1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/segment.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/blkdev.h> 9 #include <linux/backing-dev.h> 10 11 /* constant macro */ 12 #define NULL_SEGNO ((unsigned int)(~0)) 13 #define NULL_SECNO ((unsigned int)(~0)) 14 15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 17 18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */ 20 21 #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */ 22 23 /* L: Logical segment # in volume, R: Relative segment # in main area */ 24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 26 27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE) 29 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA)) 30 31 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi, 32 unsigned short seg_type) 33 { 34 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG); 35 } 36 37 #define IS_CURSEG(sbi, seg) \ 38 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 41 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 42 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 43 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \ 44 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \ 45 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno)) 46 47 #define IS_CURSEC(sbi, secno) \ 48 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 49 SEGS_PER_SEC(sbi)) || \ 50 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 51 SEGS_PER_SEC(sbi)) || \ 52 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 53 SEGS_PER_SEC(sbi)) || \ 54 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 55 SEGS_PER_SEC(sbi)) || \ 56 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 57 SEGS_PER_SEC(sbi)) || \ 58 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 59 SEGS_PER_SEC(sbi)) || \ 60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \ 61 SEGS_PER_SEC(sbi)) || \ 62 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \ 63 SEGS_PER_SEC(sbi))) 64 65 #define MAIN_BLKADDR(sbi) \ 66 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ 67 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) 68 #define SEG0_BLKADDR(sbi) \ 69 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ 70 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) 71 72 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 73 #define MAIN_SECS(sbi) ((sbi)->total_sections) 74 75 #define TOTAL_SEGS(sbi) \ 76 (SM_I(sbi) ? SM_I(sbi)->segment_count : \ 77 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) 78 #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi))) 79 80 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 81 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 82 (sbi)->log_blocks_per_seg)) 83 84 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 85 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno)))) 86 87 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 88 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 89 90 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 91 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 92 (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr))) 93 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1)) 95 96 #define GET_SEGNO(sbi, blk_addr) \ 97 ((!__is_valid_data_blkaddr(blk_addr)) ? \ 98 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 99 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 100 #define CAP_BLKS_PER_SEC(sbi) \ 101 (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec) 102 #define CAP_SEGS_PER_SEC(sbi) \ 103 (SEGS_PER_SEC(sbi) - \ 104 BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec)) 105 #define GET_START_SEG_FROM_SEC(sbi, segno) \ 106 (rounddown(segno, SEGS_PER_SEC(sbi))) 107 #define GET_SEC_FROM_SEG(sbi, segno) \ 108 (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi)) 109 #define GET_SEG_FROM_SEC(sbi, secno) \ 110 ((secno) * SEGS_PER_SEC(sbi)) 111 #define GET_ZONE_FROM_SEC(sbi, secno) \ 112 (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone) 113 #define GET_ZONE_FROM_SEG(sbi, segno) \ 114 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 115 116 #define GET_SUM_BLOCK(sbi, segno) \ 117 ((sbi)->sm_info->ssa_blkaddr + (segno)) 118 119 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 121 122 