xref: /linux/fs/f2fs/segment.h (revision 46ff24efe04ac96a129dd01138640c3447a525e1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20 
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24 
25 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
28 
29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 						unsigned short seg_type)
31 {
32 	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34 
35 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38 
39 #define IS_CURSEG(sbi, seg)						\
40 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
41 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
42 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
43 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
44 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
45 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
46 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
47 	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48 
49 #define IS_CURSEC(sbi, secno)						\
50 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
51 	  (sbi)->segs_per_sec) ||	\
52 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
53 	  (sbi)->segs_per_sec) ||	\
54 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
55 	  (sbi)->segs_per_sec) ||	\
56 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
57 	  (sbi)->segs_per_sec) ||	\
58 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
59 	  (sbi)->segs_per_sec) ||	\
60 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
61 	  (sbi)->segs_per_sec) ||	\
62 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
63 	  (sbi)->segs_per_sec) ||	\
64 	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
65 	  (sbi)->segs_per_sec))
66 
67 #define MAIN_BLKADDR(sbi)						\
68 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
69 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi)						\
71 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
72 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73 
74 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi)	((sbi)->total_sections)
76 
77 #define TOTAL_SEGS(sbi)							\
78 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
79 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81 
82 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
84 					(sbi)->log_blocks_per_seg))
85 
86 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
87 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88 
89 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
90 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91 
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
94 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
96 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97 
98 #define GET_SEGNO(sbi, blk_addr)					\
99 	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi)					\
103 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi)					\
105 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg -		\
106 	 (sbi)->unusable_blocks_per_sec)
107 #define GET_SEC_FROM_SEG(sbi, segno)				\
108 	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
109 #define GET_SEG_FROM_SEC(sbi, secno)				\
110 	((secno) * (sbi)->segs_per_sec)
111 #define GET_ZONE_FROM_SEC(sbi, secno)				\
112 	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
113 #define GET_ZONE_FROM_SEG(sbi, segno)				\
114 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115 
116 #define GET_SUM_BLOCK(sbi, segno)				\
117 	((sbi)->sm_info->ssa_blkaddr + (segno))
118 
119 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121 
122 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
123 	((segno) % (sit_i)->sents_per_block)
124 #define SIT_BLOCK_OFFSET(segno)					\
125 	((segno) / SIT_ENTRY_PER_BLOCK)
126 #define	START_SEGNO(segno)		\
127 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128 #define SIT_BLK_CNT(sbi)			\
129 	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130 #define f2fs_bitmap_size(nr)			\
131 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
132 
133 #define SECTOR_FROM_BLOCK(blk_addr)					\
134 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135 #define SECTOR_TO_BLOCK(sectors)					\
136 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137 
138 /*
139  * indicate a block allocation direction: RIGHT and LEFT.
140  * RIGHT means allocating new sections towards the end of volume.
141  * LEFT means the opposite direction.
142  */
143 enum {
144 	ALLOC_RIGHT = 0,
145 	ALLOC_LEFT
146 };
147 
148 /*
149  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
150  * LFS writes data sequentially with cleaning operations.
151  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
152  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
153  * fragmented segment which has similar aging degree.
154  */
155 enum {
156 	LFS = 0,
157 	SSR,
158 	AT_SSR,
159 };
160 
161 /*
162  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
163  * GC_CB is based on cost-benefit algorithm.
164  * GC_GREEDY is based on greedy algorithm.
165  * GC_AT is based on age-threshold algorithm.
166  */
167 enum {
168 	GC_CB = 0,
169 	GC_GREEDY,
170 	GC_AT,
171 	ALLOC_NEXT,
172 	FLUSH_DEVICE,
173 	MAX_GC_POLICY,
174 };
175 
176 /*
177  * BG_GC means the background cleaning job.
178  * FG_GC means the on-demand cleaning job.
