xref: /linux/fs/f2fs/segment.h (revision 4ae555a5313a302d36e34b3273545e4088c37cce)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 
13 /* constant macro */
14 #define NULL_SEGNO			((unsigned int)(~0))
15 #define NULL_SECNO			((unsigned int)(~0))
16 
17 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
18 
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
22 
23 #define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
25 
26 #define IS_CURSEG(sbi, seg)						\
27 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
28 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
29 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
30 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
31 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
32 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33 
34 #define IS_CURSEC(sbi, secno)						\
35 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
36 	  sbi->segs_per_sec) ||	\
37 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
38 	  sbi->segs_per_sec) ||	\
39 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
40 	  sbi->segs_per_sec) ||	\
41 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
42 	  sbi->segs_per_sec) ||	\
43 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
44 	  sbi->segs_per_sec) ||	\
45 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
46 	  sbi->segs_per_sec))	\
47 
48 #define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
49 #define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
50 
51 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
52 #define MAIN_SECS(sbi)	(sbi->total_sections)
53 
54 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
55 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
56 
57 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
58 #define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
59 					sbi->log_blocks_per_seg))
60 
61 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
62 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
63 
64 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
65 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
66 
67 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
68 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
69 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
70 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
71 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
72 
73 #define GET_SEGNO(sbi, blk_addr)					\
74 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
75 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
76 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
77 #define GET_SECNO(sbi, segno)					\
78 	((segno) / sbi->segs_per_sec)
79 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
80 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
81 
82 #define GET_SUM_BLOCK(sbi, segno)				\
83 	((sbi->sm_info->ssa_blkaddr) + segno)
84 
85 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
86 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
87 
88 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
89 	(segno % sit_i->sents_per_block)
90 #define SIT_BLOCK_OFFSET(segno)					\
91 	(segno / SIT_ENTRY_PER_BLOCK)
92 #define	START_SEGNO(segno)		\
93 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
94 #define SIT_BLK_CNT(sbi)			\
95 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
96 #define f2fs_bitmap_size(nr)			\
97 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
98 
99 #define SECTOR_FROM_BLOCK(blk_addr)					\
100 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
101 #define SECTOR_TO_BLOCK(sectors)					\
102 	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
103 #define MAX_BIO_BLOCKS(sbi)						\
104 	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
105 
106 /*
107  * indicate a block allocation direction: RIGHT and LEFT.
108  * RIGHT means allocating new sections towards the end of volume.
109  * LEFT means the opposite direction.
110  */
111 enum {
112 	ALLOC_RIGHT = 0,
113 	ALLOC_LEFT
114 };
115 
116 /*
117  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
118  * LFS writes data sequentially with cleaning operations.
119  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
120  */
121 enum {
122 	LFS = 0,
123 	SSR
124 };
125 
126 /*
127  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
128  * GC_CB is based on cost-benefit algorithm.
129  * GC_GREEDY is based on greedy algorithm.
130  */
131 enum {
132 	GC_CB = 0,
133 	GC_GREEDY
134 };
135 
136 /*
137  * BG_GC means the background cleaning job.
138  * FG_GC means the on-demand cleaning job.
139  */
140 enum {
141 	BG_GC = 0,
142 	FG_GC
143 };
144 
145 /* for a function parameter to select a victim segment */
146 struct victim_sel_policy {
147 	int alloc_mode;			/* LFS or SSR */
148 	int gc_mode;			/* GC_CB or GC_GREEDY */
149 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
150 	unsigned int max_search;	/* maximum # of segments to search */
151 	unsigned int offset;		/* last scanned bitmap offset */
152 	unsigned int ofs_unit;		/* bitmap search unit */
153 	unsigned int min_cost;		/* minimum cost */
154 	unsigned int min_segno;		/* segment # having min. cost */
155 };
156 
157 struct seg_entry {
158 	unsigned short valid_blocks;	/* # of valid blocks */
159 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
160 	/*
161 	 * # of valid blocks and the validity bitmap stored in the the last
162 	 * checkpoint pack. This information is used by the SSR mode.
