xref: /linux/fs/f2fs/segment.h (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 
13 /* constant macro */
14 #define NULL_SEGNO			((unsigned int)(~0))
15 #define NULL_SECNO			((unsigned int)(~0))
16 
17 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
18 
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
22 
23 #define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
25 
26 #define IS_CURSEG(sbi, seg)						\
27 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
28 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
29 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
30 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
31 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
32 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33 
34 #define IS_CURSEC(sbi, secno)						\
35 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
36 	  sbi->segs_per_sec) ||	\
37 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
38 	  sbi->segs_per_sec) ||	\
39 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
40 	  sbi->segs_per_sec) ||	\
41 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
42 	  sbi->segs_per_sec) ||	\
43 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
44 	  sbi->segs_per_sec) ||	\
45 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
46 	  sbi->segs_per_sec))	\
47 
48 #define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
49 #define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
50 
51 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
52 #define MAIN_SECS(sbi)	(sbi->total_sections)
53 
54 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
55 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
56 
57 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
58 #define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
59 					sbi->log_blocks_per_seg))
60 
61 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
62 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
63 
64 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
65 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
66 
67 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
68 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
69 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
70 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
71 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
72 
73 #define GET_SEGNO(sbi, blk_addr)					\
74 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
75 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
76 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
77 #define GET_SECNO(sbi, segno)					\
78 	((segno) / sbi->segs_per_sec)
79 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
80 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
81 
82 #define GET_SUM_BLOCK(sbi, segno)				\
83 	((sbi->sm_info->ssa_blkaddr) + segno)
84 
85 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
86 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
87 
88 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
89 	(segno % sit_i->sents_per_block)
90 #define SIT_BLOCK_OFFSET(segno)					\
91 	(segno / SIT_ENTRY_PER_BLOCK)
92 #define	START_SEGNO(segno)		\
93 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
94 #define SIT_BLK_CNT(sbi)			\
95 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
96 #define f2fs_bitmap_size(nr)			\
97 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
98 
99 #define SECTOR_FROM_BLOCK(blk_addr)					\
100 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
101 #define SECTOR_TO_BLOCK(sectors)					\
102 	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
103 #define MAX_BIO_BLOCKS(sbi)						\
104 	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
105 
106 /*
107  * indicate a block allocation direction: RIGHT and LEFT.
108  * RIGHT means allocating new sections towards the end of volume.
109  * LEFT means the opposite direction.
110  */
111 enum {
112 	ALLOC_RIGHT = 0,
113 	ALLOC_LEFT
114 };
115 
116 /*
117  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
118  * LFS writes data sequentially with cleaning operations.
119  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
120  */
121 enum {
122 	LFS = 0,
123 	SSR
124 };
125 
126 /*
127  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
128  * GC_CB is based on cost-benefit algorithm.
129  * GC_GREEDY is based on greedy algorithm.
130  */
131 enum {
132 	GC_CB = 0,
133 	GC_GREEDY
134 };
135 
136 /*
137  * BG_GC means the background cleaning job.
138  * FG_GC means the on-demand cleaning job.
139  */
140 enum {
141 	BG_GC = 0,
142 	FG_GC
143 };
144 
145 /* for a function parameter to select a victim segment */
146 struct victim_sel_policy {
147 	int alloc_mode;			/* LFS or SSR */
148 	int gc_mode;			/* GC_CB or GC_GREEDY */
149 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
150 	unsigned int max_search;	/* maximum # of segments to search */
151 	unsigned int offset;		/* last scanned bitmap offset */
152 	unsigned int ofs_unit;		/* bitmap search unit */
153 	unsigned int min_cost;		/* minimum cost */
154 	unsigned int min_segno;		/* segment # having min. cost */
155 };
156 
157 struct seg_entry {
158 	unsigned short valid_blocks;	/* # of valid blocks */
159 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
160 	/*
161 	 * # of valid blocks and the validity bitmap stored in the the last
162 	 * checkpoint pack. This information is used by the SSR mode.
