1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/segment.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/blkdev.h> 9 #include <linux/backing-dev.h> 10 11 /* constant macro */ 12 #define NULL_SEGNO ((unsigned int)(~0)) 13 #define NULL_SECNO ((unsigned int)(~0)) 14 15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 17 18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */ 20 21 #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */ 22 23 /* L: Logical segment # in volume, R: Relative segment # in main area */ 24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 26 27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE) 29 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA)) 30 31 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi, 32 unsigned short seg_type) 33 { 34 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG); 35 } 36 37 #define IS_CURSEG(sbi, seg) \ 38 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 41 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 42 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 43 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \ 44 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \ 45 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno)) 46 47 #define IS_CURSEC(sbi, secno) \ 48 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 49 SEGS_PER_SEC(sbi)) || \ 50 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 51 SEGS_PER_SEC(sbi)) || \ 52 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 53 SEGS_PER_SEC(sbi)) || \ 54 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 55 SEGS_PER_SEC(sbi)) || \ 56 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 57 SEGS_PER_SEC(sbi)) || \ 58 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 59 SEGS_PER_SEC(sbi)) || \ 60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \ 61 SEGS_PER_SEC(sbi)) || \ 62 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \ 63 SEGS_PER_SEC(sbi))) 64 65 #define MAIN_BLKADDR(sbi) \ 66 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ 67 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) 68 #define SEG0_BLKADDR(sbi) \ 69 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ 70 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) 71 72 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 73 #define MAIN_SECS(sbi) ((sbi)->total_sections) 74 75 #define TOTAL_SEGS(sbi) \ 76 (SM_I(sbi) ? SM_I(sbi)->segment_count : \ 77 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) 78 #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi))) 79 80 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 81 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 82 (sbi)->log_blocks_per_seg)) 83 84 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 85 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno)))) 86 87 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 88 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 89 90 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 91 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 92 (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr))) 93 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1)) 95 96 #define GET_SEGNO(sbi, blk_addr) \ 97 ((!__is_valid_data_blkaddr(blk_addr)) ? \ 98 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 99 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 100 #define CAP_BLKS_PER_SEC(sbi) \ 101 (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec) 102 #define CAP_SEGS_PER_SEC(sbi) \ 103 (SEGS_PER_SEC(sbi) - \ 104 BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec)) 105 #define GET_SEC_FROM_SEG(sbi, segno) \ 106 (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi)) 107 #define GET_SEG_FROM_SEC(sbi, secno) \ 108 ((secno) * SEGS_PER_SEC(sbi)) 109 #define GET_ZONE_FROM_SEC(sbi, secno) \ 110 (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone) 111 #define GET_ZONE_FROM_SEG(sbi, segno) \ 112 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 113 114 #define GET_SUM_BLOCK(sbi, segno) \ 115 ((sbi)->sm_info->ssa_blkaddr + (segno)) 116 117 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 118 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 119 120 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 121 ((segno) % (sit_i)->sents_per_block) 122 #define SIT_BLOCK_OFFSET(segno) \ 123 ((segno) / SIT_ENTRY_PER_BLOCK) 124 #define START_SEGNO(segno) \ 125 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 126 #define SIT_BLK_CNT(sbi) \ 127 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) 128 #define f2fs_bitmap_size(nr) \ 129 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 130 131 #define SECTOR_FROM_BLOCK(blk_addr) \ 132 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 133 #define SECTOR_TO_BLOCK(sectors) \ 134 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 135 136 /* 137 * In the victim_sel_policy->alloc_mode, there are three block allocation modes. 