1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 static unsigned long __reverse_ulong(unsigned char *str) 33 { 34 unsigned long tmp = 0; 35 int shift = 24, idx = 0; 36 37 #if BITS_PER_LONG == 64 38 shift = 56; 39 #endif 40 while (shift >= 0) { 41 tmp |= (unsigned long)str[idx++] << shift; 42 shift -= BITS_PER_BYTE; 43 } 44 return tmp; 45 } 46 47 /* 48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 49 * MSB and LSB are reversed in a byte by f2fs_set_bit. 50 */ 51 static inline unsigned long __reverse_ffs(unsigned long word) 52 { 53 int num = 0; 54 55 #if BITS_PER_LONG == 64 56 if ((word & 0xffffffff00000000UL) == 0) 57 num += 32; 58 else 59 word >>= 32; 60 #endif 61 if ((word & 0xffff0000) == 0) 62 num += 16; 63 else 64 word >>= 16; 65 66 if ((word & 0xff00) == 0) 67 num += 8; 68 else 69 word >>= 8; 70 71 if ((word & 0xf0) == 0) 72 num += 4; 73 else 74 word >>= 4; 75 76 if ((word & 0xc) == 0) 77 num += 2; 78 else 79 word >>= 2; 80 81 if ((word & 0x2) == 0) 82 num += 1; 83 return num; 84 } 85 86 /* 87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 88 * f2fs_set_bit makes MSB and LSB reversed in a byte. 89 * @size must be integral times of unsigned long. 90 * Example: 91 * MSB <--> LSB 92 * f2fs_set_bit(0, bitmap) => 1000 0000 93 * f2fs_set_bit(7, bitmap) => 0000 0001 94 */ 95 static unsigned long __find_rev_next_bit(const unsigned long *addr, 96 unsigned long size, unsigned long offset) 97 { 98 const unsigned long *p = addr + BIT_WORD(offset); 99 unsigned long result = size; 100 unsigned long tmp; 101 102 if (offset >= size) 103 return size; 104 105 size -= (offset & ~(BITS_PER_LONG - 1)); 106 offset %= BITS_PER_LONG; 107 108 while (1) { 109 if (*p == 0) 110 goto pass; 111 112 tmp = __reverse_ulong((unsigned char *)p); 113 114 tmp &= ~0UL >> offset; 115 if (size < BITS_PER_LONG) 116 tmp &= (~0UL << (BITS_PER_LONG - size)); 117 if (tmp) 118 goto found; 119 pass: 120 if (size <= BITS_PER_LONG) 121 break; 122 size -= BITS_PER_LONG; 123 offset = 0; 124 p++; 125 } 126 return result; 127 found: 128 return result - size + __reverse_ffs(tmp); 129 } 130 131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 132 unsigned long size, unsigned long offset) 133 { 134 const unsigned long *p = addr + BIT_WORD(offset); 135 unsigned long result = size; 136 unsigned long tmp; 137 138 if (offset >= size) 139 return size; 140 141 size -= (offset & ~(BITS_PER_LONG - 1)); 142 offset %= BITS_PER_LONG; 143 144 while (1) { 145 if (*p == ~0UL) 146 goto pass; 147 148 tmp = __reverse_ulong((unsigned char *)p); 149 150 if (offset) 151 tmp |= ~0UL << (BITS_PER_LONG - offset); 152 if (size < BITS_PER_LONG) 153 tmp |= ~0UL >> size; 154 if (tmp != ~0UL) 155 goto found; 156 pass: 157 if (size <= BITS_PER_LONG) 158 break; 159 size -= BITS_PER_LONG; 160 offset = 0; 161 p++; 162 } 163 return result; 164 found: 165 return result - size + __reverse_ffz(tmp); 166 } 167 168 void register_inmem_page(struct inode *inode, struct page *page) 169 { 170 struct f2fs_inode_info *fi = F2FS_I(inode); 171 struct inmem_pages *new; 172 173 f2fs_trace_pid(page); 174 175 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 176 SetPagePrivate(page); 177 178 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 179 180 /* add atomic page indices to the list */ 181 new->page = page; 182 INIT_LIST_HEAD(&new->list); 183 184 /* increase reference count with clean state */ 185 mutex_lock(&fi->inmem_lock); 186 get_page(page); 187 list_add_tail(&new->list, &fi->inmem_pages); 188 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 189 mutex_unlock(&fi->inmem_lock); 190 191 trace_f2fs_register_inmem_page(page, INMEM); 192 } 193 194 static int __revoke_inmem_pages(struct inode *inode, 195 struct list_head *head, bool drop, bool recover) 196 { 197 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 198 struct inmem_pages *cur, *tmp; 199 int err = 0; 200 201 list_for_each_entry_safe(cur, tmp, head, list) { 202 struct page *page = cur->page; 203 204 if (drop) 205 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 206 207 lock_page(page); 208 209 if (recover) { 210 struct dnode_of_data dn; 211 struct node_info ni; 212 213 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 214 215 set_new_dnode(&dn, inode, NULL, NULL, 0); 216 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 217 err = -EAGAIN; 218 goto next; 219 } 220 get_node_info(sbi, dn.nid, &ni); 221 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 222 cur->old_addr, ni.version, true, true); 223 f2fs_put_dnode(&dn); 224 } 225 next: 226 ClearPageUptodate(page); 227 set_page_private(page, 0); 228 ClearPageUptodate(page); 229 f2fs_put_page(page, 1); 230 231 list_del(&cur->list); 232 kmem_cache_free(inmem_entry_slab, cur); 233 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 234 } 235 return err; 236 } 237 238 void drop_inmem_pages(struct inode *inode) 239 { 240 struct f2fs_inode_info *fi = F2FS_I(inode); 241 242 mutex_lock(&fi->inmem_lock); 243 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 244 mutex_unlock(&fi->inmem_lock); 245 } 246 247 static int __commit_inmem_pages(struct inode *inode, 248 struct list_head *revoke_list) 249 { 250 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 251 struct f2fs_inode_info *fi = F2FS_I(inode); 252 struct inmem_pages *cur, *tmp; 253 struct f2fs_io_info fio = { 254 .sbi = sbi, 255 .type = DATA, 256 .rw = WRITE_SYNC | REQ_PRIO, 257 .encrypted_page = NULL, 258 }; 259 bool submit_bio = false; 260 int err = 0; 261 262 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 263 struct page *page = cur->page; 264 265 lock_page(page); 266 if (page->mapping == inode->i_mapping) { 267 trace_f2fs_commit_inmem_page(page, INMEM); 268 269 set_page_dirty(page); 270 f2fs_wait_on_page_writeback(page, DATA, true); 271 if (clear_page_dirty_for_io(page)) 272 inode_dec_dirty_pages(inode); 273 274 fio.page = page; 275 err = do_write_data_page(&fio); 276 if (err) { 277 unlock_page(page); 278 break; 279 } 280 281 /* record old blkaddr for revoking */ 282 cur->old_addr = fio.old_blkaddr; 283 284 clear_cold_data(page); 285 submit_bio = true; 286 } 287 unlock_page(page); 288 list_move_tail(&cur->list, revoke_list); 289 } 290 291 if (submit_bio) 292 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); 293 294 if (!err) 295 __revoke_inmem_pages(inode, revoke_list, false, false); 296 297 return err; 298 } 299 300 int commit_inmem_pages(struct inode *inode) 301 { 302 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 303 struct f2fs_inode_info *fi = F2FS_I(inode); 304 struct list_head revoke_list; 305 int err; 306 307 INIT_LIST_HEAD(&revoke_list); 308 f2fs_balance_fs(sbi, true); 309 f2fs_lock_op(sbi); 310 311 mutex_lock(&fi->inmem_lock); 312 err = __commit_inmem_pages(inode, &revoke_list); 313 if (err) { 314 int ret; 315 /* 316 * try to revoke all committed pages, but still we could fail 317 * due to no memory or other reason, if that happened, EAGAIN 318 * will be returned, which means in such case, transaction is 319 * already not integrity, caller should use journal to do the 320 * recovery or rewrite & commit last transaction. For other 321 * error number, revoking was done by filesystem itself. 322 */ 323 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 324 if (ret) 325 err = ret; 326 327 /* drop all uncommitted pages */ 328 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 329 } 330 mutex_unlock(&fi->inmem_lock); 331 332 f2fs_unlock_op(sbi); 333 return err; 334 } 335 336 /* 337 * This function balances dirty node and dentry pages. 338 * In addition, it controls garbage collection. 339 */ 340 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 341 { 342 if (!need) 343 return; 344 /* 345 * We should do GC or end up with checkpoint, if there are so many dirty 346 * dir/node pages without enough free segments. 