163 	 */
164 	unsigned short ckpt_valid_blocks;
165 	unsigned char *ckpt_valid_map;
166 	unsigned char *discard_map;
167 	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
168 	unsigned long long mtime;	/* modification time of the segment */
169 };
170 
171 struct sec_entry {
172 	unsigned int valid_blocks;	/* # of valid blocks in a section */
173 };
174 
175 struct segment_allocation {
176 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
177 };
178 
179 struct inmem_pages {
180 	struct list_head list;
181 	struct page *page;
182 };
183 
184 struct sit_info {
185 	const struct segment_allocation *s_ops;
186 
187 	block_t sit_base_addr;		/* start block address of SIT area */
188 	block_t sit_blocks;		/* # of blocks used by SIT area */
189 	block_t written_valid_blocks;	/* # of valid blocks in main area */
190 	char *sit_bitmap;		/* SIT bitmap pointer */
191 	unsigned int bitmap_size;	/* SIT bitmap size */
192 
193 	unsigned long *tmp_map;			/* bitmap for temporal use */
194 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
195 	unsigned int dirty_sentries;		/* # of dirty sentries */
196 	unsigned int sents_per_block;		/* # of SIT entries per block */
197 	struct mutex sentry_lock;		/* to protect SIT cache */
198 	struct seg_entry *sentries;		/* SIT segment-level cache */
199 	struct sec_entry *sec_entries;		/* SIT section-level cache */
200 
201 	/* for cost-benefit algorithm in cleaning procedure */
202 	unsigned long long elapsed_time;	/* elapsed time after mount */
203 	unsigned long long mounted_time;	/* mount time */
204 	unsigned long long min_mtime;		/* min. modification time */
205 	unsigned long long max_mtime;		/* max. modification time */
206 };
207 
208 struct free_segmap_info {
209 	unsigned int start_segno;	/* start segment number logically */
210 	unsigned int free_segments;	/* # of free segments */
211 	unsigned int free_sections;	/* # of free sections */
212 	spinlock_t segmap_lock;		/* free segmap lock */
213 	unsigned long *free_segmap;	/* free segment bitmap */
214 	unsigned long *free_secmap;	/* free section bitmap */
215 };
216 
217 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
218 enum dirty_type {
219 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
220 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
221 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
222 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
223 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
224 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
225 	DIRTY,			/* to count # of dirty segments */
226 	PRE,			/* to count # of entirely obsolete segments */
227 	NR_DIRTY_TYPE
228 };
229 
230 struct dirty_seglist_info {
231 	const struct victim_selection *v_ops;	/* victim selction operation */
232 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
233 	struct mutex seglist_lock;		/* lock for segment bitmaps */
234 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
235 	unsigned long *victim_secmap;		/* background GC victims */
236 };
237 
238 /* victim selection function for cleaning and SSR */
239 struct victim_selection {
240 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
241 							int, int, char);
242 };
243 
244 /* for active log information */
245 struct curseg_info {
246 	struct mutex curseg_mutex;		/* lock for consistency */
247 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
248 	unsigned char alloc_type;		/* current allocation type */
249 	unsigned int segno;			/* current segment number */
250 	unsigned short next_blkoff;		/* next block offset to write */
251 	unsigned int zone;			/* current zone number */
252 	unsigned int next_segno;		/* preallocated segment */
253 };
254 
255 struct sit_entry_set {
256 	struct list_head set_list;	/* link with all sit sets */
257 	unsigned int start_segno;	/* start segno of sits in set */
258 	unsigned int entry_cnt;		/* the # of sit entries in set */
259 };
260 
261 /*
262  * inline functions
263  */
264 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
265 {
266 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
267 }
268 
269 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
270 						unsigned int segno)
271 {
272 	struct sit_info *sit_i = SIT_I(sbi);
273 	return &sit_i->sentries[segno];
274 }
275 
276 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
277 						unsigned int segno)
278 {
279 	struct sit_info *sit_i = SIT_I(sbi);
280 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
281 }
282 
283 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
284 				unsigned int segno, int section)
285 {
286 	/*
287 	 * In order to get # of valid blocks in a section instantly from many
288 	 * segments, f2fs manages two counting structures separately.