179  */
180 enum {
181 	BG_GC = 0,
182 	FG_GC,
183 };
184 
185 /* for a function parameter to select a victim segment */
186 struct victim_sel_policy {
187 	int alloc_mode;			/* LFS or SSR */
188 	int gc_mode;			/* GC_CB or GC_GREEDY */
189 	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
190 	unsigned int max_search;	/*
191 					 * maximum # of segments/sections
192 					 * to search
193 					 */
194 	unsigned int offset;		/* last scanned bitmap offset */
195 	unsigned int ofs_unit;		/* bitmap search unit */
196 	unsigned int min_cost;		/* minimum cost */
197 	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
198 	unsigned int min_segno;		/* segment # having min. cost */
199 	unsigned long long age;		/* mtime of GCed section*/
200 	unsigned long long age_threshold;/* age threshold */
201 };
202 
203 struct seg_entry {
204 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
205 	unsigned int valid_blocks:10;	/* # of valid blocks */
206 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
207 	unsigned int padding:6;		/* padding */
208 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
209 #ifdef CONFIG_F2FS_CHECK_FS
210 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
211 #endif
212 	/*
213 	 * # of valid blocks and the validity bitmap stored in the last
214 	 * checkpoint pack. This information is used by the SSR mode.
215 	 */
216 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
217 	unsigned char *discard_map;
218 	unsigned long long mtime;	/* modification time of the segment */
219 };
220 
221 struct sec_entry {
222 	unsigned int valid_blocks;	/* # of valid blocks in a section */
223 };
224 
225 #define MAX_SKIP_GC_COUNT			16
226 
227 struct revoke_entry {
228 	struct list_head list;
229 	block_t old_addr;		/* for revoking when fail to commit */
230 	pgoff_t index;
231 };
232 
233 struct sit_info {
234 	block_t sit_base_addr;		/* start block address of SIT area */
235 	block_t sit_blocks;		/* # of blocks used by SIT area */
236 	block_t written_valid_blocks;	/* # of valid blocks in main area */
237 	char *bitmap;			/* all bitmaps pointer */
238 	char *sit_bitmap;		/* SIT bitmap pointer */
239 #ifdef CONFIG_F2FS_CHECK_FS
240 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
241 
242 	/* bitmap of segments to be ignored by GC in case of errors */
243 	unsigned long *invalid_segmap;
244 #endif
245 	unsigned int bitmap_size;	/* SIT bitmap size */
246 
247 	unsigned long *tmp_map;			/* bitmap for temporal use */
248 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
249 	unsigned int dirty_sentries;		/* # of dirty sentries */
250 	unsigned int sents_per_block;		/* # of SIT entries per block */
251 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
252 	struct seg_entry *sentries;		/* SIT segment-level cache */
253 	struct sec_entry *sec_entries;		/* SIT section-level cache */
254 
255 	/* for cost-benefit algorithm in cleaning procedure */
256 	unsigned long long elapsed_time;	/* elapsed time after mount */
257 	unsigned long long mounted_time;	/* mount time */
258 	unsigned long long min_mtime;		/* min. modification time */
259 	unsigned long long max_mtime;		/* max. modification time */
260 	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
261 	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
262 
263 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
264 };
265 
266 struct free_segmap_info {
267 	unsigned int start_segno;	/* start segment number logically */
268 	unsigned int free_segments;	/* # of free segments */
269 	unsigned int free_sections;	/* # of free sections */
270 	spinlock_t segmap_lock;		/* free segmap lock */
271 	unsigned long *free_segmap;	/* free segment bitmap */
272 	unsigned long *free_secmap;	/* free section bitmap */
273 };
274 
275 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
276 enum dirty_type {
277 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
278 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
279 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
280 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
281 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
282 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
283 	DIRTY,			/* to count # of dirty segments */
284 	PRE,			/* to count # of entirely obsolete segments */
285 	NR_DIRTY_TYPE
286 };
287 
288 struct dirty_seglist_info {
289 	const struct victim_selection *v_ops;	/* victim selction operation */
290 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
291 	unsigned long *dirty_secmap;
292 	struct mutex seglist_lock;		/* lock for segment bitmaps */
293 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
294 	unsigned long *victim_secmap;		/* background GC victims */
295 	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
296 	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
297 	bool enable_pin_section;		/* enable pinning section */
298 };
299 
300 /* victim selection function for cleaning and SSR */
301 struct victim_selection {
302 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
303 					int, int, char, unsigned long long);
304 };
305 
306 /* for active log information */
307 struct curseg_info {
308 	struct mutex curseg_mutex;		/* lock for consistency */
309 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
310 	struct rw_semaphore journal_rwsem;	/* protect journal area */
311 	struct f2fs_journal *journal;		/* cached journal info */
312 	unsigned char alloc_type;		/* current allocation type */
313 	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
314 	unsigned int segno;			/* current segment number */
315 	unsigned short next_blkoff;		/* next block offset to write */
316 	unsigned int zone;			/* current zone number */
317 	unsigned int next_segno;		/* preallocated segment */
318 	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
319 	bool inited;				/* indicate inmem log is inited */
320 };
321 
322 struct sit_entry_set {
323 	struct list_head set_list;	/* link with all sit sets */
324 	unsigned int start_segno;	/* start segno of sits in set */
325 	unsigned int entry_cnt;		/* the # of sit entries in set */
326 };
327 
328 /*
329  * inline functions
330  */
331 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
332 {
333 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
334 }
335 
336 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
337 						unsigned int segno)
338 {
339 	struct sit_info *sit_i = SIT_I(sbi);
340 	return &sit_i->sentries[segno];
341 }
342 
343 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
344 						unsigned int segno)
345 {
346 	struct sit_info *sit_i = SIT_I(sbi);
347 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
348 }
349 
350 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
351 				unsigned int segno, bool use_section)
352 {
353 	/*
354 	 * In order to get # of valid blocks in a section instantly from many
355 	 * segments, f2fs manages two counting structures separately.
