xref: /linux/fs/f2fs/segment.h (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13 
14 /* constant macro */
15 #define NULL_SEGNO			((unsigned int)(~0))
16 #define NULL_SECNO			((unsigned int)(~0))
17 
18 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
19 
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
23 
24 #define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
26 
27 #define IS_CURSEG(sbi, seg)						\
28 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
29 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
30 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
31 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
32 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
33 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34 
35 #define IS_CURSEC(sbi, secno)						\
36 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
37 	  sbi->segs_per_sec) ||	\
38 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
39 	  sbi->segs_per_sec) ||	\
40 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
41 	  sbi->segs_per_sec) ||	\
42 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
43 	  sbi->segs_per_sec) ||	\
44 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
45 	  sbi->segs_per_sec) ||	\
46 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
47 	  sbi->segs_per_sec))	\
48 
49 #define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
50 #define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
51 
52 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
53 #define MAIN_SECS(sbi)	(sbi->total_sections)
54 
55 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
56 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57 
58 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59 #define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
60 					sbi->log_blocks_per_seg))
61 
62 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
63 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64 
65 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
66 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67 
68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
70 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
72 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73 
74 #define GET_SEGNO(sbi, blk_addr)					\
75 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
76 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
77 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78 #define GET_SECNO(sbi, segno)					\
79 	((segno) / sbi->segs_per_sec)
80 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
81 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82 
83 #define GET_SUM_BLOCK(sbi, segno)				\
84 	((sbi->sm_info->ssa_blkaddr) + segno)
85 
86 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88 
89 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
90 	(segno % sit_i->sents_per_block)
91 #define SIT_BLOCK_OFFSET(segno)					\
92 	(segno / SIT_ENTRY_PER_BLOCK)
93 #define	START_SEGNO(segno)		\
94 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95 #define SIT_BLK_CNT(sbi)			\
96 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 #define f2fs_bitmap_size(nr)			\
98 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
99 
100 #define SECTOR_FROM_BLOCK(blk_addr)					\
101 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102 #define SECTOR_TO_BLOCK(sectors)					\
103 	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104 #define MAX_BIO_BLOCKS(sbi)						\
105 	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106 
107 /*
108  * indicate a block allocation direction: RIGHT and LEFT.
109  * RIGHT means allocating new sections towards the end of volume.
110  * LEFT means the opposite direction.
111  */
112 enum {
113 	ALLOC_RIGHT = 0,
114 	ALLOC_LEFT
115 };
116 
117 /*
118  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119  * LFS writes data sequentially with cleaning operations.
120  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121  */
122 enum {
123 	LFS = 0,
124 	SSR
125 };
126 
127 /*
128  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129  * GC_CB is based on cost-benefit algorithm.
130  * GC_GREEDY is based on greedy algorithm.
131  */
132 enum {
133 	GC_CB = 0,
134 	GC_GREEDY
135 };
136 
137 /*
138  * BG_GC means the background cleaning job.
139  * FG_GC means the on-demand cleaning job.
140  */
141 enum {
142 	BG_GC = 0,
143 	FG_GC
144 };
145 
146 /* for a function parameter to select a victim segment */
147 struct victim_sel_policy {
148 	int alloc_mode;			/* LFS or SSR */
149 	int gc_mode;			/* GC_CB or GC_GREEDY */
150 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
151 	unsigned int max_search;	/* maximum # of segments to search */
152 	unsigned int offset;		/* last scanned bitmap offset */
153 	unsigned int ofs_unit;		/* bitmap search unit */
154 	unsigned int min_cost;		/* minimum cost */
155 	unsigned int min_segno;		/* segment # having min. cost */
156 };
157 
158 struct seg_entry {
159 	unsigned short valid_blocks;	/* # of valid blocks */
160 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
161 	/*
162 	 * # of valid blocks and the validity bitmap stored in the the last
163 	 * checkpoint pack. This information is used by the SSR mode.
