xref: /linux/fs/f2fs/segment.h (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13 
14 /* constant macro */
15 #define NULL_SEGNO			((unsigned int)(~0))
16 #define NULL_SECNO			((unsigned int)(~0))
17 
18 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
19 
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
23 
24 #define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
26 
27 #define IS_CURSEG(sbi, seg)						\
28 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
29 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
30 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
31 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
32 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
33 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34 
35 #define IS_CURSEC(sbi, secno)						\
36 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
37 	  sbi->segs_per_sec) ||	\
38 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
39 	  sbi->segs_per_sec) ||	\
40 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
41 	  sbi->segs_per_sec) ||	\
42 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
43 	  sbi->segs_per_sec) ||	\
44 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
45 	  sbi->segs_per_sec) ||	\
46 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
47 	  sbi->segs_per_sec))	\
48 
49 #define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
50 #define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
51 
52 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
53 #define MAIN_SECS(sbi)	(sbi->total_sections)
54 
55 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
56 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57 
58 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59 #define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
60 					sbi->log_blocks_per_seg))
61 
62 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
63 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64 
65 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
66 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67 
68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
70 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
72 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73 
74 #define GET_SEGNO(sbi, blk_addr)					\
75 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
76 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
77 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78 #define GET_SECNO(sbi, segno)					\
79 	((segno) / sbi->segs_per_sec)
80 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
81 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82 
83 #define GET_SUM_BLOCK(sbi, segno)				\
84 	((sbi->sm_info->ssa_blkaddr) + segno)
85 
86 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88 
89 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
90 	(segno % sit_i->sents_per_block)
91 #define SIT_BLOCK_OFFSET(segno)					\
92 	(segno / SIT_ENTRY_PER_BLOCK)
93 #define	START_SEGNO(segno)		\
94 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95 #define SIT_BLK_CNT(sbi)			\
96 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 #define f2fs_bitmap_size(nr)			\
98 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
99 
100 #define SECTOR_FROM_BLOCK(blk_addr)					\
101 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102 #define SECTOR_TO_BLOCK(sectors)					\
103 	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104 #define MAX_BIO_BLOCKS(sbi)						\
105 	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106 
107 /*
108  * indicate a block allocation direction: RIGHT and LEFT.
109  * RIGHT means allocating new sections towards the end of volume.
110  * LEFT means the opposite direction.
111  */
112 enum {
113 	ALLOC_RIGHT = 0,
114 	ALLOC_LEFT
115 };
116 
117 /*
118  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119  * LFS writes data sequentially with cleaning operations.
120  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121  */
122 enum {
123 	LFS = 0,
124 	SSR
125 };
126 
127 /*
128  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129  * GC_CB is based on cost-benefit algorithm.
130  * GC_GREEDY is based on greedy algorithm.
131  */
132 enum {
133 	GC_CB = 0,
134 	GC_GREEDY
135 };
136 
137 /*
138  * BG_GC means the background cleaning job.
139  * FG_GC means the on-demand cleaning job.
140  * FORCE_FG_GC means on-demand cleaning job in background.
141  */
142 enum {
143 	BG_GC = 0,
144 	FG_GC,
145 	FORCE_FG_GC,
146 };
147 
148 /* for a function parameter to select a victim segment */
149 struct victim_sel_policy {
150 	int alloc_mode;			/* LFS or SSR */
151 	int gc_mode;			/* GC_CB or GC_GREEDY */
152 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
153 	unsigned int max_search;	/* maximum # of segments to search */
154 	unsigned int offset;		/* last scanned bitmap offset */
155 	unsigned int ofs_unit;		/* bitmap search unit */
156 	unsigned int min_cost;		/* minimum cost */
157 	unsigned int min_segno;		/* segment # having min. cost */
158 };
159 
160 struct seg_entry {
161 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
162 	unsigned int valid_blocks:10;	/* # of valid blocks */
163 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
164 	unsigned int padding:6;		/* padding */
165 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
166 	/*
167 	 * # of valid blocks and the validity bitmap stored in the the last
168 	 * checkpoint pack. This information is used by the SSR mode.
