1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/segment.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/blkdev.h> 9 #include <linux/backing-dev.h> 10 11 /* constant macro */ 12 #define NULL_SEGNO ((unsigned int)(~0)) 13 #define NULL_SECNO ((unsigned int)(~0)) 14 15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 17 18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */ 20 21 /* L: Logical segment # in volume, R: Relative segment # in main area */ 22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 24 25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE) 27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA)) 28 29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi, 30 unsigned short seg_type) 31 { 32 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG); 33 } 34 35 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) 36 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) 37 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) 38 39 #define IS_CURSEG(sbi, seg) \ 40 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 41 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 42 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 43 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 44 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \ 46 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \ 47 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno)) 48 49 #define IS_CURSEC(sbi, secno) \ 50 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 51 SEGS_PER_SEC(sbi)) || \ 52 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 53 SEGS_PER_SEC(sbi)) || \ 54 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 55 SEGS_PER_SEC(sbi)) || \ 56 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 57 SEGS_PER_SEC(sbi)) || \ 58 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 59 SEGS_PER_SEC(sbi)) || \ 60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 61 SEGS_PER_SEC(sbi)) || \ 62 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \ 63 SEGS_PER_SEC(sbi)) || \ 64 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \ 65 SEGS_PER_SEC(sbi))) 66 67 #define MAIN_BLKADDR(sbi) \ 68 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ 69 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) 70 #define SEG0_BLKADDR(sbi) \ 71 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ 72 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) 73 74 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 75 #define MAIN_SECS(sbi) ((sbi)->total_sections) 76 77 #define TOTAL_SEGS(sbi) \ 78 (SM_I(sbi) ? SM_I(sbi)->segment_count : \ 79 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) 80 #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi))) 81 82 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 83 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 84 (sbi)->log_blocks_per_seg)) 85 86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 87 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno)))) 88 89 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 90 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 91 92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 94 (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr))) 95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 96 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1)) 97 98 #define GET_SEGNO(sbi, blk_addr) \ 99 ((!__is_valid_data_blkaddr(blk_addr)) ? \ 100 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 101 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 102 #define CAP_BLKS_PER_SEC(sbi) \ 103 (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec) 104 #define CAP_SEGS_PER_SEC(sbi) \ 105 (SEGS_PER_SEC(sbi) - \ 106 BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec)) 107 #define GET_SEC_FROM_SEG(sbi, segno) \ 108 (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi)) 109 #define GET_SEG_FROM_SEC(sbi, secno) \ 110 ((secno) * SEGS_PER_SEC(sbi)) 111 #define GET_ZONE_FROM_SEC(sbi, secno) \ 112 (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone) 113 #define GET_ZONE_FROM_SEG(sbi, segno) \ 114 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 115 116 #define GET_SUM_BLOCK(sbi, segno) \ 117 ((sbi)->sm_info->ssa_blkaddr + (segno)) 118 119 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 121 122 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 123 ((segno) % (sit_i)->sents_per_block) 124 #define SIT_BLOCK_OFFSET(segno) \ 125 ((segno) / SIT_ENTRY_PER_BLOCK) 126 #define START_SEGNO(segno) \ 127 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 128 #define SIT_BLK_CNT(sbi) \ 129 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) 130 #define f2fs_bitmap_size(nr) \ 131 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 132 133 #define SECTOR_FROM_BLOCK(blk_addr) \ 134 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 135 #define SECTOR_TO_BLOCK(sectors) \ 136 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 137 138 /* 139 * In the victim_sel_policy->alloc_mode, there are three block allocation modes. 