xref: /linux/fs/f2fs/segment.h (revision 7a08cb9b4bb92fb86f5fe8a3aa0ac08a9b3d783b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20 
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24 
25 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
28 
29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 						unsigned short seg_type)
31 {
32 	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34 
35 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38 
39 #define IS_CURSEG(sbi, seg)						\
40 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
41 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
42 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
43 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
44 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
45 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
46 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
47 	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48 
49 #define IS_CURSEC(sbi, secno)						\
50 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
51 	  SEGS_PER_SEC(sbi)) ||	\
52 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
53 	  SEGS_PER_SEC(sbi)) ||	\
54 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
55 	  SEGS_PER_SEC(sbi)) ||	\
56 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
57 	  SEGS_PER_SEC(sbi)) ||	\
58 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
59 	  SEGS_PER_SEC(sbi)) ||	\
60 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
61 	  SEGS_PER_SEC(sbi)) ||	\
62 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
63 	  SEGS_PER_SEC(sbi)) ||	\
64 	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
65 	  SEGS_PER_SEC(sbi)))
66 
67 #define MAIN_BLKADDR(sbi)						\
68 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
69 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi)						\
71 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
72 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73 
74 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi)	((sbi)->total_sections)
76 
77 #define TOTAL_SEGS(sbi)							\
78 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
79 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi)	(SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
81 
82 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
84 					(sbi)->log_blocks_per_seg))
85 
86 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
87 	 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
88 
89 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
90 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91 
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
94 	(BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
96 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
97 
98 #define GET_SEGNO(sbi, blk_addr)					\
99 	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define CAP_BLKS_PER_SEC(sbi)					\
103 	(BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
104 #define CAP_SEGS_PER_SEC(sbi)					\
105 	(SEGS_PER_SEC(sbi) -					\
106 	BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
107 #define GET_SEC_FROM_SEG(sbi, segno)				\
108 	(((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
109 #define GET_SEG_FROM_SEC(sbi, secno)				\
110 	((secno) * SEGS_PER_SEC(sbi))
111 #define GET_ZONE_FROM_SEC(sbi, secno)				\
112 	(((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
113 #define GET_ZONE_FROM_SEG(sbi, segno)				\
114 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115 
116 #define GET_SUM_BLOCK(sbi, segno)				\
117 	((sbi)->sm_info->ssa_blkaddr + (segno))
118 
119 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121 
122 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
123 	((segno) % (sit_i)->sents_per_block)
124 #define SIT_BLOCK_OFFSET(segno)					\
125 	((segno) / SIT_ENTRY_PER_BLOCK)
126 #define	START_SEGNO(segno)		\
127 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128 #define SIT_BLK_CNT(sbi)			\
129 	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130 #define f2fs_bitmap_size(nr)			\
131 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
132 
133 #define SECTOR_FROM_BLOCK(blk_addr)					\
134 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135 #define SECTOR_TO_BLOCK(sectors)					\
136 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137 
138 /*
139  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
140  * LFS writes data sequentially with cleaning operations.
141  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
142  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
143  * fragmented segment which has similar aging degree.
144  */
145 enum {
146 	LFS = 0,
147 	SSR,
148 	AT_SSR,
149 };
150 
151 /*
152  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
153  * GC_CB is based on cost-benefit algorithm.
154  * GC_GREEDY is based on greedy algorithm.
155  * GC_AT is based on age-threshold algorithm.
156  */
157 enum {
158 	GC_CB = 0,
159 	GC_GREEDY,
160 	GC_AT,
161 	ALLOC_NEXT,
162 	FLUSH_DEVICE,
163 	MAX_GC_POLICY,
164 };
165 
166 /*
167  * BG_GC means the background cleaning job.
168  * FG_GC means the on-demand cleaning job.
