1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 13 /* constant macro */ 14 #define NULL_SEGNO ((unsigned int)(~0)) 15 #define NULL_SECNO ((unsigned int)(~0)) 16 17 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 18 19 /* L: Logical segment # in volume, R: Relative segment # in main area */ 20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) 21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) 22 23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) 24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) 25 26 #define IS_CURSEG(sbi, seg) \ 27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 33 34 #define IS_CURSEC(sbi, secno) \ 35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 36 sbi->segs_per_sec) || \ 37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 38 sbi->segs_per_sec) || \ 39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 40 sbi->segs_per_sec) || \ 41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 42 sbi->segs_per_sec) || \ 43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 44 sbi->segs_per_sec) || \ 45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 46 sbi->segs_per_sec)) \ 47 48 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr) 49 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr) 50 51 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 52 #define MAIN_SECS(sbi) (sbi->total_sections) 53 54 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count) 55 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg) 56 57 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 58 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \ 59 sbi->log_blocks_per_seg)) 60 61 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 62 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) 63 64 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 65 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) 66 67 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 68 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 69 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) 70 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 71 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1)) 72 73 #define GET_SEGNO(sbi, blk_addr) \ 74 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ 75 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 76 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 77 #define GET_SECNO(sbi, segno) \ 78 ((segno) / sbi->segs_per_sec) 79 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ 80 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) 81 82 #define GET_SUM_BLOCK(sbi, segno) \ 83 ((sbi->sm_info->ssa_blkaddr) + segno) 84 85 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 86 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) 87 88 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 89 (segno % sit_i->sents_per_block) 90 #define SIT_BLOCK_OFFSET(segno) \ 91 (segno / SIT_ENTRY_PER_BLOCK) 92 #define START_SEGNO(segno) \ 93 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 94 #define SIT_BLK_CNT(sbi) \ 95 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 96 #define f2fs_bitmap_size(nr) \ 97 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 98 99 #define SECTOR_FROM_BLOCK(blk_addr) \ 100 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 101 #define SECTOR_TO_BLOCK(sectors) \ 102 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK) 103 #define MAX_BIO_BLOCKS(sbi) \ 104 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES)) 105 106 /* 107 * indicate a block allocation direction: RIGHT and LEFT. 108 * RIGHT means allocating new sections towards the end of volume. 109 * LEFT means the opposite direction. 110 */ 111 enum { 112 ALLOC_RIGHT = 0, 113 ALLOC_LEFT 114 }; 115 116 /* 117 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 118 * LFS writes data sequentially with cleaning operations. 119 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 120 */ 121 enum { 122 LFS = 0, 123 SSR 124 }; 125 126 /* 127 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 128 * GC_CB is based on cost-benefit algorithm. 129 * GC_GREEDY is based on greedy algorithm. 