347 */ 348 if (has_not_enough_free_secs(sbi, 0)) { 349 mutex_lock(&sbi->gc_mutex); 350 f2fs_gc(sbi, false); 351 } 352 } 353 354 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 355 { 356 /* try to shrink extent cache when there is no enough memory */ 357 if (!available_free_memory(sbi, EXTENT_CACHE)) 358 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 359 360 /* check the # of cached NAT entries */ 361 if (!available_free_memory(sbi, NAT_ENTRIES)) 362 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 363 364 if (!available_free_memory(sbi, FREE_NIDS)) 365 try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES); 366 367 /* checkpoint is the only way to shrink partial cached entries */ 368 if (!available_free_memory(sbi, NAT_ENTRIES) || 369 !available_free_memory(sbi, INO_ENTRIES) || 370 excess_prefree_segs(sbi) || 371 excess_dirty_nats(sbi) || 372 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) { 373 if (test_opt(sbi, DATA_FLUSH)) { 374 struct blk_plug plug; 375 376 blk_start_plug(&plug); 377 sync_dirty_inodes(sbi, FILE_INODE); 378 blk_finish_plug(&plug); 379 } 380 f2fs_sync_fs(sbi->sb, true); 381 stat_inc_bg_cp_count(sbi->stat_info); 382 } 383 } 384 385 static int issue_flush_thread(void *data) 386 { 387 struct f2fs_sb_info *sbi = data; 388 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 389 wait_queue_head_t *q = &fcc->flush_wait_queue; 390 repeat: 391 if (kthread_should_stop()) 392 return 0; 393 394 if (!llist_empty(&fcc->issue_list)) { 395 struct bio *bio; 396 struct flush_cmd *cmd, *next; 397 int ret; 398 399 bio = f2fs_bio_alloc(0); 400 401 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 402 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 403 404 bio->bi_bdev = sbi->sb->s_bdev; 405 ret = submit_bio_wait(WRITE_FLUSH, bio); 406 407 llist_for_each_entry_safe(cmd, next, 408 fcc->dispatch_list, llnode) { 409 cmd->ret = ret; 410 complete(&cmd->wait); 411 } 412 bio_put(bio); 413 fcc->dispatch_list = NULL; 414 } 415 416 wait_event_interruptible(*q, 417 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 418 goto repeat; 419 } 420 421 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 422 { 423 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 424 struct flush_cmd cmd; 425 426 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 427 test_opt(sbi, FLUSH_MERGE)); 428 429 if (test_opt(sbi, NOBARRIER)) 430 return 0; 431 432 if (!test_opt(sbi, FLUSH_MERGE)) { 433 struct bio *bio = f2fs_bio_alloc(0); 434 int ret; 435 436 bio->bi_bdev = sbi->sb->s_bdev; 437 ret = submit_bio_wait(WRITE_FLUSH, bio); 438 bio_put(bio); 439 return ret; 440 } 441 442 init_completion(&cmd.wait); 443 444 llist_add(&cmd.llnode, &fcc->issue_list); 445 446 if (!fcc->dispatch_list) 447 wake_up(&fcc->flush_wait_queue); 448 449 wait_for_completion(&cmd.wait); 450 451 return cmd.ret; 452 } 453 454 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 455 { 456 dev_t dev = sbi->sb->s_bdev->bd_dev; 457 struct flush_cmd_control *fcc; 458 int err = 0; 459 460 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 461 if (!fcc) 462 return -ENOMEM; 463 init_waitqueue_head(&fcc->flush_wait_queue); 464 init_llist_head(&fcc->issue_list); 465 SM_I(sbi)->cmd_control_info = fcc; 466 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 467 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 468 if (IS_ERR(fcc->f2fs_issue_flush)) { 469 err = PTR_ERR(fcc->f2fs_issue_flush); 470 kfree(fcc); 471 SM_I(sbi)->cmd_control_info = NULL; 472 return err; 473 } 474 475 return err; 476 } 477 478 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 479 { 480 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 481 482 if (fcc && fcc->f2fs_issue_flush) 483 kthread_stop(fcc->f2fs_issue_flush); 484 kfree(fcc); 485 SM_I(sbi)->cmd_control_info = NULL; 486 } 487 488 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 489 enum dirty_type dirty_type) 490 { 491 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 492 493 /* need not be added */ 494 if (IS_CURSEG(sbi, segno)) 495 return; 496 497 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 498 dirty_i->nr_dirty[dirty_type]++; 499 500 if (dirty_type == DIRTY) { 501 struct seg_entry *sentry = get_seg_entry(sbi, segno); 502 enum dirty_type t = sentry->type; 503 504 if (unlikely(t >= DIRTY)) { 505 f2fs_bug_on(sbi, 1); 506 return; 507 } 508 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 509 dirty_i->nr_dirty[t]++; 510 } 511 } 512 513 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 514 enum dirty_type dirty_type) 515 { 516 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 517 518 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 519 dirty_i->nr_dirty[dirty_type]--; 520 521 if (dirty_type == DIRTY) { 522 struct seg_entry *sentry = get_seg_entry(sbi, segno); 523 enum dirty_type t = sentry->type; 524 525 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 526 dirty_i->nr_dirty[t]--; 527 528 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 529 clear_bit(GET_SECNO(sbi, segno), 530 dirty_i->victim_secmap); 531 } 532 } 533 534 /* 535 * Should not occur error such as -ENOMEM. 536 * Adding dirty entry into seglist is not critical operation. 537 * If a given segment is one of current working segments, it won't be added. 538 */ 539 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 540 { 541 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 542 unsigned short valid_blocks; 543 544 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 545 return; 546 547 mutex_lock(&dirty_i->seglist_lock); 548 549 valid_blocks = get_valid_blocks(sbi, segno, 0); 550 551 if (valid_blocks == 0) { 552 __locate_dirty_segment(sbi, segno, PRE); 553 __remove_dirty_segment(sbi, segno, DIRTY); 554 } else if (valid_blocks < sbi->blocks_per_seg) { 555 __locate_dirty_segment(sbi, segno, DIRTY); 556 } else { 557 /* Recovery routine with SSR needs this */ 558 __remove_dirty_segment(sbi, segno, DIRTY); 559 } 560 561 mutex_unlock(&dirty_i->seglist_lock); 562 } 563 564 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 565 block_t blkstart, block_t blklen) 566 { 567 sector_t start = SECTOR_FROM_BLOCK(blkstart); 568 sector_t len = SECTOR_FROM_BLOCK(blklen); 569 struct seg_entry *se; 570 unsigned int offset; 571 block_t i; 572 573 for (i = blkstart; i < blkstart + blklen; i++) { 574 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 575 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 576 577 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 578 sbi->discard_blks--; 579 } 580 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 581 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 582 } 583 584 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 585 { 586 int err = -EOPNOTSUPP; 587 588 if (test_opt(sbi, DISCARD)) { 589 struct seg_entry *se = get_seg_entry(sbi, 590 GET_SEGNO(sbi, blkaddr)); 591 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 592 593 if (f2fs_test_bit(offset, se->discard_map)) 594 return false; 595 596 err = f2fs_issue_discard(sbi, blkaddr, 1); 597 } 598 599 if (err) { 600 update_meta_page(sbi, NULL, blkaddr); 601 return true; 602 } 603 return false; 604 } 605 606 static void __add_discard_entry(struct f2fs_sb_info *sbi, 607 struct cp_control *cpc, struct seg_entry *se, 608 unsigned int start, unsigned int end) 609 { 610 struct list_head *head = &SM_I(sbi)->discard_list; 611 struct discard_entry *new, *last; 612 613 if (!list_empty(head)) { 614 last = list_last_entry(head, struct discard_entry, list); 615 if (START_BLOCK(sbi, cpc->trim_start) + start == 616 last->blkaddr + last->len) { 617 last->len += end - start; 618 goto done; 619 } 620 } 621 622 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 623 INIT_LIST_HEAD(&new->list); 624 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 625 new->len = end - start; 626 list_add_tail(&new->list, head); 627 done: 628 SM_I(sbi)->nr_discards += end - start; 629 } 630 631 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 632 { 633 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 634 int max_blocks = sbi->blocks_per_seg; 635 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 636 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 637 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 638 unsigned long *discard_map = (unsigned long *)se->discard_map; 639 unsigned long *dmap = SIT_I(sbi)->tmp_map; 640 unsigned int start = 0, end = -1; 641 bool force = (cpc->reason == CP_DISCARD); 642 int i; 643 644 if (se->valid_blocks == max_blocks) 645 return; 646 647 if (!force) { 648 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 649 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 650 return; 651 } 652 653 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 654 for (i = 0; i < entries; i++) 655 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 656 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 657 658 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 659 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 660 if (start >= max_blocks) 661 break; 662 663 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 664 __add_discard_entry(sbi, cpc, se, start, end); 665 } 666 } 667 668 void release_discard_addrs(struct f2fs_sb_info *sbi) 669 { 670 struct list_head *head = &(SM_I(sbi)->discard_list); 671 struct discard_entry *entry, *this; 672 673 /* drop caches */ 674 list_for_each_entry_safe(entry, this, head, list) { 675 list_del(&entry->list); 676 kmem_cache_free(discard_entry_slab, entry); 677 } 678 } 679 680 /* 681 * Should call clear_prefree_segments after checkpoint is done. 682 */ 683 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 684 { 685 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 686 unsigned int segno; 687 688 mutex_lock(&dirty_i->seglist_lock); 689 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 690 __set_test_and_free(sbi, segno); 691 mutex_unlock(&dirty_i->seglist_lock); 692 } 693 694 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 695 { 696 struct list_head *head = &(SM_I(sbi)->discard_list); 697 struct discard_entry *entry, *this; 698 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 699 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 