169  */
170 enum {
171 	BG_GC = 0,
172 	FG_GC,
173 };
174 
175 /* for a function parameter to select a victim segment */
176 struct victim_sel_policy {
177 	int alloc_mode;			/* LFS or SSR */
178 	int gc_mode;			/* GC_CB or GC_GREEDY */
179 	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
180 	unsigned int max_search;	/*
181 					 * maximum # of segments/sections
182 					 * to search
183 					 */
184 	unsigned int offset;		/* last scanned bitmap offset */
185 	unsigned int ofs_unit;		/* bitmap search unit */
186 	unsigned int min_cost;		/* minimum cost */
187 	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
188 	unsigned int min_segno;		/* segment # having min. cost */
189 	unsigned long long age;		/* mtime of GCed section*/
190 	unsigned long long age_threshold;/* age threshold */
191 	bool one_time_gc;		/* one time GC */
192 };
193 
194 struct seg_entry {
195 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
196 	unsigned int valid_blocks:10;	/* # of valid blocks */
197 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
198 	unsigned int padding:6;		/* padding */
199 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
200 #ifdef CONFIG_F2FS_CHECK_FS
201 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
202 #endif
203 	/*
204 	 * # of valid blocks and the validity bitmap stored in the last
205 	 * checkpoint pack. This information is used by the SSR mode.
206 	 */
207 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
208 	unsigned char *discard_map;
209 	unsigned long long mtime;	/* modification time of the segment */
210 };
211 
212 struct sec_entry {
213 	unsigned int valid_blocks;	/* # of valid blocks in a section */
214 };
215 
216 #define MAX_SKIP_GC_COUNT			16
217 
218 struct revoke_entry {
219 	struct list_head list;
220 	block_t old_addr;		/* for revoking when fail to commit */
221 	pgoff_t index;
222 };
223 
224 struct sit_info {
225 	block_t sit_base_addr;		/* start block address of SIT area */
226 	block_t sit_blocks;		/* # of blocks used by SIT area */
227 	block_t written_valid_blocks;	/* # of valid blocks in main area */
228 	char *bitmap;			/* all bitmaps pointer */
229 	char *sit_bitmap;		/* SIT bitmap pointer */
230 #ifdef CONFIG_F2FS_CHECK_FS
231 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
232 
233 	/* bitmap of segments to be ignored by GC in case of errors */
234 	unsigned long *invalid_segmap;
235 #endif
236 	unsigned int bitmap_size;	/* SIT bitmap size */
237 
238 	unsigned long *tmp_map;			/* bitmap for temporal use */
239 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
240 	unsigned int dirty_sentries;		/* # of dirty sentries */
241 	unsigned int sents_per_block;		/* # of SIT entries per block */
242 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
243 	struct seg_entry *sentries;		/* SIT segment-level cache */
244 	struct sec_entry *sec_entries;		/* SIT section-level cache */
245 
246 	/* for cost-benefit algorithm in cleaning procedure */
247 	unsigned long long elapsed_time;	/* elapsed time after mount */
248 	unsigned long long mounted_time;	/* mount time */
249 	unsigned long long min_mtime;		/* min. modification time */
250 	unsigned long long max_mtime;		/* max. modification time */
251 	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
252 	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
253 
254 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
255 };
256 
257 struct free_segmap_info {
258 	unsigned int start_segno;	/* start segment number logically */
259 	unsigned int free_segments;	/* # of free segments */
260 	unsigned int free_sections;	/* # of free sections */
261 	spinlock_t segmap_lock;		/* free segmap lock */
262 	unsigned long *free_segmap;	/* free segment bitmap */
263 	unsigned long *free_secmap;	/* free section bitmap */
264 };
265 
266 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
267 enum dirty_type {
268 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
269 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
270 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
271 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
272 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
273 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
274 	DIRTY,			/* to count # of dirty segments */
275 	PRE,			/* to count # of entirely obsolete segments */
276 	NR_DIRTY_TYPE
277 };
278 
279 struct dirty_seglist_info {