356 	 */
357 	if (use_section && __is_large_section(sbi))
358 		return get_sec_entry(sbi, segno)->valid_blocks;
359 	else
360 		return get_seg_entry(sbi, segno)->valid_blocks;
361 }
362 
363 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
364 				unsigned int segno, bool use_section)
365 {
366 	if (use_section && __is_large_section(sbi)) {
367 		unsigned int start_segno = START_SEGNO(segno);
368 		unsigned int blocks = 0;
369 		int i;
370 
371 		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
372 			struct seg_entry *se = get_seg_entry(sbi, start_segno);
373 
374 			blocks += se->ckpt_valid_blocks;
375 		}
376 		return blocks;
377 	}
378 	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
379 }
380 
381 static inline void seg_info_from_raw_sit(struct seg_entry *se,
382 					struct f2fs_sit_entry *rs)
383 {
384 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
385 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
386 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
387 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
388 #ifdef CONFIG_F2FS_CHECK_FS
389 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
390 #endif
391 	se->type = GET_SIT_TYPE(rs);
392 	se->mtime = le64_to_cpu(rs->mtime);
393 }
394 
395 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
396 					struct f2fs_sit_entry *rs)
397 {
398 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
399 					se->valid_blocks;
400 	rs->vblocks = cpu_to_le16(raw_vblocks);
401 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
402 	rs->mtime = cpu_to_le64(se->mtime);
403 }
404 
405 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
406 				struct page *page, unsigned int start)
407 {
408 	struct f2fs_sit_block *raw_sit;
409 	struct seg_entry *se;
410 	struct f2fs_sit_entry *rs;
411 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
412 					(unsigned long)MAIN_SEGS(sbi));
413 	int i;
414 
415 	raw_sit = (struct f2fs_sit_block *)page_address(page);
416 	memset(raw_sit, 0, PAGE_SIZE);
417 	for (i = 0; i < end - start; i++) {
418 		rs = &raw_sit->entries[i];
419 		se = get_seg_entry(sbi, start + i);
420 		__seg_info_to_raw_sit(se, rs);
421 	}
422 }
423 
424 static inline void seg_info_to_raw_sit(struct seg_entry *se,
425 					struct f2fs_sit_entry *rs)
426 {
427 	__seg_info_to_raw_sit(se, rs);
428 
429 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
430 	se->ckpt_valid_blocks = se->valid_blocks;
431 }
432 
433 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
434 		unsigned int max, unsigned int segno)
435 {
436 	unsigned int ret;
437 	spin_lock(&free_i->segmap_lock);
438 	ret = find_next_bit(free_i->free_segmap, max, segno);
439 	spin_unlock(&free_i->segmap_lock);
440 	return ret;
441 }
442 
443 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
444 {
445 	struct free_segmap_info *free_i = FREE_I(sbi);
446 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
447 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
448 	unsigned int next;
449 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
450 
451 	spin_lock(&free_i->segmap_lock);
452 	clear_bit(segno, free_i->free_segmap);
453 	free_i->free_segments++;
454 
455 	next = find_next_bit(free_i->free_segmap,
456 			start_segno + sbi->segs_per_sec, start_segno);
457 	if (next >= start_segno + usable_segs) {
458 		clear_bit(secno, free_i->free_secmap);
459 		free_i->free_sections++;
460 	}
461 	spin_unlock(&free_i->segmap_lock);
462 }
463 
464 static inline void __set_inuse(struct f2fs_sb_info *sbi,
465 		unsigned int segno)
466 {
467 	struct free_segmap_info *free_i = FREE_I(sbi);
468 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
469 
470 	set_bit(segno, free_i->free_segmap);
471 	free_i->free_segments--;
472 	if (!test_and_set_bit(secno, free_i->free_secmap))
473 		free_i->free_sections--;
474 }
475 
476 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
477 		unsigned int segno, bool inmem)
478 {
479 	struct free_segmap_info *free_i = FREE_I(sbi);
480 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
481 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
482 	unsigned int next;
483 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
484 
485 	spin_lock(&free_i->segmap_lock);
486 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
487 		free_i->free_segments++;
488 
489 		if (!inmem && IS_CURSEC(sbi, secno))
490 			goto skip_free;
491 		next = find_next_bit(free_i->free_segmap,
492 				start_segno + sbi->segs_per_sec, start_segno);
493 		if (next >= start_segno + usable_segs) {
494 			if (test_and_clear_bit(secno, free_i->free_secmap))
495 				free_i->free_sections++;
496 		}
497 	}
498 skip_free:
