1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 #include <linux/backing-dev.h> 13 14 /* constant macro */ 15 #define NULL_SEGNO ((unsigned int)(~0)) 16 #define NULL_SECNO ((unsigned int)(~0)) 17 18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 20 21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 22 23 /* L: Logical segment # in volume, R: Relative segment # in main area */ 24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 26 27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE) 29 30 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) 31 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) 32 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) 33 34 #define IS_CURSEG(sbi, seg) \ 35 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 38 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 41 42 #define IS_CURSEC(sbi, secno) \ 43 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 44 (sbi)->segs_per_sec) || \ 45 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 46 (sbi)->segs_per_sec) || \ 47 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 48 (sbi)->segs_per_sec) || \ 49 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 50 (sbi)->segs_per_sec) || \ 51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 52 (sbi)->segs_per_sec) || \ 53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 54 (sbi)->segs_per_sec)) \ 55 56 #define MAIN_BLKADDR(sbi) \ 57 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ 58 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) 59 #define SEG0_BLKADDR(sbi) \ 60 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ 61 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) 62 63 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 64 #define MAIN_SECS(sbi) ((sbi)->total_sections) 65 66 #define TOTAL_SEGS(sbi) \ 67 (SM_I(sbi) ? SM_I(sbi)->segment_count : \ 68 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) 69 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) 70 71 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 72 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 73 (sbi)->log_blocks_per_seg)) 74 75 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 76 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) 77 78 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 79 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 80 81 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 82 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 83 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) 84 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 85 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) 86 87 #define GET_SEGNO(sbi, blk_addr) \ 88 ((!is_valid_blkaddr(blk_addr)) ? \ 89 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 90 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 91 #define BLKS_PER_SEC(sbi) \ 92 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) 93 #define GET_SEC_FROM_SEG(sbi, segno) \ 94 ((segno) / (sbi)->segs_per_sec) 95 #define GET_SEG_FROM_SEC(sbi, secno) \ 96 ((secno) * (sbi)->segs_per_sec) 97 #define GET_ZONE_FROM_SEC(sbi, secno) \ 98 ((secno) / (sbi)->secs_per_zone) 99 #define GET_ZONE_FROM_SEG(sbi, segno) \ 100 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 101 102 #define GET_SUM_BLOCK(sbi, segno) \ 103 ((sbi)->sm_info->ssa_blkaddr + (segno)) 104 105 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 106 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 107 108 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 109 ((segno) % (sit_i)->sents_per_block) 110 #define SIT_BLOCK_OFFSET(segno) \ 111 ((segno) / SIT_ENTRY_PER_BLOCK) 112 #define START_SEGNO(segno) \ 113 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 114 #define SIT_BLK_CNT(sbi) \ 115 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 116 #define f2fs_bitmap_size(nr) \ 117 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 118 119 #define SECTOR_FROM_BLOCK(blk_addr) \ 120 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 121 #define SECTOR_TO_BLOCK(sectors) \ 122 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 123 124 /* 125 * indicate a block allocation direction: RIGHT and LEFT. 126 * RIGHT means allocating new sections towards the end of volume. 127 * LEFT means the opposite direction. 128 */ 129 enum { 130 ALLOC_RIGHT = 0, 131 ALLOC_LEFT 132 }; 133 134 /* 135 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 136 * LFS writes data sequentially with cleaning operations. 