1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (f2fs_lfs_mode(sbi)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT_HIGH) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct inmem_pages *new; 189 190 f2fs_trace_pid(page); 191 192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 193 194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 195 196 /* add atomic page indices to the list */ 197 new->page = page; 198 INIT_LIST_HEAD(&new->list); 199 200 /* increase reference count with clean state */ 201 get_page(page); 202 mutex_lock(&F2FS_I(inode)->inmem_lock); 203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 205 mutex_unlock(&F2FS_I(inode)->inmem_lock); 206 207 trace_f2fs_register_inmem_page(page, INMEM); 208 } 209 210 static int __revoke_inmem_pages(struct inode *inode, 211 struct list_head *head, bool drop, bool recover, 212 bool trylock) 213 { 214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 215 struct inmem_pages *cur, *tmp; 216 int err = 0; 217 218 list_for_each_entry_safe(cur, tmp, head, list) { 219 struct page *page = cur->page; 220 221 if (drop) 222 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 223 224 if (trylock) { 225 /* 226 * to avoid deadlock in between page lock and 227 * inmem_lock. 228 */ 229 if (!trylock_page(page)) 230 continue; 231 } else { 232 lock_page(page); 233 } 234 235 f2fs_wait_on_page_writeback(page, DATA, true, true); 236 237 if (recover) { 238 struct dnode_of_data dn; 239 struct node_info ni; 240 241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 242 retry: 243 set_new_dnode(&dn, inode, NULL, NULL, 0); 244 err = f2fs_get_dnode_of_data(&dn, page->index, 245 LOOKUP_NODE); 246 if (err) { 247 if (err == -ENOMEM) { 248 congestion_wait(BLK_RW_ASYNC, 249 DEFAULT_IO_TIMEOUT); 250 cond_resched(); 251 goto retry; 252 } 253 err = -EAGAIN; 254 goto next; 255 } 256 257 err = f2fs_get_node_info(sbi, dn.nid, &ni); 258 if (err) { 259 f2fs_put_dnode(&dn); 260 return err; 261 } 262 263 if (cur->old_addr == NEW_ADDR) { 264 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 265 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 266 } else 267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 268 cur->old_addr, ni.version, true, true); 269 f2fs_put_dnode(&dn); 270 } 271 next: 272 /* we don't need to invalidate this in the sccessful status */ 273 if (drop || recover) { 274 ClearPageUptodate(page); 275 clear_cold_data(page); 276 } 277 f2fs_clear_page_private(page); 278 f2fs_put_page(page, 1); 279 280 list_del(&cur->list); 281 kmem_cache_free(inmem_entry_slab, cur); 282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 283 } 284 return err; 285 } 286 287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 288 { 289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 290 struct inode *inode; 291 struct f2fs_inode_info *fi; 292 unsigned int count = sbi->atomic_files; 293 unsigned int looped = 0; 294 next: 295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 296 if (list_empty(head)) { 297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 298 return; 299 } 300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 301 inode = igrab(&fi->vfs_inode); 302 if (inode) 303 list_move_tail(&fi->inmem_ilist, head); 304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 305 306 if (inode) { 307 if (gc_failure) { 308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) 309 goto skip; 310 } 311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 312 f2fs_drop_inmem_pages(inode); 313 skip: 314 iput(inode); 315 } 316 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 317 cond_resched(); 318 if (gc_failure) { 319 if (++looped >= count) 320 return; 321 } 322 goto next; 323 } 324 325 void f2fs_drop_inmem_pages(struct inode *inode) 326 { 327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 328 struct f2fs_inode_info *fi = F2FS_I(inode); 329 330 while (!list_empty(&fi->inmem_pages)) { 331 mutex_lock(&fi->inmem_lock); 332 __revoke_inmem_pages(inode, &fi->inmem_pages, 333 true, false, true); 334 mutex_unlock(&fi->inmem_lock); 335 } 336 337 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 338 339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 340 if (!list_empty(&fi->inmem_ilist)) 341 list_del_init(&fi->inmem_ilist); 342 if (f2fs_is_atomic_file(inode)) { 343 clear_inode_flag(inode, FI_ATOMIC_FILE); 344 sbi->atomic_files--; 345 } 346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 347 } 348 349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 350 { 351 struct f2fs_inode_info *fi = F2FS_I(inode); 352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 353 struct list_head *head = &fi->inmem_pages; 354 struct inmem_pages *cur = NULL; 355 356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 357 358 mutex_lock(&fi->inmem_lock); 359 list_for_each_entry(cur, head, list) { 360 if (cur->page == page) 361 break; 362 } 363 364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 365 list_del(&cur->list); 366 mutex_unlock(&fi->inmem_lock); 367 368 dec_page_count(sbi, F2FS_INMEM_PAGES); 369 kmem_cache_free(inmem_entry_slab, cur); 370 371 ClearPageUptodate(page); 372 f2fs_clear_page_private(page); 373 f2fs_put_page(page, 0); 374 375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 376 } 377 378 static int __f2fs_commit_inmem_pages(struct inode *inode) 379 { 380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 381 struct f2fs_inode_info *fi = F2FS_I(inode); 382 struct inmem_pages *cur, *tmp; 383 struct f2fs_io_info fio = { 384 .sbi = sbi, 385 .ino = inode->i_ino, 386 .type = DATA, 387 .op = REQ_OP_WRITE, 388 .op_flags = REQ_SYNC | REQ_PRIO, 389 .io_type = FS_DATA_IO, 390 }; 391 struct list_head revoke_list; 392 bool submit_bio = false; 393 int err = 0; 394 395 INIT_LIST_HEAD(&revoke_list); 396 397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 398 struct page *page = cur->page; 399 400 lock_page(page); 401 if (page->mapping == inode->i_mapping) { 402 trace_f2fs_commit_inmem_page(page, INMEM); 403 404 f2fs_wait_on_page_writeback(page, DATA, true, true); 405 406 set_page_dirty(page); 407 if (clear_page_dirty_for_io(page)) { 408 inode_dec_dirty_pages(inode); 409 f2fs_remove_dirty_inode(inode); 410 } 411 retry: 412 fio.page = page; 413 fio.old_blkaddr = NULL_ADDR; 414 fio.encrypted_page = NULL; 415 fio.need_lock = LOCK_DONE; 416 err = f2fs_do_write_data_page(&fio); 417 if (err) { 418 if (err == -ENOMEM) { 419 congestion_wait(BLK_RW_ASYNC, 420 DEFAULT_IO_TIMEOUT); 421 cond_resched(); 422 goto retry; 423 } 424 unlock_page(page); 425 break; 426 } 427 /* record old blkaddr for revoking */ 428 cur->old_addr = fio.old_blkaddr; 429 submit_bio = true; 430 } 431 unlock_page(page); 432 list_move_tail(&cur->list, &revoke_list); 433 } 434 435 if (submit_bio) 436 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 437 438 if (err) { 439 /* 440 * try to revoke all committed pages, but still we could fail 441 * due to no memory or other reason, if that happened, EAGAIN 442 * will be returned, which means in such case, transaction is 443 * already not integrity, caller should use journal to do the 444 * recovery or rewrite & commit last transaction. For other 445 * error number, revoking was done by filesystem itself. 446 */ 447 err = __revoke_inmem_pages(inode, &revoke_list, 448 false, true, false); 449 450 /* drop all uncommitted pages */ 451 __revoke_inmem_pages(inode, &fi->inmem_pages, 452 true, false, false); 453 } else { 454 __revoke_inmem_pages(inode, &revoke_list, 455 false, false, false); 456 } 457 458 return err; 459 } 460 461 int f2fs_commit_inmem_pages(struct inode *inode) 462 { 463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 464 struct f2fs_inode_info *fi = F2FS_I(inode); 465 int err; 466 467 f2fs_balance_fs(sbi, true); 468 469 down_write(&fi->i_gc_rwsem[WRITE]); 470 471 f2fs_lock_op(sbi); 472 set_inode_flag(inode, FI_ATOMIC_COMMIT); 473 474 mutex_lock(&fi->inmem_lock); 475 err = __f2fs_commit_inmem_pages(inode); 476 mutex_unlock(&fi->inmem_lock); 477 478 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 479 480 f2fs_unlock_op(sbi); 481 up_write(&fi->i_gc_rwsem[WRITE]); 482 483 return err; 484 } 485 486 /* 487 * This function balances dirty node and dentry pages. 488 * In addition, it controls garbage collection. 489 */ 490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 491 { 492 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 493 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 494 f2fs_stop_checkpoint(sbi, false); 495 } 496 497 /* balance_fs_bg is able to be pending */ 498 if (need && excess_cached_nats(sbi)) 499 f2fs_balance_fs_bg(sbi, false); 500 501 if (!f2fs_is_checkpoint_ready(sbi)) 502 return; 503 504 /* 505 * We should do GC or end up with checkpoint, if there are so many dirty 506 * dir/node pages without enough free segments. 507 */ 508 if (has_not_enough_free_secs(sbi, 0, 0)) { 509 down_write(&sbi->gc_lock); 510 f2fs_gc(sbi, false, false, NULL_SEGNO); 511 } 512 } 513 514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 515 { 516 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 517 return; 518 519 /* try to shrink extent cache when there is no enough memory */ 520 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 521 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 522 523 /* check the # of cached NAT entries */ 524 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 525 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 526 527 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 528 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 529 else 530 f2fs_build_free_nids(sbi, false, false); 531 532 if (!is_idle(sbi, REQ_TIME) && 533 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 534 return; 535 536 /* checkpoint is the only way to shrink partial cached entries */ 537 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 538 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 539 excess_prefree_segs(sbi) || 540 excess_dirty_nats(sbi) || 541 excess_dirty_nodes(sbi) || 542 f2fs_time_over(sbi, CP_TIME)) { 543 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 544 struct blk_plug plug; 545 546 mutex_lock(&sbi->flush_lock); 547 548 blk_start_plug(&plug); 549 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 550 blk_finish_plug(&plug); 551 552 mutex_unlock(&sbi->flush_lock); 553 } 554 f2fs_sync_fs(sbi->sb, true); 555 stat_inc_bg_cp_count(sbi->stat_info); 556 } 557 } 558 559 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 560 struct block_device *bdev) 561 { 562 struct bio *bio; 563 int ret; 564 565 bio = f2fs_bio_alloc(sbi, 0, false); 566 if (!bio) 567 return -ENOMEM; 568 569 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 570 bio_set_dev(bio, bdev); 571 ret = submit_bio_wait(bio); 572 bio_put(bio); 573 574 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 575 test_opt(sbi, FLUSH_MERGE), ret); 576 return ret; 577 } 578 579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 580 { 581 int ret = 0; 582 int i; 583 584 if (!f2fs_is_multi_device(sbi)) 585 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 586 587 for (i = 0; i < sbi->s_ndevs; i++) { 588 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 589 continue; 590 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 591 if (ret) 592 break; 593 } 594 return ret; 595 } 596 597 static int issue_flush_thread(void *data) 598 { 599 struct f2fs_sb_info *sbi = data; 600 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 601 wait_queue_head_t *q = &fcc->flush_wait_queue; 602 repeat: 603 if (kthread_should_stop()) 604 return 0; 605 606 sb_start_intwrite(sbi->sb); 607 608 if (!llist_empty(&fcc->issue_list)) { 609 struct flush_cmd *cmd, *next; 610 int ret; 611 612 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 613 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 614 615 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 616 617 ret = submit_flush_wait(sbi, cmd->ino); 618 atomic_inc(&fcc->issued_flush); 619 620 llist_for_each_entry_safe(cmd, next, 621 fcc->dispatch_list, llnode) { 622 cmd->ret = ret; 623 complete(&cmd->wait); 624 } 625 fcc->dispatch_list = NULL; 626 } 627 628 sb_end_intwrite(sbi->sb); 629 630 wait_event_interruptible(*q, 631 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 632 goto repeat; 633 } 634 635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 636 { 637 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 638 struct flush_cmd cmd; 639 int ret; 640 641 if (test_opt(sbi, NOBARRIER)) 642 return 0; 643 644 if (!test_opt(sbi, FLUSH_MERGE)) { 645 atomic_inc(&fcc->queued_flush); 646 ret = submit_flush_wait(sbi, ino); 647 atomic_dec(&fcc->queued_flush); 648 atomic_inc(&fcc->issued_flush); 649 return ret; 650 } 651 652 if (atomic_inc_return(&fcc->queued_flush) == 1 || 653 f2fs_is_multi_device(sbi)) { 654 ret = submit_flush_wait(sbi, ino); 655 atomic_dec(&fcc->queued_flush); 656 657 atomic_inc(&fcc->issued_flush); 658 return ret; 659 } 660 661 cmd.ino = ino; 662 init_completion(&cmd.wait); 663 664 llist_add(&cmd.llnode, &fcc->issue_list); 665 666 /* update issue_list before we wake up issue_flush thread */ 667 smp_mb(); 668 669 if (waitqueue_active(&fcc->flush_wait_queue)) 670 wake_up(&fcc->flush_wait_queue); 671 672 if (fcc->f2fs_issue_flush) { 673 wait_for_completion(&cmd.wait); 674 atomic_dec(&fcc->queued_flush); 675 } else { 676 struct llist_node *list; 677 678 list = llist_del_all(&fcc->issue_list); 679 if (!list) { 680 wait_for_completion(&cmd.wait); 681 atomic_dec(&fcc->queued_flush); 682 } else { 683 struct flush_cmd *tmp, *next; 684 685 ret = submit_flush_wait(sbi, ino); 686 687 llist_for_each_entry_safe(tmp, next, list, llnode) { 688 if (tmp == &cmd) { 689 cmd.ret = ret; 690 atomic_dec(&fcc->queued_flush); 691 continue; 692 } 693 tmp->ret = ret; 694 complete(&tmp->wait); 695 } 696 } 697 } 698 699 return cmd.ret; 700 } 701 702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 703 { 704 dev_t dev = sbi->sb->s_bdev->bd_dev; 705 struct flush_cmd_control *fcc; 706 int err = 0; 707 708 if (SM_I(sbi)->fcc_info) { 709 fcc = SM_I(sbi)->fcc_info; 710 if (fcc->f2fs_issue_flush) 711 return err; 712 goto init_thread; 713 } 714 715 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 716 if (!fcc) 717 return -ENOMEM; 718 atomic_set(&fcc->issued_flush, 0); 719 atomic_set(&fcc->queued_flush, 0); 720 init_waitqueue_head(&fcc->flush_wait_queue); 721 init_llist_head(&fcc->issue_list); 722 SM_I(sbi)->fcc_info = fcc; 723 if (!test_opt(sbi, FLUSH_MERGE)) 724 return err; 725 726 init_thread: 727 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 728 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 729 if (IS_ERR(fcc->f2fs_issue_flush)) { 730 err = PTR_ERR(fcc->f2fs_issue_flush); 731 kvfree(fcc); 732 SM_I(sbi)->fcc_info = NULL; 733 return err; 734 } 735 736 return err; 737 } 738 739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 740 { 741 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 742 743 if (fcc && fcc->f2fs_issue_flush) { 744 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 745 746 fcc->f2fs_issue_flush = NULL; 747 kthread_stop(flush_thread); 748 } 749 if (free) { 750 kvfree(fcc); 751 SM_I(sbi)->fcc_info = NULL; 752 } 753 } 754 755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 756 { 757 int ret = 0, i; 758 759 if (!f2fs_is_multi_device(sbi)) 760 return 0; 761 762 for (i = 1; i < sbi->s_ndevs; i++) { 763 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 764 continue; 765 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 766 if (ret) 767 break; 768 769 spin_lock(&sbi->dev_lock); 770 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 771 spin_unlock(&sbi->dev_lock); 772 } 773 774 return ret; 775 } 776 777 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 778 enum dirty_type dirty_type) 779 { 780 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 781 782 /* need not be added */ 783 if (IS_CURSEG(sbi, segno)) 784 return; 785 786 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 787 dirty_i->nr_dirty[dirty_type]++; 788 789 if (dirty_type == DIRTY) { 790 struct seg_entry *sentry = get_seg_entry(sbi, segno); 791 enum dirty_type t = sentry->type; 792 793 if (unlikely(t >= DIRTY)) { 794 f2fs_bug_on(sbi, 1); 795 return; 796 } 797 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 798 dirty_i->nr_dirty[t]++; 799 800 if (__is_large_section(sbi)) { 801 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 802 block_t valid_blocks = 803 get_valid_blocks(sbi, segno, true); 804 805 f2fs_bug_on(sbi, unlikely(!valid_blocks || 806 valid_blocks == BLKS_PER_SEC(sbi))); 807 808 if (!IS_CURSEC(sbi, secno)) 809 set_bit(secno, dirty_i->dirty_secmap); 810 } 811 } 812 } 813 814 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 815 enum dirty_type dirty_type) 816 { 817 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 818 block_t valid_blocks; 819 820 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 821 dirty_i->nr_dirty[dirty_type]--; 822 823 if (dirty_type == DIRTY) { 824 struct seg_entry *sentry = get_seg_entry(sbi, segno); 825 enum dirty_type t = sentry->type; 826 827 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 828 dirty_i->nr_dirty[t]--; 829 830 valid_blocks = get_valid_blocks(sbi, segno, true); 831 if (valid_blocks == 0) { 832 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 833 dirty_i->victim_secmap); 834 #ifdef CONFIG_F2FS_CHECK_FS 835 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 836 #endif 837 } 838 if (__is_large_section(sbi)) { 839 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 840 841 if (!valid_blocks || 842 valid_blocks == BLKS_PER_SEC(sbi)) { 843 clear_bit(secno, dirty_i->dirty_secmap); 844 return; 845 } 846 847 if (!IS_CURSEC(sbi, secno)) 848 set_bit(secno, dirty_i->dirty_secmap); 849 } 850 } 851 } 852 853 /* 854 * Should not occur error such as -ENOMEM. 