164 	 */
165 	unsigned short ckpt_valid_blocks;
166 	unsigned char *ckpt_valid_map;
167 	unsigned char *discard_map;
168 	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
169 	unsigned long long mtime;	/* modification time of the segment */
170 };
171 
172 struct sec_entry {
173 	unsigned int valid_blocks;	/* # of valid blocks in a section */
174 };
175 
176 struct segment_allocation {
177 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
178 };
179 
180 struct inmem_pages {
181 	struct list_head list;
182 	struct page *page;
183 };
184 
185 struct sit_info {
186 	const struct segment_allocation *s_ops;
187 
188 	block_t sit_base_addr;		/* start block address of SIT area */
189 	block_t sit_blocks;		/* # of blocks used by SIT area */
190 	block_t written_valid_blocks;	/* # of valid blocks in main area */
191 	char *sit_bitmap;		/* SIT bitmap pointer */
192 	unsigned int bitmap_size;	/* SIT bitmap size */
193 
194 	unsigned long *tmp_map;			/* bitmap for temporal use */
195 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
196 	unsigned int dirty_sentries;		/* # of dirty sentries */
197 	unsigned int sents_per_block;		/* # of SIT entries per block */
198 	struct mutex sentry_lock;		/* to protect SIT cache */
199 	struct seg_entry *sentries;		/* SIT segment-level cache */
200 	struct sec_entry *sec_entries;		/* SIT section-level cache */
201 
202 	/* for cost-benefit algorithm in cleaning procedure */
203 	unsigned long long elapsed_time;	/* elapsed time after mount */
204 	unsigned long long mounted_time;	/* mount time */
205 	unsigned long long min_mtime;		/* min. modification time */
206 	unsigned long long max_mtime;		/* max. modification time */
207 };
208 
209 struct free_segmap_info {
210 	unsigned int start_segno;	/* start segment number logically */
211 	unsigned int free_segments;	/* # of free segments */
212 	unsigned int free_sections;	/* # of free sections */
213 	spinlock_t segmap_lock;		/* free segmap lock */
214 	unsigned long *free_segmap;	/* free segment bitmap */
215 	unsigned long *free_secmap;	/* free section bitmap */
216 };
217 
218 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
219 enum dirty_type {
220 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
221 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
222 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
223 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
224 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
225 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
226 	DIRTY,			/* to count # of dirty segments */
227 	PRE,			/* to count # of entirely obsolete segments */
228 	NR_DIRTY_TYPE
229 };
230 
231 struct dirty_seglist_info {
232 	const struct victim_selection *v_ops;	/* victim selction operation */
233 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
234 	struct mutex seglist_lock;		/* lock for segment bitmaps */
235 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
236 	unsigned long *victim_secmap;		/* background GC victims */
237 };
238 
239 /* victim selection function for cleaning and SSR */
240 struct victim_selection {
241 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
242 							int, int, char);
243 };
244 
245 /* for active log information */
246 struct curseg_info {
247 	struct mutex curseg_mutex;		/* lock for consistency */
248 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
249 	unsigned char alloc_type;		/* current allocation type */
250 	unsigned int segno;			/* current segment number */
251 	unsigned short next_blkoff;		/* next block offset to write */
252 	unsigned int zone;			/* current zone number */
253 	unsigned int next_segno;		/* preallocated segment */
254 };
255 
256 struct sit_entry_set {
257 	struct list_head set_list;	/* link with all sit sets */
258 	unsigned int start_segno;	/* start segno of sits in set */
259 	unsigned int entry_cnt;		/* the # of sit entries in set */
260 };
261 
262 /*
263  * inline functions
264  */
265 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
266 {
267 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
268 }
269 
270 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
271 						unsigned int segno)
272 {
273 	struct sit_info *sit_i = SIT_I(sbi);
274 	return &sit_i->sentries[segno];
275 }
276 
277 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
278 						unsigned int segno)
279 {
280 	struct sit_info *sit_i = SIT_I(sbi);
281 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
282 }
283 
284 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
285 				unsigned int segno, int section)
286 {
287 	/*
288 	 * In order to get # of valid blocks in a section instantly from many
289 	 * segments, f2fs manages two counting structures separately.