289 	 */
290 	if (section > 1)
291 		return get_sec_entry(sbi, segno)->valid_blocks;
292 	else
293 		return get_seg_entry(sbi, segno)->valid_blocks;
294 }
295 
296 static inline void seg_info_from_raw_sit(struct seg_entry *se,
297 					struct f2fs_sit_entry *rs)
298 {
299 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
300 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
301 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
302 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
303 	se->type = GET_SIT_TYPE(rs);
304 	se->mtime = le64_to_cpu(rs->mtime);
305 }
306 
307 static inline void seg_info_to_raw_sit(struct seg_entry *se,
308 					struct f2fs_sit_entry *rs)
309 {
310 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
311 					se->valid_blocks;
312 	rs->vblocks = cpu_to_le16(raw_vblocks);
313 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
314 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
315 	se->ckpt_valid_blocks = se->valid_blocks;
316 	rs->mtime = cpu_to_le64(se->mtime);
317 }
318 
319 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
320 		unsigned int max, unsigned int segno)
321 {
322 	unsigned int ret;
323 	spin_lock(&free_i->segmap_lock);
324 	ret = find_next_bit(free_i->free_segmap, max, segno);
325 	spin_unlock(&free_i->segmap_lock);
326 	return ret;
327 }
328 
329 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
330 {
331 	struct free_segmap_info *free_i = FREE_I(sbi);
332 	unsigned int secno = segno / sbi->segs_per_sec;
333 	unsigned int start_segno = secno * sbi->segs_per_sec;
334 	unsigned int next;
335 
336 	spin_lock(&free_i->segmap_lock);
337 	clear_bit(segno, free_i->free_segmap);
338 	free_i->free_segments++;
339 
340 	next = find_next_bit(free_i->free_segmap,
341 			start_segno + sbi->segs_per_sec, start_segno);
342 	if (next >= start_segno + sbi->segs_per_sec) {
343 		clear_bit(secno, free_i->free_secmap);
344 		free_i->free_sections++;
345 	}
346 	spin_unlock(&free_i->segmap_lock);
347 }
348 
349 static inline void __set_inuse(struct f2fs_sb_info *sbi,
350 		unsigned int segno)
351 {
352 	struct free_segmap_info *free_i = FREE_I(sbi);
353 	unsigned int secno = segno / sbi->segs_per_sec;
354 	set_bit(segno, free_i->free_segmap);
355 	free_i->free_segments--;
356 	if (!test_and_set_bit(secno, free_i->free_secmap))
357 		free_i->free_sections--;
358 }
359 
360 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
361 		unsigned int segno)
362 {
363 	struct free_segmap_info *free_i = FREE_I(sbi);
364 	unsigned int secno = segno / sbi->segs_per_sec;
365 	unsigned int start_segno = secno * sbi->segs_per_sec;
366 	unsigned int next;
367 
368 	spin_lock(&free_i->segmap_lock);
369 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
370 		free_i->free_segments++;
371 
372 		next = find_next_bit(free_i->free_segmap,
373 				start_segno + sbi->segs_per_sec, start_segno);
374 		if (next >= start_segno + sbi->segs_per_sec) {
375 			if (test_and_clear_bit(secno, free_i->free_secmap))
376 				free_i->free_sections++;
377 		}
378 	}
379 	spin_unlock(&free_i->segmap_lock);
380 }
381 
382 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
383 		unsigned int segno)
384 {
385 	struct free_segmap_info *free_i = FREE_I(sbi);
386 	unsigned int secno = segno / sbi->segs_per_sec;
387 	spin_lock(&free_i->segmap_lock);
388 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
389 		free_i->free_segments--;
390 		if (!test_and_set_bit(secno, free_i->free_secmap))
391 			free_i->free_sections--;
392 	}
393 	spin_unlock(&free_i->segmap_lock);
394 }
395 
396 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
397 		void *dst_addr)
398 {
399 	struct sit_info *sit_i = SIT_I(sbi);
400 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
401 }
402 
403 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
404 {
405 	return SIT_I(sbi)->written_valid_blocks;
406 }
407 
408 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
409 {
410 	return FREE_I(sbi)->free_segments;
411 }
412 
413 static inline int reserved_segments(struct f2fs_sb_info *sbi)
414 {
415 	return SM_I(sbi)->reserved_segments;
416 }
417 
418 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
419 {
420 	return FREE_I(sbi)->free_sections;
421 }
422 
423 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
424 {
425 	return DIRTY_I(sbi)->nr_dirty[PRE];
426 }
427 
428 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
429 {
430 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
431 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
432 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
433 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
434 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
435 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
436 }
437 
438 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
439 {
440 	return SM_I(sbi)->ovp_segments;
441 }
442 
443 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
444 {
445 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
446 }
447 
448 static inline int reserved_sections(struct f2fs_sb_info *sbi)
449 {
450 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
451 }
452 
453 static inline bool need_SSR(struct f2fs_sb_info *sbi)
454 {
455 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
456 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
457 	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
458 						reserved_sections(sbi) + 1);
459 }
460 
461 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
462 {
463 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
464 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
465 
466 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
467 		return false;
468 
469 	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
470 						reserved_sections(sbi));
471 }
472 
473 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
474 {
475 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
476 }
477 
478 static inline int utilization(struct f2fs_sb_info *sbi)
479 {
480 	return div_u64((u64)valid_user_blocks(sbi) * 100,
481 					sbi->user_block_count);
482 }
483 
484 /*
485  * Sometimes f2fs may be better to drop out-of-place update policy.