280 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
281 	unsigned long *dirty_secmap;
282 	struct mutex seglist_lock;		/* lock for segment bitmaps */
283 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
284 	unsigned long *victim_secmap;		/* background GC victims */
285 	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
286 	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
287 	bool enable_pin_section;		/* enable pinning section */
288 };
289 
290 /* for active log information */
291 struct curseg_info {
292 	struct mutex curseg_mutex;		/* lock for consistency */
293 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
294 	struct rw_semaphore journal_rwsem;	/* protect journal area */
295 	struct f2fs_journal *journal;		/* cached journal info */
296 	unsigned char alloc_type;		/* current allocation type */
297 	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
298 	unsigned int segno;			/* current segment number */
299 	unsigned short next_blkoff;		/* next block offset to write */
300 	unsigned int zone;			/* current zone number */
301 	unsigned int next_segno;		/* preallocated segment */
302 	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
303 	bool inited;				/* indicate inmem log is inited */
304 };
305 
306 struct sit_entry_set {
307 	struct list_head set_list;	/* link with all sit sets */
308 	unsigned int start_segno;	/* start segno of sits in set */
309 	unsigned int entry_cnt;		/* the # of sit entries in set */
310 };
311 
312 /*
313  * inline functions
314  */
315 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
316 {
317 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
318 }
319 
320 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
321 						unsigned int segno)
322 {
323 	struct sit_info *sit_i = SIT_I(sbi);
324 	return &sit_i->sentries[segno];
325 }
326 
327 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
328 						unsigned int segno)
329 {
330 	struct sit_info *sit_i = SIT_I(sbi);
331 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
332 }
333 
334 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
335 				unsigned int segno, bool use_section)
336 {
337 	/*
338 	 * In order to get # of valid blocks in a section instantly from many
339 	 * segments, f2fs manages two counting structures separately.
340 	 */
341 	if (use_section && __is_large_section(sbi))
342 		return get_sec_entry(sbi, segno)->valid_blocks;
343 	else
344 		return get_seg_entry(sbi, segno)->valid_blocks;
345 }
346 
347 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
348 				unsigned int segno, bool use_section)
349 {
350 	if (use_section && __is_large_section(sbi)) {
351 		unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
352 		unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
353 		unsigned int blocks = 0;
354 		int i;
355 
356 		for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
357 			struct seg_entry *se = get_seg_entry(sbi, start_segno);
358 
359 			blocks += se->ckpt_valid_blocks;
360 		}
361 		return blocks;
362 	}
363 	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
364 }
365 
366 static inline void seg_info_from_raw_sit(struct seg_entry *se,
367 					struct f2fs_sit_entry *rs)
368 {
369 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
370 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
371 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
372 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
373 #ifdef CONFIG_F2FS_CHECK_FS
374 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
375 #endif
376 	se->type = GET_SIT_TYPE(rs);
377 	se->mtime = le64_to_cpu(rs->mtime);
378 }
379 
380 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
381 					struct f2fs_sit_entry *rs)
382 {
383 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
384 					se->valid_blocks;
385 	rs->vblocks = cpu_to_le16(raw_vblocks);
386 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
387 	rs->mtime = cpu_to_le64(se->mtime);
388 }
389 
390 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
391 				struct page *page, unsigned int start)
392 {
393 	struct f2fs_sit_block *raw_sit;
394 	struct seg_entry *se;
395 	struct f2fs_sit_entry *rs;
396 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
397 					(unsigned long)MAIN_SEGS(sbi));
398 	int i;
399 
400 	raw_sit = (struct f2fs_sit_block *)page_address(page);
401 	memset(raw_sit, 0, PAGE_SIZE);
402 	for (i = 0; i < end - start; i++) {
