1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 clear_inode_flag(fi->cow_inode, FI_COW_FILE); 196 iput(fi->cow_inode); 197 fi->cow_inode = NULL; 198 release_atomic_write_cnt(inode); 199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 200 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 201 clear_inode_flag(inode, FI_ATOMIC_FILE); 202 stat_dec_atomic_inode(inode); 203 204 if (clean) { 205 truncate_inode_pages_final(inode->i_mapping); 206 f2fs_i_size_write(inode, fi->original_i_size); 207 } 208 } 209 210 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 211 block_t new_addr, block_t *old_addr, bool recover) 212 { 213 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 214 struct dnode_of_data dn; 215 struct node_info ni; 216 int err; 217 218 retry: 219 set_new_dnode(&dn, inode, NULL, NULL, 0); 220 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA); 221 if (err) { 222 if (err == -ENOMEM) { 223 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 224 goto retry; 225 } 226 return err; 227 } 228 229 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 230 if (err) { 231 f2fs_put_dnode(&dn); 232 return err; 233 } 234 235 if (recover) { 236 /* dn.data_blkaddr is always valid */ 237 if (!__is_valid_data_blkaddr(new_addr)) { 238 if (new_addr == NULL_ADDR) 239 dec_valid_block_count(sbi, inode, 1); 240 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 241 f2fs_update_data_blkaddr(&dn, new_addr); 242 } else { 243 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 244 new_addr, ni.version, true, true); 245 } 246 } else { 247 blkcnt_t count = 1; 248 249 *old_addr = dn.data_blkaddr; 250 f2fs_truncate_data_blocks_range(&dn, 1); 251 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 252 inc_valid_block_count(sbi, inode, &count); 253 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 254 ni.version, true, false); 255 } 256 257 f2fs_put_dnode(&dn); 258 return 0; 259 } 260 261 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 262 bool revoke) 263 { 264 struct revoke_entry *cur, *tmp; 265 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 266 267 list_for_each_entry_safe(cur, tmp, head, list) { 268 if (revoke) 269 __replace_atomic_write_block(inode, cur->index, 270 cur->old_addr, NULL, true); 271 272 list_del(&cur->list); 273 kmem_cache_free(revoke_entry_slab, cur); 274 } 275 276 if (!revoke && truncate) 277 f2fs_do_truncate_blocks(inode, 0, false); 278 } 279 280 static int __f2fs_commit_atomic_write(struct inode *inode) 281 { 282 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 283 struct f2fs_inode_info *fi = F2FS_I(inode); 284 struct inode *cow_inode = fi->cow_inode; 285 struct revoke_entry *new; 286 struct list_head revoke_list; 287 block_t blkaddr; 288 struct dnode_of_data dn; 289 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 290 pgoff_t off = 0, blen, index; 291 int ret = 0, i; 292 293 INIT_LIST_HEAD(&revoke_list); 294 295 while (len) { 296 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 297 298 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 299 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 300 if (ret && ret != -ENOENT) { 301 goto out; 302 } else if (ret == -ENOENT) { 303 ret = 0; 304 if (dn.max_level == 0) 305 goto out; 306 goto next; 307 } 308 309 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 310 len); 311 index = off; 312 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 313 blkaddr = f2fs_data_blkaddr(&dn); 314 315 if (!__is_valid_data_blkaddr(blkaddr)) { 316 continue; 317 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 318 DATA_GENERIC_ENHANCE)) { 319 f2fs_put_dnode(&dn); 320 ret = -EFSCORRUPTED; 321 f2fs_handle_error(sbi, 322 ERROR_INVALID_BLKADDR); 323 goto out; 324 } 325 326 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 327 true, NULL); 328 329 ret = __replace_atomic_write_block(inode, index, blkaddr, 330 &new->old_addr, false); 331 if (ret) { 332 f2fs_put_dnode(&dn); 333 kmem_cache_free(revoke_entry_slab, new); 334 goto out; 335 } 336 337 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 338 new->index = index; 339 list_add_tail(&new->list, &revoke_list); 340 } 341 f2fs_put_dnode(&dn); 342 next: 343 off += blen; 344 len -= blen; 345 } 346 347 out: 348 if (ret) { 349 sbi->revoked_atomic_block += fi->atomic_write_cnt; 350 } else { 351 sbi->committed_atomic_block += fi->atomic_write_cnt; 352 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 353 } 354 355 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 356 357 return ret; 358 } 359 360 int f2fs_commit_atomic_write(struct inode *inode) 361 { 362 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 363 struct f2fs_inode_info *fi = F2FS_I(inode); 364 int err; 365 366 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 367 if (err) 368 return err; 369 370 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 371 f2fs_lock_op(sbi); 372 373 err = __f2fs_commit_atomic_write(inode); 374 375 f2fs_unlock_op(sbi); 376 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 377 378 return err; 379 } 380 381 /* 382 * This function balances dirty node and dentry pages. 383 * In addition, it controls garbage collection. 384 */ 385 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 386 { 387 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 388 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 389 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 390 } 391 392 /* balance_fs_bg is able to be pending */ 393 if (need && excess_cached_nats(sbi)) 394 f2fs_balance_fs_bg(sbi, false); 395 396 if (!f2fs_is_checkpoint_ready(sbi)) 397 return; 398 399 /* 400 * We should do GC or end up with checkpoint, if there are so many dirty 401 * dir/node pages without enough free segments. 402 */ 403 if (has_not_enough_free_secs(sbi, 0, 0)) { 404 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 405 sbi->gc_thread->f2fs_gc_task) { 406 DEFINE_WAIT(wait); 407 408 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 409 TASK_UNINTERRUPTIBLE); 410 wake_up(&sbi->gc_thread->gc_wait_queue_head); 411 io_schedule(); 412 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 413 } else { 414 struct f2fs_gc_control gc_control = { 415 .victim_segno = NULL_SEGNO, 416 .init_gc_type = BG_GC, 417 .no_bg_gc = true, 418 .should_migrate_blocks = false, 419 .err_gc_skipped = false, 420 .nr_free_secs = 1 }; 421 f2fs_down_write(&sbi->gc_lock); 422 f2fs_gc(sbi, &gc_control); 423 } 424 } 425 } 426 427 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 428 { 429 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 430 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 431 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 432 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 433 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 434 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 435 unsigned int threshold = sbi->blocks_per_seg * factor * 436 DEFAULT_DIRTY_THRESHOLD; 437 unsigned int global_threshold = threshold * 3 / 2; 438 439 if (dents >= threshold || qdata >= threshold || 440 nodes >= threshold || meta >= threshold || 441 imeta >= threshold) 442 return true; 443 return dents + qdata + nodes + meta + imeta > global_threshold; 444 } 445 446 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 447 { 448 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 449 return; 450 451 /* try to shrink extent cache when there is no enough memory */ 452 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 453 f2fs_shrink_read_extent_tree(sbi, 454 READ_EXTENT_CACHE_SHRINK_NUMBER); 455 456 /* try to shrink age extent cache when there is no enough memory */ 457 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 458 f2fs_shrink_age_extent_tree(sbi, 459 AGE_EXTENT_CACHE_SHRINK_NUMBER); 460 461 /* check the # of cached NAT entries */ 462 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 463 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 464 465 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 466 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 467 else 468 f2fs_build_free_nids(sbi, false, false); 469 470 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 471 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 472 goto do_sync; 473 474 /* there is background inflight IO or foreground operation recently */ 475 if (is_inflight_io(sbi, REQ_TIME) || 476 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 477 return; 478 479 /* exceed periodical checkpoint timeout threshold */ 480 if (f2fs_time_over(sbi, CP_TIME)) 481 goto do_sync; 482 483 /* checkpoint is the only way to shrink partial cached entries */ 484 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 485 f2fs_available_free_memory(sbi, INO_ENTRIES)) 486 return; 487 488 do_sync: 489 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 490 struct blk_plug plug; 491 492 mutex_lock(&sbi->flush_lock); 493 494 blk_start_plug(&plug); 495 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 496 blk_finish_plug(&plug); 497 498 mutex_unlock(&sbi->flush_lock); 499 } 500 f2fs_sync_fs(sbi->sb, 1); 501 stat_inc_bg_cp_count(sbi->stat_info); 502 } 503 504 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 505 struct block_device *bdev) 506 { 507 int ret = blkdev_issue_flush(bdev); 508 509 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 510 test_opt(sbi, FLUSH_MERGE), ret); 511 return ret; 512 } 513 514 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 515 { 516 int ret = 0; 517 int i; 518 519 if (!f2fs_is_multi_device(sbi)) 520 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 521 522 for (i = 0; i < sbi->s_ndevs; i++) { 523 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 524 continue; 525 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 526 if (ret) 527 break; 528 } 529 return ret; 530 } 531 532 static int issue_flush_thread(void *data) 533 { 534 struct f2fs_sb_info *sbi = data; 535 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 536 wait_queue_head_t *q = &fcc->flush_wait_queue; 537 repeat: 538 if (kthread_should_stop()) 539 return 0; 540 541 if (!llist_empty(&fcc->issue_list)) { 542 struct flush_cmd *cmd, *next; 543 int ret; 544 545 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 546 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 547 548 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 549 550 ret = submit_flush_wait(sbi, cmd->ino); 551 atomic_inc(&fcc->issued_flush); 552 553 llist_for_each_entry_safe(cmd, next, 554 fcc->dispatch_list, llnode) { 555 cmd->ret = ret; 556 complete(&cmd->wait); 557 } 558 fcc->dispatch_list = NULL; 559 } 560 561 wait_event_interruptible(*q, 562 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 563 goto repeat; 564 } 565 566 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 567 { 568 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 569 struct flush_cmd cmd; 570 int ret; 571 572 if (test_opt(sbi, NOBARRIER)) 573 return 0; 574 575 if (!test_opt(sbi, FLUSH_MERGE)) { 576 atomic_inc(&fcc->queued_flush); 577 ret = submit_flush_wait(sbi, ino); 578 atomic_dec(&fcc->queued_flush); 579 atomic_inc(&fcc->issued_flush); 580 return ret; 581 } 582 583 if (atomic_inc_return(&fcc->queued_flush) == 1 || 584 f2fs_is_multi_device(sbi)) { 585 ret = submit_flush_wait(sbi, ino); 586 atomic_dec(&fcc->queued_flush); 587 588 atomic_inc(&fcc->issued_flush); 589 return ret; 590 } 591 592 cmd.ino = ino; 593 init_completion(&cmd.wait); 594 595 llist_add(&cmd.llnode, &fcc->issue_list); 596 597 /* 598 * update issue_list before we wake up issue_flush thread, this 599 * smp_mb() pairs with another barrier in ___wait_event(), see 600 * more details in comments of waitqueue_active(). 601 */ 602 smp_mb(); 603 604 if (waitqueue_active(&fcc->flush_wait_queue)) 605 wake_up(&fcc->flush_wait_queue); 606 607 if (fcc->f2fs_issue_flush) { 608 wait_for_completion(&cmd.wait); 609 atomic_dec(&fcc->queued_flush); 610 } else { 611 struct llist_node *list; 612 613 list = llist_del_all(&fcc->issue_list); 614 if (!list) { 615 wait_for_completion(&cmd.wait); 616 atomic_dec(&fcc->queued_flush); 617 } else { 618 struct flush_cmd *tmp, *next; 619 620 ret = submit_flush_wait(sbi, ino); 621 622 llist_for_each_entry_safe(tmp, next, list, llnode) { 623 if (tmp == &cmd) { 624 cmd.ret = ret; 625 atomic_dec(&fcc->queued_flush); 626 continue; 627 } 628 tmp->ret = ret; 629 complete(&tmp->wait); 630 } 631 } 632 } 633 634 return cmd.ret; 635 } 636 637 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 638 { 639 dev_t dev = sbi->sb->s_bdev->bd_dev; 640 struct flush_cmd_control *fcc; 641 642 if (SM_I(sbi)->fcc_info) { 643 fcc = SM_I(sbi)->fcc_info; 644 if (fcc->f2fs_issue_flush) 645 return 0; 646 goto init_thread; 647 } 648 649 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 650 if (!fcc) 651 return -ENOMEM; 652 atomic_set(&fcc->issued_flush, 0); 653 atomic_set(&fcc->queued_flush, 0); 654 init_waitqueue_head(&fcc->flush_wait_queue); 655 init_llist_head(&fcc->issue_list); 656 SM_I(sbi)->fcc_info = fcc; 657 if (!test_opt(sbi, FLUSH_MERGE)) 658 return 0; 659 660 init_thread: 661 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 662 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 663 if (IS_ERR(fcc->f2fs_issue_flush)) { 664 int err = PTR_ERR(fcc->f2fs_issue_flush); 665 666 fcc->f2fs_issue_flush = NULL; 667 return err; 668 } 669 670 return 0; 671 } 672 673 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 674 { 675 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 676 677 if (fcc && fcc->f2fs_issue_flush) { 678 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 679 680 fcc->f2fs_issue_flush = NULL; 681 kthread_stop(flush_thread); 682 } 683 if (free) { 684 kfree(fcc); 685 SM_I(sbi)->fcc_info = NULL; 686 } 687 } 688 689 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 690 { 691 int ret = 0, i; 692 693 if (!f2fs_is_multi_device(sbi)) 694 return 0; 695 696 if (test_opt(sbi, NOBARRIER)) 697 return 0; 698 699 for (i = 1; i < sbi->s_ndevs; i++) { 700 int count = DEFAULT_RETRY_IO_COUNT; 701 702 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 703 continue; 704 705 do { 706 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 707 if (ret) 708 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 709 } while (ret && --count); 710 711 if (ret) { 712 f2fs_stop_checkpoint(sbi, false, 713 STOP_CP_REASON_FLUSH_FAIL); 714 break; 715 } 716 717 spin_lock(&sbi->dev_lock); 718 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 719 spin_unlock(&sbi->dev_lock); 720 } 721 722 return ret; 723 } 724 725 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 726 enum dirty_type dirty_type) 727 { 728 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 729 730 /* need not be added */ 731 if (IS_CURSEG(sbi, segno)) 732 return; 733 734 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 735 dirty_i->nr_dirty[dirty_type]++; 736 737 if (dirty_type == DIRTY) { 738 struct seg_entry *sentry = get_seg_entry(sbi, segno); 739 enum dirty_type t = sentry->type; 740 741 if (unlikely(t >= DIRTY)) { 742 f2fs_bug_on(sbi, 1); 743 return; 744 } 745 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 746 dirty_i->nr_dirty[t]++; 747 748 if (__is_large_section(sbi)) { 749 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 750 block_t valid_blocks = 751 get_valid_blocks(sbi, segno, true); 752 753 f2fs_bug_on(sbi, unlikely(!valid_blocks || 754 valid_blocks == CAP_BLKS_PER_SEC(sbi))); 755 756 if (!IS_CURSEC(sbi, secno)) 757 set_bit(secno, dirty_i->dirty_secmap); 758 } 759 } 760 } 761 762 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 763 enum dirty_type dirty_type) 764 { 765 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 766 block_t valid_blocks; 767 768 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 769 dirty_i->nr_dirty[dirty_type]--; 770 771 if (dirty_type == DIRTY) { 772 struct seg_entry *sentry = get_seg_entry(sbi, segno); 773 enum dirty_type t = sentry->type; 774 775 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 776 dirty_i->nr_dirty[t]--; 777 778 valid_blocks = get_valid_blocks(sbi, segno, true); 779 if (valid_blocks == 0) { 780 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 781 dirty_i->victim_secmap); 782 #ifdef CONFIG_F2FS_CHECK_FS 783 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 784 #endif 785 } 786 if (__is_large_section(sbi)) { 787 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 788 789 if (!valid_blocks || 790 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 791 clear_bit(secno, dirty_i->dirty_secmap); 792 return; 793 } 794 795 if (!IS_CURSEC(sbi, secno)) 796 set_bit(secno, dirty_i->dirty_secmap); 797 } 798 } 799 } 800 801 /* 802 * Should not occur error such as -ENOMEM. 803 * Adding dirty entry into seglist is not critical operation. 804 * If a given segment is one of current working segments, it won't be added. 