1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/segment.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/blkdev.h> 9 #include <linux/backing-dev.h> 10 11 /* constant macro */ 12 #define NULL_SEGNO ((unsigned int)(~0)) 13 #define NULL_SECNO ((unsigned int)(~0)) 14 15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 17 18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */ 20 21 /* L: Logical segment # in volume, R: Relative segment # in main area */ 22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 24 25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE) 27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA)) 28 29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi, 30 unsigned short seg_type) 31 { 32 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG); 33 } 34 35 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) 36 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) 37 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) 38 39 #define IS_CURSEG(sbi, seg) \ 40 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 41 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 42 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 43 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 44 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \ 46 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \ 47 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno)) 48 49 #define IS_CURSEC(sbi, secno) \ 50 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 51 (sbi)->segs_per_sec) || \ 52 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 53 (sbi)->segs_per_sec) || \ 54 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 55 (sbi)->segs_per_sec) || \ 56 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 57 (sbi)->segs_per_sec) || \ 58 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 59 (sbi)->segs_per_sec) || \ 60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 61 (sbi)->segs_per_sec) || \ 62 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \ 63 (sbi)->segs_per_sec) || \ 64 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \ 65 (sbi)->segs_per_sec)) 66 67 #define MAIN_BLKADDR(sbi) \ 68 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ 69 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) 70 #define SEG0_BLKADDR(sbi) \ 71 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ 72 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) 73 74 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 75 #define MAIN_SECS(sbi) ((sbi)->total_sections) 76 77 #define TOTAL_SEGS(sbi) \ 78 (SM_I(sbi) ? SM_I(sbi)->segment_count : \ 79 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) 80 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) 81 82 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 83 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 84 (sbi)->log_blocks_per_seg)) 85 86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 87 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) 88 89 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 90 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 91 92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) 95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 96 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) 97 98 #define GET_SEGNO(sbi, blk_addr) \ 99 ((!__is_valid_data_blkaddr(blk_addr)) ? \ 100 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 101 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 102 #define BLKS_PER_SEC(sbi) \ 103 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) 104 #define CAP_BLKS_PER_SEC(sbi) \ 105 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg - \ 106 (sbi)->unusable_blocks_per_sec) 107 #define GET_SEC_FROM_SEG(sbi, segno) \ 108 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec) 109 #define GET_SEG_FROM_SEC(sbi, secno) \ 110 ((secno) * (sbi)->segs_per_sec) 111 #define GET_ZONE_FROM_SEC(sbi, secno) \ 112 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone) 113 #define GET_ZONE_FROM_SEG(sbi, segno) \ 114 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 115 116 #define GET_SUM_BLOCK(sbi, segno) \ 117 ((sbi)->sm_info->ssa_blkaddr + (segno)) 118 119 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 121 122 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 123 ((segno) % (sit_i)->sents_per_block) 124 #define SIT_BLOCK_OFFSET(segno) \ 125 ((segno) / SIT_ENTRY_PER_BLOCK) 126 #define START_SEGNO(segno) \ 127 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 128 #define SIT_BLK_CNT(sbi) \ 129 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) 130 #define f2fs_bitmap_size(nr) \ 131 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 132 133 #define SECTOR_FROM_BLOCK(blk_addr) \ 134 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 135 #define SECTOR_TO_BLOCK(sectors) \ 136 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 137 138 /* 139 * indicate a block allocation direction: RIGHT and LEFT. 140 * RIGHT means allocating new sections towards the end of volume. 