137 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 138 */ 139 enum { 140 LFS = 0, 141 SSR 142 }; 143 144 /* 145 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 146 * GC_CB is based on cost-benefit algorithm. 147 * GC_GREEDY is based on greedy algorithm. 148 */ 149 enum { 150 GC_CB = 0, 151 GC_GREEDY, 152 ALLOC_NEXT, 153 FLUSH_DEVICE, 154 MAX_GC_POLICY, 155 }; 156 157 /* 158 * BG_GC means the background cleaning job. 159 * FG_GC means the on-demand cleaning job. 160 * FORCE_FG_GC means on-demand cleaning job in background. 161 */ 162 enum { 163 BG_GC = 0, 164 FG_GC, 165 FORCE_FG_GC, 166 }; 167 168 /* for a function parameter to select a victim segment */ 169 struct victim_sel_policy { 170 int alloc_mode; /* LFS or SSR */ 171 int gc_mode; /* GC_CB or GC_GREEDY */ 172 unsigned long *dirty_segmap; /* dirty segment bitmap */ 173 unsigned int max_search; /* maximum # of segments to search */ 174 unsigned int offset; /* last scanned bitmap offset */ 175 unsigned int ofs_unit; /* bitmap search unit */ 176 unsigned int min_cost; /* minimum cost */ 177 unsigned int min_segno; /* segment # having min. cost */ 178 }; 179 180 struct seg_entry { 181 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 182 unsigned int valid_blocks:10; /* # of valid blocks */ 183 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 184 unsigned int padding:6; /* padding */ 185 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 186 #ifdef CONFIG_F2FS_CHECK_FS 187 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 188 #endif 189 /* 190 * # of valid blocks and the validity bitmap stored in the the last 191 * checkpoint pack. This information is used by the SSR mode. 192 */ 193 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 194 unsigned char *discard_map; 195 unsigned long long mtime; /* modification time of the segment */ 196 }; 197 198 struct sec_entry { 199 unsigned int valid_blocks; /* # of valid blocks in a section */ 200 }; 201 202 struct segment_allocation { 203 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 204 }; 205 206 /* 207 * this value is set in page as a private data which indicate that 208 * the page is atomically written, and it is in inmem_pages list. 209 */ 210 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1) 211 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2) 212 213 #define IS_ATOMIC_WRITTEN_PAGE(page) \ 214 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE) 215 #define IS_DUMMY_WRITTEN_PAGE(page) \ 216 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE) 217 218 #define MAX_SKIP_ATOMIC_COUNT 16 219 220 struct inmem_pages { 221 struct list_head list; 222 struct page *page; 223 block_t old_addr; /* for revoking when fail to commit */ 224 }; 225 226 struct sit_info { 227 const struct segment_allocation *s_ops; 228 229 block_t sit_base_addr; /* start block address of SIT area */ 230 block_t sit_blocks; /* # of blocks used by SIT area */ 231 block_t written_valid_blocks; /* # of valid blocks in main area */ 232 char *sit_bitmap; /* SIT bitmap pointer */ 233 #ifdef CONFIG_F2FS_CHECK_FS 234 char *sit_bitmap_mir; /* SIT bitmap mirror */ 235 #endif 236 unsigned int bitmap_size; /* SIT bitmap size */ 237 238 unsigned long *tmp_map; /* bitmap for temporal use */ 239 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 240 unsigned int dirty_sentries; /* # of dirty sentries */ 241 unsigned int sents_per_block; /* # of SIT entries per block */ 242 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 243 struct seg_entry *sentries; /* SIT segment-level cache */ 244 struct sec_entry *sec_entries; /* SIT section-level cache */ 245 246 /* for cost-benefit algorithm in cleaning procedure */ 247 unsigned long long elapsed_time; /* elapsed time after mount */ 248 unsigned long long mounted_time; /* mount time */ 249 unsigned long long min_mtime; /* min. modification time */ 250 unsigned long long max_mtime; /* max. modification time */ 251 252 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 253 }; 254 255 struct free_segmap_info { 256 unsigned int start_segno; /* start segment number logically */ 257 unsigned int free_segments; /* # of free segments */ 258 unsigned int free_sections; /* # of free sections */ 259 spinlock_t segmap_lock; /* free segmap lock */ 260 unsigned long *free_segmap; /* free segment bitmap */ 261 unsigned long *free_secmap; /* free section bitmap */ 262 }; 263 264 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 