY,
164 };
165 
166 /*
167  * BG_GC means the background cleaning job.
168  * FG_GC means the on-demand cleaning job.
169  */
170 enum {
171 	BG_GC = 0,
172 	FG_GC,
173 };
174 
175 /* for a function parameter to select a victim segment */
176 struct victim_sel_policy {
177 	int alloc_mode;			/* LFS or SSR */
178 	int gc_mode;			/* GC_CB or GC_GREEDY */
179 	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
180 	unsigned int max_search;	/*
181 					 * maximum # of segments/sections
182 					 * to search
183 					 */
184 	unsigned int offset;		/* last scanned bitmap offset */
185 	unsigned int ofs_unit;		/* bitmap search unit */
186 	unsigned int min_cost;		/* minimum cost */
187 	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
188 	unsigned int min_segno;		/* segment # having min. cost */
189 	unsigned long long age;		/* mtime of GCed section*/
190 	unsigned long long age_threshold;/* age threshold */
191 };
192 
193 struct seg_entry {
194 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
195 	unsigned int valid_blocks:10;	/* # of valid blocks */
196 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
197 	unsigned int padding:6;		/* padding */
198 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
199 #ifdef CONFIG_F2FS_CHECK_FS
200 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
201 #endif
202 	/*
203 	 * # of valid blocks and the validity bitmap stored in the last
204 	 * checkpoint pack. This information is used by the SSR mode.
205 	 */
206 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
207 	unsigned char *discard_map;
208 	unsigned long long mtime;	/* modification time of the segment */
209 };
210 
211 struct sec_entry {
212 	unsigned int valid_blocks;	/* # of valid blocks in a section */
213 };
214 
215 #define MAX_SKIP_GC_COUNT			16
216 
217 struct revoke_entry {
218 	struct list_head list;
219 	block_t old_addr;		/* for revoking when fail to commit */
220 	pgoff_t index;
221 };
222 
223 struct sit_info {
224 	block_t sit_base_addr;		/* start block address of SIT area */
225 	block_t sit_blocks;		/* # of blocks used by SIT area */
226 	block_t written_valid_blocks;	/* # of valid blocks in main area */
227 	char *bitmap;			/* all bitmaps pointer */
228 	char *sit_bitmap;		/* SIT bitmap pointer */
229 #ifdef CONFIG_F2FS_CHECK_FS
230 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
231 
232 	/* bitmap of segments to be ignored by GC in case of errors */
233 	unsigned long *invalid_segmap;
234 #endif
235 	unsigned int bitmap_size;	/* SIT bitmap size */
236 
237 	unsigned long *tmp_map;			/* bitmap for temporal use */
238 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
239 	unsigned int dirty_sentries;		/* # of dirty sentries */
240 	unsigned int sents_per_block;		/* # of SIT entries per block */
241 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
242 	struct seg_entry *sentries;		/* SIT segment-level cache */
243 	struct sec_entry *sec_entries;		/* SIT section-level cache */
244 
245 	/* for cost-benefit algorithm in cleaning procedure */
246 	unsigned long long elapsed_time;	/* elapsed time after mount */
247 	unsigned long long mounted_time;	/* mount time */
248 	unsigned long long min_mtime;		/* min. modification time */
249 	unsigned long long max_mtime;		/* max. modification time */
250 	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
251 	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
252 
253 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
254 };
255 
256 struct free_segmap_info {
257 	unsigned int start_segno;	/* start segment number logically */
258 	unsigned int free_segments;	/* # of free segments */
259 	unsigned int free_sections;	/* # of free sections */
260 	spinlock_t segmap_lock;		/* free segmap lock */
261 	unsigned long *free_segmap;	/* free segment bitmap */
262 	unsigned long *free_secmap;	/* free section bitmap */
263 };
264 
265 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
266 enum dirty_type {
267 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
268 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
269 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
270 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
271 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
272 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
273 	DIRTY,			/* to count # of dirty segments */
274 	PRE,			/* to count # of entirely obsolete segments */