141 * LEFT means the opposite direction. 142 */ 143 enum { 144 ALLOC_RIGHT = 0, 145 ALLOC_LEFT 146 }; 147 148 /* 149 * In the victim_sel_policy->alloc_mode, there are three block allocation modes. 150 * LFS writes data sequentially with cleaning operations. 151 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 152 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into 153 * fragmented segment which has similar aging degree. 154 */ 155 enum { 156 LFS = 0, 157 SSR, 158 AT_SSR, 159 }; 160 161 /* 162 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes. 163 * GC_CB is based on cost-benefit algorithm. 164 * GC_GREEDY is based on greedy algorithm. 165 * GC_AT is based on age-threshold algorithm. 166 */ 167 enum { 168 GC_CB = 0, 169 GC_GREEDY, 170 GC_AT, 171 ALLOC_NEXT, 172 FLUSH_DEVICE, 173 MAX_GC_POLICY, 174 }; 175 176 /* 177 * BG_GC means the background cleaning job. 178 * FG_GC means the on-demand cleaning job. 179 */ 180 enum { 181 BG_GC = 0, 182 FG_GC, 183 }; 184 185 /* for a function parameter to select a victim segment */ 186 struct victim_sel_policy { 187 int alloc_mode; /* LFS or SSR */ 188 int gc_mode; /* GC_CB or GC_GREEDY */ 189 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ 190 unsigned int max_search; /* 191 * maximum # of segments/sections 192 * to search 193 */ 194 unsigned int offset; /* last scanned bitmap offset */ 195 unsigned int ofs_unit; /* bitmap search unit */ 196 unsigned int min_cost; /* minimum cost */ 197 unsigned long long oldest_age; /* oldest age of segments having the same min cost */ 198 unsigned int min_segno; /* segment # having min. cost */ 199 unsigned long long age; /* mtime of GCed section*/ 200 unsigned long long age_threshold;/* age threshold */ 201 }; 202 203 struct seg_entry { 204 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 205 unsigned int valid_blocks:10; /* # of valid blocks */ 206 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 207 unsigned int padding:6; /* padding */ 208 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 209 #ifdef CONFIG_F2FS_CHECK_FS 210 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 211 #endif 212 /* 213 * # of valid blocks and the validity bitmap stored in the last 214 * checkpoint pack. This information is used by the SSR mode. 215 */ 216 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 217 unsigned char *discard_map; 218 unsigned long long mtime; /* modification time of the segment */ 219 }; 220 221 struct sec_entry { 222 unsigned int valid_blocks; /* # of valid blocks in a section */ 223 }; 224 225 struct segment_allocation { 226 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 227 }; 228 229 #define MAX_SKIP_GC_COUNT 16 230 231 struct revoke_entry { 232 struct list_head list; 233 block_t old_addr; /* for revoking when fail to commit */ 234 pgoff_t index; 235 }; 236 237 struct sit_info { 238 const struct segment_allocation *s_ops; 239 240 block_t sit_base_addr; /* start block address of SIT area */ 241 block_t sit_blocks; /* # of blocks used by SIT area */ 242 block_t written_valid_blocks; /* # of valid blocks in main area */ 243 char *bitmap; /* all bitmaps pointer */ 244 char *sit_bitmap; /* SIT bitmap pointer */ 245 #ifdef CONFIG_F2FS_CHECK_FS 246 char *sit_bitmap_mir; /* SIT bitmap mirror */ 247 248 /* bitmap of segments to be ignored by GC in case of errors */ 249 unsigned long *invalid_segmap; 250 #endif 251 unsigned int bitmap_size; /* SIT bitmap size */ 252 253 unsigned long *tmp_map; /* bitmap for temporal use */ 254 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 255 unsigned int dirty_sentries; /* # of dirty sentries */ 256 unsigned int sents_per_block; /* # of SIT entries per block */ 257 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 258 struct seg_entry *sentries; /* SIT segment-level cache */ 259 struct sec_entry *sec_entries; /* SIT section-level cache */ 260 261 /* for cost-benefit algorithm in cleaning procedure */ 262 unsigned long long elapsed_time; /* elapsed time after mount */ 263 unsigned long long mounted_time; /* mount time */ 264 unsigned long long min_mtime; /* min. modification time */ 265 unsigned long long max_mtime; /* max. modification time */ 266 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */ 267 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */ 268 269 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 270 }; 271 272 struct free_segmap_info { 273 unsigned int start_segno; /* start segment number logically */ 274 unsigned int free_segments; /* # of free segments */ 275 unsigned int free_sections; /* # of free sections */ 276 spinlock_t segmap_lock; /* free segmap lock */ 277 unsigned long *free_segmap; /* free segment bitmap */ 278 unsigned long *free_secmap; /* free section bitmap */ 279 }; 280 281 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 282 enum dirty_type { 283 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 284 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 