xref: /linux/fs/f2fs/segment.h (revision 24ce659dcc02c21f8d6c0a7589c3320a4dfa8152)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
23 
24 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
26 
27 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
28 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
29 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
30 
31 #define IS_CURSEG(sbi, seg)						\
32 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
33 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
34 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
35 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
36 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
37 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
38 
39 #define IS_CURSEC(sbi, secno)						\
40 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
41 	  (sbi)->segs_per_sec) ||	\
42 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
43 	  (sbi)->segs_per_sec) ||	\
44 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
45 	  (sbi)->segs_per_sec) ||	\
46 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
47 	  (sbi)->segs_per_sec) ||	\
48 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
49 	  (sbi)->segs_per_sec) ||	\
50 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
51 	  (sbi)->segs_per_sec))	\
52 
53 #define MAIN_BLKADDR(sbi)						\
54 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
55 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
56 #define SEG0_BLKADDR(sbi)						\
57 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
58 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
59 
60 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
61 #define MAIN_SECS(sbi)	((sbi)->total_sections)
62 
63 #define TOTAL_SEGS(sbi)							\
64 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
65 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
66 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
67 
68 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
69 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
70 					(sbi)->log_blocks_per_seg))
71 
72 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
73 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
74 
75 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
76 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
77 
78 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
79 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
80 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
81 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
82 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
83 
84 #define GET_SEGNO(sbi, blk_addr)					\
85 	((!__is_valid_data_blkaddr(blk_addr)) ?			\
86 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
87 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
88 #define BLKS_PER_SEC(sbi)					\
89 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
90 #define GET_SEC_FROM_SEG(sbi, segno)				\
91 	((segno) / (sbi)->segs_per_sec)
92 #define GET_SEG_FROM_SEC(sbi, secno)				\
93 	((secno) * (sbi)->segs_per_sec)
94 #define GET_ZONE_FROM_SEC(sbi, secno)				\
95 	((secno) / (sbi)->secs_per_zone)
96 #define GET_ZONE_FROM_SEG(sbi, segno)				\
97 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
98 
99 #define GET_SUM_BLOCK(sbi, segno)				\
100 	((sbi)->sm_info->ssa_blkaddr + (segno))
101 
102 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
103 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
104 
105 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
106 	((segno) % (sit_i)->sents_per_block)
107 #define SIT_BLOCK_OFFSET(segno)					\
108 	((segno) / SIT_ENTRY_PER_BLOCK)
109 #define	START_SEGNO(segno)		\
110 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
111 #define SIT_BLK_CNT(sbi)			\
112 	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
113 #define f2fs_bitmap_size(nr)			\
114 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
115 
116 #define SECTOR_FROM_BLOCK(blk_addr)					\
117 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
118 #define SECTOR_TO_BLOCK(sectors)					\
119 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
120 
121 /*
122  * indicate a block allocation direction: RIGHT and LEFT.
123  * RIGHT means allocating new sections towards the end of volume.
124  * LEFT means the opposite direction.
125  */
126 enum {
127 	ALLOC_RIGHT = 0,
128 	ALLOC_LEFT
129 };
130 
131 /*
132  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
133  * LFS writes data sequentially with cleaning operations.
134  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
135  */
136 enum {
137 	LFS = 0,
138 	SSR
139 };
140 
141 /*
142  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
143  * GC_CB is based on cost-benefit algorithm.
144  * GC_GREEDY is based on greedy algorithm.
145  */
146 enum {
147 	GC_CB = 0,
148 	GC_GREEDY,
149 	ALLOC_NEXT,
150 	FLUSH_DEVICE,
151 	MAX_GC_POLICY,
152 };
153 
154 /*
155  * BG_GC means the background cleaning job.
156  * FG_GC means the on-demand cleaning job.
157  * FORCE_FG_GC means on-demand cleaning job in background.