700 unsigned int start = 0, end = -1; 701 702 mutex_lock(&dirty_i->seglist_lock); 703 704 while (1) { 705 int i; 706 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 707 if (start >= MAIN_SEGS(sbi)) 708 break; 709 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 710 start + 1); 711 712 for (i = start; i < end; i++) 713 clear_bit(i, prefree_map); 714 715 dirty_i->nr_dirty[PRE] -= end - start; 716 717 if (!test_opt(sbi, DISCARD)) 718 continue; 719 720 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 721 (end - start) << sbi->log_blocks_per_seg); 722 } 723 mutex_unlock(&dirty_i->seglist_lock); 724 725 /* send small discards */ 726 list_for_each_entry_safe(entry, this, head, list) { 727 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen) 728 goto skip; 729 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 730 cpc->trimmed += entry->len; 731 skip: 732 list_del(&entry->list); 733 SM_I(sbi)->nr_discards -= entry->len; 734 kmem_cache_free(discard_entry_slab, entry); 735 } 736 } 737 738 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 739 { 740 struct sit_info *sit_i = SIT_I(sbi); 741 742 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 743 sit_i->dirty_sentries++; 744 return false; 745 } 746 747 return true; 748 } 749 750 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 751 unsigned int segno, int modified) 752 { 753 struct seg_entry *se = get_seg_entry(sbi, segno); 754 se->type = type; 755 if (modified) 756 __mark_sit_entry_dirty(sbi, segno); 757 } 758 759 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 760 { 761 struct seg_entry *se; 762 unsigned int segno, offset; 763 long int new_vblocks; 764 765 segno = GET_SEGNO(sbi, blkaddr); 766 767 se = get_seg_entry(sbi, segno); 768 new_vblocks = se->valid_blocks + del; 769 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 770 771 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 772 (new_vblocks > sbi->blocks_per_seg))); 773 774 se->valid_blocks = new_vblocks; 775 se->mtime = get_mtime(sbi); 776 SIT_I(sbi)->max_mtime = se->mtime; 777 778 /* Update valid block bitmap */ 779 if (del > 0) { 780 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 781 f2fs_bug_on(sbi, 1); 782 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 783 sbi->discard_blks--; 784 } else { 785 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 786 f2fs_bug_on(sbi, 1); 787 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 788 sbi->discard_blks++; 789 } 790 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 791 se->ckpt_valid_blocks += del; 792 793 __mark_sit_entry_dirty(sbi, segno); 794 795 /* update total number of valid blocks to be written in ckpt area */ 796 SIT_I(sbi)->written_valid_blocks += del; 797 798 if (sbi->segs_per_sec > 1) 799 get_sec_entry(sbi, segno)->valid_blocks += del; 800 } 801 802 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 803 { 804 update_sit_entry(sbi, new, 1); 805 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 806 update_sit_entry(sbi, old, -1); 807 808 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 809 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 810 } 811 812 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 813 { 814 unsigned int segno = GET_SEGNO(sbi, addr); 815 struct sit_info *sit_i = SIT_I(sbi); 816 817 f2fs_bug_on(sbi, addr == NULL_ADDR); 818 if (addr == NEW_ADDR) 819 return; 820 821 /* add it into sit main buffer */ 822 mutex_lock(&sit_i->sentry_lock); 823 824 update_sit_entry(sbi, addr, -1); 825 826 /* add it into dirty seglist */ 827 locate_dirty_segment(sbi, segno); 828 829 mutex_unlock(&sit_i->sentry_lock); 830 } 831 832 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 833 { 834 struct sit_info *sit_i = SIT_I(sbi); 835 unsigned int segno, offset; 836 struct seg_entry *se; 837 bool is_cp = false; 838 839 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 840 return true; 841 842 mutex_lock(&sit_i->sentry_lock); 843 844 segno = GET_SEGNO(sbi, blkaddr); 845 se = get_seg_entry(sbi, segno); 846 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 847 848 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 849 is_cp = true; 850 851 mutex_unlock(&sit_i->sentry_lock); 852 853 return is_cp; 854 } 855 856 /* 857 * This function should be resided under the curseg_mutex lock 858 */ 859 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 860 struct f2fs_summary *sum) 861 { 862 struct curseg_info *curseg = CURSEG_I(sbi, type); 863 void *addr = curseg->sum_blk; 864 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 865 memcpy(addr, sum, sizeof(struct f2fs_summary)); 866 } 867 868 /* 869 * Calculate the number of current summary pages for writing 870 */ 871 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 872 { 873 int valid_sum_count = 0; 874 int i, sum_in_page; 875 876 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 877 if (sbi->ckpt->alloc_type[i] == SSR) 878 valid_sum_count += sbi->blocks_per_seg; 879 else { 880 if (for_ra) 881 valid_sum_count += le16_to_cpu( 882 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 883 else 884 valid_sum_count += curseg_blkoff(sbi, i); 885 } 886 } 887 888 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 889 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 890 if (valid_sum_count <= sum_in_page) 891 return 1; 892 else if ((valid_sum_count - sum_in_page) <= 893 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 894 return 2; 895 return 3; 896 } 897 898 /* 899 * Caller should put this summary page 900 */ 901 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 902 { 903 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 904 } 905 906 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 907 { 908 struct page *page = grab_meta_page(sbi, blk_addr); 909 void *dst = page_address(page); 910 911 if (src) 912 memcpy(dst, src, PAGE_SIZE); 913 else 914 memset(dst, 0, PAGE_SIZE); 915 set_page_dirty(page); 916 f2fs_put_page(page, 1); 917 } 918 919 static void write_sum_page(struct f2fs_sb_info *sbi, 920 struct f2fs_summary_block *sum_blk, block_t blk_addr) 921 { 922 update_meta_page(sbi, (void *)sum_blk, blk_addr); 923 } 924 925 static void write_current_sum_page(struct f2fs_sb_info *sbi, 926 int type, block_t blk_addr) 927 { 928 struct curseg_info *curseg = CURSEG_I(sbi, type); 929 struct page *page = grab_meta_page(sbi, blk_addr); 930 struct f2fs_summary_block *src = curseg->sum_blk; 931 struct f2fs_summary_block *dst; 932 933 dst = (struct f2fs_summary_block *)page_address(page); 934 935 mutex_lock(&curseg->curseg_mutex); 936 937 down_read(&curseg->journal_rwsem); 938 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 939 up_read(&curseg->journal_rwsem); 940 941 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 942 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 943 944 mutex_unlock(&curseg->curseg_mutex); 945 946 set_page_dirty(page); 947 f2fs_put_page(page, 1); 948 } 949 950 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 951 { 952 struct curseg_info *curseg = CURSEG_I(sbi, type); 953 unsigned int segno = curseg->segno + 1; 954 struct free_segmap_info *free_i = FREE_I(sbi); 955 956 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 957 return !test_bit(segno, free_i->free_segmap); 958 return 0; 959 } 960 961 /* 962 * Find a new segment from the free segments bitmap to right order 963 * This function should be returned with success, otherwise BUG 964 */ 965 static void get_new_segment(struct f2fs_sb_info *sbi, 966 unsigned int *newseg, bool new_sec, int dir) 967 { 968 struct free_segmap_info *free_i = FREE_I(sbi); 969 unsigned int segno, secno, zoneno; 970 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 971 unsigned int hint = *newseg / sbi->segs_per_sec; 972 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 973 unsigned int left_start = hint; 974 bool init = true; 975 int go_left = 0; 976 int i; 977 978 spin_lock(&free_i->segmap_lock); 979 980 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 981 segno = find_next_zero_bit(free_i->free_segmap, 982 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 983 if (segno < (hint + 1) * sbi->segs_per_sec) 984 goto got_it; 985 } 986 find_other_zone: 987 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 988 if (secno >= MAIN_SECS(sbi)) { 989 if (dir == ALLOC_RIGHT) { 990 secno = find_next_zero_bit(free_i->free_secmap, 991 MAIN_SECS(sbi), 0); 992 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 993 } else { 994 go_left = 1; 995 left_start = hint - 1; 996 } 997 } 998 if (go_left == 0) 999 goto skip_left; 1000 1001 while (test_bit(left_start, free_i->free_secmap)) { 1002 if (left_start > 0) { 1003 left_start--; 1004 continue; 1005 } 1006 left_start = find_next_zero_bit(free_i->free_secmap, 1007 MAIN_SECS(sbi), 0); 1008 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1009 break; 1010 } 1011 secno = left_start; 1012 skip_left: 1013 hint = secno; 1014 segno = secno * sbi->segs_per_sec; 1015 zoneno = secno / sbi->secs_per_zone; 1016 1017 /* give up on