138 * LFS writes data sequentially with cleaning operations. 139 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 140 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into 141 * fragmented segment which has similar aging degree. 142 */ 143 enum { 144 LFS = 0, 145 SSR, 146 AT_SSR, 147 }; 148 149 /* 150 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes. 151 * GC_CB is based on cost-benefit algorithm. 152 * GC_GREEDY is based on greedy algorithm. 153 * GC_AT is based on age-threshold algorithm. 154 */ 155 enum { 156 GC_CB = 0, 157 GC_GREEDY, 158 GC_AT, 159 ALLOC_NEXT, 160 FLUSH_DEVICE, 161 MAX_GC_POLICY, 162 }; 163 164 /* 165 * BG_GC means the background cleaning job. 166 * FG_GC means the on-demand cleaning job. 167 */ 168 enum { 169 BG_GC = 0, 170 FG_GC, 171 }; 172 173 /* for a function parameter to select a victim segment */ 174 struct victim_sel_policy { 175 int alloc_mode; /* LFS or SSR */ 176 int gc_mode; /* GC_CB or GC_GREEDY */ 177 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ 178 unsigned int max_search; /* 179 * maximum # of segments/sections 180 * to search 181 */ 182 unsigned int offset; /* last scanned bitmap offset */ 183 unsigned int ofs_unit; /* bitmap search unit */ 184 unsigned int min_cost; /* minimum cost */ 185 unsigned long long oldest_age; /* oldest age of segments having the same min cost */ 186 unsigned int min_segno; /* segment # having min. cost */ 187 unsigned long long age; /* mtime of GCed section*/ 188 unsigned long long age_threshold;/* age threshold */ 189 bool one_time_gc; /* one time GC */ 190 }; 191 192 struct seg_entry { 193 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 194 unsigned int valid_blocks:10; /* # of valid blocks */ 195 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 196 unsigned int padding:6; /* padding */ 197 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 198 #ifdef CONFIG_F2FS_CHECK_FS 199 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 200 #endif 201 /* 202 * # of valid blocks and the validity bitmap stored in the last 203 * checkpoint pack. This information is used by the SSR mode. 204 */ 205 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 206 unsigned char *discard_map; 207 unsigned long long mtime; /* modification time of the segment */ 208 }; 209 210 struct sec_entry { 211 unsigned int valid_blocks; /* # of valid blocks in a section */ 212 }; 213 214 #define MAX_SKIP_GC_COUNT 16 215 216 struct revoke_entry { 217 struct list_head list; 218 block_t old_addr; /* for revoking when fail to commit */ 219 pgoff_t index; 220 }; 221 222 struct sit_info { 223 block_t sit_base_addr; /* start block address of SIT area */ 224 block_t sit_blocks; /* # of blocks used by SIT area */ 225 block_t written_valid_blocks; /* # of valid blocks in main area */ 226 char *bitmap; /* all bitmaps pointer */ 227 char *sit_bitmap; /* SIT bitmap pointer */ 228 #ifdef CONFIG_F2FS_CHECK_FS 229 char *sit_bitmap_mir; /* SIT bitmap mirror */ 230 231 /* bitmap of segments to be ignored by GC in case of errors */ 232 unsigned long *invalid_segmap; 233 #endif 234 unsigned int bitmap_size; /* SIT bitmap size */ 235 236 unsigned long *tmp_map; /* bitmap for temporal use */ 237 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 238 unsigned int dirty_sentries; /* # of dirty sentries */ 239 unsigned int sents_per_block; /* # of SIT entries per block */ 240 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 241 struct seg_entry *sentries; /* SIT segment-level cache */ 242 struct sec_entry *sec_entries; /* SIT section-level cache */ 243 244 /* for cost-benefit algorithm in cleaning procedure */ 245 unsigned long long elapsed_time; /* elapsed time after mount */ 246 unsigned long long mounted_time; /* mount time */ 247 unsigned long long min_mtime; /* min. modification time */ 248 unsigned long long max_mtime; /* max. modification time */ 249 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */ 250 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */ 251 252 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 253 }; 254 255 struct free_segmap_info { 256 unsigned int start_segno; /* start segment number logically */ 257 unsigned int free_segments; /* # of free segments */ 