486  * And, users can control the policy through sysfs entries.
487  * There are five policies with triggering conditions as follows.
488  * F2FS_IPU_FORCE - all the time,
489  * F2FS_IPU_SSR - if SSR mode is activated,
490  * F2FS_IPU_UTIL - if FS utilization is over threashold,
491  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
492  *                     threashold,
493  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
494  *                     storages. IPU will be triggered only if the # of dirty
495  *                     pages over min_fsync_blocks.
496  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
497  */
498 #define DEF_MIN_IPU_UTIL	70
499 #define DEF_MIN_FSYNC_BLOCKS	8
500 
501 enum {
502 	F2FS_IPU_FORCE,
503 	F2FS_IPU_SSR,
504 	F2FS_IPU_UTIL,
505 	F2FS_IPU_SSR_UTIL,
506 	F2FS_IPU_FSYNC,
507 };
508 
509 static inline bool need_inplace_update(struct inode *inode)
510 {
511 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
512 	unsigned int policy = SM_I(sbi)->ipu_policy;
513 
514 	/* IPU can be done only for the user data */
515 	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
516 		return false;
517 
518 	if (policy & (0x1 << F2FS_IPU_FORCE))
519 		return true;
520 	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
521 		return true;
522 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
523 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
524 		return true;
525 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
526 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
527 		return true;
528 
529 	/* this is only set during fdatasync */
530 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
531 			is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
532 		return true;
533 
534 	return false;
535 }
536 
537 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
538 		int type)
539 {
540 	struct curseg_info *curseg = CURSEG_I(sbi, type);
541 	return curseg->segno;
542 }
543 
544 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
545 		int type)
546 {
547 	struct curseg_info *curseg = CURSEG_I(sbi, type);
548 	return curseg->alloc_type;
549 }
550 
551 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
552 {
553 	struct curseg_info *curseg = CURSEG_I(sbi, type);
554 	return curseg->next_blkoff;
555 }
556 
557 #ifdef CONFIG_F2FS_CHECK_FS
558 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
559 {
560 	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
561 }
562 
563 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
564 {
565 	BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
566 	BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
567 }
568 
569 /*
570  * Summary block is always treated as an invalid block
571  */
572 static inline void check_block_count(struct f2fs_sb_info *sbi,
573 		int segno, struct f2fs_sit_entry *raw_sit)
574 {
575 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
576 	int valid_blocks = 0;
577 	int cur_pos = 0, next_pos;
578 
579 	/* check segment usage */
580 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
581 
582 	/* check boundary of a given segment number */
583 	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
584 
585 	/* check bitmap with valid block count */
586 	do {
587 		if (is_valid) {
588 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
589 					sbi->blocks_per_seg,
590 					cur_pos);
591 			valid_blocks += next_pos - cur_pos;
592 		} else
593 			next_pos = find_next_bit_le(&raw_sit->valid_map,
594 					sbi->blocks_per_seg,
595 					cur_pos);
596 		cur_pos = next_pos;
597 		is_valid = !is_valid;
598 	} while (cur_pos < sbi->blocks_per_seg);
599 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
600 }
601 #else
602 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
603 {
604 	if (segno > TOTAL_SEGS(sbi) - 1)
605 		set_sbi_flag(sbi, SBI_NEED_FSCK);
606 }
607 
608 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
609 {
610 	if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