265 enum dirty_type { 266 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 267 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 268 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 269 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 270 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 271 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 272 DIRTY, /* to count # of dirty segments */ 273 PRE, /* to count # of entirely obsolete segments */ 274 NR_DIRTY_TYPE 275 }; 276 277 struct dirty_seglist_info { 278 const struct victim_selection *v_ops; /* victim selction operation */ 279 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 280 struct mutex seglist_lock; /* lock for segment bitmaps */ 281 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 282 unsigned long *victim_secmap; /* background GC victims */ 283 }; 284 285 /* victim selection function for cleaning and SSR */ 286 struct victim_selection { 287 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 288 int, int, char); 289 }; 290 291 /* for active log information */ 292 struct curseg_info { 293 struct mutex curseg_mutex; /* lock for consistency */ 294 struct f2fs_summary_block *sum_blk; /* cached summary block */ 295 struct rw_semaphore journal_rwsem; /* protect journal area */ 296 struct f2fs_journal *journal; /* cached journal info */ 297 unsigned char alloc_type; /* current allocation type */ 298 unsigned int segno; /* current segment number */ 299 unsigned short next_blkoff; /* next block offset to write */ 300 unsigned int zone; /* current zone number */ 301 unsigned int next_segno; /* preallocated segment */ 302 }; 303 304 struct sit_entry_set { 305 struct list_head set_list; /* link with all sit sets */ 306 unsigned int start_segno; /* start segno of sits in set */ 307 unsigned int entry_cnt; /* the # of sit entries in set */ 308 }; 309 310 /* 311 * inline functions 312 */ 313 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 314 { 315 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 316 } 317 318 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 319 unsigned int segno) 320 { 321 struct sit_info *sit_i = SIT_I(sbi); 322 return &sit_i->sentries[segno]; 323 } 324 325 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 326 unsigned int segno) 327 { 328 struct sit_info *sit_i = SIT_I(sbi); 329 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 330 } 331 332 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 333 unsigned int segno, bool use_section) 334 { 335 /* 336 * In order to get # of valid blocks in a section instantly from many 337 * segments, f2fs manages two counting structures separately. 338 */ 339 if (use_section && sbi->segs_per_sec > 1) 340 return get_sec_entry(sbi, segno)->valid_blocks; 341 else 342 return get_seg_entry(sbi, segno)->valid_blocks; 343 } 344 345 static inline void seg_info_from_raw_sit(struct seg_entry *se, 346 struct f2fs_sit_entry *rs) 347 { 348 se->valid_blocks = GET_SIT_VBLOCKS(rs); 349 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 350 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 351 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 352 #ifdef CONFIG_F2FS_CHECK_FS 353 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 354 #endif 355 se->type = GET_SIT_TYPE(rs); 356 se->mtime = le64_to_cpu(rs->mtime); 357 } 358 359 static inline void __seg_info_to_raw_sit(struct seg_entry *se, 360 struct f2fs_sit_entry *rs) 361 { 362 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 363 se->valid_blocks; 364 rs->vblocks = cpu_to_le16(raw_vblocks); 365 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 366 rs->mtime = cpu_to_le64(se->mtime); 367 } 368 369 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, 370 struct page *page, unsigned int start) 371 { 372 struct f2fs_sit_block *raw_sit; 373 struct seg_entry *se; 374 struct f2fs_sit_entry *rs; 375 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, 376 (unsigned long)MAIN_SEGS(sbi)); 377 int i; 378 379 raw_sit = (struct f2fs_sit_block *)page_address(page); 380 memset(raw_sit, 0, PAGE_SIZE); 381 for (i = 0; i < end - start; i++) { 382 rs = &raw_sit->entries[i]; 383 se = get_seg_entry(sbi, start + i); 384 __seg_info_to_raw_sit(se, rs); 385 } 386 } 387 388 static inline void seg_info_to_raw_sit(struct seg_entry *se, 389 struct f2fs_sit_entry *rs) 390 { 391 __seg_info_to_raw_sit(se, rs); 392 393 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 394 se->ckpt_valid_blocks = se->valid_blocks; 395 } 396 397 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 398 unsigned int max, unsigned int segno) 399 { 400 unsigned int ret; 401 spin_lock(&free_i->segmap_lock); 402 ret = find_next_bit(free_i->free_segmap, max, segno); 403 spin_unlock(&free_i->segmap_lock); 404 return ret; 405 } 406 407 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 408 { 409 struct free_segmap_info *free_i = FREE_I(sbi); 410 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 411 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 412 unsigned int next; 413 414 spin_lock(&free_i->segmap_lock); 415 clear_bit(segno, free_i->free_segmap); 416 free_i->free_segments++; 417 418 next = find_next_bit(free_i->free_segmap, 419 start_segno + sbi->segs_per_sec, start_segno); 420 if (next >= start_segno + sbi->segs_per_sec) { 421 clear_bit(secno, free_i->free_secmap); 422 free_i->free_sections++; 423 } 424 spin_unlock(&free_i->segmap_lock); 425 } 426 427 static inline void __set_inuse(struct f2fs_sb_info *sbi, 428 unsigned int segno) 429 { 430 struct free_segmap_info *free_i = FREE_I(sbi); 431 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 432 433 set_bit(segno, free_i->free_segmap); 434 free_i->free_segments--; 435 if (!test_and_set_bit(secno, free_i->free_secmap)) 436 free_i->free_sections--; 437 } 438 439 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 440 unsigned int segno) 441 { 442 struct free_segmap_info *free_i = FREE_I(sbi); 443 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 444 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 445 unsigned int next; 446 447 spin_lock(&free_i->segmap_lock); 448 if (test_and_clear_bit(segno, free_i->free_segmap)) { 449 free_i->free_segments++; 450 451 next = find_next_bit(free_i->free_segmap, 452 start_segno + sbi->segs_per_sec, start_segno); 453 if (next >= start_segno + sbi->segs_per_sec) { 454 if (test_and_clear_bit(secno, free_i->free_secmap)) 455 free_i->free_sections++; 456 } 457 } 458 spin_unlock(&free_i->segmap_lock); 459 } 460 461 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 462 unsigned int segno) 463 { 464 struct free_segmap_info *free_i = FREE_I(sbi); 465 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 466 467 spin_lock(&free_i->segmap_lock); 468 if (!test_and_set_bit(segno, free_i->free_segmap)) { 469 free_i->free_segments--; 470 if (!test_and_set_bit(secno, free_i->free_secmap)) 471 free_i->free_sections--; 472 } 473 spin_unlock(&free_i->segmap_lock); 474 } 475 476 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 477 void *dst_addr) 478 { 479 struct sit_info *sit_i = SIT_I(sbi); 480 481 #ifdef CONFIG_F2FS_CHECK_FS 482 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 483 sit_i->bitmap_size)) 484 f2fs_bug_on(sbi, 1); 485 #endif 486 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 487 } 488 489 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 490 { 491 return SIT_I(sbi)->written_valid_blocks; 492 } 493 494 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 495 { 496 return FREE_I(sbi)->free_segments; 497 } 498 499 static inline int reserved_segments(struct f2fs_sb_info *sbi) 500 { 501 return SM_I(sbi)->reserved_segments; 502 } 503 504 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 505 { 506 return FREE_I(sbi)->free_sections; 507 } 508 509 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 510 { 511 return DIRTY_I(sbi)->nr_dirty[PRE]; 512 } 513 514 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 515 { 516 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 517 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 518 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 519 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 520 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 521 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 522 } 523 524 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 525 { 526 return SM_I(sbi)->ovp_segments; 527 } 528 529 static inline int reserved_sections(struct f2fs_sb_info *sbi) 530 { 531 return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi)); 532 } 533 534 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi) 535 { 536 unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 537 get_pages(sbi, F2FS_DIRTY_DENTS); 538 unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 539 unsigned int segno, left_blocks; 540 int i; 541 542 /* check current node segment */ 543 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { 544 