140 * LFS writes data sequentially with cleaning operations. 141 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 142 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into 143 * fragmented segment which has similar aging degree. 144 */ 145 enum { 146 LFS = 0, 147 SSR, 148 AT_SSR, 149 }; 150 151 /* 152 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes. 153 * GC_CB is based on cost-benefit algorithm. 154 * GC_GREEDY is based on greedy algorithm. 155 * GC_AT is based on age-threshold algorithm. 156 */ 157 enum { 158 GC_CB = 0, 159 GC_GREEDY, 160 GC_AT, 161 ALLOC_NEXT, 162 FLUSH_DEVICE, 163 MAX_GC_POLICY, 164 }; 165 166 /* 167 * BG_GC means the background cleaning job. 168 * FG_GC means the on-demand cleaning job. 169 */ 170 enum { 171 BG_GC = 0, 172 FG_GC, 173 }; 174 175 /* for a function parameter to select a victim segment */ 176 struct victim_sel_policy { 177 int alloc_mode; /* LFS or SSR */ 178 int gc_mode; /* GC_CB or GC_GREEDY */ 179 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ 180 unsigned int max_search; /* 181 * maximum # of segments/sections 182 * to search 183 */ 184 unsigned int offset; /* last scanned bitmap offset */ 185 unsigned int ofs_unit; /* bitmap search unit */ 186 unsigned int min_cost; /* minimum cost */ 187 unsigned long long oldest_age; /* oldest age of segments having the same min cost */ 188 unsigned int min_segno; /* segment # having min. cost */ 189 unsigned long long age; /* mtime of GCed section*/ 190 unsigned long long age_threshold;/* age threshold */ 191 }; 192 193 struct seg_entry { 194 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 195 unsigned int valid_blocks:10; /* # of valid blocks */ 196 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 197 unsigned int padding:6; /* padding */ 198 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 199 #ifdef CONFIG_F2FS_CHECK_FS 200 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 201 #endif 202 /* 203 * # of valid blocks and the validity bitmap stored in the last 204 * checkpoint pack. This information is used by the SSR mode. 205 */ 206 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 207 unsigned char *discard_map; 208 unsigned long long mtime; /* modification time of the segment */ 209 }; 210 211 struct sec_entry { 212 unsigned int valid_blocks; /* # of valid blocks in a section */ 213 }; 214 215 #define MAX_SKIP_GC_COUNT 16 216 217 struct revoke_entry { 218 struct list_head list; 219 block_t old_addr; /* for revoking when fail to commit */ 220 pgoff_t index; 221 }; 222 223 struct sit_info { 224 block_t sit_base_addr; /* start block address of SIT area */ 225 block_t sit_blocks; /* # of blocks used by SIT area */ 226 block_t written_valid_blocks; /* # of valid blocks in main area */ 227 char *bitmap; /* all bitmaps pointer */ 228 char *sit_bitmap; /* SIT bitmap pointer */ 229 #ifdef CONFIG_F2FS_CHECK_FS 230 char *sit_bitmap_mir; /* SIT bitmap mirror */ 231 232 /* bitmap of segments to be ignored by GC in case of errors */ 233 unsigned long *invalid_segmap; 234 #endif 235 unsigned int bitmap_size; /* SIT bitmap size */ 236 237 unsigned long *tmp_map; /* bitmap for temporal use */ 238 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 239 unsigned int dirty_sentries; /* # of dirty sentries */ 240 unsigned int sents_per_block; /* # of SIT entries per block */ 241 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 242 struct seg_entry *sentries; /* SIT segment-level cache */ 243 struct sec_entry *sec_entries; /* SIT section-level cache */ 244 245 /* for cost-benefit algorithm in cleaning procedure */ 246 unsigned long long elapsed_time; /* elapsed time after mount */ 247 unsigned long long mounted_time; /* mount time */ 248 unsigned long long min_mtime; /* min. modification time */ 249 unsigned long long max_mtime; /* max. modification time */ 250 