499 	spin_unlock(&free_i->segmap_lock);
500 }
501 
502 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
503 		unsigned int segno)
504 {
505 	struct free_segmap_info *free_i = FREE_I(sbi);
506 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
507 
508 	spin_lock(&free_i->segmap_lock);
509 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
510 		free_i->free_segments--;
511 		if (!test_and_set_bit(secno, free_i->free_secmap))
512 			free_i->free_sections--;
513 	}
514 	spin_unlock(&free_i->segmap_lock);
515 }
516 
517 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
518 		void *dst_addr)
519 {
520 	struct sit_info *sit_i = SIT_I(sbi);
521 
522 #ifdef CONFIG_F2FS_CHECK_FS
523 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
524 						sit_i->bitmap_size))
525 		f2fs_bug_on(sbi, 1);
526 #endif
527 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
528 }
529 
530 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
531 {
532 	return SIT_I(sbi)->written_valid_blocks;
533 }
534 
535 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
536 {
537 	return FREE_I(sbi)->free_segments;
538 }
539 
540 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
541 {
542 	return SM_I(sbi)->reserved_segments +
543 			SM_I(sbi)->additional_reserved_segments;
544 }
545 
546 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
547 {
548 	return FREE_I(sbi)->free_sections;
549 }
550 
551 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
552 {
553 	return DIRTY_I(sbi)->nr_dirty[PRE];
554 }
555 
556 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
557 {
558 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
559 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
560 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
561 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
562 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
563 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
564 }
565 
566 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
567 {
568 	return SM_I(sbi)->ovp_segments;
569 }
570 
571 static inline int reserved_sections(struct f2fs_sb_info *sbi)
572 {
573 	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
574 }
575 
576 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
577 			unsigned int node_blocks, unsigned int dent_blocks)
578 {
579 
580 	unsigned int segno, left_blocks;
581 	int i;
582 
583 	/* check current node segment */
584 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
585 		segno = CURSEG_I(sbi, i)->segno;
586 		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
587 				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
588 
589 		if (node_blocks > left_blocks)
590 			return false;
591 	}
592 
593 	/* check current data segment */
594 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
595 	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
596 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
597 	if (dent_blocks > left_blocks)
598 		return false;
599 	return true;
600 }
601 
602 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
603 					int freed, int needed)
604 {
605 	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
606 					get_pages(sbi, F2FS_DIRTY_DENTS) +
607 					get_pages(sbi, F2FS_DIRTY_IMETA);
608 	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
609 	unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
610 	unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
611 	unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
612 	unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
613 	unsigned int free, need_lower, need_upper;
614 
615 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
616 		return false;
617 
618 	free = free_sections(sbi) + freed;
619 	need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
620 	need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
621 
622 	if (free > need_upper)
623 		return false;
624 	else if (free <= need_lower)
625 		return true;
626 	return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
627 }
628 
629 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
630 {
631 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
632 		return true;
633 	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
634 		return true;
635 	return false;
636 }
637 
638 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
639 {
640 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
641 }
642 
643 static inline int utilization(struct f2fs_sb_info *sbi)
644 {
645 	return div_u64((u64)valid_user_blocks(sbi) * 100,
646 					sbi->user_block_count);
647 }
648 
649 /*
650  * Sometimes f2fs may be better to drop out-of-place update policy.