130 */ 131 enum { 132 GC_CB = 0, 133 GC_GREEDY 134 }; 135 136 /* 137 * BG_GC means the background cleaning job. 138 * FG_GC means the on-demand cleaning job. 139 */ 140 enum { 141 BG_GC = 0, 142 FG_GC 143 }; 144 145 /* for a function parameter to select a victim segment */ 146 struct victim_sel_policy { 147 int alloc_mode; /* LFS or SSR */ 148 int gc_mode; /* GC_CB or GC_GREEDY */ 149 unsigned long *dirty_segmap; /* dirty segment bitmap */ 150 unsigned int max_search; /* maximum # of segments to search */ 151 unsigned int offset; /* last scanned bitmap offset */ 152 unsigned int ofs_unit; /* bitmap search unit */ 153 unsigned int min_cost; /* minimum cost */ 154 unsigned int min_segno; /* segment # having min. cost */ 155 }; 156 157 struct seg_entry { 158 unsigned short valid_blocks; /* # of valid blocks */ 159 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 160 /* 161 * # of valid blocks and the validity bitmap stored in the the last 162 * checkpoint pack. This information is used by the SSR mode. 163 */ 164 unsigned short ckpt_valid_blocks; 165 unsigned char *ckpt_valid_map; 166 unsigned char *discard_map; 167 unsigned char type; /* segment type like CURSEG_XXX_TYPE */ 168 unsigned long long mtime; /* modification time of the segment */ 169 }; 170 171 struct sec_entry { 172 unsigned int valid_blocks; /* # of valid blocks in a section */ 173 }; 174 175 struct segment_allocation { 176 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 177 }; 178 179 struct inmem_pages { 180 struct list_head list; 181 struct page *page; 182 }; 183 184 struct sit_info { 185 const struct segment_allocation *s_ops; 186 187 block_t sit_base_addr; /* start block address of SIT area */ 188 block_t sit_blocks; /* # of blocks used by SIT area */ 189 block_t written_valid_blocks; /* # of valid blocks in main area */ 190 char *sit_bitmap; /* SIT bitmap pointer */ 191 unsigned int bitmap_size; /* SIT bitmap size */ 192 193 unsigned long *tmp_map; /* bitmap for temporal use */ 194 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 195 unsigned int dirty_sentries; /* # of dirty sentries */ 196 unsigned int sents_per_block; /* # of SIT entries per block */ 197 struct mutex sentry_lock; /* to protect SIT cache */ 198 struct seg_entry *sentries; /* SIT segment-level cache */ 199 struct sec_entry *sec_entries; /* SIT section-level cache */ 200 201 /* for cost-benefit algorithm in cleaning procedure */ 202 unsigned long long elapsed_time; /* elapsed time after mount */ 203 unsigned long long mounted_time; /* mount time */ 204 unsigned long long min_mtime; /* min. modification time */ 205 unsigned long long max_mtime; /* max. modification time */ 206 }; 207 208 struct free_segmap_info { 209 unsigned int start_segno; /* start segment number logically */ 210 unsigned int free_segments; /* # of free segments */ 211 unsigned int free_sections; /* # of free sections */ 212 spinlock_t segmap_lock; /* free segmap lock */ 213 unsigned long *free_segmap; /* free segment bitmap */ 214 unsigned long *free_secmap; /* free section bitmap */ 215 }; 216 217 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 218 enum dirty_type { 219 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 220 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 221 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 222 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 223 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 224 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 225 DIRTY, /* to count # of dirty segments */ 226 PRE, /* to count # of entirely obsolete segments */ 227 NR_DIRTY_TYPE 228 }; 229 230 struct dirty_seglist_info { 231 const struct victim_selection *v_ops; /* victim selction operation */ 232 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 233 struct mutex seglist_lock; /* lock for segment bitmaps */ 234 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 235 unsigned long *victim_secmap; /* background GC victims */ 236 }; 237 238 /* victim selection function for cleaning and SSR */ 239 struct victim_selection { 240 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 241 int, int, char); 242 }; 243 244 /* for active log information */ 245 struct curseg_info { 246 struct mutex curseg_mutex; /* lock for consistency */ 247 struct f2fs_summary_block *sum_blk; /* cached summary block */ 248 unsigned char alloc_type; /* current allocation type */ 249 unsigned int segno; /* current segment number */ 250 unsigned short next_blkoff; /* next block offset to write */ 251 unsigned int zone; /* current zone number */ 252 unsigned int next_segno; /* preallocated segment */ 253 }; 254 255 struct sit_entry_set { 256 struct list_head set_list; /* link with all sit sets */ 257 unsigned int start_segno; /* start segno of sits in set */ 258 unsigned int entry_cnt; /* the # of sit entries in set */ 259 }; 260 261 /* 262 * inline functions 263 */ 264 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 265 { 266 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 267 } 268 269 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 270 unsigned int segno) 271 { 272 struct sit_info *sit_i = SIT_I(sbi); 273 return &sit_i->sentries[segno]; 274 } 275 276 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 277 unsigned int segno) 278 { 279 struct sit_info *sit_i = SIT_I(sbi); 280 return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; 281 } 282 283 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 284 unsigned int segno, int section) 285 { 286 /* 287 * In order to get # of valid blocks in a section instantly from many 288 * segments, f2fs manages two counting structures separately. 