1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/segment.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/blkdev.h> 9 #include <linux/backing-dev.h> 10 11 /* constant macro */ 12 #define NULL_SEGNO ((unsigned int)(~0)) 13 #define NULL_SECNO ((unsigned int)(~0)) 14 15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 17 18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */ 20 21 /* L: Logical segment # in volume, R: Relative segment # in main area */ 22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 24 25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE) 27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA)) 28 29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi, 30 unsigned short seg_type) 31 { 32 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG); 33 } 34 35 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) 36 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) 37 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) 38 39 #define IS_CURSEG(sbi, seg) \ 40 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 41 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 42 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 43 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 44 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \ 46 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \ 47 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno)) 48 49 #define IS_CURSEC(sbi, secno) \ 50 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 51 (sbi)->segs_per_sec) || \ 52 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 53 (sbi)->segs_per_sec) || \ 54 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 55 (sbi)->segs_per_sec) || \ 56 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 57 (sbi)->segs_per_sec) || \ 58 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 59 (sbi)->segs_per_sec) || \ 60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 61 (sbi)->segs_per_sec) || \ 62 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \ 63 (sbi)->segs_per_sec) || \ 64 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \ 65 (sbi)->segs_per_sec)) 66 67 #define MAIN_BLKADDR(sbi) \ 68 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ 69 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) 70 #define SEG0_BLKADDR(sbi) \ 71 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ 72 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) 73 74 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 75 #define MAIN_SECS(sbi) ((sbi)->total_sections) 76 77 #define TOTAL_SEGS(sbi) \ 78 (SM_I(sbi) ? SM_I(sbi)->segment_count : \ 79 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) 80 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) 81 82 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 83 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 84 (sbi)->log_blocks_per_seg)) 85 86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 87 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) 88 89 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 90 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 91 92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) 95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 96 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) 97 98 #define GET_SEGNO(sbi, blk_addr) \ 99 ((!__is_valid_data_blkaddr(blk_addr)) ? \ 100 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 101 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 102 #define BLKS_PER_SEC(sbi) \ 103 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) 104 #define CAP_BLKS_PER_SEC(sbi) \ 105 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg - \ 106 (sbi)->unusable_blocks_per_sec) 107 #define GET_SEC_FROM_SEG(sbi, segno) \ 108 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec) 109 #define GET_SEG_FROM_SEC(sbi, secno) \ 110 ((secno) * (sbi)->segs_per_sec) 111 #define GET_ZONE_FROM_SEC(sbi, secno) \ 112 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone) 113 #define GET_ZONE_FROM_SEG(sbi, segno) \ 114 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 115 116 #define GET_SUM_BLOCK(sbi, segno) \ 117 ((sbi)->sm_info->ssa_blkaddr + (segno)) 118 119 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 121 122 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 123 ((segno) % (sit_i)->sents_per_block) 124 #define