258 unsigned int free_sections; /* # of free sections */ 259 spinlock_t segmap_lock; /* free segmap lock */ 260 unsigned long *free_segmap; /* free segment bitmap */ 261 unsigned long *free_secmap; /* free section bitmap */ 262 }; 263 264 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 265 enum dirty_type { 266 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 267 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 268 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 269 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 270 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 271 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 272 DIRTY, /* to count # of dirty segments */ 273 PRE, /* to count # of entirely obsolete segments */ 274 NR_DIRTY_TYPE 275 }; 276 277 struct dirty_seglist_info { 278 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 279 unsigned long *dirty_secmap; 280 struct mutex seglist_lock; /* lock for segment bitmaps */ 281 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 282 unsigned long *victim_secmap; /* background GC victims */ 283 unsigned long *pinned_secmap; /* pinned victims from foreground GC */ 284 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */ 285 bool enable_pin_section; /* enable pinning section */ 286 }; 287 288 /* for active log information */ 289 struct curseg_info { 290 struct mutex curseg_mutex; /* lock for consistency */ 291 struct f2fs_summary_block *sum_blk; /* cached summary block */ 292 struct rw_semaphore journal_rwsem; /* protect journal area */ 293 struct f2fs_journal *journal; /* cached journal info */ 294 unsigned char alloc_type; /* current allocation type */ 295 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */ 296 unsigned int segno; /* current segment number */ 297 unsigned short next_blkoff; /* next block offset to write */ 298 unsigned int zone; /* current zone number */ 299 unsigned int next_segno; /* preallocated segment */ 300 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */ 301 bool inited; /* indicate inmem log is inited */ 302 }; 303 304 struct sit_entry_set { 305 struct list_head set_list; /* link with all sit sets */ 306 unsigned int start_segno; /* start segno of sits in set */ 307 unsigned int entry_cnt; /* the # of sit entries in set */ 308 }; 309 310 /* 311 * inline functions 312 */ 313 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 314 { 315 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 316 } 317 318 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 319 unsigned int segno) 320 { 321 struct sit_info *sit_i = SIT_I(sbi); 322 return &sit_i->sentries[segno]; 323 } 324 325 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 326 unsigned int segno) 327 { 328 struct sit_info *sit_i = SIT_I(sbi); 329 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 330 } 331 332 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 333 unsigned int segno, bool use_section) 334 { 335 /* 336 * In order to get # of valid blocks in a section instantly from many 337 * segments, f2fs manages two counting structures separately. 338 */ 339 if (use_section && __is_large_section(sbi)) 340 return get_sec_entry(sbi, segno)->valid_blocks; 341 else 342 return get_seg_entry(sbi, segno)->valid_blocks; 343 } 344 345 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, 346 unsigned int segno, bool use_section) 347 { 348 if (use_section && __is_large_section(sbi)) { 349 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 350 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 351 unsigned int blocks = 0; 352 int i; 353 354 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) { 355 struct seg_entry *se = get_seg_entry(sbi, start_segno); 356 357 blocks += se->ckpt_valid_blocks; 358 } 359 return blocks; 360 } 361 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 362 } 363 364 static inline void seg_info_from_raw_sit(struct seg_entry *se, 365 struct f2fs_sit_entry *rs) 366 { 367 se->valid_blocks = GET_SIT_VBLOCKS(rs); 368 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 369 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 370 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 371 #ifdef CONFIG_F2FS_CHECK_FS 372 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 373 #endif 374 se->type = GET_SIT_TYPE(rs); 375 se->mtime = le64_to_cpu(rs->mtime); 376 } 377 378 static inline void __seg_info_to_raw_sit(struct seg_entry *se, 379 struct f2fs_sit_entry *rs) 380 { 381 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 382 se->valid_blocks; 383 rs->vblocks = cpu_to_le16(raw_vblocks); 384 