158  */
159 enum {
160 	BG_GC = 0,
161 	FG_GC,
162 	FORCE_FG_GC,
163 };
164 
165 /* for a function parameter to select a victim segment */
166 struct victim_sel_policy {
167 	int alloc_mode;			/* LFS or SSR */
168 	int gc_mode;			/* GC_CB or GC_GREEDY */
169 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
170 	unsigned int max_search;	/* maximum # of segments to search */
171 	unsigned int offset;		/* last scanned bitmap offset */
172 	unsigned int ofs_unit;		/* bitmap search unit */
173 	unsigned int min_cost;		/* minimum cost */
174 	unsigned int min_segno;		/* segment # having min. cost */
175 };
176 
177 struct seg_entry {
178 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
179 	unsigned int valid_blocks:10;	/* # of valid blocks */
180 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
181 	unsigned int padding:6;		/* padding */
182 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
183 #ifdef CONFIG_F2FS_CHECK_FS
184 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
185 #endif
186 	/*
187 	 * # of valid blocks and the validity bitmap stored in the the last
188 	 * checkpoint pack. This information is used by the SSR mode.
189 	 */
190 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
191 	unsigned char *discard_map;
192 	unsigned long long mtime;	/* modification time of the segment */
193 };
194 
195 struct sec_entry {
196 	unsigned int valid_blocks;	/* # of valid blocks in a section */
197 };
198 
199 struct segment_allocation {
200 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
201 };
202 
203 #define MAX_SKIP_GC_COUNT			16
204 
205 struct inmem_pages {
206 	struct list_head list;
207 	struct page *page;
208 	block_t old_addr;		/* for revoking when fail to commit */
209 };
210 
211 struct sit_info {
212 	const struct segment_allocation *s_ops;
213 
214 	block_t sit_base_addr;		/* start block address of SIT area */
215 	block_t sit_blocks;		/* # of blocks used by SIT area */
216 	block_t written_valid_blocks;	/* # of valid blocks in main area */
217 	char *bitmap;			/* all bitmaps pointer */
218 	char *sit_bitmap;		/* SIT bitmap pointer */
219 #ifdef CONFIG_F2FS_CHECK_FS
220 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
221 
222 	/* bitmap of segments to be ignored by GC in case of errors */
223 	unsigned long *invalid_segmap;
224 #endif
225 	unsigned int bitmap_size;	/* SIT bitmap size */
226 
227 	unsigned long *tmp_map;			/* bitmap for temporal use */
228 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
229 	unsigned int dirty_sentries;		/* # of dirty sentries */
230 	unsigned int sents_per_block;		/* # of SIT entries per block */
231 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
232 	struct seg_entry *sentries;		/* SIT segment-level cache */
233 	struct sec_entry *sec_entries;		/* SIT section-level cache */
234 
235 	/* for cost-benefit algorithm in cleaning procedure */
236 	unsigned long long elapsed_time;	/* elapsed time after mount */
237 	unsigned long long mounted_time;	/* mount time */
238 	unsigned long long min_mtime;		/* min. modification time */
239 	unsigned long long max_mtime;		/* max. modification time */
240 
241 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
242 };
243 
244 struct free_segmap_info {
245 	unsigned int start_segno;	/* start segment number logically */
246 	unsigned int free_segments;	/* # of free segments */
247 	unsigned int free_sections;	/* # of free sections */
248 	spinlock_t segmap_lock;		/* free segmap lock */
249 	unsigned long *free_segmap;	/* free segment bitmap */
250 	unsigned long *free_secmap;	/* free section bitmap */
251 };
252 
253 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
254 enum dirty_type {
255 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
256 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
257 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
258 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
259 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
260 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
261 	DIRTY,			/* to count # of dirty segments */
262 	PRE,			/* to count # of entirely obsolete segments */
263 	NR_DIRTY_TYPE
264 };
265 
266 struct dirty_seglist_info {
267 	const struct victim_selection *v_ops;	/* victim selction operation */
268 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
269 	struct mutex seglist_lock;		/* lock for segment bitmaps */
270 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
271 	unsigned long *victim_secmap;		/* background GC victims */
272 };
273 
274 /* victim selection function for cleaning and SSR */
275 struct victim_selection {
276 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
277 							int, int, char);
278 };
279 
280 /* for active log information */
281 struct curseg_info {
282 	struct mutex curseg_mutex;		/* lock for consistency */
283 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
284 	struct rw_semaphore journal_rwsem;	/* protect journal area */