SIT_BLOCK_OFFSET(segno) \ 125 ((segno) / SIT_ENTRY_PER_BLOCK) 126 #define START_SEGNO(segno) \ 127 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 128 #define SIT_BLK_CNT(sbi) \ 129 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) 130 #define f2fs_bitmap_size(nr) \ 131 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 132 133 #define SECTOR_FROM_BLOCK(blk_addr) \ 134 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 135 #define SECTOR_TO_BLOCK(sectors) \ 136 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 137 138 /* 139 * indicate a block allocation direction: RIGHT and LEFT. 140 * RIGHT means allocating new sections towards the end of volume. 141 * LEFT means the opposite direction. 142 */ 143 enum { 144 ALLOC_RIGHT = 0, 145 ALLOC_LEFT 146 }; 147 148 /* 149 * In the victim_sel_policy->alloc_mode, there are three block allocation modes. 150 * LFS writes data sequentially with cleaning operations. 151 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 152 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into 153 * fragmented segment which has similar aging degree. 154 */ 155 enum { 156 LFS = 0, 157 SSR, 158 AT_SSR, 159 }; 160 161 /* 162 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes. 163 * GC_CB is based on cost-benefit algorithm. 164 * GC_GREEDY is based on greedy algorithm. 165 * GC_AT is based on age-threshold algorithm. 166 */ 167 enum { 168 GC_CB = 0, 169 GC_GREEDY, 170 GC_AT, 171 ALLOC_NEXT, 172 FLUSH_DEVICE, 173 MAX_GC_POLICY, 174 }; 175 176 /* 177 * BG_GC means the background cleaning job. 178 * FG_GC means the on-demand cleaning job. 179 */ 180 enum { 181 BG_GC = 0, 182 FG_GC, 183 }; 184 185 /* for a function parameter to select a victim segment */ 186 struct victim_sel_policy { 187 int alloc_mode; /* LFS or SSR */ 188 int gc_mode; /* GC_CB or GC_GREEDY */ 189 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ 190 unsigned int max_search; /* 191 * maximum # of segments/sections 192 * to search 193 */ 194 unsigned int offset; /* last scanned bitmap offset */ 195 unsigned int ofs_unit; /* bitmap search unit */ 196 unsigned int min_cost; /* minimum cost */ 197 unsigned long long oldest_age; /* oldest age of segments having the same min cost */ 198 unsigned int min_segno; /* segment # having min. cost */ 199 unsigned long long age; /* mtime of GCed section*/ 200 unsigned long long age_threshold;/* age threshold */ 201 }; 202 203 struct seg_entry { 204 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 205 unsigned int valid_blocks:10; /* # of valid blocks */ 206 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 207 unsigned int padding:6; /* padding */ 208 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 209 #ifdef CONFIG_F2FS_CHECK_FS 210 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 211 #endif 212 /* 213 * # of valid blocks and the validity bitmap stored in the last 214 * checkpoint pack. This information is used by the SSR mode. 215 */ 216 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 217 unsigned char *discard_map; 218 unsigned long long mtime; /* modification time of the segment */ 219 }; 220 221 struct sec_entry { 222 unsigned int valid_blocks; /* # of valid blocks in a section */ 223 }; 224 225 #define MAX_SKIP_GC_COUNT 16 226 227 struct revoke_entry { 228 struct list_head list; 229 block_t old_addr; /* for revoking when fail to commit */ 230 pgoff_t index; 231 }; 232 233 struct sit_info { 234 block_t sit_base_addr; /* start block address of SIT area */ 235 block_t sit_blocks; /* # of blocks used by SIT area */ 236 block_t written_valid_blocks; /* # of valid blocks in main area */ 237 char *bitmap; /* all bitmaps pointer */ 238 char *sit_bitmap; /* SIT bitmap pointer */ 239 #ifdef CONFIG_F2FS_CHECK_FS 240 char *sit_bitmap_mir; /* SIT bitmap mirror */ 241 242 /* bitmap of segments to be ignored by GC in case of errors */ 243 unsigned long *invalid_segmap; 244 #endif 245 unsigned int bitmap_size; /* SIT bitmap size */ 246 247 unsigned long *tmp_map; /* bitmap for temporal use */ 248 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 249 unsigned int dirty_sentries; /* # of dirty sentries */ 250 unsigned int sents_per_block; /* # of SIT entries per block */ 251 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 252 struct seg_entry *sentries; /* SIT segment-level cache */ 253 struct sec_entry *sec_entries; /* SIT