289 */ 290 if (section > 1) 291 return get_sec_entry(sbi, segno)->valid_blocks; 292 else 293 return get_seg_entry(sbi, segno)->valid_blocks; 294 } 295 296 static inline void seg_info_from_raw_sit(struct seg_entry *se, 297 struct f2fs_sit_entry *rs) 298 { 299 se->valid_blocks = GET_SIT_VBLOCKS(rs); 300 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 301 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 302 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 303 se->type = GET_SIT_TYPE(rs); 304 se->mtime = le64_to_cpu(rs->mtime); 305 } 306 307 static inline void seg_info_to_raw_sit(struct seg_entry *se, 308 struct f2fs_sit_entry *rs) 309 { 310 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 311 se->valid_blocks; 312 rs->vblocks = cpu_to_le16(raw_vblocks); 313 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 314 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 315 se->ckpt_valid_blocks = se->valid_blocks; 316 rs->mtime = cpu_to_le64(se->mtime); 317 } 318 319 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 320 unsigned int max, unsigned int segno) 321 { 322 unsigned int ret; 323 spin_lock(&free_i->segmap_lock); 324 ret = find_next_bit(free_i->free_segmap, max, segno); 325 spin_unlock(&free_i->segmap_lock); 326 return ret; 327 } 328 329 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 330 { 331 struct free_segmap_info *free_i = FREE_I(sbi); 332 unsigned int secno = segno / sbi->segs_per_sec; 333 unsigned int start_segno = secno * sbi->segs_per_sec; 334 unsigned int next; 335 336 spin_lock(&free_i->segmap_lock); 337 clear_bit(segno, free_i->free_segmap); 338 free_i->free_segments++; 339 340 next = find_next_bit(free_i->free_segmap, 341 start_segno + sbi->segs_per_sec, start_segno); 342 if (next >= start_segno + sbi->segs_per_sec) { 343 clear_bit(secno, free_i->free_secmap); 344 free_i->free_sections++; 345 } 346 spin_unlock(&free_i->segmap_lock); 347 } 348 349 static inline void __set_inuse(struct f2fs_sb_info *sbi, 350 unsigned int segno) 351 { 352 struct free_segmap_info *free_i = FREE_I(sbi); 353 unsigned int secno = segno / sbi->segs_per_sec; 354 set_bit(segno, free_i->free_segmap); 355 free_i->free_segments--; 356 if (!test_and_set_bit(secno, free_i->free_secmap)) 357 free_i->free_sections--; 358 } 359 360 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 361 unsigned int segno) 362 { 363 struct free_segmap_info *free_i = FREE_I(sbi); 364 unsigned int secno = segno / sbi->segs_per_sec; 365 unsigned int start_segno = secno * sbi->segs_per_sec; 366 unsigned int next; 367 368 spin_lock(&free_i->segmap_lock); 369 if (test_and_clear_bit(segno, free_i->free_segmap)) { 370 free_i->free_segments++; 371 372 next = find_next_bit(free_i->free_segmap, 373 start_segno + sbi->segs_per_sec, start_segno); 374 if (next >= start_segno + sbi->segs_per_sec) { 375 if (test_and_clear_bit(secno, free_i->free_secmap)) 376 free_i->free_sections++; 377 } 378 } 379 spin_unlock(&free_i->segmap_lock); 380 } 381 382 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 383 unsigned int segno) 384 { 385 struct free_segmap_info *free_i = FREE_I(sbi); 386 unsigned int secno = segno / sbi->segs_per_sec; 387 spin_lock(&free_i->segmap_lock); 388 if (!test_and_set_bit(segno, free_i->free_segmap)) { 389 free_i->free_segments--; 390 if (!test_and_set_bit(secno, free_i->free_secmap)) 391 free_i->free_sections--; 392 } 393 spin_unlock(&free_i->segmap_lock); 394 } 395 396 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 397 void *dst_addr) 398 { 399 struct sit_info *sit_i = SIT_I(sbi); 400 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 401 } 402 403 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 404 { 405 return SIT_I(sbi)->written_valid_blocks; 406 } 407 408 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 409 { 410 return FREE_I(sbi)->free_segments; 411 } 412 413 static inline int reserved_segments(struct f2fs_sb_info *sbi) 414 { 415 return SM_I(sbi)->reserved_segments; 416 } 417 418 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 419 { 420 return FREE_I(sbi)->free_sections; 421 } 422 423 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 424 { 425 return DIRTY_I(sbi)->nr_dirty[PRE]; 426 } 427 428 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 