805 */ 806 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 807 { 808 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 809 unsigned short valid_blocks, ckpt_valid_blocks; 810 unsigned int usable_blocks; 811 812 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 813 return; 814 815 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 816 mutex_lock(&dirty_i->seglist_lock); 817 818 valid_blocks = get_valid_blocks(sbi, segno, false); 819 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 820 821 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 822 ckpt_valid_blocks == usable_blocks)) { 823 __locate_dirty_segment(sbi, segno, PRE); 824 __remove_dirty_segment(sbi, segno, DIRTY); 825 } else if (valid_blocks < usable_blocks) { 826 __locate_dirty_segment(sbi, segno, DIRTY); 827 } else { 828 /* Recovery routine with SSR needs this */ 829 __remove_dirty_segment(sbi, segno, DIRTY); 830 } 831 832 mutex_unlock(&dirty_i->seglist_lock); 833 } 834 835 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 836 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 837 { 838 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 839 unsigned int segno; 840 841 mutex_lock(&dirty_i->seglist_lock); 842 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 843 if (get_valid_blocks(sbi, segno, false)) 844 continue; 845 if (IS_CURSEG(sbi, segno)) 846 continue; 847 __locate_dirty_segment(sbi, segno, PRE); 848 __remove_dirty_segment(sbi, segno, DIRTY); 849 } 850 mutex_unlock(&dirty_i->seglist_lock); 851 } 852 853 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 854 { 855 int ovp_hole_segs = 856 (overprovision_segments(sbi) - reserved_segments(sbi)); 857 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 858 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 859 block_t holes[2] = {0, 0}; /* DATA and NODE */ 860 block_t unusable; 861 struct seg_entry *se; 862 unsigned int segno; 863 864 mutex_lock(&dirty_i->seglist_lock); 865 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 866 se = get_seg_entry(sbi, segno); 867 if (IS_NODESEG(se->type)) 868 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 869 se->valid_blocks; 870 else 871 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 872 se->valid_blocks; 873 } 874 mutex_unlock(&dirty_i->seglist_lock); 875 876 unusable = max(holes[DATA], holes[NODE]); 877 if (unusable > ovp_holes) 878 return unusable - ovp_holes; 879 return 0; 880 } 881 882 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 883 { 884 int ovp_hole_segs = 885 (overprovision_segments(sbi) - reserved_segments(sbi)); 886 if (unusable > F2FS_OPTION(sbi).unusable_cap) 887 return -EAGAIN; 888 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 889 dirty_segments(sbi) > ovp_hole_segs) 890 return -EAGAIN; 891 return 0; 892 } 893 894 /* This is only used by SBI_CP_DISABLED */ 895 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 896 { 897 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 898 unsigned int segno = 0; 899 900 mutex_lock(&dirty_i->seglist_lock); 901 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 902 if (get_valid_blocks(sbi, segno, false)) 903 continue; 904 if (get_ckpt_valid_blocks(sbi, segno, false)) 905 continue; 906 mutex_unlock(&dirty_i->seglist_lock); 907 return segno; 908 } 909 mutex_unlock(&dirty_i->seglist_lock); 910 return NULL_SEGNO; 911 } 912 913 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 914 struct block_device *bdev, block_t lstart, 915 block_t start, block_t len) 916 { 917 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 918 struct list_head *pend_list; 919 struct discard_cmd *dc; 920 921 f2fs_bug_on(sbi, !len); 922 923 pend_list = &dcc->pend_list[plist_idx(len)]; 924 925 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 926 INIT_LIST_HEAD(&dc->list); 927 dc->bdev = bdev; 928 dc->lstart = lstart; 929 dc->start = start; 930 dc->len = len; 931 dc->ref = 0; 932 dc->state = D_PREP; 933 dc->queued = 0; 934 dc->error = 0; 935 init_completion(&dc->wait); 936 list_add_tail(&dc->list, pend_list); 937 spin_lock_init(&dc->lock); 938 dc->bio_ref = 0; 939 atomic_inc(&dcc->discard_cmd_cnt); 940 dcc->undiscard_blks += len; 941 942 return dc; 943 } 944 945 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 946 struct block_device *bdev, block_t lstart, 947 block_t start, block_t len, 948 struct rb_node *parent, struct rb_node **p, 949 bool leftmost) 950 { 951 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 952 struct discard_cmd *dc; 953 954 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 955 956 rb_link_node(&dc->rb_node, parent, p); 957 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 958 959 return dc; 960 } 961 962 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 963 struct discard_cmd *dc) 964 { 965 if (dc->state == D_DONE) 966 atomic_sub(dc->queued, &dcc->queued_discard); 967 968 list_del(&dc->list); 969 rb_erase_cached(&dc->rb_node, &dcc->root); 970 dcc->undiscard_blks -= dc->len; 971 972 kmem_cache_free(discard_cmd_slab, dc); 973 974 atomic_dec(&dcc->discard_cmd_cnt); 975 } 976 977 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 978 struct discard_cmd *dc) 979 { 980 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 981 unsigned long flags; 982 983 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 984 985 spin_lock_irqsave(&dc->lock, flags); 986 if (dc->bio_ref) { 987 spin_unlock_irqrestore(&dc->lock, flags); 988 return; 989 } 990 spin_unlock_irqrestore(&dc->lock, flags); 991 992 f2fs_bug_on(sbi, dc->ref); 993 994 if (dc->error == -EOPNOTSUPP) 995 dc->error = 0; 996 997 if (dc->error) 998 printk_ratelimited( 999 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1000 KERN_INFO, sbi->sb->s_id, 1001 dc->lstart, dc->start, dc->len, dc->error); 1002 __detach_discard_cmd(dcc, dc); 1003 } 1004 1005 static void f2fs_submit_discard_endio(struct bio *bio) 1006 { 1007 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1008 unsigned long flags; 1009 1010 spin_lock_irqsave(&dc->lock, flags); 1011 if (!dc->error) 1012 dc->error = blk_status_to_errno(bio->bi_status); 1013 dc->bio_ref--; 1014 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1015 dc->state = D_DONE; 1016 complete_all(&dc->wait); 1017 } 1018 spin_unlock_irqrestore(&dc->lock, flags); 1019 bio_put(bio); 1020 } 1021 1022 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1023 block_t start, block_t end) 1024 { 1025 #ifdef CONFIG_F2FS_CHECK_FS 1026 struct seg_entry *sentry; 1027 unsigned int segno; 1028 block_t blk = start; 1029 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1030 unsigned long *map; 1031 1032 while (blk < end) { 1033 segno = GET_SEGNO(sbi, blk); 1034 sentry = get_seg_entry(sbi, segno); 1035 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1036 1037 if (end < START_BLOCK(sbi, segno + 1)) 1038 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1039 else 1040 size = max_blocks; 1041 map = (unsigned long *)(sentry->cur_valid_map); 1042 offset = __find_rev_next_bit(map, size, offset); 1043 f2fs_bug_on(sbi, offset != size); 1044 blk = START_BLOCK(sbi, segno + 1); 1045 } 1046 #endif 1047 } 1048 1049 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1050 struct discard_policy *dpolicy, 1051 int discard_type, unsigned int granularity) 1052 { 1053 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1054 1055 /* common policy */ 1056 dpolicy->type = discard_type; 1057 dpolicy->sync = true; 1058 dpolicy->ordered = false; 1059 dpolicy->granularity = granularity; 1060 1061 dpolicy->max_requests = dcc->max_discard_request; 1062 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1063 dpolicy->timeout = false; 1064 1065 if (discard_type == DPOLICY_BG) { 1066 dpolicy->min_interval = dcc->min_discard_issue_time; 1067 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1068 dpolicy->max_interval = dcc->max_discard_issue_time; 1069 dpolicy->io_aware = true; 1070 dpolicy->sync = false; 1071 dpolicy->ordered = true; 1072 if (utilization(sbi) > dcc->discard_urgent_util) { 1073 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1074 if (atomic_read(&dcc->discard_cmd_cnt)) 1075 dpolicy->max_interval = 1076 dcc->min_discard_issue_time; 1077 } 1078 } else if (discard_type == DPOLICY_FORCE) { 1079 dpolicy->min_interval = dcc->min_discard_issue_time; 1080 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1081 dpolicy->max_interval = dcc->max_discard_issue_time; 1082 dpolicy->io_aware = false; 1083 } else if (discard_type == DPOLICY_FSTRIM) { 1084 dpolicy->io_aware = false; 1085 } else if (discard_type == DPOLICY_UMOUNT) { 1086 dpolicy->io_aware = false; 1087 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1088 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1089 dpolicy->timeout = true; 1090 } 1091 } 1092 1093 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1094 struct block_device *bdev, block_t lstart, 1095 block_t start, block_t len); 1096 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1097 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1098 struct discard_policy *dpolicy, 1099 struct discard_cmd *dc, 1100 unsigned int *issued) 1101 { 1102 struct block_device *bdev = dc->bdev; 1103 unsigned int max_discard_blocks = 1104 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1105 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1106 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1107 &(dcc->fstrim_list) : &(dcc->wait_list); 1108 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1109 block_t lstart, start, len, total_len; 1110 int err = 0; 1111 1112 if (dc->state != D_PREP) 1113 return 0; 1114 1115 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1116 return 0; 1117 1118 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1119 1120 lstart = dc->lstart; 1121 start = dc->start; 1122 len = dc->len; 1123 total_len = len; 1124 1125 dc->len = 0; 1126 1127 while (total_len && *issued < dpolicy->max_requests && !err) { 1128 struct bio *bio = NULL; 1129 unsigned long flags; 1130 bool last = true; 1131 1132 if (len > max_discard_blocks) { 1133 len = max_discard_blocks; 1134 last = false; 1135 } 1136 1137 (*issued)++; 1138 if (*issued == dpolicy->max_requests) 1139 last = true; 1140 1141 dc->len += len; 1142 1143 if (time_to_inject(sbi, FAULT_DISCARD)) { 1144 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1145 err = -EIO; 1146 } else { 1147 err = __blkdev_issue_discard(bdev, 1148 SECTOR_FROM_BLOCK(start), 1149 SECTOR_FROM_BLOCK(len), 1150 GFP_NOFS, &bio); 1151 } 1152 if (err) { 1153 spin_lock_irqsave(&dc->lock, flags); 1154 if (dc->state == D_PARTIAL) 1155 dc->state = D_SUBMIT; 1156 spin_unlock_irqrestore(&dc->lock, flags); 1157 1158 break; 1159 } 1160 1161 f2fs_bug_on(sbi, !bio); 1162 1163 /* 1164 * should keep before submission to avoid D_DONE 1165 * right away 1166 */ 1167 spin_lock_irqsave(&dc->lock, flags); 1168 if (last) 1169 dc->state = D_SUBMIT; 1170 else 1171 dc->state = D_PARTIAL; 1172 dc->bio_ref++; 1173 spin_unlock_irqrestore(&dc->lock, flags); 1174 1175 atomic_inc(&dcc->queued_discard); 1176 dc->queued++; 1177 list_move_tail(&dc->list, wait_list); 1178 1179 /* sanity check on discard range */ 1180 __check_sit_bitmap(sbi, lstart, lstart + len); 1181 1182 bio->bi_private = dc; 1183 bio->bi_end_io = f2fs_submit_discard_endio; 1184 bio->bi_opf |= flag; 1185 submit_bio(bio); 1186 1187 atomic_inc(&dcc->issued_discard); 1188 1189 f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE); 1190 1191 lstart += len; 1192 start += len; 1193 total_len -= len; 1194 len = total_len; 1195 } 1196 1197 if (!err && len) { 1198 dcc->undiscard_blks -= len; 1199 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1200 } 1201 return err; 1202 } 1203 1204 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1205 struct block_device *bdev, block_t lstart, 1206 block_t start, block_t len, 1207 struct rb_node **insert_p, 1208 struct rb_node *insert_parent) 1209 { 1210 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1211 struct rb_node **p; 1212 struct rb_node *parent = NULL; 1213 bool leftmost = true; 1214 1215 if (insert_p && insert_parent) { 1216 parent = insert_parent; 1217 p = insert_p; 1218 goto do_insert; 1219 } 1220 1221 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1222 lstart, &leftmost); 1223 do_insert: 1224 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1225 p, leftmost); 1226 } 1227 1228 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1229 struct discard_cmd *dc) 1230 { 1231 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1232 } 1233 1234 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1235 struct discard_cmd *dc, block_t blkaddr) 1236 { 1237 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1238 struct discard_info di = dc->di; 1239 bool modified = false; 1240 1241 if (dc->state == D_DONE || dc->len == 1) { 1242 __remove_discard_cmd(sbi, dc); 1243 return; 1244 } 1245 1246 dcc->undiscard_blks -= di.len; 1247 1248 if (blkaddr > di.lstart) { 1249 dc->len = blkaddr - dc->lstart; 1250 dcc->undiscard_blks += dc->len; 1251 __relocate_discard_cmd(dcc, dc); 1252 modified = true; 1253 } 1254 1255 if (blkaddr < di.lstart + di.len - 1) { 1256 if (modified) { 1257 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1258 di.start + blkaddr + 1 - di.lstart, 1259 di.lstart + di.len - 1 - blkaddr, 1260 NULL, NULL); 1261 } else { 1262 dc->lstart++; 1263 dc->len--; 1264 dc->start++; 1265 dcc->undiscard_blks += dc->len; 1266 __relocate_discard_cmd(dcc, dc); 1267 } 1268 } 1269 } 1270 1271 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1272 struct block_device *bdev, block_t lstart, 1273 block_t start, block_t len) 1274 { 1275 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1276 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1277 struct discard_cmd *dc; 1278 struct discard_info di = {0}; 1279 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1280 unsigned int max_discard_blocks = 1281 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1282 block_t end = lstart + len; 1283 1284 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1285 NULL, lstart, 1286 (struct rb_entry **)&prev_dc, 1287 (struct rb_entry **)&next_dc, 1288 &insert_p, &insert_parent, true, NULL); 1289 if (dc) 1290 prev_dc = dc; 1291 1292 if (!prev_dc) { 1293 di.lstart = lstart; 1294 di.len = next_dc ? next_dc->lstart - lstart : len; 1295 di.len = min(di.len, len); 1296 di.start = start; 1297 } 1298 1299 while (1) { 1300 struct rb_node *node; 1301 bool merged = false; 1302 struct discard_cmd *tdc = NULL; 1303 1304 if (prev_dc) { 1305 di.lstart = prev_dc->lstart + prev_dc->len; 1306 if (di.lstart < lstart) 1307 di.lstart = lstart; 1308 if (di.lstart >= end) 1309 break; 1310 1311 if (!next_dc || next_dc->lstart > end) 1312 di.len = end - di.lstart; 1313 else 1314 di.len = next_dc->lstart - di.lstart; 1315 di.start = start + di.lstart - lstart; 1316 } 1317 1318 if (!di.len) 1319 goto next; 1320 1321 if (prev_dc && prev_dc->state == D_PREP && 1322 prev_dc->bdev == bdev && 1323 __is_discard_back_mergeable(&di, &prev_dc->di, 1324 max_discard_blocks)) { 1325 prev_dc->di.len += di.len; 1326 dcc->undiscard_blks += di.len; 1327 __relocate_discard_cmd(dcc, prev_dc); 1328 di = prev_dc->di; 1329 tdc = prev_dc; 1330 merged = true; 1331 } 1332 1333 if (next_dc && next_dc->state == D_PREP && 1334 next_dc->bdev == bdev && 1335 __is_discard_front_mergeable(&di, &next_dc->di, 1336 max_discard_blocks)) { 1337 next_dc->di.lstart = di.lstart; 1338 next_dc->di.len += di.len; 1339 next_dc->di.start = di.start; 1340 dcc->undiscard_blks += di.len; 1341 __relocate_discard_cmd(dcc, next_dc); 1342 if (tdc) 1343 __remove_discard_cmd(sbi, tdc); 1344 merged = true; 1345 } 1346 1347 if (!merged) { 1348 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1349 di.len, NULL, NULL); 1350 } 1351 next: 1352 prev_dc = next_dc; 1353 if (!prev_dc) 1354 break; 1355 1356 node = rb_next(&prev_dc->rb_node); 1357 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1358 } 1359 } 1360 1361 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1362 struct block_device *bdev, block_t blkstart, block_t blklen) 1363 { 1364 block_t lblkstart = blkstart; 1365 1366 if (!f2fs_bdev_support_discard(bdev)) 1367 return; 1368 1369 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1370 1371 if (f2fs_is_multi_device(sbi)) { 1372 int devi = f2fs_target_device_index(sbi, blkstart); 1373 1374 blkstart -= FDEV(devi).start_blk; 1375 } 1376 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1377 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1378 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1379 } 1380 1381 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1382 struct discard_policy *dpolicy) 1383 { 1384 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1385 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1386 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1387 struct discard_cmd *dc; 1388 struct blk_plug plug; 1389 unsigned int pos = dcc->next_pos; 1390 unsigned int issued = 0; 1391 bool io_interrupted = false; 1392 1393 mutex_lock(&dcc->cmd_lock); 1394 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1395 NULL, pos, 1396 (struct rb_entry **)&prev_dc, 1397 (struct rb_entry **)&next_dc, 1398 &insert_p, &insert_parent, true, NULL); 1399 if (!dc) 1400 dc = next_dc; 1401 1402 blk_start_plug(&plug); 1403 1404 while (dc) { 1405 struct rb_node *node; 1406 int err = 0; 1407 1408 if (dc->state != D_PREP) 1409 goto next; 1410 1411 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1412 io_interrupted = true; 1413 break; 1414 } 1415 1416 dcc->next_pos = dc->lstart + dc->len; 1417 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1418 1419 if (issued >= dpolicy->max_requests) 1420 break; 1421 next: 1422 node = rb_next(&dc->rb_node); 1423 if (err) 1424 __remove_discard_cmd(sbi, dc); 1425 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1426 } 1427 1428 blk_finish_plug(&plug); 1429 1430 if (!dc) 1431 dcc->next_pos = 0; 1432 1433 mutex_unlock(&dcc->cmd_lock); 1434 1435 if (!issued && io_interrupted) 1436 issued = -1; 1437 1438 return issued; 1439 } 1440 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1441 struct discard_policy *dpolicy); 1442 1443 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1444 struct discard_policy *dpolicy) 1445 { 1446 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1447 struct list_head *pend_list; 1448 struct discard_cmd *dc, *tmp; 1449 struct blk_plug plug; 1450 int i, issued; 1451 bool io_interrupted = false; 1452 1453 if (dpolicy->timeout) 1454 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1455 1456 retry: 1457 issued = 0; 1458 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1459 if (dpolicy->timeout && 1460 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1461 break; 1462 1463 if (i + 1 < dpolicy->granularity) 1464 break; 1465 1466 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) 1467 return __issue_discard_cmd_orderly(sbi, dpolicy); 1468 1469 pend_list = &dcc->pend_list[i]; 1470 1471 mutex_lock(&dcc->cmd_lock); 1472 if (list_empty(pend_list)) 1473 goto next; 1474 if (unlikely(dcc->rbtree_check)) 1475 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1476 &dcc->root, false)); 1477 blk_start_plug(&plug); 1478 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1479 f2fs_bug_on(sbi, dc->state != D_PREP); 1480 1481 if (dpolicy->timeout && 1482 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1483 break; 1484 1485 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1486 !is_idle(sbi, DISCARD_TIME)) { 1487 io_interrupted = true; 1488 break; 1489 } 1490 1491 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1492 1493 if (issued >= dpolicy->max_requests) 1494 break; 1495 } 1496 blk_finish_plug(&plug); 1497 next: 1498 mutex_unlock(&dcc->cmd_lock); 1499 1500 if (issued >= dpolicy->max_requests || io_interrupted) 1501 break; 1502 } 1503 1504 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1505 __wait_all_discard_cmd(sbi, dpolicy); 1506 goto retry; 1507 } 1508 1509 if (!issued && io_interrupted) 1510 issued = -1; 1511 1512 return issued; 1513 } 1514 1515 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1516 { 1517 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1518 struct list_head *pend_list; 1519 struct discard_cmd *dc, *tmp; 1520 int i; 1521 bool dropped = false; 1522 1523 mutex_lock(&dcc->cmd_lock); 1524 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1525 pend_list = &dcc->pend_list[i]; 1526 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1527 f2fs_bug_on(sbi, dc->state != D_PREP); 1528 __remove_discard_cmd(sbi, dc); 1529 dropped = true; 1530 } 1531 } 1532 mutex_unlock(&dcc->cmd_lock); 1533 1534 return dropped; 1535 } 1536 1537 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1538 { 1539 __drop_discard_cmd(sbi); 1540 } 1541 1542 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1543 struct discard_cmd *dc) 1544 { 1545 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1546 unsigned int len = 0; 1547 1548 wait_for_completion_io(&dc->wait); 1549 mutex_lock(&dcc->cmd_lock); 1550 f2fs_bug_on(sbi, dc->state != D_DONE); 1551 dc->ref--; 1552 if (!dc->ref) { 1553 if (!dc->error) 1554 len = dc->len; 1555 __remove_discard_cmd(sbi, dc); 1556 } 1557 mutex_unlock(&dcc->cmd_lock); 1558 1559 return len; 1560 } 1561 1562 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1563 struct discard_policy *dpolicy, 1564 block_t start, block_t end) 1565 { 1566 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1567 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1568 &(dcc->fstrim_list) : &(dcc->wait_list); 1569 struct discard_cmd *dc = NULL, *iter, *tmp; 1570 unsigned int trimmed = 0; 1571 1572 next: 1573 dc = NULL; 1574 1575 mutex_lock(&dcc->cmd_lock); 1576 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1577 if (iter->lstart + iter->len <= start || end <= iter->lstart) 1578 continue; 1579 if (iter->len < dpolicy->granularity) 1580 continue; 1581 if (iter->state == D_DONE && !iter->ref) { 1582 wait_for_completion_io(&iter->wait); 1583 if (!iter->error) 1584 trimmed += iter->len; 1585 __remove_discard_cmd(sbi, iter); 1586 } else { 1587 iter->ref++; 1588 dc = iter; 1589 break; 1590 } 1591 } 1592 mutex_unlock(&dcc->cmd_lock); 1593 1594 if (dc) { 1595 trimmed += __wait_one_discard_bio(sbi, dc); 1596 goto next; 1597 } 1598 1599 return trimmed; 1600 } 1601 1602 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1603 struct discard_policy *dpolicy) 1604 { 1605 struct discard_policy dp; 1606 unsigned int discard_blks; 1607 1608 if (dpolicy) 1609 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1610 1611 /* wait all */ 1612 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1613 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1614 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1615 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1616 1617 return discard_blks; 1618 } 1619 1620 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1621 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1622 { 1623 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1624 struct discard_cmd *dc; 1625 bool need_wait = false; 1626 1627 mutex_lock(&dcc->cmd_lock); 1628 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1629 NULL, blkaddr); 1630 if (dc) { 1631 if (dc->state == D_PREP) { 1632 __punch_discard_cmd(sbi, dc, blkaddr); 1633 } else { 1634 dc->ref++; 1635 need_wait = true; 1636 } 1637 } 1638 mutex_unlock(&dcc->cmd_lock); 1639 1640 if (need_wait) 1641 __wait_one_discard_bio(sbi, dc); 1642 } 1643 1644 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1645 { 1646 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1647 1648 if (dcc && dcc->f2fs_issue_discard) { 1649 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1650 1651 dcc->f2fs_issue_discard = NULL; 1652 kthread_stop(discard_thread); 1653 } 1654 } 1655 1656 /* This comes from f2fs_put_super */ 1657 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1658 { 1659 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1660 struct discard_policy dpolicy; 1661 bool dropped; 1662 1663 if (!atomic_read(&dcc->discard_cmd_cnt)) 1664 return false; 1665 1666 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1667 dcc->discard_granularity); 1668 __issue_discard_cmd(sbi, &dpolicy); 1669 dropped = __drop_discard_cmd(sbi); 1670 1671 /* just to make sure there is no pending discard commands */ 1672 __wait_all_discard_cmd(sbi, NULL); 1673 1674 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1675 return dropped; 1676 } 1677 1678 static int issue_discard_thread(void *data) 1679 { 1680 struct f2fs_sb_info *sbi = data; 1681 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1682 wait_queue_head_t *q = &dcc->discard_wait_queue; 1683 struct discard_policy dpolicy; 1684 unsigned int wait_ms = dcc->min_discard_issue_time; 1685 int issued; 1686 1687 set_freezable(); 1688 1689 do { 1690 wait_event_interruptible_timeout(*q, 1691 kthread_should_stop() || freezing(current) || 1692 dcc->discard_wake, 1693 msecs_to_jiffies(wait_ms)); 1694 1695 if (sbi->gc_mode == GC_URGENT_HIGH || 1696 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1697 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1698 else 1699 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1700 dcc->discard_granularity); 1701 1702 if (dcc->discard_wake) 1703 dcc->discard_wake = 0; 1704 1705 /* clean up pending candidates before going to sleep */ 1706 if (atomic_read(&dcc->queued_discard)) 1707 __wait_all_discard_cmd(sbi, NULL); 1708 1709 if (try_to_freeze()) 1710 continue; 1711 if (f2fs_readonly(sbi->sb)) 1712 continue; 1713 if (kthread_should_stop()) 1714 return 0; 1715 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1716 !atomic_read(&dcc->discard_cmd_cnt)) { 1717 wait_ms = dpolicy.max_interval; 1718 continue; 1719 } 1720 1721 sb_start_intwrite(sbi->sb); 1722 1723 issued = __issue_discard_cmd(sbi, &dpolicy); 1724 if (issued > 0) { 1725 __wait_all_discard_cmd(sbi, &dpolicy); 1726 wait_ms = dpolicy.min_interval; 1727 } else if (issued == -1) { 1728 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1729 if (!wait_ms) 1730 wait_ms = dpolicy.mid_interval; 1731 } else { 1732 wait_ms = dpolicy.max_interval; 1733 } 1734 if (!atomic_read(&dcc->discard_cmd_cnt)) 1735 wait_ms = dpolicy.max_interval; 1736 1737 sb_end_intwrite(sbi->sb); 1738 1739 } while (!kthread_should_stop()); 1740 return 0; 1741 } 1742 1743 #ifdef CONFIG_BLK_DEV_ZONED 1744 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1745 struct block_device *bdev, block_t blkstart, block_t blklen) 1746 { 1747 sector_t sector, nr_sects; 1748 block_t lblkstart = blkstart; 1749 int devi = 0; 1750 1751 if (f2fs_is_multi_device(sbi)) { 1752 devi = f2fs_target_device_index(sbi, blkstart); 1753 if (blkstart < FDEV(devi).start_blk || 1754 blkstart > FDEV(devi).end_blk) { 1755 f2fs_err(sbi, "Invalid block %x", blkstart); 1756 return -EIO; 1757 } 1758 blkstart -= FDEV(devi).start_blk; 1759 } 1760 1761 /* For sequential zones, reset the zone write pointer */ 1762 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1763 sector = SECTOR_FROM_BLOCK(blkstart); 1764 nr_sects = SECTOR_FROM_BLOCK(blklen); 1765 1766 if (sector & (bdev_zone_sectors(bdev) - 1) || 1767 nr_sects != bdev_zone_sectors(bdev)) { 1768 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1769 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1770 blkstart, blklen); 1771 return -EIO; 1772 } 1773 trace_f2fs_issue_reset_zone(bdev, blkstart); 1774 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1775 sector, nr_sects, GFP_NOFS); 1776 } 1777 1778 /* For conventional zones, use regular discard if supported */ 1779 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1780 return 0; 1781 } 1782 #endif 1783 1784 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1785 struct block_device *bdev, block_t blkstart, block_t blklen) 1786 { 1787 #ifdef CONFIG_BLK_DEV_ZONED 1788 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1789 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1790 #endif 1791 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1792 return 0; 1793 } 1794 1795 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1796 block_t blkstart, block_t blklen) 1797 { 1798 sector_t start = blkstart, len = 0; 1799 struct block_device *bdev; 1800 struct seg_entry *se; 1801 unsigned int offset; 1802 block_t i; 1803 int err = 0; 1804 1805 bdev = f2fs_target_device(sbi, blkstart, NULL); 1806 1807 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1808 if (i != start) { 1809 struct block_device *bdev2 = 1810 f2fs_target_device(sbi, i, NULL); 1811 1812 if (bdev2 != bdev) { 1813 err = __issue_discard_async(sbi, bdev, 1814 start, len); 1815 if (err) 1816 return err; 1817 bdev = bdev2; 1818 start = i; 1819 len = 0; 1820 } 1821 } 1822 1823 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1824 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1825 1826 if (f2fs_block_unit_discard(sbi) && 1827 !f2fs_test_and_set_bit(offset, se->discard_map)) 1828 sbi->discard_blks--; 1829 } 1830 1831 if (len) 1832 err = __issue_discard_async(sbi, bdev, start, len); 1833 return err; 1834 } 1835 1836 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1837 bool check_only) 1838 { 1839 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1840 int max_blocks = sbi->blocks_per_seg; 1841 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1842 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1843 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1844 unsigned long *discard_map = (unsigned long *)se->discard_map; 1845 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1846 unsigned int start = 0, end = -1; 1847 bool force = (cpc->reason & CP_DISCARD); 1848 struct discard_entry *de = NULL; 1849 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1850 int i; 1851 1852 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) || 1853 !f2fs_block_unit_discard(sbi)) 1854 return false; 1855 1856 if (!force) { 1857 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1858 SM_I(sbi)->dcc_info->nr_discards >= 1859 SM_I(sbi)->dcc_info->max_discards) 1860 return false; 1861 } 1862 1863 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1864 for (i = 0; i < entries; i++) 1865 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1866 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1867 1868 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1869 SM_I(sbi)->dcc_info->max_discards) { 1870 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1871 if (start >= max_blocks) 1872 break; 1873 1874 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1875 if (force && start && end != max_blocks 1876 && (end - start) < cpc->trim_minlen) 1877 continue; 1878 1879 if (check_only) 1880 return true; 1881 1882 if (!de) { 1883 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1884 GFP_F2FS_ZERO, true, NULL); 1885 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1886 list_add_tail(&de->list, head); 1887 } 1888 1889 for (i = start; i < end; i++) 1890 __set_bit_le(i, (void *)de->discard_map); 1891 1892 SM_I(sbi)->dcc_info->nr_discards += end - start; 1893 } 1894 return false; 1895 } 1896 1897 static void release_discard_addr(struct discard_entry *entry) 1898 { 1899 list_del(&entry->list); 1900 kmem_cache_free(discard_entry_slab, entry); 1901 } 1902 1903 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1904 { 1905 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1906 struct discard_entry *entry, *this; 1907 1908 /* drop caches */ 1909 list_for_each_entry_safe(entry, this, head, list) 1910 release_discard_addr(entry); 1911 } 1912 1913 /* 1914 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1915 */ 1916 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1917 { 1918 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1919 unsigned int segno; 1920 1921 mutex_lock(&dirty_i->seglist_lock); 1922 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1923 __set_test_and_free(sbi, segno, false); 1924 mutex_unlock(&dirty_i->seglist_lock); 1925 } 1926 1927 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1928 struct cp_control *cpc) 1929 { 1930 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1931 struct list_head *head = &dcc->entry_list; 1932 struct discard_entry *entry, *this; 1933 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1934 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1935 unsigned int start = 0, end = -1; 1936 unsigned int secno, start_segno; 1937 bool force = (cpc->reason & CP_DISCARD); 1938 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 1939 DISCARD_UNIT_SECTION; 1940 1941 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 1942 section_alignment = true; 1943 1944 mutex_lock(&dirty_i->seglist_lock); 1945 1946 while (1) { 1947 int i; 1948 1949 if (section_alignment && end != -1) 1950 end--; 1951 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1952 if (start >= MAIN_SEGS(sbi)) 1953 break; 1954 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1955 start + 1); 1956 1957 if (section_alignment) { 1958 start = rounddown(start, sbi->segs_per_sec); 1959 end = roundup(end, sbi->segs_per_sec); 1960 } 1961 1962 for (i = start; i < end; i++) { 1963 if (test_and_clear_bit(i, prefree_map)) 1964 dirty_i->nr_dirty[PRE]--; 1965 } 1966 1967 if (!f2fs_realtime_discard_enable(sbi)) 1968 continue; 1969 1970 if (force && start >= cpc->trim_start && 1971 (end - 1) <= cpc->trim_end) 1972 continue; 1973 1974 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 1975 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1976 (end - start) << sbi->log_blocks_per_seg); 1977 continue; 1978 } 1979 next: 1980 secno = GET_SEC_FROM_SEG(sbi, start); 1981 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1982 if (!IS_CURSEC(sbi, secno) && 1983 !get_valid_blocks(sbi, start, true)) 1984 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1985 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1986 1987 start = start_segno + sbi->segs_per_sec; 1988 if (start < end) 1989 goto next; 1990 else 1991 end = start - 1; 1992 } 1993 mutex_unlock(&dirty_i->seglist_lock); 1994 1995 if (!f2fs_block_unit_discard(sbi)) 1996 goto wakeup; 1997 1998 /* send small discards */ 1999 list_for_each_entry_safe(entry, this, head, list) { 2000 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2001 bool is_valid = test_bit_le(0, entry->discard_map); 2002 2003 find_next: 2004 if (is_valid) { 2005 next_pos = find_next_zero_bit_le(entry->discard_map, 2006 sbi->blocks_per_seg, cur_pos); 2007 len = next_pos - cur_pos; 2008 2009 if (f2fs_sb_has_blkzoned(sbi) || 2010 (force && len < cpc->trim_minlen)) 2011 goto skip; 2012 2013 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2014 len); 2015 total_len += len; 2016 } else { 2017 next_pos = find_next_bit_le(entry->discard_map, 2018 sbi->blocks_per_seg, cur_pos); 2019 } 2020 skip: 2021 cur_pos = next_pos; 2022 is_valid = !is_valid; 2023 2024 if (cur_pos < sbi->blocks_per_seg) 2025 goto find_next; 2026 2027 release_discard_addr(entry); 2028 dcc->nr_discards -= total_len; 2029 } 2030 2031 wakeup: 2032 wake_up_discard_thread(sbi, false); 2033 } 2034 2035 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2036 { 2037 dev_t dev = sbi->sb->s_bdev->bd_dev; 2038 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2039 int err = 0; 2040 2041 if (!f2fs_realtime_discard_enable(sbi)) 2042 return 0; 2043 2044 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2045 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2046 if (IS_ERR(dcc->f2fs_issue_discard)) { 2047 err = PTR_ERR(dcc->f2fs_issue_discard); 2048 dcc->f2fs_issue_discard = NULL; 2049 } 2050 2051 return err; 2052 } 2053 2054 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2055 { 2056 struct discard_cmd_control *dcc; 2057 int err = 0, i; 2058 2059 if (SM_I(sbi)->dcc_info) { 2060 dcc = SM_I(sbi)->dcc_info; 2061 goto init_thread; 2062 } 2063 2064 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2065 if (!dcc) 2066 return -ENOMEM; 2067 2068 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2069 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2070 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2071 dcc->discard_granularity = sbi->blocks_per_seg; 2072 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2073 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2074 2075 INIT_LIST_HEAD(&dcc->entry_list); 2076 for (i = 0; i < MAX_PLIST_NUM; i++) 2077 INIT_LIST_HEAD(&dcc->pend_list[i]); 2078 INIT_LIST_HEAD(&dcc->wait_list); 2079 INIT_LIST_HEAD(&dcc->fstrim_list); 2080 mutex_init(&dcc->cmd_lock); 2081 atomic_set(&dcc->issued_discard, 0); 2082 atomic_set(&dcc->queued_discard, 0); 2083 atomic_set(&dcc->discard_cmd_cnt, 0); 2084 dcc->nr_discards = 0; 2085 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2086 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2087 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2088 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2089 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2090 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2091 dcc->undiscard_blks = 0; 2092 dcc->next_pos = 0; 2093 dcc->root = RB_ROOT_CACHED; 2094 dcc->rbtree_check = false; 2095 2096 init_waitqueue_head(&dcc->discard_wait_queue); 2097 SM_I(sbi)->dcc_info = dcc; 2098 init_thread: 2099 err = f2fs_start_discard_thread(sbi); 2100 if (err) { 2101 kfree(dcc); 2102 SM_I(sbi)->dcc_info = NULL; 2103 } 2104 2105 return err; 2106 } 2107 2108 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2109 { 2110 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2111 2112 if (!dcc) 2113 return; 2114 2115 f2fs_stop_discard_thread(sbi); 2116 2117 /* 2118 * Recovery can cache discard commands, so in error path of 2119 * fill_super(), it needs to give a chance to handle them. 2120 */ 2121 f2fs_issue_discard_timeout(sbi); 2122 2123 kfree(dcc); 2124 SM_I(sbi)->dcc_info = NULL; 2125 } 2126 2127 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2128 { 2129 struct sit_info *sit_i = SIT_I(sbi); 2130 2131 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2132 sit_i->dirty_sentries++; 2133 return false; 2134 } 2135 2136 return true; 2137 } 2138 2139 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2140 unsigned int segno, int modified) 2141 { 2142 struct seg_entry *se = get_seg_entry(sbi, segno); 2143 2144 se->type = type; 2145 if (modified) 2146 __mark_sit_entry_dirty(sbi, segno); 2147 } 2148 2149 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2150 block_t blkaddr) 2151 { 2152 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2153 2154 if (segno == NULL_SEGNO) 2155 return 0; 2156 return get_seg_entry(sbi, segno)->mtime; 2157 } 2158 2159 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2160 unsigned long long old_mtime) 2161 { 2162 struct seg_entry *se; 2163 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2164 unsigned long long ctime = get_mtime(sbi, false); 2165 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2166 2167 if (segno == NULL_SEGNO) 2168 return; 2169 2170 se = get_seg_entry(sbi, segno); 2171 2172 if (!se->mtime) 2173 se->mtime = mtime; 2174 else 2175 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2176 se->valid_blocks + 1); 2177 2178 if (ctime > SIT_I(sbi)->max_mtime) 2179 SIT_I(sbi)->max_mtime = ctime; 2180 } 2181 2182 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2183 { 2184 struct seg_entry *se; 2185 unsigned int segno, offset; 2186 long int new_vblocks; 2187 bool exist; 2188 #ifdef CONFIG_F2FS_CHECK_FS 2189 bool mir_exist; 2190 #endif 2191 2192 segno = GET_SEGNO(sbi, blkaddr); 2193 2194 se = get_seg_entry(sbi, segno); 2195 new_vblocks = se->valid_blocks + del; 2196 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2197 2198 f2fs_bug_on(sbi, (new_vblocks < 0 || 2199 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2200 2201 se->valid_blocks = new_vblocks; 2202 2203 /* Update valid block bitmap */ 2204 if (del > 0) { 2205 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2206 #ifdef CONFIG_F2FS_CHECK_FS 2207 mir_exist = f2fs_test_and_set_bit(offset, 2208 se->cur_valid_map_mir); 2209 if (unlikely(exist != mir_exist)) { 2210 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2211 blkaddr, exist); 2212 f2fs_bug_on(sbi, 1); 2213 } 2214 #endif 2215 if (unlikely(exist)) { 2216 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2217 blkaddr); 2218 f2fs_bug_on(sbi, 1); 2219 se->valid_blocks--; 2220 del = 0; 2221 } 2222 2223 if (f2fs_block_unit_discard(sbi) && 2224 !f2fs_test_and_set_bit(offset, se->discard_map)) 2225 sbi->discard_blks--; 2226 2227 /* 2228 * SSR should never reuse block which is checkpointed 2229 * or newly invalidated. 