section-level cache */ 254 255 /* for cost-benefit algorithm in cleaning procedure */ 256 unsigned long long elapsed_time; /* elapsed time after mount */ 257 unsigned long long mounted_time; /* mount time */ 258 unsigned long long min_mtime; /* min. modification time */ 259 unsigned long long max_mtime; /* max. modification time */ 260 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */ 261 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */ 262 263 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 264 }; 265 266 struct free_segmap_info { 267 unsigned int start_segno; /* start segment number logically */ 268 unsigned int free_segments; /* # of free segments */ 269 unsigned int free_sections; /* # of free sections */ 270 spinlock_t segmap_lock; /* free segmap lock */ 271 unsigned long *free_segmap; /* free segment bitmap */ 272 unsigned long *free_secmap; /* free section bitmap */ 273 }; 274 275 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 276 enum dirty_type { 277 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 278 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 279 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 280 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 281 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 282 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 283 DIRTY, /* to count # of dirty segments */ 284 PRE, /* to count # of entirely obsolete segments */ 285 NR_DIRTY_TYPE 286 }; 287 288 struct dirty_seglist_info { 289 const struct victim_selection *v_ops; /* victim selction operation */ 290 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 291 unsigned long *dirty_secmap; 292 struct mutex seglist_lock; /* lock for segment bitmaps */ 293 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 294 unsigned long *victim_secmap; /* background GC victims */ 295 unsigned long *pinned_secmap; /* pinned victims from foreground GC */ 296 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */ 297 bool enable_pin_section; /* enable pinning section */ 298 }; 299 300 /* victim selection function for cleaning and SSR */ 301 struct victim_selection { 302 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 303 int, int, char, unsigned long long); 304 }; 305 306 /* for active log information */ 307 struct curseg_info { 308 struct mutex curseg_mutex; /* lock for consistency */ 309 struct f2fs_summary_block *sum_blk; /* cached summary block */ 310 struct rw_semaphore journal_rwsem; /* protect journal area */ 311 struct f2fs_journal *journal; /* cached journal info */ 312 unsigned char alloc_type; /* current allocation type */ 313 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */ 314 unsigned int segno; /* current segment number */ 315 unsigned short next_blkoff; /* next block offset to write */ 316 unsigned int zone; /* current zone number */ 317 unsigned int next_segno; /* preallocated segment */ 318 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */ 319 bool inited; /* indicate inmem log is inited */ 320 }; 321 322 struct sit_entry_set { 323 struct list_head set_list; /* link with all sit sets */ 324 unsigned int start_segno; /* start segno of sits in set */ 325 unsigned int entry_cnt; /* the # of sit entries in set */ 326 }; 327 328 /* 329 * inline functions 330 */ 331 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 332 { 333 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 334 } 335 336 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 337 unsigned int segno) 338 { 339 struct sit_info *sit_i = SIT_I(sbi); 340 return &sit_i->sentries[segno]; 341 } 342 343 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 344 unsigned int segno) 345 { 346 struct sit_info *sit_i = SIT_I(sbi); 347 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 348 } 349 350 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 351 unsigned int segno, bool use_section) 352 { 353 /* 354 * In order to get # of valid blocks in a section instantly from many 355 * segments, f2fs manages two counting structures separately. 