855 * Adding dirty entry into seglist is not critical operation. 856 * If a given segment is one of current working segments, it won't be added. 857 */ 858 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 859 { 860 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 861 unsigned short valid_blocks, ckpt_valid_blocks; 862 863 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 864 return; 865 866 mutex_lock(&dirty_i->seglist_lock); 867 868 valid_blocks = get_valid_blocks(sbi, segno, false); 869 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 870 871 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 872 ckpt_valid_blocks == sbi->blocks_per_seg)) { 873 __locate_dirty_segment(sbi, segno, PRE); 874 __remove_dirty_segment(sbi, segno, DIRTY); 875 } else if (valid_blocks < sbi->blocks_per_seg) { 876 __locate_dirty_segment(sbi, segno, DIRTY); 877 } else { 878 /* Recovery routine with SSR needs this */ 879 __remove_dirty_segment(sbi, segno, DIRTY); 880 } 881 882 mutex_unlock(&dirty_i->seglist_lock); 883 } 884 885 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 886 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 887 { 888 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 889 unsigned int segno; 890 891 mutex_lock(&dirty_i->seglist_lock); 892 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 893 if (get_valid_blocks(sbi, segno, false)) 894 continue; 895 if (IS_CURSEG(sbi, segno)) 896 continue; 897 __locate_dirty_segment(sbi, segno, PRE); 898 __remove_dirty_segment(sbi, segno, DIRTY); 899 } 900 mutex_unlock(&dirty_i->seglist_lock); 901 } 902 903 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 904 { 905 int ovp_hole_segs = 906 (overprovision_segments(sbi) - reserved_segments(sbi)); 907 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 908 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 909 block_t holes[2] = {0, 0}; /* DATA and NODE */ 910 block_t unusable; 911 struct seg_entry *se; 912 unsigned int segno; 913 914 mutex_lock(&dirty_i->seglist_lock); 915 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 916 se = get_seg_entry(sbi, segno); 917 if (IS_NODESEG(se->type)) 918 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; 919 else 920 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; 921 } 922 mutex_unlock(&dirty_i->seglist_lock); 923 924 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 925 if (unusable > ovp_holes) 926 return unusable - ovp_holes; 927 return 0; 928 } 929 930 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 931 { 932 int ovp_hole_segs = 933 (overprovision_segments(sbi) - reserved_segments(sbi)); 934 if (unusable > F2FS_OPTION(sbi).unusable_cap) 935 return -EAGAIN; 936 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 937 dirty_segments(sbi) > ovp_hole_segs) 938 return -EAGAIN; 939 return 0; 940 } 941 942 /* This is only used by SBI_CP_DISABLED */ 943 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 944 { 945 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 946 unsigned int segno = 0; 947 948 mutex_lock(&dirty_i->seglist_lock); 949 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 950 if (get_valid_blocks(sbi, segno, false)) 951 continue; 952 if (get_ckpt_valid_blocks(sbi, segno)) 953 continue; 954 mutex_unlock(&dirty_i->seglist_lock); 955 return segno; 956 } 957 mutex_unlock(&dirty_i->seglist_lock); 958 return NULL_SEGNO; 959 } 960 961 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 962 struct block_device *bdev, block_t lstart, 963 block_t start, block_t len) 964 { 965 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 966 struct list_head *pend_list; 967 struct discard_cmd *dc; 968 969 f2fs_bug_on(sbi, !len); 970 971 pend_list = &dcc->pend_list[plist_idx(len)]; 972 973 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 974 INIT_LIST_HEAD(&dc->list); 975 dc->bdev = bdev; 976 dc->lstart = lstart; 977 dc->start = start; 978 dc->len = len; 979 dc->ref = 0; 980 dc->state = D_PREP; 981 dc->queued = 0; 982 dc->error = 0; 983 init_completion(&dc->wait); 984 list_add_tail(&dc->list, pend_list); 985 spin_lock_init(&dc->lock); 986 dc->bio_ref = 0; 987 atomic_inc(&dcc->discard_cmd_cnt); 988 dcc->undiscard_blks += len; 989 990 return dc; 991 } 992 993 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 994 struct block_device *bdev, block_t lstart, 995 block_t start, block_t len, 996 struct rb_node *parent, struct rb_node **p, 997 bool leftmost) 998 { 999 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1000 struct discard_cmd *dc; 1001 1002 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1003 1004 rb_link_node(&dc->rb_node, parent, p); 1005 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1006 1007 return dc; 1008 } 1009 1010 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1011 struct discard_cmd *dc) 1012 { 1013 if (dc->state == D_DONE) 1014 atomic_sub(dc->queued, &dcc->queued_discard); 1015 1016 list_del(&dc->list); 1017 rb_erase_cached(&dc->rb_node, &dcc->root); 1018 dcc->undiscard_blks -= dc->len; 1019 1020 kmem_cache_free(discard_cmd_slab, dc); 1021 1022 atomic_dec(&dcc->discard_cmd_cnt); 1023 } 1024 1025 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1026 struct discard_cmd *dc) 1027 { 1028 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1029 unsigned long flags; 1030 1031 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1032 1033 spin_lock_irqsave(&dc->lock, flags); 1034 if (dc->bio_ref) { 1035 spin_unlock_irqrestore(&dc->lock, flags); 1036 return; 1037 } 1038 spin_unlock_irqrestore(&dc->lock, flags); 1039 1040 f2fs_bug_on(sbi, dc->ref); 1041 1042 if (dc->error == -EOPNOTSUPP) 1043 dc->error = 0; 1044 1045 if (dc->error) 1046 printk_ratelimited( 1047 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1048 KERN_INFO, sbi->sb->s_id, 1049 dc->lstart, dc->start, dc->len, dc->error); 1050 __detach_discard_cmd(dcc, dc); 1051 } 1052 1053 static void f2fs_submit_discard_endio(struct bio *bio) 1054 { 1055 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1056 unsigned long flags; 1057 1058 spin_lock_irqsave(&dc->lock, flags); 1059 if (!dc->error) 1060 dc->error = blk_status_to_errno(bio->bi_status); 1061 dc->bio_ref--; 1062 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1063 dc->state = D_DONE; 1064 complete_all(&dc->wait); 1065 } 1066 spin_unlock_irqrestore(&dc->lock, flags); 1067 bio_put(bio); 1068 } 1069 1070 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1071 block_t start, block_t end) 1072 { 1073 #ifdef CONFIG_F2FS_CHECK_FS 1074 struct seg_entry *sentry; 1075 unsigned int segno; 1076 block_t blk = start; 1077 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1078 unsigned long *map; 1079 1080 while (blk < end) { 1081 segno = GET_SEGNO(sbi, blk); 1082 sentry = get_seg_entry(sbi, segno); 1083 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1084 1085 if (end < START_BLOCK(sbi, segno + 1)) 1086 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1087 else 1088 size = max_blocks; 1089 map = (unsigned long *)(sentry->cur_valid_map); 1090 offset = __find_rev_next_bit(map, size, offset); 1091 f2fs_bug_on(sbi, offset != size); 1092 blk = START_BLOCK(sbi, segno + 1); 1093 } 1094 #endif 1095 } 1096 1097 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1098 struct discard_policy *dpolicy, 1099 int discard_type, unsigned int granularity) 1100 { 1101 /* common policy */ 1102 dpolicy->type = discard_type; 1103 dpolicy->sync = true; 1104 dpolicy->ordered = false; 1105 dpolicy->granularity = granularity; 1106 1107 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1108 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1109 dpolicy->timeout = false; 1110 1111 if (discard_type == DPOLICY_BG) { 1112 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1113 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1114 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1115 dpolicy->io_aware = true; 1116 dpolicy->sync = false; 1117 dpolicy->ordered = true; 1118 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1119 dpolicy->granularity = 1; 1120 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1121 } 1122 } else if (discard_type == DPOLICY_FORCE) { 1123 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1124 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1125 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1126 dpolicy->io_aware = false; 1127 } else if (discard_type == DPOLICY_FSTRIM) { 1128 dpolicy->io_aware = false; 1129 } else if (discard_type == DPOLICY_UMOUNT) { 1130 dpolicy->io_aware = false; 1131 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1132 dpolicy->granularity = 1; 1133 dpolicy->timeout = true; 1134 } 1135 } 1136 1137 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1138 struct block_device *bdev, block_t lstart, 1139 block_t start, block_t len); 1140 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1141 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1142 struct discard_policy *dpolicy, 1143 struct discard_cmd *dc, 1144 unsigned int *issued) 1145 { 1146 struct block_device *bdev = dc->bdev; 1147 struct request_queue *q = bdev_get_queue(bdev); 1148 unsigned int max_discard_blocks = 1149 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1150 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1151 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1152 &(dcc->fstrim_list) : &(dcc->wait_list); 1153 int flag = dpolicy->sync ? REQ_SYNC : 0; 1154 block_t lstart, start, len, total_len; 1155 int err = 0; 1156 1157 if (dc->state != D_PREP) 1158 return 0; 1159 1160 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1161 return 0; 1162 1163 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1164 1165 lstart = dc->lstart; 1166 start = dc->start; 1167 len = dc->len; 1168 total_len = len; 1169 1170 dc->len = 0; 1171 1172 while (total_len && *issued < dpolicy->max_requests && !err) { 1173 struct bio *bio = NULL; 1174 unsigned long flags; 1175 bool last = true; 1176 1177 if (len > max_discard_blocks) { 1178 len = max_discard_blocks; 1179 last = false; 1180 } 1181 1182 (*issued)++; 1183 if (*issued == dpolicy->max_requests) 1184 last = true; 1185 1186 dc->len += len; 1187 1188 if (time_to_inject(sbi, FAULT_DISCARD)) { 1189 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1190 err = -EIO; 1191 goto submit; 1192 } 1193 err = __blkdev_issue_discard(bdev, 1194 SECTOR_FROM_BLOCK(start), 1195 SECTOR_FROM_BLOCK(len), 1196 GFP_NOFS, 0, &bio); 1197 submit: 1198 if (err) { 1199 spin_lock_irqsave(&dc->lock, flags); 1200 if (dc->state == D_PARTIAL) 1201 dc->state = D_SUBMIT; 1202 spin_unlock_irqrestore(&dc->lock, flags); 1203 1204 break; 1205 } 1206 1207 f2fs_bug_on(sbi, !bio); 1208 1209 /* 1210 * should keep before submission to avoid D_DONE 1211 * right away 1212 */ 1213 spin_lock_irqsave(&dc->lock, flags); 1214 if (last) 1215 dc->state = D_SUBMIT; 1216 else 1217 dc->state = D_PARTIAL; 1218 dc->bio_ref++; 1219 spin_unlock_irqrestore(&dc->lock, flags); 1220 1221 atomic_inc(&dcc->queued_discard); 1222 dc->queued++; 1223 list_move_tail(&dc->list, wait_list); 1224 1225 /* sanity check on discard range */ 1226 __check_sit_bitmap(sbi, lstart, lstart + len); 1227 1228 bio->bi_private = dc; 1229 bio->bi_end_io = f2fs_submit_discard_endio; 1230 bio->bi_opf |= flag; 1231 submit_bio(bio); 1232 1233 atomic_inc(&dcc->issued_discard); 1234 1235 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1236 1237 lstart += len; 1238 start += len; 1239 total_len -= len; 1240 len = total_len; 1241 } 1242 1243 if (!err && len) { 1244 dcc->undiscard_blks -= len; 1245 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1246 } 1247 return err; 1248 } 1249 1250 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1251 struct block_device *bdev, block_t lstart, 1252 block_t start, block_t len, 1253 struct rb_node **insert_p, 1254 struct rb_node *insert_parent) 1255 { 1256 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1257 struct rb_node **p; 1258 struct rb_node *parent = NULL; 1259 bool leftmost = true; 1260 1261 if (insert_p && insert_parent) { 1262 parent = insert_parent; 1263 p = insert_p; 1264 goto do_insert; 1265 } 1266 1267 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1268 lstart, &leftmost); 1269 do_insert: 1270 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1271 p, leftmost); 1272 } 1273 1274 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1275 struct discard_cmd *dc) 1276 { 1277 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1278 } 1279 1280 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1281 struct discard_cmd *dc, block_t blkaddr) 1282 { 1283 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1284 struct discard_info di = dc->di; 1285 bool modified = false; 1286 1287 if (dc->state == D_DONE || dc->len == 1) { 1288 __remove_discard_cmd(sbi, dc); 1289 return; 1290 } 1291 1292 dcc->undiscard_blks -= di.len; 1293 1294 if (blkaddr > di.lstart) { 1295 dc->len = blkaddr - dc->lstart; 1296 dcc->undiscard_blks += dc->len; 1297 __relocate_discard_cmd(dcc, dc); 1298 modified = true; 1299 } 1300 1301 if (blkaddr < di.lstart + di.len - 1) { 1302 if (modified) { 1303 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1304 di.start + blkaddr + 1 - di.lstart, 1305 di.lstart + di.len - 1 - blkaddr, 1306 NULL, NULL); 1307 } else { 1308 dc->lstart++; 1309 dc->len--; 1310 dc->start++; 1311 dcc->undiscard_blks += dc->len; 1312 __relocate_discard_cmd(dcc, dc); 1313 } 1314 } 1315 } 1316 1317 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1318 struct block_device *bdev, block_t lstart, 1319 block_t start, block_t len) 1320 { 1321 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1322 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1323 struct discard_cmd *dc; 1324 struct discard_info di = {0}; 1325 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1326 struct request_queue *q = bdev_get_queue(bdev); 1327 unsigned int max_discard_blocks = 1328 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1329 block_t end = lstart + len; 1330 1331 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1332 NULL, lstart, 1333 (struct rb_entry **)&prev_dc, 1334 (struct rb_entry **)&next_dc, 1335 &insert_p, &insert_parent, true, NULL); 1336 if (dc) 1337 prev_dc = dc; 1338 1339 if (!prev_dc) { 1340 di.lstart = lstart; 1341 di.len = next_dc ? next_dc->lstart - lstart : len; 1342 di.len = min(di.len, len); 1343 di.start = start; 1344 } 1345 1346 while (1) { 1347 struct rb_node *node; 1348 bool merged = false; 1349 struct discard_cmd *tdc = NULL; 1350 1351 if (prev_dc) { 1352 di.lstart = prev_dc->lstart + prev_dc->len; 1353 if (di.lstart < lstart) 1354 di.lstart = lstart; 1355 if (di.lstart >= end) 1356 break; 1357 1358 if (!next_dc || next_dc->lstart > end) 1359 di.len = end - di.lstart; 1360 else 1361 di.len = next_dc->lstart - di.lstart; 1362 di.start = start + di.lstart - lstart; 1363 } 1364 1365 if (!di.len) 1366 goto next; 1367 1368 if (prev_dc && prev_dc->state == D_PREP && 1369 prev_dc->bdev == bdev && 1370 __is_discard_back_mergeable(&di, &prev_dc->di, 1371 max_discard_blocks)) { 1372 prev_dc->di.len += di.len; 1373 dcc->undiscard_blks += di.len; 1374 __relocate_discard_cmd(dcc, prev_dc); 1375 di = prev_dc->di; 1376 tdc = prev_dc; 1377 merged = true; 1378 } 1379 1380 if (next_dc && next_dc->state == D_PREP && 1381 next_dc->bdev == bdev && 1382 __is_discard_front_mergeable(&di, &next_dc->di, 1383 max_discard_blocks)) { 1384 next_dc->di.lstart = di.lstart; 1385 next_dc->di.len += di.len; 1386 next_dc->di.start = di.start; 1387 dcc->undiscard_blks += di.len; 1388 __relocate_discard_cmd(dcc, next_dc); 1389 if (tdc) 1390 __remove_discard_cmd(sbi, tdc); 1391 merged = true; 1392 } 1393 1394 if (!merged) { 1395 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1396 di.len, NULL, NULL); 1397 } 1398 next: 1399 prev_dc = next_dc; 1400 if (!prev_dc) 1401 break; 1402 1403 node = rb_next(&prev_dc->rb_node); 1404 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1405 } 1406 } 1407 1408 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1409 struct block_device *bdev, block_t blkstart, block_t blklen) 1410 { 1411 block_t lblkstart = blkstart; 1412 1413 if (!f2fs_bdev_support_discard(bdev)) 1414 return 0; 1415 1416 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1417 1418 