169 	 */
170 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
171 	unsigned char *discard_map;
172 	unsigned long long mtime;	/* modification time of the segment */
173 };
174 
175 struct sec_entry {
176 	unsigned int valid_blocks;	/* # of valid blocks in a section */
177 };
178 
179 struct segment_allocation {
180 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
181 };
182 
183 /*
184  * this value is set in page as a private data which indicate that
185  * the page is atomically written, and it is in inmem_pages list.
186  */
187 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
188 
189 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
190 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
191 
192 struct inmem_pages {
193 	struct list_head list;
194 	struct page *page;
195 	block_t old_addr;		/* for revoking when fail to commit */
196 };
197 
198 struct sit_info {
199 	const struct segment_allocation *s_ops;
200 
201 	block_t sit_base_addr;		/* start block address of SIT area */
202 	block_t sit_blocks;		/* # of blocks used by SIT area */
203 	block_t written_valid_blocks;	/* # of valid blocks in main area */
204 	char *sit_bitmap;		/* SIT bitmap pointer */
205 	unsigned int bitmap_size;	/* SIT bitmap size */
206 
207 	unsigned long *tmp_map;			/* bitmap for temporal use */
208 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
209 	unsigned int dirty_sentries;		/* # of dirty sentries */
210 	unsigned int sents_per_block;		/* # of SIT entries per block */
211 	struct mutex sentry_lock;		/* to protect SIT cache */
212 	struct seg_entry *sentries;		/* SIT segment-level cache */
213 	struct sec_entry *sec_entries;		/* SIT section-level cache */
214 
215 	/* for cost-benefit algorithm in cleaning procedure */
216 	unsigned long long elapsed_time;	/* elapsed time after mount */
217 	unsigned long long mounted_time;	/* mount time */
218 	unsigned long long min_mtime;		/* min. modification time */
219 	unsigned long long max_mtime;		/* max. modification time */
220 };
221 
222 struct free_segmap_info {
223 	unsigned int start_segno;	/* start segment number logically */
224 	unsigned int free_segments;	/* # of free segments */
225 	unsigned int free_sections;	/* # of free sections */
226 	spinlock_t segmap_lock;		/* free segmap lock */
227 	unsigned long *free_segmap;	/* free segment bitmap */
228 	unsigned long *free_secmap;	/* free section bitmap */
229 };
230 
231 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
232 enum dirty_type {
233 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
234 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
235 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
236 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
237 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
238 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
239 	DIRTY,			/* to count # of dirty segments */
240 	PRE,			/* to count # of entirely obsolete segments */
241 	NR_DIRTY_TYPE
242 };
243 
244 struct dirty_seglist_info {
245 	const struct victim_selection *v_ops;	/* victim selction operation */
246 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
247 	struct mutex seglist_lock;		/* lock for segment bitmaps */
248 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
249 	unsigned long *victim_secmap;		/* background GC victims */
250 };
251 
252 /* victim selection function for cleaning and SSR */
253 struct victim_selection {
254 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
255 							int, int, char);
256 };
257 
258 /* for active log information */
259 struct curseg_info {
260 	struct mutex curseg_mutex;		/* lock for consistency */
261 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
262 	struct rw_semaphore journal_rwsem;	/* protect journal area */
263 	struct f2fs_journal *journal;		/* cached journal info */
264 	unsigned char alloc_type;		/* current allocation type */
265 	unsigned int segno;			/* current segment number */
266 	unsigned short next_blkoff;		/* next block offset to write */
267 	unsigned int zone;			/* current zone number */
268 	unsigned int next_segno;		/* preallocated segment */
269 };
270 
271 struct sit_entry_set {
272 	struct list_head set_list;	/* link with all sit sets */
273 	unsigned int start_segno;	/* start segno of sits in set */
274 	unsigned int entry_cnt;		/* the # of sit entries in set */
275 };
276 
277 /*
278  * inline functions
279  */
280 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
281 {
282 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
283 }
284 
285 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
286 						unsigned int segno)
287 {
288 	struct sit_info *sit_i = SIT_I(sbi);
289 	return &sit_i->sentries[segno];
290 }
291 
292 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
293 						unsigned int segno)
294 {
295 	struct sit_info *sit_i = SIT_I(sbi);
296 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
297 }
298 
299 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
300 				unsigned int segno, int section)
301 {
302 	/*
303 	 * In order to get # of valid blocks in a section instantly from many
304 	 * segments, f2fs manages two counting structures separately.