356 */ 357 if (use_section && __is_large_section(sbi)) 358 return get_sec_entry(sbi, segno)->valid_blocks; 359 else 360 return get_seg_entry(sbi, segno)->valid_blocks; 361 } 362 363 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, 364 unsigned int segno, bool use_section) 365 { 366 if (use_section && __is_large_section(sbi)) { 367 unsigned int start_segno = START_SEGNO(segno); 368 unsigned int blocks = 0; 369 int i; 370 371 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) { 372 struct seg_entry *se = get_seg_entry(sbi, start_segno); 373 374 blocks += se->ckpt_valid_blocks; 375 } 376 return blocks; 377 } 378 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 379 } 380 381 static inline void seg_info_from_raw_sit(struct seg_entry *se, 382 struct f2fs_sit_entry *rs) 383 { 384 se->valid_blocks = GET_SIT_VBLOCKS(rs); 385 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 386 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 387 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 388 #ifdef CONFIG_F2FS_CHECK_FS 389 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 390 #endif 391 se->type = GET_SIT_TYPE(rs); 392 se->mtime = le64_to_cpu(rs->mtime); 393 } 394 395 static inline void __seg_info_to_raw_sit(struct seg_entry *se, 396 struct f2fs_sit_entry *rs) 397 { 398 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 399 se->valid_blocks; 400 rs->vblocks = cpu_to_le16(raw_vblocks); 401 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 402 rs->mtime = cpu_to_le64(se->mtime); 403 } 404 405 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, 406 struct page *page, unsigned int start) 407 { 408 struct f2fs_sit_block *raw_sit; 409 struct seg_entry *se; 410 struct f2fs_sit_entry *rs; 411 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, 412 (unsigned long)MAIN_SEGS(sbi)); 413 int i; 414 415 raw_sit = (struct f2fs_sit_block *)page_address(page); 416 memset(raw_sit, 0, PAGE_SIZE); 417 for (i = 0; i < end - start; i++) { 418 rs = &raw_sit->entries[i]; 419 se = get_seg_entry(sbi, start + i); 420 __seg_info_to_raw_sit(se, rs); 421 } 422 } 423 424 static inline void seg_info_to_raw_sit(struct seg_entry *se, 425 struct f2fs_sit_entry *rs) 426 { 427 __seg_info_to_raw_sit(se, rs); 428 429 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 430 se->ckpt_valid_blocks = se->valid_blocks; 431 } 432 433 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 434 unsigned int max, unsigned int segno) 435 { 436 unsigned int ret; 437 spin_lock(&free_i->segmap_lock); 438 ret = find_next_bit(free_i->free_segmap, max, segno); 439 spin_unlock(&free_i->segmap_lock); 440 return ret; 441 } 442 443 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 444 { 445 struct free_segmap_info *free_i = FREE_I(sbi); 446 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 447 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 448 unsigned int next; 449 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); 450 451 spin_lock(&free_i->segmap_lock); 452 clear_bit(segno, free_i->free_segmap); 453 free_i->free_segments++; 454 455 next = find_next_bit(free_i->free_segmap, 456 start_segno + sbi->segs_per_sec, start_segno); 457 if (next >= start_segno + usable_segs) { 458 clear_bit(secno, free_i->free_secmap); 459 free_i->free_sections++; 460 } 461 spin_unlock(&free_i->segmap_lock); 462 } 463 464 static inline void __set_inuse(struct f2fs_sb_info *sbi, 465 unsigned int segno) 466 { 467 struct free_segmap_info *free_i = FREE_I(sbi); 468 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 469 470 set_bit(segno, free_i->free_segmap); 471 free_i->free_segments--; 472 if (!test_and_set_bit(secno, free_i->free_secmap)) 473 free_i->free_sections--; 474 } 475 476 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 477 unsigned int segno, bool inmem) 478 { 479 struct free_segmap_info *free_i = FREE_I(sbi); 480 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 481 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 482 unsigned int next; 483 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); 484 485 spin_lock(&free_i->segmap_lock); 486 if (test_and_clear_bit(segno, free_i->free_segmap)) { 487 free_i->free_segments++; 488 489 if (!inmem && IS_CURSEC(sbi, secno)) 490 goto skip_free; 491 next = find_next_bit(free_i->free_segmap, 492 start_segno + sbi->segs_per_sec, start_segno); 493 if (next >= start_segno + usable_segs) { 494 if (test_and_clear_bit(secno, free_i->free_secmap)) 495 free_i->free_sections++; 496 } 497 } 498 skip_free: 499 spin_unlock(&free_i->segmap_lock); 500 } 501 502 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 503 unsigned int segno) 504 { 505 struct free_segmap_info *free_i = FREE_I(sbi); 506 