if (f2fs_is_multi_device(sbi)) { 1419 int devi = f2fs_target_device_index(sbi, blkstart); 1420 1421 blkstart -= FDEV(devi).start_blk; 1422 } 1423 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1424 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1425 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1426 return 0; 1427 } 1428 1429 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1430 struct discard_policy *dpolicy) 1431 { 1432 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1433 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1434 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1435 struct discard_cmd *dc; 1436 struct blk_plug plug; 1437 unsigned int pos = dcc->next_pos; 1438 unsigned int issued = 0; 1439 bool io_interrupted = false; 1440 1441 mutex_lock(&dcc->cmd_lock); 1442 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1443 NULL, pos, 1444 (struct rb_entry **)&prev_dc, 1445 (struct rb_entry **)&next_dc, 1446 &insert_p, &insert_parent, true, NULL); 1447 if (!dc) 1448 dc = next_dc; 1449 1450 blk_start_plug(&plug); 1451 1452 while (dc) { 1453 struct rb_node *node; 1454 int err = 0; 1455 1456 if (dc->state != D_PREP) 1457 goto next; 1458 1459 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1460 io_interrupted = true; 1461 break; 1462 } 1463 1464 dcc->next_pos = dc->lstart + dc->len; 1465 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1466 1467 if (issued >= dpolicy->max_requests) 1468 break; 1469 next: 1470 node = rb_next(&dc->rb_node); 1471 if (err) 1472 __remove_discard_cmd(sbi, dc); 1473 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1474 } 1475 1476 blk_finish_plug(&plug); 1477 1478 if (!dc) 1479 dcc->next_pos = 0; 1480 1481 mutex_unlock(&dcc->cmd_lock); 1482 1483 if (!issued && io_interrupted) 1484 issued = -1; 1485 1486 return issued; 1487 } 1488 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1489 struct discard_policy *dpolicy); 1490 1491 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1492 struct discard_policy *dpolicy) 1493 { 1494 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1495 struct list_head *pend_list; 1496 struct discard_cmd *dc, *tmp; 1497 struct blk_plug plug; 1498 int i, issued; 1499 bool io_interrupted = false; 1500 1501 if (dpolicy->timeout) 1502 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1503 1504 retry: 1505 issued = 0; 1506 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1507 if (dpolicy->timeout && 1508 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1509 break; 1510 1511 if (i + 1 < dpolicy->granularity) 1512 break; 1513 1514 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1515 return __issue_discard_cmd_orderly(sbi, dpolicy); 1516 1517 pend_list = &dcc->pend_list[i]; 1518 1519 mutex_lock(&dcc->cmd_lock); 1520 if (list_empty(pend_list)) 1521 goto next; 1522 if (unlikely(dcc->rbtree_check)) 1523 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1524 &dcc->root)); 1525 blk_start_plug(&plug); 1526 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1527 f2fs_bug_on(sbi, dc->state != D_PREP); 1528 1529 if (dpolicy->timeout && 1530 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1531 break; 1532 1533 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1534 !is_idle(sbi, DISCARD_TIME)) { 1535 io_interrupted = true; 1536 break; 1537 } 1538 1539 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1540 1541 if (issued >= dpolicy->max_requests) 1542 break; 1543 } 1544 blk_finish_plug(&plug); 1545 next: 1546 mutex_unlock(&dcc->cmd_lock); 1547 1548 if (issued >= dpolicy->max_requests || io_interrupted) 1549 break; 1550 } 1551 1552 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1553 __wait_all_discard_cmd(sbi, dpolicy); 1554 goto retry; 1555 } 1556 1557 if (!issued && io_interrupted) 1558 issued = -1; 1559 1560 return issued; 1561 } 1562 1563 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1564 { 1565 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1566 struct list_head *pend_list; 1567 struct discard_cmd *dc, *tmp; 1568 int i; 1569 bool dropped = false; 1570 1571 mutex_lock(&dcc->cmd_lock); 1572 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1573 pend_list = &dcc->pend_list[i]; 1574 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1575 f2fs_bug_on(sbi, dc->state != D_PREP); 1576 __remove_discard_cmd(sbi, dc); 1577 dropped = true; 1578 } 1579 } 1580 mutex_unlock(&dcc->cmd_lock); 1581 1582 return dropped; 1583 } 1584 1585 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1586 { 1587 __drop_discard_cmd(sbi); 1588 } 1589 1590 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1591 struct discard_cmd *dc) 1592 { 1593 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1594 unsigned int len = 0; 1595 1596 wait_for_completion_io(&dc->wait); 1597 mutex_lock(&dcc->cmd_lock); 1598 f2fs_bug_on(sbi, dc->state != D_DONE); 1599 dc->ref--; 1600 if (!dc->ref) { 1601 if (!dc->error) 1602 len = dc->len; 1603 __remove_discard_cmd(sbi, dc); 1604 } 1605 mutex_unlock(&dcc->cmd_lock); 1606 1607 return len; 1608 } 1609 1610 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1611 struct discard_policy *dpolicy, 1612 block_t start, block_t end) 1613 { 1614 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1615 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1616 &(dcc->fstrim_list) : &(dcc->wait_list); 1617 struct discard_cmd *dc, *tmp; 1618 bool need_wait; 1619 unsigned int trimmed = 0; 1620 1621 next: 1622 need_wait = false; 1623 1624 mutex_lock(&dcc->cmd_lock); 1625 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1626 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1627 continue; 1628 if (dc->len < dpolicy->granularity) 1629 continue; 1630 if (dc->state == D_DONE && !dc->ref) { 1631 wait_for_completion_io(&dc->wait); 1632 if (!dc->error) 1633 trimmed += dc->len; 1634 __remove_discard_cmd(sbi, dc); 1635 } else { 1636 dc->ref++; 1637 need_wait = true; 1638 break; 1639 } 1640 } 1641 mutex_unlock(&dcc->cmd_lock); 1642 1643 if (need_wait) { 1644 trimmed += __wait_one_discard_bio(sbi, dc); 1645 goto next; 1646 } 1647 1648 return trimmed; 1649 } 1650 1651 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1652 struct discard_policy *dpolicy) 1653 { 1654 struct discard_policy dp; 1655 unsigned int discard_blks; 1656 1657 if (dpolicy) 1658 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1659 1660 /* wait all */ 1661 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1662 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1663 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1664 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1665 1666 return discard_blks; 1667 } 1668 1669 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1670 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1671 { 1672 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1673 struct discard_cmd *dc; 1674 bool need_wait = false; 1675 1676 mutex_lock(&dcc->cmd_lock); 1677 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1678 NULL, blkaddr); 1679 if (dc) { 1680 if (dc->state == D_PREP) { 1681 __punch_discard_cmd(sbi, dc, blkaddr); 1682 } else { 1683 dc->ref++; 1684 need_wait = true; 1685 } 1686 } 1687 mutex_unlock(&dcc->cmd_lock); 1688 1689 if (need_wait) 1690 __wait_one_discard_bio(sbi, dc); 1691 } 1692 1693 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1694 { 1695 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1696 1697 if (dcc && dcc->f2fs_issue_discard) { 1698 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1699 1700 dcc->f2fs_issue_discard = NULL; 1701 kthread_stop(discard_thread); 1702 } 1703 } 1704 1705 /* This comes from f2fs_put_super */ 1706 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1707 { 1708 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1709 struct discard_policy dpolicy; 1710 bool dropped; 1711 1712 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1713 dcc->discard_granularity); 1714 __issue_discard_cmd(sbi, &dpolicy); 1715 dropped = __drop_discard_cmd(sbi); 1716 1717 /* just to make sure there is no pending discard commands */ 1718 __wait_all_discard_cmd(sbi, NULL); 1719 1720 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1721 return dropped; 1722 } 1723 1724 static int issue_discard_thread(void *data) 1725 { 1726 struct f2fs_sb_info *sbi = data; 1727 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1728 wait_queue_head_t *q = &dcc->discard_wait_queue; 1729 struct discard_policy dpolicy; 1730 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1731 int issued; 1732 1733 set_freezable(); 1734 1735 do { 1736 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1737 dcc->discard_granularity); 1738 1739 wait_event_interruptible_timeout(*q, 1740 kthread_should_stop() || freezing(current) || 1741 dcc->discard_wake, 1742 msecs_to_jiffies(wait_ms)); 1743 1744 if (dcc->discard_wake) 1745 dcc->discard_wake = 0; 1746 1747 /* clean up pending candidates before going to sleep */ 1748 if (atomic_read(&dcc->queued_discard)) 1749 __wait_all_discard_cmd(sbi, NULL); 1750 1751 if (try_to_freeze()) 1752 continue; 1753 if (f2fs_readonly(sbi->sb)) 1754 continue; 1755 if (kthread_should_stop()) 1756 return 0; 1757 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1758 wait_ms = dpolicy.max_interval; 1759 continue; 1760 } 1761 1762 if (sbi->gc_mode == GC_URGENT_HIGH) 1763 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1764 1765 sb_start_intwrite(sbi->sb); 1766 1767 issued = __issue_discard_cmd(sbi, &dpolicy); 1768 if (issued > 0) { 1769 __wait_all_discard_cmd(sbi, &dpolicy); 1770 wait_ms = dpolicy.min_interval; 1771 } else if (issued == -1){ 1772 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1773 if (!wait_ms) 1774 wait_ms = dpolicy.mid_interval; 1775 } else { 1776 wait_ms = dpolicy.max_interval; 1777 } 1778 1779 sb_end_intwrite(sbi->sb); 1780 1781 } while (!kthread_should_stop()); 1782 return 0; 1783 } 1784 1785 #ifdef CONFIG_BLK_DEV_ZONED 1786 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1787 struct block_device *bdev, block_t blkstart, block_t blklen) 1788 { 1789 sector_t sector, nr_sects; 1790 block_t lblkstart = blkstart; 1791 int devi = 0; 1792 1793 if (f2fs_is_multi_device(sbi)) { 1794 devi = f2fs_target_device_index(sbi, blkstart); 1795 if (blkstart < FDEV(devi).start_blk || 1796 blkstart > FDEV(devi).end_blk) { 1797 f2fs_err(sbi, "Invalid block %x", blkstart); 1798 return -EIO; 1799 } 1800 blkstart -= FDEV(devi).start_blk; 1801 } 1802 1803 /* For sequential zones, reset the zone write pointer */ 1804 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1805 sector = SECTOR_FROM_BLOCK(blkstart); 1806 nr_sects = SECTOR_FROM_BLOCK(blklen); 1807 1808 if (sector & (bdev_zone_sectors(bdev) - 1) || 1809 nr_sects != bdev_zone_sectors(bdev)) { 1810 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1811 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1812 blkstart, blklen); 1813 return -EIO; 1814 } 1815 trace_f2fs_issue_reset_zone(bdev, blkstart); 1816 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1817 sector, nr_sects, GFP_NOFS); 1818 } 1819 1820 /* For conventional zones, use regular discard if supported */ 1821 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1822 } 1823 #endif 1824 1825 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1826 struct block_device *bdev, block_t blkstart, block_t blklen) 1827 { 1828 #ifdef CONFIG_BLK_DEV_ZONED 1829 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1830 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1831 #endif 1832 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1833 } 1834 1835 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1836 block_t blkstart, block_t blklen) 1837 { 1838 sector_t start = blkstart, len = 0; 1839 struct block_device *bdev; 1840 struct seg_entry *se; 1841 unsigned int offset; 1842 block_t i; 1843 int err = 0; 1844 1845 bdev = f2fs_target_device(sbi, blkstart, NULL); 1846 1847 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1848 if (i != start) { 1849 struct block_device *bdev2 = 1850 f2fs_target_device(sbi, i, NULL); 1851 1852 if (bdev2 != bdev) { 1853 err = __issue_discard_async(sbi, bdev, 1854 start, len); 1855 if (err) 1856 return err; 1857 bdev = bdev2; 1858 start = i; 1859 len = 0; 1860 } 1861 } 1862 1863 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1864 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1865 1866 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1867 sbi->discard_blks--; 1868 } 1869 1870 if (len) 1871 err = __issue_discard_async(sbi, bdev, start, len); 1872 return err; 1873 } 1874 1875 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1876 bool check_only) 1877 { 1878 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1879 int max_blocks = sbi->blocks_per_seg; 1880 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1881 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1882 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1883 unsigned long *discard_map = (unsigned long *)se->discard_map; 1884 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1885 unsigned int start = 0, end = -1; 1886 bool force = (cpc->reason & CP_DISCARD); 1887 struct discard_entry *de = NULL; 1888 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1889 int i; 1890 1891 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1892 return false; 1893 1894 if (!force) { 1895 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1896 SM_I(sbi)->dcc_info->nr_discards >= 1897 SM_I(sbi)->dcc_info->max_discards) 1898 return false; 1899 } 1900 1901 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1902 for (i = 0; i < entries; i++) 1903 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1904 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1905 1906 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1907 SM_I(sbi)->dcc_info->max_discards) { 1908 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1909 if (start >= max_blocks) 1910 break; 1911 1912 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1913 if (force && start && end != max_blocks 1914 && (end - start) < cpc->trim_minlen) 1915 continue; 1916 1917 if (check_only) 1918 return true; 1919 1920 if (!de) { 1921 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1922 GFP_F2FS_ZERO); 1923 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1924 list_add_tail(&de->list, head); 1925 } 1926 1927 for (i = start; i < end; i++) 1928 __set_bit_le(i, (void *)de->discard_map); 1929 1930 SM_I(sbi)->dcc_info->nr_discards += end - start; 1931 } 1932 return false; 1933 } 1934 1935 static void release_discard_addr(struct discard_entry *entry) 1936 { 1937 list_del(&entry->list); 1938 kmem_cache_free(discard_entry_slab, entry); 1939 } 1940 1941 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1942 { 1943 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1944 struct discard_entry *entry, *this; 1945 1946 /* drop caches */ 1947 list_for_each_entry_safe(entry, this, head, list) 1948 release_discard_addr(entry); 1949 } 1950 1951 /* 1952 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1953 */ 1954 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1955 { 1956 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1957 unsigned int segno; 1958 1959 mutex_lock(&dirty_i->seglist_lock); 1960 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1961 __set_test_and_free(sbi, segno); 1962 mutex_unlock(&dirty_i->seglist_lock); 1963 } 1964 1965 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1966 struct cp_control *cpc) 1967 { 1968 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1969 struct list_head *head = &dcc->entry_list; 1970 struct discard_entry *entry, *this; 1971 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1972 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1973 unsigned int start = 0, end = -1; 1974 unsigned int secno, start_segno; 1975 bool force = (cpc->reason & CP_DISCARD); 1976 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 1977 1978 mutex_lock(&dirty_i->seglist_lock); 1979 1980 while (1) { 1981 int i; 1982 1983 if (need_align && end != -1) 1984 end--; 1985 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1986 if (start >= MAIN_SEGS(sbi)) 1987 break; 1988 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1989 start + 1); 1990 1991 if (need_align) { 1992 start = rounddown(start, sbi->segs_per_sec); 1993 end = roundup(end, sbi->segs_per_sec); 1994 } 1995 1996 for (i = start; i < end; i++) { 1997 if (test_and_clear_bit(i, prefree_map)) 1998 dirty_i->nr_dirty[PRE]--; 1999 } 2000 2001 if (!f2fs_realtime_discard_enable(sbi)) 2002 continue; 2003 2004 if (force && start >= cpc->trim_start && 2005 (end - 1) <= cpc->trim_end) 2006 continue; 2007 2008 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 2009 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2010 (end - start) << sbi->log_blocks_per_seg); 2011 continue; 2012 } 2013 next: 2014 secno = GET_SEC_FROM_SEG(sbi, start); 2015 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2016 if (!IS_CURSEC(sbi, secno) && 2017 !get_valid_blocks(sbi, start, true)) 