290 	 */
291 	if (section > 1)
292 		return get_sec_entry(sbi, segno)->valid_blocks;
293 	else
294 		return get_seg_entry(sbi, segno)->valid_blocks;
295 }
296 
297 static inline void seg_info_from_raw_sit(struct seg_entry *se,
298 					struct f2fs_sit_entry *rs)
299 {
300 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
301 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
302 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
303 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
304 	se->type = GET_SIT_TYPE(rs);
305 	se->mtime = le64_to_cpu(rs->mtime);
306 }
307 
308 static inline void seg_info_to_raw_sit(struct seg_entry *se,
309 					struct f2fs_sit_entry *rs)
310 {
311 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
312 					se->valid_blocks;
313 	rs->vblocks = cpu_to_le16(raw_vblocks);
314 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
315 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
316 	se->ckpt_valid_blocks = se->valid_blocks;
317 	rs->mtime = cpu_to_le64(se->mtime);
318 }
319 
320 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
321 		unsigned int max, unsigned int segno)
322 {
323 	unsigned int ret;
324 	spin_lock(&free_i->segmap_lock);
325 	ret = find_next_bit(free_i->free_segmap, max, segno);
326 	spin_unlock(&free_i->segmap_lock);
327 	return ret;
328 }
329 
330 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
331 {
332 	struct free_segmap_info *free_i = FREE_I(sbi);
333 	unsigned int secno = segno / sbi->segs_per_sec;
334 	unsigned int start_segno = secno * sbi->segs_per_sec;
335 	unsigned int next;
336 
337 	spin_lock(&free_i->segmap_lock);
338 	clear_bit(segno, free_i->free_segmap);
339 	free_i->free_segments++;
340 
341 	next = find_next_bit(free_i->free_segmap,
342 			start_segno + sbi->segs_per_sec, start_segno);
343 	if (next >= start_segno + sbi->segs_per_sec) {
344 		clear_bit(secno, free_i->free_secmap);
345 		free_i->free_sections++;
346 	}
347 	spin_unlock(&free_i->segmap_lock);
348 }
349 
350 static inline void __set_inuse(struct f2fs_sb_info *sbi,
351 		unsigned int segno)
352 {
353 	struct free_segmap_info *free_i = FREE_I(sbi);
354 	unsigned int secno = segno / sbi->segs_per_sec;
355 	set_bit(segno, free_i->free_segmap);
356 	free_i->free_segments--;
357 	if (!test_and_set_bit(secno, free_i->free_secmap))
358 		free_i->free_sections--;
359 }
360 
361 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
362 		unsigned int segno)
363 {
364 	struct free_segmap_info *free_i = FREE_I(sbi);
365 	unsigned int secno = segno / sbi->segs_per_sec;
366 	unsigned int start_segno = secno * sbi->segs_per_sec;
367 	unsigned int next;
368 
369 	spin_lock(&free_i->segmap_lock);
370 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
371 		free_i->free_segments++;
372 
373 		next = find_next_bit(free_i->free_segmap,
374 				start_segno + sbi->segs_per_sec, start_segno);
375 		if (next >= start_segno + sbi->segs_per_sec) {
376 			if (test_and_clear_bit(secno, free_i->free_secmap))
377 				free_i->free_sections++;
378 		}
379 	}
380 	spin_unlock(&free_i->segmap_lock);
381 }
382 
383 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
384 		unsigned int segno)
385 {
386 	struct free_segmap_info *free_i = FREE_I(sbi);
387 	unsigned int secno = segno / sbi->segs_per_sec;
388 	spin_lock(&free_i->segmap_lock);
389 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
390 		free_i->free_segments--;
391 		if (!test_and_set_bit(secno, free_i->free_secmap))
392 			free_i->free_sections--;
393 	}
394 	spin_unlock(&free_i->segmap_lock);
395 }
396 
397 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
398 		void *dst_addr)
399 {
400 	struct sit_info *sit_i = SIT_I(sbi);
401 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
402 }
403 
404 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
405 {
406 	return SIT_I(sbi)->written_valid_blocks;
407 }
408 
409 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
410 {
411 	return FREE_I(sbi)->free_segments;
412 }
413 
414 static inline int reserved_segments(struct f2fs_sb_info *sbi)
415 {
416 	return SM_I(sbi)->reserved_segments;
417 }
418 
419 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
420 {
421 	return FREE_I(sbi)->free_sections;
422 }
423 
424 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
425 {
426 	return DIRTY_I(sbi)->nr_dirty[PRE];
427 }
428 
429 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
430 {
431 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
432 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
433 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
434 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
435 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
436 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
437 }
438 
439 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
440 {
441 	return SM_I(sbi)->ovp_segments;
442 }
443 
444 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
445 {
446 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
447 }
448 
449 static inline int reserved_sections(struct f2fs_sb_info *sbi)
450 {
451 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
452 }
453 
454 static inline bool need_SSR(struct f2fs_sb_info *sbi)
455 {
456 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
457 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
458 	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
459 						reserved_sections(sbi) + 1);
460 }
461 
462 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
463 {
464 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
465 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
466 
467 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
468 		return false;
469 
470 	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
471 						reserved_sections(sbi));
472 }
473 
474 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
475 {
476 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
477 }
478 
479 static inline int utilization(struct f2fs_sb_info *sbi)
480 {
481 	return div_u64((u64)valid_user_blocks(sbi) * 100,
482 					sbi->user_block_count);
483 }
484 
485 /*
486  * Sometimes f2fs may be better to drop out-of-place update policy.