403 		rs = &raw_sit->entries[i];
404 		se = get_seg_entry(sbi, start + i);
405 		__seg_info_to_raw_sit(se, rs);
406 	}
407 }
408 
409 static inline void seg_info_to_raw_sit(struct seg_entry *se,
410 					struct f2fs_sit_entry *rs)
411 {
412 	__seg_info_to_raw_sit(se, rs);
413 
414 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
415 	se->ckpt_valid_blocks = se->valid_blocks;
416 }
417 
418 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
419 		unsigned int max, unsigned int segno)
420 {
421 	unsigned int ret;
422 	spin_lock(&free_i->segmap_lock);
423 	ret = find_next_bit(free_i->free_segmap, max, segno);
424 	spin_unlock(&free_i->segmap_lock);
425 	return ret;
426 }
427 
428 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
429 {
430 	struct free_segmap_info *free_i = FREE_I(sbi);
431 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
432 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
433 	unsigned int next;
434 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi);
435 
436 	spin_lock(&free_i->segmap_lock);
437 	clear_bit(segno, free_i->free_segmap);
438 	free_i->free_segments++;
439 
440 	next = find_next_bit(free_i->free_segmap,
441 			start_segno + SEGS_PER_SEC(sbi), start_segno);
442 	if (next >= start_segno + usable_segs) {
443 		clear_bit(secno, free_i->free_secmap);
444 		free_i->free_sections++;
445 	}
446 	spin_unlock(&free_i->segmap_lock);
447 }
448 
449 static inline void __set_inuse(struct f2fs_sb_info *sbi,
450 		unsigned int segno)
451 {
452 	struct free_segmap_info *free_i = FREE_I(sbi);
453 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
454 
455 	set_bit(segno, free_i->free_segmap);
456 	free_i->free_segments--;
457 	if (!test_and_set_bit(secno, free_i->free_secmap))
458 		free_i->free_sections--;
459 }
460 
461 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
462 		unsigned int segno, bool inmem)
463 {
464 	struct free_segmap_info *free_i = FREE_I(sbi);
465 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
466 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
467 	unsigned int next;
468 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi);
469 
470 	spin_lock(&free_i->segmap_lock);
471 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
472 		free_i->free_segments++;
473 
474 		if (!inmem && IS_CURSEC(sbi, secno))
475 			goto skip_free;
476 		next = find_next_bit(free_i->free_segmap,
477 				start_segno + SEGS_PER_SEC(sbi), start_segno);
478 		if (next >= start_segno + usable_segs) {
479 			if (test_and_clear_bit(secno, free_i->free_secmap))
480 				free_i->free_sections++;
481 		}
482 	}
483 skip_free:
484 	spin_unlock(&free_i->segmap_lock);
485 }
486 
487 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
488 		unsigned int segno)
489 {
490 	struct free_segmap_info *free_i = FREE_I(sbi);
491 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
492 
493 	spin_lock(&free_i->segmap_lock);
494 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
495 		free_i->free_segments--;
496 		if (!test_and_set_bit(secno, free_i->free_secmap))
497 			free_i->free_sections--;
498 	}
499 	spin_unlock(&free_i->segmap_lock);
500 }
501 
502 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
503 		void *dst_addr)
504 {
505 	struct sit_info *sit_i = SIT_I(sbi);
506 
507 #ifdef CONFIG_F2FS_CHECK_FS
508 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
509 						sit_i->bitmap_size))
510 		f2fs_bug_on(sbi, 1);
511 #endif
512 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
513 }
514 
515 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
516 {
517 	return SIT_I(sbi)->written_valid_blocks;
518 }
519 
520 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
521 {
522 	return FREE_I(sbi)->free_segments;
523 }
524 
525 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
526 {
527 	return SM_I(sbi)->reserved_segments +
528 			SM_I(sbi)->additional_reserved_segments;
529 }
530 
531 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
532 {
533 	return FREE_I(sbi)->free_sections;
534 }
535 
536 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
537 {
538 	return DIRTY_I(sbi)->nr_dirty[PRE];
539 }
540 
541 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
542 {
543 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
544 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
545 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