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */ 251 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */ 252 253 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 254 }; 255 256 struct free_segmap_info { 257 unsigned int start_segno; /* start segment number logically */ 258 unsigned int free_segments; /* # of free segments */ 259 unsigned int free_sections; /* # of free sections */ 260 spinlock_t segmap_lock; /* free segmap lock */ 261 unsigned long *free_segmap; /* free segment bitmap */ 262 unsigned long *free_secmap; /* free section bitmap */ 263 }; 264 265 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 266 enum dirty_type { 267 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 268 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 269 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 270 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 271 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 272 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 273 DIRTY, /* to count # of dirty segments */ 274 PRE, /* to count # of entirely obsolete segments */ 275 NR_DIRTY_TYPE 276 }; 277 278 struct dirty_seglist_info { 279 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 280 unsigned long *dirty_secmap; 281 struct mutex seglist_lock; /* lock for segment bitmaps */ 282 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 283 unsigned long *victim_secmap; /* background GC victims */ 284 unsigned long *pinned_secmap; /* pinned victims from foreground GC */ 285 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */ 286 bool enable_pin_section; /* enable pinning section */ 287 }; 288 289 /* for active log information */ 290 struct curseg_info { 291 struct mutex curseg_mutex; /* lock for consistency */ 292 struct f2fs_summary_block *sum_blk; /* cached summary block */ 293 struct rw_semaphore journal_rwsem; /* protect journal area */ 294 struct f2fs_journal *journal; /* cached journal info */ 295 unsigned char alloc_type; /* current allocation type */ 296 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */ 297 unsigned int segno; /* current segment number */ 298 unsigned short next_blkoff; /* next block offset to write */ 299 unsigned int zone; /* current zone number */ 300 unsigned int next_segno; /* preallocated segment */ 301 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */ 302 bool inited; /* indicate inmem log is inited */ 303 }; 304 305 struct sit_entry_set { 306 struct list_head set_list; /* link with all sit sets */ 307 unsigned int start_segno; /* start segno of sits in set */ 308 unsigned int entry_cnt; /* the # of sit entries in set */ 309 }; 310 311 /* 312 * inline functions 313 */ 314 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 315 { 316 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 317 } 318 319 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 320 unsigned int segno) 321 { 322 struct sit_info *sit_i = SIT_I(sbi); 323 return &sit_i->sentries[segno]; 324 } 325 326 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 327 unsigned int segno) 328 { 329 struct sit_info *sit_i = SIT_I(sbi); 330 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 331 } 332 333 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 334 unsigned int segno, bool use_section) 335 { 336 /* 337 * In order to get # of valid blocks in a section instantly from many 338 * segments, f2fs manages two counting structures separately. 339 */ 340 if (use_section && __is_large_section(sbi)) 341 return get_sec_entry(sbi, segno)->valid_blocks; 342 else 343 return get_seg_entry(sbi, segno)->valid_blocks; 344 } 345 346 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, 347 unsigned int segno, bool use_section) 348 { 349 if (use_section && __is_large_section(sbi)) { 350 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 351 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 352 unsigned int blocks = 0; 353 int i; 354 355 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) { 356 struct seg_entry *se = get_seg_entry(sbi, start_segno); 357 358 blocks += se->ckpt_valid_blocks; 359 } 360 return blocks; 361 } 362 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 363 } 364 365 static inline void seg_info_from_raw_sit(struct seg_entry *se, 366 struct f2fs_sit_entry *rs) 367 { 368 se->valid_blocks = GET_SIT_VBLOCKS(rs); 369 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 370 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 371 