429 { 430 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 431 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 432 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 433 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 434 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 435 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 436 } 437 438 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 439 { 440 return SM_I(sbi)->ovp_segments; 441 } 442 443 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 444 { 445 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; 446 } 447 448 static inline int reserved_sections(struct f2fs_sb_info *sbi) 449 { 450 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; 451 } 452 453 static inline bool need_SSR(struct f2fs_sb_info *sbi) 454 { 455 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 456 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 457 return free_sections(sbi) <= (node_secs + 2 * dent_secs + 458 reserved_sections(sbi) + 1); 459 } 460 461 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) 462 { 463 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 464 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 465 466 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 467 return false; 468 469 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + 470 reserved_sections(sbi)); 471 } 472 473 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 474 { 475 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 476 } 477 478 static inline int utilization(struct f2fs_sb_info *sbi) 479 { 480 return div_u64((u64)valid_user_blocks(sbi) * 100, 481 sbi->user_block_count); 482 } 483 484 /* 485 * Sometimes f2fs may be better to drop out-of-place update policy. 486 * And, users can control the policy through sysfs entries. 487 * There are five policies with triggering conditions as follows. 488 * F2FS_IPU_FORCE - all the time, 489 * F2FS_IPU_SSR - if SSR mode is activated, 490 * F2FS_IPU_UTIL - if FS utilization is over threashold, 491 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 492 * threashold, 493 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 494 * storages. IPU will be triggered only if the # of dirty 495 * pages over min_fsync_blocks. 496 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 497 */ 498 #define DEF_MIN_IPU_UTIL 70 499 #define DEF_MIN_FSYNC_BLOCKS 8 500 501 enum { 502 F2FS_IPU_FORCE, 503 F2FS_IPU_SSR, 504 F2FS_IPU_UTIL, 505 F2FS_IPU_SSR_UTIL, 506 F2FS_IPU_FSYNC, 507 }; 508 509 static inline bool need_inplace_update(struct inode *inode) 510 { 511 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 512 unsigned int policy = SM_I(sbi)->ipu_policy; 513 514 /* IPU can be done only for the user data */ 515 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode)) 516 return false; 517 518 if (policy & (0x1 << F2FS_IPU_FORCE)) 519 return true; 520 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) 521 return true; 522 if (policy & (0x1 << F2FS_IPU_UTIL) && 523 utilization(sbi) > SM_I(sbi)->min_ipu_util) 524 return true; 525 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && 526 utilization(sbi) > SM_I(sbi)->min_ipu_util) 527 return true; 528 529 /* this is only set during fdatasync */ 530 if (policy & (0x1 << F2FS_IPU_FSYNC) && 531 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU)) 532 return true; 533 534 return false; 535 } 536 537 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 538 int type) 539 { 540 struct curseg_info *curseg = CURSEG_I(sbi, type); 541 return curseg->segno; 542 } 543 544 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 545 int type) 546 { 547 struct curseg_info *curseg = CURSEG_I(sbi, type); 548 return curseg->alloc_type; 549 } 550 551 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 552 { 553 struct curseg_info *curseg = CURSEG_I(sbi, type); 554 return curseg->next_blkoff; 555 } 556 557 #ifdef CONFIG_F2FS_CHECK_FS 558 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 559 { 560 BUG_ON(segno > TOTAL_SEGS(sbi) - 1); 561 } 562 563 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 564 { 565 BUG_ON(blk_addr < SEG0_BLKADDR(sbi)); 566 BUG_ON(blk_addr >= MAX_BLKADDR(sbi)); 567 } 568 569 /* 570 * Summary block is always treated as an invalid block 571 */ 572 static inline void check_block_count(struct f2fs_sb_info *sbi, 573 int segno, struct f2fs_sit_entry *raw_sit) 574 { 575 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 576 int valid_blocks = 0; 577 int cur_pos = 0, next_pos; 578 579 /* check segment usage */ 580 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); 581 582 /* check boundary of a given segment