305 	 */
306 	if (section > 1)
307 		return get_sec_entry(sbi, segno)->valid_blocks;
308 	else
309 		return get_seg_entry(sbi, segno)->valid_blocks;
310 }
311 
312 static inline void seg_info_from_raw_sit(struct seg_entry *se,
313 					struct f2fs_sit_entry *rs)
314 {
315 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
316 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
317 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
318 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
319 	se->type = GET_SIT_TYPE(rs);
320 	se->mtime = le64_to_cpu(rs->mtime);
321 }
322 
323 static inline void seg_info_to_raw_sit(struct seg_entry *se,
324 					struct f2fs_sit_entry *rs)
325 {
326 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
327 					se->valid_blocks;
328 	rs->vblocks = cpu_to_le16(raw_vblocks);
329 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
330 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
331 	se->ckpt_valid_blocks = se->valid_blocks;
332 	rs->mtime = cpu_to_le64(se->mtime);
333 }
334 
335 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
336 		unsigned int max, unsigned int segno)
337 {
338 	unsigned int ret;
339 	spin_lock(&free_i->segmap_lock);
340 	ret = find_next_bit(free_i->free_segmap, max, segno);
341 	spin_unlock(&free_i->segmap_lock);
342 	return ret;
343 }
344 
345 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
346 {
347 	struct free_segmap_info *free_i = FREE_I(sbi);
348 	unsigned int secno = segno / sbi->segs_per_sec;
349 	unsigned int start_segno = secno * sbi->segs_per_sec;
350 	unsigned int next;
351 
352 	spin_lock(&free_i->segmap_lock);
353 	clear_bit(segno, free_i->free_segmap);
354 	free_i->free_segments++;
355 
356 	next = find_next_bit(free_i->free_segmap,
357 			start_segno + sbi->segs_per_sec, start_segno);
358 	if (next >= start_segno + sbi->segs_per_sec) {
359 		clear_bit(secno, free_i->free_secmap);
360 		free_i->free_sections++;
361 	}
362 	spin_unlock(&free_i->segmap_lock);
363 }
364 
365 static inline void __set_inuse(struct f2fs_sb_info *sbi,
366 		unsigned int segno)
367 {
368 	struct free_segmap_info *free_i = FREE_I(sbi);
369 	unsigned int secno = segno / sbi->segs_per_sec;
370 	set_bit(segno, free_i->free_segmap);
371 	free_i->free_segments--;
372 	if (!test_and_set_bit(secno, free_i->free_secmap))
373 		free_i->free_sections--;
374 }
375 
376 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
377 		unsigned int segno)
378 {
379 	struct free_segmap_info *free_i = FREE_I(sbi);
380 	unsigned int secno = segno / sbi->segs_per_sec;
381 	unsigned int start_segno = secno * sbi->segs_per_sec;
382 	unsigned int next;
383 
384 	spin_lock(&free_i->segmap_lock);
385 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
386 		free_i->free_segments++;
387 
388 		next = find_next_bit(free_i->free_segmap,
389 				start_segno + sbi->segs_per_sec, start_segno);
390 		if (next >= start_segno + sbi->segs_per_sec) {
391 			if (test_and_clear_bit(secno, free_i->free_secmap))
392 				free_i->free_sections++;
393 		}
394 	}
395 	spin_unlock(&free_i->segmap_lock);
396 }
397 
398 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
399 		unsigned int segno)
400 {
401 	struct free_segmap_info *free_i = FREE_I(sbi);
402 	unsigned int secno = segno / sbi->segs_per_sec;
403 	spin_lock(&free_i->segmap_lock);
404 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
405 		free_i->free_segments--;
406 		if (!test_and_set_bit(secno, free_i->free_secmap))
407 			free_i->free_sections--;
408 	}
409 	spin_unlock(&free_i->segmap_lock);
410 }
411 
412 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
413 		void *dst_addr)
414 {
415 	struct sit_info *sit_i = SIT_I(sbi);
416 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
417 }
418 
419 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
420 {
421 	return SIT_I(sbi)->written_valid_blocks;
422 }
423 
424 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
425 {
426 	return FREE_I(sbi)->free_segments;
427 }
428 
429 static inline int reserved_segments(struct f2fs_sb_info *sbi)
430 {
431 	return SM_I(sbi)->reserved_segments;
432 }
433 
434 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
435 {
436 	return FREE_I(sbi)->free_sections;
437 }
438 
439 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
440 {
441 	return DIRTY_I(sbi)->nr_dirty[PRE];
442 }
443 
444 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
445 {
446 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