segno = CURSEG_I(sbi, i)->segno; 545 left_blocks = sbi->blocks_per_seg - 546 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 547 548 if (node_blocks > left_blocks) 549 return false; 550 } 551 552 /* check current data segment */ 553 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 554 left_blocks = sbi->blocks_per_seg - 555 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 556 if (dent_blocks > left_blocks) 557 return false; 558 return true; 559 } 560 561 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 562 int freed, int needed) 563 { 564 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 565 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 566 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 567 568 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 569 return false; 570 571 if (free_sections(sbi) + freed == reserved_sections(sbi) + needed && 572 has_curseg_enough_space(sbi)) 573 return false; 574 return (free_sections(sbi) + freed) <= 575 (node_secs + 2 * dent_secs + imeta_secs + 576 reserved_sections(sbi) + needed); 577 } 578 579 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 580 { 581 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 582 } 583 584 static inline int utilization(struct f2fs_sb_info *sbi) 585 { 586 return div_u64((u64)valid_user_blocks(sbi) * 100, 587 sbi->user_block_count); 588 } 589 590 /* 591 * Sometimes f2fs may be better to drop out-of-place update policy. 592 * And, users can control the policy through sysfs entries. 593 * There are five policies with triggering conditions as follows. 594 * F2FS_IPU_FORCE - all the time, 595 * F2FS_IPU_SSR - if SSR mode is activated, 596 * F2FS_IPU_UTIL - if FS utilization is over threashold, 597 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 598 * threashold, 599 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 600 * storages. IPU will be triggered only if the # of dirty 601 * pages over min_fsync_blocks. 602 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 603 */ 604 #define DEF_MIN_IPU_UTIL 70 605 #define DEF_MIN_FSYNC_BLOCKS 8 606 #define DEF_MIN_HOT_BLOCKS 16 607 608 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ 609 610 enum { 611 F2FS_IPU_FORCE, 612 F2FS_IPU_SSR, 613 F2FS_IPU_UTIL, 614 F2FS_IPU_SSR_UTIL, 615 F2FS_IPU_FSYNC, 616 F2FS_IPU_ASYNC, 617 }; 618 619 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 620 int type) 621 { 622 struct curseg_info *curseg = CURSEG_I(sbi, type); 623 return curseg->segno; 624 } 625 626 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 627 int type) 628 { 629 struct curseg_info *curseg = CURSEG_I(sbi, type); 630 return curseg->alloc_type; 631 } 632 633 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 634 { 635 struct curseg_info *curseg = CURSEG_I(sbi, type); 636 return curseg->next_blkoff; 637 } 638 639 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 640 { 641 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 642 } 643 644 static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr) 645 { 646 struct f2fs_sb_info *sbi = fio->sbi; 647 648 if (PAGE_TYPE_OF_BIO(fio->type) == META && 649 (!is_read_io(fio->op) || fio->is_meta)) 650 BUG_ON(blk_addr < SEG0_BLKADDR(sbi) || 651 blk_addr >= MAIN_BLKADDR(sbi)); 652 else 653 BUG_ON(blk_addr < MAIN_BLKADDR(sbi) || 654 blk_addr >= MAX_BLKADDR(sbi)); 655 } 656 657 /* 658 * Summary block is always treated as an invalid block 659 */ 660 static inline int check_block_count(struct f2fs_sb_info *sbi, 661 int segno, struct f2fs_sit_entry *raw_sit) 662 { 663 #ifdef CONFIG_F2FS_CHECK_FS 664 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 665 int valid_blocks = 0; 666 int cur_pos = 0, next_pos; 667 668 /* check bitmap with valid block count */ 669 do { 670 if (is_valid) { 671 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 672 sbi->blocks_per_seg, 673 cur_pos); 674 valid_blocks += next_pos - cur_pos; 675 } else 676 next_pos = find_next_bit_le(&raw_sit->valid_map, 677 sbi->blocks_per_seg, 678 cur_pos); 679 cur_pos = next_pos; 680 is_valid = !is_valid; 681 } while (cur_pos < sbi->blocks_per_seg); 682 683 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { 684 f2fs_msg(sbi->sb, KERN_ERR, 685 "Mismatch valid blocks %d vs. %d", 686 GET_SIT_VBLOCKS(raw_sit), valid_blocks); 687 set_sbi_flag(sbi, SBI_NEED_FSCK); 688 return -EINVAL; 689 } 690 #endif 691 /* check segment usage, and check boundary of a given segment number */ 692 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg 693 || segno > TOTAL_SEGS(sbi) - 1)) { 694 f2fs_msg(sbi->sb, KERN_ERR, 695 "Wrong valid blocks %d or segno %u", 696 GET_SIT_VBLOCKS(raw_sit), segno); 697 set_sbi_flag(sbi, SBI_NEED_FSCK); 698 return -EINVAL; 699 } 700 return 0; 701 } 702 703 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 704 unsigned int start) 705 { 706 struct sit_info *sit_i = SIT_I(sbi); 707 unsigned int offset = SIT_BLOCK_OFFSET(start); 708 block_t blk_addr = sit_i->sit_base_addr + offset; 709 710 check_seg_range(sbi, start); 711 712 #ifdef CONFIG_F2FS_CHECK_FS 713 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 714 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 715 f2fs_bug_on(sbi, 1); 716 #endif 717 718 /* calculate sit block address */ 719 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 720 blk_addr += sit_i->sit_blocks; 721 722 return blk_addr; 723 } 724 725 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 726 pgoff_t block_addr) 727 { 728 struct sit_info *sit_i = SIT_I(sbi); 729 block_addr -= sit_i->sit_base_addr; 730 if (block_addr < sit_i->sit_blocks) 731 block_addr += sit_i->sit_blocks; 732 else 733 block_addr -= sit_i->sit_blocks; 734 735 return block_addr + sit_i->sit_base_addr; 736 } 737 738 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 739 { 740 unsigned int block_off = SIT_BLOCK_OFFSET(start); 741 742 f2fs_change_bit(block_off, sit_i->sit_bitmap); 743 #ifdef CONFIG_F2FS_CHECK_FS 744 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 745 #endif 746 } 747 748 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, 749 bool base_time) 750 { 751 struct sit_info *sit_i = SIT_I(sbi); 752 time64_t diff, now = ktime_get_real_seconds(); 753 754 if (now >= sit_i->mounted_time) 755 return sit_i->elapsed_time + now - sit_i->mounted_time; 756 757 /* system time is set to the past */ 758 if (!base_time) { 759 diff = sit_i->mounted_time - now; 760 if (sit_i->elapsed_time >= diff) 761 return sit_i->elapsed_time - diff; 762 return 0; 763 } 764 return sit_i->elapsed_time; 765 } 766 767 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 768 unsigned int ofs_in_node, unsigned char version) 769 { 770 sum->nid = cpu_to_le32(nid); 771 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 772 sum->version = version; 773 } 774 775 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 776 { 777 return __start_cp_addr(sbi) + 778 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 779 } 780 781 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 782 { 783 return __start_cp_addr(sbi) + 784 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 785 - (base + 1) + type; 786 } 787 788 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 789 { 790 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 791 return true; 792 return false; 793 } 794 795 /* 796 * It is very important to gather dirty pages and write at once, so that we can 797 * submit a big bio without interfering other data writes. 798 * By default, 512 pages for directory data, 799 * 512 pages (2MB) * 8 for nodes, and 800 * 256 pages * 8 for meta are set. 801 */ 802 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 803 { 804 if (sbi->sb->s_bdi->wb.dirty_exceeded) 805 return 0; 806 807 if (type == DATA) 808 return sbi->blocks_per_seg; 809 else if (type == NODE) 810 return 8 * sbi->blocks_per_seg; 811 else if (type == META) 812 return 8 * BIO_MAX_PAGES; 813 else 814 return 0; 815 } 816 817 /* 818 * When writing pages, it'd better align nr_to_write for segment size. 819 */ 820 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 821 struct writeback_control *wbc) 822 { 823 long nr_to_write, desired; 824 825 if (wbc->sync_mode != WB_SYNC_NONE) 826 return 0; 827 828 nr_to_write = wbc->nr_to_write; 829 desired = BIO_MAX_PAGES; 830 if (type == NODE) 831 desired <<= 1; 832 833 wbc->nr_to_write = desired; 834 return desired - nr_to_write; 835 } 836 837 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 838 { 839 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 840 bool wakeup = false; 841 int i; 842 843 if (force) 844 goto wake_up; 845 846 mutex_lock(&dcc->cmd_lock); 847 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 848 if (i + 1 < dcc->discard_granularity) 849 break; 850 if (!list_empty(&dcc->pend_list[i])) { 851 wakeup = true; 852 break; 853 } 854 } 855 mutex_unlock(&dcc->cmd_lock); 856 if (!wakeup) 857 return; 858 wake_up: 859 dcc->discard_wake = 1; 860 wake_up_interruptible_all(&dcc->discard_wait_queue); 861 } 862