285 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 286 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 287 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 288 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 289 DIRTY, /* to count # of dirty segments */ 290 PRE, /* to count # of entirely obsolete segments */ 291 NR_DIRTY_TYPE 292 }; 293 294 struct dirty_seglist_info { 295 const struct victim_selection *v_ops; /* victim selction operation */ 296 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 297 unsigned long *dirty_secmap; 298 struct mutex seglist_lock; /* lock for segment bitmaps */ 299 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 300 unsigned long *victim_secmap; /* background GC victims */ 301 unsigned long *pinned_secmap; /* pinned victims from foreground GC */ 302 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */ 303 bool enable_pin_section; /* enable pinning section */ 304 }; 305 306 /* victim selection function for cleaning and SSR */ 307 struct victim_selection { 308 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 309 int, int, char, unsigned long long); 310 }; 311 312 /* for active log information */ 313 struct curseg_info { 314 struct mutex curseg_mutex; /* lock for consistency */ 315 struct f2fs_summary_block *sum_blk; /* cached summary block */ 316 struct rw_semaphore journal_rwsem; /* protect journal area */ 317 struct f2fs_journal *journal; /* cached journal info */ 318 unsigned char alloc_type; /* current allocation type */ 319 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */ 320 unsigned int segno; /* current segment number */ 321 unsigned short next_blkoff; /* next block offset to write */ 322 unsigned int zone; /* current zone number */ 323 unsigned int next_segno; /* preallocated segment */ 324 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */ 325 bool inited; /* indicate inmem log is inited */ 326 }; 327 328 struct sit_entry_set { 329 struct list_head set_list; /* link with all sit sets */ 330 unsigned int start_segno; /* start segno of sits in set */ 331 unsigned int entry_cnt; /* the # of sit entries in set */ 332 }; 333 334 /* 335 * inline functions 336 */ 337 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 338 { 339 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 340 } 341 342 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 343 unsigned int segno) 344 { 345 struct sit_info *sit_i = SIT_I(sbi); 346 return &sit_i->sentries[segno]; 347 } 348 349 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 350 unsigned int segno) 351 { 352 struct sit_info *sit_i = SIT_I(sbi); 353 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 354 } 355 356 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 357 unsigned int segno, bool use_section) 358 { 359 /* 360 * In order to get # of valid blocks in a section instantly from many 361 * segments, f2fs manages two counting structures separately. 362 */ 363 if (use_section && __is_large_section(sbi)) 364 return get_sec_entry(sbi, segno)->valid_blocks; 365 else 366 return get_seg_entry(sbi, segno)->valid_blocks; 367 } 368 369 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, 370 unsigned int segno, bool use_section) 371 { 372 if (use_section && __is_large_section(sbi)) { 373 unsigned int start_segno = START_SEGNO(segno); 374 unsigned int blocks = 0; 375 int i; 376 377 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) { 378 struct seg_entry *se = get_seg_entry(sbi, start_segno); 379 380 blocks += se->ckpt_valid_blocks; 381 } 382 return blocks; 383 } 384 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 385 } 386 387 static inline void seg_info_from_raw_sit(struct seg_entry *se, 388 struct f2fs_sit_entry *rs) 389 { 390 se->valid_blocks = GET_SIT_VBLOCKS(rs); 391 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 392 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 393 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 394 #ifdef CONFIG_F2FS_CHECK_FS 395 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 396 #endif 397 se->type = GET_SIT_TYPE(rs); 398 se->mtime = le64_to_cpu(rs->mtime); 399 } 400 401 static inline void __seg_info_to_raw_sit(struct seg_entry *se, 402 struct f2fs_sit_entry *rs) 403 { 404 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 405 se->valid_blocks; 406 rs->vblocks = cpu_to_le16(raw_vblocks); 407 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 408 rs->mtime = cpu_to_le64(se->mtime); 409 } 410 411 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, 412 struct page *page, unsigned int start) 413 { 414 struct f2fs_sit_block *raw_sit; 415 struct seg_entry *se; 416 struct f2fs_sit_entry *rs; 417 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, 418 (unsigned long)MAIN_SEGS(sbi)); 419 int i; 420 421 raw_sit = (struct f2fs_sit_block *)page_address(page); 422 memset(raw_sit, 0, PAGE_SIZE); 423 for (i = 0; i < end - start; i++) { 424 rs = &raw_sit->entries[i]; 425 se = get_seg_entry(sbi, start + i); 426 __seg_info_to_raw_sit(se, rs); 427 } 428 } 429 430 static inline void seg_info_to_raw_sit(struct seg_entry *se, 431 struct f2fs_sit_entry *rs) 432 { 433 __seg_info_to_raw_sit(se, rs); 434 435 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 436 se->ckpt_valid_blocks = se->valid_blocks; 437 } 438 439 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 440 unsigned int max, unsigned int segno) 441 { 442 unsigned int ret; 443 spin_lock(&free_i->segmap_lock); 444 ret = find_next_bit(free_i->free_segmap, max, segno); 445 spin_unlock(&free_i->segmap_lock); 446 return ret; 447 } 448 449 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 450 { 451 struct free_segmap_info *free_i = FREE_I(sbi); 452 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 453 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 454 unsigned int next; 455 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); 456 457 spin_lock(&free_i->segmap_lock); 458 clear_bit(segno, free_i->free_segmap); 459 free_i->free_segments++; 460 461 next = find_next_bit(free_i->free_segmap, 462 start_segno + sbi->segs_per_sec, start_segno); 463 if (next >= start_segno + usable_segs) { 464 clear_bit(secno, free_i->free_secmap); 465 free_i->free_sections++; 466 } 467 spin_unlock(&free_i->segmap_lock); 468 } 469 470 static inline void __set_inuse(struct f2fs_sb_info *sbi, 471 unsigned int segno) 472 { 473 struct free_segmap_info *free_i = FREE_I(sbi); 474 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 475 476 set_bit(segno, free_i->free_segmap); 477 free_i->free_segments--; 478 if (!test_and_set_bit(secno, free_i->free_secmap)) 479 free_i->free_sections--; 480 } 481 482 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 483 unsigned int segno, bool inmem) 484 { 485 struct free_segmap_info *free_i = FREE_I(sbi); 486 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 487 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 488 unsigned int next; 489 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); 490 491 spin_lock(&free_i->segmap_lock); 492 if (test_and_clear_bit(segno, free_i->free_segmap)) { 493 free_i->free_segments++; 494 495 if (!inmem && IS_CURSEC(sbi, secno)) 496 goto skip_free; 497 next = find_next_bit(free_i->free_segmap, 498 start_segno + sbi->segs_per_sec, start_segno); 499 if (next >= start_segno + usable_segs) { 500 if (test_and_clear_bit(secno, free_i->free_secmap)) 501 free_i->free_sections++; 502 } 503 } 504 skip_free: 505 spin_unlock(&free_i->segmap_lock); 506 } 507 508 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 509 unsigned int segno) 510 { 511 struct free_segmap_info *free_i = FREE_I(sbi); 512 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 513 514 spin_lock(&free_i->segmap_lock); 515 if (!test_and_set_bit(segno, free_i->free_segmap)) { 516 free_i->free_segments--; 517 if (!test_and_set_bit(secno, free_i->free_secmap)) 518 free_i->free_sections--; 519 } 520 spin_unlock(&free_i->segmap_lock); 521 } 522 523 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 524 void *dst_addr) 525 { 526 struct sit_info *sit_i = SIT_I(sbi); 527 528 #ifdef CONFIG_F2FS_CHECK_FS 529 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 530 sit_i->bitmap_size)) 531 f2fs_bug_on(sbi, 1); 532 #endif 533 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 534 } 535 536 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 537 { 538 return SIT_I(sbi)->written_valid_blocks; 539 } 540 541 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 542 { 543 return FREE_I(sbi)->free_segments; 544 } 545 546 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi) 547 { 548 return SM_I(sbi)->reserved_segments + 549 SM_I(sbi)->additional_reserved_segments; 550 } 551 552 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 553 { 554 return FREE_I(sbi)->free_sections; 555 } 556 557 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 558 { 559 return DIRTY_I(sbi)->nr_dirty[PRE]; 560 } 561 562 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 563 { 564 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 565 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 566 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 567 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 568 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 569 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 570 } 571 572 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 573 { 574 return SM_I(sbi)->ovp_segments; 575 } 576 577 static inline int reserved_sections(struct f2fs_sb_info *sbi) 578 { 579 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi)); 580 } 581 582 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi, 583 unsigned int node_blocks, unsigned int dent_blocks) 584 { 585 586 unsigned int segno, left_blocks; 587 int i; 588 589 /* check current node segment */ 590 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { 591 segno = CURSEG_I(sbi, i)->segno; 592 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) - 593 