finding another zone */ 1018 if (!init) 1019 goto got_it; 1020 if (sbi->secs_per_zone == 1) 1021 goto got_it; 1022 if (zoneno == old_zoneno) 1023 goto got_it; 1024 if (dir == ALLOC_LEFT) { 1025 if (!go_left && zoneno + 1 >= total_zones) 1026 goto got_it; 1027 if (go_left && zoneno == 0) 1028 goto got_it; 1029 } 1030 for (i = 0; i < NR_CURSEG_TYPE; i++) 1031 if (CURSEG_I(sbi, i)->zone == zoneno) 1032 break; 1033 1034 if (i < NR_CURSEG_TYPE) { 1035 /* zone is in user, try another */ 1036 if (go_left) 1037 hint = zoneno * sbi->secs_per_zone - 1; 1038 else if (zoneno + 1 >= total_zones) 1039 hint = 0; 1040 else 1041 hint = (zoneno + 1) * sbi->secs_per_zone; 1042 init = false; 1043 goto find_other_zone; 1044 } 1045 got_it: 1046 /* set it as dirty segment in free segmap */ 1047 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1048 __set_inuse(sbi, segno); 1049 *newseg = segno; 1050 spin_unlock(&free_i->segmap_lock); 1051 } 1052 1053 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1054 { 1055 struct curseg_info *curseg = CURSEG_I(sbi, type); 1056 struct summary_footer *sum_footer; 1057 1058 curseg->segno = curseg->next_segno; 1059 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1060 curseg->next_blkoff = 0; 1061 curseg->next_segno = NULL_SEGNO; 1062 1063 sum_footer = &(curseg->sum_blk->footer); 1064 memset(sum_footer, 0, sizeof(struct summary_footer)); 1065 if (IS_DATASEG(type)) 1066 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1067 if (IS_NODESEG(type)) 1068 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1069 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1070 } 1071 1072 /* 1073 * Allocate a current working segment. 1074 * This function always allocates a free segment in LFS manner. 1075 */ 1076 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1077 { 1078 struct curseg_info *curseg = CURSEG_I(sbi, type); 1079 unsigned int segno = curseg->segno; 1080 int dir = ALLOC_LEFT; 1081 1082 write_sum_page(sbi, curseg->sum_blk, 1083 GET_SUM_BLOCK(sbi, segno)); 1084 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1085 dir = ALLOC_RIGHT; 1086 1087 if (test_opt(sbi, NOHEAP)) 1088 dir = ALLOC_RIGHT; 1089 1090 get_new_segment(sbi, &segno, new_sec, dir); 1091 curseg->next_segno = segno; 1092 reset_curseg(sbi, type, 1); 1093 curseg->alloc_type = LFS; 1094 } 1095 1096 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1097 struct curseg_info *seg, block_t start) 1098 { 1099 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1100 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1101 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1102 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1103 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1104 int i, pos; 1105 1106 for (i = 0; i < entries; i++) 1107 target_map[i] = ckpt_map[i] | cur_map[i]; 1108 1109 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1110 1111 seg->next_blkoff = pos; 1112 } 1113 1114 /* 1115 * If a segment is written by LFS manner, next block offset is just obtained 1116 * by increasing the current block offset. However, if a segment is written by 1117 * SSR manner, next block offset obtained by calling __next_free_blkoff 1118 */ 1119 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1120 struct curseg_info *seg) 1121 { 1122 if (seg->alloc_type == SSR) 1123 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1124 else 1125 seg->next_blkoff++; 1126 } 1127 1128 /* 1129 * This function always allocates a used segment(from dirty seglist) by SSR 1130 * manner, so it should recover the existing segment information of valid blocks 1131 */ 1132 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1133 { 1134 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1135 struct curseg_info *curseg = CURSEG_I(sbi, type); 1136 unsigned int new_segno = curseg->next_segno; 1137 struct f2fs_summary_block *sum_node; 1138 struct page *sum_page; 1139 1140 write_sum_page(sbi, curseg->sum_blk, 1141 GET_SUM_BLOCK(sbi, curseg->segno)); 1142 __set_test_and_inuse(sbi, new_segno); 1143 1144 mutex_lock(&dirty_i->seglist_lock); 1145 __remove_dirty_segment(sbi, new_segno, PRE); 1146 __remove_dirty_segment(sbi, new_segno, DIRTY); 1147 mutex_unlock(&dirty_i->seglist_lock); 1148 1149 reset_curseg(sbi, type, 1); 1150 curseg->alloc_type = SSR; 1151 __next_free_blkoff(sbi, curseg, 0); 1152 1153 if (reuse) { 1154 sum_page = get_sum_page(sbi, new_segno); 1155 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1156 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1157 f2fs_put_page(sum_page, 1); 1158 } 1159 } 1160 1161 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1162 { 1163 struct curseg_info *curseg = CURSEG_I(sbi, type); 1164 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1165 1166 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 1167 return v_ops->get_victim(sbi, 1168 &(curseg)->next_segno, BG_GC, type, SSR); 1169 1170 /* For data segments, let's do SSR more intensively */ 1171 for (; type >= CURSEG_HOT_DATA; type--) 1172 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1173 BG_GC, type, SSR)) 1174 return 1; 1175 return 0; 1176 } 1177 1178 /* 1179 * flush out current segment and replace it with new segment 1180 * This function should be returned with success, otherwise BUG 1181 */ 1182 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1183 int type, bool force) 1184 { 1185 struct curseg_info *curseg = CURSEG_I(sbi, type); 1186 1187 if (force) 1188 new_curseg(sbi, type, true); 1189 else if (type == CURSEG_WARM_NODE) 1190 new_curseg(sbi, type, false); 1191 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1192 new_curseg(sbi, type, false); 1193 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1194 change_curseg(sbi, type, true); 1195 else 1196 new_curseg(sbi, type, false); 1197 1198 stat_inc_seg_type(sbi, curseg); 1199 } 1200 1201 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) 1202 { 1203 struct curseg_info *curseg = CURSEG_I(sbi, type); 1204 unsigned int old_segno; 1205 1206 old_segno = curseg->segno; 1207 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 1208 locate_dirty_segment(sbi, old_segno); 1209 } 1210 1211 void allocate_new_segments(struct f2fs_sb_info *sbi) 1212 { 1213 int i; 1214 1215 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 1216 __allocate_new_segments(sbi, i); 1217 } 1218 1219 static const struct segment_allocation default_salloc_ops = { 1220 .allocate_segment = allocate_segment_by_default, 1221 }; 1222 1223 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1224 { 1225 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1226 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1227 unsigned int start_segno, end_segno; 1228 struct cp_control cpc; 1229 int err = 0; 1230 1231 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1232 return -EINVAL; 1233 1234 cpc.trimmed = 0; 1235 if (end <= MAIN_BLKADDR(sbi)) 1236 goto out; 1237 1238 /* start/end segment number in main_area */ 1239 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1240 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1241 GET_SEGNO(sbi, end); 1242 cpc.reason = CP_DISCARD; 1243 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1244 1245 /* do checkpoint to issue discard commands safely */ 1246 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1247 cpc.trim_start = start_segno; 1248 1249 if (sbi->discard_blks == 0) 1250 break; 1251 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1252 cpc.trim_end = end_segno; 1253 else 1254 cpc.trim_end = min_t(unsigned int, 1255 rounddown(start_segno + 1256 BATCHED_TRIM_SEGMENTS(sbi), 1257 sbi->segs_per_sec) - 1, end_segno); 1258 1259 mutex_lock(&sbi->gc_mutex); 1260 err = write_checkpoint(sbi, &cpc); 1261 mutex_unlock(&sbi->gc_mutex); 1262 } 1263 out: 1264 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1265 return err; 1266 } 1267 1268 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1269 { 1270 struct curseg_info *curseg = CURSEG_I(sbi, type); 1271 if (curseg->next_blkoff < sbi->blocks_per_seg) 1272 return true; 1273 return false; 1274 } 1275 1276 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1277 { 1278 if (p_type == DATA) 1279 return CURSEG_HOT_DATA; 1280 else 1281 return CURSEG_HOT_NODE; 1282 } 1283 1284 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1285 { 1286 if (p_type == DATA) { 1287 struct inode *inode = page->mapping->host; 1288 1289 if (S_ISDIR(inode->i_mode)) 1290 return CURSEG_HOT_DATA; 1291 else 1292 return CURSEG_COLD_DATA; 1293 } else { 1294 if (IS_DNODE(page) && is_cold_node(page)) 1295 return CURSEG_WARM_NODE; 1296 else 1297 return CURSEG_COLD_NODE; 1298 } 1299 } 1300 1301 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1302 { 1303 if (p_type == DATA) { 1304 struct inode *inode = page->mapping->host; 1305 1306 if (S_ISDIR(inode->i_mode)) 1307 return CURSEG_HOT_DATA; 1308 else if (is_cold_data(page) || file_is_cold(inode)) 1309 return CURSEG_COLD_DATA; 1310 else 1311 return CURSEG_WARM_DATA; 1312 } else { 1313 if (IS_DNODE(page)) 