2018 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2019 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2020 2021 start = start_segno + sbi->segs_per_sec; 2022 if (start < end) 2023 goto next; 2024 else 2025 end = start - 1; 2026 } 2027 mutex_unlock(&dirty_i->seglist_lock); 2028 2029 /* send small discards */ 2030 list_for_each_entry_safe(entry, this, head, list) { 2031 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2032 bool is_valid = test_bit_le(0, entry->discard_map); 2033 2034 find_next: 2035 if (is_valid) { 2036 next_pos = find_next_zero_bit_le(entry->discard_map, 2037 sbi->blocks_per_seg, cur_pos); 2038 len = next_pos - cur_pos; 2039 2040 if (f2fs_sb_has_blkzoned(sbi) || 2041 (force && len < cpc->trim_minlen)) 2042 goto skip; 2043 2044 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2045 len); 2046 total_len += len; 2047 } else { 2048 next_pos = find_next_bit_le(entry->discard_map, 2049 sbi->blocks_per_seg, cur_pos); 2050 } 2051 skip: 2052 cur_pos = next_pos; 2053 is_valid = !is_valid; 2054 2055 if (cur_pos < sbi->blocks_per_seg) 2056 goto find_next; 2057 2058 release_discard_addr(entry); 2059 dcc->nr_discards -= total_len; 2060 } 2061 2062 wake_up_discard_thread(sbi, false); 2063 } 2064 2065 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2066 { 2067 dev_t dev = sbi->sb->s_bdev->bd_dev; 2068 struct discard_cmd_control *dcc; 2069 int err = 0, i; 2070 2071 if (SM_I(sbi)->dcc_info) { 2072 dcc = SM_I(sbi)->dcc_info; 2073 goto init_thread; 2074 } 2075 2076 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2077 if (!dcc) 2078 return -ENOMEM; 2079 2080 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2081 INIT_LIST_HEAD(&dcc->entry_list); 2082 for (i = 0; i < MAX_PLIST_NUM; i++) 2083 INIT_LIST_HEAD(&dcc->pend_list[i]); 2084 INIT_LIST_HEAD(&dcc->wait_list); 2085 INIT_LIST_HEAD(&dcc->fstrim_list); 2086 mutex_init(&dcc->cmd_lock); 2087 atomic_set(&dcc->issued_discard, 0); 2088 atomic_set(&dcc->queued_discard, 0); 2089 atomic_set(&dcc->discard_cmd_cnt, 0); 2090 dcc->nr_discards = 0; 2091 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2092 dcc->undiscard_blks = 0; 2093 dcc->next_pos = 0; 2094 dcc->root = RB_ROOT_CACHED; 2095 dcc->rbtree_check = false; 2096 2097 init_waitqueue_head(&dcc->discard_wait_queue); 2098 SM_I(sbi)->dcc_info = dcc; 2099 init_thread: 2100 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2101 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2102 if (IS_ERR(dcc->f2fs_issue_discard)) { 2103 err = PTR_ERR(dcc->f2fs_issue_discard); 2104 kvfree(dcc); 2105 SM_I(sbi)->dcc_info = NULL; 2106 return err; 2107 } 2108 2109 return err; 2110 } 2111 2112 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2113 { 2114 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2115 2116 if (!dcc) 2117 return; 2118 2119 f2fs_stop_discard_thread(sbi); 2120 2121 /* 2122 * Recovery can cache discard commands, so in error path of 2123 * fill_super(), it needs to give a chance to handle them. 2124 */ 2125 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2126 f2fs_issue_discard_timeout(sbi); 2127 2128 kvfree(dcc); 2129 SM_I(sbi)->dcc_info = NULL; 2130 } 2131 2132 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2133 { 2134 struct sit_info *sit_i = SIT_I(sbi); 2135 2136 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2137 sit_i->dirty_sentries++; 2138 return false; 2139 } 2140 2141 return true; 2142 } 2143 2144 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2145 unsigned int segno, int modified) 2146 { 2147 struct seg_entry *se = get_seg_entry(sbi, segno); 2148 se->type = type; 2149 if (modified) 2150 __mark_sit_entry_dirty(sbi, segno); 2151 } 2152 2153 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2154 { 2155 struct seg_entry *se; 2156 unsigned int segno, offset; 2157 long int new_vblocks; 2158 bool exist; 2159 #ifdef CONFIG_F2FS_CHECK_FS 2160 bool mir_exist; 2161 #endif 2162 2163 segno = GET_SEGNO(sbi, blkaddr); 2164 2165 se = get_seg_entry(sbi, segno); 2166 new_vblocks = se->valid_blocks + del; 2167 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2168 2169 f2fs_bug_on(sbi, (new_vblocks < 0 || 2170 (new_vblocks > sbi->blocks_per_seg))); 2171 2172 se->valid_blocks = new_vblocks; 2173 se->mtime = get_mtime(sbi, false); 2174 if (se->mtime > SIT_I(sbi)->max_mtime) 2175 SIT_I(sbi)->max_mtime = se->mtime; 2176 2177 /* Update valid block bitmap */ 2178 if (del > 0) { 2179 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2180 #ifdef CONFIG_F2FS_CHECK_FS 2181 mir_exist = f2fs_test_and_set_bit(offset, 2182 se->cur_valid_map_mir); 2183 if (unlikely(exist != mir_exist)) { 2184 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2185 blkaddr, exist); 2186 f2fs_bug_on(sbi, 1); 2187 } 2188 #endif 2189 if (unlikely(exist)) { 2190 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2191 blkaddr); 2192 f2fs_bug_on(sbi, 1); 2193 se->valid_blocks--; 2194 del = 0; 2195 } 2196 2197 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2198 sbi->discard_blks--; 2199 2200 /* 2201 * SSR should never reuse block which is checkpointed 2202 * or newly invalidated. 2203 */ 2204 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2205 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2206 se->ckpt_valid_blocks++; 2207 } 2208 } else { 2209 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2210 #ifdef CONFIG_F2FS_CHECK_FS 2211 mir_exist = f2fs_test_and_clear_bit(offset, 2212 se->cur_valid_map_mir); 2213 if (unlikely(exist != mir_exist)) { 2214 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2215 blkaddr, exist); 2216 f2fs_bug_on(sbi, 1); 2217 } 2218 #endif 2219 if (unlikely(!exist)) { 2220 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2221 blkaddr); 2222 f2fs_bug_on(sbi, 1); 2223 se->valid_blocks++; 2224 del = 0; 2225 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2226 /* 2227 * If checkpoints are off, we must not reuse data that 2228 * was used in the previous checkpoint. If it was used 2229 * before, we must track that to know how much space we 2230 * really have. 2231 */ 2232 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2233 spin_lock(&sbi->stat_lock); 2234 sbi->unusable_block_count++; 2235 spin_unlock(&sbi->stat_lock); 2236 } 2237 } 2238 2239 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2240 sbi->discard_blks++; 2241 } 2242 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2243 se->ckpt_valid_blocks += del; 2244 2245 __mark_sit_entry_dirty(sbi, segno); 2246 2247 /* update total number of valid blocks to be written in ckpt area */ 2248 SIT_I(sbi)->written_valid_blocks += del; 2249 2250 if (__is_large_section(sbi)) 2251 get_sec_entry(sbi, segno)->valid_blocks += del; 2252 } 2253 2254 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2255 { 2256 unsigned int segno = GET_SEGNO(sbi, addr); 2257 struct sit_info *sit_i = SIT_I(sbi); 2258 2259 f2fs_bug_on(sbi, addr == NULL_ADDR); 2260 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2261 return; 2262 2263 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2264 2265 /* add it into sit main buffer */ 2266 down_write(&sit_i->sentry_lock); 2267 2268 update_sit_entry(sbi, addr, -1); 2269 2270 /* add it into dirty seglist */ 2271 locate_dirty_segment(sbi, segno); 2272 2273 up_write(&sit_i->sentry_lock); 2274 } 2275 2276 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2277 { 2278 struct sit_info *sit_i = SIT_I(sbi); 2279 unsigned int segno, offset; 2280 struct seg_entry *se; 2281 bool is_cp = false; 2282 2283 if (!__is_valid_data_blkaddr(blkaddr)) 2284 return true; 2285 2286 down_read(&sit_i->sentry_lock); 2287 2288 segno = GET_SEGNO(sbi, blkaddr); 2289 se = get_seg_entry(sbi, segno); 2290 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2291 2292 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2293 is_cp = true; 2294 2295 up_read(&sit_i->sentry_lock); 2296 2297 return is_cp; 2298 } 2299 2300 /* 2301 * This function should be resided under the curseg_mutex lock 2302 */ 2303 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2304 struct f2fs_summary *sum) 2305 { 2306 struct curseg_info *curseg = CURSEG_I(sbi, type); 2307 void *addr = curseg->sum_blk; 2308 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2309 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2310 } 2311 2312 /* 2313 * Calculate the number of current summary pages for writing 2314 */ 2315 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2316 { 2317 int valid_sum_count = 0; 2318 int i, sum_in_page; 2319 2320 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2321 if (sbi->ckpt->alloc_type[i] == SSR) 2322 valid_sum_count += sbi->blocks_per_seg; 2323 else { 2324 if (for_ra) 2325 valid_sum_count += le16_to_cpu( 2326 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2327 else 2328 valid_sum_count += curseg_blkoff(sbi, i); 2329 } 2330 } 2331 2332 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2333 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2334 if (valid_sum_count <= sum_in_page) 2335 return 1; 2336 else if ((valid_sum_count - sum_in_page) <= 2337 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2338 return 2; 2339 return 3; 2340 } 2341 2342 /* 2343 * Caller should put this summary page 2344 */ 2345 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2346 { 2347 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); 2348 } 2349 2350 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2351 void *src, block_t blk_addr) 2352 { 2353 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2354 2355 memcpy(page_address(page), src, PAGE_SIZE); 2356 set_page_dirty(page); 2357 f2fs_put_page(page, 1); 2358 } 2359 2360 static void write_sum_page(struct f2fs_sb_info *sbi, 2361 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2362 { 2363 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2364 } 2365 2366 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2367 int type, block_t blk_addr) 2368 { 2369 struct curseg_info *curseg = CURSEG_I(sbi, type); 2370 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2371 struct f2fs_summary_block *src = curseg->sum_blk; 2372 struct f2fs_summary_block *dst; 2373 2374 dst = (struct f2fs_summary_block *)page_address(page); 2375 memset(dst, 0, PAGE_SIZE); 2376 2377 mutex_lock(&curseg->curseg_mutex); 2378 2379 down_read(&curseg->journal_rwsem); 2380 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2381 up_read(&curseg->journal_rwsem); 2382 2383 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2384 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2385 2386 mutex_unlock(&curseg->curseg_mutex); 2387 2388 set_page_dirty(page); 2389 f2fs_put_page(page, 1); 2390 } 2391 2392 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2393 { 2394 struct curseg_info *curseg = CURSEG_I(sbi, type); 2395 unsigned int segno = curseg->segno + 1; 2396 struct free_segmap_info *free_i = FREE_I(sbi); 2397 2398 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2399 return !test_bit(segno, free_i->free_segmap); 2400 return 0; 2401 } 2402 2403 /* 2404 * Find a new segment from the free segments bitmap to right order 2405 * This function should be returned with success, otherwise BUG 2406 */ 2407 static void get_new_segment(struct f2fs_sb_info *sbi, 2408 unsigned int *newseg, bool new_sec, int dir) 2409 { 2410 struct free_segmap_info *free_i = FREE_I(sbi); 2411 unsigned int segno, secno, zoneno; 2412 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2413 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2414 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2415 unsigned int left_start = hint; 2416 bool init = true; 2417 int go_left = 0; 2418 int i; 2419 2420 spin_lock(&free_i->segmap_lock); 2421 2422 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2423 segno = find_next_zero_bit(free_i->free_segmap, 2424 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2425 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2426 goto got_it; 2427 } 2428 find_other_zone: 2429 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2430 if (secno >= MAIN_SECS(sbi)) { 2431 if (dir == ALLOC_RIGHT) { 2432 secno = find_next_zero_bit(free_i->free_secmap, 2433 MAIN_SECS(sbi), 0); 2434 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2435 } else { 2436 go_left = 1; 2437 left_start = hint - 1; 2438 } 2439 } 2440 if (go_left == 0) 2441 goto skip_left; 2442 2443 while (test_bit(left_start, free_i->free_secmap)) { 2444 if (left_start > 0) { 2445 left_start--; 2446 continue; 2447 } 2448 left_start = find_next_zero_bit(free_i->free_secmap, 2449 MAIN_SECS(sbi), 0); 2450 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2451 break; 2452 } 2453 secno = left_start; 2454 skip_left: 2455 segno = GET_SEG_FROM_SEC(sbi, secno); 2456 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2457 2458 /* give up on finding another zone */ 2459 if (!init) 2460 goto got_it; 2461 if (sbi->secs_per_zone == 1) 2462 goto got_it; 2463 if (zoneno == old_zoneno) 2464 goto got_it; 2465 if (dir == ALLOC_LEFT) { 2466 if (!go_left && zoneno + 1 >= total_zones) 2467 goto got_it; 2468 if (go_left && zoneno == 0) 2469 goto got_it; 2470 } 2471 for (i = 0; i < NR_CURSEG_TYPE; i++) 2472 if (CURSEG_I(sbi, i)->zone == zoneno) 2473 break; 2474 2475 if (i < NR_CURSEG_TYPE) { 2476 /* zone is in user, try another */ 2477 if (go_left) 2478 hint = zoneno * sbi->secs_per_zone - 1; 2479 else if (zoneno + 1 >= total_zones) 2480 hint = 0; 2481 else 2482 hint = (zoneno + 1) * sbi->secs_per_zone; 2483 init = false; 2484 goto find_other_zone; 2485 } 2486 got_it: 2487 /* set it as dirty segment in free segmap */ 2488 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2489 __set_inuse(sbi, segno); 2490 *newseg = segno; 2491 spin_unlock(&free_i->segmap_lock); 2492 } 2493 2494 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2495 { 2496 struct curseg_info *curseg = CURSEG_I(sbi, type); 2497 struct summary_footer *sum_footer; 2498 2499 curseg->segno = curseg->next_segno; 2500 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2501 curseg->next_blkoff = 0; 2502 curseg->next_segno = NULL_SEGNO; 2503 2504 sum_footer = &(curseg->sum_blk->footer); 2505 memset(sum_footer, 0, sizeof(struct summary_footer)); 2506 if (IS_DATASEG(type)) 2507 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2508 if (IS_NODESEG(type)) 2509 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2510 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2511 } 2512 2513 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2514 { 2515 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2516 if (__is_large_section(sbi)) 2517 return CURSEG_I(sbi, type)->segno; 2518 2519 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2520 return 0; 2521 2522 if (test_opt(sbi, NOHEAP) && 2523 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2524 return 0; 2525 2526 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2527 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2528 2529 /* find segments from 0 to reuse freed segments */ 2530 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2531 return 0; 2532 2533 return CURSEG_I(sbi, type)->segno; 2534 } 2535 2536 /* 2537 * Allocate a current working segment. 2538 * This function always allocates a free segment in LFS manner. 