163 	 */
164 	unsigned short ckpt_valid_blocks;
165 	unsigned char *ckpt_valid_map;
166 	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
167 	unsigned long long mtime;	/* modification time of the segment */
168 };
169 
170 struct sec_entry {
171 	unsigned int valid_blocks;	/* # of valid blocks in a section */
172 };
173 
174 struct segment_allocation {
175 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
176 };
177 
178 struct inmem_pages {
179 	struct list_head list;
180 	struct page *page;
181 };
182 
183 struct sit_info {
184 	const struct segment_allocation *s_ops;
185 
186 	block_t sit_base_addr;		/* start block address of SIT area */
187 	block_t sit_blocks;		/* # of blocks used by SIT area */
188 	block_t written_valid_blocks;	/* # of valid blocks in main area */
189 	char *sit_bitmap;		/* SIT bitmap pointer */
190 	unsigned int bitmap_size;	/* SIT bitmap size */
191 
192 	unsigned long *tmp_map;			/* bitmap for temporal use */
193 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
194 	unsigned int dirty_sentries;		/* # of dirty sentries */
195 	unsigned int sents_per_block;		/* # of SIT entries per block */
196 	struct mutex sentry_lock;		/* to protect SIT cache */
197 	struct seg_entry *sentries;		/* SIT segment-level cache */
198 	struct sec_entry *sec_entries;		/* SIT section-level cache */
199 
200 	/* for cost-benefit algorithm in cleaning procedure */
201 	unsigned long long elapsed_time;	/* elapsed time after mount */
202 	unsigned long long mounted_time;	/* mount time */
203 	unsigned long long min_mtime;		/* min. modification time */
204 	unsigned long long max_mtime;		/* max. modification time */
205 };
206 
207 struct free_segmap_info {
208 	unsigned int start_segno;	/* start segment number logically */
209 	unsigned int free_segments;	/* # of free segments */
210 	unsigned int free_sections;	/* # of free sections */
211 	spinlock_t segmap_lock;		/* free segmap lock */
212 	unsigned long *free_segmap;	/* free segment bitmap */
213 	unsigned long *free_secmap;	/* free section bitmap */
214 };
215 
216 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
217 enum dirty_type {
218 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
219 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
220 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
221 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
222 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
223 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
224 	DIRTY,			/* to count # of dirty segments */
225 	PRE,			/* to count # of entirely obsolete segments */
226 	NR_DIRTY_TYPE
227 };
228 
229 struct dirty_seglist_info {
230 	const struct victim_selection *v_ops;	/* victim selction operation */
231 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
232 	struct mutex seglist_lock;		/* lock for segment bitmaps */
233 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
234 	unsigned long *victim_secmap;		/* background GC victims */
235 };
236 
237 /* victim selection function for cleaning and SSR */
238 struct victim_selection {
239 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
240 							int, int, char);
241 };
242 
243 /* for active log information */
244 struct curseg_info {
245 	struct mutex curseg_mutex;		/* lock for consistency */
246 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
247 	unsigned char alloc_type;		/* current allocation type */
248 	unsigned int segno;			/* current segment number */
249 	unsigned short next_blkoff;		/* next block offset to write */
250 	unsigned int zone;			/* current zone number */
251 	unsigned int next_segno;		/* preallocated segment */
252 };
253 
254 struct sit_entry_set {
255 	struct list_head set_list;	/* link with all sit sets */
256 	unsigned int start_segno;	/* start segno of sits in set */
257 	unsigned int entry_cnt;		/* the # of sit entries in set */
258 };
259 
260 /*
261  * inline functions
262  */
263 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
264 {
265 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
266 }
267 
268 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
269 						unsigned int segno)
270 {
271 	struct sit_info *sit_i = SIT_I(sbi);
272 	return &sit_i->sentries[segno];
273 }
274 
275 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
276 						unsigned int segno)
277 {
278 	struct sit_info *sit_i = SIT_I(sbi);
279 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
280 }
281 
282 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
283 				unsigned int segno, int section)
284 {
285 	/*
286 	 * In order to get # of valid blocks in a section instantly from many
287 	 * segments, f2fs manages two counting structures separately.
