1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 13 /* constant macro */ 14 #define NULL_SEGNO ((unsigned int)(~0)) 15 #define NULL_SECNO ((unsigned int)(~0)) 16 17 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 18 19 /* L: Logical segment # in volume, R: Relative segment # in main area */ 20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) 21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) 22 23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) 24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) 25 26 #define IS_CURSEG(sbi, seg) \ 27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 33 34 #define IS_CURSEC(sbi, secno) \ 35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 36 sbi->segs_per_sec) || \ 37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 38 sbi->segs_per_sec) || \ 39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 40 sbi->segs_per_sec) || \ 41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 42 sbi->segs_per_sec) || \ 43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 44 sbi->segs_per_sec) || \ 45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 46 sbi->segs_per_sec)) \ 47 48 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr) 49 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr) 50 51 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 52 #define MAIN_SECS(sbi) (sbi->total_sections) 53 54 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count) 55 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg) 56 57 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 58 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \ 59 sbi->log_blocks_per_seg)) 60 61 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 62 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) 63 64 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 65 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) 66 67 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 68 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 69 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) 70 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 71 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1)) 72 73 #define GET_SEGNO(sbi, blk_addr) \ 74 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ 75 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 76 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 77 #define GET_SECNO(sbi, segno) \ 78 ((segno) / sbi->segs_per_sec) 79 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ 80 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) 81 82 #define GET_SUM_BLOCK(sbi, segno) \ 83 ((sbi->sm_info->ssa_blkaddr) + segno) 84 85 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 86 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) 87 88 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 89 (segno % sit_i->sents_per_block) 90 #define SIT_BLOCK_OFFSET(segno) \ 91 (segno / SIT_ENTRY_PER_BLOCK) 92 #define START_SEGNO(segno) \ 93 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 94 #define SIT_BLK_CNT(sbi) \ 95 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 96 #define f2fs_bitmap_size(nr) \ 97 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 98 99 #define SECTOR_FROM_BLOCK(blk_addr) \ 100 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 101 #define SECTOR_TO_BLOCK(sectors) \ 102 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK) 103 #define MAX_BIO_BLOCKS(sbi) \ 104 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES)) 105 106 /* 107 * indicate a block allocation direction: RIGHT and LEFT. 108 * RIGHT means allocating new sections towards the end of volume. 109 * LEFT means the opposite direction. 110 */ 111 enum { 112 ALLOC_RIGHT = 0, 113 ALLOC_LEFT 114 }; 115 116 /* 117 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 118 * LFS writes data sequentially with cleaning operations. 119 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 120 */ 121 enum { 122 LFS = 0, 123 SSR 124 }; 125 126 /* 127 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 128 * GC_CB is based on cost-benefit algorithm. 129 * GC_GREEDY is based on greedy algorithm. 