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 123 ((segno) % (sit_i)->sents_per_block) 124 #define SIT_BLOCK_OFFSET(segno) \ 125 ((segno) / SIT_ENTRY_PER_BLOCK) 126 #define START_SEGNO(segno) \ 127 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 128 #define SIT_BLK_CNT(sbi) \ 129 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) 130 #define f2fs_bitmap_size(nr) \ 131 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 132 133 #define SECTOR_FROM_BLOCK(blk_addr) \ 134 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 135 #define SECTOR_TO_BLOCK(sectors) \ 136 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 137 138 /* 139 * In the victim_sel_policy->alloc_mode, there are three block allocation modes. 140 * LFS writes data sequentially with cleaning operations. 141 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 142 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into 143 * fragmented segment which has similar aging degree. 144 */ 145 enum { 146 LFS = 0, 147 SSR, 148 AT_SSR, 149 }; 150 151 /* 152 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes. 153 * GC_CB is based on cost-benefit algorithm. 154 * GC_GREEDY is based on greedy algorithm. 155 * GC_AT is based on age-threshold algorithm. 156 */ 157 enum { 158 GC_CB = 0, 159 GC_GREEDY, 160 GC_AT, 161 ALLOC_NEXT, 162 FLUSH_DEVICE, 163 MAX_GC_POLICY, 164 }; 165 166 /* 167 * BG_GC means the background cleaning job. 168 * FG_GC means the on-demand cleaning job. 169 */ 170 enum { 171 BG_GC = 0, 172 FG_GC, 173 }; 174 175 /* for a function parameter to select a victim segment */ 176 struct victim_sel_policy { 177 int alloc_mode; /* LFS or SSR */ 178 int gc_mode; /* GC_CB or GC_GREEDY */ 179 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ 180 unsigned int max_search; /* 181 * maximum # of segments/sections 182 * to search 183 */ 184 unsigned int offset; /* last scanned bitmap offset */ 185 unsigned int ofs_unit; /* bitmap search unit */ 186 unsigned int min_cost; /* minimum cost */ 187 unsigned long long oldest_age; /* oldest age of segments having the same min cost */ 188 unsigned int min_segno; /* segment # having min. cost */ 189 unsigned long long age; /* mtime of GCed section*/ 190 unsigned long long age_threshold;/* age threshold */ 191 bool one_time_gc; /* one time GC */ 192 }; 193 194 struct seg_entry { 195 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 196 unsigned int valid_blocks:10; /* # of valid blocks */ 197 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 198 unsigned int padding:6; /* padding */ 199 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 200 #ifdef CONFIG_F2FS_CHECK_FS 201 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 202 #endif 203 /* 204 * # of valid blocks and the validity bitmap stored in the last 205 * checkpoint pack. This information is used by the SSR mode. 206 */ 207 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 208 unsigned char *discard_map; 209 unsigned long long mtime; /* modification time of the segment */ 210 }; 211 212 struct sec_entry { 213 unsigned int valid_blocks; /* # of valid blocks in a section */ 214 unsigned int ckpt_valid_blocks; /* # of valid blocks last cp in a section */ 215 }; 216 217 #define MAX_SKIP_GC_COUNT 16 218 219 struct revoke_entry { 220 struct list_head list; 221 block_t old_addr; /* for revoking when fail to commit */ 222 pgoff_t index; 223 }; 224 225 struct sit_info { 226 block_t sit_base_addr; /* start block address of SIT area */ 227 block_t sit_blocks; /* # of blocks used by SIT area */ 228 block_t written_valid_blocks; /* # of valid blocks in main area */ 229 char *bitmap; /* all bitmaps pointer */ 230 char *sit_bitmap; /* SIT bitmap pointer */ 231 #ifdef CONFIG_F2FS_CHECK_FS 232 char *sit_bitmap_mir; /* SIT bitmap mirror */ 233 234 /* bitmap of segments to be ignored by GC in case of errors */ 235 unsigned long *invalid_segmap; 236 #endif 237 unsigned int bitmap_size; /* SIT bitmap size */ 238 239 unsigned long *tmp_map; /* bitmap for temporal use */ 240 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 241 unsigned int dirty_sentries; /* # of dirty sentries */ 242 unsigned int sents_per_block; /* # of SIT entries per block */ 243 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 244 struct seg_entry *sentries; /* SIT segment-level cache */ 245 struct sec_entry *sec_entries; /* SIT section-level cache */ 246 247 /* for cost-benefit algorithm in cleaning procedure */ 248 unsigned long long elapsed_time; /* elapsed time after mount */ 249 unsigned long long mounted_time; /* mount time */ 250 unsigned long long min_mtime; /* min. modification time */ 251 unsigned long long max_mtime; /* max. modification time */ 252 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */ 253 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */ 254 255 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 256 }; 257 258 struct free_segmap_info { 259 unsigned int start_segno; /* start segment number logically */ 260 unsigned int free_segments; /* # of free segments */ 261 unsigned int free_sections; /* # of free sections */ 262 spinlock_t segmap_lock; /* free segmap lock */ 263 unsigned long *free_segmap; /* free segment bitmap */ 264 unsigned long *free_secmap; /* free section bitmap */ 265 }; 266 267 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 268 enum dirty_type { 269 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 270 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 271 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 272 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 273 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 274 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 275 DIRTY, /* to count # of dirty segments */ 276 PRE, /* to count # of entirely obsolete segments */ 277 NR_DIRTY_TYPE 278 }; 279 280 struct dirty_seglist_info { 281 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 282 unsigned long *dirty_secmap; 283 struct mutex seglist_lock; /* lock for segment bitmaps */ 284 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 285 unsigned long *victim_secmap; /* background GC victims */ 286 unsigned long *pinned_secmap; /* pinned victims from foreground GC */ 287 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */ 288 bool enable_pin_section; /* enable pinning section */ 289 }; 290 291 /* for active log information */ 292 struct curseg_info { 293 struct mutex curseg_mutex; /* lock for consistency */ 294 struct f2fs_summary_block *sum_blk; /* cached summary block */ 295 struct rw_semaphore journal_rwsem; /* protect journal area */ 296 struct f2fs_journal *journal; /* cached journal info */ 297 unsigned char alloc_type; /* current allocation type */ 298 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */ 299 unsigned int segno; /* current segment number */ 300 unsigned short next_blkoff; /* next block offset to write */ 301 unsigned int zone; /* current zone number */ 302 unsigned int next_segno; /* preallocated segment */ 303 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */ 304 bool inited; /* indicate inmem log is inited */ 305 }; 306 307 struct sit_entry_set { 308 struct list_head set_list; /* link with all sit sets */ 309 unsigned int start_segno; /* start segno of sits in set */ 310 unsigned int entry_cnt; /* the # of sit entries in set */ 311 }; 312 313 /* 314 * inline functions 315 */ 316 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 317 { 318 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 319 } 320 321 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 322 unsigned int segno) 323 { 324 struct sit_info *sit_i = SIT_I(sbi); 325 return &sit_i->sentries[segno]; 326 } 327 328 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 329 unsigned int segno) 330 { 331 struct sit_info *sit_i = SIT_I(sbi); 332 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 333 } 334 335 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 336 unsigned int segno, bool use_section) 337 { 338 /* 339 * In order to get # of valid blocks in a section instantly from many 340 * segments, f2fs manages two counting structures separately. 