2230 */ 2231 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2232 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2233 se->ckpt_valid_blocks++; 2234 } 2235 } else { 2236 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2237 #ifdef CONFIG_F2FS_CHECK_FS 2238 mir_exist = f2fs_test_and_clear_bit(offset, 2239 se->cur_valid_map_mir); 2240 if (unlikely(exist != mir_exist)) { 2241 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2242 blkaddr, exist); 2243 f2fs_bug_on(sbi, 1); 2244 } 2245 #endif 2246 if (unlikely(!exist)) { 2247 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2248 blkaddr); 2249 f2fs_bug_on(sbi, 1); 2250 se->valid_blocks++; 2251 del = 0; 2252 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2253 /* 2254 * If checkpoints are off, we must not reuse data that 2255 * was used in the previous checkpoint. If it was used 2256 * before, we must track that to know how much space we 2257 * really have. 2258 */ 2259 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2260 spin_lock(&sbi->stat_lock); 2261 sbi->unusable_block_count++; 2262 spin_unlock(&sbi->stat_lock); 2263 } 2264 } 2265 2266 if (f2fs_block_unit_discard(sbi) && 2267 f2fs_test_and_clear_bit(offset, se->discard_map)) 2268 sbi->discard_blks++; 2269 } 2270 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2271 se->ckpt_valid_blocks += del; 2272 2273 __mark_sit_entry_dirty(sbi, segno); 2274 2275 /* update total number of valid blocks to be written in ckpt area */ 2276 SIT_I(sbi)->written_valid_blocks += del; 2277 2278 if (__is_large_section(sbi)) 2279 get_sec_entry(sbi, segno)->valid_blocks += del; 2280 } 2281 2282 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2283 { 2284 unsigned int segno = GET_SEGNO(sbi, addr); 2285 struct sit_info *sit_i = SIT_I(sbi); 2286 2287 f2fs_bug_on(sbi, addr == NULL_ADDR); 2288 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2289 return; 2290 2291 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2292 f2fs_invalidate_compress_page(sbi, addr); 2293 2294 /* add it into sit main buffer */ 2295 down_write(&sit_i->sentry_lock); 2296 2297 update_segment_mtime(sbi, addr, 0); 2298 update_sit_entry(sbi, addr, -1); 2299 2300 /* add it into dirty seglist */ 2301 locate_dirty_segment(sbi, segno); 2302 2303 up_write(&sit_i->sentry_lock); 2304 } 2305 2306 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2307 { 2308 struct sit_info *sit_i = SIT_I(sbi); 2309 unsigned int segno, offset; 2310 struct seg_entry *se; 2311 bool is_cp = false; 2312 2313 if (!__is_valid_data_blkaddr(blkaddr)) 2314 return true; 2315 2316 down_read(&sit_i->sentry_lock); 2317 2318 segno = GET_SEGNO(sbi, blkaddr); 2319 se = get_seg_entry(sbi, segno); 2320 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2321 2322 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2323 is_cp = true; 2324 2325 up_read(&sit_i->sentry_lock); 2326 2327 return is_cp; 2328 } 2329 2330 /* 2331 * This function should be resided under the curseg_mutex lock 2332 */ 2333 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2334 struct f2fs_summary *sum) 2335 { 2336 struct curseg_info *curseg = CURSEG_I(sbi, type); 2337 void *addr = curseg->sum_blk; 2338 2339 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2340 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2341 } 2342 2343 /* 2344 * Calculate the number of current summary pages for writing 2345 */ 2346 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2347 { 2348 int valid_sum_count = 0; 2349 int i, sum_in_page; 2350 2351 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2352 if (sbi->ckpt->alloc_type[i] == SSR) 2353 valid_sum_count += sbi->blocks_per_seg; 2354 else { 2355 if (for_ra) 2356 valid_sum_count += le16_to_cpu( 2357 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2358 else 2359 valid_sum_count += curseg_blkoff(sbi, i); 2360 } 2361 } 2362 2363 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2364 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2365 if (valid_sum_count <= sum_in_page) 2366 return 1; 2367 else if ((valid_sum_count - sum_in_page) <= 2368 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2369 return 2; 2370 return 3; 2371 } 2372 2373 /* 2374 * Caller should put this summary page 2375 */ 2376 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2377 { 2378 if (unlikely(f2fs_cp_error(sbi))) 2379 return ERR_PTR(-EIO); 2380 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2381 } 2382 2383 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2384 void *src, block_t blk_addr) 2385 { 2386 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2387 2388 memcpy(page_address(page), src, PAGE_SIZE); 2389 set_page_dirty(page); 2390 f2fs_put_page(page, 1); 2391 } 2392 2393 static void write_sum_page(struct f2fs_sb_info *sbi, 2394 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2395 { 2396 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2397 } 2398 2399 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2400 int type, block_t blk_addr) 2401 { 2402 struct curseg_info *curseg = CURSEG_I(sbi, type); 2403 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2404 struct f2fs_summary_block *src = curseg->sum_blk; 2405 struct f2fs_summary_block *dst; 2406 2407 dst = (struct f2fs_summary_block *)page_address(page); 2408 memset(dst, 0, PAGE_SIZE); 2409 2410 mutex_lock(&curseg->curseg_mutex); 2411 2412 down_read(&curseg->journal_rwsem); 2413 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2414 up_read(&curseg->journal_rwsem); 2415 2416 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2417 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2418 2419 mutex_unlock(&curseg->curseg_mutex); 2420 2421 set_page_dirty(page); 2422 f2fs_put_page(page, 1); 2423 } 2424 2425 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2426 struct curseg_info *curseg, int type) 2427 { 2428 unsigned int segno = curseg->segno + 1; 2429 struct free_segmap_info *free_i = FREE_I(sbi); 2430 2431 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2432 return !test_bit(segno, free_i->free_segmap); 2433 return 0; 2434 } 2435 2436 /* 2437 * Find a new segment from the free segments bitmap to right order 2438 * This function should be returned with success, otherwise BUG 2439 */ 2440 static void get_new_segment(struct f2fs_sb_info *sbi, 2441 unsigned int *newseg, bool new_sec, int dir) 2442 { 2443 struct free_segmap_info *free_i = FREE_I(sbi); 2444 unsigned int segno, secno, zoneno; 2445 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2446 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2447 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2448 unsigned int left_start = hint; 2449 bool init = true; 2450 int go_left = 0; 2451 int i; 2452 2453 spin_lock(&free_i->segmap_lock); 2454 2455 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2456 segno = find_next_zero_bit(free_i->free_segmap, 2457 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2458 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2459 goto got_it; 2460 } 2461 find_other_zone: 2462 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2463 if (secno >= MAIN_SECS(sbi)) { 2464 if (dir == ALLOC_RIGHT) { 2465 secno = find_first_zero_bit(free_i->free_secmap, 2466 MAIN_SECS(sbi)); 2467 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2468 } else { 2469 go_left = 1; 2470 left_start = hint - 1; 2471 } 2472 } 2473 if (go_left == 0) 2474 goto skip_left; 2475 2476 while (test_bit(left_start, free_i->free_secmap)) { 2477 if (left_start > 0) { 2478 left_start--; 2479 continue; 2480 } 2481 left_start = find_first_zero_bit(free_i->free_secmap, 2482 MAIN_SECS(sbi)); 2483 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2484 break; 2485 } 2486 secno = left_start; 2487 skip_left: 2488 segno = GET_SEG_FROM_SEC(sbi, secno); 2489 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2490 2491 /* give up on finding another zone */ 2492 if (!init) 2493 goto got_it; 2494 if (sbi->secs_per_zone == 1) 2495 goto got_it; 2496 if (zoneno == old_zoneno) 2497 goto got_it; 2498 if (dir == ALLOC_LEFT) { 2499 if (!go_left && zoneno + 1 >= total_zones) 2500 goto got_it; 2501 if (go_left && zoneno == 0) 2502 goto got_it; 2503 } 2504 for (i = 0; i < NR_CURSEG_TYPE; i++) 2505 if (CURSEG_I(sbi, i)->zone == zoneno) 2506 break; 2507 2508 if (i < NR_CURSEG_TYPE) { 2509 /* zone is in user, try another */ 2510 if (go_left) 2511 hint = zoneno * sbi->secs_per_zone - 1; 2512 else if (zoneno + 1 >= total_zones) 2513 hint = 0; 2514 else 2515 hint = (zoneno + 1) * sbi->secs_per_zone; 2516 init = false; 2517 goto find_other_zone; 2518 } 2519 got_it: 2520 /* set it as dirty segment in free segmap */ 2521 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2522 __set_inuse(sbi, segno); 2523 *newseg = segno; 2524 spin_unlock(&free_i->segmap_lock); 2525 } 2526 2527 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2528 { 2529 struct curseg_info *curseg = CURSEG_I(sbi, type); 2530 struct summary_footer *sum_footer; 2531 unsigned short seg_type = curseg->seg_type; 2532 2533 curseg->inited = true; 2534 curseg->segno = curseg->next_segno; 2535 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2536 curseg->next_blkoff = 0; 2537 curseg->next_segno = NULL_SEGNO; 2538 2539 sum_footer = &(curseg->sum_blk->footer); 2540 memset(sum_footer, 0, sizeof(struct summary_footer)); 2541 2542 sanity_check_seg_type(sbi, seg_type); 2543 2544 if (IS_DATASEG(seg_type)) 2545 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2546 if (IS_NODESEG(seg_type)) 2547 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2548 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2549 } 2550 2551 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2552 { 2553 struct curseg_info *curseg = CURSEG_I(sbi, type); 2554 unsigned short seg_type = curseg->seg_type; 2555 2556 sanity_check_seg_type(sbi, seg_type); 2557 if (f2fs_need_rand_seg(sbi)) 2558 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec); 2559 2560 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2561 if (__is_large_section(sbi)) 2562 return curseg->segno; 2563 2564 /* inmem log may not locate on any segment after mount */ 2565 if (!curseg->inited) 2566 return 0; 2567 2568 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2569 return 0; 2570 2571 if (test_opt(sbi, NOHEAP) && 2572 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2573 return 0; 2574 2575 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2576 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2577 2578 /* find segments from 0 to reuse freed segments */ 2579 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2580 return 0; 2581 2582 return curseg->segno; 2583 } 2584 2585 /* 2586 * Allocate a current working segment. 2587 * This function always allocates a free segment in LFS manner. 2588 */ 2589 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2590 { 2591 struct curseg_info *curseg = CURSEG_I(sbi, type); 2592 unsigned short seg_type = curseg->seg_type; 2593 unsigned int segno = curseg->segno; 2594 int dir = ALLOC_LEFT; 2595 2596 if (curseg->inited) 2597 write_sum_page(sbi, curseg->sum_blk, 2598 GET_SUM_BLOCK(sbi, segno)); 2599 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2600 dir = ALLOC_RIGHT; 2601 2602 if (test_opt(sbi, NOHEAP)) 2603 dir = ALLOC_RIGHT; 2604 2605 segno = __get_next_segno(sbi, type); 2606 get_new_segment(sbi, &segno, new_sec, dir); 2607 curseg->next_segno = segno; 2608 reset_curseg(sbi, type, 1); 2609 curseg->alloc_type = LFS; 2610 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2611 curseg->fragment_remained_chunk = 2612 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2613 } 2614 2615 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2616 int segno, block_t start) 2617 { 2618 struct seg_entry *se = get_seg_entry(sbi, segno); 2619 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2620 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2621 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2622 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2623 int i; 2624 2625 for (i = 0; i < entries; i++) 2626 target_map[i] = ckpt_map[i] | cur_map[i]; 2627 2628 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2629 } 2630 2631 /* 2632 * If a segment is written by LFS manner, next block offset is just obtained 2633 * by increasing the current block offset. However, if a segment is written by 2634 * SSR manner, next block offset obtained by calling __next_free_blkoff 2635 */ 2636 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2637 struct curseg_info *seg) 2638 { 2639 if (seg->alloc_type == SSR) { 2640 seg->next_blkoff = 2641 __next_free_blkoff(sbi, seg->segno, 2642 seg->next_blkoff + 1); 2643 } else { 2644 seg->next_blkoff++; 2645 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) { 2646 /* To allocate block chunks in different sizes, use random number */ 2647 if (--seg->fragment_remained_chunk <= 0) { 2648 seg->fragment_remained_chunk = 2649 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2650 seg->next_blkoff += 2651 get_random_u32_inclusive(1, sbi->max_fragment_hole); 2652 } 2653 } 2654 } 2655 } 2656 2657 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2658 { 2659 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2660 } 2661 2662 /* 2663 * This function always allocates a used segment(from dirty seglist) by SSR 2664 * manner, so it should recover the existing segment information of valid blocks 2665 */ 2666 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2667 { 2668 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2669 struct curseg_info *curseg = CURSEG_I(sbi, type); 2670 unsigned int new_segno = curseg->next_segno; 2671 struct f2fs_summary_block *sum_node; 2672 struct page *sum_page; 2673 2674 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2675 2676 __set_test_and_inuse(sbi, new_segno); 2677 2678 mutex_lock(&dirty_i->seglist_lock); 2679 __remove_dirty_segment(sbi, new_segno, PRE); 2680 __remove_dirty_segment(sbi, new_segno, DIRTY); 2681 mutex_unlock(&dirty_i->seglist_lock); 2682 2683 reset_curseg(sbi, type, 1); 2684 curseg->alloc_type = SSR; 2685 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2686 2687 sum_page = f2fs_get_sum_page(sbi, new_segno); 2688 if (IS_ERR(sum_page)) { 2689 /* GC won't be able to use stale summary pages by cp_error */ 2690 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2691 return; 2692 } 2693 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2694 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2695 f2fs_put_page(sum_page, 1); 2696 } 2697 2698 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2699 int alloc_mode, unsigned long long age); 2700 2701 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2702 int target_type, int alloc_mode, 2703 unsigned long long age) 2704 { 2705 struct curseg_info *curseg = CURSEG_I(sbi, type); 2706 2707 curseg->seg_type = target_type; 2708 2709 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2710 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2711 2712 curseg->seg_type = se->type; 2713 change_curseg(sbi, type); 2714 } else { 2715 /* allocate cold segment by default */ 2716 curseg->seg_type = CURSEG_COLD_DATA; 2717 new_curseg(sbi, type, true); 2718 } 2719 stat_inc_seg_type(sbi, curseg); 2720 } 2721 2722 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2723 { 2724 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2725 2726 if (!sbi->am.atgc_enabled) 2727 return; 2728 2729 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2730 2731 mutex_lock(&curseg->curseg_mutex); 2732 down_write(&SIT_I(sbi)->sentry_lock); 2733 2734 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2735 2736 up_write(&SIT_I(sbi)->sentry_lock); 2737 mutex_unlock(&curseg->curseg_mutex); 2738 2739 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2740 2741 } 2742 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2743 { 2744 __f2fs_init_atgc_curseg(sbi); 2745 } 2746 2747 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2748 { 2749 struct curseg_info *curseg = CURSEG_I(sbi, type); 2750 2751 mutex_lock(&curseg->curseg_mutex); 2752 if (!curseg->inited) 2753 goto out; 2754 2755 if (get_valid_blocks(sbi, curseg->segno, false)) { 2756 write_sum_page(sbi, curseg->sum_blk, 2757 GET_SUM_BLOCK(sbi, curseg->segno)); 2758 } else { 2759 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2760 __set_test_and_free(sbi, curseg->segno, true); 2761 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2762 } 2763 out: 2764 mutex_unlock(&curseg->curseg_mutex); 2765 } 2766 2767 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2768 { 2769 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2770 2771 if (sbi->am.atgc_enabled) 