651  * And, users can control the policy through sysfs entries.
652  * There are five policies with triggering conditions as follows.
653  * F2FS_IPU_FORCE - all the time,
654  * F2FS_IPU_SSR - if SSR mode is activated,
655  * F2FS_IPU_UTIL - if FS utilization is over threashold,
656  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
657  *                     threashold,
658  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
659  *                     storages. IPU will be triggered only if the # of dirty
660  *                     pages over min_fsync_blocks. (=default option)
661  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
662  * F2FS_IPU_NOCACHE - disable IPU bio cache.
663  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
664  *                            FI_OPU_WRITE flag.
665  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
666  */
667 #define DEF_MIN_IPU_UTIL	70
668 #define DEF_MIN_FSYNC_BLOCKS	8
669 #define DEF_MIN_HOT_BLOCKS	16
670 
671 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
672 
673 #define F2FS_IPU_DISABLE	0
674 
675 /* Modification on enum should be synchronized with ipu_mode_names array */
676 enum {
677 	F2FS_IPU_FORCE,
678 	F2FS_IPU_SSR,
679 	F2FS_IPU_UTIL,
680 	F2FS_IPU_SSR_UTIL,
681 	F2FS_IPU_FSYNC,
682 	F2FS_IPU_ASYNC,
683 	F2FS_IPU_NOCACHE,
684 	F2FS_IPU_HONOR_OPU_WRITE,
685 	F2FS_IPU_MAX,
686 };
687 
688 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
689 {
690 	return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
691 }
692 
693 #define F2FS_IPU_POLICY(name)					\
694 static inline bool IS_##name(struct f2fs_sb_info *sbi)		\
695 {								\
696 	return SM_I(sbi)->ipu_policy & BIT(name);		\
697 }
698 
699 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
700 F2FS_IPU_POLICY(F2FS_IPU_SSR);
701 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
702 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
703 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
704 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
705 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
706 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
707 
708 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
709 		int type)
710 {
711 	struct curseg_info *curseg = CURSEG_I(sbi, type);
712 	return curseg->segno;
713 }
714 
715 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
716 		int type)
717 {
718 	struct curseg_info *curseg = CURSEG_I(sbi, type);
719 	return curseg->alloc_type;
720 }
721 
722 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
723 		unsigned int segno)
724 {
725 	return segno <= (MAIN_SEGS(sbi) - 1);
726 }
727 
728 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
729 {
730 	struct f2fs_sb_info *sbi = fio->sbi;
731 
732 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
733 		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
734 					META_GENERIC : DATA_GENERIC);
735 	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
736 					META_GENERIC : DATA_GENERIC_ENHANCE);
737 }
738 
739 /*
740  * Summary block is always treated as an invalid block
741  */
742 static inline int check_block_count(struct f2fs_sb_info *sbi,
743 		int segno, struct f2fs_sit_entry *raw_sit)
744 {
745 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
746 	int valid_blocks = 0;
747 	int cur_pos = 0, next_pos;
748 	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
749 
750 	/* check bitmap with valid block count */
751 	do {
752 		if (is_valid) {
753 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
754 					usable_blks_per_seg,
755 					cur_pos);
756 			valid_blocks += next_pos - cur_pos;
757 		} else
758 			next_pos = find_next_bit_le(&raw_sit->valid_map,
759 					usable_blks_per_seg,
760 					cur_pos);
761 		cur_pos = next_pos;
762 		is_valid = !is_valid;
763 	} while (cur_pos < usable_blks_per_seg);
764 
765 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
766 		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
767 			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
768 		set_sbi_flag(sbi, SBI_NEED_FSCK);
769 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
770 		return -EFSCORRUPTED;
771 	}
772 
773 	if (usable_blks_per_seg < sbi->blocks_per_seg)
774 		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
775 				sbi->blocks_per_seg,
776 				usable_blks_per_seg) != sbi->blocks_per_seg);
777 
778 	/* check segment usage, and check boundary of a given segment number */
779 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
780 					|| !valid_main_segno(sbi, segno))) {
781 		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
782 			 GET_SIT_VBLOCKS(raw_sit), segno);