341 */ 342 if (use_section && __is_large_section(sbi)) 343 return get_sec_entry(sbi, segno)->valid_blocks; 344 else 345 return get_seg_entry(sbi, segno)->valid_blocks; 346 } 347 348 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, 349 unsigned int segno, bool use_section) 350 { 351 if (use_section && __is_large_section(sbi)) 352 return get_sec_entry(sbi, segno)->ckpt_valid_blocks; 353 else 354 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 355 } 356 357 static inline void set_ckpt_valid_blocks(struct f2fs_sb_info *sbi, 358 unsigned int segno) 359 { 360 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 361 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 362 unsigned int blocks = 0; 363 int i; 364 365 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) { 366 struct seg_entry *se = get_seg_entry(sbi, start_segno); 367 368 blocks += se->ckpt_valid_blocks; 369 } 370 get_sec_entry(sbi, segno)->ckpt_valid_blocks = blocks; 371 } 372 373 #ifdef CONFIG_F2FS_CHECK_FS 374 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi, 375 unsigned int segno) 376 { 377 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 378 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 379 unsigned int blocks = 0; 380 int i; 381 382 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) { 383 struct seg_entry *se = get_seg_entry(sbi, start_segno); 384 385 blocks += se->ckpt_valid_blocks; 386 } 387 388 if (blocks != get_sec_entry(sbi, segno)->ckpt_valid_blocks) { 389 f2fs_err(sbi, 390 "Inconsistent ckpt valid blocks: " 391 "seg entry(%d) vs sec entry(%d) at secno %d", 392 blocks, get_sec_entry(sbi, segno)->ckpt_valid_blocks, secno); 393 f2fs_bug_on(sbi, 1); 394 } 395 } 396 #else 397 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi, 398 unsigned int segno) 399 { 400 } 401 #endif 402 static inline void seg_info_from_raw_sit(struct seg_entry *se, 403 struct f2fs_sit_entry *rs) 404 { 405 se->valid_blocks = GET_SIT_VBLOCKS(rs); 406 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 407 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 408 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 409 #ifdef CONFIG_F2FS_CHECK_FS 410 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 411 #endif 412 se->type = GET_SIT_TYPE(rs); 413 se->mtime = le64_to_cpu(rs->mtime); 414 } 415 416 static inline void __seg_info_to_raw_sit(struct seg_entry *se, 417 struct f2fs_sit_entry *rs) 418 { 419 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 420 se->valid_blocks; 421 rs->vblocks = cpu_to_le16(raw_vblocks); 422 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 423 rs->mtime = cpu_to_le64(se->mtime); 424 } 425 426 static inline void seg_info_to_sit_folio(struct f2fs_sb_info *sbi, 427 struct folio *folio, unsigned int start) 428 { 429 struct f2fs_sit_block *raw_sit; 430 struct seg_entry *se; 431 struct f2fs_sit_entry *rs; 432 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, 433 (unsigned long)MAIN_SEGS(sbi)); 434 int i; 435 436 raw_sit = folio_address(folio); 437 memset(raw_sit, 0, PAGE_SIZE); 438 for (i = 0; i < end - start; i++) { 439 rs = &raw_sit->entries[i]; 440 se = get_seg_entry(sbi, start + i); 441 __seg_info_to_raw_sit(se, rs); 442 } 443 } 444 445 static inline void seg_info_to_raw_sit(struct seg_entry *se, 446 struct f2fs_sit_entry *rs) 447 { 448 __seg_info_to_raw_sit(se, rs); 449 450 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 451 se->ckpt_valid_blocks = se->valid_blocks; 452 } 453 454 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 455 unsigned int max, unsigned int segno) 456 { 457 unsigned int ret; 458 spin_lock(&free_i->segmap_lock); 459 ret = find_next_bit(free_i->free_segmap, max, segno); 460 spin_unlock(&free_i->segmap_lock); 461 return ret; 462 } 463 464 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 465 { 466 struct free_segmap_info *free_i = FREE_I(sbi); 467 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 468 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 469 unsigned int next; 470 471 spin_lock(&free_i->segmap_lock); 472 clear_bit(segno, free_i->free_segmap); 473 free_i->free_segments++; 474 475 next = find_next_bit(free_i->free_segmap, 476 start_segno + SEGS_PER_SEC(sbi), start_segno); 477 if (next >= start_segno + f2fs_usable_segs_in_sec(sbi)) { 478 clear_bit(secno, free_i->free_secmap); 479 free_i->free_sections++; 480 } 481 spin_unlock(&free_i->segmap_lock); 482 } 483 484 static inline void __set_inuse(struct f2fs_sb_info *sbi, 485 unsigned int segno) 486 { 487 struct free_segmap_info *free_i = FREE_I(sbi); 488 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 489 490 set_bit(segno, free_i->free_segmap); 491 free_i->free_segments--; 