1314 return is_cold_node(page) ? CURSEG_WARM_NODE : 1315 CURSEG_HOT_NODE; 1316 else 1317 return CURSEG_COLD_NODE; 1318 } 1319 } 1320 1321 static int __get_segment_type(struct page *page, enum page_type p_type) 1322 { 1323 switch (F2FS_P_SB(page)->active_logs) { 1324 case 2: 1325 return __get_segment_type_2(page, p_type); 1326 case 4: 1327 return __get_segment_type_4(page, p_type); 1328 } 1329 /* NR_CURSEG_TYPE(6) logs by default */ 1330 f2fs_bug_on(F2FS_P_SB(page), 1331 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1332 return __get_segment_type_6(page, p_type); 1333 } 1334 1335 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1336 block_t old_blkaddr, block_t *new_blkaddr, 1337 struct f2fs_summary *sum, int type) 1338 { 1339 struct sit_info *sit_i = SIT_I(sbi); 1340 struct curseg_info *curseg; 1341 bool direct_io = (type == CURSEG_DIRECT_IO); 1342 1343 type = direct_io ? CURSEG_WARM_DATA : type; 1344 1345 curseg = CURSEG_I(sbi, type); 1346 1347 mutex_lock(&curseg->curseg_mutex); 1348 mutex_lock(&sit_i->sentry_lock); 1349 1350 /* direct_io'ed data is aligned to the segment for better performance */ 1351 if (direct_io && curseg->next_blkoff && 1352 !has_not_enough_free_secs(sbi, 0)) 1353 __allocate_new_segments(sbi, type); 1354 1355 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1356 1357 /* 1358 * __add_sum_entry should be resided under the curseg_mutex 1359 * because, this function updates a summary entry in the 1360 * current summary block. 1361 */ 1362 __add_sum_entry(sbi, type, sum); 1363 1364 __refresh_next_blkoff(sbi, curseg); 1365 1366 stat_inc_block_count(sbi, curseg); 1367 1368 if (!__has_curseg_space(sbi, type)) 1369 sit_i->s_ops->allocate_segment(sbi, type, false); 1370 /* 1371 * SIT information should be updated before segment allocation, 1372 * since SSR needs latest valid block information. 1373 */ 1374 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1375 1376 mutex_unlock(&sit_i->sentry_lock); 1377 1378 if (page && IS_NODESEG(type)) 1379 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1380 1381 mutex_unlock(&curseg->curseg_mutex); 1382 } 1383 1384 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1385 { 1386 int type = __get_segment_type(fio->page, fio->type); 1387 1388 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1389 &fio->new_blkaddr, sum, type); 1390 1391 /* writeout dirty page into bdev */ 1392 f2fs_submit_page_mbio(fio); 1393 } 1394 1395 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1396 { 1397 struct f2fs_io_info fio = { 1398 .sbi = sbi, 1399 .type = META, 1400 .rw = WRITE_SYNC | REQ_META | REQ_PRIO, 1401 .old_blkaddr = page->index, 1402 .new_blkaddr = page->index, 1403 .page = page, 1404 .encrypted_page = NULL, 1405 }; 1406 1407 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1408 fio.rw &= ~REQ_META; 1409 1410 set_page_writeback(page); 1411 f2fs_submit_page_mbio(&fio); 1412 } 1413 1414 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1415 { 1416 struct f2fs_summary sum; 1417 1418 set_summary(&sum, nid, 0, 0); 1419 do_write_page(&sum, fio); 1420 } 1421 1422 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1423 { 1424 struct f2fs_sb_info *sbi = fio->sbi; 1425 struct f2fs_summary sum; 1426 struct node_info ni; 1427 1428 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1429 get_node_info(sbi, dn->nid, &ni); 1430 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1431 do_write_page(&sum, fio); 1432 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1433 } 1434 1435 void rewrite_data_page(struct f2fs_io_info *fio) 1436 { 1437 fio->new_blkaddr = fio->old_blkaddr; 1438 stat_inc_inplace_blocks(fio->sbi); 1439 f2fs_submit_page_mbio(fio); 1440 } 1441 1442 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1443 block_t old_blkaddr, block_t new_blkaddr, 1444 bool recover_curseg, bool recover_newaddr) 1445 { 1446 struct sit_info *sit_i = SIT_I(sbi); 1447 struct curseg_info *curseg; 1448 unsigned int segno, old_cursegno; 1449 struct seg_entry *se; 1450 int type; 1451 unsigned short old_blkoff; 1452 1453 segno = GET_SEGNO(sbi, new_blkaddr); 1454 se = get_seg_entry(sbi, segno); 1455 type = se->type; 1456 1457 if (!recover_curseg) { 1458 /* for recovery flow */ 1459 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1460 if (old_blkaddr == NULL_ADDR) 1461 type = CURSEG_COLD_DATA; 1462 else 1463 type = CURSEG_WARM_DATA; 1464 } 1465 } else { 1466 if (!IS_CURSEG(sbi, segno)) 1467 type = CURSEG_WARM_DATA; 1468 } 1469 1470 curseg = CURSEG_I(sbi, type); 1471 1472 mutex_lock(&curseg->curseg_mutex); 1473 mutex_lock(&sit_i->sentry_lock); 1474 1475 old_cursegno = curseg->segno; 1476 old_blkoff = curseg->next_blkoff; 1477 1478 /* change the current segment */ 1479 if (segno != curseg->segno) { 1480 curseg->next_segno = segno; 1481 change_curseg(sbi, type, true); 1482 } 1483 1484 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1485 __add_sum_entry(sbi, type, sum); 1486 1487 if (!recover_curseg || recover_newaddr) 1488 update_sit_entry(sbi, new_blkaddr, 1); 1489 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1490 update_sit_entry(sbi, old_blkaddr, -1); 1491 1492 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1493 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1494 1495 locate_dirty_segment(sbi, old_cursegno); 1496 1497 if (recover_curseg) { 1498 if (old_cursegno != curseg->segno) { 1499 curseg->next_segno = old_cursegno; 1500 change_curseg(sbi, type, true); 1501 } 1502 curseg->next_blkoff = old_blkoff; 1503 } 1504 1505 mutex_unlock(&sit_i->sentry_lock); 1506 mutex_unlock(&curseg->curseg_mutex); 1507 } 1508 1509 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1510 block_t old_addr, block_t new_addr, 1511 unsigned char version, bool recover_curseg, 1512 bool recover_newaddr) 1513 { 1514 struct f2fs_summary sum; 1515 1516 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1517 1518 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1519 recover_curseg, recover_newaddr); 1520 1521 f2fs_update_data_blkaddr(dn, new_addr); 1522 } 1523 1524 void f2fs_wait_on_page_writeback(struct page *page, 1525 enum page_type type, bool ordered) 1526 { 1527 if (PageWriteback(page)) { 1528 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1529 1530 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE); 1531 if (ordered) 1532 wait_on_page_writeback(page); 1533 else 1534 wait_for_stable_page(page); 1535 } 1536 } 1537 1538 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1539 block_t blkaddr) 1540 { 1541 struct page *cpage; 1542 1543 if (blkaddr == NEW_ADDR) 1544 return; 1545 1546 f2fs_bug_on(sbi, blkaddr == NULL_ADDR); 1547 1548 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1549 if (cpage) { 1550 f2fs_wait_on_page_writeback(cpage, DATA, true); 1551 f2fs_put_page(cpage, 1); 1552 } 1553 } 1554 1555 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1556 { 1557 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1558 struct curseg_info *seg_i; 1559 unsigned char *kaddr; 1560 struct page *page; 1561 block_t start; 1562 int i, j, offset; 1563 1564 start = start_sum_block(sbi); 1565 1566 page = get_meta_page(sbi, start++); 1567 kaddr = (unsigned char *)page_address(page); 1568 1569 /* Step 1: restore nat cache */ 1570 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1571 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1572 1573 /* Step 2: restore sit cache */ 1574 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1575 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1576 offset = 2 * SUM_JOURNAL_SIZE; 1577 1578 /* Step 3: restore summary entries */ 1579 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1580 unsigned short blk_off; 1581 unsigned int segno; 1582 1583 seg_i = CURSEG_I(sbi, i); 1584 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1585 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1586 seg_i->next_segno = segno; 1587 reset_curseg(sbi, i, 0); 1588 seg_i->alloc_type = ckpt->alloc_type[i]; 1589 seg_i->next_blkoff = blk_off; 1590 1591 if (seg_i->alloc_type == SSR) 1592 blk_off = sbi->blocks_per_seg; 1593 1594 for (j = 0; j < blk_off; j++) { 1595 struct f2fs_summary *s; 1596 s = (struct f2fs_summary *)(kaddr + offset); 1597 seg_i->sum_blk->entries[j] = *s; 1598 offset += SUMMARY_SIZE; 1599 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 1600 SUM_FOOTER_SIZE) 1601 continue; 1602 1603 f2fs_put_page(page, 1); 1604 page = NULL; 1605 1606 page = get_meta_page(sbi, start++); 1607 kaddr = (unsigned char *)page_address(page); 1608 offset = 0; 1609 } 1610 } 1611 f2fs_put_page(page, 1); 1612 return 0; 1613 } 1614 1615 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1616 { 1617 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1618 struct f2fs_summary_block *sum; 1619 struct curseg_info *curseg; 1620 struct page *new; 1621 unsigned short blk_off; 1622 unsigned int segno = 0; 1623 block_t blk_addr = 0; 1624 1625 /* get segment number and block addr */ 1626 if (IS_DATASEG(type)) { 1627 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1628 