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 372 #ifdef CONFIG_F2FS_CHECK_FS 373 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 374 #endif 375 se->type = GET_SIT_TYPE(rs); 376 se->mtime = le64_to_cpu(rs->mtime); 377 } 378 379 static inline void __seg_info_to_raw_sit(struct seg_entry *se, 380 struct f2fs_sit_entry *rs) 381 { 382 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 383 se->valid_blocks; 384 rs->vblocks = cpu_to_le16(raw_vblocks); 385 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 386 rs->mtime = cpu_to_le64(se->mtime); 387 } 388 389 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, 390 struct page *page, unsigned int start) 391 { 392 struct f2fs_sit_block *raw_sit; 393 struct seg_entry *se; 394 struct f2fs_sit_entry *rs; 395 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, 396 (unsigned long)MAIN_SEGS(sbi)); 397 int i; 398 399 raw_sit = (struct f2fs_sit_block *)page_address(page); 400 memset(raw_sit, 0, PAGE_SIZE); 401 for (i = 0; i < end - start; i++) { 402 rs = &raw_sit->entries[i]; 403 se = get_seg_entry(sbi, start + i); 404 __seg_info_to_raw_sit(se, rs); 405 } 406 } 407 408 static inline void seg_info_to_raw_sit(struct seg_entry *se, 409 struct f2fs_sit_entry *rs) 410 { 411 __seg_info_to_raw_sit(se, rs); 412 413 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 414 se->ckpt_valid_blocks = se->valid_blocks; 415 } 416 417 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 418 unsigned int max, unsigned int segno) 419 { 420 unsigned int ret; 421 spin_lock(&free_i->segmap_lock); 422 ret = find_next_bit(free_i->free_segmap, max, segno); 423 spin_unlock(&free_i->segmap_lock); 424 return ret; 425 } 426 427 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 428 { 429 struct free_segmap_info *free_i = FREE_I(sbi); 430 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 431 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 432 unsigned int next; 433 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); 434 435 spin_lock(&free_i->segmap_lock); 436 clear_bit(segno, free_i->free_segmap); 437 free_i->free_segments++; 438 439 next = find_next_bit(free_i->free_segmap, 440 start_segno + SEGS_PER_SEC(sbi), start_segno); 441 if (next >= start_segno + usable_segs) { 442 clear_bit(secno, free_i->free_secmap); 443 free_i->free_sections++; 444 } 445 spin_unlock(&free_i->segmap_lock); 446 } 447 448 static inline void __set_inuse(struct f2fs_sb_info *sbi, 449 unsigned int segno) 450 { 451 struct free_segmap_info *free_i = FREE_I(sbi); 452 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 453 454 set_bit(segno, free_i->free_segmap); 455 free_i->free_segments--; 456 if (!test_and_set_bit(secno, free_i->free_secmap)) 457 free_i->free_sections--; 458 } 459 460 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 461 unsigned int segno, bool inmem) 462 { 463 struct free_segmap_info *free_i = FREE_I(sbi); 464 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 465 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 466 unsigned int next; 467 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); 468 469 spin_lock(&free_i->segmap_lock); 470 if (test_and_clear_bit(segno, free_i->free_segmap)) { 471 free_i->free_segments++; 472 473 if (!inmem && IS_CURSEC(sbi, secno)) 474 goto skip_free; 475 next = find_next_bit(free_i->free_segmap, 476 start_segno + SEGS_PER_SEC(sbi), start_segno); 477 if (next >= start_segno + usable_segs) { 478 if (test_and_clear_bit(secno, free_i->free_secmap)) 479 free_i->free_sections++; 480 } 481 } 482 skip_free: 483 spin_unlock(&free_i->segmap_lock); 484 } 485 486 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 487 unsigned int segno) 488 { 489 struct free_segmap_info *free_i = FREE_I(sbi); 490 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 491 492 spin_lock(&free_i->segmap_lock); 493 if (!test_and_set_bit(segno, free_i->free_segmap)) { 494 free_i->free_segments--; 495 if (!test_and_set_bit(secno, free_i->free_secmap)) 496 free_i->free_sections--; 497 } 498 spin_unlock(&free_i->segmap_lock); 499 } 500 501 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 502 void *dst_addr) 503 { 504 struct sit_info *sit_i = SIT_I(sbi); 505 506 #ifdef CONFIG_F2FS_CHECK_FS 507 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 508 sit_i->bitmap_size)) 509 f2fs_bug_on(sbi, 1); 510 #endif 511 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 512 } 513 514 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 