492 if (!test_and_set_bit(secno, free_i->free_secmap)) 493 free_i->free_sections--; 494 } 495 496 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 497 unsigned int segno, bool inmem) 498 { 499 struct free_segmap_info *free_i = FREE_I(sbi); 500 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 501 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 502 unsigned int next; 503 bool ret; 504 505 spin_lock(&free_i->segmap_lock); 506 ret = test_and_clear_bit(segno, free_i->free_segmap); 507 if (!ret) 508 goto unlock_out; 509 510 free_i->free_segments++; 511 512 if (!inmem && IS_CURSEC(sbi, secno)) 513 goto unlock_out; 514 515 /* check large section */ 516 next = find_next_bit(free_i->free_segmap, 517 start_segno + SEGS_PER_SEC(sbi), start_segno); 518 if (next < start_segno + f2fs_usable_segs_in_sec(sbi)) 519 goto unlock_out; 520 521 ret = test_and_clear_bit(secno, free_i->free_secmap); 522 if (!ret) 523 goto unlock_out; 524 525 free_i->free_sections++; 526 527 if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[BG_GC]) == secno) 528 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 529 if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[FG_GC]) == secno) 530 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 531 532 unlock_out: 533 spin_unlock(&free_i->segmap_lock); 534 } 535 536 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 537 unsigned int segno) 538 { 539 struct free_segmap_info *free_i = FREE_I(sbi); 540 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 541 542 spin_lock(&free_i->segmap_lock); 543 if (!test_and_set_bit(segno, free_i->free_segmap)) { 544 free_i->free_segments--; 545 if (!test_and_set_bit(secno, free_i->free_secmap)) 546 free_i->free_sections--; 547 } 548 spin_unlock(&free_i->segmap_lock); 549 } 550 551 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 552 void *dst_addr) 553 { 554 struct sit_info *sit_i = SIT_I(sbi); 555 556 #ifdef CONFIG_F2FS_CHECK_FS 557 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 558 sit_i->bitmap_size)) 559 f2fs_bug_on(sbi, 1); 560 #endif 561 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 562 } 563 564 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 565 { 566 return SIT_I(sbi)->written_valid_blocks; 567 } 568 569 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 570 { 571 return FREE_I(sbi)->free_segments; 572 } 573 574 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi) 575 { 576 return SM_I(sbi)->reserved_segments; 577 } 578 579 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 580 { 581 return FREE_I(sbi)->free_sections; 582 } 583 584 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 585 { 586 return DIRTY_I(sbi)->nr_dirty[PRE]; 587 } 588 589 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 590 { 591 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 592 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 593 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 594 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 595 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 596 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 597 } 598 599 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 600 { 601 return SM_I(sbi)->ovp_segments; 602 } 603 604 static inline int reserved_sections(struct f2fs_sb_info *sbi) 605 { 606 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi)); 607 } 608 609 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi, 610 unsigned int node_blocks, unsigned int data_blocks, 611 unsigned int dent_blocks) 612 { 613 unsigned int segno, left_blocks, blocks; 614 int i; 615 616 /* check current data/node sections in the worst case. */ 617 for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) { 618 segno = CURSEG_I(sbi, i)->segno; 619 620 if (unlikely(segno == NULL_SEGNO)) 621 return false; 622 623 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) { 624 left_blocks = CAP_BLKS_PER_SEC(sbi) - 625 SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) - 626 CURSEG_I(sbi, i)->next_blkoff; 627 } else { 628 left_blocks = CAP_BLKS_PER_SEC(sbi) - 629 get_ckpt_valid_blocks(sbi, segno, true); 630 } 631 632 blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks; 633 if (blocks > left_blocks) 634 return false; 635 } 636 637 /* check current