130 */ 131 enum { 132 GC_CB = 0, 133 GC_GREEDY 134 }; 135 136 /* 137 * BG_GC means the background cleaning job. 138 * FG_GC means the on-demand cleaning job. 139 */ 140 enum { 141 BG_GC = 0, 142 FG_GC 143 }; 144 145 /* for a function parameter to select a victim segment */ 146 struct victim_sel_policy { 147 int alloc_mode; /* LFS or SSR */ 148 int gc_mode; /* GC_CB or GC_GREEDY */ 149 unsigned long *dirty_segmap; /* dirty segment bitmap */ 150 unsigned int max_search; /* maximum # of segments to search */ 151 unsigned int offset; /* last scanned bitmap offset */ 152 unsigned int ofs_unit; /* bitmap search unit */ 153 unsigned int min_cost; /* minimum cost */ 154 unsigned int min_segno; /* segment # having min. cost */ 155 }; 156 157 struct seg_entry { 158 unsigned short valid_blocks; /* # of valid blocks */ 159 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 160 /* 161 * # of valid blocks and the validity bitmap stored in the the last 162 * checkpoint pack. This information is used by the SSR mode. 163 */ 164 unsigned short ckpt_valid_blocks; 165 unsigned char *ckpt_valid_map; 166 unsigned char type; /* segment type like CURSEG_XXX_TYPE */ 167 unsigned long long mtime; /* modification time of the segment */ 168 }; 169 170 struct sec_entry { 171 unsigned int valid_blocks; /* # of valid blocks in a section */ 172 }; 173 174 struct segment_allocation { 175 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 176 }; 177 178 struct inmem_pages { 179 struct list_head list; 180 struct page *page; 181 }; 182 183 struct sit_info { 184 const struct segment_allocation *s_ops; 185 186 block_t sit_base_addr; /* start block address of SIT area */ 187 block_t sit_blocks; /* # of blocks used by SIT area */ 188 block_t written_valid_blocks; /* # of valid blocks in main area */ 189 char *sit_bitmap; /* SIT bitmap pointer */ 190 unsigned int bitmap_size; /* SIT bitmap size */ 191 192 unsigned long *tmp_map; /* bitmap for temporal use */ 193 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 194 unsigned int dirty_sentries; /* # of dirty sentries */ 195 unsigned int sents_per_block; /* # of SIT entries per block */ 196 struct mutex sentry_lock; /* to protect SIT cache */ 197 struct seg_entry *sentries; /* SIT segment-level cache */ 198 struct sec_entry *sec_entries; /* SIT section-level cache */ 199 200 /* for cost-benefit algorithm in cleaning procedure */ 201 unsigned long long elapsed_time; /* elapsed time after mount */ 202 unsigned long long mounted_time; /* mount time */ 203 unsigned long long min_mtime; /* min. modification time */ 204 unsigned long long max_mtime; /* max. modification time */ 205 }; 206 207 struct free_segmap_info { 208 unsigned int start_segno; /* start segment number logically */ 209 unsigned int free_segments; /* # of free segments */ 210 unsigned int free_sections; /* # of free sections */ 211 spinlock_t segmap_lock; /* free segmap lock */ 212 unsigned long *free_segmap; /* free segment bitmap */ 213 unsigned long *free_secmap; /* free section bitmap */ 214 }; 215 216 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 217 enum dirty_type { 218 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 219 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 220 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 221 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 222 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 223 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 224 DIRTY, /* to count # of dirty segments */ 225 PRE, /* to count # of entirely obsolete segments */ 226 NR_DIRTY_TYPE 227 }; 228 229 struct dirty_seglist_info { 230 const struct victim_selection *v_ops; /* victim selction operation */ 231 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 232 struct mutex seglist_lock; /* lock for segment bitmaps */ 233 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 234 unsigned long *victim_secmap; /* background GC victims */ 235 }; 236 237 /* victim selection function for cleaning and SSR */ 238 struct victim_selection { 239 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 240 int, int, char); 241 }; 242 243 /* for active log information */ 244 struct curseg_info { 245 struct mutex curseg_mutex; /* lock for consistency */ 246 struct f2fs_summary_block *sum_blk; /* cached summary block */ 247 unsigned char alloc_type; /* current allocation type */ 248 unsigned int segno; /* current segment number */ 249 unsigned short next_blkoff; /* next block offset to write */ 250 unsigned int zone; /* current zone number */ 251 unsigned int next_segno; /* preallocated segment */ 252 }; 253 254 struct sit_entry_set { 255 struct list_head set_list; /* link with all sit sets */ 256 unsigned int start_segno; /* start segno of sits in set */ 257 unsigned int entry_cnt; /* the # of sit entries in set */ 258 }; 259 260 /* 261 * inline functions 262 */ 263 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 264 { 265 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 266 } 267 268 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 269 unsigned int segno) 270 { 271 struct sit_info *sit_i = SIT_I(sbi); 272 return &sit_i->sentries[segno]; 273 } 274 275 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 276 unsigned int segno) 277 { 278 struct sit_info *sit_i = SIT_I(sbi); 279 return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; 280 } 281 282 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 283 unsigned int segno, int section) 284 { 285 /* 286 * In order to get # of valid blocks in a section instantly from many 287 * segments, f2fs manages two counting structures separately. 