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1629 CURSEG_HOT_DATA]); 1630 if (__exist_node_summaries(sbi)) 1631 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1632 else 1633 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1634 } else { 1635 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1636 CURSEG_HOT_NODE]); 1637 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1638 CURSEG_HOT_NODE]); 1639 if (__exist_node_summaries(sbi)) 1640 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1641 type - CURSEG_HOT_NODE); 1642 else 1643 blk_addr = GET_SUM_BLOCK(sbi, segno); 1644 } 1645 1646 new = get_meta_page(sbi, blk_addr); 1647 sum = (struct f2fs_summary_block *)page_address(new); 1648 1649 if (IS_NODESEG(type)) { 1650 if (__exist_node_summaries(sbi)) { 1651 struct f2fs_summary *ns = &sum->entries[0]; 1652 int i; 1653 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1654 ns->version = 0; 1655 ns->ofs_in_node = 0; 1656 } 1657 } else { 1658 int err; 1659 1660 err = restore_node_summary(sbi, segno, sum); 1661 if (err) { 1662 f2fs_put_page(new, 1); 1663 return err; 1664 } 1665 } 1666 } 1667 1668 /* set uncompleted segment to curseg */ 1669 curseg = CURSEG_I(sbi, type); 1670 mutex_lock(&curseg->curseg_mutex); 1671 1672 /* update journal info */ 1673 down_write(&curseg->journal_rwsem); 1674 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 1675 up_write(&curseg->journal_rwsem); 1676 1677 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 1678 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 1679 curseg->next_segno = segno; 1680 reset_curseg(sbi, type, 0); 1681 curseg->alloc_type = ckpt->alloc_type[type]; 1682 curseg->next_blkoff = blk_off; 1683 mutex_unlock(&curseg->curseg_mutex); 1684 f2fs_put_page(new, 1); 1685 return 0; 1686 } 1687 1688 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1689 { 1690 int type = CURSEG_HOT_DATA; 1691 int err; 1692 1693 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1694 int npages = npages_for_summary_flush(sbi, true); 1695 1696 if (npages >= 2) 1697 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1698 META_CP, true); 1699 1700 /* restore for compacted data summary */ 1701 if (read_compacted_summaries(sbi)) 1702 return -EINVAL; 1703 type = CURSEG_HOT_NODE; 1704 } 1705 1706 if (__exist_node_summaries(sbi)) 1707 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1708 NR_CURSEG_TYPE - type, META_CP, true); 1709 1710 for (; type <= CURSEG_COLD_NODE; type++) { 1711 err = read_normal_summaries(sbi, type); 1712 if (err) 1713 return err; 1714 } 1715 1716 return 0; 1717 } 1718 1719 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1720 { 1721 struct page *page; 1722 unsigned char *kaddr; 1723 struct f2fs_summary *summary; 1724 struct curseg_info *seg_i; 1725 int written_size = 0; 1726 int i, j; 1727 1728 page = grab_meta_page(sbi, blkaddr++); 1729 kaddr = (unsigned char *)page_address(page); 1730 1731 /* Step 1: write nat cache */ 1732 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1733 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 1734 written_size += SUM_JOURNAL_SIZE; 1735 1736 /* Step 2: write sit cache */ 1737 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1738 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 1739 written_size += SUM_JOURNAL_SIZE; 1740 1741 /* Step 3: write summary entries */ 1742 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1743 unsigned short blkoff; 1744 seg_i = CURSEG_I(sbi, i); 1745 if (sbi->ckpt->alloc_type[i] == SSR) 1746 blkoff = sbi->blocks_per_seg; 1747 else 1748 blkoff = curseg_blkoff(sbi, i); 1749 1750 for (j = 0; j < blkoff; j++) { 1751 if (!page) { 1752 page = grab_meta_page(sbi, blkaddr++); 1753 kaddr = (unsigned char *)page_address(page); 1754 written_size = 0; 1755 } 1756 summary = (struct f2fs_summary *)(kaddr + written_size); 1757 *summary = seg_i->sum_blk->entries[j]; 1758 written_size += SUMMARY_SIZE; 1759 1760 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 1761 SUM_FOOTER_SIZE) 1762 continue; 1763 1764 set_page_dirty(page); 1765 f2fs_put_page(page, 1); 1766 page = NULL; 1767 } 1768 } 1769 if (page) { 1770 set_page_dirty(page); 1771 f2fs_put_page(page, 1); 1772 } 1773 } 1774 1775 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1776 block_t blkaddr, int type) 1777 { 1778 int i, end; 1779 if (IS_DATASEG(type)) 1780 end = type + NR_CURSEG_DATA_TYPE; 1781 else 1782 end = type + NR_CURSEG_NODE_TYPE; 1783 1784 for (i = type; i < end; i++) 1785 write_current_sum_page(sbi, i, blkaddr + (i - type)); 1786 } 1787 1788 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1789 { 1790 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1791 write_compacted_summaries(sbi, start_blk); 1792 else 1793 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1794 } 1795 1796 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1797 { 1798 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1799 } 1800 1801 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 1802 unsigned int val, int alloc) 1803 { 1804 int i; 1805 1806 if (type == NAT_JOURNAL) { 1807 for (i = 0; i < nats_in_cursum(journal); i++) { 1808 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 1809 return i; 1810 } 1811 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 1812 return update_nats_in_cursum(journal, 1); 1813 } else if (type == SIT_JOURNAL) { 1814 for (i = 0; i < sits_in_cursum(journal); i++) 1815 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 1816 return i; 1817 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 1818 return update_sits_in_cursum(journal, 1); 1819 } 1820 return -1; 1821 } 1822 1823 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1824 unsigned int segno) 1825 { 1826 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1827 } 1828 1829 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1830 unsigned int start) 1831 { 1832 struct sit_info *sit_i = SIT_I(sbi); 1833 struct page *src_page, *dst_page; 1834 pgoff_t src_off, dst_off; 1835 void *src_addr, *dst_addr; 1836 1837 src_off = current_sit_addr(sbi, start); 1838 dst_off = next_sit_addr(sbi, src_off); 1839 1840 /* get current sit block page without lock */ 1841 src_page = get_meta_page(sbi, src_off); 1842 dst_page = grab_meta_page(sbi, dst_off); 1843 f2fs_bug_on(sbi, PageDirty(src_page)); 1844 1845 src_addr = page_address(src_page); 1846 dst_addr = page_address(dst_page); 1847 memcpy(dst_addr, src_addr, PAGE_SIZE); 1848 1849 set_page_dirty(dst_page); 1850 f2fs_put_page(src_page, 1); 1851 1852 set_to_next_sit(sit_i, start); 1853 1854 return dst_page; 1855 } 1856 1857 static struct sit_entry_set *grab_sit_entry_set(void) 1858 { 1859 struct sit_entry_set *ses = 1860 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 1861 1862 ses->entry_cnt = 0; 1863 INIT_LIST_HEAD(&ses->set_list); 1864 return ses; 1865 } 1866 1867 static void release_sit_entry_set(struct sit_entry_set *ses) 1868 { 1869 list_del(&ses->set_list); 1870 kmem_cache_free(sit_entry_set_slab, ses); 1871 } 1872 1873 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1874 struct list_head *head) 1875 { 1876 struct sit_entry_set *next = ses; 1877 1878 if (list_is_last(&ses->set_list, head)) 1879 return; 1880 1881 list_for_each_entry_continue(next, head, set_list) 1882 if (ses->entry_cnt <= next->entry_cnt) 1883 break; 1884 1885 list_move_tail(&ses->set_list, &next->set_list); 1886 } 1887 1888 static void add_sit_entry(unsigned int segno, struct list_head *head) 1889 { 1890 struct sit_entry_set *ses; 1891 unsigned int start_segno = START_SEGNO(segno); 1892 1893 list_for_each_entry(ses, head, set_list) { 1894 if (ses->start_segno == start_segno) { 1895 ses->entry_cnt++; 1896 adjust_sit_entry_set(ses, head); 1897 return; 1898 } 1899 } 1900 1901 ses = grab_sit_entry_set(); 1902 1903 ses->start_segno = start_segno; 1904 ses->entry_cnt++; 1905 list_add(&ses->set_list, head); 1906 } 1907 1908 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1909 { 1910 struct f2fs_sm_info *sm_info = SM_I(sbi); 1911 struct list_head *set_list = &sm_info->sit_entry_set; 1912 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1913 unsigned int segno; 1914 1915 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1916 add_sit_entry(segno, set_list); 1917 } 1918 1919 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1920 { 1921 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1922 struct f2fs_journal *journal = curseg->journal; 1923 int i; 1924 1925 down_write(&curseg->journal_rwsem); 1926 for (i = 0; i < sits_in_cursum(journal); i++) { 1927 unsigned int segno; 1928 bool dirtied; 1929 1930 segno = le32_to_cpu(segno_in_journal(journal, i)); 1931 dirtied = __mark_sit_entry_dirty(sbi, segno); 1932 1933 if (!dirtied) 1934 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1935 } 1936 update_sits_in_cursum(journal, -i); 1937 up_write(&curseg->journal_rwsem); 1938 } 1939 1940 /* 1941 * CP calls this function, which flushes SIT entries including sit_journal, 1942 * and moves prefree segs to free segs. 1943 */ 1944 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1945 { 1946 struct sit_info *sit_i = SIT_I(sbi); 1947 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1948 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1949 struct f2fs_journal *journal = curseg->journal; 1950 struct sit_entry_set *ses, *tmp; 1951 struct list_head *head = &SM_I(sbi)->sit_entry_set; 1952 bool to_journal = true; 1953 struct seg_entry *se; 1954 1955 mutex_lock(&sit_i->sentry_lock); 1956 1957 if (!sit_i->dirty_sentries) 1958 goto out; 1959 1960 /* 1961 * add and account sit entries of dirty bitmap in sit entry 1962 * set temporarily 1963 */ 1964 add_sits_in_set(sbi); 1965 1966 /* 1967 * if there are no enough space in journal to store dirty sit 1968 * entries, remove all entries from journal and add and account 1969 * them in sit entry set. 1970 */ 1971 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 1972 remove_sits_in_journal(sbi); 1973 1974 /* 1975 * there are two steps to flush sit entries: 1976 * #1, flush sit entries to journal in current cold data summary block. 