611 		set_sbi_flag(sbi, SBI_NEED_FSCK);
612 }
613 
614 /*
615  * Summary block is always treated as an invalid block
616  */
617 static inline void check_block_count(struct f2fs_sb_info *sbi,
618 		int segno, struct f2fs_sit_entry *raw_sit)
619 {
620 	/* check segment usage */
621 	if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
622 		set_sbi_flag(sbi, SBI_NEED_FSCK);
623 
624 	/* check boundary of a given segment number */
625 	if (segno > TOTAL_SEGS(sbi) - 1)
626 		set_sbi_flag(sbi, SBI_NEED_FSCK);
627 }
628 #endif
629 
630 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
631 						unsigned int start)
632 {
633 	struct sit_info *sit_i = SIT_I(sbi);
634 	unsigned int offset = SIT_BLOCK_OFFSET(start);
635 	block_t blk_addr = sit_i->sit_base_addr + offset;
636 
637 	check_seg_range(sbi, start);
638 
639 	/* calculate sit block address */
640 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
641 		blk_addr += sit_i->sit_blocks;
642 
643 	return blk_addr;
644 }
645 
646 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
647 						pgoff_t block_addr)
648 {
649 	struct sit_info *sit_i = SIT_I(sbi);
650 	block_addr -= sit_i->sit_base_addr;
651 	if (block_addr < sit_i->sit_blocks)
652 		block_addr += sit_i->sit_blocks;
653 	else
654 		block_addr -= sit_i->sit_blocks;
655 
656 	return block_addr + sit_i->sit_base_addr;
657 }
658 
659 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
660 {
661 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
662 
663 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
664 }
665 
666 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
667 {
668 	struct sit_info *sit_i = SIT_I(sbi);
669 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
670 						sit_i->mounted_time;
671 }
672 
673 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
674 			unsigned int ofs_in_node, unsigned char version)
675 {
676 	sum->nid = cpu_to_le32(nid);
677 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
678 	sum->version = version;
679 }
680 
681 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
682 {
683 	return __start_cp_addr(sbi) +
684 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
685 }
686 
687 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
688 {
689 	return __start_cp_addr(sbi) +
690 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
691 				- (base + 1) + type;
692 }
693 
694 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
695 {
696 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
697 		return true;
698 	return false;
699 }
700 
701 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
702 {
703 	struct block_device *bdev = sbi->sb->s_bdev;
704 	struct request_queue *q = bdev_get_queue(bdev);
705 	return SECTOR_TO_BLOCK(queue_max_sectors(q));
706 }
707 
708 /*
709  * It is very important to gather dirty pages and write at once, so that we can
710  * submit a big bio without interfering other data writes.
711  * By default, 512 pages for directory data,
712  * 512 pages (2MB) * 3 for three types of nodes, and
713  * max_bio_blocks for meta are set.
714  */
715 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
716 {
717 	if (sbi->sb->s_bdi->dirty_exceeded)
718 		return 0;
719 
720 	if (type == DATA)
721 		return sbi->blocks_per_seg;
722 	else if (type == NODE)
723 		return 3 * sbi->blocks_per_seg;
724 	else if (type == META)
725 		return MAX_BIO_BLOCKS(sbi);
726 	else
727 		return 0;
728 }
729 
730 /*
731  * When writing pages, it'd better align nr_to_write for segment size.
732  */
733 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
734 					struct writeback_control *wbc)
735 {
736 	long nr_to_write, desired;
737 
738 	if (wbc->sync_mode != WB_SYNC_NONE)
739 		return 0;
740 
741 	nr_to_write = wbc->nr_to_write;
742 
743 	if (type == DATA)
744 		desired = 4096;
745 	else if (type == NODE)
746 		desired = 3 * max_hw_blocks(sbi);
747 	else
748 		desired = MAX_BIO_BLOCKS(sbi);
749 
750 	wbc->nr_to_write = desired;
751 	return desired - nr_to_write;
752 }
753