288 */ 289 if (section > 1) 290 return get_sec_entry(sbi, segno)->valid_blocks; 291 else 292 return get_seg_entry(sbi, segno)->valid_blocks; 293 } 294 295 static inline void seg_info_from_raw_sit(struct seg_entry *se, 296 struct f2fs_sit_entry *rs) 297 { 298 se->valid_blocks = GET_SIT_VBLOCKS(rs); 299 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 300 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 301 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 302 se->type = GET_SIT_TYPE(rs); 303 se->mtime = le64_to_cpu(rs->mtime); 304 } 305 306 static inline void seg_info_to_raw_sit(struct seg_entry *se, 307 struct f2fs_sit_entry *rs) 308 { 309 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 310 se->valid_blocks; 311 rs->vblocks = cpu_to_le16(raw_vblocks); 312 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 313 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 314 se->ckpt_valid_blocks = se->valid_blocks; 315 rs->mtime = cpu_to_le64(se->mtime); 316 } 317 318 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 319 unsigned int max, unsigned int segno) 320 { 321 unsigned int ret; 322 spin_lock(&free_i->segmap_lock); 323 ret = find_next_bit(free_i->free_segmap, max, segno); 324 spin_unlock(&free_i->segmap_lock); 325 return ret; 326 } 327 328 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 329 { 330 struct free_segmap_info *free_i = FREE_I(sbi); 331 unsigned int secno = segno / sbi->segs_per_sec; 332 unsigned int start_segno = secno * sbi->segs_per_sec; 333 unsigned int next; 334 335 spin_lock(&free_i->segmap_lock); 336 clear_bit(segno, free_i->free_segmap); 337 free_i->free_segments++; 338 339 next = find_next_bit(free_i->free_segmap, 340 start_segno + sbi->segs_per_sec, start_segno); 341 if (next >= start_segno + sbi->segs_per_sec) { 342 clear_bit(secno, free_i->free_secmap); 343 free_i->free_sections++; 344 } 345 spin_unlock(&free_i->segmap_lock); 346 } 347 348 static inline void __set_inuse(struct f2fs_sb_info *sbi, 349 unsigned int segno) 350 { 351 struct free_segmap_info *free_i = FREE_I(sbi); 352 unsigned int secno = segno / sbi->segs_per_sec; 353 set_bit(segno, free_i->free_segmap); 354 free_i->free_segments--; 355 if (!test_and_set_bit(secno, free_i->free_secmap)) 356 free_i->free_sections--; 357 } 358 359 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 360 unsigned int segno) 361 { 362 struct free_segmap_info *free_i = FREE_I(sbi); 363 unsigned int secno = segno / sbi->segs_per_sec; 364 unsigned int start_segno = secno * sbi->segs_per_sec; 365 unsigned int next; 366 367 spin_lock(&free_i->segmap_lock); 368 if (test_and_clear_bit(segno, free_i->free_segmap)) { 369 free_i->free_segments++; 370 371 next = find_next_bit(free_i->free_segmap, 372 start_segno + sbi->segs_per_sec, start_segno); 373 if (next >= start_segno + sbi->segs_per_sec) { 374 if (test_and_clear_bit(secno, free_i->free_secmap)) 375 free_i->free_sections++; 376 } 377 } 378 spin_unlock(&free_i->segmap_lock); 379 } 380 381 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 382 unsigned int segno) 383 { 384 struct free_segmap_info *free_i = FREE_I(sbi); 385 unsigned int secno = segno / sbi->segs_per_sec; 386 spin_lock(&free_i->segmap_lock); 387 if (!test_and_set_bit(segno, free_i->free_segmap)) { 388 free_i->free_segments--; 389 if (!test_and_set_bit(secno, free_i->free_secmap)) 390 free_i->free_sections--; 391 } 392 spin_unlock(&free_i->segmap_lock); 393 } 394 395 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 396 void *dst_addr) 397 { 398 struct sit_info *sit_i = SIT_I(sbi); 399 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 400 } 401 402 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 403 { 404 return SIT_I(sbi)->written_valid_blocks; 405 } 406 407 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 408 { 409 return FREE_I(sbi)->free_segments; 410 } 411 412 static inline int reserved_segments(struct f2fs_sb_info *sbi) 413 { 414 return SM_I(sbi)->reserved_segments; 415 } 416 417 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 418 { 419 return FREE_I(sbi)->free_sections; 420 } 421 422 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 423 { 424 return DIRTY_I(sbi)->nr_dirty[PRE]; 425 } 426 427 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 