2772 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2773 } 2774 2775 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2776 { 2777 struct curseg_info *curseg = CURSEG_I(sbi, type); 2778 2779 mutex_lock(&curseg->curseg_mutex); 2780 if (!curseg->inited) 2781 goto out; 2782 if (get_valid_blocks(sbi, curseg->segno, false)) 2783 goto out; 2784 2785 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2786 __set_test_and_inuse(sbi, curseg->segno); 2787 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2788 out: 2789 mutex_unlock(&curseg->curseg_mutex); 2790 } 2791 2792 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2793 { 2794 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2795 2796 if (sbi->am.atgc_enabled) 2797 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2798 } 2799 2800 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2801 int alloc_mode, unsigned long long age) 2802 { 2803 struct curseg_info *curseg = CURSEG_I(sbi, type); 2804 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2805 unsigned segno = NULL_SEGNO; 2806 unsigned short seg_type = curseg->seg_type; 2807 int i, cnt; 2808 bool reversed = false; 2809 2810 sanity_check_seg_type(sbi, seg_type); 2811 2812 /* f2fs_need_SSR() already forces to do this */ 2813 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2814 curseg->next_segno = segno; 2815 return 1; 2816 } 2817 2818 /* For node segments, let's do SSR more intensively */ 2819 if (IS_NODESEG(seg_type)) { 2820 if (seg_type >= CURSEG_WARM_NODE) { 2821 reversed = true; 2822 i = CURSEG_COLD_NODE; 2823 } else { 2824 i = CURSEG_HOT_NODE; 2825 } 2826 cnt = NR_CURSEG_NODE_TYPE; 2827 } else { 2828 if (seg_type >= CURSEG_WARM_DATA) { 2829 reversed = true; 2830 i = CURSEG_COLD_DATA; 2831 } else { 2832 i = CURSEG_HOT_DATA; 2833 } 2834 cnt = NR_CURSEG_DATA_TYPE; 2835 } 2836 2837 for (; cnt-- > 0; reversed ? i-- : i++) { 2838 if (i == seg_type) 2839 continue; 2840 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2841 curseg->next_segno = segno; 2842 return 1; 2843 } 2844 } 2845 2846 /* find valid_blocks=0 in dirty list */ 2847 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2848 segno = get_free_segment(sbi); 2849 if (segno != NULL_SEGNO) { 2850 curseg->next_segno = segno; 2851 return 1; 2852 } 2853 } 2854 return 0; 2855 } 2856 2857 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 2858 { 2859 struct curseg_info *curseg = CURSEG_I(sbi, type); 2860 2861 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2862 curseg->seg_type == CURSEG_WARM_NODE) 2863 return true; 2864 if (curseg->alloc_type == LFS && 2865 is_next_segment_free(sbi, curseg, type) && 2866 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2867 return true; 2868 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 2869 return true; 2870 return false; 2871 } 2872 2873 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2874 unsigned int start, unsigned int end) 2875 { 2876 struct curseg_info *curseg = CURSEG_I(sbi, type); 2877 unsigned int segno; 2878 2879 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2880 mutex_lock(&curseg->curseg_mutex); 2881 down_write(&SIT_I(sbi)->sentry_lock); 2882 2883 segno = CURSEG_I(sbi, type)->segno; 2884 if (segno < start || segno > end) 2885 goto unlock; 2886 2887 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2888 change_curseg(sbi, type); 2889 else 2890 new_curseg(sbi, type, true); 2891 2892 stat_inc_seg_type(sbi, curseg); 2893 2894 locate_dirty_segment(sbi, segno); 2895 unlock: 2896 up_write(&SIT_I(sbi)->sentry_lock); 2897 2898 if (segno != curseg->segno) 2899 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2900 type, segno, curseg->segno); 2901 2902 mutex_unlock(&curseg->curseg_mutex); 2903 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2904 } 2905 2906 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 2907 bool new_sec, bool force) 2908 { 2909 struct curseg_info *curseg = CURSEG_I(sbi, type); 2910 unsigned int old_segno; 2911 2912 if (!curseg->inited) 2913 goto alloc; 2914 2915 if (force || curseg->next_blkoff || 2916 get_valid_blocks(sbi, curseg->segno, new_sec)) 2917 goto alloc; 2918 2919 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 2920 return; 2921 alloc: 2922 old_segno = curseg->segno; 2923 new_curseg(sbi, type, true); 2924 stat_inc_seg_type(sbi, curseg); 2925 locate_dirty_segment(sbi, old_segno); 2926 } 2927 2928 static void __allocate_new_section(struct f2fs_sb_info *sbi, 2929 int type, bool force) 2930 { 2931 __allocate_new_segment(sbi, type, true, force); 2932 } 2933 2934 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 2935 { 2936 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2937 down_write(&SIT_I(sbi)->sentry_lock); 2938 __allocate_new_section(sbi, type, force); 2939 up_write(&SIT_I(sbi)->sentry_lock); 2940 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2941 } 2942 2943 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2944 { 2945 int i; 2946 2947 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2948 down_write(&SIT_I(sbi)->sentry_lock); 2949 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 2950 __allocate_new_segment(sbi, i, false, false); 2951 up_write(&SIT_I(sbi)->sentry_lock); 2952 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2953 } 2954 2955 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2956 struct cp_control *cpc) 2957 { 2958 __u64 trim_start = cpc->trim_start; 2959 bool has_candidate = false; 2960 2961 down_write(&SIT_I(sbi)->sentry_lock); 2962 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2963 if (add_discard_addrs(sbi, cpc, true)) { 2964 has_candidate = true; 2965 break; 2966 } 2967 } 2968 up_write(&SIT_I(sbi)->sentry_lock); 2969 2970 cpc->trim_start = trim_start; 2971 return has_candidate; 2972 } 2973 2974 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2975 struct discard_policy *dpolicy, 2976 unsigned int start, unsigned int end) 2977 { 2978 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2979 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2980 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2981 struct discard_cmd *dc; 2982 struct blk_plug plug; 2983 int issued; 2984 unsigned int trimmed = 0; 2985 2986 next: 2987 issued = 0; 2988 2989 mutex_lock(&dcc->cmd_lock); 2990 if (unlikely(dcc->rbtree_check)) 2991 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2992 &dcc->root, false)); 2993 2994 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2995 NULL, start, 2996 (struct rb_entry **)&prev_dc, 2997 (struct rb_entry **)&next_dc, 2998 &insert_p, &insert_parent, true, NULL); 2999 if (!dc) 3000 dc = next_dc; 3001 3002 blk_start_plug(&plug); 3003 3004 while (dc && dc->lstart <= end) { 3005 struct rb_node *node; 3006 int err = 0; 3007 3008 if (dc->len < dpolicy->granularity) 3009 goto skip; 3010 3011 if (dc->state != D_PREP) { 3012 list_move_tail(&dc->list, &dcc->fstrim_list); 3013 goto skip; 3014 } 3015 3016 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3017 3018 if (issued >= dpolicy->max_requests) { 3019 start = dc->lstart + dc->len; 3020 3021 if (err) 3022 __remove_discard_cmd(sbi, dc); 3023 3024 blk_finish_plug(&plug); 3025 mutex_unlock(&dcc->cmd_lock); 3026 trimmed += __wait_all_discard_cmd(sbi, NULL); 3027 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3028 goto next; 3029 } 3030 skip: 3031 node = rb_next(&dc->rb_node); 3032 if (err) 3033 __remove_discard_cmd(sbi, dc); 3034 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3035 3036 if (fatal_signal_pending(current)) 3037 break; 3038 } 3039 3040 blk_finish_plug(&plug); 3041 mutex_unlock(&dcc->cmd_lock); 3042 3043 return trimmed; 3044 } 3045 3046 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3047 { 3048 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3049 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3050 unsigned int start_segno, end_segno; 3051 block_t start_block, end_block; 3052 struct cp_control cpc; 3053 struct discard_policy dpolicy; 3054 unsigned long long trimmed = 0; 3055 int err = 0; 3056 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3057 3058 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3059 return -EINVAL; 3060 3061 if (end < MAIN_BLKADDR(sbi)) 3062 goto out; 3063 3064 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3065 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3066 return -EFSCORRUPTED; 3067 } 3068 3069 /* start/end segment number in main_area */ 3070 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3071 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3072 GET_SEGNO(sbi, end); 3073 if (need_align) { 3074 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3075 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3076 } 3077 3078 cpc.reason = CP_DISCARD; 3079 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3080 cpc.trim_start = start_segno; 3081 cpc.trim_end = end_segno; 3082 3083 if (sbi->discard_blks == 0) 3084 goto out; 3085 3086 f2fs_down_write(&sbi->gc_lock); 3087 err = f2fs_write_checkpoint(sbi, &cpc); 3088 f2fs_up_write(&sbi->gc_lock); 3089 if (err) 3090 goto out; 3091 3092 /* 3093 * We filed discard candidates, but actually we don't need to wait for 3094 * all of them, since they'll be issued in idle time along with runtime 3095 * discard option. User configuration looks like using runtime discard 3096 * or periodic fstrim instead of it. 3097 */ 3098 if (f2fs_realtime_discard_enable(sbi)) 3099 goto out; 3100 3101 start_block = START_BLOCK(sbi, start_segno); 3102 end_block = START_BLOCK(sbi, end_segno + 1); 3103 3104 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3105 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3106 start_block, end_block); 3107 3108 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3109 start_block, end_block); 3110 out: 3111 if (!err) 3112 range->len = F2FS_BLK_TO_BYTES(trimmed); 3113 return err; 3114 } 3115 3116 static bool __has_curseg_space(struct f2fs_sb_info *sbi, 3117 struct curseg_info *curseg) 3118 { 3119 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, 3120 curseg->segno); 3121 } 3122 3123 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3124 { 3125 switch (hint) { 3126 case WRITE_LIFE_SHORT: 3127 return CURSEG_HOT_DATA; 3128 case WRITE_LIFE_EXTREME: 3129 return CURSEG_COLD_DATA; 3130 default: 3131 return CURSEG_WARM_DATA; 3132 } 3133 } 3134 3135 static int __get_segment_type_2(struct f2fs_io_info *fio) 3136 { 3137 if (fio->type == DATA) 3138 return CURSEG_HOT_DATA; 3139 else 3140 return CURSEG_HOT_NODE; 3141 } 3142 3143 static int __get_segment_type_4(struct f2fs_io_info *fio) 3144 { 3145 if (fio->type == DATA) { 3146 struct inode *inode = fio->page->mapping->host; 3147 3148 if (S_ISDIR(inode->i_mode)) 3149 return CURSEG_HOT_DATA; 3150 else 3151 return CURSEG_COLD_DATA; 3152 } else { 3153 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3154 return CURSEG_WARM_NODE; 3155 else 3156 return CURSEG_COLD_NODE; 3157 } 3158 } 3159 3160 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3161 { 3162 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3163 struct extent_info ei = {}; 3164 3165 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3166 if (!ei.age) 3167 return NO_CHECK_TYPE; 3168 if (ei.age <= sbi->hot_data_age_threshold) 3169 return CURSEG_HOT_DATA; 3170 if (ei.age <= sbi->warm_data_age_threshold) 3171 return CURSEG_WARM_DATA; 3172 return CURSEG_COLD_DATA; 3173 } 3174 return NO_CHECK_TYPE; 3175 } 3176 3177 static int __get_segment_type_6(struct f2fs_io_info *fio) 3178 { 3179 if (fio->type == DATA) { 3180 struct inode *inode = fio->page->mapping->host; 3181 int type; 3182 3183 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3184 return CURSEG_COLD_DATA_PINNED; 3185 3186 if (page_private_gcing(fio->page)) { 3187 if (fio->sbi->am.atgc_enabled && 3188 (fio->io_type == FS_DATA_IO) && 3189 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3190 return CURSEG_ALL_DATA_ATGC; 3191 else 3192 return CURSEG_COLD_DATA; 3193 } 3194 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3195 return CURSEG_COLD_DATA; 3196 3197 type = __get_age_segment_type(inode, fio->page->index); 3198 if (type != NO_CHECK_TYPE) 3199 return type; 3200 3201 if (file_is_hot(inode) || 3202 is_inode_flag_set(inode, FI_HOT_DATA) || 3203 f2fs_is_cow_file(inode)) 3204 return CURSEG_HOT_DATA; 3205 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3206 } else { 3207 if (IS_DNODE(fio->page)) 3208 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3209 CURSEG_HOT_NODE; 3210 return CURSEG_COLD_NODE; 3211 } 3212 } 3213 3214 static int __get_segment_type(struct f2fs_io_info *fio) 3215 { 3216 int type = 0; 3217 3218 switch (F2FS_OPTION(fio->sbi).active_logs) { 3219 case 2: 3220 type = __get_segment_type_2(fio); 3221 break; 3222 case 4: 3223 type = __get_segment_type_4(fio); 3224 break; 3225 case 6: 3226 type = __get_segment_type_6(fio); 3227 break; 3228 default: 3229 f2fs_bug_on(fio->sbi, true); 3230 } 3231 3232 if (IS_HOT(type)) 3233 fio->temp = HOT; 3234 else if (IS_WARM(type)) 3235 fio->temp = WARM; 3236 else 3237 fio->temp = COLD; 3238 return type; 3239 } 3240 3241 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3242 block_t old_blkaddr, block_t *new_blkaddr, 3243 struct f2fs_summary *sum, int type, 3244 struct f2fs_io_info *fio) 3245 { 3246 struct sit_info *sit_i = SIT_I(sbi); 3247 struct curseg_info *curseg = CURSEG_I(sbi, type); 3248 unsigned long long old_mtime; 3249 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3250 struct seg_entry *se = NULL; 3251 3252 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3253 3254 mutex_lock(&curseg->curseg_mutex); 3255 down_write(&sit_i->sentry_lock); 3256 3257 if (from_gc) { 3258 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3259 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3260 sanity_check_seg_type(sbi, se->type); 3261 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3262 } 3263 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3264 3265 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3266 3267 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3268 3269 /* 3270 * __add_sum_entry should be resided under the curseg_mutex 3271 * because, this function updates a summary entry in the 3272 * current summary block. 3273 */ 3274 __add_sum_entry(sbi, type, sum); 3275 3276 __refresh_next_blkoff(sbi, curseg); 3277 3278 stat_inc_block_count(sbi, curseg); 3279 3280 if (from_gc) { 3281 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3282 } else { 3283 update_segment_mtime(sbi, old_blkaddr, 0); 3284 old_mtime = 0; 3285 } 3286 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3287 3288 /* 3289 * SIT information should be updated before segment allocation, 3290 * since SSR needs latest valid block information. 3291 */ 3292 update_sit_entry(sbi, *new_blkaddr, 1); 3293 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3294 update_sit_entry(sbi, old_blkaddr, -1); 3295 3296 if (!__has_curseg_space(sbi, curseg)) { 3297 /* 3298 * Flush out current segment and replace it with new segment. 3299 */ 3300 if (from_gc) { 3301 get_atssr_segment(sbi, type, se->type, 3302 AT_SSR, se->mtime); 3303 } else { 3304 if (need_new_seg(sbi, type)) 3305 new_curseg(sbi, type, false); 3306 else 3307 change_curseg(sbi, type); 3308 stat_inc_seg_type(sbi, curseg); 3309 } 3310 } 3311 /* 3312 * segment dirty status should be updated after segment allocation, 3313 * so we just need to update status only one time after previous 3314 * segment being closed. 3315 */ 3316 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3317 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3318 3319 if (IS_DATASEG(type)) 3320 atomic64_inc(&sbi->allocated_data_blocks); 3321 3322 up_write(&sit_i->sentry_lock); 3323 3324 if (page && IS_NODESEG(type)) { 3325 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3326 3327 f2fs_inode_chksum_set(sbi, page); 3328 } 3329 3330 if (fio) { 3331 struct f2fs_bio_info *io; 3332 3333 if (F2FS_IO_ALIGNED(sbi)) 3334 fio->retry = false; 3335 3336 INIT_LIST_HEAD(&fio->list); 3337 fio->in_list = true; 3338 io = sbi->write_io[fio->type] + fio->temp; 3339 spin_lock(&io->io_lock); 3340 list_add_tail(&fio->list, &io->io_list); 3341 spin_unlock(&io->io_lock); 3342 } 3343 3344 mutex_unlock(&curseg->curseg_mutex); 3345 3346 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3347 } 3348 3349 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3350 block_t blkaddr, unsigned int blkcnt) 3351 { 3352 if (!f2fs_is_multi_device(sbi)) 3353 return; 3354 3355 while (1) { 3356 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3357 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3358 3359 /* update device state for fsync */ 3360 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3361 3362 /* update device state for checkpoint */ 3363 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3364 spin_lock(&sbi->dev_lock); 3365 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3366 spin_unlock(&sbi->dev_lock); 3367 } 3368 3369 if (blkcnt <= blks) 3370 break; 3371 blkcnt -= blks; 3372 blkaddr += blks; 3373 } 3374 } 3375 3376 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3377 { 3378 int type = __get_segment_type(fio); 3379 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3380 3381 if (keep_order) 3382 f2fs_down_read(&fio->sbi->io_order_lock); 3383 reallocate: 3384 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3385 &fio->new_blkaddr, sum, type, fio); 3386 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) { 3387 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3388 fio->old_blkaddr, fio->old_blkaddr); 3389 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr); 3390 } 3391 3392 /* writeout dirty page into bdev */ 3393 f2fs_submit_page_write(fio); 3394 if (fio->retry) { 3395 fio->old_blkaddr = fio->new_blkaddr; 3396 goto reallocate; 3397 } 3398 3399 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3400 3401 if (keep_order) 3402 f2fs_up_read(&fio->sbi->io_order_lock); 3403 } 3404 3405 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3406 enum iostat_type io_type) 3407 { 3408 struct f2fs_io_info fio = { 3409 .sbi = sbi, 3410 .type = META, 3411 .temp = HOT, 3412 .op = REQ_OP_WRITE, 3413 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3414 .old_blkaddr = page->index, 3415 .new_blkaddr = page->index, 3416 .page = page, 3417 .encrypted_page = NULL, 3418 .in_list = false, 3419 }; 3420 3421 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3422 fio.op_flags &= ~REQ_META; 3423 3424 set_page_writeback(page); 3425 ClearPageError(page); 