487  * And, users can control the policy through sysfs entries.
488  * There are five policies with triggering conditions as follows.
489  * F2FS_IPU_FORCE - all the time,
490  * F2FS_IPU_SSR - if SSR mode is activated,
491  * F2FS_IPU_UTIL - if FS utilization is over threashold,
492  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
493  *                     threashold,
494  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
495  *                     storages. IPU will be triggered only if the # of dirty
496  *                     pages over min_fsync_blocks.
497  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
498  */
499 #define DEF_MIN_IPU_UTIL	70
500 #define DEF_MIN_FSYNC_BLOCKS	8
501 
502 enum {
503 	F2FS_IPU_FORCE,
504 	F2FS_IPU_SSR,
505 	F2FS_IPU_UTIL,
506 	F2FS_IPU_SSR_UTIL,
507 	F2FS_IPU_FSYNC,
508 };
509 
510 static inline bool need_inplace_update(struct inode *inode)
511 {
512 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
513 	unsigned int policy = SM_I(sbi)->ipu_policy;
514 
515 	/* IPU can be done only for the user data */
516 	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
517 		return false;
518 
519 	if (policy & (0x1 << F2FS_IPU_FORCE))
520 		return true;
521 	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
522 		return true;
523 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
524 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
525 		return true;
526 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
527 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
528 		return true;
529 
530 	/* this is only set during fdatasync */
531 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
532 			is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
533 		return true;
534 
535 	return false;
536 }
537 
538 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
539 		int type)
540 {
541 	struct curseg_info *curseg = CURSEG_I(sbi, type);
542 	return curseg->segno;
543 }
544 
545 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
546 		int type)
547 {
548 	struct curseg_info *curseg = CURSEG_I(sbi, type);
549 	return curseg->alloc_type;
550 }
551 
552 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
553 {
554 	struct curseg_info *curseg = CURSEG_I(sbi, type);
555 	return curseg->next_blkoff;
556 }
557 
558 #ifdef CONFIG_F2FS_CHECK_FS
559 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
560 {
561 	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
562 }
563 
564 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
565 {
566 	BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
567 	BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
568 }
569 
570 /*
571  * Summary block is always treated as an invalid block
572  */
573 static inline void check_block_count(struct f2fs_sb_info *sbi,
574 		int segno, struct f2fs_sit_entry *raw_sit)
575 {
576 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
577 	int valid_blocks = 0;
578 	int cur_pos = 0, next_pos;
579 
580 	/* check segment usage */
581 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
582 
583 	/* check boundary of a given segment number */
584 	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
585 
586 	/* check bitmap with valid block count */
587 	do {
588 		if (is_valid) {
589 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
590 					sbi->blocks_per_seg,
591 					cur_pos);
592 			valid_blocks += next_pos - cur_pos;
593 		} else
594 			next_pos = find_next_bit_le(&raw_sit->valid_map,
595 					sbi->blocks_per_seg,
596 					cur_pos);
597 		cur_pos = next_pos;
598 		is_valid = !is_valid;
599 	} while (cur_pos < sbi->blocks_per_seg);
600 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
601 }
602 #else
603 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
604 {
605 	if (segno > TOTAL_SEGS(sbi) - 1)
606 		set_sbi_flag(sbi, SBI_NEED_FSCK);
607 }
608 
609 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
610 {
611 	if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