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 594 595 if (node_blocks > left_blocks) 596 return false; 597 } 598 599 /* check current data segment */ 600 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 601 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) - 602 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 603 if (dent_blocks > left_blocks) 604 return false; 605 return true; 606 } 607 608 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 609 int freed, int needed) 610 { 611 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 612 get_pages(sbi, F2FS_DIRTY_DENTS) + 613 get_pages(sbi, F2FS_DIRTY_IMETA); 614 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 615 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi); 616 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi); 617 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi); 618 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi); 619 unsigned int free, need_lower, need_upper; 620 621 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 622 return false; 623 624 free = free_sections(sbi) + freed; 625 need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed; 626 need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0); 627 628 if (free > need_upper) 629 return false; 630 else if (free <= need_lower) 631 return true; 632 return !has_curseg_enough_space(sbi, node_blocks, dent_blocks); 633 } 634 635 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) 636 { 637 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 638 return true; 639 if (likely(!has_not_enough_free_secs(sbi, 0, 0))) 640 return true; 641 return false; 642 } 643 644 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 645 { 646 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 647 } 648 649 static inline int utilization(struct f2fs_sb_info *sbi) 650 { 651 return div_u64((u64)valid_user_blocks(sbi) * 100, 652 sbi->user_block_count); 653 } 654 655 /* 656 * Sometimes f2fs may be better to drop out-of-place update policy. 657 * And, users can control the policy through sysfs entries. 658 * There are five policies with triggering conditions as follows. 659 * F2FS_IPU_FORCE - all the time, 660 * F2FS_IPU_SSR - if SSR mode is activated, 661 * F2FS_IPU_UTIL - if FS utilization is over threashold, 662 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 663 * threashold, 664 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 665 * storages. IPU will be triggered only if the # of dirty 666 * pages over min_fsync_blocks. (=default option) 667 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. 668 * F2FS_IPU_NOCACHE - disable IPU bio cache. 669 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has 670 * FI_OPU_WRITE flag. 671 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode) 672 */ 673 #define DEF_MIN_IPU_UTIL 70 674 #define DEF_MIN_FSYNC_BLOCKS 8 675 #define DEF_MIN_HOT_BLOCKS 16 676 677 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ 678 679 enum { 680 F2FS_IPU_FORCE, 681 F2FS_IPU_SSR, 682 F2FS_IPU_UTIL, 683 F2FS_IPU_SSR_UTIL, 684 F2FS_IPU_FSYNC, 685 F2FS_IPU_ASYNC, 686 F2FS_IPU_NOCACHE, 687 F2FS_IPU_HONOR_OPU_WRITE, 688 }; 689 690 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 691 int type) 692 { 693 struct curseg_info *curseg = CURSEG_I(sbi, type); 694 return curseg->segno; 695 } 696 697 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 698 int type) 699 { 700 struct curseg_info *curseg = CURSEG_I(sbi, type); 701 return curseg->alloc_type; 702 } 703 704 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 705 { 706 struct curseg_info *curseg = CURSEG_I(sbi, type); 707 return curseg->next_blkoff; 708 } 709 710 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 711 { 712 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 713 } 714 715 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) 716 { 717 struct f2fs_sb_info *sbi = fio->sbi; 718 719 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 720 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? 721 META_GENERIC : DATA_GENERIC); 722 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? 723 META_GENERIC : DATA_GENERIC_ENHANCE); 724 } 725 726 /* 727 * Summary block is always treated as an invalid block 728 */ 729 static inline int check_block_count(struct f2fs_sb_info *sbi, 730 int segno, struct f2fs_sit_entry *raw_sit) 731 { 732 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 733 int valid_blocks = 0; 734 int cur_pos = 0, next_pos; 735 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno); 736 737 /* check bitmap with valid block count */ 738 do { 739 if (is_valid) { 740 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 741 usable_blks_per_seg, 742 cur_pos); 743 valid_blocks += next_pos - cur_pos; 744 } else 745 next_pos = find_next_bit_le(&raw_sit->valid_map, 746 usable_blks_per_seg, 747 cur_pos); 748 cur_pos = next_pos; 749 is_valid = !is_valid; 750 } while (cur_pos < usable_blks_per_seg); 751 752 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { 753 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", 754 GET_SIT_VBLOCKS(raw_sit), valid_blocks); 755 set_sbi_flag(sbi, SBI_NEED_FSCK); 756 return -EFSCORRUPTED; 757 } 758 759 if (usable_blks_per_seg < sbi->blocks_per_seg) 760 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map, 761 sbi->blocks_per_seg, 762 usable_blks_per_seg) != sbi->blocks_per_seg); 763 764 /* check segment usage, and check boundary of a given segment number */ 765 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg 766 || segno > TOTAL_SEGS(sbi) - 1)) { 767 f2fs_err(sbi, "Wrong valid blocks %d or segno %u", 768 GET_SIT_VBLOCKS(raw_sit), segno); 769 set_sbi_flag(sbi, SBI_NEED_FSCK); 770 return -EFSCORRUPTED; 771 } 772 return 0; 773 } 774 775 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 776 unsigned int start) 777 { 778 struct sit_info *sit_i = SIT_I(sbi); 779 unsigned int offset = SIT_BLOCK_OFFSET(start); 780 block_t blk_addr = sit_i->sit_base_addr + offset; 781 782 check_seg_range(sbi, start); 783 784 #ifdef CONFIG_F2FS_CHECK_FS 785 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 786 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 787 f2fs_bug_on(sbi, 1); 788 #endif 789 790 /* calculate sit block address */ 791 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 792 blk_addr += sit_i->sit_blocks; 793 794 return blk_addr; 795 } 796 797 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 798 pgoff_t block_addr) 799 { 800 struct sit_info *sit_i = SIT_I(sbi); 801 block_addr -= sit_i->sit_base_addr; 802 if (block_addr < sit_i->sit_blocks) 803 block_addr += sit_i->sit_blocks; 804 else 805 block_addr -= sit_i->sit_blocks; 806 807 return block_addr + sit_i->sit_base_addr; 808 } 809 810 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 811 { 812 unsigned int block_off = SIT_BLOCK_OFFSET(start); 813 814 f2fs_change_bit(block_off, sit_i->sit_bitmap); 815 #ifdef CONFIG_F2FS_CHECK_FS 816 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 817 #endif 818 } 819 820 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, 821 bool base_time) 822 { 823 struct sit_info *sit_i = SIT_I(sbi); 824 time64_t diff, now = ktime_get_boottime_seconds(); 825 826 if (now >= sit_i->mounted_time) 827 return sit_i->elapsed_time + now - sit_i->mounted_time; 828 829 /* system time is set to the past */ 830 if (!base_time) { 831 diff = sit_i->mounted_time - now; 832 if (sit_i->elapsed_time >= diff) 833 return sit_i->elapsed_time - diff; 834 return 0; 835 } 836 return sit_i->elapsed_time; 837 } 838 839 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 840 unsigned int ofs_in_node, unsigned char version) 841 { 842 sum->nid = cpu_to_le32(nid); 843 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 844 sum->version = version; 845 } 846 847 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 848 { 849 return __start_cp_addr(sbi) + 850 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 851 } 852 853 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 854 { 855 return __start_cp_addr(sbi) + 856 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 857 - (base + 1) + type; 858 } 859 860 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 861 { 862 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 863 return true; 864 return false; 865 } 866 867 /* 868 * It is very important to gather dirty pages and write at once, so that we can 869 * submit a big bio without interfering other data writes. 870 * By default, 512 pages for directory data, 871 * 512 pages (2MB) * 8 for nodes, and 872 * 256 pages * 8 for meta are set. 873 */ 874 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 875 { 876 if (sbi->sb->s_bdi->wb.dirty_exceeded) 877 return 0; 878 879 if (type == DATA) 880 return sbi->blocks_per_seg; 881 else if (type == NODE) 882 return 8 * sbi->blocks_per_seg; 883 else if (type == META) 884 return 8 * BIO_MAX_VECS; 885 else 886 return 0; 887 } 888 889 /* 890 * When writing pages, it'd better align nr_to_write for segment size. 891 */ 892 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 893 struct writeback_control *wbc) 894 { 895 long nr_to_write, desired; 896 897 if (wbc->sync_mode != WB_SYNC_NONE) 898 return 0; 899 900 nr_to_write = wbc->nr_to_write; 901 desired = BIO_MAX_VECS; 902 if (type == NODE) 903 desired <<= 1; 904 905 wbc->nr_to_write = desired; 906 return desired - nr_to_write; 907 } 908 909 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 910 { 911 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 912 bool wakeup = false; 913 int i; 914 915 if (force) 916 goto wake_up; 917 918 mutex_lock(&dcc->cmd_lock); 919 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 920 if (i + 1 < dcc->discard_granularity) 921 break; 922 if (!list_empty(&dcc->pend_list[i])) { 923 wakeup = true; 924 break; 925 } 926 } 927 mutex_unlock(&dcc->cmd_lock); 928 if (!wakeup || !is_idle(sbi, DISCARD_TIME)) 929 return; 930 wake_up: 931 dcc->discard_wake = 1; 932 wake_up_interruptible_all(&dcc->discard_wait_queue); 933 } 934