428 { 429 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 430 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 431 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 432 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 433 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 434 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 435 } 436 437 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 438 { 439 return SM_I(sbi)->ovp_segments; 440 } 441 442 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 443 { 444 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; 445 } 446 447 static inline int reserved_sections(struct f2fs_sb_info *sbi) 448 { 449 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; 450 } 451 452 static inline bool need_SSR(struct f2fs_sb_info *sbi) 453 { 454 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 455 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 456 return free_sections(sbi) <= (node_secs + 2 * dent_secs + 457 reserved_sections(sbi) + 1); 458 } 459 460 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) 461 { 462 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 463 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 464 465 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 466 return false; 467 468 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + 469 reserved_sections(sbi)); 470 } 471 472 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 473 { 474 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 475 } 476 477 static inline int utilization(struct f2fs_sb_info *sbi) 478 { 479 return div_u64((u64)valid_user_blocks(sbi) * 100, 480 sbi->user_block_count); 481 } 482 483 /* 484 * Sometimes f2fs may be better to drop out-of-place update policy. 485 * And, users can control the policy through sysfs entries. 486 * There are five policies with triggering conditions as follows. 487 * F2FS_IPU_FORCE - all the time, 488 * F2FS_IPU_SSR - if SSR mode is activated, 489 * F2FS_IPU_UTIL - if FS utilization is over threashold, 490 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 491 * threashold, 492 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 493 * storages. IPU will be triggered only if the # of dirty 494 * pages over min_fsync_blocks. 495 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 496 */ 497 #define DEF_MIN_IPU_UTIL 70 498 #define DEF_MIN_FSYNC_BLOCKS 8 499 500 enum { 501 F2FS_IPU_FORCE, 502 F2FS_IPU_SSR, 503 F2FS_IPU_UTIL, 504 F2FS_IPU_SSR_UTIL, 505 F2FS_IPU_FSYNC, 506 }; 507 508 static inline bool need_inplace_update(struct inode *inode) 509 { 510 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 511 unsigned int policy = SM_I(sbi)->ipu_policy; 512 513 /* IPU can be done only for the user data */ 514 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode)) 515 return false; 516 517 if (policy & (0x1 << F2FS_IPU_FORCE)) 518 return true; 519 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) 520 return true; 521 if (policy & (0x1 << F2FS_IPU_UTIL) && 522 utilization(sbi) > SM_I(sbi)->min_ipu_util) 523 return true; 524 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && 525 utilization(sbi) > SM_I(sbi)->min_ipu_util) 526 return true; 527 528 /* this is only set during fdatasync */ 529 if (policy & (0x1 << F2FS_IPU_FSYNC) && 530 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU)) 531 return true; 532 533 return false; 534 } 535 536 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 537 int type) 538 { 539 struct curseg_info *curseg = CURSEG_I(sbi, type); 540 return curseg->segno; 541 } 542 543 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 544 int type) 545 { 546 struct curseg_info *curseg = CURSEG_I(sbi, type); 547 return curseg->alloc_type; 548 } 549 550 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 551 { 552 struct curseg_info *curseg = CURSEG_I(sbi, type); 553 return curseg->next_blkoff; 554 } 555 556 #ifdef CONFIG_F2FS_CHECK_FS 557 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 558 { 559 BUG_ON(segno > TOTAL_SEGS(sbi) - 1); 560 } 561 562 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 563 { 564 BUG_ON(blk_addr < SEG0_BLKADDR(sbi)); 565 BUG_ON(blk_addr >= MAX_BLKADDR(sbi)); 566 } 567 568 /* 569 * Summary block is always treated as an invalid block 570 */ 571 static inline void check_block_count(struct f2fs_sb_info *sbi, 572 int segno, struct f2fs_sit_entry *raw_sit) 573 { 574 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 575 int valid_blocks = 0; 576 int cur_pos = 0, next_pos; 577 578 /* check segment usage */ 579 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); 580 581 /* check boundary of a given segment number */ 