783 		set_sbi_flag(sbi, SBI_NEED_FSCK);
784 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
785 		return -EFSCORRUPTED;
786 	}
787 	return 0;
788 }
789 
790 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
791 						unsigned int start)
792 {
793 	struct sit_info *sit_i = SIT_I(sbi);
794 	unsigned int offset = SIT_BLOCK_OFFSET(start);
795 	block_t blk_addr = sit_i->sit_base_addr + offset;
796 
797 	f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
798 
799 #ifdef CONFIG_F2FS_CHECK_FS
800 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
801 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
802 		f2fs_bug_on(sbi, 1);
803 #endif
804 
805 	/* calculate sit block address */
806 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
807 		blk_addr += sit_i->sit_blocks;
808 
809 	return blk_addr;
810 }
811 
812 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
813 						pgoff_t block_addr)
814 {
815 	struct sit_info *sit_i = SIT_I(sbi);
816 	block_addr -= sit_i->sit_base_addr;
817 	if (block_addr < sit_i->sit_blocks)
818 		block_addr += sit_i->sit_blocks;
819 	else
820 		block_addr -= sit_i->sit_blocks;
821 
822 	return block_addr + sit_i->sit_base_addr;
823 }
824 
825 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
826 {
827 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
828 
829 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
830 #ifdef CONFIG_F2FS_CHECK_FS
831 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
832 #endif
833 }
834 
835 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
836 						bool base_time)
837 {
838 	struct sit_info *sit_i = SIT_I(sbi);
839 	time64_t diff, now = ktime_get_boottime_seconds();
840 
841 	if (now >= sit_i->mounted_time)
842 		return sit_i->elapsed_time + now - sit_i->mounted_time;
843 
844 	/* system time is set to the past */
845 	if (!base_time) {
846 		diff = sit_i->mounted_time - now;
847 		if (sit_i->elapsed_time >= diff)
848 			return sit_i->elapsed_time - diff;
849 		return 0;
850 	}
851 	return sit_i->elapsed_time;
852 }
853 
854 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
855 			unsigned int ofs_in_node, unsigned char version)
856 {
857 	sum->nid = cpu_to_le32(nid);
858 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
859 	sum->version = version;
860 }
861 
862 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
863 {
864 	return __start_cp_addr(sbi) +
865 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
866 }
867 
868 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
869 {
870 	return __start_cp_addr(sbi) +
871 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
872 				- (base + 1) + type;
873 }
874 
875 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
876 {
877 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
878 		return true;
879 	return false;
880 }
881 
882 /*
883  * It is very important to gather dirty pages and write at once, so that we can
884  * submit a big bio without interfering other data writes.
885  * By default, 512 pages for directory data,
886  * 512 pages (2MB) * 8 for nodes, and
887  * 256 pages * 8 for meta are set.
888  */
889 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
890 {
891 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
892 		return 0;
893 
894 	if (type == DATA)
895 		return sbi->blocks_per_seg;
896 	else if (type == NODE)
897 		return 8 * sbi->blocks_per_seg;
898 	else if (type == META)
899 		return 8 * BIO_MAX_VECS;
900 	else
901 		return 0;
902 }
903 
904 /*
905  * When writing pages, it'd better align nr_to_write for segment size.
906  */
907 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
908 					struct writeback_control *wbc)
909 {
910 	long nr_to_write, desired;
911 
912 	if (wbc->sync_mode != WB_SYNC_NONE)
913 		return 0;
914 
915 	nr_to_write = wbc->nr_to_write;
916 	desired = BIO_MAX_VECS;
917 	if (type == NODE)
918 		desired <<= 1;
919 
920 	wbc->nr_to_write = desired;
921 	return desired - nr_to_write;
922 }
923 
924 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
925 {
926 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
927 	bool wakeup = false;
928 	int i;
929 
930 	if (force)
931 		goto wake_up;
932 
933 	mutex_lock(&dcc->cmd_lock);
934 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
935 		if (i + 1 < dcc->discard_granularity)
936 			break;
937 		if (!list_empty(&dcc->pend_list[i])) {
938 			wakeup = true;
939 			break;
940 		}
941 	}
942 	mutex_unlock(&dcc->cmd_lock);
943 	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
944 		return;
945 wake_up:
946 	dcc->discard_wake = true;
947 	wake_up_interruptible_all(&dcc->discard_wait_queue);
948 }
949