288 	 */
289 	if (section > 1)
290 		return get_sec_entry(sbi, segno)->valid_blocks;
291 	else
292 		return get_seg_entry(sbi, segno)->valid_blocks;
293 }
294 
295 static inline void seg_info_from_raw_sit(struct seg_entry *se,
296 					struct f2fs_sit_entry *rs)
297 {
298 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
299 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
300 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
301 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
302 	se->type = GET_SIT_TYPE(rs);
303 	se->mtime = le64_to_cpu(rs->mtime);
304 }
305 
306 static inline void seg_info_to_raw_sit(struct seg_entry *se,
307 					struct f2fs_sit_entry *rs)
308 {
309 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
310 					se->valid_blocks;
311 	rs->vblocks = cpu_to_le16(raw_vblocks);
312 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
313 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
314 	se->ckpt_valid_blocks = se->valid_blocks;
315 	rs->mtime = cpu_to_le64(se->mtime);
316 }
317 
318 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
319 		unsigned int max, unsigned int segno)
320 {
321 	unsigned int ret;
322 	spin_lock(&free_i->segmap_lock);
323 	ret = find_next_bit(free_i->free_segmap, max, segno);
324 	spin_unlock(&free_i->segmap_lock);
325 	return ret;
326 }
327 
328 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
329 {
330 	struct free_segmap_info *free_i = FREE_I(sbi);
331 	unsigned int secno = segno / sbi->segs_per_sec;
332 	unsigned int start_segno = secno * sbi->segs_per_sec;
333 	unsigned int next;
334 
335 	spin_lock(&free_i->segmap_lock);
336 	clear_bit(segno, free_i->free_segmap);
337 	free_i->free_segments++;
338 
339 	next = find_next_bit(free_i->free_segmap,
340 			start_segno + sbi->segs_per_sec, start_segno);
341 	if (next >= start_segno + sbi->segs_per_sec) {
342 		clear_bit(secno, free_i->free_secmap);
343 		free_i->free_sections++;
344 	}
345 	spin_unlock(&free_i->segmap_lock);
346 }
347 
348 static inline void __set_inuse(struct f2fs_sb_info *sbi,
349 		unsigned int segno)
350 {
351 	struct free_segmap_info *free_i = FREE_I(sbi);
352 	unsigned int secno = segno / sbi->segs_per_sec;
353 	set_bit(segno, free_i->free_segmap);
354 	free_i->free_segments--;
355 	if (!test_and_set_bit(secno, free_i->free_secmap))
356 		free_i->free_sections--;
357 }
358 
359 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
360 		unsigned int segno)
361 {
362 	struct free_segmap_info *free_i = FREE_I(sbi);
363 	unsigned int secno = segno / sbi->segs_per_sec;
364 	unsigned int start_segno = secno * sbi->segs_per_sec;
365 	unsigned int next;
366 
367 	spin_lock(&free_i->segmap_lock);
368 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
369 		free_i->free_segments++;
370 
371 		next = find_next_bit(free_i->free_segmap,
372 				start_segno + sbi->segs_per_sec, start_segno);
373 		if (next >= start_segno + sbi->segs_per_sec) {
374 			if (test_and_clear_bit(secno, free_i->free_secmap))
375 				free_i->free_sections++;
376 		}
377 	}
378 	spin_unlock(&free_i->segmap_lock);
379 }
380 
381 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
382 		unsigned int segno)
383 {
384 	struct free_segmap_info *free_i = FREE_I(sbi);
385 	unsigned int secno = segno / sbi->segs_per_sec;
386 	spin_lock(&free_i->segmap_lock);
387 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
388 		free_i->free_segments--;
389 		if (!test_and_set_bit(secno, free_i->free_secmap))
390 			free_i->free_sections--;
391 	}
392 	spin_unlock(&free_i->segmap_lock);
393 }
394 
395 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
396 		void *dst_addr)
397 {
398 	struct sit_info *sit_i = SIT_I(sbi);
399 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
400 }
401 
402 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
403 {
404 	return SIT_I(sbi)->written_valid_blocks;
405 }
406 
407 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
408 {
409 	return FREE_I(sbi)->free_segments;
410 }
411 
412 static inline int reserved_segments(struct f2fs_sb_info *sbi)
413 {
414 	return SM_I(sbi)->reserved_segments;
415 }
416 
417 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
418 {
419 	return FREE_I(sbi)->free_sections;
420 }
421 
422 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
423 {
424 	return DIRTY_I(sbi)->nr_dirty[PRE];
425 }
426 
427 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
428 {
429 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
430 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
431 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
432 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
433 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
434 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
435 }
436 
437 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
438 {
439 	return SM_I(sbi)->ovp_segments;
440 }
441 
442 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
443 {
444 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
445 }
446 
447 static inline int reserved_sections(struct f2fs_sb_info *sbi)
448 {
449 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
450 }
451 
452 static inline bool need_SSR(struct f2fs_sb_info *sbi)
453 {
454 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
455 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
456 	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
457 						reserved_sections(sbi) + 1);
458 }
459 
460 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
461 {
462 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
463 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
464 
465 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
466 		return false;
467 
468 	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
469 						reserved_sections(sbi));
470 }
471 
472 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
473 {
474 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
475 }
476 
477 static inline int utilization(struct f2fs_sb_info *sbi)
478 {
479 	return div_u64((u64)valid_user_blocks(sbi) * 100,
480 					sbi->user_block_count);
481 }
482 
483 /*
484  * Sometimes f2fs may be better to drop out-of-place update policy.