285 	struct f2fs_journal *journal;		/* cached journal info */
286 	unsigned char alloc_type;		/* current allocation type */
287 	unsigned int segno;			/* current segment number */
288 	unsigned short next_blkoff;		/* next block offset to write */
289 	unsigned int zone;			/* current zone number */
290 	unsigned int next_segno;		/* preallocated segment */
291 };
292 
293 struct sit_entry_set {
294 	struct list_head set_list;	/* link with all sit sets */
295 	unsigned int start_segno;	/* start segno of sits in set */
296 	unsigned int entry_cnt;		/* the # of sit entries in set */
297 };
298 
299 /*
300  * inline functions
301  */
302 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
303 {
304 	if (type == CURSEG_COLD_DATA_PINNED)
305 		type = CURSEG_COLD_DATA;
306 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
307 }
308 
309 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
310 						unsigned int segno)
311 {
312 	struct sit_info *sit_i = SIT_I(sbi);
313 	return &sit_i->sentries[segno];
314 }
315 
316 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
317 						unsigned int segno)
318 {
319 	struct sit_info *sit_i = SIT_I(sbi);
320 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
321 }
322 
323 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
324 				unsigned int segno, bool use_section)
325 {
326 	/*
327 	 * In order to get # of valid blocks in a section instantly from many
328 	 * segments, f2fs manages two counting structures separately.
329 	 */
330 	if (use_section && __is_large_section(sbi))
331 		return get_sec_entry(sbi, segno)->valid_blocks;
332 	else
333 		return get_seg_entry(sbi, segno)->valid_blocks;
334 }
335 
336 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
337 				unsigned int segno)
338 {
339 	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
340 }
341 
342 static inline void seg_info_from_raw_sit(struct seg_entry *se,
343 					struct f2fs_sit_entry *rs)
344 {
345 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
346 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
347 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
348 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
349 #ifdef CONFIG_F2FS_CHECK_FS
350 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
351 #endif
352 	se->type = GET_SIT_TYPE(rs);
353 	se->mtime = le64_to_cpu(rs->mtime);
354 }
355 
356 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
357 					struct f2fs_sit_entry *rs)
358 {
359 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
360 					se->valid_blocks;
361 	rs->vblocks = cpu_to_le16(raw_vblocks);
362 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
363 	rs->mtime = cpu_to_le64(se->mtime);
364 }
365 
366 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
367 				struct page *page, unsigned int start)
368 {
369 	struct f2fs_sit_block *raw_sit;
370 	struct seg_entry *se;
371 	struct f2fs_sit_entry *rs;
372 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
373 					(unsigned long)MAIN_SEGS(sbi));
374 	int i;
375 
376 	raw_sit = (struct f2fs_sit_block *)page_address(page);
377 	memset(raw_sit, 0, PAGE_SIZE);
378 	for (i = 0; i < end - start; i++) {
379 		rs = &raw_sit->entries[i];
380 		se = get_seg_entry(sbi, start + i);
381 		__seg_info_to_raw_sit(se, rs);
382 	}
383 }
384 
385 static inline void seg_info_to_raw_sit(struct seg_entry *se,
386 					struct f2fs_sit_entry *rs)
387 {
388 	__seg_info_to_raw_sit(se, rs);
389 
390 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
391 	se->ckpt_valid_blocks = se->valid_blocks;
392 }
393 
394 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
395 		unsigned int max, unsigned int segno)
396 {
397 	unsigned int ret;
398 	spin_lock(&free_i->segmap_lock);
399 	ret = find_next_bit(free_i->free_segmap, max, segno);
400 	spin_unlock(&free_i->segmap_lock);
401 	return ret;
402 }
403 
404 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
405 {
406 	struct free_segmap_info *free_i = FREE_I(sbi);
407 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
408 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
409 	unsigned int next;
410 
411 	spin_lock(&free_i->segmap_lock);
412 	clear_bit(segno, free_i->free_segmap);
413 	free_i->free_segments++;
414 
415 	next = find_next_bit(free_i->free_segmap,
416 			start_segno + sbi->segs_per_sec, start_segno);
417 	if (next >= start_segno + sbi->segs_per_sec) {
418 		clear_bit(secno, free_i->free_secmap);
419 		free_i->free_sections++;
420 	}
421 	spin_unlock(&free_i->segmap_lock);
422 }
423 
424 static inline void __set_inuse(struct f2fs_sb_info *sbi,
425 		unsigned int segno)
426 {
427 	struct free_segmap_info *free_i = FREE_I(sbi);
428 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
429 
430 	set_bit(segno, free_i->free_segmap);
431 	free_i->free_segments--;
432 	if (!test_and_set_bit(secno, free_i->free_secmap))
433 		free_i->free_sections--;
434 }
435 
436 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