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 385 rs->mtime = cpu_to_le64(se->mtime); 386 } 387 388 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, 389 struct page *page, unsigned int start) 390 { 391 struct f2fs_sit_block *raw_sit; 392 struct seg_entry *se; 393 struct f2fs_sit_entry *rs; 394 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, 395 (unsigned long)MAIN_SEGS(sbi)); 396 int i; 397 398 raw_sit = (struct f2fs_sit_block *)page_address(page); 399 memset(raw_sit, 0, PAGE_SIZE); 400 for (i = 0; i < end - start; i++) { 401 rs = &raw_sit->entries[i]; 402 se = get_seg_entry(sbi, start + i); 403 __seg_info_to_raw_sit(se, rs); 404 } 405 } 406 407 static inline void seg_info_to_raw_sit(struct seg_entry *se, 408 struct f2fs_sit_entry *rs) 409 { 410 __seg_info_to_raw_sit(se, rs); 411 412 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 413 se->ckpt_valid_blocks = se->valid_blocks; 414 } 415 416 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 417 unsigned int max, unsigned int segno) 418 { 419 unsigned int ret; 420 spin_lock(&free_i->segmap_lock); 421 ret = find_next_bit(free_i->free_segmap, max, segno); 422 spin_unlock(&free_i->segmap_lock); 423 return ret; 424 } 425 426 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 427 { 428 struct free_segmap_info *free_i = FREE_I(sbi); 429 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 430 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 431 unsigned int next; 432 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi); 433 434 spin_lock(&free_i->segmap_lock); 435 clear_bit(segno, free_i->free_segmap); 436 free_i->free_segments++; 437 438 next = find_next_bit(free_i->free_segmap, 439 start_segno + SEGS_PER_SEC(sbi), start_segno); 440 if (next >= start_segno + usable_segs) { 441 clear_bit(secno, free_i->free_secmap); 442 free_i->free_sections++; 443 } 444 spin_unlock(&free_i->segmap_lock); 445 } 446 447 static inline void __set_inuse(struct f2fs_sb_info *sbi, 448 unsigned int segno) 449 { 450 struct free_segmap_info *free_i = FREE_I(sbi); 451 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 452 453 set_bit(segno, free_i->free_segmap); 454 free_i->free_segments--; 455 if (!test_and_set_bit(secno, free_i->free_secmap)) 456 free_i->free_sections--; 457 } 458 459 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 460 unsigned int segno, bool inmem) 461 { 462 struct free_segmap_info *free_i = FREE_I(sbi); 463 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 464 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 465 unsigned int next; 466 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi); 467 468 spin_lock(&free_i->segmap_lock); 469 if (test_and_clear_bit(segno, free_i->free_segmap)) { 470 free_i->free_segments++; 471 472 if (!inmem && IS_CURSEC(sbi, secno)) 473 goto skip_free; 474 next = find_next_bit(free_i->free_segmap, 475 start_segno + SEGS_PER_SEC(sbi), start_segno); 476 if (next >= start_segno + usable_segs) { 477 if (test_and_clear_bit(secno, free_i->free_secmap)) 478 free_i->free_sections++; 479 } 480 } 481 skip_free: 482 spin_unlock(&free_i->segmap_lock); 483 } 484 485 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 486 unsigned int segno) 487 { 488 struct free_segmap_info *free_i = FREE_I(sbi); 489 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 490 491 spin_lock(&free_i->segmap_lock); 492 if (!test_and_set_bit(segno, free_i->free_segmap)) { 493 free_i->free_segments--; 494 if (!test_and_set_bit(secno, free_i->free_secmap)) 495 free_i->free_sections--; 496 } 497 spin_unlock(&free_i->segmap_lock); 498 } 499 500 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 501 void *dst_addr) 502 { 503 struct sit_info *sit_i = SIT_I(sbi); 504 505 #ifdef CONFIG_F2FS_CHECK_FS 506 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 507 sit_i->bitmap_size)) 508 f2fs_bug_on(sbi, 1); 509 #endif 510 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 511 } 512 513 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 514 { 515 return SIT_I(sbi)->written_valid_blocks; 516 } 517 518 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 519 { 520 return FREE_I(sbi)->free_segments; 521 } 522 523 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi) 524 { 525 return SM_I(sbi)->reserved_segments; 526 } 527 528 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 529 { 530 return FREE_I(sbi)->free_sections; 531 } 532 533 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 534 { 535 return DIRTY_I(sbi)->nr_dirty[PRE]; 536 } 537 538 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 539 { 540 