275 	NR_DIRTY_TYPE
276 };
277 
278 struct dirty_seglist_info {
279 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
280 	unsigned long *dirty_secmap;
281 	struct mutex seglist_lock;		/* lock for segment bitmaps */
282 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
283 	unsigned long *victim_secmap;		/* background GC victims */
284 	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
285 	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
286 	bool enable_pin_section;		/* enable pinning section */
287 };
288 
289 /* for active log information */
290 struct curseg_info {
291 	struct mutex curseg_mutex;		/* lock for consistency */
292 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
293 	struct rw_semaphore journal_rwsem;	/* protect journal area */
294 	struct f2fs_journal *journal;		/* cached journal info */
295 	unsigned char alloc_type;		/* current allocation type */
296 	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
297 	unsigned int segno;			/* current segment number */
298 	unsigned short next_blkoff;		/* next block offset to write */
299 	unsigned int zone;			/* current zone number */
300 	unsigned int next_segno;		/* preallocated segment */
301 	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
302 	bool inited;				/* indicate inmem log is inited */
303 };
304 
305 struct sit_entry_set {
306 	struct list_head set_list;	/* link with all sit sets */
307 	unsigned int start_segno;	/* start segno of sits in set */
308 	unsigned int entry_cnt;		/* the # of sit entries in set */
309 };
310 
311 /*
312  * inline functions
313  */
314 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
315 {
316 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
317 }
318 
319 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
320 						unsigned int segno)
321 {
322 	struct sit_info *sit_i = SIT_I(sbi);
323 	return &sit_i->sentries[segno];
324 }
325 
326 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
327 						unsigned int segno)
328 {
329 	struct sit_info *sit_i = SIT_I(sbi);
330 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
331 }
332 
333 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
334 				unsigned int segno, bool use_section)
335 {
336 	/*
337 	 * In order to get # of valid blocks in a section instantly from many
338 	 * segments, f2fs manages two counting structures separately.
339 	 */
340 	if (use_section && __is_large_section(sbi))
341 		return get_sec_entry(sbi, segno)->valid_blocks;
342 	else
343 		return get_seg_entry(sbi, segno)->valid_blocks;
344 }
345 
346 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
347 				unsigned int segno, bool use_section)
348 {
349 	if (use_section && __is_large_section(sbi)) {
350 		unsigned int start_segno = START_SEGNO(segno);
351 		unsigned int blocks = 0;
352 		int i;
353 
354 		for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
355 			struct seg_entry *se = get_seg_entry(sbi, start_segno);
356 
357 			blocks += se->ckpt_valid_blocks;
358 		}
359 		return blocks;
360 	}
361 	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
362 }
363 
364 static inline void seg_info_from_raw_sit(struct seg_entry *se,
365 					struct f2fs_sit_entry *rs)
366 {
367 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
368 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
369 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
370 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
371 #ifdef CONFIG_F2FS_CHECK_FS
372 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
373 #endif
374 	se->type = GET_SIT_TYPE(rs);
375 	se->mtime = le64_to_cpu(rs->mtime);
376 }
377 
378 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
379 					struct f2fs_sit_entry *rs)
380 {
381 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
382 					se->valid_blocks;
383 	rs->vblocks = cpu_to_le16(raw_vblocks);
384 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
385 	rs->mtime = cpu_to_le64(se->mtime);
386 }
387 
388 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
389 				struct page *page, unsigned int start)
390 {
391 	struct f2fs_sit_block *raw_sit;
392 	struct seg_entry *se;
393 	struct f2fs_sit_entry *rs;
394 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
395 					(unsigned long)MAIN_SEGS(sbi));
396 	int i;
397 
398 	raw_sit = (struct f2fs_sit_block *)page_address(page);
399 	memset(raw_sit, 0, PAGE_SIZE);
400 	for (i = 0; i < end - start; i++) {