data section for dentry blocks. */ 638 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 639 640 if (unlikely(segno == NULL_SEGNO)) 641 return false; 642 643 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) { 644 left_blocks = CAP_BLKS_PER_SEC(sbi) - 645 SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) - 646 CURSEG_I(sbi, CURSEG_HOT_DATA)->next_blkoff; 647 } else { 648 left_blocks = CAP_BLKS_PER_SEC(sbi) - 649 get_ckpt_valid_blocks(sbi, segno, true); 650 } 651 652 if (dent_blocks > left_blocks) 653 return false; 654 return true; 655 } 656 657 /* 658 * calculate needed sections for dirty node/dentry and call 659 * has_curseg_enough_space, please note that, it needs to account 660 * dirty data as well in lfs mode when checkpoint is disabled. 661 */ 662 static inline void __get_secs_required(struct f2fs_sb_info *sbi, 663 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p) 664 { 665 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 666 get_pages(sbi, F2FS_DIRTY_DENTS) + 667 get_pages(sbi, F2FS_DIRTY_IMETA); 668 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 669 unsigned int total_data_blocks = 0; 670 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi); 671 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi); 672 unsigned int data_secs = 0; 673 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi); 674 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi); 675 unsigned int data_blocks = 0; 676 677 if (f2fs_lfs_mode(sbi) && 678 unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 679 total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA); 680 data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi); 681 data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi); 682 } 683 684 if (lower_p) 685 *lower_p = node_secs + dent_secs + data_secs; 686 if (upper_p) 687 *upper_p = node_secs + dent_secs + 688 (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) + 689 (data_blocks ? 1 : 0); 690 if (curseg_p) 691 *curseg_p = has_curseg_enough_space(sbi, 692 node_blocks, data_blocks, dent_blocks); 693 } 694 695 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 696 int freed, int needed) 697 { 698 unsigned int free_secs, lower_secs, upper_secs; 699 bool curseg_space; 700 701 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 702 return false; 703 704 __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space); 705 706 free_secs = free_sections(sbi) + freed; 707 lower_secs += needed + reserved_sections(sbi); 708 upper_secs += needed + reserved_sections(sbi); 709 710 if (free_secs > upper_secs) 711 return false; 712 if (free_secs <= lower_secs) 713 return true; 714 return !curseg_space; 715 } 716 717 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi, 718 int freed, int needed) 719 { 720 return !has_not_enough_free_secs(sbi, freed, needed); 721 } 722 723 static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi) 724 { 725 unsigned int total_free_blocks = 0; 726 unsigned int avail_user_block_count; 727 728 spin_lock(&sbi->stat_lock); 729 730 avail_user_block_count = get_available_block_count(sbi, NULL, true); 731 total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi); 732 733 spin_unlock(&sbi->stat_lock); 734 735 return total_free_blocks > 0; 736 } 737 738 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) 739 { 740 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 741 return true; 742 if (likely(has_enough_free_secs(sbi, 0, 0))) 743 return true; 744 if (!f2fs_lfs_mode(sbi) && 745 likely(has_enough_free_blks(sbi))) 746 return true; 747 return false; 748 } 749 750 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 751 { 752 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 753 } 754 755 static inline int utilization(struct f2fs_sb_info *sbi) 756 { 757 return div_u64((u64)valid_user_blocks(sbi) * 100, 758 sbi->user_block_count); 759 } 760 761 /* 762 * Sometimes f2fs may be better to drop out-of-place update policy. 763 * And, users can control the policy through sysfs entries. 764 * There are five policies with triggering conditions as follows. 