612 		set_sbi_flag(sbi, SBI_NEED_FSCK);
613 }
614 
615 /*
616  * Summary block is always treated as an invalid block
617  */
618 static inline void check_block_count(struct f2fs_sb_info *sbi,
619 		int segno, struct f2fs_sit_entry *raw_sit)
620 {
621 	/* check segment usage */
622 	if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
623 		set_sbi_flag(sbi, SBI_NEED_FSCK);
624 
625 	/* check boundary of a given segment number */
626 	if (segno > TOTAL_SEGS(sbi) - 1)
627 		set_sbi_flag(sbi, SBI_NEED_FSCK);
628 }
629 #endif
630 
631 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
632 						unsigned int start)
633 {
634 	struct sit_info *sit_i = SIT_I(sbi);
635 	unsigned int offset = SIT_BLOCK_OFFSET(start);
636 	block_t blk_addr = sit_i->sit_base_addr + offset;
637 
638 	check_seg_range(sbi, start);
639 
640 	/* calculate sit block address */
641 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
642 		blk_addr += sit_i->sit_blocks;
643 
644 	return blk_addr;
645 }
646 
647 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
648 						pgoff_t block_addr)
649 {
650 	struct sit_info *sit_i = SIT_I(sbi);
651 	block_addr -= sit_i->sit_base_addr;
652 	if (block_addr < sit_i->sit_blocks)
653 		block_addr += sit_i->sit_blocks;
654 	else
655 		block_addr -= sit_i->sit_blocks;
656 
657 	return block_addr + sit_i->sit_base_addr;
658 }
659 
660 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
661 {
662 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
663 
664 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
665 }
666 
667 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
668 {
669 	struct sit_info *sit_i = SIT_I(sbi);
670 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
671 						sit_i->mounted_time;
672 }
673 
674 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
675 			unsigned int ofs_in_node, unsigned char version)
676 {
677 	sum->nid = cpu_to_le32(nid);
678 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
679 	sum->version = version;
680 }
681 
682 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
683 {
684 	return __start_cp_addr(sbi) +
685 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
686 }
687 
688 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
689 {
690 	return __start_cp_addr(sbi) +
691 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
692 				- (base + 1) + type;
693 }
694 
695 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
696 {
697 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
698 		return true;
699 	return false;
700 }
701 
702 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
703 {
704 	struct block_device *bdev = sbi->sb->s_bdev;
705 	struct request_queue *q = bdev_get_queue(bdev);
706 	return SECTOR_TO_BLOCK(queue_max_sectors(q));
707 }
708 
709 /*
710  * It is very important to gather dirty pages and write at once, so that we can
711  * submit a big bio without interfering other data writes.
712  * By default, 512 pages for directory data,
713  * 512 pages (2MB) * 3 for three types of nodes, and
714  * max_bio_blocks for meta are set.
715  */
716 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
717 {
718 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
719 		return 0;
720 
721 	if (type == DATA)
722 		return sbi->blocks_per_seg;
723 	else if (type == NODE)
724 		return 3 * sbi->blocks_per_seg;
725 	else if (type == META)
726 		return MAX_BIO_BLOCKS(sbi);
727 	else
728 		return 0;
729 }
730 
731 /*
732  * When writing pages, it'd better align nr_to_write for segment size.
733  */
734 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
735 					struct writeback_control *wbc)
736 {
737 	long nr_to_write, desired;
738 
739 	if (wbc->sync_mode != WB_SYNC_NONE)
740 		return 0;
741 
742 	nr_to_write = wbc->nr_to_write;
743 
744 	if (type == DATA)
745 		desired = 4096;
746 	else if (type == NODE)
747 		desired = 3 * max_hw_blocks(sbi);
748 	else
749 		desired = MAX_BIO_BLOCKS(sbi);
750 
751 	wbc->nr_to_write = desired;
752 	return desired - nr_to_write;
753 }
754