485  * And, users can control the policy through sysfs entries.
486  * There are five policies with triggering conditions as follows.
487  * F2FS_IPU_FORCE - all the time,
488  * F2FS_IPU_SSR - if SSR mode is activated,
489  * F2FS_IPU_UTIL - if FS utilization is over threashold,
490  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
491  *                     threashold,
492  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
493  *                     storages. IPU will be triggered only if the # of dirty
494  *                     pages over min_fsync_blocks.
495  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
496  */
497 #define DEF_MIN_IPU_UTIL	70
498 #define DEF_MIN_FSYNC_BLOCKS	8
499 
500 enum {
501 	F2FS_IPU_FORCE,
502 	F2FS_IPU_SSR,
503 	F2FS_IPU_UTIL,
504 	F2FS_IPU_SSR_UTIL,
505 	F2FS_IPU_FSYNC,
506 };
507 
508 static inline bool need_inplace_update(struct inode *inode)
509 {
510 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
511 	unsigned int policy = SM_I(sbi)->ipu_policy;
512 
513 	/* IPU can be done only for the user data */
514 	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
515 		return false;
516 
517 	if (policy & (0x1 << F2FS_IPU_FORCE))
518 		return true;
519 	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
520 		return true;
521 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
522 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
523 		return true;
524 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
525 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
526 		return true;
527 
528 	/* this is only set during fdatasync */
529 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
530 			is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
531 		return true;
532 
533 	return false;
534 }
535 
536 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
537 		int type)
538 {
539 	struct curseg_info *curseg = CURSEG_I(sbi, type);
540 	return curseg->segno;
541 }
542 
543 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
544 		int type)
545 {
546 	struct curseg_info *curseg = CURSEG_I(sbi, type);
547 	return curseg->alloc_type;
548 }
549 
550 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
551 {
552 	struct curseg_info *curseg = CURSEG_I(sbi, type);
553 	return curseg->next_blkoff;
554 }
555 
556 #ifdef CONFIG_F2FS_CHECK_FS
557 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
558 {
559 	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
560 }
561 
562 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
563 {
564 	BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
565 	BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
566 }
567 
568 /*
569  * Summary block is always treated as an invalid block
570  */
571 static inline void check_block_count(struct f2fs_sb_info *sbi,
572 		int segno, struct f2fs_sit_entry *raw_sit)
573 {
574 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
575 	int valid_blocks = 0;
576 	int cur_pos = 0, next_pos;
577 
578 	/* check segment usage */
579 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
580 
581 	/* check boundary of a given segment number */
582 	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
583 
584 	/* check bitmap with valid block count */
585 	do {
586 		if (is_valid) {
587 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
588 					sbi->blocks_per_seg,
589 					cur_pos);
590 			valid_blocks += next_pos - cur_pos;
591 		} else
592 			next_pos = find_next_bit_le(&raw_sit->valid_map,
593 					sbi->blocks_per_seg,
594 					cur_pos);
595 		cur_pos = next_pos;
596 		is_valid = !is_valid;
597 	} while (cur_pos < sbi->blocks_per_seg);
598 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
599 }
600 #else
601 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
602 {
603 	if (segno > TOTAL_SEGS(sbi) - 1)
604 		set_sbi_flag(sbi, SBI_NEED_FSCK);
605 }
606 
607 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
608 {
609 	if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