3426 f2fs_submit_page_write(&fio); 3427 3428 stat_inc_meta_count(sbi, page->index); 3429 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3430 } 3431 3432 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3433 { 3434 struct f2fs_summary sum; 3435 3436 set_summary(&sum, nid, 0, 0); 3437 do_write_page(&sum, fio); 3438 3439 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3440 } 3441 3442 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3443 struct f2fs_io_info *fio) 3444 { 3445 struct f2fs_sb_info *sbi = fio->sbi; 3446 struct f2fs_summary sum; 3447 3448 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3449 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3450 f2fs_update_age_extent_cache(dn); 3451 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3452 do_write_page(&sum, fio); 3453 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3454 3455 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3456 } 3457 3458 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3459 { 3460 int err; 3461 struct f2fs_sb_info *sbi = fio->sbi; 3462 unsigned int segno; 3463 3464 fio->new_blkaddr = fio->old_blkaddr; 3465 /* i/o temperature is needed for passing down write hints */ 3466 __get_segment_type(fio); 3467 3468 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3469 3470 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3471 set_sbi_flag(sbi, SBI_NEED_FSCK); 3472 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3473 __func__, segno); 3474 err = -EFSCORRUPTED; 3475 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 3476 goto drop_bio; 3477 } 3478 3479 if (f2fs_cp_error(sbi)) { 3480 err = -EIO; 3481 goto drop_bio; 3482 } 3483 3484 if (fio->post_read) 3485 invalidate_mapping_pages(META_MAPPING(sbi), 3486 fio->new_blkaddr, fio->new_blkaddr); 3487 3488 stat_inc_inplace_blocks(fio->sbi); 3489 3490 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3491 err = f2fs_merge_page_bio(fio); 3492 else 3493 err = f2fs_submit_page_bio(fio); 3494 if (!err) { 3495 f2fs_update_device_state(fio->sbi, fio->ino, 3496 fio->new_blkaddr, 1); 3497 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 3498 fio->io_type, F2FS_BLKSIZE); 3499 } 3500 3501 return err; 3502 drop_bio: 3503 if (fio->bio && *(fio->bio)) { 3504 struct bio *bio = *(fio->bio); 3505 3506 bio->bi_status = BLK_STS_IOERR; 3507 bio_endio(bio); 3508 *(fio->bio) = NULL; 3509 } 3510 return err; 3511 } 3512 3513 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3514 unsigned int segno) 3515 { 3516 int i; 3517 3518 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3519 if (CURSEG_I(sbi, i)->segno == segno) 3520 break; 3521 } 3522 return i; 3523 } 3524 3525 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3526 block_t old_blkaddr, block_t new_blkaddr, 3527 bool recover_curseg, bool recover_newaddr, 3528 bool from_gc) 3529 { 3530 struct sit_info *sit_i = SIT_I(sbi); 3531 struct curseg_info *curseg; 3532 unsigned int segno, old_cursegno; 3533 struct seg_entry *se; 3534 int type; 3535 unsigned short old_blkoff; 3536 unsigned char old_alloc_type; 3537 3538 segno = GET_SEGNO(sbi, new_blkaddr); 3539 se = get_seg_entry(sbi, segno); 3540 type = se->type; 3541 3542 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3543 3544 if (!recover_curseg) { 3545 /* for recovery flow */ 3546 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3547 if (old_blkaddr == NULL_ADDR) 3548 type = CURSEG_COLD_DATA; 3549 else 3550 type = CURSEG_WARM_DATA; 3551 } 3552 } else { 3553 if (IS_CURSEG(sbi, segno)) { 3554 /* se->type is volatile as SSR allocation */ 3555 type = __f2fs_get_curseg(sbi, segno); 3556 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3557 } else { 3558 type = CURSEG_WARM_DATA; 3559 } 3560 } 3561 3562 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3563 curseg = CURSEG_I(sbi, type); 3564 3565 mutex_lock(&curseg->curseg_mutex); 3566 down_write(&sit_i->sentry_lock); 3567 3568 old_cursegno = curseg->segno; 3569 old_blkoff = curseg->next_blkoff; 3570 old_alloc_type = curseg->alloc_type; 3571 3572 /* change the current segment */ 3573 if (segno != curseg->segno) { 3574 curseg->next_segno = segno; 3575 change_curseg(sbi, type); 3576 } 3577 3578 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3579 __add_sum_entry(sbi, type, sum); 3580 3581 if (!recover_curseg || recover_newaddr) { 3582 if (!from_gc) 3583 update_segment_mtime(sbi, new_blkaddr, 0); 3584 update_sit_entry(sbi, new_blkaddr, 1); 3585 } 3586 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3587 invalidate_mapping_pages(META_MAPPING(sbi), 3588 old_blkaddr, old_blkaddr); 3589 f2fs_invalidate_compress_page(sbi, old_blkaddr); 3590 if (!from_gc) 3591 update_segment_mtime(sbi, old_blkaddr, 0); 3592 update_sit_entry(sbi, old_blkaddr, -1); 3593 } 3594 3595 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3596 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3597 3598 locate_dirty_segment(sbi, old_cursegno); 3599 3600 if (recover_curseg) { 3601 if (old_cursegno != curseg->segno) { 3602 curseg->next_segno = old_cursegno; 3603 change_curseg(sbi, type); 3604 } 3605 curseg->next_blkoff = old_blkoff; 3606 curseg->alloc_type = old_alloc_type; 3607 } 3608 3609 up_write(&sit_i->sentry_lock); 3610 mutex_unlock(&curseg->curseg_mutex); 3611 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3612 } 3613 3614 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3615 block_t old_addr, block_t new_addr, 3616 unsigned char version, bool recover_curseg, 3617 bool recover_newaddr) 3618 { 3619 struct f2fs_summary sum; 3620 3621 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3622 3623 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3624 recover_curseg, recover_newaddr, false); 3625 3626 f2fs_update_data_blkaddr(dn, new_addr); 3627 } 3628 3629 void f2fs_wait_on_page_writeback(struct page *page, 3630 enum page_type type, bool ordered, bool locked) 3631 { 3632 if (PageWriteback(page)) { 3633 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3634 3635 /* submit cached LFS IO */ 3636 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3637 /* sbumit cached IPU IO */ 3638 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3639 if (ordered) { 3640 wait_on_page_writeback(page); 3641 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3642 } else { 3643 wait_for_stable_page(page); 3644 } 3645 } 3646 } 3647 3648 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3649 { 3650 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3651 struct page *cpage; 3652 3653 if (!f2fs_post_read_required(inode)) 3654 return; 3655 3656 if (!__is_valid_data_blkaddr(blkaddr)) 3657 return; 3658 3659 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3660 if (cpage) { 3661 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3662 f2fs_put_page(cpage, 1); 3663 } 3664 } 3665 3666 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3667 block_t len) 3668 { 3669 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3670 block_t i; 3671 3672 if (!f2fs_post_read_required(inode)) 3673 return; 3674 3675 for (i = 0; i < len; i++) 3676 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3677 3678 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1); 3679 } 3680 3681 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3682 { 3683 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3684 struct curseg_info *seg_i; 3685 unsigned char *kaddr; 3686 struct page *page; 3687 block_t start; 3688 int i, j, offset; 3689 3690 start = start_sum_block(sbi); 3691 3692 page = f2fs_get_meta_page(sbi, start++); 3693 if (IS_ERR(page)) 3694 return PTR_ERR(page); 3695 kaddr = (unsigned char *)page_address(page); 3696 3697 /* Step 1: restore nat cache */ 3698 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3699 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3700 3701 /* Step 2: restore sit cache */ 3702 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3703 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3704 offset = 2 * SUM_JOURNAL_SIZE; 3705 3706 /* Step 3: restore summary entries */ 3707 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3708 unsigned short blk_off; 3709 unsigned int segno; 3710 3711 seg_i = CURSEG_I(sbi, i); 3712 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3713 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3714 seg_i->next_segno = segno; 3715 reset_curseg(sbi, i, 0); 3716 seg_i->alloc_type = ckpt->alloc_type[i]; 3717 seg_i->next_blkoff = blk_off; 3718 3719 if (seg_i->alloc_type == SSR) 3720 blk_off = sbi->blocks_per_seg; 3721 3722 for (j = 0; j < blk_off; j++) { 3723 struct f2fs_summary *s; 3724 3725 s = (struct f2fs_summary *)(kaddr + offset); 3726 seg_i->sum_blk->entries[j] = *s; 3727 offset += SUMMARY_SIZE; 3728 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3729 SUM_FOOTER_SIZE) 3730 continue; 3731 3732 f2fs_put_page(page, 1); 3733 page = NULL; 3734 3735 page = f2fs_get_meta_page(sbi, start++); 3736 if (IS_ERR(page)) 3737 return PTR_ERR(page); 3738 kaddr = (unsigned char *)page_address(page); 3739 offset = 0; 3740 } 3741 } 3742 f2fs_put_page(page, 1); 3743 return 0; 3744 } 3745 3746 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3747 { 3748 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3749 struct f2fs_summary_block *sum; 3750 struct curseg_info *curseg; 3751 struct page *new; 3752 unsigned short blk_off; 3753 unsigned int segno = 0; 3754 block_t blk_addr = 0; 3755 int err = 0; 3756 3757 /* get segment number and block addr */ 3758 if (IS_DATASEG(type)) { 3759 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3760 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3761 CURSEG_HOT_DATA]); 3762 if (__exist_node_summaries(sbi)) 3763 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3764 else 3765 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3766 } else { 3767 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3768 CURSEG_HOT_NODE]); 3769 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3770 CURSEG_HOT_NODE]); 3771 if (__exist_node_summaries(sbi)) 3772 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3773 type - CURSEG_HOT_NODE); 3774 else 3775 blk_addr = GET_SUM_BLOCK(sbi, segno); 3776 } 3777 3778 new = f2fs_get_meta_page(sbi, blk_addr); 3779 if (IS_ERR(new)) 3780 return PTR_ERR(new); 3781 sum = (struct f2fs_summary_block *)page_address(new); 3782 3783 if (IS_NODESEG(type)) { 3784 if (__exist_node_summaries(sbi)) { 3785 struct f2fs_summary *ns = &sum->entries[0]; 3786 int i; 3787 3788 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3789 ns->version = 0; 3790 ns->ofs_in_node = 0; 3791 } 3792 } else { 3793 err = f2fs_restore_node_summary(sbi, segno, sum); 3794 if (err) 3795 goto out; 3796 } 3797 } 3798 3799 /* set uncompleted segment to curseg */ 3800 curseg = CURSEG_I(sbi, type); 3801 mutex_lock(&curseg->curseg_mutex); 3802 3803 /* update journal info */ 3804 down_write(&curseg->journal_rwsem); 3805 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3806 up_write(&curseg->journal_rwsem); 3807 3808 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3809 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3810 curseg->next_segno = segno; 3811 reset_curseg(sbi, type, 0); 3812 curseg->alloc_type = ckpt->alloc_type[type]; 3813 curseg->next_blkoff = blk_off; 3814 mutex_unlock(&curseg->curseg_mutex); 3815 out: 3816 f2fs_put_page(new, 1); 3817 return err; 3818 } 3819 3820 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3821 { 3822 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3823 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3824 int type = CURSEG_HOT_DATA; 3825 int err; 3826 3827 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3828 int npages = f2fs_npages_for_summary_flush(sbi, true); 3829 3830 if (npages >= 2) 3831 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3832 META_CP, true); 3833 3834 /* restore for compacted data summary */ 3835 err = read_compacted_summaries(sbi); 3836 if (err) 3837 return err; 3838 type = CURSEG_HOT_NODE; 3839 } 3840 3841 if (__exist_node_summaries(sbi)) 3842 f2fs_ra_meta_pages(sbi, 3843 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 3844 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 3845 3846 for (; type <= CURSEG_COLD_NODE; type++) { 3847 err = read_normal_summaries(sbi, type); 3848 if (err) 3849 return err; 3850 } 3851 3852 /* sanity check for summary blocks */ 3853 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3854 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3855 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 3856 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3857 return -EINVAL; 3858 } 3859 3860 return 0; 3861 } 3862 3863 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3864 { 3865 struct page *page; 3866 unsigned char *kaddr; 3867 struct f2fs_summary *summary; 3868 struct curseg_info *seg_i; 3869 int written_size = 0; 3870 int i, j; 3871 3872 page = f2fs_grab_meta_page(sbi, blkaddr++); 3873 kaddr = (unsigned char *)page_address(page); 3874 memset(kaddr, 0, PAGE_SIZE); 3875 3876 /* Step 1: write nat cache */ 3877 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3878 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3879 written_size += SUM_JOURNAL_SIZE; 3880 3881 /* Step 2: write sit cache */ 3882 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3883 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3884 written_size += SUM_JOURNAL_SIZE; 3885 3886 /* Step 3: write summary entries */ 3887 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3888 unsigned short blkoff; 3889 3890 seg_i = CURSEG_I(sbi, i); 3891 if (sbi->ckpt->alloc_type[i] == SSR) 3892 blkoff = sbi->blocks_per_seg; 3893 else 3894 blkoff = curseg_blkoff(sbi, i); 3895 3896 for (j = 0; j < blkoff; j++) { 3897 if (!page) { 3898 page = f2fs_grab_meta_page(sbi, blkaddr++); 3899 kaddr = (unsigned char *)page_address(page); 3900 memset(kaddr, 0, PAGE_SIZE); 3901 written_size = 0; 3902 } 3903 summary = (struct f2fs_summary *)(kaddr + written_size); 3904 *summary = seg_i->sum_blk->entries[j]; 3905 written_size += SUMMARY_SIZE; 3906 3907 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3908 SUM_FOOTER_SIZE) 3909 continue; 3910 3911 set_page_dirty(page); 3912 f2fs_put_page(page, 1); 3913 page = NULL; 3914 } 3915 } 3916 if (page) { 3917 set_page_dirty(page); 3918 f2fs_put_page(page, 1); 3919 } 3920 } 3921 3922 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3923 block_t blkaddr, int type) 3924 { 3925 int i, end; 3926 3927 if (IS_DATASEG(type)) 3928 end = type + NR_CURSEG_DATA_TYPE; 3929 else 3930 end = type + NR_CURSEG_NODE_TYPE; 3931 3932 for (i = type; i < end; i++) 3933 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3934 } 3935 3936 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3937 { 3938 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3939 write_compacted_summaries(sbi, start_blk); 3940 else 3941 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3942 } 3943 3944 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3945 { 3946 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3947 } 3948 3949 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3950 unsigned int val, int alloc) 3951 { 3952 int i; 3953 3954 if (type == NAT_JOURNAL) { 3955 for (i = 0; i < nats_in_cursum(journal); i++) { 3956 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3957 return i; 3958 } 3959 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3960 return update_nats_in_cursum(journal, 1); 3961 } else if (type == SIT_JOURNAL) { 3962 for (i = 0; i < sits_in_cursum(journal); i++) 3963 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3964 return i; 3965 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3966 return update_sits_in_cursum(journal, 1); 3967 } 3968 return -1; 3969 } 3970 3971 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3972 unsigned int segno) 3973 { 3974 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 3975 } 3976 3977 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3978 unsigned int start) 3979 { 3980 struct sit_info *sit_i = SIT_I(sbi); 3981 struct page *page; 3982 pgoff_t src_off, dst_off; 3983 3984 src_off = current_sit_addr(sbi, start); 3985 dst_off = next_sit_addr(sbi, src_off); 3986 3987 page = f2fs_grab_meta_page(sbi, dst_off); 3988 seg_info_to_sit_page(sbi, page, start); 3989 3990 set_page_dirty(page); 3991 set_to_next_sit(sit_i, start); 3992 3993 return page; 3994 } 3995 3996 static struct sit_entry_set *grab_sit_entry_set(void) 3997 { 3998 struct sit_entry_set *ses = 3999 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4000 GFP_NOFS, true, NULL); 4001 4002 ses->entry_cnt = 0; 4003 INIT_LIST_HEAD(&ses->set_list); 4004 return ses; 4005 } 4006 4007 static void release_sit_entry_set(struct sit_entry_set *ses) 4008 { 4009 list_del(&ses->set_list); 4010 kmem_cache_free(sit_entry_set_slab, ses); 4011 } 4012 4013 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4014 struct list_head *head) 4015 { 4016 struct sit_entry_set *next = ses; 4017 4018 if (list_is_last(&ses->set_list, head)) 4019 return; 4020 4021 list_for_each_entry_continue(next, head, set_list) 4022 if (ses->entry_cnt <= next->entry_cnt) { 4023 list_move_tail(&ses->set_list, &next->set_list); 4024 return; 4025 } 4026 4027 list_move_tail(&ses->set_list, head); 4028 } 4029 4030 static void add_sit_entry(unsigned int segno, struct list_head *head) 4031 { 4032 struct sit_entry_set *ses; 4033 unsigned int start_segno = START_SEGNO(segno); 4034 4035 list_for_each_entry(ses, head, set_list) { 4036 if (ses->start_segno == start_segno) { 4037 ses->entry_cnt++; 4038 adjust_sit_entry_set(ses, head); 4039 return; 4040 } 4041 } 4042 4043 ses = grab_sit_entry_set(); 4044 4045 ses->start_segno = start_segno; 4046 ses->entry_cnt++; 4047 list_add(&ses->set_list, head); 4048 } 4049 4050 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4051 { 4052 struct f2fs_sm_info *sm_info = SM_I(sbi); 4053 struct list_head *set_list = &sm_info->sit_entry_set; 4054 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4055 unsigned int segno; 4056 4057 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4058 add_sit_entry(segno, set_list); 4059 } 4060 4061 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4062 { 4063 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4064 struct f2fs_journal *journal = curseg->journal; 4065 int i; 4066 4067 down_write(&curseg->journal_rwsem); 4068 for (i = 0; i < sits_in_cursum(journal); i++) { 4069 unsigned int segno; 4070 bool dirtied; 4071 4072 segno = le32_to_cpu(segno_in_journal(journal, i)); 4073 dirtied = __mark_sit_entry_dirty(sbi, segno); 4074 4075 if (!dirtied) 4076 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4077 } 4078 update_sits_in_cursum(journal, -i); 4079 up_write(&curseg->journal_rwsem); 4080 } 4081 4082 /* 4083 * CP calls this function, which flushes SIT entries including sit_journal, 4084 * and moves prefree segs to free segs. 4085 */ 4086 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4087 { 4088 struct sit_info *sit_i = SIT_I(sbi); 4089 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4090 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4091 struct f2fs_journal *journal = curseg->journal; 4092 struct sit_entry_set *ses, *tmp; 4093 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4094 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4095 struct seg_entry *se; 4096 4097 down_write(&sit_i->sentry_lock); 4098 4099 if (!sit_i->dirty_sentries) 4100 goto out; 4101 4102 /* 4103 * add and account sit entries of dirty bitmap in sit entry 4104 * set temporarily 4105 */ 4106 add_sits_in_set(sbi); 4107 4108 /* 4109 * if there are no enough space in journal to store dirty sit 4110 * entries, remove all entries from journal and add and account 4111 * them in sit entry set. 4112 */ 4113 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4114 !to_journal) 4115 remove_sits_in_journal(sbi); 4116 4117 /* 4118 * there are two steps to flush sit entries: 4119 * #1, flush sit entries to journal in current cold data summary block. 