401 		rs = &raw_sit->entries[i];
402 		se = get_seg_entry(sbi, start + i);
403 		__seg_info_to_raw_sit(se, rs);
404 	}
405 }
406 
407 static inline void seg_info_to_raw_sit(struct seg_entry *se,
408 					struct f2fs_sit_entry *rs)
409 {
410 	__seg_info_to_raw_sit(se, rs);
411 
412 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
413 	se->ckpt_valid_blocks = se->valid_blocks;
414 }
415 
416 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
417 		unsigned int max, unsigned int segno)
418 {
419 	unsigned int ret;
420 	spin_lock(&free_i->segmap_lock);
421 	ret = find_next_bit(free_i->free_segmap, max, segno);
422 	spin_unlock(&free_i->segmap_lock);
423 	return ret;
424 }
425 
426 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
427 {
428 	struct free_segmap_info *free_i = FREE_I(sbi);
429 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
430 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
431 	unsigned int next;
432 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
433 
434 	spin_lock(&free_i->segmap_lock);
435 	clear_bit(segno, free_i->free_segmap);
436 	free_i->free_segments++;
437 
438 	next = find_next_bit(free_i->free_segmap,
439 			start_segno + SEGS_PER_SEC(sbi), start_segno);
440 	if (next >= start_segno + usable_segs) {
441 		clear_bit(secno, free_i->free_secmap);
442 		free_i->free_sections++;
443 	}
444 	spin_unlock(&free_i->segmap_lock);
445 }
446 
447 static inline void __set_inuse(struct f2fs_sb_info *sbi,
448 		unsigned int segno)
449 {
450 	struct free_segmap_info *free_i = FREE_I(sbi);
451 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
452 
453 	set_bit(segno, free_i->free_segmap);
454 	free_i->free_segments--;
455 	if (!test_and_set_bit(secno, free_i->free_secmap))
456 		free_i->free_sections--;
457 }
458 
459 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
460 		unsigned int segno, bool inmem)
461 {
462 	struct free_segmap_info *free_i = FREE_I(sbi);
463 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
464 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
465 	unsigned int next;
466 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
467 
468 	spin_lock(&free_i->segmap_lock);
469 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
470 		free_i->free_segments++;
471 
472 		if (!inmem && IS_CURSEC(sbi, secno))
473 			goto skip_free;
474 		next = find_next_bit(free_i->free_segmap,
475 				start_segno + SEGS_PER_SEC(sbi), start_segno);
476 		if (next >= start_segno + usable_segs) {
477 			if (test_and_clear_bit(secno, free_i->free_secmap))
478 				free_i->free_sections++;
479 		}
480 	}
481 skip_free:
482 	spin_unlock(&free_i->segmap_lock);
483 }
484 
485 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
486 		unsigned int segno)
487 {
488 	struct free_segmap_info *free_i = FREE_I(sbi);
489 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
490 
491 	spin_lock(&free_i->segmap_lock);
492 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
493 		free_i->free_segments--;
494 		if (!test_and_set_bit(secno, free_i->free_secmap))
495 			free_i->free_sections--;
496 	}
497 	spin_unlock(&free_i->segmap_lock);
498 }
499 
500 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
501 		void *dst_addr)
502 {
503 	struct sit_info *sit_i = SIT_I(sbi);
504 
505 #ifdef CONFIG_F2FS_CHECK_FS
506 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
507 						sit_i->bitmap_size))
508 		f2fs_bug_on(sbi, 1);
509 #endif
510 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
511 }
512 
513 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
514 {
515 	return SIT_I(sbi)->written_valid_blocks;
516 }
517 
518 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
519 {
520 	return FREE_I(sbi)->free_segments;
521 }
522 
523 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
524 {
525 	return SM_I(sbi)->reserved_segments +
526 			SM_I(sbi)->additional_reserved_segments;
527 }
528 
529 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
530 {
531 	return FREE_I(sbi)->free_sections;
532 }
533 
534 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
535 {
536 	return DIRTY_I(sbi)->nr_dirty[PRE];
537 }
538 
539 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
540 {
541 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
542 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
543 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