610 		set_sbi_flag(sbi, SBI_NEED_FSCK);
611 }
612 
613 /*
614  * Summary block is always treated as an invalid block
615  */
616 static inline void check_block_count(struct f2fs_sb_info *sbi,
617 		int segno, struct f2fs_sit_entry *raw_sit)
618 {
619 	/* check segment usage */
620 	if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
621 		set_sbi_flag(sbi, SBI_NEED_FSCK);
622 
623 	/* check boundary of a given segment number */
624 	if (segno > TOTAL_SEGS(sbi) - 1)
625 		set_sbi_flag(sbi, SBI_NEED_FSCK);
626 }
627 #endif
628 
629 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
630 						unsigned int start)
631 {
632 	struct sit_info *sit_i = SIT_I(sbi);
633 	unsigned int offset = SIT_BLOCK_OFFSET(start);
634 	block_t blk_addr = sit_i->sit_base_addr + offset;
635 
636 	check_seg_range(sbi, start);
637 
638 	/* calculate sit block address */
639 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
640 		blk_addr += sit_i->sit_blocks;
641 
642 	return blk_addr;
643 }
644 
645 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
646 						pgoff_t block_addr)
647 {
648 	struct sit_info *sit_i = SIT_I(sbi);
649 	block_addr -= sit_i->sit_base_addr;
650 	if (block_addr < sit_i->sit_blocks)
651 		block_addr += sit_i->sit_blocks;
652 	else
653 		block_addr -= sit_i->sit_blocks;
654 
655 	return block_addr + sit_i->sit_base_addr;
656 }
657 
658 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
659 {
660 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
661 
662 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
663 }
664 
665 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
666 {
667 	struct sit_info *sit_i = SIT_I(sbi);
668 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
669 						sit_i->mounted_time;
670 }
671 
672 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
673 			unsigned int ofs_in_node, unsigned char version)
674 {
675 	sum->nid = cpu_to_le32(nid);
676 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
677 	sum->version = version;
678 }
679 
680 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
681 {
682 	return __start_cp_addr(sbi) +
683 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
684 }
685 
686 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
687 {
688 	return __start_cp_addr(sbi) +
689 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
690 				- (base + 1) + type;
691 }
692 
693 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
694 {
695 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
696 		return true;
697 	return false;
698 }
699 
700 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
701 {
702 	struct block_device *bdev = sbi->sb->s_bdev;
703 	struct request_queue *q = bdev_get_queue(bdev);
704 	return SECTOR_TO_BLOCK(queue_max_sectors(q));
705 }
706 
707 /*
708  * It is very important to gather dirty pages and write at once, so that we can
709  * submit a big bio without interfering other data writes.
710  * By default, 512 pages for directory data,
711  * 512 pages (2MB) * 3 for three types of nodes, and
712  * max_bio_blocks for meta are set.
713  */
714 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
715 {
716 	if (sbi->sb->s_bdi->dirty_exceeded)
717 		return 0;
718 
719 	if (type == DATA)
720 		return sbi->blocks_per_seg;
721 	else if (type == NODE)
722 		return 3 * sbi->blocks_per_seg;
723 	else if (type == META)
724 		return MAX_BIO_BLOCKS(sbi);
725 	else
726 		return 0;
727 }
728 
729 /*
730  * When writing pages, it'd better align nr_to_write for segment size.
731  */
732 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
733 					struct writeback_control *wbc)
734 {
735 	long nr_to_write, desired;
736 
737 	if (wbc->sync_mode != WB_SYNC_NONE)
738 		return 0;
739 
740 	nr_to_write = wbc->nr_to_write;
741 
742 	if (type == DATA)
743 		desired = 4096;
744 	else if (type == NODE)
745 		desired = 3 * max_hw_blocks(sbi);
746 	else
747 		desired = MAX_BIO_BLOCKS(sbi);
748 
749 	wbc->nr_to_write = desired;
750 	return desired - nr_to_write;
751 }
752