582 BUG_ON(segno > TOTAL_SEGS(sbi) - 1); 583 584 /* check bitmap with valid block count */ 585 do { 586 if (is_valid) { 587 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 588 sbi->blocks_per_seg, 589 cur_pos); 590 valid_blocks += next_pos - cur_pos; 591 } else 592 next_pos = find_next_bit_le(&raw_sit->valid_map, 593 sbi->blocks_per_seg, 594 cur_pos); 595 cur_pos = next_pos; 596 is_valid = !is_valid; 597 } while (cur_pos < sbi->blocks_per_seg); 598 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 599 } 600 #else 601 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 602 { 603 if (segno > TOTAL_SEGS(sbi) - 1) 604 set_sbi_flag(sbi, SBI_NEED_FSCK); 605 } 606 607 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 608 { 609 if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi)) 610 set_sbi_flag(sbi, SBI_NEED_FSCK); 611 } 612 613 /* 614 * Summary block is always treated as an invalid block 615 */ 616 static inline void check_block_count(struct f2fs_sb_info *sbi, 617 int segno, struct f2fs_sit_entry *raw_sit) 618 { 619 /* check segment usage */ 620 if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg) 621 set_sbi_flag(sbi, SBI_NEED_FSCK); 622 623 /* check boundary of a given segment number */ 624 if (segno > TOTAL_SEGS(sbi) - 1) 625 set_sbi_flag(sbi, SBI_NEED_FSCK); 626 } 627 #endif 628 629 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 630 unsigned int start) 631 { 632 struct sit_info *sit_i = SIT_I(sbi); 633 unsigned int offset = SIT_BLOCK_OFFSET(start); 634 block_t blk_addr = sit_i->sit_base_addr + offset; 635 636 check_seg_range(sbi, start); 637 638 /* calculate sit block address */ 639 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 640 blk_addr += sit_i->sit_blocks; 641 642 return blk_addr; 643 } 644 645 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 646 pgoff_t block_addr) 647 { 648 struct sit_info *sit_i = SIT_I(sbi); 649 block_addr -= sit_i->sit_base_addr; 650 if (block_addr < sit_i->sit_blocks) 651 block_addr += sit_i->sit_blocks; 652 else 653 block_addr -= sit_i->sit_blocks; 654 655 return block_addr + sit_i->sit_base_addr; 656 } 657 658 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 659 { 660 unsigned int block_off = SIT_BLOCK_OFFSET(start); 661 662 f2fs_change_bit(block_off, sit_i->sit_bitmap); 663 } 664 665 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 666 { 667 struct sit_info *sit_i = SIT_I(sbi); 668 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - 669 sit_i->mounted_time; 670 } 671 672 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 673 unsigned int ofs_in_node, unsigned char version) 674 { 675 sum->nid = cpu_to_le32(nid); 676 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 677 sum->version = version; 678 } 679 680 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 681 { 682 return __start_cp_addr(sbi) + 683 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 684 } 685 686 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 687 { 688 return __start_cp_addr(sbi) + 689 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 690 - (base + 1) + type; 691 } 692 693 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 694 { 695 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 696 return true; 697 return false; 698 } 699 700 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) 701 { 702 struct block_device *bdev = sbi->sb->s_bdev; 703 struct request_queue *q = bdev_get_queue(bdev); 704 return SECTOR_TO_BLOCK(queue_max_sectors(q)); 705 } 706 707 /* 708 * It is very important to gather dirty pages and write at once, so that we can 709 * submit a big bio without interfering other data writes. 710 * By default, 512 pages for directory data, 711 * 512 pages (2MB) * 3 for three types of nodes, and 712 * max_bio_blocks for meta are set. 713 */ 714 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 715 { 716 if (sbi->sb->s_bdi->dirty_exceeded) 717 return 0; 718 719 if (type == DATA) 720 return sbi->blocks_per_seg; 721 else if (type == NODE) 722 return 3 * sbi->blocks_per_seg; 723 else if (type == META) 724 return MAX_BIO_BLOCKS(sbi); 725 else 726 return 0; 727 } 728 729 /* 730 * When writing pages, it'd better align nr_to_write for segment size. 731 */ 732 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 733 struct writeback_control *wbc) 734 { 735 long nr_to_write, desired; 736 737 if (wbc->sync_mode != WB_SYNC_NONE) 738 return 0; 739 740 nr_to_write = wbc->nr_to_write; 741 742 if (type == DATA) 743 desired = 4096; 744 else if (type == NODE) 745 desired = 3 * max_hw_blocks(sbi); 746 else 747 desired = MAX_BIO_BLOCKS(sbi); 748 749 wbc->nr_to_write = desired; 750 return desired - nr_to_write; 751 } 752