546 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
547 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
548 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
549 }
550 
551 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
552 {
553 	return SM_I(sbi)->ovp_segments;
554 }
555 
556 static inline int reserved_sections(struct f2fs_sb_info *sbi)
557 {
558 	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
559 }
560 
561 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
562 			unsigned int node_blocks, unsigned int dent_blocks)
563 {
564 
565 	unsigned segno, left_blocks;
566 	int i;
567 
568 	/* check current node sections in the worst case. */
569 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
570 		segno = CURSEG_I(sbi, i)->segno;
571 		left_blocks = CAP_BLKS_PER_SEC(sbi) -
572 				get_ckpt_valid_blocks(sbi, segno, true);
573 		if (node_blocks > left_blocks)
574 			return false;
575 	}
576 
577 	/* check current data section for dentry blocks. */
578 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
579 	left_blocks = CAP_BLKS_PER_SEC(sbi) -
580 			get_ckpt_valid_blocks(sbi, segno, true);
581 	if (dent_blocks > left_blocks)
582 		return false;
583 	return true;
584 }
585 
586 /*
587  * calculate needed sections for dirty node/dentry
588  * and call has_curseg_enough_space
589  */
590 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
591 		unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
592 {
593 	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
594 					get_pages(sbi, F2FS_DIRTY_DENTS) +
595 					get_pages(sbi, F2FS_DIRTY_IMETA);
596 	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
597 	unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
598 	unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
599 	unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
600 	unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
601 
602 	if (lower_p)
603 		*lower_p = node_secs + dent_secs;
604 	if (upper_p)
605 		*upper_p = node_secs + dent_secs +
606 			(node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
607 	if (curseg_p)
608 		*curseg_p = has_curseg_enough_space(sbi,
609 				node_blocks, dent_blocks);
610 }
611 
612 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
613 					int freed, int needed)
614 {
615 	unsigned int free_secs, lower_secs, upper_secs;
616 	bool curseg_space;
617 
618 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
619 		return false;
620 
621 	__get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
622 
623 	free_secs = free_sections(sbi) + freed;
624 	lower_secs += needed + reserved_sections(sbi);
625 	upper_secs += needed + reserved_sections(sbi);
626 
627 	if (free_secs > upper_secs)
628 		return false;
629 	if (free_secs <= lower_secs)
630 		return true;
631 	return !curseg_space;
632 }
633 
634 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
635 					int freed, int needed)
636 {
637 	return !has_not_enough_free_secs(sbi, freed, needed);
638 }
639 
640 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
641 {
642 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
643 		return true;
644 	if (likely(has_enough_free_secs(sbi, 0, 0)))
645 		return true;
646 	return false;
647 }
648 
649 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
650 {
651 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
652 }
653 
654 static inline int utilization(struct f2fs_sb_info *sbi)
655 {
656 	return div_u64((u64)valid_user_blocks(sbi) * 100,
657 					sbi->user_block_count);
658 }
659 
660 /*
661  * Sometimes f2fs may be better to drop out-of-place update policy.
662  * And, users can control the policy through sysfs entries.
663  * There are five policies with triggering conditions as follows.
664  * F2FS_IPU_FORCE - all the time,
665  * F2FS_IPU_SSR - if SSR mode is activated,
666  * F2FS_IPU_UTIL - if FS utilization is over threashold,
667  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
668  *                     threashold,
669  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
670  *                     storages. IPU will be triggered only if the # of dirty
671  *                     pages over min_fsync_blocks. (=default option)
672  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
673  * F2FS_IPU_NOCACHE - disable IPU bio cache.
674  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
675  *                            FI_OPU_WRITE flag.