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 541 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 542 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 543 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 544 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 545 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 546 } 547 548 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 549 { 550 return SM_I(sbi)->ovp_segments; 551 } 552 553 static inline int reserved_sections(struct f2fs_sb_info *sbi) 554 { 555 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi)); 556 } 557 558 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi, 559 unsigned int node_blocks, unsigned int data_blocks, 560 unsigned int dent_blocks) 561 { 562 unsigned int segno, left_blocks, blocks; 563 int i; 564 565 /* check current data/node sections in the worst case. */ 566 for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) { 567 segno = CURSEG_I(sbi, i)->segno; 568 569 if (unlikely(segno == NULL_SEGNO)) 570 return false; 571 572 left_blocks = CAP_BLKS_PER_SEC(sbi) - 573 get_ckpt_valid_blocks(sbi, segno, true); 574 575 blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks; 576 if (blocks > left_blocks) 577 return false; 578 } 579 580 /* check current data section for dentry blocks. */ 581 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 582 583 if (unlikely(segno == NULL_SEGNO)) 584 return false; 585 586 left_blocks = CAP_BLKS_PER_SEC(sbi) - 587 get_ckpt_valid_blocks(sbi, segno, true); 588 if (dent_blocks > left_blocks) 589 return false; 590 return true; 591 } 592 593 /* 594 * calculate needed sections for dirty node/dentry and call 595 * has_curseg_enough_space, please note that, it needs to account 596 * dirty data as well in lfs mode when checkpoint is disabled. 597 */ 598 static inline void __get_secs_required(struct f2fs_sb_info *sbi, 599 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p) 600 { 601 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 602 get_pages(sbi, F2FS_DIRTY_DENTS) + 603 get_pages(sbi, F2FS_DIRTY_IMETA); 604 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 605 unsigned int total_data_blocks = 0; 606 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi); 607 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi); 608 unsigned int data_secs = 0; 609 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi); 610 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi); 611 unsigned int data_blocks = 0; 612 613 if (f2fs_lfs_mode(sbi) && 614 unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 615 total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA); 616 data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi); 617 data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi); 618 } 619 620 if (lower_p) 621 *lower_p = node_secs + dent_secs + data_secs; 622 if (upper_p) 623 *upper_p = node_secs + dent_secs + 624 (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) + 625 (data_blocks ? 1 : 0); 626 if (curseg_p) 627 *curseg_p = has_curseg_enough_space(sbi, 628 node_blocks, data_blocks, dent_blocks); 629 } 630 631 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 632 int freed, int needed) 633 { 634 unsigned int free_secs, lower_secs, upper_secs; 635 bool curseg_space; 636 637 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 638 return false; 639 640 __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space); 641 642 free_secs = free_sections(sbi) + freed; 643 lower_secs += needed + reserved_sections(sbi); 644 upper_secs += needed + reserved_sections(sbi); 645 646 if (free_secs > upper_secs) 647 return false; 648 if (free_secs <= lower_secs) 649 return true; 650 return !curseg_space; 651 } 652 653 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi, 654 int freed, int needed) 655 { 656 return !has_not_enough_free_secs(sbi, freed, needed); 657 } 658 659 static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi) 660 { 661 unsigned int total_free_blocks = 0; 662 unsigned int avail_user_block_count; 663 664 spin_lock(&sbi->stat_lock); 665 666 avail_user_block_count = get_available_block_count(sbi, NULL, true); 667 total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi); 668 669 spin_unlock(&sbi->stat_lock); 670 671 return total_free_blocks > 0; 672 } 673 674 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) 675 { 676 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 677 return true; 678 if (likely(has_enough_free_secs(sbi, 0, 0))) 679 return true; 680 if (!f2fs_lfs_mode(sbi) && 681 likely(has_enough_free_blks(sbi))) 682 return true; 683 return false; 684 } 685 686 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 687 { 688 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 689 } 690 691 static inline int utilization(struct f2fs_sb_info *sbi) 692 { 693 return div_u64((u64)valid_user_blocks(sbi) * 100, 694 sbi->user_block_count); 695 } 696 697 /* 698 * Sometimes f2fs may be better to drop out-of-place update policy. 