437 		unsigned int segno)
438 {
439 	struct free_segmap_info *free_i = FREE_I(sbi);
440 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
441 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
442 	unsigned int next;
443 
444 	spin_lock(&free_i->segmap_lock);
445 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
446 		free_i->free_segments++;
447 
448 		if (IS_CURSEC(sbi, secno))
449 			goto skip_free;
450 		next = find_next_bit(free_i->free_segmap,
451 				start_segno + sbi->segs_per_sec, start_segno);
452 		if (next >= start_segno + sbi->segs_per_sec) {
453 			if (test_and_clear_bit(secno, free_i->free_secmap))
454 				free_i->free_sections++;
455 		}
456 	}
457 skip_free:
458 	spin_unlock(&free_i->segmap_lock);
459 }
460 
461 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
462 		unsigned int segno)
463 {
464 	struct free_segmap_info *free_i = FREE_I(sbi);
465 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
466 
467 	spin_lock(&free_i->segmap_lock);
468 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
469 		free_i->free_segments--;
470 		if (!test_and_set_bit(secno, free_i->free_secmap))
471 			free_i->free_sections--;
472 	}
473 	spin_unlock(&free_i->segmap_lock);
474 }
475 
476 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
477 		void *dst_addr)
478 {
479 	struct sit_info *sit_i = SIT_I(sbi);
480 
481 #ifdef CONFIG_F2FS_CHECK_FS
482 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
483 						sit_i->bitmap_size))
484 		f2fs_bug_on(sbi, 1);
485 #endif
486 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
487 }
488 
489 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
490 {
491 	return SIT_I(sbi)->written_valid_blocks;
492 }
493 
494 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
495 {
496 	return FREE_I(sbi)->free_segments;
497 }
498 
499 static inline int reserved_segments(struct f2fs_sb_info *sbi)
500 {
501 	return SM_I(sbi)->reserved_segments;
502 }
503 
504 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
505 {
506 	return FREE_I(sbi)->free_sections;
507 }
508 
509 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
510 {
511 	return DIRTY_I(sbi)->nr_dirty[PRE];
512 }
513 
514 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
515 {
516 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
517 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
518 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
519 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
520 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
521 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
522 }
523 
524 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
525 {
526 	return SM_I(sbi)->ovp_segments;
527 }
528 
529 static inline int reserved_sections(struct f2fs_sb_info *sbi)
530 {
531 	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
532 }
533 
534 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
535 {
536 	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
537 					get_pages(sbi, F2FS_DIRTY_DENTS);
538 	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
539 	unsigned int segno, left_blocks;
540 	int i;
541 
542 	/* check current node segment */
543 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
544 		segno = CURSEG_I(sbi, i)->segno;
545 		left_blocks = sbi->blocks_per_seg -
546 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
547 
548 		if (node_blocks > left_blocks)
549 			return false;
550 	}
551 
552 	/* check current data segment */
553 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
554 	left_blocks = sbi->blocks_per_seg -
555 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
556 	if (dent_blocks > left_blocks)
557 		return false;
558 	return true;
559 }
560 
561 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
562 					int freed, int needed)
563 {
564 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
565 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
566 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
567 
568 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
569 		return false;
570 
571 	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
572 			has_curseg_enough_space(sbi))
573 		return false;
574 	return (free_sections(sbi) + freed) <=
575 		(node_secs + 2 * dent_secs + imeta_secs +
576 		reserved_sections(sbi) + needed);
577 }
578 
579 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
580 {
581 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
582 		return true;
583 	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
584 		return true;
585 	return false;
586 }
587 
588 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
589 {
590 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
591 }
592 
593 static inline int utilization(struct f2fs_sb_info *sbi)
594 {
595 	return div_u64((u64)valid_user_blocks(sbi) * 100,
596 					sbi->user_block_count);
597 }
598 
599 /*
600  * Sometimes f2fs may be better to drop out-of-place update policy.