676  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
677  */
678 #define DEF_MIN_IPU_UTIL	70
679 #define DEF_MIN_FSYNC_BLOCKS	8
680 #define DEF_MIN_HOT_BLOCKS	16
681 
682 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
683 
684 #define F2FS_IPU_DISABLE	0
685 
686 /* Modification on enum should be synchronized with ipu_mode_names array */
687 enum {
688 	F2FS_IPU_FORCE,
689 	F2FS_IPU_SSR,
690 	F2FS_IPU_UTIL,
691 	F2FS_IPU_SSR_UTIL,
692 	F2FS_IPU_FSYNC,
693 	F2FS_IPU_ASYNC,
694 	F2FS_IPU_NOCACHE,
695 	F2FS_IPU_HONOR_OPU_WRITE,
696 	F2FS_IPU_MAX,
697 };
698 
699 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
700 {
701 	return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
702 }
703 
704 #define F2FS_IPU_POLICY(name)					\
705 static inline bool IS_##name(struct f2fs_sb_info *sbi)		\
706 {								\
707 	return SM_I(sbi)->ipu_policy & BIT(name);		\
708 }
709 
710 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
711 F2FS_IPU_POLICY(F2FS_IPU_SSR);
712 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
713 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
714 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
715 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
716 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
717 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
718 
719 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
720 		int type)
721 {
722 	struct curseg_info *curseg = CURSEG_I(sbi, type);
723 	return curseg->segno;
724 }
725 
726 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
727 		int type)
728 {
729 	struct curseg_info *curseg = CURSEG_I(sbi, type);
730 	return curseg->alloc_type;
731 }
732 
733 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
734 		unsigned int segno)
735 {
736 	return segno <= (MAIN_SEGS(sbi) - 1);
737 }
738 
739 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
740 {
741 	struct f2fs_sb_info *sbi = fio->sbi;
742 
743 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
744 		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
745 					META_GENERIC : DATA_GENERIC);
746 	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
747 					META_GENERIC : DATA_GENERIC_ENHANCE);
748 }
749 
750 /*
751  * Summary block is always treated as an invalid block
752  */
753 static inline int check_block_count(struct f2fs_sb_info *sbi,
754 		int segno, struct f2fs_sit_entry *raw_sit)
755 {
756 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
757 	int valid_blocks = 0;
758 	int cur_pos = 0, next_pos;
759 	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
760 
761 	/* check bitmap with valid block count */
762 	do {
763 		if (is_valid) {
764 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
765 					usable_blks_per_seg,
766 					cur_pos);
767 			valid_blocks += next_pos - cur_pos;
768 		} else
769 			next_pos = find_next_bit_le(&raw_sit->valid_map,
770 					usable_blks_per_seg,
771 					cur_pos);
772 		cur_pos = next_pos;
773 		is_valid = !is_valid;
774 	} while (cur_pos < usable_blks_per_seg);
775 
776 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
777 		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
778 			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
779 		set_sbi_flag(sbi, SBI_NEED_FSCK);
780 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
781 		return -EFSCORRUPTED;
782 	}
783 
784 	if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
785 		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
786 				BLKS_PER_SEG(sbi),
787 				usable_blks_per_seg) != BLKS_PER_SEG(sbi));
788 
789 	/* check segment usage, and check boundary of a given segment number */
790 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
791 					|| !valid_main_segno(sbi, segno))) {
792 		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
793 			 GET_SIT_VBLOCKS(raw_sit), segno);
794 		set_sbi_flag(sbi, SBI_NEED_FSCK);
795 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
796 		return -EFSCORRUPTED;
797 	}
798 	return 0;
799 }
800 
801 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
802 						unsigned int start)
803 {
804 	struct sit_info *sit_i = SIT_I(sbi);
805 	unsigned int offset = SIT_BLOCK_OFFSET(start);
806 	block_t blk_addr = sit_i->sit_base_addr + offset;
807 
808 	f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
809 
810 #ifdef CONFIG_F2FS_CHECK_FS