2539 */ 2540 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2541 { 2542 struct curseg_info *curseg = CURSEG_I(sbi, type); 2543 unsigned int segno = curseg->segno; 2544 int dir = ALLOC_LEFT; 2545 2546 write_sum_page(sbi, curseg->sum_blk, 2547 GET_SUM_BLOCK(sbi, segno)); 2548 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2549 dir = ALLOC_RIGHT; 2550 2551 if (test_opt(sbi, NOHEAP)) 2552 dir = ALLOC_RIGHT; 2553 2554 segno = __get_next_segno(sbi, type); 2555 get_new_segment(sbi, &segno, new_sec, dir); 2556 curseg->next_segno = segno; 2557 reset_curseg(sbi, type, 1); 2558 curseg->alloc_type = LFS; 2559 } 2560 2561 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2562 struct curseg_info *seg, block_t start) 2563 { 2564 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2565 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2566 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2567 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2568 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2569 int i, pos; 2570 2571 for (i = 0; i < entries; i++) 2572 target_map[i] = ckpt_map[i] | cur_map[i]; 2573 2574 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2575 2576 seg->next_blkoff = pos; 2577 } 2578 2579 /* 2580 * If a segment is written by LFS manner, next block offset is just obtained 2581 * by increasing the current block offset. However, if a segment is written by 2582 * SSR manner, next block offset obtained by calling __next_free_blkoff 2583 */ 2584 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2585 struct curseg_info *seg) 2586 { 2587 if (seg->alloc_type == SSR) 2588 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2589 else 2590 seg->next_blkoff++; 2591 } 2592 2593 /* 2594 * This function always allocates a used segment(from dirty seglist) by SSR 2595 * manner, so it should recover the existing segment information of valid blocks 2596 */ 2597 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2598 { 2599 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2600 struct curseg_info *curseg = CURSEG_I(sbi, type); 2601 unsigned int new_segno = curseg->next_segno; 2602 struct f2fs_summary_block *sum_node; 2603 struct page *sum_page; 2604 2605 write_sum_page(sbi, curseg->sum_blk, 2606 GET_SUM_BLOCK(sbi, curseg->segno)); 2607 __set_test_and_inuse(sbi, new_segno); 2608 2609 mutex_lock(&dirty_i->seglist_lock); 2610 __remove_dirty_segment(sbi, new_segno, PRE); 2611 __remove_dirty_segment(sbi, new_segno, DIRTY); 2612 mutex_unlock(&dirty_i->seglist_lock); 2613 2614 reset_curseg(sbi, type, 1); 2615 curseg->alloc_type = SSR; 2616 __next_free_blkoff(sbi, curseg, 0); 2617 2618 sum_page = f2fs_get_sum_page(sbi, new_segno); 2619 f2fs_bug_on(sbi, IS_ERR(sum_page)); 2620 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2621 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2622 f2fs_put_page(sum_page, 1); 2623 } 2624 2625 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2626 { 2627 struct curseg_info *curseg = CURSEG_I(sbi, type); 2628 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2629 unsigned segno = NULL_SEGNO; 2630 int i, cnt; 2631 bool reversed = false; 2632 2633 /* f2fs_need_SSR() already forces to do this */ 2634 if (!v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2635 curseg->next_segno = segno; 2636 return 1; 2637 } 2638 2639 /* For node segments, let's do SSR more intensively */ 2640 if (IS_NODESEG(type)) { 2641 if (type >= CURSEG_WARM_NODE) { 2642 reversed = true; 2643 i = CURSEG_COLD_NODE; 2644 } else { 2645 i = CURSEG_HOT_NODE; 2646 } 2647 cnt = NR_CURSEG_NODE_TYPE; 2648 } else { 2649 if (type >= CURSEG_WARM_DATA) { 2650 reversed = true; 2651 i = CURSEG_COLD_DATA; 2652 } else { 2653 i = CURSEG_HOT_DATA; 2654 } 2655 cnt = NR_CURSEG_DATA_TYPE; 2656 } 2657 2658 for (; cnt-- > 0; reversed ? i-- : i++) { 2659 if (i == type) 2660 continue; 2661 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2662 curseg->next_segno = segno; 2663 return 1; 2664 } 2665 } 2666 2667 /* find valid_blocks=0 in dirty list */ 2668 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2669 segno = get_free_segment(sbi); 2670 if (segno != NULL_SEGNO) { 2671 curseg->next_segno = segno; 2672 return 1; 2673 } 2674 } 2675 return 0; 2676 } 2677 2678 /* 2679 * flush out current segment and replace it with new segment 2680 * This function should be returned with success, otherwise BUG 2681 */ 2682 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2683 int type, bool force) 2684 { 2685 struct curseg_info *curseg = CURSEG_I(sbi, type); 2686 2687 if (force) 2688 new_curseg(sbi, type, true); 2689 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2690 type == CURSEG_WARM_NODE) 2691 new_curseg(sbi, type, false); 2692 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && 2693 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2694 new_curseg(sbi, type, false); 2695 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2696 change_curseg(sbi, type); 2697 else 2698 new_curseg(sbi, type, false); 2699 2700 stat_inc_seg_type(sbi, curseg); 2701 } 2702 2703 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2704 unsigned int start, unsigned int end) 2705 { 2706 struct curseg_info *curseg = CURSEG_I(sbi, type); 2707 unsigned int segno; 2708 2709 down_read(&SM_I(sbi)->curseg_lock); 2710 mutex_lock(&curseg->curseg_mutex); 2711 down_write(&SIT_I(sbi)->sentry_lock); 2712 2713 segno = CURSEG_I(sbi, type)->segno; 2714 if (segno < start || segno > end) 2715 goto unlock; 2716 2717 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2718 change_curseg(sbi, type); 2719 else 2720 new_curseg(sbi, type, true); 2721 2722 stat_inc_seg_type(sbi, curseg); 2723 2724 locate_dirty_segment(sbi, segno); 2725 unlock: 2726 up_write(&SIT_I(sbi)->sentry_lock); 2727 2728 if (segno != curseg->segno) 2729 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2730 type, segno, curseg->segno); 2731 2732 mutex_unlock(&curseg->curseg_mutex); 2733 up_read(&SM_I(sbi)->curseg_lock); 2734 } 2735 2736 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type) 2737 { 2738 struct curseg_info *curseg = CURSEG_I(sbi, type); 2739 unsigned int old_segno; 2740 2741 if (!curseg->next_blkoff && 2742 !get_valid_blocks(sbi, curseg->segno, false) && 2743 !get_ckpt_valid_blocks(sbi, curseg->segno)) 2744 return; 2745 2746 old_segno = curseg->segno; 2747 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 2748 locate_dirty_segment(sbi, old_segno); 2749 } 2750 2751 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type) 2752 { 2753 down_write(&SIT_I(sbi)->sentry_lock); 2754 __allocate_new_segment(sbi, type); 2755 up_write(&SIT_I(sbi)->sentry_lock); 2756 } 2757 2758 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2759 { 2760 int i; 2761 2762 down_write(&SIT_I(sbi)->sentry_lock); 2763 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 2764 __allocate_new_segment(sbi, i); 2765 up_write(&SIT_I(sbi)->sentry_lock); 2766 } 2767 2768 static const struct segment_allocation default_salloc_ops = { 2769 .allocate_segment = allocate_segment_by_default, 2770 }; 2771 2772 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2773 struct cp_control *cpc) 2774 { 2775 __u64 trim_start = cpc->trim_start; 2776 bool has_candidate = false; 2777 2778 down_write(&SIT_I(sbi)->sentry_lock); 2779 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2780 if (add_discard_addrs(sbi, cpc, true)) { 2781 has_candidate = true; 2782 break; 2783 } 2784 } 2785 up_write(&SIT_I(sbi)->sentry_lock); 2786 2787 cpc->trim_start = trim_start; 2788 return has_candidate; 2789 } 2790 2791 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2792 struct discard_policy *dpolicy, 2793 unsigned int start, unsigned int end) 2794 { 2795 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2796 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2797 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2798 struct discard_cmd *dc; 2799 struct blk_plug plug; 2800 int issued; 2801 unsigned int trimmed = 0; 2802 2803 next: 2804 issued = 0; 2805 2806 mutex_lock(&dcc->cmd_lock); 2807 if (unlikely(dcc->rbtree_check)) 2808 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2809 &dcc->root)); 2810 2811 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2812 NULL, start, 2813 (struct rb_entry **)&prev_dc, 2814 (struct rb_entry **)&next_dc, 2815 &insert_p, &insert_parent, true, NULL); 2816 if (!dc) 2817 dc = next_dc; 2818 2819 blk_start_plug(&plug); 2820 2821 while (dc && dc->lstart <= end) { 2822 struct rb_node *node; 2823 int err = 0; 2824 2825 if (dc->len < dpolicy->granularity) 2826 goto skip; 2827 2828 if (dc->state != D_PREP) { 2829 list_move_tail(&dc->list, &dcc->fstrim_list); 2830 goto skip; 2831 } 2832 2833 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2834 2835 if (issued >= dpolicy->max_requests) { 2836 start = dc->lstart + dc->len; 2837 2838 if (err) 2839 __remove_discard_cmd(sbi, dc); 2840 2841 blk_finish_plug(&plug); 2842 mutex_unlock(&dcc->cmd_lock); 2843 trimmed += __wait_all_discard_cmd(sbi, NULL); 2844 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2845 goto next; 2846 } 2847 skip: 2848 node = rb_next(&dc->rb_node); 2849 if (err) 2850 __remove_discard_cmd(sbi, dc); 2851 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2852 2853 if (fatal_signal_pending(current)) 2854 break; 2855 } 2856 2857 blk_finish_plug(&plug); 2858 mutex_unlock(&dcc->cmd_lock); 2859 2860 return trimmed; 2861 } 2862 2863 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2864 { 2865 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2866 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2867 unsigned int start_segno, end_segno; 2868 block_t start_block, end_block; 2869 struct cp_control cpc; 2870 struct discard_policy dpolicy; 2871 unsigned long long trimmed = 0; 2872 int err = 0; 2873 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 2874 2875 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2876 return -EINVAL; 2877 2878 if (end < MAIN_BLKADDR(sbi)) 2879 goto out; 2880 2881 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2882 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 2883 return -EFSCORRUPTED; 2884 } 2885 2886 /* start/end segment number in main_area */ 2887 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2888 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2889 GET_SEGNO(sbi, end); 2890 if (need_align) { 2891 start_segno = rounddown(start_segno, sbi->segs_per_sec); 2892 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 2893 } 2894 2895 cpc.reason = CP_DISCARD; 2896 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2897 cpc.trim_start = start_segno; 2898 cpc.trim_end = end_segno; 2899 2900 if (sbi->discard_blks == 0) 2901 goto out; 2902 2903 down_write(&sbi->gc_lock); 2904 err = f2fs_write_checkpoint(sbi, &cpc); 2905 up_write(&sbi->gc_lock); 2906 if (err) 2907 goto out; 2908 2909 /* 2910 * We filed discard candidates, but actually we don't need to wait for 2911 * all of them, since they'll be issued in idle time along with runtime 2912 * discard option. User configuration looks like using runtime discard 2913 * or periodic fstrim instead of it. 2914 */ 2915 if (f2fs_realtime_discard_enable(sbi)) 2916 goto out; 2917 2918 start_block = START_BLOCK(sbi, start_segno); 2919 end_block = START_BLOCK(sbi, end_segno + 1); 2920 2921 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2922 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 2923 start_block, end_block); 2924 2925 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 2926 start_block, end_block); 2927 out: 2928 if (!err) 2929 range->len = F2FS_BLK_TO_BYTES(trimmed); 2930 return err; 2931 } 2932 2933 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2934 { 2935 struct curseg_info *curseg = CURSEG_I(sbi, type); 2936 if (curseg->next_blkoff < sbi->blocks_per_seg) 2937 return true; 2938 return false; 2939 } 2940 2941 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2942 { 2943 switch (hint) { 2944 case WRITE_LIFE_SHORT: 2945 return CURSEG_HOT_DATA; 2946 case WRITE_LIFE_EXTREME: 2947 return CURSEG_COLD_DATA; 2948 default: 2949 return CURSEG_WARM_DATA; 2950 } 2951 } 2952 2953 /* This returns write hints for each segment type. This hints will be 2954 * passed down to block layer. There are mapping tables which depend on 2955 * the mount option 'whint_mode'. 2956 * 2957 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2958 * 2959 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2960 * 2961 * User F2FS Block 2962 * ---- ---- ----- 2963 * META WRITE_LIFE_NOT_SET 2964 * HOT_NODE " 2965 * WARM_NODE " 2966 * COLD_NODE " 2967 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2968 * extension list " " 2969 * 2970 * -- buffered io 2971 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2972 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2973 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2974 * WRITE_LIFE_NONE " " 2975 * WRITE_LIFE_MEDIUM " " 2976 * WRITE_LIFE_LONG " " 2977 * 2978 * -- direct io 2979 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2980 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2981 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2982 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2983 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2984 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2985 * 2986 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2987 * 2988 * User F2FS Block 2989 * ---- ---- ----- 2990 * META WRITE_LIFE_MEDIUM; 2991 * HOT_NODE WRITE_LIFE_NOT_SET 2992 * WARM_NODE " 2993 * COLD_NODE WRITE_LIFE_NONE 2994 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2995 * extension list " " 2996 * 2997 * -- buffered io 2998 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2999 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3000 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 3001 * WRITE_LIFE_NONE " " 3002 * WRITE_LIFE_MEDIUM " " 3003 * WRITE_LIFE_LONG " " 3004 * 3005 * -- direct io 3006 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3007 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3008 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3009 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3010 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3011 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3012 */ 3013 3014 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3015 enum page_type type, enum temp_type temp) 3016 { 3017 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 3018 if (type == DATA) { 3019 if (temp == WARM) 3020 return WRITE_LIFE_NOT_SET; 3021 else if (temp == HOT) 3022 return WRITE_LIFE_SHORT; 3023 else if (temp == COLD) 3024 return WRITE_LIFE_EXTREME; 3025 } else { 3026 return WRITE_LIFE_NOT_SET; 3027 } 3028 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 3029 if (type == DATA) { 3030 if (temp == WARM) 3031 return WRITE_LIFE_LONG; 3032 else if (temp == HOT) 3033 return WRITE_LIFE_SHORT; 3034 else if (temp == COLD) 3035 return WRITE_LIFE_EXTREME; 3036 } else if (type == NODE) { 3037 if (temp == WARM || temp == HOT) 3038 return WRITE_LIFE_NOT_SET; 3039 else if (temp == COLD) 3040 return WRITE_LIFE_NONE; 3041 } else if (type == META) { 3042 return WRITE_LIFE_MEDIUM; 3043 } 3044 } 3045 return WRITE_LIFE_NOT_SET; 3046 } 3047 3048 static int __get_segment_type_2(struct f2fs_io_info *fio) 3049 { 3050 if (fio->type == DATA) 3051 return CURSEG_HOT_DATA; 3052 else 3053 return CURSEG_HOT_NODE; 3054 } 3055 3056 static int __get_segment_type_4(struct f2fs_io_info *fio) 3057 { 3058 if (fio->type == DATA) { 3059 struct inode *inode = fio->page->mapping->host; 3060 3061 if (S_ISDIR(inode->i_mode)) 3062 return CURSEG_HOT_DATA; 3063 else 3064 return CURSEG_COLD_DATA; 3065 } else { 3066 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3067 return CURSEG_WARM_NODE; 3068 else 3069 return CURSEG_COLD_NODE; 3070 } 3071 } 3072 3073 static int __get_segment_type_6(struct f2fs_io_info *fio) 3074 { 3075 if (fio->type == DATA) { 3076 struct inode *inode = fio->page->mapping->host; 3077 3078 if (is_cold_data(fio->page) || file_is_cold(inode) || 3079 f2fs_compressed_file(inode)) 3080 return CURSEG_COLD_DATA; 3081 if (file_is_hot(inode) || 3082 is_inode_flag_set(inode, FI_HOT_DATA) || 3083 f2fs_is_atomic_file(inode) || 3084 f2fs_is_volatile_file(inode)) 3085 return CURSEG_HOT_DATA; 3086 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3087 } else { 3088 if (IS_DNODE(fio->page)) 3089 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3090 CURSEG_HOT_NODE; 3091 return CURSEG_COLD_NODE; 3092 } 3093 } 3094 3095 static int __get_segment_type(struct f2fs_io_info *fio) 3096 { 3097 int type = 0; 3098 3099 switch (F2FS_OPTION(fio->sbi).active_logs) { 3100 case 2: 3101 type = __get_segment_type_2(fio); 3102 break; 3103 case 4: 3104 type = __get_segment_type_4(fio); 3105 break; 3106 case 6: 3107 type = __get_segment_type_6(fio); 3108 break; 3109 default: 3110 f2fs_bug_on(fio->sbi, true); 3111 } 3112 3113 if (IS_HOT(type)) 3114 fio->temp = HOT; 3115 else if (IS_WARM(type)) 3116 fio->temp = WARM; 3117 else 3118 fio->temp = COLD; 3119 return type; 3120 } 3121 3122 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3123 block_t old_blkaddr, block_t *new_blkaddr, 3124 struct f2fs_summary *sum, int type, 3125 struct f2fs_io_info *fio) 3126 { 3127 struct sit_info *sit_i = SIT_I(sbi); 3128 struct curseg_info *curseg = CURSEG_I(sbi, type); 3129 bool put_pin_sem = false; 3130 3131 if (type == CURSEG_COLD_DATA) { 3132 /* GC during CURSEG_COLD_DATA_PINNED allocation */ 3133 if (down_read_trylock(&sbi->pin_sem)) { 3134 put_pin_sem = true; 3135 } else { 3136 type = CURSEG_WARM_DATA; 3137 curseg = CURSEG_I(sbi, type); 3138 } 3139 } else if (type == CURSEG_COLD_DATA_PINNED) { 3140 type = CURSEG_COLD_DATA; 3141 } 3142 3143 down_read(&SM_I(sbi)->curseg_lock); 3144 3145 mutex_lock(&curseg->curseg_mutex); 3146 down_write(&sit_i->sentry_lock); 3147 3148 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3149 3150 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3151 3152 /* 3153 * __add_sum_entry should be resided under the curseg_mutex 3154 * because, this function updates a summary entry in the 3155 * current summary block. 3156 */ 3157 __add_sum_entry(sbi, type, sum); 3158 3159 __refresh_next_blkoff(sbi, curseg); 3160 3161 stat_inc_block_count(sbi, curseg); 3162 3163 /* 3164 * SIT information should be updated before segment allocation, 3165 * since SSR needs latest valid block information. 3166 */ 3167 update_sit_entry(sbi, *new_blkaddr, 1); 3168 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3169 update_sit_entry(sbi, old_blkaddr, -1); 3170 3171 if (!__has_curseg_space(sbi, type)) 3172 sit_i->s_ops->allocate_segment(sbi, type, false); 3173 3174 /* 3175 * segment dirty status should be updated after segment allocation, 3176 * so we just need to update status only one time after previous 3177 * segment being closed. 