601  * And, users can control the policy through sysfs entries.
602  * There are five policies with triggering conditions as follows.
603  * F2FS_IPU_FORCE - all the time,
604  * F2FS_IPU_SSR - if SSR mode is activated,
605  * F2FS_IPU_UTIL - if FS utilization is over threashold,
606  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
607  *                     threashold,
608  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
609  *                     storages. IPU will be triggered only if the # of dirty
610  *                     pages over min_fsync_blocks. (=default option)
611  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
612  * F2FS_IPU_NOCACHE - disable IPU bio cache.
613  * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
614  */
615 #define DEF_MIN_IPU_UTIL	70
616 #define DEF_MIN_FSYNC_BLOCKS	8
617 #define DEF_MIN_HOT_BLOCKS	16
618 
619 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
620 
621 enum {
622 	F2FS_IPU_FORCE,
623 	F2FS_IPU_SSR,
624 	F2FS_IPU_UTIL,
625 	F2FS_IPU_SSR_UTIL,
626 	F2FS_IPU_FSYNC,
627 	F2FS_IPU_ASYNC,
628 	F2FS_IPU_NOCACHE,
629 };
630 
631 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
632 		int type)
633 {
634 	struct curseg_info *curseg = CURSEG_I(sbi, type);
635 	return curseg->segno;
636 }
637 
638 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
639 		int type)
640 {
641 	struct curseg_info *curseg = CURSEG_I(sbi, type);
642 	return curseg->alloc_type;
643 }
644 
645 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
646 {
647 	struct curseg_info *curseg = CURSEG_I(sbi, type);
648 	return curseg->next_blkoff;
649 }
650 
651 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
652 {
653 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
654 }
655 
656 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
657 {
658 	struct f2fs_sb_info *sbi = fio->sbi;
659 
660 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
661 		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
662 					META_GENERIC : DATA_GENERIC);
663 	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
664 					META_GENERIC : DATA_GENERIC_ENHANCE);
665 }
666 
667 /*
668  * Summary block is always treated as an invalid block
669  */
670 static inline int check_block_count(struct f2fs_sb_info *sbi,
671 		int segno, struct f2fs_sit_entry *raw_sit)
672 {
673 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
674 	int valid_blocks = 0;
675 	int cur_pos = 0, next_pos;
676 
677 	/* check bitmap with valid block count */
678 	do {
679 		if (is_valid) {
680 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
681 					sbi->blocks_per_seg,
682 					cur_pos);
683 			valid_blocks += next_pos - cur_pos;
684 		} else
685 			next_pos = find_next_bit_le(&raw_sit->valid_map,
686 					sbi->blocks_per_seg,
687 					cur_pos);
688 		cur_pos = next_pos;
689 		is_valid = !is_valid;
690 	} while (cur_pos < sbi->blocks_per_seg);
691 
692 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
693 		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
694 			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
695 		set_sbi_flag(sbi, SBI_NEED_FSCK);
696 		return -EFSCORRUPTED;
697 	}
698 
699 	/* check segment usage, and check boundary of a given segment number */
700 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
701 					|| segno > TOTAL_SEGS(sbi) - 1)) {
702 		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
703 			 GET_SIT_VBLOCKS(raw_sit), segno);
704 		set_sbi_flag(sbi, SBI_NEED_FSCK);
705 		return -EFSCORRUPTED;
706 	}
707 	return 0;
708 }
709 
710 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
711 						unsigned int start)
712 {
713 	struct sit_info *sit_i = SIT_I(sbi);
714 	unsigned int offset = SIT_BLOCK_OFFSET(start);
715 	block_t blk_addr = sit_i->sit_base_addr + offset;
716 
717 	check_seg_range(sbi, start);
718 
719 #ifdef CONFIG_F2FS_CHECK_FS
720 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
721 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
722 		f2fs_bug_on(sbi, 1);