number */ 583 BUG_ON(segno > TOTAL_SEGS(sbi) - 1); 584 585 /* check bitmap with valid block count */ 586 do { 587 if (is_valid) { 588 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 589 sbi->blocks_per_seg, 590 cur_pos); 591 valid_blocks += next_pos - cur_pos; 592 } else 593 next_pos = find_next_bit_le(&raw_sit->valid_map, 594 sbi->blocks_per_seg, 595 cur_pos); 596 cur_pos = next_pos; 597 is_valid = !is_valid; 598 } while (cur_pos < sbi->blocks_per_seg); 599 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 600 } 601 #else 602 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 603 { 604 if (segno > TOTAL_SEGS(sbi) - 1) 605 set_sbi_flag(sbi, SBI_NEED_FSCK); 606 } 607 608 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 609 { 610 if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi)) 611 set_sbi_flag(sbi, SBI_NEED_FSCK); 612 } 613 614 /* 615 * Summary block is always treated as an invalid block 616 */ 617 static inline void check_block_count(struct f2fs_sb_info *sbi, 618 int segno, struct f2fs_sit_entry *raw_sit) 619 { 620 /* check segment usage */ 621 if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg) 622 set_sbi_flag(sbi, SBI_NEED_FSCK); 623 624 /* check boundary of a given segment number */ 625 if (segno > TOTAL_SEGS(sbi) - 1) 626 set_sbi_flag(sbi, SBI_NEED_FSCK); 627 } 628 #endif 629 630 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 631 unsigned int start) 632 { 633 struct sit_info *sit_i = SIT_I(sbi); 634 unsigned int offset = SIT_BLOCK_OFFSET(start); 635 block_t blk_addr = sit_i->sit_base_addr + offset; 636 637 check_seg_range(sbi, start); 638 639 /* calculate sit block address */ 640 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 641 blk_addr += sit_i->sit_blocks; 642 643 return blk_addr; 644 } 645 646 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 647 pgoff_t block_addr) 648 { 649 struct sit_info *sit_i = SIT_I(sbi); 650 block_addr -= sit_i->sit_base_addr; 651 if (block_addr < sit_i->sit_blocks) 652 block_addr += sit_i->sit_blocks; 653 else 654 block_addr -= sit_i->sit_blocks; 655 656 return block_addr + sit_i->sit_base_addr; 657 } 658 659 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 660 { 661 unsigned int block_off = SIT_BLOCK_OFFSET(start); 662 663 f2fs_change_bit(block_off, sit_i->sit_bitmap); 664 } 665 666 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 667 { 668 struct sit_info *sit_i = SIT_I(sbi); 669 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - 670 sit_i->mounted_time; 671 } 672 673 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 674 unsigned int ofs_in_node, unsigned char version) 675 { 676 sum->nid = cpu_to_le32(nid); 677 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 678 sum->version = version; 679 } 680 681 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 682 { 683 return __start_cp_addr(sbi) + 684 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 685 } 686 687 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 688 { 689 return __start_cp_addr(sbi) + 690 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 691 - (base + 1) + type; 692 } 693 694 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 695 { 696 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 697 return true; 698 return false; 699 } 700 701 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) 702 { 703 struct block_device *bdev = sbi->sb->s_bdev; 704 struct request_queue *q = bdev_get_queue(bdev); 705 return SECTOR_TO_BLOCK(queue_max_sectors(q)); 706 } 707 708 /* 709 * It is very important to gather dirty pages and write at once, so that we can 710 * submit a big bio without interfering other data writes. 711 * By default, 512 pages for directory data, 712 * 512 pages (2MB) * 3 for three types of nodes, and 713 * max_bio_blocks for meta are set. 714 */ 715 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 716 { 717 if (sbi->sb->s_bdi->dirty_exceeded) 718 return 0; 719 720 if (type == DATA) 721 return sbi->blocks_per_seg; 722 else if (type == NODE) 723 return 3 * sbi->blocks_per_seg; 724 else if (type == META) 725 return MAX_BIO_BLOCKS(sbi); 726 else 727 return 0; 728 } 729 730 /* 731 * When writing pages, it'd better align nr_to_write for segment size. 732 */ 733 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 734 struct writeback_control *wbc) 735 { 736 long nr_to_write, desired; 737 738 if (wbc->sync_mode != WB_SYNC_NONE) 739 return 0; 740 741 nr_to_write = wbc->nr_to_write; 742 743 if (type == DATA) 744 desired = 4096; 745 else if (type == NODE) 746 desired = 3 * max_hw_blocks(sbi); 747 else 748 desired = MAX_BIO_BLOCKS(sbi); 749 750 wbc->nr_to_write = desired; 751 return desired - nr_to_write; 752 } 753