3178 */ 3179 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3180 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3181 3182 up_write(&sit_i->sentry_lock); 3183 3184 if (page && IS_NODESEG(type)) { 3185 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3186 3187 f2fs_inode_chksum_set(sbi, page); 3188 } 3189 3190 if (F2FS_IO_ALIGNED(sbi)) 3191 fio->retry = false; 3192 3193 if (fio) { 3194 struct f2fs_bio_info *io; 3195 3196 INIT_LIST_HEAD(&fio->list); 3197 fio->in_list = true; 3198 io = sbi->write_io[fio->type] + fio->temp; 3199 spin_lock(&io->io_lock); 3200 list_add_tail(&fio->list, &io->io_list); 3201 spin_unlock(&io->io_lock); 3202 } 3203 3204 mutex_unlock(&curseg->curseg_mutex); 3205 3206 up_read(&SM_I(sbi)->curseg_lock); 3207 3208 if (put_pin_sem) 3209 up_read(&sbi->pin_sem); 3210 } 3211 3212 static void update_device_state(struct f2fs_io_info *fio) 3213 { 3214 struct f2fs_sb_info *sbi = fio->sbi; 3215 unsigned int devidx; 3216 3217 if (!f2fs_is_multi_device(sbi)) 3218 return; 3219 3220 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3221 3222 /* update device state for fsync */ 3223 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3224 3225 /* update device state for checkpoint */ 3226 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3227 spin_lock(&sbi->dev_lock); 3228 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3229 spin_unlock(&sbi->dev_lock); 3230 } 3231 } 3232 3233 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3234 { 3235 int type = __get_segment_type(fio); 3236 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3237 3238 if (keep_order) 3239 down_read(&fio->sbi->io_order_lock); 3240 reallocate: 3241 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3242 &fio->new_blkaddr, sum, type, fio); 3243 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3244 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3245 fio->old_blkaddr, fio->old_blkaddr); 3246 3247 /* writeout dirty page into bdev */ 3248 f2fs_submit_page_write(fio); 3249 if (fio->retry) { 3250 fio->old_blkaddr = fio->new_blkaddr; 3251 goto reallocate; 3252 } 3253 3254 update_device_state(fio); 3255 3256 if (keep_order) 3257 up_read(&fio->sbi->io_order_lock); 3258 } 3259 3260 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3261 enum iostat_type io_type) 3262 { 3263 struct f2fs_io_info fio = { 3264 .sbi = sbi, 3265 .type = META, 3266 .temp = HOT, 3267 .op = REQ_OP_WRITE, 3268 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3269 .old_blkaddr = page->index, 3270 .new_blkaddr = page->index, 3271 .page = page, 3272 .encrypted_page = NULL, 3273 .in_list = false, 3274 }; 3275 3276 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3277 fio.op_flags &= ~REQ_META; 3278 3279 set_page_writeback(page); 3280 ClearPageError(page); 3281 f2fs_submit_page_write(&fio); 3282 3283 stat_inc_meta_count(sbi, page->index); 3284 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3285 } 3286 3287 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3288 { 3289 struct f2fs_summary sum; 3290 3291 set_summary(&sum, nid, 0, 0); 3292 do_write_page(&sum, fio); 3293 3294 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3295 } 3296 3297 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3298 struct f2fs_io_info *fio) 3299 { 3300 struct f2fs_sb_info *sbi = fio->sbi; 3301 struct f2fs_summary sum; 3302 3303 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3304 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3305 do_write_page(&sum, fio); 3306 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3307 3308 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3309 } 3310 3311 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3312 { 3313 int err; 3314 struct f2fs_sb_info *sbi = fio->sbi; 3315 unsigned int segno; 3316 3317 fio->new_blkaddr = fio->old_blkaddr; 3318 /* i/o temperature is needed for passing down write hints */ 3319 __get_segment_type(fio); 3320 3321 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3322 3323 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3324 set_sbi_flag(sbi, SBI_NEED_FSCK); 3325 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3326 __func__, segno); 3327 return -EFSCORRUPTED; 3328 } 3329 3330 stat_inc_inplace_blocks(fio->sbi); 3331 3332 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3333 err = f2fs_merge_page_bio(fio); 3334 else 3335 err = f2fs_submit_page_bio(fio); 3336 if (!err) { 3337 update_device_state(fio); 3338 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3339 } 3340 3341 return err; 3342 } 3343 3344 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3345 unsigned int segno) 3346 { 3347 int i; 3348 3349 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3350 if (CURSEG_I(sbi, i)->segno == segno) 3351 break; 3352 } 3353 return i; 3354 } 3355 3356 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3357 block_t old_blkaddr, block_t new_blkaddr, 3358 bool recover_curseg, bool recover_newaddr) 3359 { 3360 struct sit_info *sit_i = SIT_I(sbi); 3361 struct curseg_info *curseg; 3362 unsigned int segno, old_cursegno; 3363 struct seg_entry *se; 3364 int type; 3365 unsigned short old_blkoff; 3366 3367 segno = GET_SEGNO(sbi, new_blkaddr); 3368 se = get_seg_entry(sbi, segno); 3369 type = se->type; 3370 3371 down_write(&SM_I(sbi)->curseg_lock); 3372 3373 if (!recover_curseg) { 3374 /* for recovery flow */ 3375 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3376 if (old_blkaddr == NULL_ADDR) 3377 type = CURSEG_COLD_DATA; 3378 else 3379 type = CURSEG_WARM_DATA; 3380 } 3381 } else { 3382 if (IS_CURSEG(sbi, segno)) { 3383 /* se->type is volatile as SSR allocation */ 3384 type = __f2fs_get_curseg(sbi, segno); 3385 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3386 } else { 3387 type = CURSEG_WARM_DATA; 3388 } 3389 } 3390 3391 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3392 curseg = CURSEG_I(sbi, type); 3393 3394 mutex_lock(&curseg->curseg_mutex); 3395 down_write(&sit_i->sentry_lock); 3396 3397 old_cursegno = curseg->segno; 3398 old_blkoff = curseg->next_blkoff; 3399 3400 /* change the current segment */ 3401 if (segno != curseg->segno) { 3402 curseg->next_segno = segno; 3403 change_curseg(sbi, type); 3404 } 3405 3406 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3407 __add_sum_entry(sbi, type, sum); 3408 3409 if (!recover_curseg || recover_newaddr) 3410 update_sit_entry(sbi, new_blkaddr, 1); 3411 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3412 invalidate_mapping_pages(META_MAPPING(sbi), 3413 old_blkaddr, old_blkaddr); 3414 update_sit_entry(sbi, old_blkaddr, -1); 3415 } 3416 3417 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3418 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3419 3420 locate_dirty_segment(sbi, old_cursegno); 3421 3422 if (recover_curseg) { 3423 if (old_cursegno != curseg->segno) { 3424 curseg->next_segno = old_cursegno; 3425 change_curseg(sbi, type); 3426 } 3427 curseg->next_blkoff = old_blkoff; 3428 } 3429 3430 up_write(&sit_i->sentry_lock); 3431 mutex_unlock(&curseg->curseg_mutex); 3432 up_write(&SM_I(sbi)->curseg_lock); 3433 } 3434 3435 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3436 block_t old_addr, block_t new_addr, 3437 unsigned char version, bool recover_curseg, 3438 bool recover_newaddr) 3439 { 3440 struct f2fs_summary sum; 3441 3442 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3443 3444 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3445 recover_curseg, recover_newaddr); 3446 3447 f2fs_update_data_blkaddr(dn, new_addr); 3448 } 3449 3450 void f2fs_wait_on_page_writeback(struct page *page, 3451 enum page_type type, bool ordered, bool locked) 3452 { 3453 if (PageWriteback(page)) { 3454 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3455 3456 /* submit cached LFS IO */ 3457 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3458 /* sbumit cached IPU IO */ 3459 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3460 if (ordered) { 3461 wait_on_page_writeback(page); 3462 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3463 } else { 3464 wait_for_stable_page(page); 3465 } 3466 } 3467 } 3468 3469 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3470 { 3471 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3472 struct page *cpage; 3473 3474 if (!f2fs_post_read_required(inode)) 3475 return; 3476 3477 if (!__is_valid_data_blkaddr(blkaddr)) 3478 return; 3479 3480 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3481 if (cpage) { 3482 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3483 f2fs_put_page(cpage, 1); 3484 } 3485 } 3486 3487 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3488 block_t len) 3489 { 3490 block_t i; 3491 3492 for (i = 0; i < len; i++) 3493 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3494 } 3495 3496 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3497 { 3498 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3499 struct curseg_info *seg_i; 3500 unsigned char *kaddr; 3501 struct page *page; 3502 block_t start; 3503 int i, j, offset; 3504 3505 start = start_sum_block(sbi); 3506 3507 page = f2fs_get_meta_page(sbi, start++); 3508 if (IS_ERR(page)) 3509 return PTR_ERR(page); 3510 kaddr = (unsigned char *)page_address(page); 3511 3512 /* Step 1: restore nat cache */ 3513 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3514 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3515 3516 /* Step 2: restore sit cache */ 3517 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3518 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3519 offset = 2 * SUM_JOURNAL_SIZE; 3520 3521 /* Step 3: restore summary entries */ 3522 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3523 unsigned short blk_off; 3524 unsigned int segno; 3525 3526 seg_i = CURSEG_I(sbi, i); 3527 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3528 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3529 seg_i->next_segno = segno; 3530 reset_curseg(sbi, i, 0); 3531 seg_i->alloc_type = ckpt->alloc_type[i]; 3532 seg_i->next_blkoff = blk_off; 3533 3534 if (seg_i->alloc_type == SSR) 3535 blk_off = sbi->blocks_per_seg; 3536 3537 for (j = 0; j < blk_off; j++) { 3538 struct f2fs_summary *s; 3539 s = (struct f2fs_summary *)(kaddr + offset); 3540 seg_i->sum_blk->entries[j] = *s; 3541 offset += SUMMARY_SIZE; 3542 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3543 SUM_FOOTER_SIZE) 3544 continue; 3545 3546 f2fs_put_page(page, 1); 3547 page = NULL; 3548 3549 page = f2fs_get_meta_page(sbi, start++); 3550 if (IS_ERR(page)) 3551 return PTR_ERR(page); 3552 kaddr = (unsigned char *)page_address(page); 3553 offset = 0; 3554 } 3555 } 3556 f2fs_put_page(page, 1); 3557 return 0; 3558 } 3559 3560 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3561 { 3562 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3563 struct f2fs_summary_block *sum; 3564 struct curseg_info *curseg; 3565 struct page *new; 3566 unsigned short blk_off; 3567 unsigned int segno = 0; 3568 block_t blk_addr = 0; 3569 int err = 0; 3570 3571 /* get segment number and block addr */ 3572 if (IS_DATASEG(type)) { 3573 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3574 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3575 CURSEG_HOT_DATA]); 3576 if (__exist_node_summaries(sbi)) 3577 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3578 else 3579 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3580 } else { 3581 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3582 CURSEG_HOT_NODE]); 3583 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3584 CURSEG_HOT_NODE]); 3585 if (__exist_node_summaries(sbi)) 3586 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3587 type - CURSEG_HOT_NODE); 3588 else 3589 blk_addr = GET_SUM_BLOCK(sbi, segno); 3590 } 3591 3592 new = f2fs_get_meta_page(sbi, blk_addr); 3593 if (IS_ERR(new)) 3594 return PTR_ERR(new); 3595 sum = (struct f2fs_summary_block *)page_address(new); 3596 3597 if (IS_NODESEG(type)) { 3598 if (__exist_node_summaries(sbi)) { 3599 struct f2fs_summary *ns = &sum->entries[0]; 3600 int i; 3601 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3602 ns->version = 0; 3603 ns->ofs_in_node = 0; 3604 } 3605 } else { 3606 err = f2fs_restore_node_summary(sbi, segno, sum); 3607 if (err) 3608 goto out; 3609 } 3610 } 3611 3612 /* set uncompleted segment to curseg */ 3613 curseg = CURSEG_I(sbi, type); 3614 mutex_lock(&curseg->curseg_mutex); 3615 3616 /* update journal info */ 3617 down_write(&curseg->journal_rwsem); 3618 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3619 up_write(&curseg->journal_rwsem); 3620 3621 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3622 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3623 curseg->next_segno = segno; 3624 reset_curseg(sbi, type, 0); 3625 curseg->alloc_type = ckpt->alloc_type[type]; 3626 curseg->next_blkoff = blk_off; 3627 mutex_unlock(&curseg->curseg_mutex); 3628 out: 3629 f2fs_put_page(new, 1); 3630 return err; 3631 } 3632 3633 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3634 { 3635 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3636 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3637 int type = CURSEG_HOT_DATA; 3638 int err; 3639 3640 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3641 int npages = f2fs_npages_for_summary_flush(sbi, true); 3642 3643 if (npages >= 2) 3644 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3645 META_CP, true); 3646 3647 /* restore for compacted data summary */ 3648 err = read_compacted_summaries(sbi); 3649 if (err) 3650 return err; 3651 type = CURSEG_HOT_NODE; 3652 } 3653 3654 if (__exist_node_summaries(sbi)) 3655 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3656 NR_CURSEG_TYPE - type, META_CP, true); 3657 3658 for (; type <= CURSEG_COLD_NODE; type++) { 3659 err = read_normal_summaries(sbi, type); 3660 if (err) 3661 return err; 3662 } 3663 3664 /* sanity check for summary blocks */ 3665 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3666 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3667 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", 3668 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3669 return -EINVAL; 3670 } 3671 3672 return 0; 3673 } 3674 3675 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3676 { 3677 struct page *page; 3678 unsigned char *kaddr; 3679 struct f2fs_summary *summary; 3680 struct curseg_info *seg_i; 3681 int written_size = 0; 3682 int i, j; 3683 3684 page = f2fs_grab_meta_page(sbi, blkaddr++); 3685 kaddr = (unsigned char *)page_address(page); 3686 memset(kaddr, 0, PAGE_SIZE); 3687 3688 /* Step 1: write nat cache */ 3689 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3690 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3691 written_size += SUM_JOURNAL_SIZE; 3692 3693 /* Step 2: write sit cache */ 3694 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3695 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3696 written_size += SUM_JOURNAL_SIZE; 3697 3698 /* Step 3: write summary entries */ 3699 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3700 unsigned short blkoff; 3701 seg_i = CURSEG_I(sbi, i); 3702 if (sbi->ckpt->alloc_type[i] == SSR) 3703 blkoff = sbi->blocks_per_seg; 3704 else 3705 blkoff = curseg_blkoff(sbi, i); 3706 3707 for (j = 0; j < blkoff; j++) { 3708 if (!page) { 3709 page = f2fs_grab_meta_page(sbi, blkaddr++); 3710 kaddr = (unsigned char *)page_address(page); 3711 memset(kaddr, 0, PAGE_SIZE); 3712 written_size = 0; 3713 } 3714 summary = (struct f2fs_summary *)(kaddr + written_size); 3715 *summary = seg_i->sum_blk->entries[j]; 3716 written_size += SUMMARY_SIZE; 3717 3718 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3719 SUM_FOOTER_SIZE) 3720 continue; 3721 3722 set_page_dirty(page); 3723 f2fs_put_page(page, 1); 3724 page = NULL; 3725 } 3726 } 3727 if (page) { 3728 set_page_dirty(page); 3729 f2fs_put_page(page, 1); 3730 } 3731 } 3732 3733 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3734 block_t blkaddr, int type) 3735 { 3736 int i, end; 3737 if (IS_DATASEG(type)) 3738 end = type + NR_CURSEG_DATA_TYPE; 3739 else 3740 end = type + NR_CURSEG_NODE_TYPE; 3741 3742 for (i = type; i < end; i++) 3743 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3744 } 3745 3746 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3747 { 3748 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3749 write_compacted_summaries(sbi, start_blk); 3750 else 3751 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3752 } 3753 3754 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3755 { 3756 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3757 } 3758 3759 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3760 unsigned int val, int alloc) 3761 { 3762 int i; 3763 3764 if (type == NAT_JOURNAL) { 3765 for (i = 0; i < nats_in_cursum(journal); i++) { 3766 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3767 return i; 3768 } 3769 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3770 return update_nats_in_cursum(journal, 1); 3771 } else if (type == SIT_JOURNAL) { 