765 * F2FS_IPU_FORCE - all the time, 766 * F2FS_IPU_SSR - if SSR mode is activated, 767 * F2FS_IPU_UTIL - if FS utilization is over threashold, 768 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 769 * threashold, 770 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 771 * storages. IPU will be triggered only if the # of dirty 772 * pages over min_fsync_blocks. (=default option) 773 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. 774 * F2FS_IPU_NOCACHE - disable IPU bio cache. 775 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has 776 * FI_OPU_WRITE flag. 777 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode) 778 */ 779 #define DEF_MIN_IPU_UTIL 70 780 #define DEF_MIN_FSYNC_BLOCKS 8 781 #define DEF_MIN_HOT_BLOCKS 16 782 783 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ 784 785 #define F2FS_IPU_DISABLE 0 786 787 /* Modification on enum should be synchronized with ipu_mode_names array */ 788 enum { 789 F2FS_IPU_FORCE, 790 F2FS_IPU_SSR, 791 F2FS_IPU_UTIL, 792 F2FS_IPU_SSR_UTIL, 793 F2FS_IPU_FSYNC, 794 F2FS_IPU_ASYNC, 795 F2FS_IPU_NOCACHE, 796 F2FS_IPU_HONOR_OPU_WRITE, 797 F2FS_IPU_MAX, 798 }; 799 800 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi) 801 { 802 return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE; 803 } 804 805 #define F2FS_IPU_POLICY(name) \ 806 static inline bool IS_##name(struct f2fs_sb_info *sbi) \ 807 { \ 808 return SM_I(sbi)->ipu_policy & BIT(name); \ 809 } 810 811 F2FS_IPU_POLICY(F2FS_IPU_FORCE); 812 F2FS_IPU_POLICY(F2FS_IPU_SSR); 813 F2FS_IPU_POLICY(F2FS_IPU_UTIL); 814 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL); 815 F2FS_IPU_POLICY(F2FS_IPU_FSYNC); 816 F2FS_IPU_POLICY(F2FS_IPU_ASYNC); 817 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE); 818 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE); 819 820 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 821 int type) 822 { 823 struct curseg_info *curseg = CURSEG_I(sbi, type); 824 return curseg->segno; 825 } 826 827 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 828 int type) 829 { 830 struct curseg_info *curseg = CURSEG_I(sbi, type); 831 return curseg->alloc_type; 832 } 833 834 static inline bool valid_main_segno(struct f2fs_sb_info *sbi, 835 unsigned int segno) 836 { 837 return segno <= (MAIN_SEGS(sbi) - 1); 838 } 839 840 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) 841 { 842 struct f2fs_sb_info *sbi = fio->sbi; 843 844 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 845 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? 846 META_GENERIC : DATA_GENERIC); 847 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? 848 META_GENERIC : DATA_GENERIC_ENHANCE); 849 } 850 851 /* 852 * Summary block is always treated as an invalid block 853 */ 854 static inline int check_block_count(struct f2fs_sb_info *sbi, 855 int segno, struct f2fs_sit_entry *raw_sit) 856 { 857 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 858 int valid_blocks = 0; 859 int cur_pos = 0, next_pos; 860 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno); 861 862 /* check bitmap with valid block count */ 863 do { 864 if (is_valid) { 865 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 866 usable_blks_per_seg, 867 cur_pos); 868 valid_blocks += next_pos - cur_pos; 869 } else 870 next_pos = find_next_bit_le(&raw_sit->valid_map, 871 usable_blks_per_seg, 872 cur_pos); 873 cur_pos = next_pos; 874 is_valid = !is_valid; 875 } while (cur_pos < usable_blks_per_seg); 876 877 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { 878 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", 879 GET_SIT_VBLOCKS(raw_sit), valid_blocks); 880 set_sbi_flag(sbi, SBI_NEED_FSCK); 881 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); 882 return -EFSCORRUPTED; 883 } 884 885 if (usable_blks_per_seg < BLKS_PER_SEG(sbi)) 886 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map, 887 BLKS_PER_SEG(sbi), 888 usable_blks_per_seg) != BLKS_PER_SEG(sbi)); 889 890 /* check segment usage, and check boundary of a given segment number */ 891 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg 892 || !valid_main_segno(sbi, segno))) { 893 f2fs_err(sbi, "Wrong valid blocks %d or segno %u", 894 GET_SIT_VBLOCKS(raw_sit), segno); 895 set_sbi_flag(sbi, SBI_NEED_FSCK); 896 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); 897 return -EFSCORRUPTED; 898 } 899 return 0; 900 } 901 902 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 903 unsigned int