1977 * #2, flush sit entries to sit page. 1978 */ 1979 list_for_each_entry_safe(ses, tmp, head, set_list) { 1980 struct page *page = NULL; 1981 struct f2fs_sit_block *raw_sit = NULL; 1982 unsigned int start_segno = ses->start_segno; 1983 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 1984 (unsigned long)MAIN_SEGS(sbi)); 1985 unsigned int segno = start_segno; 1986 1987 if (to_journal && 1988 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 1989 to_journal = false; 1990 1991 if (to_journal) { 1992 down_write(&curseg->journal_rwsem); 1993 } else { 1994 page = get_next_sit_page(sbi, start_segno); 1995 raw_sit = page_address(page); 1996 } 1997 1998 /* flush dirty sit entries in region of current sit set */ 1999 for_each_set_bit_from(segno, bitmap, end) { 2000 int offset, sit_offset; 2001 2002 se = get_seg_entry(sbi, segno); 2003 2004 /* add discard candidates */ 2005 if (cpc->reason != CP_DISCARD) { 2006 cpc->trim_start = segno; 2007 add_discard_addrs(sbi, cpc); 2008 } 2009 2010 if (to_journal) { 2011 offset = lookup_journal_in_cursum(journal, 2012 SIT_JOURNAL, segno, 1); 2013 f2fs_bug_on(sbi, offset < 0); 2014 segno_in_journal(journal, offset) = 2015 cpu_to_le32(segno); 2016 seg_info_to_raw_sit(se, 2017 &sit_in_journal(journal, offset)); 2018 } else { 2019 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2020 seg_info_to_raw_sit(se, 2021 &raw_sit->entries[sit_offset]); 2022 } 2023 2024 __clear_bit(segno, bitmap); 2025 sit_i->dirty_sentries--; 2026 ses->entry_cnt--; 2027 } 2028 2029 if (to_journal) 2030 up_write(&curseg->journal_rwsem); 2031 else 2032 f2fs_put_page(page, 1); 2033 2034 f2fs_bug_on(sbi, ses->entry_cnt); 2035 release_sit_entry_set(ses); 2036 } 2037 2038 f2fs_bug_on(sbi, !list_empty(head)); 2039 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2040 out: 2041 if (cpc->reason == CP_DISCARD) { 2042 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2043 add_discard_addrs(sbi, cpc); 2044 } 2045 mutex_unlock(&sit_i->sentry_lock); 2046 2047 set_prefree_as_free_segments(sbi); 2048 } 2049 2050 static int build_sit_info(struct f2fs_sb_info *sbi) 2051 { 2052 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2053 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2054 struct sit_info *sit_i; 2055 unsigned int sit_segs, start; 2056 char *src_bitmap, *dst_bitmap; 2057 unsigned int bitmap_size; 2058 2059 /* allocate memory for SIT information */ 2060 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2061 if (!sit_i) 2062 return -ENOMEM; 2063 2064 SM_I(sbi)->sit_info = sit_i; 2065 2066 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2067 sizeof(struct seg_entry), GFP_KERNEL); 2068 if (!sit_i->sentries) 2069 return -ENOMEM; 2070 2071 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2072 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2073 if (!sit_i->dirty_sentries_bitmap) 2074 return -ENOMEM; 2075 2076 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2077 sit_i->sentries[start].cur_valid_map 2078 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2079 sit_i->sentries[start].ckpt_valid_map 2080 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2081 sit_i->sentries[start].discard_map 2082 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2083 if (!sit_i->sentries[start].cur_valid_map || 2084 !sit_i->sentries[start].ckpt_valid_map || 2085 !sit_i->sentries[start].discard_map) 2086 return -ENOMEM; 2087 } 2088 2089 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2090 if (!sit_i->tmp_map) 2091 return -ENOMEM; 2092 2093 if (sbi->segs_per_sec > 1) { 2094 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2095 sizeof(struct sec_entry), GFP_KERNEL); 2096 if (!sit_i->sec_entries) 2097 return -ENOMEM; 2098 } 2099 2100 /* get information related with SIT */ 2101 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2102 2103 /* setup SIT bitmap from ckeckpoint pack */ 2104 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2105 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2106 2107 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2108 if (!dst_bitmap) 2109 return -ENOMEM; 2110 2111 /* init SIT information */ 2112 sit_i->s_ops = &default_salloc_ops; 2113 2114 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2115 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2116 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 2117 sit_i->sit_bitmap = dst_bitmap; 2118 sit_i->bitmap_size = bitmap_size; 2119 sit_i->dirty_sentries = 0; 2120 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2121 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2122 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2123 mutex_init(&sit_i->sentry_lock); 2124 return 0; 2125 } 2126 2127 static int build_free_segmap(struct f2fs_sb_info *sbi) 2128 { 2129 struct free_segmap_info *free_i; 2130 unsigned int bitmap_size, sec_bitmap_size; 2131 2132 /* allocate memory for free segmap information */ 2133 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2134 if (!free_i) 2135 return -ENOMEM; 2136 2137 SM_I(sbi)->free_info = free_i; 2138 2139 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2140 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2141 if (!free_i->free_segmap) 2142 return -ENOMEM; 2143 2144 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2145 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2146 if (!free_i->free_secmap) 2147 return -ENOMEM; 2148 2149 /* set all segments as dirty temporarily */ 2150 memset(free_i->free_segmap, 0xff, bitmap_size); 2151 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2152 2153 /* init free segmap information */ 2154 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2155 free_i->free_segments = 0; 2156 free_i->free_sections = 0; 2157 spin_lock_init(&free_i->segmap_lock); 2158 return 0; 2159 } 2160 2161 static int build_curseg(struct f2fs_sb_info *sbi) 2162 { 2163 struct curseg_info *array; 2164 int i; 2165 2166 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2167 if (!array) 2168 return -ENOMEM; 2169 2170 SM_I(sbi)->curseg_array = array; 2171 2172 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2173 mutex_init(&array[i].curseg_mutex); 2174 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2175 if (!array[i].sum_blk) 2176 return -ENOMEM; 2177 init_rwsem(&array[i].journal_rwsem); 2178 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2179 GFP_KERNEL); 2180 if (!array[i].journal) 2181 return -ENOMEM; 2182 array[i].segno = NULL_SEGNO; 2183 array[i].next_blkoff = 0; 2184 } 2185 return restore_curseg_summaries(sbi); 2186 } 2187 2188 static void build_sit_entries(struct f2fs_sb_info *sbi) 2189 { 2190 struct sit_info *sit_i = SIT_I(sbi); 2191 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2192 struct f2fs_journal *journal = curseg->journal; 2193 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2194 unsigned int i, start, end; 2195 unsigned int readed, start_blk = 0; 2196 int nrpages = MAX_BIO_BLOCKS(sbi) * 8; 2197 2198 do { 2199 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true); 2200 2201 start = start_blk * sit_i->sents_per_block; 2202 end = (start_blk + readed) * sit_i->sents_per_block; 2203 2204 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2205 struct seg_entry *se = &sit_i->sentries[start]; 2206 struct f2fs_sit_block *sit_blk; 2207 struct f2fs_sit_entry sit; 2208 struct page *page; 2209 2210 down_read(&curseg->journal_rwsem); 2211 for (i = 0; i < sits_in_cursum(journal); i++) { 2212 if (le32_to_cpu(segno_in_journal(journal, i)) 2213 == start) { 2214 sit = sit_in_journal(journal, i); 2215 up_read(&curseg->journal_rwsem); 2216 goto got_it; 2217 } 2218 } 2219 up_read(&curseg->journal_rwsem); 2220 2221 page = get_current_sit_page(sbi, start); 2222 sit_blk = (struct f2fs_sit_block *)page_address(page); 2223 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2224 f2fs_put_page(page, 1); 2225 got_it: 2226 check_block_count(sbi, start, &sit); 