3772 for (i = 0; i < sits_in_cursum(journal); i++) 3773 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3774 return i; 3775 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3776 return update_sits_in_cursum(journal, 1); 3777 } 3778 return -1; 3779 } 3780 3781 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3782 unsigned int segno) 3783 { 3784 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); 3785 } 3786 3787 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3788 unsigned int start) 3789 { 3790 struct sit_info *sit_i = SIT_I(sbi); 3791 struct page *page; 3792 pgoff_t src_off, dst_off; 3793 3794 src_off = current_sit_addr(sbi, start); 3795 dst_off = next_sit_addr(sbi, src_off); 3796 3797 page = f2fs_grab_meta_page(sbi, dst_off); 3798 seg_info_to_sit_page(sbi, page, start); 3799 3800 set_page_dirty(page); 3801 set_to_next_sit(sit_i, start); 3802 3803 return page; 3804 } 3805 3806 static struct sit_entry_set *grab_sit_entry_set(void) 3807 { 3808 struct sit_entry_set *ses = 3809 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3810 3811 ses->entry_cnt = 0; 3812 INIT_LIST_HEAD(&ses->set_list); 3813 return ses; 3814 } 3815 3816 static void release_sit_entry_set(struct sit_entry_set *ses) 3817 { 3818 list_del(&ses->set_list); 3819 kmem_cache_free(sit_entry_set_slab, ses); 3820 } 3821 3822 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3823 struct list_head *head) 3824 { 3825 struct sit_entry_set *next = ses; 3826 3827 if (list_is_last(&ses->set_list, head)) 3828 return; 3829 3830 list_for_each_entry_continue(next, head, set_list) 3831 if (ses->entry_cnt <= next->entry_cnt) 3832 break; 3833 3834 list_move_tail(&ses->set_list, &next->set_list); 3835 } 3836 3837 static void add_sit_entry(unsigned int segno, struct list_head *head) 3838 { 3839 struct sit_entry_set *ses; 3840 unsigned int start_segno = START_SEGNO(segno); 3841 3842 list_for_each_entry(ses, head, set_list) { 3843 if (ses->start_segno == start_segno) { 3844 ses->entry_cnt++; 3845 adjust_sit_entry_set(ses, head); 3846 return; 3847 } 3848 } 3849 3850 ses = grab_sit_entry_set(); 3851 3852 ses->start_segno = start_segno; 3853 ses->entry_cnt++; 3854 list_add(&ses->set_list, head); 3855 } 3856 3857 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3858 { 3859 struct f2fs_sm_info *sm_info = SM_I(sbi); 3860 struct list_head *set_list = &sm_info->sit_entry_set; 3861 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3862 unsigned int segno; 3863 3864 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3865 add_sit_entry(segno, set_list); 3866 } 3867 3868 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3869 { 3870 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3871 struct f2fs_journal *journal = curseg->journal; 3872 int i; 3873 3874 down_write(&curseg->journal_rwsem); 3875 for (i = 0; i < sits_in_cursum(journal); i++) { 3876 unsigned int segno; 3877 bool dirtied; 3878 3879 segno = le32_to_cpu(segno_in_journal(journal, i)); 3880 dirtied = __mark_sit_entry_dirty(sbi, segno); 3881 3882 if (!dirtied) 3883 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3884 } 3885 update_sits_in_cursum(journal, -i); 3886 up_write(&curseg->journal_rwsem); 3887 } 3888 3889 /* 3890 * CP calls this function, which flushes SIT entries including sit_journal, 3891 * and moves prefree segs to free segs. 3892 */ 3893 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3894 { 3895 struct sit_info *sit_i = SIT_I(sbi); 3896 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3897 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3898 struct f2fs_journal *journal = curseg->journal; 3899 struct sit_entry_set *ses, *tmp; 3900 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3901 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 3902 struct seg_entry *se; 3903 3904 down_write(&sit_i->sentry_lock); 3905 3906 if (!sit_i->dirty_sentries) 3907 goto out; 3908 3909 /* 3910 * add and account sit entries of dirty bitmap in sit entry 3911 * set temporarily 3912 */ 3913 add_sits_in_set(sbi); 3914 3915 /* 3916 * if there are no enough space in journal to store dirty sit 3917 * entries, remove all entries from journal and add and account 3918 * them in sit entry set. 3919 */ 3920 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 3921 !to_journal) 3922 remove_sits_in_journal(sbi); 3923 3924 /* 3925 * there are two steps to flush sit entries: 3926 * #1, flush sit entries to journal in current cold data summary block. 3927 * #2, flush sit entries to sit page. 3928 */ 3929 list_for_each_entry_safe(ses, tmp, head, set_list) { 3930 struct page *page = NULL; 3931 struct f2fs_sit_block *raw_sit = NULL; 3932 unsigned int start_segno = ses->start_segno; 3933 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3934 (unsigned long)MAIN_SEGS(sbi)); 3935 unsigned int segno = start_segno; 3936 3937 if (to_journal && 3938 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3939 to_journal = false; 3940 3941 if (to_journal) { 3942 down_write(&curseg->journal_rwsem); 3943 } else { 3944 page = get_next_sit_page(sbi, start_segno); 3945 raw_sit = page_address(page); 3946 } 3947 3948 /* flush dirty sit entries in region of current sit set */ 3949 for_each_set_bit_from(segno, bitmap, end) { 3950 int offset, sit_offset; 3951 3952 se = get_seg_entry(sbi, segno); 3953 #ifdef CONFIG_F2FS_CHECK_FS 3954 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3955 SIT_VBLOCK_MAP_SIZE)) 3956 f2fs_bug_on(sbi, 1); 3957 #endif 3958 3959 /* add discard candidates */ 3960 if (!(cpc->reason & CP_DISCARD)) { 3961 cpc->trim_start = segno; 3962 add_discard_addrs(sbi, cpc, false); 3963 } 3964 3965 if (to_journal) { 3966 offset = f2fs_lookup_journal_in_cursum(journal, 3967 SIT_JOURNAL, segno, 1); 3968 f2fs_bug_on(sbi, offset < 0); 3969 segno_in_journal(journal, offset) = 3970 cpu_to_le32(segno); 3971 seg_info_to_raw_sit(se, 3972 &sit_in_journal(journal, offset)); 3973 check_block_count(sbi, segno, 3974 &sit_in_journal(journal, offset)); 3975 } else { 3976 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3977 seg_info_to_raw_sit(se, 3978 &raw_sit->entries[sit_offset]); 3979 check_block_count(sbi, segno, 3980 &raw_sit->entries[sit_offset]); 3981 } 3982 3983 __clear_bit(segno, bitmap); 3984 sit_i->dirty_sentries--; 3985 ses->entry_cnt--; 3986 } 3987 3988 if (to_journal) 3989 up_write(&curseg->journal_rwsem); 3990 else 3991 f2fs_put_page(page, 1); 3992 3993 f2fs_bug_on(sbi, ses->entry_cnt); 3994 release_sit_entry_set(ses); 3995 } 3996 3997 f2fs_bug_on(sbi, !list_empty(head)); 3998 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3999 out: 4000 if (cpc->reason & CP_DISCARD) { 4001 __u64 trim_start = cpc->trim_start; 4002 4003 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4004 add_discard_addrs(sbi, cpc, false); 4005 4006 cpc->trim_start = trim_start; 4007 } 4008 up_write(&sit_i->sentry_lock); 4009 4010 set_prefree_as_free_segments(sbi); 4011 } 4012 4013 static int build_sit_info(struct f2fs_sb_info *sbi) 4014 { 4015 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4016 struct sit_info *sit_i; 4017 unsigned int sit_segs, start; 4018 char *src_bitmap, *bitmap; 4019 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4020 4021 /* allocate memory for SIT information */ 4022 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4023 if (!sit_i) 4024 return -ENOMEM; 4025 4026 SM_I(sbi)->sit_info = sit_i; 4027 4028 sit_i->sentries = 4029 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4030 MAIN_SEGS(sbi)), 4031 GFP_KERNEL); 4032 if (!sit_i->sentries) 4033 return -ENOMEM; 4034 4035 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4036 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4037 GFP_KERNEL); 4038 if (!sit_i->dirty_sentries_bitmap) 4039 return -ENOMEM; 4040 4041 #ifdef CONFIG_F2FS_CHECK_FS 4042 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; 4043 #else 4044 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; 4045 #endif 4046 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4047 if (!sit_i->bitmap) 4048 return -ENOMEM; 4049 4050 bitmap = sit_i->bitmap; 4051 4052 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4053 sit_i->sentries[start].cur_valid_map = bitmap; 4054 bitmap += SIT_VBLOCK_MAP_SIZE; 4055 4056 sit_i->sentries[start].ckpt_valid_map = bitmap; 4057 bitmap += SIT_VBLOCK_MAP_SIZE; 4058 4059 #ifdef CONFIG_F2FS_CHECK_FS 4060 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4061 bitmap += SIT_VBLOCK_MAP_SIZE; 4062 #endif 4063 4064 sit_i->sentries[start].discard_map = bitmap; 4065 bitmap += SIT_VBLOCK_MAP_SIZE; 4066 } 4067 4068 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4069 if (!sit_i->tmp_map) 4070 return -ENOMEM; 4071 4072 if (__is_large_section(sbi)) { 4073 sit_i->sec_entries = 4074 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4075 MAIN_SECS(sbi)), 4076 GFP_KERNEL); 4077 if (!sit_i->sec_entries) 4078 return -ENOMEM; 4079 } 4080 4081 /* get information related with SIT */ 4082 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4083 4084 /* setup SIT bitmap from ckeckpoint pack */ 4085 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4086 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4087 4088 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4089 if (!sit_i->sit_bitmap) 4090 return -ENOMEM; 4091 4092 #ifdef CONFIG_F2FS_CHECK_FS 4093 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4094 sit_bitmap_size, GFP_KERNEL); 4095 if (!sit_i->sit_bitmap_mir) 4096 return -ENOMEM; 4097 4098 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4099 main_bitmap_size, GFP_KERNEL); 4100 if (!sit_i->invalid_segmap) 4101 return -ENOMEM; 4102 #endif 4103 4104 /* init SIT information */ 4105 sit_i->s_ops = &default_salloc_ops; 4106 4107 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4108 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4109 sit_i->written_valid_blocks = 0; 4110 sit_i->bitmap_size = sit_bitmap_size; 4111 sit_i->dirty_sentries = 0; 4112 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4113 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4114 sit_i->mounted_time = ktime_get_boottime_seconds(); 4115 init_rwsem(&sit_i->sentry_lock); 4116 return 0; 4117 } 4118 4119 static int build_free_segmap(struct f2fs_sb_info *sbi) 4120 { 4121 struct free_segmap_info *free_i; 4122 unsigned int bitmap_size, sec_bitmap_size; 4123 4124 /* allocate memory for free segmap information */ 4125 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4126 if (!free_i) 4127 return -ENOMEM; 4128 4129 SM_I(sbi)->free_info = free_i; 4130 4131 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4132 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4133 if (!free_i->free_segmap) 4134 return -ENOMEM; 4135 4136 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4137 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4138 if (!free_i->free_secmap) 4139 return -ENOMEM; 4140 4141 /* set all segments as dirty temporarily */ 4142 memset(free_i->free_segmap, 0xff, bitmap_size); 4143 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4144 4145 /* init free segmap information */ 4146 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4147 free_i->free_segments = 0; 4148 free_i->free_sections = 0; 4149 spin_lock_init(&free_i->segmap_lock); 4150 return 0; 4151 } 4152 4153 static int build_curseg(struct f2fs_sb_info *sbi) 4154 { 4155 struct curseg_info *array; 4156 int i; 4157 4158 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), 4159 GFP_KERNEL); 4160 if (!array) 4161 return -ENOMEM; 4162 4163 SM_I(sbi)->curseg_array = array; 4164 4165 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4166 mutex_init(&array[i].curseg_mutex); 4167 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4168 if (!array[i].sum_blk) 4169 return -ENOMEM; 4170 init_rwsem(&array[i].journal_rwsem); 4171 array[i].journal = f2fs_kzalloc(sbi, 4172 sizeof(struct f2fs_journal), GFP_KERNEL); 4173 if (!array[i].journal) 4174 return -ENOMEM; 4175 array[i].segno = NULL_SEGNO; 4176 array[i].next_blkoff = 0; 4177 } 4178 return restore_curseg_summaries(sbi); 4179 } 4180 4181 static int build_sit_entries(struct f2fs_sb_info *sbi) 4182 { 4183 struct sit_info *sit_i = SIT_I(sbi); 4184 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4185 struct f2fs_journal *journal = curseg->journal; 4186 struct seg_entry *se; 4187 struct f2fs_sit_entry sit; 4188 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4189 unsigned int i, start, end; 4190 unsigned int readed, start_blk = 0; 4191 int err = 0; 4192 block_t total_node_blocks = 0; 4193 4194 do { 4195 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4196 META_SIT, true); 4197 4198 start = start_blk * sit_i->sents_per_block; 4199 end = (start_blk + readed) * sit_i->sents_per_block; 4200 4201 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4202 struct f2fs_sit_block *sit_blk; 4203 struct page *page; 4204 4205 se = &sit_i->sentries[start]; 4206 page = get_current_sit_page(sbi, start); 4207 if (IS_ERR(page)) 4208 return PTR_ERR(page); 4209 sit_blk = (struct f2fs_sit_block *)page_address(page); 4210 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4211 f2fs_put_page(page, 1); 4212 4213 err = check_block_count(sbi, start, &sit); 4214 if (err) 4215 return err; 4216 seg_info_from_raw_sit(se, &sit); 4217 if (IS_NODESEG(se->type)) 4218 total_node_blocks += se->valid_blocks; 4219 4220 /* build discard map only one time */ 4221 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4222 memset(se->discard_map, 0xff, 4223 SIT_VBLOCK_MAP_SIZE); 4224 } else { 4225 memcpy(se->discard_map, 4226 se->cur_valid_map, 4227 SIT_VBLOCK_MAP_SIZE); 4228 sbi->discard_blks += 4229 sbi->blocks_per_seg - 4230 se->valid_blocks; 4231 } 4232 4233 if (__is_large_section(sbi)) 4234 get_sec_entry(sbi, start)->valid_blocks += 4235 se->valid_blocks; 4236 } 4237 start_blk += readed; 4238 } while (start_blk < sit_blk_cnt); 4239 4240 down_read(&curseg->journal_rwsem); 4241 for (i = 0; i < sits_in_cursum(journal); i++) { 4242 unsigned int old_valid_blocks; 4243 4244 start = le32_to_cpu(segno_in_journal(journal, i)); 4245 if (start >= MAIN_SEGS(sbi)) { 4246 f2fs_err(sbi, "Wrong journal entry on segno %u", 4247 start); 4248 err = -EFSCORRUPTED; 4249 break; 4250 } 4251 4252 se = &sit_i->sentries[start]; 4253 sit = sit_in_journal(journal, i); 4254 4255 old_valid_blocks = se->valid_blocks; 4256 if (IS_NODESEG(se->type)) 4257 total_node_blocks -= old_valid_blocks; 4258 4259 err = check_block_count(sbi, start, &sit); 4260 if (err) 4261 break; 4262 seg_info_from_raw_sit(se, &sit); 4263 if (IS_NODESEG(se->type)) 4264 total_node_blocks += se->valid_blocks; 4265 4266 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4267 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4268 } else { 4269 memcpy(se->discard_map, se->cur_valid_map, 4270 SIT_VBLOCK_MAP_SIZE); 4271 sbi->discard_blks += old_valid_blocks; 4272 sbi->discard_blks -= se->valid_blocks; 4273 } 4274 4275 if (__is_large_section(sbi)) { 4276 get_sec_entry(sbi, start)->valid_blocks += 4277 se->valid_blocks; 4278 get_sec_entry(sbi, start)->valid_blocks -= 4279 old_valid_blocks; 4280 } 4281 } 4282 up_read(&curseg->journal_rwsem); 4283 4284 if (!err && total_node_blocks != valid_node_count(sbi)) { 4285 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4286 total_node_blocks, valid_node_count(sbi)); 4287 err = -EFSCORRUPTED; 4288 } 4289 4290 return err; 4291 } 4292 4293 static void init_free_segmap(struct f2fs_sb_info *sbi) 4294 { 4295 unsigned int start; 4296 int type; 4297 4298 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4299 struct seg_entry *sentry = get_seg_entry(sbi, start); 4300 if (!sentry->valid_blocks) 4301 __set_free(sbi, start); 4302 else 4303 SIT_I(sbi)->written_valid_blocks += 4304 sentry->valid_blocks; 4305 } 4306 4307 /* set use the current segments */ 4308 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4309 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4310 __set_test_and_inuse(sbi, curseg_t->segno); 4311 } 4312 } 4313 4314 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4315 { 4316 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4317 struct free_segmap_info *free_i = FREE_I(sbi); 4318 unsigned int segno = 0, offset = 0, secno; 4319 block_t valid_blocks; 4320 block_t blks_per_sec = BLKS_PER_SEC(sbi); 4321 4322 while (1) { 4323 /* find dirty segment based on free segmap */ 4324 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4325 if (segno >= MAIN_SEGS(sbi)) 4326 break; 4327 offset = segno + 1; 4328 valid_blocks = get_valid_blocks(sbi, segno, false); 4329 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 4330 continue; 4331 if (valid_blocks > sbi->blocks_per_seg) { 4332 f2fs_bug_on(sbi, 1); 4333 continue; 4334 } 4335 mutex_lock(&dirty_i->seglist_lock); 4336 __locate_dirty_segment(sbi, segno, DIRTY); 4337 mutex_unlock(&dirty_i->seglist_lock); 4338 } 4339 4340 if (!