544 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
545 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
546 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
547 }
548 
549 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
550 {
551 	return SM_I(sbi)->ovp_segments;
552 }
553 
554 static inline int reserved_sections(struct f2fs_sb_info *sbi)
555 {
556 	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
557 }
558 
559 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
560 			unsigned int node_blocks, unsigned int dent_blocks)
561 {
562 
563 	unsigned segno, left_blocks;
564 	int i;
565 
566 	/* check current node sections in the worst case. */
567 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
568 		segno = CURSEG_I(sbi, i)->segno;
569 		left_blocks = CAP_BLKS_PER_SEC(sbi) -
570 				get_ckpt_valid_blocks(sbi, segno, true);
571 		if (node_blocks > left_blocks)
572 			return false;
573 	}
574 
575 	/* check current data section for dentry blocks. */
576 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
577 	left_blocks = CAP_BLKS_PER_SEC(sbi) -
578 			get_ckpt_valid_blocks(sbi, segno, true);
579 	if (dent_blocks > left_blocks)
580 		return false;
581 	return true;
582 }
583 
584 /*
585  * calculate needed sections for dirty node/dentry
586  * and call has_curseg_enough_space
587  */
588 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
589 		unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
590 {
591 	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
592 					get_pages(sbi, F2FS_DIRTY_DENTS) +
593 					get_pages(sbi, F2FS_DIRTY_IMETA);
594 	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
595 	unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
596 	unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
597 	unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
598 	unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
599 
600 	if (lower_p)
601 		*lower_p = node_secs + dent_secs;
602 	if (upper_p)
603 		*upper_p = node_secs + dent_secs +
604 			(node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
605 	if (curseg_p)
606 		*curseg_p = has_curseg_enough_space(sbi,
607 				node_blocks, dent_blocks);
608 }
609 
610 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
611 					int freed, int needed)
612 {
613 	unsigned int free_secs, lower_secs, upper_secs;
614 	bool curseg_space;
615 
616 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
617 		return false;
618 
619 	__get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
620 
621 	free_secs = free_sections(sbi) + freed;
622 	lower_secs += needed + reserved_sections(sbi);
623 	upper_secs += needed + reserved_sections(sbi);
624 
625 	if (free_secs > upper_secs)
626 		return false;
627 	if (free_secs <= lower_secs)
628 		return true;
629 	return !curseg_space;
630 }
631 
632 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
633 					int freed, int needed)
634 {
635 	return !has_not_enough_free_secs(sbi, freed, needed);
636 }
637 
638 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
639 {
640 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
641 		return true;
642 	if (likely(has_enough_free_secs(sbi, 0, 0)))
643 		return true;
644 	return false;
645 }
646 
647 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
648 {
649 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
650 }
651 
652 static inline int utilization(struct f2fs_sb_info *sbi)
653 {
654 	return div_u64((u64)valid_user_blocks(sbi) * 100,
655 					sbi->user_block_count);
656 }
657 
658 /*
659  * Sometimes f2fs may be better to drop out-of-place update policy.
660  * And, users can control the policy through sysfs entries.
661  * There are five policies with triggering conditions as follows.
662  * F2FS_IPU_FORCE - all the time,
663  * F2FS_IPU_SSR - if SSR mode is activated,
664  * F2FS_IPU_UTIL - if FS utilization is over threashold,
665  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
666  *                     threashold,
667  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
668  *                     storages. IPU will be triggered only if the # of dirty
669  *                     pages over min_fsync_blocks. (=default option)
670  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
671  * F2FS_IPU_NOCACHE - disable IPU bio cache.
672  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
673  *                            FI_OPU_WRITE flag.