811 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
812 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
813 		f2fs_bug_on(sbi, 1);
814 #endif
815 
816 	/* calculate sit block address */
817 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
818 		blk_addr += sit_i->sit_blocks;
819 
820 	return blk_addr;
821 }
822 
823 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
824 						pgoff_t block_addr)
825 {
826 	struct sit_info *sit_i = SIT_I(sbi);
827 	block_addr -= sit_i->sit_base_addr;
828 	if (block_addr < sit_i->sit_blocks)
829 		block_addr += sit_i->sit_blocks;
830 	else
831 		block_addr -= sit_i->sit_blocks;
832 
833 	return block_addr + sit_i->sit_base_addr;
834 }
835 
836 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
837 {
838 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
839 
840 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
841 #ifdef CONFIG_F2FS_CHECK_FS
842 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
843 #endif
844 }
845 
846 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
847 						bool base_time)
848 {
849 	struct sit_info *sit_i = SIT_I(sbi);
850 	time64_t diff, now = ktime_get_boottime_seconds();
851 
852 	if (now >= sit_i->mounted_time)
853 		return sit_i->elapsed_time + now - sit_i->mounted_time;
854 
855 	/* system time is set to the past */
856 	if (!base_time) {
857 		diff = sit_i->mounted_time - now;
858 		if (sit_i->elapsed_time >= diff)
859 			return sit_i->elapsed_time - diff;
860 		return 0;
861 	}
862 	return sit_i->elapsed_time;
863 }
864 
865 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
866 			unsigned int ofs_in_node, unsigned char version)
867 {
868 	sum->nid = cpu_to_le32(nid);
869 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
870 	sum->version = version;
871 }
872 
873 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
874 {
875 	return __start_cp_addr(sbi) +
876 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
877 }
878 
879 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
880 {
881 	return __start_cp_addr(sbi) +
882 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
883 				- (base + 1) + type;
884 }
885 
886 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
887 {
888 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
889 		return true;
890 	return false;
891 }
892 
893 /*
894  * It is very important to gather dirty pages and write at once, so that we can
895  * submit a big bio without interfering other data writes.
896  * By default, 512 pages for directory data,
897  * 512 pages (2MB) * 8 for nodes, and
898  * 256 pages * 8 for meta are set.
899  */
900 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
901 {
902 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
903 		return 0;
904 
905 	if (type == DATA)
906 		return BLKS_PER_SEG(sbi);
907 	else if (type == NODE)
908 		return SEGS_TO_BLKS(sbi, 8);
909 	else if (type == META)
910 		return 8 * BIO_MAX_VECS;
911 	else
912 		return 0;
913 }
914 
915 /*
916  * When writing pages, it'd better align nr_to_write for segment size.
917  */
918 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
919 					struct writeback_control *wbc)
920 {
921 	long nr_to_write, desired;
922 
923 	if (wbc->sync_mode != WB_SYNC_NONE)
924 		return 0;
925 
926 	nr_to_write = wbc->nr_to_write;
927 	desired = BIO_MAX_VECS;
928 	if (type == NODE)
929 		desired <<= 1;
930 
931 	wbc->nr_to_write = desired;
932 	return desired - nr_to_write;
933 }
934 
935 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
936 {
937 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
938 	bool wakeup = false;
939 	int i;
940 
941 	if (force)
942 		goto wake_up;
943 
944 	mutex_lock(&dcc->cmd_lock);
945 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
946 		if (i + 1 < dcc->discard_granularity)
947 			break;
948 		if (!list_empty(&dcc->pend_list[i])) {
949 			wakeup = true;
950 			break;
951 		}
952 	}
953 	mutex_unlock(&dcc->cmd_lock);
954 	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
955 		return;
956 wake_up:
957 	dcc->discard_wake = true;
958 	wake_up_interruptible_all(&dcc->discard_wait_queue);
959 }
960 
961 static inline unsigned int first_zoned_segno(struct f2fs_sb_info *sbi)
962 {
963 	int devi;
964 
965 	for (devi = 0; devi < sbi->s_ndevs; devi++)
966 		if (bdev_is_zoned(FDEV(devi).bdev))
967 			return GET_SEGNO(sbi, FDEV(devi).start_blk);
968 	return 0;
969 }
970