447 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
448 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
449 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
450 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
451 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
452 }
453 
454 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
455 {
456 	return SM_I(sbi)->ovp_segments;
457 }
458 
459 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
460 {
461 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
462 }
463 
464 static inline int reserved_sections(struct f2fs_sb_info *sbi)
465 {
466 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
467 }
468 
469 static inline bool need_SSR(struct f2fs_sb_info *sbi)
470 {
471 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
472 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
473 	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
474 						reserved_sections(sbi) + 1);
475 }
476 
477 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
478 {
479 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
480 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
481 
482 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
483 		return false;
484 
485 	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
486 						reserved_sections(sbi));
487 }
488 
489 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
490 {
491 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
492 }
493 
494 static inline int utilization(struct f2fs_sb_info *sbi)
495 {
496 	return div_u64((u64)valid_user_blocks(sbi) * 100,
497 					sbi->user_block_count);
498 }
499 
500 /*
501  * Sometimes f2fs may be better to drop out-of-place update policy.
502  * And, users can control the policy through sysfs entries.
503  * There are five policies with triggering conditions as follows.
504  * F2FS_IPU_FORCE - all the time,
505  * F2FS_IPU_SSR - if SSR mode is activated,
506  * F2FS_IPU_UTIL - if FS utilization is over threashold,
507  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
508  *                     threashold,
509  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
510  *                     storages. IPU will be triggered only if the # of dirty
511  *                     pages over min_fsync_blocks.
512  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
513  */
514 #define DEF_MIN_IPU_UTIL	70
515 #define DEF_MIN_FSYNC_BLOCKS	8
516 
517 enum {
518 	F2FS_IPU_FORCE,
519 	F2FS_IPU_SSR,
520 	F2FS_IPU_UTIL,
521 	F2FS_IPU_SSR_UTIL,
522 	F2FS_IPU_FSYNC,
523 };
524 
525 static inline bool need_inplace_update(struct inode *inode)
526 {
527 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
528 	unsigned int policy = SM_I(sbi)->ipu_policy;
529 
530 	/* IPU can be done only for the user data */
531 	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
532 		return false;
533 
534 	if (policy & (0x1 << F2FS_IPU_FORCE))
535 		return true;
536 	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
537 		return true;
538 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
539 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
540 		return true;
541 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
542 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
543 		return true;
544 
545 	/* this is only set during fdatasync */
546 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
547 			is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
548 		return true;
549 
550 	return false;
551 }
552 
553 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
554 		int type)
555 {
556 	struct curseg_info *curseg = CURSEG_I(sbi, type);
557 	return curseg->segno;
558 }
559 
560 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
561 		int type)
562 {
563 	struct curseg_info *curseg = CURSEG_I(sbi, type);
564 	return curseg->alloc_type;
565 }
566 
567 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
568 {
569 	struct curseg_info *curseg = CURSEG_I(sbi, type);
570 	return curseg->next_blkoff;
571 }
572 
573 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
574 {
575 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
576 }
577 
578 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
579 {
580 	f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
581 					|| blk_addr >= MAX_BLKADDR(sbi));
582 }
583 
584 /*
585  * Summary block is always treated as an invalid block
586  */