674  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
675  */
676 #define DEF_MIN_IPU_UTIL	70
677 #define DEF_MIN_FSYNC_BLOCKS	8
678 #define DEF_MIN_HOT_BLOCKS	16
679 
680 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
681 
682 #define F2FS_IPU_DISABLE	0
683 
684 /* Modification on enum should be synchronized with ipu_mode_names array */
685 enum {
686 	F2FS_IPU_FORCE,
687 	F2FS_IPU_SSR,
688 	F2FS_IPU_UTIL,
689 	F2FS_IPU_SSR_UTIL,
690 	F2FS_IPU_FSYNC,
691 	F2FS_IPU_ASYNC,
692 	F2FS_IPU_NOCACHE,
693 	F2FS_IPU_HONOR_OPU_WRITE,
694 	F2FS_IPU_MAX,
695 };
696 
697 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
698 {
699 	return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
700 }
701 
702 #define F2FS_IPU_POLICY(name)					\
703 static inline bool IS_##name(struct f2fs_sb_info *sbi)		\
704 {								\
705 	return SM_I(sbi)->ipu_policy & BIT(name);		\
706 }
707 
708 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
709 F2FS_IPU_POLICY(F2FS_IPU_SSR);
710 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
711 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
712 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
713 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
714 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
715 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
716 
717 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
718 		int type)
719 {
720 	struct curseg_info *curseg = CURSEG_I(sbi, type);
721 	return curseg->segno;
722 }
723 
724 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
725 		int type)
726 {
727 	struct curseg_info *curseg = CURSEG_I(sbi, type);
728 	return curseg->alloc_type;
729 }
730 
731 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
732 		unsigned int segno)
733 {
734 	return segno <= (MAIN_SEGS(sbi) - 1);
735 }
736 
737 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
738 {
739 	struct f2fs_sb_info *sbi = fio->sbi;
740 
741 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
742 		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
743 					META_GENERIC : DATA_GENERIC);
744 	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
745 					META_GENERIC : DATA_GENERIC_ENHANCE);
746 }
747 
748 /*
749  * Summary block is always treated as an invalid block
750  */
751 static inline int check_block_count(struct f2fs_sb_info *sbi,
752 		int segno, struct f2fs_sit_entry *raw_sit)
753 {
754 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
755 	int valid_blocks = 0;
756 	int cur_pos = 0, next_pos;
757 	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
758 
759 	/* check bitmap with valid block count */
760 	do {
761 		if (is_valid) {
762 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
763 					usable_blks_per_seg,
764 					cur_pos);
765 			valid_blocks += next_pos - cur_pos;
766 		} else
767 			next_pos = find_next_bit_le(&raw_sit->valid_map,
768 					usable_blks_per_seg,
769 					cur_pos);
770 		cur_pos = next_pos;
771 		is_valid = !is_valid;
772 	} while (cur_pos < usable_blks_per_seg);
773 
774 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
775 		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
776 			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
777 		set_sbi_flag(sbi, SBI_NEED_FSCK);
778 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
779 		return -EFSCORRUPTED;
780 	}
781 
782 	if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
783 		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
784 				BLKS_PER_SEG(sbi),
785 				usable_blks_per_seg) != BLKS_PER_SEG(sbi));
786 
787 	/* check segment usage, and check boundary of a given segment number */
788 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
789 					|| !valid_main_segno(sbi, segno))) {
790 		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
791 			 GET_SIT_VBLOCKS(raw_sit), segno);
792 		set_sbi_flag(sbi, SBI_NEED_FSCK);
793 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
794 		return -EFSCORRUPTED;
795 	}
796 	return 0;
797 }
798 
799 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
800 						unsigned int start)
801 {
802 	struct sit_info *sit_i = SIT_I(sbi);
803 	unsigned int offset = SIT_BLOCK_OFFSET(start);
804 	block_t blk_addr = sit_i->sit_base_addr + offset;
805 
806 	f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
807 
808 #ifdef CONFIG_F2FS_CHECK_FS