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 507 508 spin_lock(&free_i->segmap_lock); 509 if (!test_and_set_bit(segno, free_i->free_segmap)) { 510 free_i->free_segments--; 511 if (!test_and_set_bit(secno, free_i->free_secmap)) 512 free_i->free_sections--; 513 } 514 spin_unlock(&free_i->segmap_lock); 515 } 516 517 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 518 void *dst_addr) 519 { 520 struct sit_info *sit_i = SIT_I(sbi); 521 522 #ifdef CONFIG_F2FS_CHECK_FS 523 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 524 sit_i->bitmap_size)) 525 f2fs_bug_on(sbi, 1); 526 #endif 527 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 528 } 529 530 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 531 { 532 return SIT_I(sbi)->written_valid_blocks; 533 } 534 535 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 536 { 537 return FREE_I(sbi)->free_segments; 538 } 539 540 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi) 541 { 542 return SM_I(sbi)->reserved_segments + 543 SM_I(sbi)->additional_reserved_segments; 544 } 545 546 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 547 { 548 return FREE_I(sbi)->free_sections; 549 } 550 551 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 552 { 553 return DIRTY_I(sbi)->nr_dirty[PRE]; 554 } 555 556 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 557 { 558 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 559 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 560 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 561 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 562 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 563 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 564 } 565 566 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 567 { 568 return SM_I(sbi)->ovp_segments; 569 } 570 571 static inline int reserved_sections(struct f2fs_sb_info *sbi) 572 { 573 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi)); 574 } 575 576 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi, 577 unsigned int node_blocks, unsigned int dent_blocks) 578 { 579 580 unsigned int segno, left_blocks; 581 int i; 582 583 /* check current node segment */ 584 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { 585 segno = CURSEG_I(sbi, i)->segno; 586 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) - 587 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 588 589 if (node_blocks > left_blocks) 590 return false; 591 } 592 593 /* check current data segment */ 594 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 595 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) - 596 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 597 if (dent_blocks > left_blocks) 598 return false; 599 return true; 600 } 601 602 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 603 int freed, int needed) 604 { 605 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 606 get_pages(sbi, F2FS_DIRTY_DENTS) + 607 get_pages(sbi, F2FS_DIRTY_IMETA); 608 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 609 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi); 610 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi); 611 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi); 612 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi); 613 unsigned int free, need_lower, need_upper; 614 615 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 616 return false; 617 618 free = free_sections(sbi) + freed; 619 need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed; 620 need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0); 621 622 if (free > need_upper) 623 return false; 624 else if (free <= need_lower) 625 return true; 626 return !has_curseg_enough_space(sbi, node_blocks, dent_blocks); 627 } 628 629 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) 630 { 631 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 632 return true; 633 if (likely(!has_not_enough_free_secs(sbi, 0, 0))) 634 return true; 635 return false; 636 } 637 638 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 639 { 640 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 641 } 642 643 static inline int utilization(struct f2fs_sb_info *sbi) 644 { 645 return div_u64((u64)valid_user_blocks(sbi) * 100, 646 sbi->user_block_count); 647 } 648 649 /* 650 * Sometimes f2fs may be better to drop out-of-place update policy. 651 * And, users can control the policy through sysfs entries. 