2227 seg_info_from_raw_sit(se, &sit); 2228 2229 /* build discard map only one time */ 2230 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 2231 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks; 2232 2233 if (sbi->segs_per_sec > 1) { 2234 struct sec_entry *e = get_sec_entry(sbi, start); 2235 e->valid_blocks += se->valid_blocks; 2236 } 2237 } 2238 start_blk += readed; 2239 } while (start_blk < sit_blk_cnt); 2240 } 2241 2242 static void init_free_segmap(struct f2fs_sb_info *sbi) 2243 { 2244 unsigned int start; 2245 int type; 2246 2247 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2248 struct seg_entry *sentry = get_seg_entry(sbi, start); 2249 if (!sentry->valid_blocks) 2250 __set_free(sbi, start); 2251 } 2252 2253 /* set use the current segments */ 2254 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2255 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2256 __set_test_and_inuse(sbi, curseg_t->segno); 2257 } 2258 } 2259 2260 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2261 { 2262 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2263 struct free_segmap_info *free_i = FREE_I(sbi); 2264 unsigned int segno = 0, offset = 0; 2265 unsigned short valid_blocks; 2266 2267 while (1) { 2268 /* find dirty segment based on free segmap */ 2269 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2270 if (segno >= MAIN_SEGS(sbi)) 2271 break; 2272 offset = segno + 1; 2273 valid_blocks = get_valid_blocks(sbi, segno, 0); 2274 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2275 continue; 2276 if (valid_blocks > sbi->blocks_per_seg) { 2277 f2fs_bug_on(sbi, 1); 2278 continue; 2279 } 2280 mutex_lock(&dirty_i->seglist_lock); 2281 __locate_dirty_segment(sbi, segno, DIRTY); 2282 mutex_unlock(&dirty_i->seglist_lock); 2283 } 2284 } 2285 2286 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2287 { 2288 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2289 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2290 2291 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2292 if (!dirty_i->victim_secmap) 2293 return -ENOMEM; 2294 return 0; 2295 } 2296 2297 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2298 { 2299 struct dirty_seglist_info *dirty_i; 2300 unsigned int bitmap_size, i; 2301 2302 /* allocate memory for dirty segments list information */ 2303 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2304 if (!dirty_i) 2305 return -ENOMEM; 2306 2307 SM_I(sbi)->dirty_info = dirty_i; 2308 mutex_init(&dirty_i->seglist_lock); 2309 2310 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2311 2312 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2313 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2314 if (!dirty_i->dirty_segmap[i]) 2315 return -ENOMEM; 2316 } 2317 2318 init_dirty_segmap(sbi); 2319 return init_victim_secmap(sbi); 2320 } 2321 2322 /* 2323 * Update min, max modified time for cost-benefit GC algorithm 2324 */ 2325 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2326 { 2327 struct sit_info *sit_i = SIT_I(sbi); 2328 unsigned int segno; 2329 2330 mutex_lock(&sit_i->sentry_lock); 2331 2332 sit_i->min_mtime = LLONG_MAX; 2333 2334 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2335 unsigned int i; 2336 unsigned long long mtime = 0; 2337 2338 for (i = 0; i < sbi->segs_per_sec; i++) 2339 mtime += get_seg_entry(sbi, segno + i)->mtime; 2340 2341 mtime = div_u64(mtime, sbi->segs_per_sec); 2342 2343 if (sit_i->min_mtime > mtime) 2344 sit_i->min_mtime = mtime; 2345 } 2346 sit_i->max_mtime = get_mtime(sbi); 2347 mutex_unlock(&sit_i->sentry_lock); 2348 } 2349 2350 int build_segment_manager(struct f2fs_sb_info *sbi) 2351 { 2352 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2353 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2354 struct f2fs_sm_info *sm_info; 2355 int err; 2356 2357 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2358 if (!sm_info) 2359 return -ENOMEM; 2360 2361 /* init sm info */ 2362 sbi->sm_info = sm_info; 2363 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2364 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2365 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2366 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2367 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2368 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2369 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2370 sm_info->rec_prefree_segments = sm_info->main_segments * 2371 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2372 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2373 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2374 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2375 2376 INIT_LIST_HEAD(&sm_info->discard_list); 2377 sm_info->nr_discards = 0; 2378 sm_info->max_discards = 0; 2379 2380 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2381 2382 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2383 2384 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2385 err = create_flush_cmd_control(sbi); 2386 if (err) 2387 return err; 2388 } 2389 2390 err = build_sit_info(sbi); 2391 if (err) 2392 return err; 2393 err = build_free_segmap(sbi); 2394 if (err) 2395 return err; 2396 err = build_curseg(sbi); 2397 if (err) 2398 return err; 2399 2400 /* reinit free segmap based on SIT */ 2401 build_sit_entries(sbi); 2402 2403 init_free_segmap(sbi); 2404 err = build_dirty_segmap(sbi); 2405 if (err) 2406 return err; 2407 2408 init_min_max_mtime(sbi); 2409 return 0; 2410 } 2411 2412 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2413 enum dirty_type dirty_type) 2414 { 2415 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2416 2417 mutex_lock(&dirty_i->seglist_lock); 2418 kvfree(dirty_i->dirty_segmap[dirty_type]); 2419 dirty_i->nr_dirty[dirty_type] = 0; 2420 mutex_unlock(&dirty_i->seglist_lock); 2421 } 2422 2423 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2424 { 2425 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2426 kvfree(dirty_i->victim_secmap); 2427 } 2428 2429 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2430 { 2431 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2432 int i; 2433 2434 if (!dirty_i) 2435 return; 2436 2437 /* discard pre-free/dirty segments list */ 2438 for (i = 0; i < NR_DIRTY_TYPE; i++) 2439 discard_dirty_segmap(sbi, i); 2440 2441 destroy_victim_secmap(sbi); 2442 SM_I(sbi)->dirty_info = NULL; 2443 kfree(dirty_i); 2444 } 2445 2446 static void destroy_curseg(struct f2fs_sb_info *sbi) 2447 { 2448 struct curseg_info *array = SM_I(sbi)->curseg_array; 2449 int i; 2450 2451 if (!array) 2452 return; 2453 SM_I(sbi)->curseg_array = NULL; 2454 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2455 kfree(array[i].sum_blk); 2456 kfree(array[i].journal); 2457 } 2458 kfree(array); 2459 } 2460 2461 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2462 { 2463 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2464 if (!free_i) 2465 return; 2466 SM_I(sbi)->free_info = NULL; 2467 kvfree(free_i->free_segmap); 2468 kvfree(free_i->free_secmap); 2469 kfree(free_i); 2470 } 2471 2472 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2473 { 2474 struct sit_info *sit_i = SIT_I(sbi); 2475 unsigned int start; 2476 2477 if (!sit_i) 2478 return; 2479 2480 if (sit_i->sentries) { 2481 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2482 kfree(sit_i->sentries[start].cur_valid_map); 2483 kfree(sit_i->sentries[start].ckpt_valid_map); 2484 kfree(sit_i->sentries[start].discard_map); 2485 } 2486 } 2487 kfree(sit_i->tmp_map); 2488 2489 kvfree(sit_i->sentries); 2490 kvfree(sit_i->sec_entries); 2491 kvfree(sit_i->dirty_sentries_bitmap); 2492 2493 SM_I(sbi)->sit_info = NULL; 2494 kfree(sit_i->sit_bitmap); 2495 kfree(sit_i); 2496 } 2497 2498 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2499 { 2500 struct f2fs_sm_info *sm_info = SM_I(sbi); 2501 2502 if (!sm_info) 2503 return; 2504 destroy_flush_cmd_control(sbi); 2505 destroy_dirty_segmap(sbi); 2506 destroy_curseg(sbi); 2507 destroy_free_segmap(sbi); 2508 destroy_sit_info(sbi); 2509 sbi->sm_info = NULL; 2510 kfree(sm_info); 2511 } 2512 2513 int __init create_segment_manager_caches(void) 2514 { 2515 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2516 sizeof(struct discard_entry)); 2517 if (!discard_entry_slab) 2518 goto fail; 2519 2520 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2521 sizeof(struct sit_entry_set)); 2522 if (!sit_entry_set_slab) 2523 goto destory_discard_entry; 2524 2525 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2526 sizeof(struct inmem_pages)); 2527 if (!inmem_entry_slab) 2528 goto destroy_sit_entry_set; 2529 return 0; 2530 2531 destroy_sit_entry_set: 2532 kmem_cache_destroy(sit_entry_set_slab); 2533 destory_discard_entry: 2534 kmem_cache_destroy(discard_entry_slab); 2535 fail: 2536 return -ENOMEM; 2537 } 2538 2539 void destroy_segment_manager_caches(void) 2540 { 2541 kmem_cache_destroy(sit_entry_set_slab); 2542 kmem_cache_destroy(discard_entry_slab); 2543 kmem_cache_destroy(inmem_entry_slab); 2544 } 2545