start) 904 { 905 struct sit_info *sit_i = SIT_I(sbi); 906 unsigned int offset = SIT_BLOCK_OFFSET(start); 907 block_t blk_addr = sit_i->sit_base_addr + offset; 908 909 f2fs_bug_on(sbi, !valid_main_segno(sbi, start)); 910 911 #ifdef CONFIG_F2FS_CHECK_FS 912 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 913 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 914 f2fs_bug_on(sbi, 1); 915 #endif 916 917 /* calculate sit block address */ 918 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 919 blk_addr += sit_i->sit_blocks; 920 921 return blk_addr; 922 } 923 924 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 925 pgoff_t block_addr) 926 { 927 struct sit_info *sit_i = SIT_I(sbi); 928 block_addr -= sit_i->sit_base_addr; 929 if (block_addr < sit_i->sit_blocks) 930 block_addr += sit_i->sit_blocks; 931 else 932 block_addr -= sit_i->sit_blocks; 933 934 return block_addr + sit_i->sit_base_addr; 935 } 936 937 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 938 { 939 unsigned int block_off = SIT_BLOCK_OFFSET(start); 940 941 f2fs_change_bit(block_off, sit_i->sit_bitmap); 942 #ifdef CONFIG_F2FS_CHECK_FS 943 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 944 #endif 945 } 946 947 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, 948 bool base_time) 949 { 950 struct sit_info *sit_i = SIT_I(sbi); 951 time64_t diff, now = ktime_get_boottime_seconds(); 952 953 if (now >= sit_i->mounted_time) 954 return sit_i->elapsed_time + now - sit_i->mounted_time; 955 956 /* system time is set to the past */ 957 if (!base_time) { 958 diff = sit_i->mounted_time - now; 959 if (sit_i->elapsed_time >= diff) 960 return sit_i->elapsed_time - diff; 961 return 0; 962 } 963 return sit_i->elapsed_time; 964 } 965 966 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 967 unsigned int ofs_in_node, unsigned char version) 968 { 969 sum->nid = cpu_to_le32(nid); 970 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 971 sum->version = version; 972 } 973 974 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 975 { 976 return __start_cp_addr(sbi) + 977 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 978 } 979 980 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 981 { 982 return __start_cp_addr(sbi) + 983 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 984 - (base + 1) + type; 985 } 986 987 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 988 { 989 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 990 return true; 991 return false; 992 } 993 994 /* 995 * It is very important to gather dirty pages and write at once, so that we can 996 * submit a big bio without interfering other data writes. 997 * By default, 512 pages for directory data, 998 * 512 pages (2MB) * 8 for nodes, and 999 * 256 pages * 8 for meta are set. 1000 */ 1001 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 1002 { 1003 if (sbi->sb->s_bdi->wb.dirty_exceeded) 1004 return 0; 1005 1006 if (type == DATA) 1007 return BLKS_PER_SEG(sbi); 1008 else if (type == NODE) 1009 return SEGS_TO_BLKS(sbi, 8); 1010 else if (type == META) 1011 return 8 * BIO_MAX_VECS; 1012 else 1013 return 0; 1014 } 1015 1016 /* 1017 * When writing pages, it'd better align nr_to_write for segment size. 1018 */ 1019 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 1020 struct writeback_control *wbc) 1021 { 1022 long nr_to_write, desired; 1023 1024 if (wbc->sync_mode != WB_SYNC_NONE) 1025 return 0; 1026 1027 nr_to_write = wbc->nr_to_write; 1028 desired = BIO_MAX_VECS; 1029 if (type == NODE) 1030 desired <<= 1; 1031 1032 wbc->nr_to_write = desired; 1033 return desired - nr_to_write; 1034 } 1035 1036 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 1037 { 1038 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1039 bool wakeup = false; 1040 int i; 1041 1042 if (force) 1043 goto wake_up; 1044 1045 mutex_lock(&dcc->cmd_lock); 1046 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1047 if (i + 1 < dcc->discard_granularity) 1048 break; 1049 if (!list_empty(&dcc->pend_list[i])) { 1050 wakeup = true; 1051 break; 1052 } 1053 } 1054 mutex_unlock(&dcc->cmd_lock); 1055 if (!wakeup || !is_idle(sbi, DISCARD_TIME)) 1056 return; 1057 wake_up: 1058 dcc->discard_wake = true; 1059 wake_up_interruptible_all(&dcc->discard_wait_queue); 1060 } 1061