4120 * #2, flush sit entries to sit page. 4121 */ 4122 list_for_each_entry_safe(ses, tmp, head, set_list) { 4123 struct page *page = NULL; 4124 struct f2fs_sit_block *raw_sit = NULL; 4125 unsigned int start_segno = ses->start_segno; 4126 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4127 (unsigned long)MAIN_SEGS(sbi)); 4128 unsigned int segno = start_segno; 4129 4130 if (to_journal && 4131 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4132 to_journal = false; 4133 4134 if (to_journal) { 4135 down_write(&curseg->journal_rwsem); 4136 } else { 4137 page = get_next_sit_page(sbi, start_segno); 4138 raw_sit = page_address(page); 4139 } 4140 4141 /* flush dirty sit entries in region of current sit set */ 4142 for_each_set_bit_from(segno, bitmap, end) { 4143 int offset, sit_offset; 4144 4145 se = get_seg_entry(sbi, segno); 4146 #ifdef CONFIG_F2FS_CHECK_FS 4147 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4148 SIT_VBLOCK_MAP_SIZE)) 4149 f2fs_bug_on(sbi, 1); 4150 #endif 4151 4152 /* add discard candidates */ 4153 if (!(cpc->reason & CP_DISCARD)) { 4154 cpc->trim_start = segno; 4155 add_discard_addrs(sbi, cpc, false); 4156 } 4157 4158 if (to_journal) { 4159 offset = f2fs_lookup_journal_in_cursum(journal, 4160 SIT_JOURNAL, segno, 1); 4161 f2fs_bug_on(sbi, offset < 0); 4162 segno_in_journal(journal, offset) = 4163 cpu_to_le32(segno); 4164 seg_info_to_raw_sit(se, 4165 &sit_in_journal(journal, offset)); 4166 check_block_count(sbi, segno, 4167 &sit_in_journal(journal, offset)); 4168 } else { 4169 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4170 seg_info_to_raw_sit(se, 4171 &raw_sit->entries[sit_offset]); 4172 check_block_count(sbi, segno, 4173 &raw_sit->entries[sit_offset]); 4174 } 4175 4176 __clear_bit(segno, bitmap); 4177 sit_i->dirty_sentries--; 4178 ses->entry_cnt--; 4179 } 4180 4181 if (to_journal) 4182 up_write(&curseg->journal_rwsem); 4183 else 4184 f2fs_put_page(page, 1); 4185 4186 f2fs_bug_on(sbi, ses->entry_cnt); 4187 release_sit_entry_set(ses); 4188 } 4189 4190 f2fs_bug_on(sbi, !list_empty(head)); 4191 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4192 out: 4193 if (cpc->reason & CP_DISCARD) { 4194 __u64 trim_start = cpc->trim_start; 4195 4196 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4197 add_discard_addrs(sbi, cpc, false); 4198 4199 cpc->trim_start = trim_start; 4200 } 4201 up_write(&sit_i->sentry_lock); 4202 4203 set_prefree_as_free_segments(sbi); 4204 } 4205 4206 static int build_sit_info(struct f2fs_sb_info *sbi) 4207 { 4208 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4209 struct sit_info *sit_i; 4210 unsigned int sit_segs, start; 4211 char *src_bitmap, *bitmap; 4212 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4213 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4214 4215 /* allocate memory for SIT information */ 4216 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4217 if (!sit_i) 4218 return -ENOMEM; 4219 4220 SM_I(sbi)->sit_info = sit_i; 4221 4222 sit_i->sentries = 4223 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4224 MAIN_SEGS(sbi)), 4225 GFP_KERNEL); 4226 if (!sit_i->sentries) 4227 return -ENOMEM; 4228 4229 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4230 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4231 GFP_KERNEL); 4232 if (!sit_i->dirty_sentries_bitmap) 4233 return -ENOMEM; 4234 4235 #ifdef CONFIG_F2FS_CHECK_FS 4236 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4237 #else 4238 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4239 #endif 4240 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4241 if (!sit_i->bitmap) 4242 return -ENOMEM; 4243 4244 bitmap = sit_i->bitmap; 4245 4246 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4247 sit_i->sentries[start].cur_valid_map = bitmap; 4248 bitmap += SIT_VBLOCK_MAP_SIZE; 4249 4250 sit_i->sentries[start].ckpt_valid_map = bitmap; 4251 bitmap += SIT_VBLOCK_MAP_SIZE; 4252 4253 #ifdef CONFIG_F2FS_CHECK_FS 4254 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4255 bitmap += SIT_VBLOCK_MAP_SIZE; 4256 #endif 4257 4258 if (discard_map) { 4259 sit_i->sentries[start].discard_map = bitmap; 4260 bitmap += SIT_VBLOCK_MAP_SIZE; 4261 } 4262 } 4263 4264 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4265 if (!sit_i->tmp_map) 4266 return -ENOMEM; 4267 4268 if (__is_large_section(sbi)) { 4269 sit_i->sec_entries = 4270 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4271 MAIN_SECS(sbi)), 4272 GFP_KERNEL); 4273 if (!sit_i->sec_entries) 4274 return -ENOMEM; 4275 } 4276 4277 /* get information related with SIT */ 4278 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4279 4280 /* setup SIT bitmap from ckeckpoint pack */ 4281 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4282 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4283 4284 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4285 if (!sit_i->sit_bitmap) 4286 return -ENOMEM; 4287 4288 #ifdef CONFIG_F2FS_CHECK_FS 4289 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4290 sit_bitmap_size, GFP_KERNEL); 4291 if (!sit_i->sit_bitmap_mir) 4292 return -ENOMEM; 4293 4294 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4295 main_bitmap_size, GFP_KERNEL); 4296 if (!sit_i->invalid_segmap) 4297 return -ENOMEM; 4298 #endif 4299 4300 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4301 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4302 sit_i->written_valid_blocks = 0; 4303 sit_i->bitmap_size = sit_bitmap_size; 4304 sit_i->dirty_sentries = 0; 4305 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4306 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4307 sit_i->mounted_time = ktime_get_boottime_seconds(); 4308 init_rwsem(&sit_i->sentry_lock); 4309 return 0; 4310 } 4311 4312 static int build_free_segmap(struct f2fs_sb_info *sbi) 4313 { 4314 struct free_segmap_info *free_i; 4315 unsigned int bitmap_size, sec_bitmap_size; 4316 4317 /* allocate memory for free segmap information */ 4318 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4319 if (!free_i) 4320 return -ENOMEM; 4321 4322 SM_I(sbi)->free_info = free_i; 4323 4324 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4325 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4326 if (!free_i->free_segmap) 4327 return -ENOMEM; 4328 4329 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4330 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4331 if (!free_i->free_secmap) 4332 return -ENOMEM; 4333 4334 /* set all segments as dirty temporarily */ 4335 memset(free_i->free_segmap, 0xff, bitmap_size); 4336 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4337 4338 /* init free segmap information */ 4339 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4340 free_i->free_segments = 0; 4341 free_i->free_sections = 0; 4342 spin_lock_init(&free_i->segmap_lock); 4343 return 0; 4344 } 4345 4346 static int build_curseg(struct f2fs_sb_info *sbi) 4347 { 4348 struct curseg_info *array; 4349 int i; 4350 4351 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4352 sizeof(*array)), GFP_KERNEL); 4353 if (!array) 4354 return -ENOMEM; 4355 4356 SM_I(sbi)->curseg_array = array; 4357 4358 for (i = 0; i < NO_CHECK_TYPE; i++) { 4359 mutex_init(&array[i].curseg_mutex); 4360 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4361 if (!array[i].sum_blk) 4362 return -ENOMEM; 4363 init_rwsem(&array[i].journal_rwsem); 4364 array[i].journal = f2fs_kzalloc(sbi, 4365 sizeof(struct f2fs_journal), GFP_KERNEL); 4366 if (!array[i].journal) 4367 return -ENOMEM; 4368 if (i < NR_PERSISTENT_LOG) 4369 array[i].seg_type = CURSEG_HOT_DATA + i; 4370 else if (i == CURSEG_COLD_DATA_PINNED) 4371 array[i].seg_type = CURSEG_COLD_DATA; 4372 else if (i == CURSEG_ALL_DATA_ATGC) 4373 array[i].seg_type = CURSEG_COLD_DATA; 4374 array[i].segno = NULL_SEGNO; 4375 array[i].next_blkoff = 0; 4376 array[i].inited = false; 4377 } 4378 return restore_curseg_summaries(sbi); 4379 } 4380 4381 static int build_sit_entries(struct f2fs_sb_info *sbi) 4382 { 4383 struct sit_info *sit_i = SIT_I(sbi); 4384 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4385 struct f2fs_journal *journal = curseg->journal; 4386 struct seg_entry *se; 4387 struct f2fs_sit_entry sit; 4388 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4389 unsigned int i, start, end; 4390 unsigned int readed, start_blk = 0; 4391 int err = 0; 4392 block_t sit_valid_blocks[2] = {0, 0}; 4393 4394 do { 4395 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4396 META_SIT, true); 4397 4398 start = start_blk * sit_i->sents_per_block; 4399 end = (start_blk + readed) * sit_i->sents_per_block; 4400 4401 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4402 struct f2fs_sit_block *sit_blk; 4403 struct page *page; 4404 4405 se = &sit_i->sentries[start]; 4406 page = get_current_sit_page(sbi, start); 4407 if (IS_ERR(page)) 4408 return PTR_ERR(page); 4409 sit_blk = (struct f2fs_sit_block *)page_address(page); 4410 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4411 f2fs_put_page(page, 1); 4412 4413 err = check_block_count(sbi, start, &sit); 4414 if (err) 4415 return err; 4416 seg_info_from_raw_sit(se, &sit); 4417 4418 if (se->type >= NR_PERSISTENT_LOG) { 4419 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4420 se->type, start); 4421 f2fs_handle_error(sbi, 4422 ERROR_INCONSISTENT_SUM_TYPE); 4423 return -EFSCORRUPTED; 4424 } 4425 4426 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4427 4428 if (f2fs_block_unit_discard(sbi)) { 4429 /* build discard map only one time */ 4430 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4431 memset(se->discard_map, 0xff, 4432 SIT_VBLOCK_MAP_SIZE); 4433 } else { 4434 memcpy(se->discard_map, 4435 se->cur_valid_map, 4436 SIT_VBLOCK_MAP_SIZE); 4437 sbi->discard_blks += 4438 sbi->blocks_per_seg - 4439 se->valid_blocks; 4440 } 4441 } 4442 4443 if (__is_large_section(sbi)) 4444 get_sec_entry(sbi, start)->valid_blocks += 4445 se->valid_blocks; 4446 } 4447 start_blk += readed; 4448 } while (start_blk < sit_blk_cnt); 4449 4450 down_read(&curseg->journal_rwsem); 4451 for (i = 0; i < sits_in_cursum(journal); i++) { 4452 unsigned int old_valid_blocks; 4453 4454 start = le32_to_cpu(segno_in_journal(journal, i)); 4455 if (start >= MAIN_SEGS(sbi)) { 4456 f2fs_err(sbi, "Wrong journal entry on segno %u", 4457 start); 4458 err = -EFSCORRUPTED; 4459 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4460 break; 4461 } 4462 4463 se = &sit_i->sentries[start]; 4464 sit = sit_in_journal(journal, i); 4465 4466 old_valid_blocks = se->valid_blocks; 4467 4468 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4469 4470 err = check_block_count(sbi, start, &sit); 4471 if (err) 4472 break; 4473 seg_info_from_raw_sit(se, &sit); 4474 4475 if (se->type >= NR_PERSISTENT_LOG) { 4476 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4477 se->type, start); 4478 err = -EFSCORRUPTED; 4479 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4480 break; 4481 } 4482 4483 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4484 4485 if (f2fs_block_unit_discard(sbi)) { 4486 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4487 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4488 } else { 4489 memcpy(se->discard_map, se->cur_valid_map, 4490 SIT_VBLOCK_MAP_SIZE); 4491 sbi->discard_blks += old_valid_blocks; 4492 sbi->discard_blks -= se->valid_blocks; 4493 } 4494 } 4495 4496 if (__is_large_section(sbi)) { 4497 get_sec_entry(sbi, start)->valid_blocks += 4498 se->valid_blocks; 4499 get_sec_entry(sbi, start)->valid_blocks -= 4500 old_valid_blocks; 4501 } 4502 } 4503 up_read(&curseg->journal_rwsem); 4504 4505 if (err) 4506 return err; 4507 4508 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4509 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4510 sit_valid_blocks[NODE], valid_node_count(sbi)); 4511 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 4512 return -EFSCORRUPTED; 4513 } 4514 4515 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4516 valid_user_blocks(sbi)) { 4517 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4518 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4519 valid_user_blocks(sbi)); 4520 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 4521 return -EFSCORRUPTED; 4522 } 4523 4524 return 0; 4525 } 4526 4527 static void init_free_segmap(struct f2fs_sb_info *sbi) 4528 { 4529 unsigned int start; 4530 int type; 4531 struct seg_entry *sentry; 4532 4533 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4534 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4535 continue; 4536 sentry = get_seg_entry(sbi, start); 4537 if (!sentry->valid_blocks) 4538 __set_free(sbi, start); 4539 else 4540 SIT_I(sbi)->written_valid_blocks += 4541 sentry->valid_blocks; 4542 } 4543 4544 /* set use the current segments */ 4545 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4546 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4547 4548 __set_test_and_inuse(sbi, curseg_t->segno); 4549 } 4550 } 4551 4552 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4553 { 4554 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4555 struct free_segmap_info *free_i = FREE_I(sbi); 4556 unsigned int segno = 0, offset = 0, secno; 4557 block_t valid_blocks, usable_blks_in_seg; 4558 4559 while (1) { 4560 /* find dirty segment based on free segmap */ 4561 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4562 if (segno >= MAIN_SEGS(sbi)) 4563 break; 4564 offset = segno + 1; 4565 valid_blocks = get_valid_blocks(sbi, segno, false); 4566 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4567 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4568 continue; 4569 if (valid_blocks > usable_blks_in_seg) { 4570 f2fs_bug_on(sbi, 1); 4571 continue; 4572 } 4573 mutex_lock(&dirty_i->seglist_lock); 4574 __locate_dirty_segment(sbi, segno, DIRTY); 4575 mutex_unlock(&dirty_i->seglist_lock); 4576 } 4577 4578 if (!__is_large_section(sbi)) 4579 return; 4580 4581 mutex_lock(&dirty_i->seglist_lock); 4582 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4583 valid_blocks = get_valid_blocks(sbi, segno, true); 4584 secno = GET_SEC_FROM_SEG(sbi, segno); 4585 4586 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 4587 continue; 4588 if (IS_CURSEC(sbi, secno)) 4589 continue; 4590 set_bit(secno, dirty_i->dirty_secmap); 4591 } 4592 mutex_unlock(&dirty_i->seglist_lock); 4593 } 4594 4595 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4596 { 4597 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4598 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4599 4600 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4601 if (!dirty_i->victim_secmap) 4602 return -ENOMEM; 4603 4604 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4605 if (!dirty_i->pinned_secmap) 4606 return -ENOMEM; 4607 4608 dirty_i->pinned_secmap_cnt = 0; 4609 dirty_i->enable_pin_section = true; 4610 return 0; 4611 } 4612 4613 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4614 { 4615 struct dirty_seglist_info *dirty_i; 4616 unsigned int bitmap_size, i; 4617 4618 /* allocate memory for dirty segments list information */ 4619 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4620 GFP_KERNEL); 4621 if (!dirty_i) 4622 return -ENOMEM; 4623 4624 SM_I(sbi)->dirty_info = dirty_i; 4625 mutex_init(&dirty_i->seglist_lock); 4626 4627 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4628 4629 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4630 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4631 GFP_KERNEL); 4632 if (!dirty_i->dirty_segmap[i]) 4633 return -ENOMEM; 4634 } 4635 4636 if (__is_large_section(sbi)) { 4637 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4638 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4639 bitmap_size, GFP_KERNEL); 4640 if (!dirty_i->dirty_secmap) 4641 return -ENOMEM; 4642 } 4643 4644 init_dirty_segmap(sbi); 4645 return init_victim_secmap(sbi); 4646 } 4647 4648 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4649 { 4650 int i; 4651 4652 /* 4653 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4654 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4655 */ 4656 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4657 struct curseg_info *curseg = CURSEG_I(sbi, i); 4658 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4659 unsigned int blkofs = curseg->next_blkoff; 4660 4661 if (f2fs_sb_has_readonly(sbi) && 4662 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4663 continue; 4664 4665 sanity_check_seg_type(sbi, curseg->seg_type); 4666 4667 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 4668 f2fs_err(sbi, 4669 "Current segment has invalid alloc_type:%d", 4670 curseg->alloc_type); 4671 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4672 return -EFSCORRUPTED; 4673 } 4674 4675 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4676 goto out; 4677 4678 if (curseg->alloc_type == SSR) 4679 continue; 4680 4681 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4682 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4683 continue; 4684 out: 4685 f2fs_err(sbi, 4686 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4687 i, curseg->segno, curseg->alloc_type, 4688 curseg->next_blkoff, blkofs); 4689 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4690 return -EFSCORRUPTED; 4691 } 4692 } 4693 return 0; 4694 } 4695 4696 #ifdef CONFIG_BLK_DEV_ZONED 4697 4698 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4699 struct f2fs_dev_info *fdev, 4700 struct blk_zone *zone) 4701 { 4702 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4703 block_t zone_block, wp_block, last_valid_block; 4704 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4705 int i, s, b, ret; 4706 struct seg_entry *se; 4707 4708 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4709 return 0; 4710 4711 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4712 wp_segno = GET_SEGNO(sbi, wp_block); 4713 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4714 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4715 zone_segno = GET_SEGNO(sbi, zone_block); 4716 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4717 4718 if (zone_segno >= MAIN_SEGS(sbi)) 4719 return 0; 4720 4721 /* 4722 * Skip check of zones cursegs point to, since 4723 * fix_curseg_write_pointer() checks them. 4724 */ 4725 for (i = 0; i < NO_CHECK_TYPE; i++) 4726 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4727 CURSEG_I(sbi, i)->segno)) 4728 return 0; 4729 4730 /* 4731 * Get last valid block of the zone. 4732 */ 4733 last_valid_block = zone_block - 1; 4734 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4735 segno = zone_segno + s; 4736 se = get_seg_entry(sbi, segno); 4737 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4738 if (f2fs_test_bit(b, se->cur_valid_map)) { 4739 last_valid_block = START_BLOCK(sbi, segno) + b; 4740 break; 4741 } 4742 if (last_valid_block >= zone_block) 4743 break; 4744 } 4745 4746 /* 4747 * If last valid block is beyond the write pointer, report the 4748 * inconsistency. This inconsistency does not cause write error 4749 * because the zone will not be selected for write operation until 4750 * it get discarded. Just report it. 4751 */ 4752 if (last_valid_block >= wp_block) { 4753 f2fs_notice(sbi, "Valid block beyond write pointer: " 4754 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4755 GET_SEGNO(sbi, last_valid_block), 4756 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4757 wp_segno, wp_blkoff); 4758 return 0; 4759 } 4760 4761 /* 4762 * If there is no valid block in the zone and if write pointer is 4763 * not at zone start, reset the write pointer. 