__is_large_section(sbi)) 4341 return; 4342 4343 mutex_lock(&dirty_i->seglist_lock); 4344 for (segno = 0; segno < MAIN_SECS(sbi); segno += blks_per_sec) { 4345 valid_blocks = get_valid_blocks(sbi, segno, true); 4346 secno = GET_SEC_FROM_SEG(sbi, segno); 4347 4348 if (!valid_blocks || valid_blocks == blks_per_sec) 4349 continue; 4350 if (IS_CURSEC(sbi, secno)) 4351 continue; 4352 set_bit(secno, dirty_i->dirty_secmap); 4353 } 4354 mutex_unlock(&dirty_i->seglist_lock); 4355 } 4356 4357 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4358 { 4359 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4360 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4361 4362 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4363 if (!dirty_i->victim_secmap) 4364 return -ENOMEM; 4365 return 0; 4366 } 4367 4368 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4369 { 4370 struct dirty_seglist_info *dirty_i; 4371 unsigned int bitmap_size, i; 4372 4373 /* allocate memory for dirty segments list information */ 4374 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4375 GFP_KERNEL); 4376 if (!dirty_i) 4377 return -ENOMEM; 4378 4379 SM_I(sbi)->dirty_info = dirty_i; 4380 mutex_init(&dirty_i->seglist_lock); 4381 4382 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4383 4384 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4385 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4386 GFP_KERNEL); 4387 if (!dirty_i->dirty_segmap[i]) 4388 return -ENOMEM; 4389 } 4390 4391 if (__is_large_section(sbi)) { 4392 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4393 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4394 bitmap_size, GFP_KERNEL); 4395 if (!dirty_i->dirty_secmap) 4396 return -ENOMEM; 4397 } 4398 4399 init_dirty_segmap(sbi); 4400 return init_victim_secmap(sbi); 4401 } 4402 4403 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4404 { 4405 int i; 4406 4407 /* 4408 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4409 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4410 */ 4411 for (i = 0; i < NO_CHECK_TYPE; i++) { 4412 struct curseg_info *curseg = CURSEG_I(sbi, i); 4413 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4414 unsigned int blkofs = curseg->next_blkoff; 4415 4416 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4417 goto out; 4418 4419 if (curseg->alloc_type == SSR) 4420 continue; 4421 4422 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4423 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4424 continue; 4425 out: 4426 f2fs_err(sbi, 4427 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4428 i, curseg->segno, curseg->alloc_type, 4429 curseg->next_blkoff, blkofs); 4430 return -EFSCORRUPTED; 4431 } 4432 } 4433 return 0; 4434 } 4435 4436 #ifdef CONFIG_BLK_DEV_ZONED 4437 4438 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4439 struct f2fs_dev_info *fdev, 4440 struct blk_zone *zone) 4441 { 4442 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4443 block_t zone_block, wp_block, last_valid_block; 4444 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4445 int i, s, b, ret; 4446 struct seg_entry *se; 4447 4448 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4449 return 0; 4450 4451 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4452 wp_segno = GET_SEGNO(sbi, wp_block); 4453 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4454 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4455 zone_segno = GET_SEGNO(sbi, zone_block); 4456 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4457 4458 if (zone_segno >= MAIN_SEGS(sbi)) 4459 return 0; 4460 4461 /* 4462 * Skip check of zones cursegs point to, since 4463 * fix_curseg_write_pointer() checks them. 4464 */ 4465 for (i = 0; i < NO_CHECK_TYPE; i++) 4466 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4467 CURSEG_I(sbi, i)->segno)) 4468 return 0; 4469 4470 /* 4471 * Get last valid block of the zone. 4472 */ 4473 last_valid_block = zone_block - 1; 4474 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4475 segno = zone_segno + s; 4476 se = get_seg_entry(sbi, segno); 4477 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4478 if (f2fs_test_bit(b, se->cur_valid_map)) { 4479 last_valid_block = START_BLOCK(sbi, segno) + b; 4480 break; 4481 } 4482 if (last_valid_block >= zone_block) 4483 break; 4484 } 4485 4486 /* 4487 * If last valid block is beyond the write pointer, report the 4488 * inconsistency. This inconsistency does not cause write error 4489 * because the zone will not be selected for write operation until 4490 * it get discarded. Just report it. 4491 */ 4492 if (last_valid_block >= wp_block) { 4493 f2fs_notice(sbi, "Valid block beyond write pointer: " 4494 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4495 GET_SEGNO(sbi, last_valid_block), 4496 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4497 wp_segno, wp_blkoff); 4498 return 0; 4499 } 4500 4501 /* 4502 * If there is no valid block in the zone and if write pointer is 4503 * not at zone start, reset the write pointer. 4504 */ 4505 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4506 f2fs_notice(sbi, 4507 "Zone without valid block has non-zero write " 4508 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4509 wp_segno, wp_blkoff); 4510 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4511 zone->len >> log_sectors_per_block); 4512 if (ret) { 4513 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4514 fdev->path, ret); 4515 return ret; 4516 } 4517 } 4518 4519 return 0; 4520 } 4521 4522 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4523 block_t zone_blkaddr) 4524 { 4525 int i; 4526 4527 for (i = 0; i < sbi->s_ndevs; i++) { 4528 if (!bdev_is_zoned(FDEV(i).bdev)) 4529 continue; 4530 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4531 zone_blkaddr <= FDEV(i).end_blk)) 4532 return &FDEV(i); 4533 } 4534 4535 return NULL; 4536 } 4537 4538 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4539 void *data) { 4540 memcpy(data, zone, sizeof(struct blk_zone)); 4541 return 0; 4542 } 4543 4544 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4545 { 4546 struct curseg_info *cs = CURSEG_I(sbi, type); 4547 struct f2fs_dev_info *zbd; 4548 struct blk_zone zone; 4549 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4550 block_t cs_zone_block, wp_block; 4551 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4552 sector_t zone_sector; 4553 int err; 4554 4555 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4556 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4557 4558 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4559 if (!zbd) 4560 return 0; 4561 4562 /* report zone for the sector the curseg points to */ 4563 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4564 << log_sectors_per_block; 4565 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4566 report_one_zone_cb, &zone); 4567 if (err != 1) { 4568 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4569 zbd->path, err); 4570 return err; 4571 } 4572 4573 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4574 return 0; 4575 4576 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4577 wp_segno = GET_SEGNO(sbi, wp_block); 4578 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4579 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4580 4581 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4582 wp_sector_off == 0) 4583 return 0; 4584 4585 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4586 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4587 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4588 4589 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4590 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4591 allocate_segment_by_default(sbi, type, true); 4592 4593 /* check consistency of the zone curseg pointed to */ 4594 if (check_zone_write_pointer(sbi, zbd, &zone)) 4595 return -EIO; 4596 4597 /* check newly assigned zone */ 4598 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4599 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4600 4601 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4602 if (!zbd) 4603 return 0; 4604 4605 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4606 << log_sectors_per_block; 4607 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4608 report_one_zone_cb, &zone); 4609 if (err != 1) { 4610 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4611 zbd->path, err); 4612 return err; 4613 } 4614 4615 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4616 return 0; 4617 4618 if (zone.wp != zone.start) { 4619 f2fs_notice(sbi, 4620 "New zone for curseg[%d] is not yet discarded. " 4621 "Reset the zone: curseg[0x%x,0x%x]", 4622 type, cs->segno, cs->next_blkoff); 4623 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4624 zone_sector >> log_sectors_per_block, 4625 zone.len >> log_sectors_per_block); 4626 if (err) { 4627 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4628 zbd->path, err); 4629 return err; 4630 } 4631 } 4632 4633 return 0; 4634 } 4635 4636 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4637 { 4638 int i, ret; 4639 4640 for (i = 0; i < NO_CHECK_TYPE; i++) { 4641 ret = fix_curseg_write_pointer(sbi, i); 4642 if (ret) 4643 return ret; 4644 } 4645 4646 return 0; 4647 } 4648 4649 struct check_zone_write_pointer_args { 4650 struct f2fs_sb_info *sbi; 4651 struct f2fs_dev_info *fdev; 4652 }; 4653 4654 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4655 void *data) { 4656 struct check_zone_write_pointer_args *args; 4657 args = (struct check_zone_write_pointer_args *)data; 4658 4659 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4660 } 4661 4662 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4663 { 4664 int i, ret; 4665 struct check_zone_write_pointer_args args; 4666 4667 for (i = 0; i < sbi->s_ndevs; i++) { 4668 if (!bdev_is_zoned(FDEV(i).bdev)) 4669 continue; 4670 4671 args.sbi = sbi; 4672 args.fdev = &FDEV(i); 4673 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4674 check_zone_write_pointer_cb, &args); 4675 if (ret < 0) 4676 return ret; 4677 } 4678 4679 return 0; 4680 } 4681 #else 4682 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4683 { 4684 return 0; 4685 } 4686 4687 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4688 { 4689 return 0; 4690 } 4691 #endif 4692 4693 /* 4694 * Update min, max modified time for cost-benefit GC algorithm 4695 */ 4696 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 4697 { 4698 struct sit_info *sit_i = SIT_I(sbi); 4699 unsigned int segno; 4700 4701 down_write(&sit_i->sentry_lock); 4702 4703 sit_i->min_mtime = ULLONG_MAX; 4704 4705 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4706 unsigned int i; 4707 unsigned long long mtime = 0; 4708 4709 for (i = 0; i < sbi->segs_per_sec; i++) 4710 mtime += get_seg_entry(sbi, segno + i)->mtime; 4711 4712 mtime = div_u64(mtime, sbi->segs_per_sec); 4713 4714 if (sit_i->min_mtime > mtime) 4715 sit_i->min_mtime = mtime; 4716 } 4717 sit_i->max_mtime = get_mtime(sbi, false); 4718 up_write(&sit_i->sentry_lock); 4719 } 4720 4721 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 4722 { 4723 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4724 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4725 struct f2fs_sm_info *sm_info; 4726 int err; 4727 4728 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 4729 if (!sm_info) 4730 return -ENOMEM; 4731 4732 /* init sm info */ 4733 sbi->sm_info = sm_info; 4734 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 4735 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 4736 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 4737 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4738 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4739 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 4740 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 4741 sm_info->rec_prefree_segments = sm_info->main_segments * 4742 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 4743 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 4744 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 4745 4746 if (!f2fs_lfs_mode(sbi)) 4747 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 4748 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 4749 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 4750 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 4751 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 4752 sm_info->min_ssr_sections = reserved_sections(sbi); 4753 4754 INIT_LIST_HEAD(&sm_info->sit_entry_set); 4755 4756 init_rwsem(&sm_info->curseg_lock); 4757 4758 if (!f2fs_readonly(sbi->sb)) { 4759 err = f2fs_create_flush_cmd_control(sbi); 4760 if (err) 4761 return err; 4762 } 4763 4764 err = create_discard_cmd_control(sbi); 4765 if (err) 4766 return err; 4767 4768 err = build_sit_info(sbi); 4769 if (err) 4770 return err; 4771 err = build_free_segmap(sbi); 4772 if (err) 4773 return err; 4774 err = build_curseg(sbi); 4775 if (err) 4776 return err; 4777 4778 /* reinit free segmap based on SIT */ 4779 err = build_sit_entries(sbi); 4780 if (err) 4781 return err; 4782 4783 init_free_segmap(sbi); 4784 err = build_dirty_segmap(sbi); 4785 if (err) 4786 return err; 4787 4788 err = sanity_check_curseg(sbi); 4789 if (err) 4790 return err; 4791 4792 init_min_max_mtime(sbi); 4793 return 0; 4794 } 4795 4796 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 4797 enum dirty_type dirty_type) 4798 { 4799 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4800 4801 mutex_lock(&dirty_i->seglist_lock); 4802 kvfree(dirty_i->dirty_segmap[dirty_type]); 4803 dirty_i->nr_dirty[dirty_type] = 0; 4804 mutex_unlock(&dirty_i->seglist_lock); 4805 } 4806 4807 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 4808 { 4809 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4810 kvfree(dirty_i->victim_secmap); 4811 } 4812 4813 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 4814 { 4815 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4816 int i; 4817 4818 if (!dirty_i) 4819 return; 4820 4821 /* discard pre-free/dirty segments list */ 4822 for (i = 0; i < NR_DIRTY_TYPE; i++) 4823 discard_dirty_segmap(sbi, i); 4824 4825 if (__is_large_section(sbi)) { 4826 mutex_lock(&dirty_i->seglist_lock); 4827 kvfree(dirty_i->dirty_secmap); 4828 mutex_unlock(&dirty_i->seglist_lock); 4829 } 4830 4831 destroy_victim_secmap(sbi); 4832 SM_I(sbi)->dirty_info = NULL; 4833 kvfree(dirty_i); 4834 } 4835 4836 static void destroy_curseg(struct f2fs_sb_info *sbi) 4837 { 4838 struct curseg_info *array = SM_I(sbi)->curseg_array; 4839 int i; 4840 4841 if (!array) 4842 return; 4843 SM_I(sbi)->curseg_array = NULL; 4844 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4845 kvfree(array[i].sum_blk); 4846 kvfree(array[i].journal); 4847 } 4848 kvfree(array); 4849 } 4850 4851 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4852 { 4853 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4854 if (!free_i) 4855 return; 4856 SM_I(sbi)->free_info = NULL; 4857 kvfree(free_i->free_segmap); 4858 kvfree(free_i->free_secmap); 4859 kvfree(free_i); 4860 } 4861 4862 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4863 { 4864 struct sit_info *sit_i = SIT_I(sbi); 4865 4866 if (!sit_i) 4867 return; 4868 4869 if (sit_i->sentries) 4870 kvfree(sit_i->bitmap); 4871 kvfree(sit_i->tmp_map); 4872 4873 kvfree(sit_i->sentries); 4874 kvfree(sit_i->sec_entries); 4875 kvfree(sit_i->dirty_sentries_bitmap); 4876 4877 SM_I(sbi)->sit_info = NULL; 4878 kvfree(sit_i->sit_bitmap); 4879 #ifdef CONFIG_F2FS_CHECK_FS 4880 kvfree(sit_i->sit_bitmap_mir); 4881 kvfree(sit_i->invalid_segmap); 4882 #endif 4883 kvfree(sit_i); 4884 } 4885 4886 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4887 { 4888 struct f2fs_sm_info *sm_info = SM_I(sbi); 4889 4890 if (!sm_info) 4891 return; 4892 f2fs_destroy_flush_cmd_control(sbi, true); 4893 destroy_discard_cmd_control(sbi); 4894 destroy_dirty_segmap(sbi); 4895 destroy_curseg(sbi); 4896 destroy_free_segmap(sbi); 4897 destroy_sit_info(sbi); 4898 sbi->sm_info = NULL; 4899 kvfree(sm_info); 4900 } 4901 4902 int __init f2fs_create_segment_manager_caches(void) 4903 { 4904 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 4905 sizeof(struct discard_entry)); 4906 if (!discard_entry_slab) 4907 goto fail; 4908 4909 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 4910 sizeof(struct discard_cmd)); 4911 if (!discard_cmd_slab) 4912 goto destroy_discard_entry; 4913 4914 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 4915 sizeof(struct sit_entry_set)); 4916 if (!sit_entry_set_slab) 4917 goto destroy_discard_cmd; 4918 4919 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry", 4920 sizeof(struct inmem_pages)); 4921 if (!inmem_entry_slab) 4922 goto destroy_sit_entry_set; 4923 return 0; 4924 4925 destroy_sit_entry_set: 4926 kmem_cache_destroy(sit_entry_set_slab); 4927 destroy_discard_cmd: 4928 kmem_cache_destroy(discard_cmd_slab); 4929 destroy_discard_entry: 4930 kmem_cache_destroy(discard_entry_slab); 4931 fail: 4932 return -ENOMEM; 4933 } 4934 4935 void f2fs_destroy_segment_manager_caches(void) 4936 { 4937 kmem_cache_destroy(sit_entry_set_slab); 4938 kmem_cache_destroy(discard_cmd_slab); 4939 kmem_cache_destroy(discard_entry_slab); 4940 kmem_cache_destroy(inmem_entry_slab); 4941 } 4942