809 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
810 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
811 		f2fs_bug_on(sbi, 1);
812 #endif
813 
814 	/* calculate sit block address */
815 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
816 		blk_addr += sit_i->sit_blocks;
817 
818 	return blk_addr;
819 }
820 
821 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
822 						pgoff_t block_addr)
823 {
824 	struct sit_info *sit_i = SIT_I(sbi);
825 	block_addr -= sit_i->sit_base_addr;
826 	if (block_addr < sit_i->sit_blocks)
827 		block_addr += sit_i->sit_blocks;
828 	else
829 		block_addr -= sit_i->sit_blocks;
830 
831 	return block_addr + sit_i->sit_base_addr;
832 }
833 
834 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
835 {
836 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
837 
838 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
839 #ifdef CONFIG_F2FS_CHECK_FS
840 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
841 #endif
842 }
843 
844 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
845 						bool base_time)
846 {
847 	struct sit_info *sit_i = SIT_I(sbi);
848 	time64_t diff, now = ktime_get_boottime_seconds();
849 
850 	if (now >= sit_i->mounted_time)
851 		return sit_i->elapsed_time + now - sit_i->mounted_time;
852 
853 	/* system time is set to the past */
854 	if (!base_time) {
855 		diff = sit_i->mounted_time - now;
856 		if (sit_i->elapsed_time >= diff)
857 			return sit_i->elapsed_time - diff;
858 		return 0;
859 	}
860 	return sit_i->elapsed_time;
861 }
862 
863 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
864 			unsigned int ofs_in_node, unsigned char version)
865 {
866 	sum->nid = cpu_to_le32(nid);
867 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
868 	sum->version = version;
869 }
870 
871 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
872 {
873 	return __start_cp_addr(sbi) +
874 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
875 }
876 
877 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
878 {
879 	return __start_cp_addr(sbi) +
880 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
881 				- (base + 1) + type;
882 }
883 
884 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
885 {
886 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
887 		return true;
888 	return false;
889 }
890 
891 /*
892  * It is very important to gather dirty pages and write at once, so that we can
893  * submit a big bio without interfering other data writes.
894  * By default, 512 pages for directory data,
895  * 512 pages (2MB) * 8 for nodes, and
896  * 256 pages * 8 for meta are set.
897  */
898 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
899 {
900 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
901 		return 0;
902 
903 	if (type == DATA)
904 		return BLKS_PER_SEG(sbi);
905 	else if (type == NODE)
906 		return SEGS_TO_BLKS(sbi, 8);
907 	else if (type == META)
908 		return 8 * BIO_MAX_VECS;
909 	else
910 		return 0;
911 }
912 
913 /*
914  * When writing pages, it'd better align nr_to_write for segment size.
915  */
916 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
917 					struct writeback_control *wbc)
918 {
919 	long nr_to_write, desired;
920 
921 	if (wbc->sync_mode != WB_SYNC_NONE)
922 		return 0;
923 
924 	nr_to_write = wbc->nr_to_write;
925 	desired = BIO_MAX_VECS;
926 	if (type == NODE)
927 		desired <<= 1;
928 
929 	wbc->nr_to_write = desired;
930 	return desired - nr_to_write;
931 }
932 
933 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
934 {
935 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
936 	bool wakeup = false;
937 	int i;
938 
939 	if (force)
940 		goto wake_up;
941 
942 	mutex_lock(&dcc->cmd_lock);
943 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
944 		if (i + 1 < dcc->discard_granularity)
945 			break;
946 		if (!list_empty(&dcc->pend_list[i])) {
947 			wakeup = true;
948 			break;
949 		}
950 	}
951 	mutex_unlock(&dcc->cmd_lock);
952 	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
953 		return;
954 wake_up:
955 	dcc->discard_wake = true;
956 	wake_up_interruptible_all(&dcc->discard_wait_queue);
957 }
958 
959 static inline unsigned int first_zoned_segno(struct f2fs_sb_info *sbi)
960 {
961 	int devi;
962 
963 	for (devi = 0; devi < sbi->s_ndevs; devi++)
964 		if (bdev_is_zoned(FDEV(devi).bdev))
965 			return GET_SEGNO(sbi, FDEV(devi).start_blk);
966 	return 0;
967 }
968