515 { 516 return SIT_I(sbi)->written_valid_blocks; 517 } 518 519 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 520 { 521 return FREE_I(sbi)->free_segments; 522 } 523 524 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi) 525 { 526 return SM_I(sbi)->reserved_segments + 527 SM_I(sbi)->additional_reserved_segments; 528 } 529 530 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 531 { 532 return FREE_I(sbi)->free_sections; 533 } 534 535 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 536 { 537 return DIRTY_I(sbi)->nr_dirty[PRE]; 538 } 539 540 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 541 { 542 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 543 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 544 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 545 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 546 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 547 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 548 } 549 550 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 551 { 552 return SM_I(sbi)->ovp_segments; 553 } 554 555 static inline int reserved_sections(struct f2fs_sb_info *sbi) 556 { 557 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi)); 558 } 559 560 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi, 561 unsigned int node_blocks, unsigned int dent_blocks) 562 { 563 564 unsigned segno, left_blocks; 565 int i; 566 567 /* check current node sections in the worst case. */ 568 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { 569 segno = CURSEG_I(sbi, i)->segno; 570 left_blocks = CAP_BLKS_PER_SEC(sbi) - 571 get_ckpt_valid_blocks(sbi, segno, true); 572 if (node_blocks > left_blocks) 573 return false; 574 } 575 576 /* check current data section for dentry blocks. */ 577 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 578 left_blocks = CAP_BLKS_PER_SEC(sbi) - 579 get_ckpt_valid_blocks(sbi, segno, true); 580 if (dent_blocks > left_blocks) 581 return false; 582 return true; 583 } 584 585 /* 586 * calculate needed sections for dirty node/dentry 587 * and call has_curseg_enough_space 588 */ 589 static inline void __get_secs_required(struct f2fs_sb_info *sbi, 590 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p) 591 { 592 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 593 get_pages(sbi, F2FS_DIRTY_DENTS) + 594 get_pages(sbi, F2FS_DIRTY_IMETA); 595 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 596 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi); 597 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi); 598 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi); 599 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi); 600 601 if (lower_p) 602 *lower_p = node_secs + dent_secs; 603 if (upper_p) 604 *upper_p = node_secs + dent_secs + 605 (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0); 606 if (curseg_p) 607 *curseg_p = has_curseg_enough_space(sbi, 608 node_blocks, dent_blocks); 609 } 610 611 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 612 int freed, int needed) 613 { 614 unsigned int free_secs, lower_secs, upper_secs; 615 bool curseg_space; 616 617 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 618 return false; 619 620 __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space); 621 622 free_secs = free_sections(sbi) + freed; 623 lower_secs += needed + reserved_sections(sbi); 624 upper_secs += needed + reserved_sections(sbi); 625 626 if (free_secs > upper_secs) 627 return false; 628 if (free_secs <= lower_secs) 629 return true; 630 return !curseg_space; 631 } 632 633 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi, 634 int freed, int needed) 635 { 636 return !has_not_enough_free_secs(sbi, freed, needed); 637 } 638 639 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) 640 { 641 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 642 return true; 643 if (likely(has_enough_free_secs(sbi, 0, 0))) 644 return true; 645 return false; 646 } 647 648 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 649 { 650 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 651 } 652 653 static inline int utilization(struct f2fs_sb_info *sbi) 654 { 655 return div_u64((u64)valid_user_blocks(sbi) * 100, 656 sbi->user_block_count); 657 } 658 659 /* 660 * Sometimes f2fs may be better to drop out-of-place update policy. 661 * And, users can control the policy through sysfs entries. 662 * There are five policies with triggering conditions as follows. 