699 * And, users can control the policy through sysfs entries. 700 * There are five policies with triggering conditions as follows. 701 * F2FS_IPU_FORCE - all the time, 702 * F2FS_IPU_SSR - if SSR mode is activated, 703 * F2FS_IPU_UTIL - if FS utilization is over threashold, 704 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 705 * threashold, 706 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 707 * storages. IPU will be triggered only if the # of dirty 708 * pages over min_fsync_blocks. (=default option) 709 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. 710 * F2FS_IPU_NOCACHE - disable IPU bio cache. 711 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has 712 * FI_OPU_WRITE flag. 713 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode) 714 */ 715 #define DEF_MIN_IPU_UTIL 70 716 #define DEF_MIN_FSYNC_BLOCKS 8 717 #define DEF_MIN_HOT_BLOCKS 16 718 719 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ 720 721 #define F2FS_IPU_DISABLE 0 722 723 /* Modification on enum should be synchronized with ipu_mode_names array */ 724 enum { 725 F2FS_IPU_FORCE, 726 F2FS_IPU_SSR, 727 F2FS_IPU_UTIL, 728 F2FS_IPU_SSR_UTIL, 729 F2FS_IPU_FSYNC, 730 F2FS_IPU_ASYNC, 731 F2FS_IPU_NOCACHE, 732 F2FS_IPU_HONOR_OPU_WRITE, 733 F2FS_IPU_MAX, 734 }; 735 736 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi) 737 { 738 return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE; 739 } 740 741 #define F2FS_IPU_POLICY(name) \ 742 static inline bool IS_##name(struct f2fs_sb_info *sbi) \ 743 { \ 744 return SM_I(sbi)->ipu_policy & BIT(name); \ 745 } 746 747 F2FS_IPU_POLICY(F2FS_IPU_FORCE); 748 F2FS_IPU_POLICY(F2FS_IPU_SSR); 749 F2FS_IPU_POLICY(F2FS_IPU_UTIL); 750 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL); 751 F2FS_IPU_POLICY(F2FS_IPU_FSYNC); 752 F2FS_IPU_POLICY(F2FS_IPU_ASYNC); 753 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE); 754 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE); 755 756 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 757 int type) 758 { 759 struct curseg_info *curseg = CURSEG_I(sbi, type); 760 return curseg->segno; 761 } 762 763 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 764 int type) 765 { 766 struct curseg_info *curseg = CURSEG_I(sbi, type); 767 return curseg->alloc_type; 768 } 769 770 static inline bool valid_main_segno(struct f2fs_sb_info *sbi, 771 unsigned int segno) 772 { 773 return segno <= (MAIN_SEGS(sbi) - 1); 774 } 775 776 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) 777 { 778 struct f2fs_sb_info *sbi = fio->sbi; 779 780 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 781 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? 782 META_GENERIC : DATA_GENERIC); 783 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? 784 META_GENERIC : DATA_GENERIC_ENHANCE); 785 } 786 787 /* 788 * Summary block is always treated as an invalid block 789 */ 790 static inline int check_block_count(struct f2fs_sb_info *sbi, 791 int segno, struct f2fs_sit_entry *raw_sit) 792 { 793 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 794 int valid_blocks = 0; 795 int cur_pos = 0, next_pos; 796 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno); 797 798 /* check bitmap with valid block count */ 799 do { 800 if (is_valid) { 801 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 802 usable_blks_per_seg, 803 cur_pos); 804 valid_blocks += next_pos - cur_pos; 805 } else 806 next_pos = find_next_bit_le(&raw_sit->valid_map, 807 usable_blks_per_seg, 808 cur_pos); 809 cur_pos = next_pos; 810 is_valid = !is_valid; 811 } while (cur_pos < usable_blks_per_seg); 812 813 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { 814 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", 815 GET_SIT_VBLOCKS(raw_sit), valid_blocks); 816 set_sbi_flag(sbi, SBI_NEED_FSCK); 817 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); 818 return -EFSCORRUPTED; 819 } 820 821 if (usable_blks_per_seg < BLKS_PER_SEG(sbi)) 822 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map, 823 BLKS_PER_SEG(sbi), 824 usable_blks_per_seg) != BLKS_PER_SEG(sbi)); 825 826 /* check segment usage, and check boundary of a given segment number */ 827 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg 828 || !valid_main_segno(sbi, segno))) { 829 f2fs_err(sbi, "Wrong valid blocks %d or segno %u", 830 GET_SIT_VBLOCKS(raw_sit), segno); 831 set_sbi_flag(sbi, SBI_NEED_FSCK); 832 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); 833 return -EFSCORRUPTED; 834 } 835 return 0; 836 } 837 838 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 839 unsigned int start) 840 { 841 struct sit_info *sit_i = SIT_I(sbi); 842 unsigned int offset = SIT_BLOCK_OFFSET(start); 843 block_t blk_addr = sit_i->sit_base_addr + offset; 844 845 f2fs_bug_on(sbi, !valid_main_segno(sbi, start)); 846 847 #ifdef CONFIG_F2FS_CHECK_FS 848 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 849 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 850 f2fs_bug_on(sbi, 1); 851 #endif 852 853 /* calculate sit block address */ 854 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 855 blk_addr += sit_i->sit_blocks; 856 857 return blk_addr; 858 } 859 860 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 861 pgoff_t block_addr) 862 { 863 struct sit_info *sit_i = SIT_I(sbi); 864 block_addr -= sit_i->sit_base_addr; 865 if (block_addr < sit_i->sit_blocks) 866 block_addr += sit_i->sit_blocks; 867 else 868 block_addr -= sit_i->sit_blocks; 869 870 return block_addr + sit_i->sit_base_addr; 871 } 872 873 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 874 { 875 unsigned int block_off = SIT_BLOCK_OFFSET(start); 876 877 f2fs_change_bit(block_off, sit_i->sit_bitmap); 878 #ifdef CONFIG_F2FS_CHECK_FS 879 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 880 #endif 881 } 882 883 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, 884 bool base_time) 885 { 886 struct sit_info *sit_i = SIT_I(sbi); 887 time64_t diff, now = ktime_get_boottime_seconds(); 888 889 if (now >= sit_i->mounted_time) 890 return sit_i->elapsed_time + now - sit_i->mounted_time; 891 892 /* system time is set to the past */ 893 if (!base_time) { 894 diff = sit_i->mounted_time - now; 895 if (sit_i->elapsed_time >= diff) 896 return sit_i->elapsed_time - diff; 897 return 0; 898 } 899 return sit_i->elapsed_time; 900 } 901 902 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 903 unsigned int ofs_in_node, unsigned char version) 904 { 905 sum->nid = cpu_to_le32(nid); 906 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 907 sum->version = version; 908 } 909 910 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 911 { 912 return __start_cp_addr(sbi) + 913 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 914 } 915 916 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 917 { 918 return __start_cp_addr(sbi) + 919 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 920 - (base + 1) + type; 921 } 922 923 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 924 { 925 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 926 return true; 927 return false; 928 } 929 930 /* 931 * It is very important to gather dirty pages and write at once, so that we can 932 * submit a big bio without interfering other data writes. 933 * By default, 512 pages for directory data, 934 * 512 pages (2MB) * 8 for nodes, and 935 * 256 pages * 8 for meta are set. 936 */ 937 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 938 { 939 if (sbi->sb->s_bdi->wb.dirty_exceeded) 940 return 0; 941 942 if (type == DATA) 943 return BLKS_PER_SEG(sbi); 944 else if (type == NODE) 945 return SEGS_TO_BLKS(sbi, 8); 946 else if (type == META) 947 return 8 * BIO_MAX_VECS; 948 else 949 return 0; 950 } 951 952 /* 953 * When writing pages, it'd better align nr_to_write for segment size. 954 */ 955 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 956 struct writeback_control *wbc) 957 { 958 long nr_to_write, desired; 959 960 if (wbc->sync_mode != WB_SYNC_NONE) 961 return 0; 962 963 nr_to_write = wbc->nr_to_write; 964 desired = BIO_MAX_VECS; 965 if (type == NODE) 966 desired <<= 1; 967 968 wbc->nr_to_write = desired; 969 return desired - nr_to_write; 970 } 971 972 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 973 { 974 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 975 bool wakeup = false; 976 int i; 977 978 if (force) 979 goto wake_up; 980 981 mutex_lock(&dcc->cmd_lock); 982 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 983 if (i + 1 < dcc->discard_granularity) 984 break; 985 if (!list_empty(&dcc->pend_list[i])) { 986 wakeup = true; 987 break; 988 } 989 } 990 mutex_unlock(&dcc->cmd_lock); 991 if (!wakeup || !is_idle(sbi, DISCARD_TIME)) 992 return; 993 wake_up: 994 dcc->discard_wake = true; 995 wake_up_interruptible_all(&dcc->discard_wait_queue); 996 } 997