4764 */ 4765 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4766 f2fs_notice(sbi, 4767 "Zone without valid block has non-zero write " 4768 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4769 wp_segno, wp_blkoff); 4770 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4771 zone->len >> log_sectors_per_block); 4772 if (ret) { 4773 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4774 fdev->path, ret); 4775 return ret; 4776 } 4777 } 4778 4779 return 0; 4780 } 4781 4782 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4783 block_t zone_blkaddr) 4784 { 4785 int i; 4786 4787 for (i = 0; i < sbi->s_ndevs; i++) { 4788 if (!bdev_is_zoned(FDEV(i).bdev)) 4789 continue; 4790 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4791 zone_blkaddr <= FDEV(i).end_blk)) 4792 return &FDEV(i); 4793 } 4794 4795 return NULL; 4796 } 4797 4798 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4799 void *data) 4800 { 4801 memcpy(data, zone, sizeof(struct blk_zone)); 4802 return 0; 4803 } 4804 4805 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4806 { 4807 struct curseg_info *cs = CURSEG_I(sbi, type); 4808 struct f2fs_dev_info *zbd; 4809 struct blk_zone zone; 4810 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4811 block_t cs_zone_block, wp_block; 4812 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4813 sector_t zone_sector; 4814 int err; 4815 4816 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4817 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4818 4819 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4820 if (!zbd) 4821 return 0; 4822 4823 /* report zone for the sector the curseg points to */ 4824 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4825 << log_sectors_per_block; 4826 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4827 report_one_zone_cb, &zone); 4828 if (err != 1) { 4829 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4830 zbd->path, err); 4831 return err; 4832 } 4833 4834 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4835 return 0; 4836 4837 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4838 wp_segno = GET_SEGNO(sbi, wp_block); 4839 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4840 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4841 4842 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4843 wp_sector_off == 0) 4844 return 0; 4845 4846 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4847 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4848 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4849 4850 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4851 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4852 4853 f2fs_allocate_new_section(sbi, type, true); 4854 4855 /* check consistency of the zone curseg pointed to */ 4856 if (check_zone_write_pointer(sbi, zbd, &zone)) 4857 return -EIO; 4858 4859 /* check newly assigned zone */ 4860 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4861 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4862 4863 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4864 if (!zbd) 4865 return 0; 4866 4867 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4868 << log_sectors_per_block; 4869 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4870 report_one_zone_cb, &zone); 4871 if (err != 1) { 4872 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4873 zbd->path, err); 4874 return err; 4875 } 4876 4877 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4878 return 0; 4879 4880 if (zone.wp != zone.start) { 4881 f2fs_notice(sbi, 4882 "New zone for curseg[%d] is not yet discarded. " 4883 "Reset the zone: curseg[0x%x,0x%x]", 4884 type, cs->segno, cs->next_blkoff); 4885 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4886 zone_sector >> log_sectors_per_block, 4887 zone.len >> log_sectors_per_block); 4888 if (err) { 4889 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4890 zbd->path, err); 4891 return err; 4892 } 4893 } 4894 4895 return 0; 4896 } 4897 4898 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4899 { 4900 int i, ret; 4901 4902 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4903 ret = fix_curseg_write_pointer(sbi, i); 4904 if (ret) 4905 return ret; 4906 } 4907 4908 return 0; 4909 } 4910 4911 struct check_zone_write_pointer_args { 4912 struct f2fs_sb_info *sbi; 4913 struct f2fs_dev_info *fdev; 4914 }; 4915 4916 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4917 void *data) 4918 { 4919 struct check_zone_write_pointer_args *args; 4920 4921 args = (struct check_zone_write_pointer_args *)data; 4922 4923 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4924 } 4925 4926 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4927 { 4928 int i, ret; 4929 struct check_zone_write_pointer_args args; 4930 4931 for (i = 0; i < sbi->s_ndevs; i++) { 4932 if (!bdev_is_zoned(FDEV(i).bdev)) 4933 continue; 4934 4935 args.sbi = sbi; 4936 args.fdev = &FDEV(i); 4937 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4938 check_zone_write_pointer_cb, &args); 4939 if (ret < 0) 4940 return ret; 4941 } 4942 4943 return 0; 4944 } 4945 4946 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, 4947 unsigned int dev_idx) 4948 { 4949 if (!bdev_is_zoned(FDEV(dev_idx).bdev)) 4950 return true; 4951 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); 4952 } 4953 4954 /* Return the zone index in the given device */ 4955 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, 4956 int dev_idx) 4957 { 4958 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4959 4960 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> 4961 sbi->log_blocks_per_blkz; 4962 } 4963 4964 /* 4965 * Return the usable segments in a section based on the zone's 4966 * corresponding zone capacity. Zone is equal to a section. 4967 */ 4968 static inline unsigned int f2fs_usable_zone_segs_in_sec( 4969 struct f2fs_sb_info *sbi, unsigned int segno) 4970 { 4971 unsigned int dev_idx, zone_idx; 4972 4973 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); 4974 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); 4975 4976 /* Conventional zone's capacity is always equal to zone size */ 4977 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4978 return sbi->segs_per_sec; 4979 4980 if (!sbi->unusable_blocks_per_sec) 4981 return sbi->segs_per_sec; 4982 4983 /* Get the segment count beyond zone capacity block */ 4984 return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >> 4985 sbi->log_blocks_per_seg); 4986 } 4987 4988 /* 4989 * Return the number of usable blocks in a segment. The number of blocks 4990 * returned is always equal to the number of blocks in a segment for 4991 * segments fully contained within a sequential zone capacity or a 4992 * conventional zone. For segments partially contained in a sequential 4993 * zone capacity, the number of usable blocks up to the zone capacity 4994 * is returned. 0 is returned in all other cases. 4995 */ 4996 static inline unsigned int f2fs_usable_zone_blks_in_seg( 4997 struct f2fs_sb_info *sbi, unsigned int segno) 4998 { 4999 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5000 unsigned int zone_idx, dev_idx, secno; 5001 5002 secno = GET_SEC_FROM_SEG(sbi, segno); 5003 seg_start = START_BLOCK(sbi, segno); 5004 dev_idx = f2fs_target_device_index(sbi, seg_start); 5005 zone_idx = get_zone_idx(sbi, secno, dev_idx); 5006 5007 /* 5008 * Conventional zone's capacity is always equal to zone size, 5009 * so, blocks per segment is unchanged. 5010 */ 5011 if (is_conv_zone(sbi, zone_idx, dev_idx)) 5012 return sbi->blocks_per_seg; 5013 5014 if (!sbi->unusable_blocks_per_sec) 5015 return sbi->blocks_per_seg; 5016 5017 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5018 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5019 5020 /* 5021 * If segment starts before zone capacity and spans beyond 5022 * zone capacity, then usable blocks are from seg start to 5023 * zone capacity. If the segment starts after the zone capacity, 5024 * then there are no usable blocks. 5025 */ 5026 if (seg_start >= sec_cap_blkaddr) 5027 return 0; 5028 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 5029 return sec_cap_blkaddr - seg_start; 5030 5031 return sbi->blocks_per_seg; 5032 } 5033 #else 5034 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5035 { 5036 return 0; 5037 } 5038 5039 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5040 { 5041 return 0; 5042 } 5043 5044 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5045 unsigned int segno) 5046 { 5047 return 0; 5048 } 5049 5050 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, 5051 unsigned int segno) 5052 { 5053 return 0; 5054 } 5055 #endif 5056 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5057 unsigned int segno) 5058 { 5059 if (f2fs_sb_has_blkzoned(sbi)) 5060 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5061 5062 return sbi->blocks_per_seg; 5063 } 5064 5065 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5066 unsigned int segno) 5067 { 5068 if (f2fs_sb_has_blkzoned(sbi)) 5069 return f2fs_usable_zone_segs_in_sec(sbi, segno); 5070 5071 return sbi->segs_per_sec; 5072 } 5073 5074 /* 5075 * Update min, max modified time for cost-benefit GC algorithm 5076 */ 5077 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5078 { 5079 struct sit_info *sit_i = SIT_I(sbi); 5080 unsigned int segno; 5081 5082 down_write(&sit_i->sentry_lock); 5083 5084 sit_i->min_mtime = ULLONG_MAX; 5085 5086 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5087 unsigned int i; 5088 unsigned long long mtime = 0; 5089 5090 for (i = 0; i < sbi->segs_per_sec; i++) 5091 mtime += get_seg_entry(sbi, segno + i)->mtime; 5092 5093 mtime = div_u64(mtime, sbi->segs_per_sec); 5094 5095 if (sit_i->min_mtime > mtime) 5096 sit_i->min_mtime = mtime; 5097 } 5098 sit_i->max_mtime = get_mtime(sbi, false); 5099 sit_i->dirty_max_mtime = 0; 5100 up_write(&sit_i->sentry_lock); 5101 } 5102 5103 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5104 { 5105 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5106 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5107 struct f2fs_sm_info *sm_info; 5108 int err; 5109 5110 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5111 if (!sm_info) 5112 return -ENOMEM; 5113 5114 /* init sm info */ 5115 sbi->sm_info = sm_info; 5116 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5117 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5118 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5119 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5120 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5121 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5122 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5123 sm_info->rec_prefree_segments = sm_info->main_segments * 5124 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5125 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5126 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5127 5128 if (!f2fs_lfs_mode(sbi)) 5129 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 5130 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5131 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5132 sm_info->min_seq_blocks = sbi->blocks_per_seg; 5133 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5134 sm_info->min_ssr_sections = reserved_sections(sbi); 5135 5136 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5137 5138 init_f2fs_rwsem(&sm_info->curseg_lock); 5139 5140 err = f2fs_create_flush_cmd_control(sbi); 5141 if (err) 5142 return err; 5143 5144 err = create_discard_cmd_control(sbi); 5145 if (err) 5146 return err; 5147 5148 err = build_sit_info(sbi); 5149 if (err) 5150 return err; 5151 err = build_free_segmap(sbi); 5152 if (err) 5153 return err; 5154 err = build_curseg(sbi); 5155 if (err) 5156 return err; 5157 5158 /* reinit free segmap based on SIT */ 5159 err = build_sit_entries(sbi); 5160 if (err) 5161 return err; 5162 5163 init_free_segmap(sbi); 5164 err = build_dirty_segmap(sbi); 5165 if (err) 5166 return err; 5167 5168 err = sanity_check_curseg(sbi); 5169 if (err) 5170 return err; 5171 5172 init_min_max_mtime(sbi); 5173 return 0; 5174 } 5175 5176 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5177 enum dirty_type dirty_type) 5178 { 5179 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5180 5181 mutex_lock(&dirty_i->seglist_lock); 5182 kvfree(dirty_i->dirty_segmap[dirty_type]); 5183 dirty_i->nr_dirty[dirty_type] = 0; 5184 mutex_unlock(&dirty_i->seglist_lock); 5185 } 5186 5187 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5188 { 5189 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5190 5191 kvfree(dirty_i->pinned_secmap); 5192 kvfree(dirty_i->victim_secmap); 5193 } 5194 5195 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5196 { 5197 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5198 int i; 5199 5200 if (!dirty_i) 5201 return; 5202 5203 /* discard pre-free/dirty segments list */ 5204 for (i = 0; i < NR_DIRTY_TYPE; i++) 5205 discard_dirty_segmap(sbi, i); 5206 5207 if (__is_large_section(sbi)) { 5208 mutex_lock(&dirty_i->seglist_lock); 5209 kvfree(dirty_i->dirty_secmap); 5210 mutex_unlock(&dirty_i->seglist_lock); 5211 } 5212 5213 destroy_victim_secmap(sbi); 5214 SM_I(sbi)->dirty_info = NULL; 5215 kfree(dirty_i); 5216 } 5217 5218 static void destroy_curseg(struct f2fs_sb_info *sbi) 5219 { 5220 struct curseg_info *array = SM_I(sbi)->curseg_array; 5221 int i; 5222 5223 if (!array) 5224 return; 5225 SM_I(sbi)->curseg_array = NULL; 5226 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5227 kfree(array[i].sum_blk); 5228 kfree(array[i].journal); 5229 } 5230 kfree(array); 5231 } 5232 5233 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5234 { 5235 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5236 5237 if (!free_i) 5238 return; 5239 SM_I(sbi)->free_info = NULL; 5240 kvfree(free_i->free_segmap); 5241 kvfree(free_i->free_secmap); 5242 kfree(free_i); 5243 } 5244 5245 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5246 { 5247 struct sit_info *sit_i = SIT_I(sbi); 5248 5249 if (!sit_i) 5250 return; 5251 5252 if (sit_i->sentries) 5253 kvfree(sit_i->bitmap); 5254 kfree(sit_i->tmp_map); 5255 5256 kvfree(sit_i->sentries); 5257 kvfree(sit_i->sec_entries); 5258 kvfree(sit_i->dirty_sentries_bitmap); 5259 5260 SM_I(sbi)->sit_info = NULL; 5261 kvfree(sit_i->sit_bitmap); 5262 #ifdef CONFIG_F2FS_CHECK_FS 5263 kvfree(sit_i->sit_bitmap_mir); 5264 kvfree(sit_i->invalid_segmap); 5265 #endif 5266 kfree(sit_i); 5267 } 5268 5269 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5270 { 5271 struct f2fs_sm_info *sm_info = SM_I(sbi); 5272 5273 if (!sm_info) 5274 return; 5275 f2fs_destroy_flush_cmd_control(sbi, true); 5276 destroy_discard_cmd_control(sbi); 5277 destroy_dirty_segmap(sbi); 5278 destroy_curseg(sbi); 5279 destroy_free_segmap(sbi); 5280 destroy_sit_info(sbi); 5281 sbi->sm_info = NULL; 5282 kfree(sm_info); 5283 } 5284 5285 int __init f2fs_create_segment_manager_caches(void) 5286 { 5287 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5288 sizeof(struct discard_entry)); 5289 if (!discard_entry_slab) 5290 goto fail; 5291 5292 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5293 sizeof(struct discard_cmd)); 5294 if (!discard_cmd_slab) 5295 goto destroy_discard_entry; 5296 5297 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5298 sizeof(struct sit_entry_set)); 5299 if (!sit_entry_set_slab) 5300 goto destroy_discard_cmd; 5301 5302 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5303 sizeof(struct revoke_entry)); 5304 if (!revoke_entry_slab) 5305 goto destroy_sit_entry_set; 5306 return 0; 5307 5308 destroy_sit_entry_set: 5309 kmem_cache_destroy(sit_entry_set_slab); 5310 destroy_discard_cmd: 5311 kmem_cache_destroy(discard_cmd_slab); 5312 destroy_discard_entry: 5313 kmem_cache_destroy(discard_entry_slab); 5314 fail: 5315 return -ENOMEM; 5316 } 5317 5318 void f2fs_destroy_segment_manager_caches(void) 5319 { 5320 kmem_cache_destroy(sit_entry_set_slab); 5321 kmem_cache_destroy(discard_cmd_slab); 5322 kmem_cache_destroy(discard_entry_slab); 5323 kmem_cache_destroy(revoke_entry_slab); 5324 } 5325