723 #endif
724 
725 	/* calculate sit block address */
726 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
727 		blk_addr += sit_i->sit_blocks;
728 
729 	return blk_addr;
730 }
731 
732 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
733 						pgoff_t block_addr)
734 {
735 	struct sit_info *sit_i = SIT_I(sbi);
736 	block_addr -= sit_i->sit_base_addr;
737 	if (block_addr < sit_i->sit_blocks)
738 		block_addr += sit_i->sit_blocks;
739 	else
740 		block_addr -= sit_i->sit_blocks;
741 
742 	return block_addr + sit_i->sit_base_addr;
743 }
744 
745 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
746 {
747 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
748 
749 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
750 #ifdef CONFIG_F2FS_CHECK_FS
751 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
752 #endif
753 }
754 
755 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
756 						bool base_time)
757 {
758 	struct sit_info *sit_i = SIT_I(sbi);
759 	time64_t diff, now = ktime_get_boottime_seconds();
760 
761 	if (now >= sit_i->mounted_time)
762 		return sit_i->elapsed_time + now - sit_i->mounted_time;
763 
764 	/* system time is set to the past */
765 	if (!base_time) {
766 		diff = sit_i->mounted_time - now;
767 		if (sit_i->elapsed_time >= diff)
768 			return sit_i->elapsed_time - diff;
769 		return 0;
770 	}
771 	return sit_i->elapsed_time;
772 }
773 
774 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
775 			unsigned int ofs_in_node, unsigned char version)
776 {
777 	sum->nid = cpu_to_le32(nid);
778 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
779 	sum->version = version;
780 }
781 
782 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
783 {
784 	return __start_cp_addr(sbi) +
785 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
786 }
787 
788 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
789 {
790 	return __start_cp_addr(sbi) +
791 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
792 				- (base + 1) + type;
793 }
794 
795 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
796 {
797 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
798 		return true;
799 	return false;
800 }
801 
802 /*
803  * It is very important to gather dirty pages and write at once, so that we can
804  * submit a big bio without interfering other data writes.
805  * By default, 512 pages for directory data,
806  * 512 pages (2MB) * 8 for nodes, and
807  * 256 pages * 8 for meta are set.
808  */
809 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
810 {
811 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
812 		return 0;
813 
814 	if (type == DATA)
815 		return sbi->blocks_per_seg;
816 	else if (type == NODE)
817 		return 8 * sbi->blocks_per_seg;
818 	else if (type == META)
819 		return 8 * BIO_MAX_PAGES;
820 	else
821 		return 0;
822 }
823 
824 /*
825  * When writing pages, it'd better align nr_to_write for segment size.
826  */
827 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
828 					struct writeback_control *wbc)
829 {
830 	long nr_to_write, desired;
831 
832 	if (wbc->sync_mode != WB_SYNC_NONE)
833 		return 0;
834 
835 	nr_to_write = wbc->nr_to_write;
836 	desired = BIO_MAX_PAGES;
837 	if (type == NODE)
838 		desired <<= 1;
839 
840 	wbc->nr_to_write = desired;
841 	return desired - nr_to_write;
842 }
843 
844 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
845 {
846 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
847 	bool wakeup = false;
848 	int i;
849 
850 	if (force)
851 		goto wake_up;
852 
853 	mutex_lock(&dcc->cmd_lock);
854 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
855 		if (i + 1 < dcc->discard_granularity)
856 			break;
857 		if (!list_empty(&dcc->pend_list[i])) {
858 			wakeup = true;
859 			break;
860 		}
861 	}
862 	mutex_unlock(&dcc->cmd_lock);
863 	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
864 		return;
865 wake_up:
866 	dcc->discard_wake = 1;
867 	wake_up_interruptible_all(&dcc->discard_wait_queue);
868 }
869