663 * F2FS_IPU_FORCE - all the time, 664 * F2FS_IPU_SSR - if SSR mode is activated, 665 * F2FS_IPU_UTIL - if FS utilization is over threashold, 666 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 667 * threashold, 668 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 669 * storages. IPU will be triggered only if the # of dirty 670 * pages over min_fsync_blocks. (=default option) 671 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. 672 * F2FS_IPU_NOCACHE - disable IPU bio cache. 673 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has 674 * FI_OPU_WRITE flag. 675 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode) 676 */ 677 #define DEF_MIN_IPU_UTIL 70 678 #define DEF_MIN_FSYNC_BLOCKS 8 679 #define DEF_MIN_HOT_BLOCKS 16 680 681 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ 682 683 #define F2FS_IPU_DISABLE 0 684 685 /* Modification on enum should be synchronized with ipu_mode_names array */ 686 enum { 687 F2FS_IPU_FORCE, 688 F2FS_IPU_SSR, 689 F2FS_IPU_UTIL, 690 F2FS_IPU_SSR_UTIL, 691 F2FS_IPU_FSYNC, 692 F2FS_IPU_ASYNC, 693 F2FS_IPU_NOCACHE, 694 F2FS_IPU_HONOR_OPU_WRITE, 695 F2FS_IPU_MAX, 696 }; 697 698 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi) 699 { 700 return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE; 701 } 702 703 #define F2FS_IPU_POLICY(name) \ 704 static inline bool IS_##name(struct f2fs_sb_info *sbi) \ 705 { \ 706 return SM_I(sbi)->ipu_policy & BIT(name); \ 707 } 708 709 F2FS_IPU_POLICY(F2FS_IPU_FORCE); 710 F2FS_IPU_POLICY(F2FS_IPU_SSR); 711 F2FS_IPU_POLICY(F2FS_IPU_UTIL); 712 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL); 713 F2FS_IPU_POLICY(F2FS_IPU_FSYNC); 714 F2FS_IPU_POLICY(F2FS_IPU_ASYNC); 715 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE); 716 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE); 717 718 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 719 int type) 720 { 721 struct curseg_info *curseg = CURSEG_I(sbi, type); 722 return curseg->segno; 723 } 724 725 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 726 int type) 727 { 728 struct curseg_info *curseg = CURSEG_I(sbi, type); 729 return curseg->alloc_type; 730 } 731 732 static inline bool valid_main_segno(struct f2fs_sb_info *sbi, 733 unsigned int segno) 734 { 735 return segno <= (MAIN_SEGS(sbi) - 1); 736 } 737 738 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) 739 { 740 struct f2fs_sb_info *sbi = fio->sbi; 741 742 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 743 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? 744 META_GENERIC : DATA_GENERIC); 745 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? 746 META_GENERIC : DATA_GENERIC_ENHANCE); 747 } 748 749 /* 750 * Summary block is always treated as an invalid block 751 */ 752 static inline int check_block_count(struct f2fs_sb_info *sbi, 753 int segno, struct f2fs_sit_entry *raw_sit) 754 { 755 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 756 int valid_blocks = 0; 757 int cur_pos = 0, next_pos; 758 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno); 759 760 /* check bitmap with valid block count */ 761 do { 762 if (is_valid) { 763 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 764 usable_blks_per_seg, 765 cur_pos); 766 valid_blocks += next_pos - cur_pos; 767 } else 768 next_pos = find_next_bit_le(&raw_sit->valid_map, 769 usable_blks_per_seg, 770 cur_pos); 771 cur_pos = next_pos; 772 is_valid = !is_valid; 773 } while (cur_pos < usable_blks_per_seg); 774 775 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { 776 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", 777 GET_SIT_VBLOCKS(raw_sit), valid_blocks); 778 set_sbi_flag(sbi, SBI_NEED_FSCK); 779 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); 780 return -EFSCORRUPTED; 781 } 782 783 if (usable_blks_per_seg < BLKS_PER_SEG(sbi)) 784 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map, 785 BLKS_PER_SEG(sbi), 786 usable_blks_per_seg) != BLKS_PER_SEG(sbi)); 787 788 /* check segment usage, and check boundary of a given segment number */ 789 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg 790 || !valid_main_segno(sbi, segno))) { 791 f2fs_err(sbi, "Wrong valid blocks %d or segno %u", 792 GET_SIT_VBLOCKS(raw_sit), segno); 793 set_sbi_flag(sbi, SBI_NEED_FSCK); 794 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); 795 return -EFSCORRUPTED; 796 } 797 return 0; 798 } 799 800 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 801 unsigned int start) 802 { 803 struct sit_info *sit_i = SIT_I(sbi); 804 unsigned int offset = SIT_BLOCK_OFFSET(start); 805 block_t blk_addr = sit_i->sit_base_addr + offset; 806 807 f2fs_bug_on(sbi, !valid_main_segno(sbi, start)); 808 809 #ifdef CONFIG_F2FS_CHECK_FS 810 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 811 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 812 f2fs_bug_on(sbi, 1); 813 #endif 814 815 /* calculate sit block address */ 816 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 817 blk_addr += sit_i->sit_blocks; 818 819 return blk_addr; 820 } 821 822 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 823 pgoff_t block_addr) 824 { 825 struct sit_info *sit_i = SIT_I(sbi); 826 block_addr -= sit_i->sit_base_addr; 827 if (block_addr < sit_i->sit_blocks) 828 block_addr += sit_i->sit_blocks; 829 else 830 block_addr -= sit_i->sit_blocks; 831 832 return block_addr + sit_i->sit_base_addr; 833 } 834 835 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 836 { 837 unsigned int block_off = SIT_BLOCK_OFFSET(start); 838 839 f2fs_change_bit(block_off, sit_i->sit_bitmap); 840 #ifdef CONFIG_F2FS_CHECK_FS 841 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 842 #endif 843 } 844 845 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, 846 bool base_time) 847 { 848 struct sit_info *sit_i = SIT_I(sbi); 849 time64_t diff, now = ktime_get_boottime_seconds(); 850 851 if (now >= sit_i->mounted_time) 852 return sit_i->elapsed_time + now - sit_i->mounted_time; 853 854 /* system time is set to the past */ 855 if (!base_time) { 856 diff = sit_i->mounted_time - now; 857 if (sit_i->elapsed_time >= diff) 858 return sit_i->elapsed_time - diff; 859 return 0; 860 } 861 return sit_i->elapsed_time; 862 } 863 864 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 865 unsigned int ofs_in_node, unsigned char version) 866 { 867 sum->nid = cpu_to_le32(nid); 868 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 869 sum->version = version; 870 } 871 872 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 873 { 874 return __start_cp_addr(sbi) + 875 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 876 } 877 878 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 879 { 880 return __start_cp_addr(sbi) + 881 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 882 - (base + 1) + type; 883 } 884 885 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 886 { 887 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 888 return true; 889 return false; 890 } 891 892 /* 893 * It is very important to gather dirty pages and write at once, so that we can 894 * submit a big bio without interfering other data writes. 895 * By default, 512 pages for directory data, 896 * 512 pages (2MB) * 8 for nodes, and 897 * 256 pages * 8 for meta are set. 898 */ 899 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 900 { 901 if (sbi->sb->s_bdi->wb.dirty_exceeded) 902 return 0; 903 904 if (type == DATA) 905 return BLKS_PER_SEG(sbi); 906 else if (type == NODE) 907 return SEGS_TO_BLKS(sbi, 8); 908 else if (type == META) 909 return 8 * BIO_MAX_VECS; 910 else 911 return 0; 912 } 913 914 /* 915 * When writing pages, it'd better align nr_to_write for segment size. 916 */ 917 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 918 struct writeback_control *wbc) 919 { 920 long nr_to_write, desired; 921 922 if (wbc->sync_mode != WB_SYNC_NONE) 923 return 0; 924 925 nr_to_write = wbc->nr_to_write; 926 desired = BIO_MAX_VECS; 927 if (type == NODE) 928 desired <<= 1; 929 930 wbc->nr_to_write = desired; 931 return desired - nr_to_write; 932 } 933 934 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 935 { 936 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 937 bool wakeup = false; 938 int i; 939 940 if (force) 941 goto wake_up; 942 943 mutex_lock(&dcc->cmd_lock); 944 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 945 if (i + 1 < dcc->discard_granularity) 946 break; 947 if (!list_empty(&dcc->pend_list[i])) { 948 wakeup = true; 949 break; 950 } 951 } 952 mutex_unlock(&dcc->cmd_lock); 953 if (!wakeup || !is_idle(sbi, DISCARD_TIME)) 954 return; 955 wake_up: 956 dcc->discard_wake = true; 957 wake_up_interruptible_all(&dcc->discard_wait_queue); 958 } 959 960 static inline unsigned int first_zoned_segno(struct f2fs_sb_info *sbi) 961 { 962 int devi; 963 964 for (devi = 0; devi < sbi->s_ndevs; devi++) 965 if (bdev_is_zoned(FDEV(devi).bdev)) 966 return GET_SEGNO(sbi, FDEV(devi).start_blk); 967 return 0; 968 } 969