587 static inline void check_block_count(struct f2fs_sb_info *sbi,
588 		int segno, struct f2fs_sit_entry *raw_sit)
589 {
590 #ifdef CONFIG_F2FS_CHECK_FS
591 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
592 	int valid_blocks = 0;
593 	int cur_pos = 0, next_pos;
594 
595 	/* check bitmap with valid block count */
596 	do {
597 		if (is_valid) {
598 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
599 					sbi->blocks_per_seg,
600 					cur_pos);
601 			valid_blocks += next_pos - cur_pos;
602 		} else
603 			next_pos = find_next_bit_le(&raw_sit->valid_map,
604 					sbi->blocks_per_seg,
605 					cur_pos);
606 		cur_pos = next_pos;
607 		is_valid = !is_valid;
608 	} while (cur_pos < sbi->blocks_per_seg);
609 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
610 #endif
611 	/* check segment usage, and check boundary of a given segment number */
612 	f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
613 					|| segno > TOTAL_SEGS(sbi) - 1);
614 }
615 
616 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
617 						unsigned int start)
618 {
619 	struct sit_info *sit_i = SIT_I(sbi);
620 	unsigned int offset = SIT_BLOCK_OFFSET(start);
621 	block_t blk_addr = sit_i->sit_base_addr + offset;
622 
623 	check_seg_range(sbi, start);
624 
625 	/* calculate sit block address */
626 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
627 		blk_addr += sit_i->sit_blocks;
628 
629 	return blk_addr;
630 }
631 
632 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
633 						pgoff_t block_addr)
634 {
635 	struct sit_info *sit_i = SIT_I(sbi);
636 	block_addr -= sit_i->sit_base_addr;
637 	if (block_addr < sit_i->sit_blocks)
638 		block_addr += sit_i->sit_blocks;
639 	else
640 		block_addr -= sit_i->sit_blocks;
641 
642 	return block_addr + sit_i->sit_base_addr;
643 }
644 
645 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
646 {
647 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
648 
649 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
650 }
651 
652 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
653 {
654 	struct sit_info *sit_i = SIT_I(sbi);
655 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
656 						sit_i->mounted_time;
657 }
658 
659 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
660 			unsigned int ofs_in_node, unsigned char version)
661 {
662 	sum->nid = cpu_to_le32(nid);
663 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
664 	sum->version = version;
665 }
666 
667 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
668 {
669 	return __start_cp_addr(sbi) +
670 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
671 }
672 
673 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
674 {
675 	return __start_cp_addr(sbi) +
676 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
677 				- (base + 1) + type;
678 }
679 
680 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
681 {
682 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
683 		return true;
684 	return false;
685 }
686 
687 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
688 {
689 	struct block_device *bdev = sbi->sb->s_bdev;
690 	struct request_queue *q = bdev_get_queue(bdev);
691 	return SECTOR_TO_BLOCK(queue_max_sectors(q));
692 }
693 
694 /*
695  * It is very important to gather dirty pages and write at once, so that we can
696  * submit a big bio without interfering other data writes.
697  * By default, 512 pages for directory data,
698  * 512 pages (2MB) * 3 for three types of nodes, and
699  * max_bio_blocks for meta are set.
700  */
701 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
702 {
703 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
704 		return 0;
705 
706 	if (type == DATA)
707 		return sbi->blocks_per_seg;
708 	else if (type == NODE)
709 		return 3 * sbi->blocks_per_seg;
710 	else if (type == META)
711 		return MAX_BIO_BLOCKS(sbi);
712 	else
713 		return 0;
714 }
715 
716 /*
717  * When writing pages, it'd better align nr_to_write for segment size.
718  */
719 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
720 					struct writeback_control *wbc)
721 {
722 	long nr_to_write, desired;
723 
724 	if (wbc->sync_mode != WB_SYNC_NONE)
725 		return 0;
726 
727 	nr_to_write = wbc->nr_to_write;
728 
729 	if (type == DATA)
730 		desired = 4096;
731 	else if (type == NODE)
732 		desired = 3 * max_hw_blocks(sbi);
733 	else
734 		desired = MAX_BIO_BLOCKS(sbi);
735 
736 	wbc->nr_to_write = desired;
737 	return desired - nr_to_write;
738 }
739