652 * There are five policies with triggering conditions as follows. 653 * F2FS_IPU_FORCE - all the time, 654 * F2FS_IPU_SSR - if SSR mode is activated, 655 * F2FS_IPU_UTIL - if FS utilization is over threashold, 656 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 657 * threashold, 658 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 659 * storages. IPU will be triggered only if the # of dirty 660 * pages over min_fsync_blocks. (=default option) 661 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. 662 * F2FS_IPU_NOCACHE - disable IPU bio cache. 663 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has 664 * FI_OPU_WRITE flag. 665 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode) 666 */ 667 #define DEF_MIN_IPU_UTIL 70 668 #define DEF_MIN_FSYNC_BLOCKS 8 669 #define DEF_MIN_HOT_BLOCKS 16 670 671 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ 672 673 #define F2FS_IPU_DISABLE 0 674 675 /* Modification on enum should be synchronized with ipu_mode_names array */ 676 enum { 677 F2FS_IPU_FORCE, 678 F2FS_IPU_SSR, 679 F2FS_IPU_UTIL, 680 F2FS_IPU_SSR_UTIL, 681 F2FS_IPU_FSYNC, 682 F2FS_IPU_ASYNC, 683 F2FS_IPU_NOCACHE, 684 F2FS_IPU_HONOR_OPU_WRITE, 685 F2FS_IPU_MAX, 686 }; 687 688 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi) 689 { 690 return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE; 691 } 692 693 #define F2FS_IPU_POLICY(name) \ 694 static inline bool IS_##name(struct f2fs_sb_info *sbi) \ 695 { \ 696 return SM_I(sbi)->ipu_policy & BIT(name); \ 697 } 698 699 F2FS_IPU_POLICY(F2FS_IPU_FORCE); 700 F2FS_IPU_POLICY(F2FS_IPU_SSR); 701 F2FS_IPU_POLICY(F2FS_IPU_UTIL); 702 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL); 703 F2FS_IPU_POLICY(F2FS_IPU_FSYNC); 704 F2FS_IPU_POLICY(F2FS_IPU_ASYNC); 705 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE); 706 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE); 707 708 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 709 int type) 710 { 711 struct curseg_info *curseg = CURSEG_I(sbi, type); 712 return curseg->segno; 713 } 714 715 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 716 int type) 717 { 718 struct curseg_info *curseg = CURSEG_I(sbi, type); 719 return curseg->alloc_type; 720 } 721 722 static inline bool valid_main_segno(struct f2fs_sb_info *sbi, 723 unsigned int segno) 724 { 725 return segno <= (MAIN_SEGS(sbi) - 1); 726 } 727 728 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) 729 { 730 struct f2fs_sb_info *sbi = fio->sbi; 731 732 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 733 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? 734 META_GENERIC : DATA_GENERIC); 735 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? 736 META_GENERIC : DATA_GENERIC_ENHANCE); 737 } 738 739 /* 740 * Summary block is always treated as an invalid block 741 */ 742 static inline int check_block_count(struct f2fs_sb_info *sbi, 743 int segno, struct f2fs_sit_entry *raw_sit) 744 { 745 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 746 int valid_blocks = 0; 747 int cur_pos = 0, next_pos; 748 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno); 749 750 /* check bitmap with valid block count */ 751 do { 752 if (is_valid) { 753 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 754 usable_blks_per_seg, 755 cur_pos); 756 valid_blocks += next_pos - cur_pos; 757 } else 758 next_pos = find_next_bit_le(&raw_sit->valid_map, 759 usable_blks_per_seg, 760 cur_pos); 761 cur_pos = next_pos; 762 is_valid = !is_valid; 763 } while (cur_pos < usable_blks_per_seg); 764 765 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { 766 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", 767 GET_SIT_VBLOCKS(raw_sit), valid_blocks); 768 set_sbi_flag(sbi, SBI_NEED_FSCK); 769 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); 770 return -EFSCORRUPTED; 771 } 772 773 if (usable_blks_per_seg < sbi->blocks_per_seg) 774 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map, 775 sbi->blocks_per_seg, 776 usable_blks_per_seg) != sbi->blocks_per_seg); 777 778 /* check segment usage, and check boundary of a given segment number */ 779 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg 780 || !valid_main_segno(sbi, segno))) { 781 f2fs_err(sbi, "Wrong valid blocks %d or segno %u", 782 GET_SIT_VBLOCKS(raw_sit), segno); 783 set_sbi_flag(sbi, SBI_NEED_FSCK); 784 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); 785 return -EFSCORRUPTED; 786 } 787 return 0; 788 } 789 790 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 791 unsigned int start) 792 { 793 struct sit_info *sit_i = SIT_I(sbi); 794 unsigned int offset = SIT_BLOCK_OFFSET(start); 795 block_t blk_addr = sit_i->sit_base_addr + offset; 796 797 f2fs_bug_on(sbi, !valid_main_segno(sbi, start)); 798 799 #ifdef CONFIG_F2FS_CHECK_FS 800 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 801 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 802 f2fs_bug_on(sbi, 1); 803 #endif 804 805 /* calculate sit block address */ 806 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 807 blk_addr += sit_i->sit_blocks; 808 809 return blk_addr; 810 } 811 812 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 813 pgoff_t block_addr) 814 { 815 struct sit_info *sit_i = SIT_I(sbi); 816 block_addr -= sit_i->sit_base_addr; 817 if (block_addr < sit_i->sit_blocks) 818 block_addr += sit_i->sit_blocks; 819 else 820 block_addr -= sit_i->sit_blocks; 821 822 return block_addr + sit_i->sit_base_addr; 823 } 824 825 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 826 { 827 unsigned int block_off = SIT_BLOCK_OFFSET(start); 828 829 f2fs_change_bit(block_off, sit_i->sit_bitmap); 830 #ifdef CONFIG_F2FS_CHECK_FS 831 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 832 #endif 833 } 834 835 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, 836 bool base_time) 837 { 838 struct sit_info *sit_i = SIT_I(sbi); 839 time64_t diff, now = ktime_get_boottime_seconds(); 840 841 if (now >= sit_i->mounted_time) 842 return sit_i->elapsed_time + now - sit_i->mounted_time; 843 844 /* system time is set to the past */ 845 if (!base_time) { 846 diff = sit_i->mounted_time - now; 847 if (sit_i->elapsed_time >= diff) 848 return sit_i->elapsed_time - diff; 849 return 0; 850 } 851 return sit_i->elapsed_time; 852 } 853 854 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 855 unsigned int ofs_in_node, unsigned char version) 856 { 857 sum->nid = cpu_to_le32(nid); 858 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 859 sum->version = version; 860 } 861 862 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 863 { 864 return __start_cp_addr(sbi) + 865 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 866 } 867 868 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 869 { 870 return __start_cp_addr(sbi) + 871 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 872 - (base + 1) + type; 873 } 874 875 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 876 { 877 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 878 return true; 879 return false; 880 } 881 882 /* 883 * It is very important to gather dirty pages and write at once, so that we can 884 * submit a big bio without interfering other data writes. 885 * By default, 512 pages for directory data, 886 * 512 pages (2MB) * 8 for nodes, and 887 * 256 pages * 8 for meta are set. 888 */ 889 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 890 { 891 if (sbi->sb->s_bdi->wb.dirty_exceeded) 892 return 0; 893 894 if (type == DATA) 895 return sbi->blocks_per_seg; 896 else if (type == NODE) 897 return 8 * sbi->blocks_per_seg; 898 else if (type == META) 899 return 8 * BIO_MAX_VECS; 900 else 901 return 0; 902 } 903 904 /* 905 * When writing pages, it'd better align nr_to_write for segment size. 906 */ 907 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 908 struct writeback_control *wbc) 909 { 910 long nr_to_write, desired; 911 912 if (wbc->sync_mode != WB_SYNC_NONE) 913 return 0; 914 915 nr_to_write = wbc->nr_to_write; 916 desired = BIO_MAX_VECS; 917 if (type == NODE) 918 desired <<= 1; 919 920 wbc->nr_to_write = desired; 921 return desired - nr_to_write; 922 } 923 924 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 925 { 926 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 927 bool wakeup = false; 928 int i; 929 930 if (force) 931 goto wake_up; 932 933 mutex_lock(&dcc->cmd_lock); 934 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 935 if (i + 1 < dcc->discard_granularity) 936 break; 937 if (!list_empty(&dcc->pend_list[i])) { 938 wakeup = true; 939 break; 940 } 941 } 942 mutex_unlock(&dcc->cmd_lock); 943 if (!wakeup || !is_idle(sbi, DISCARD_TIME)) 944 return; 945 wake_up: 946 dcc->discard_wake = true; 947 wake_up_interruptible_all(&dcc->discard_wait_queue); 948 } 949