xref: /linux/fs/f2fs/segment.c (revision eb7cca1faf9883d7b4da792281147dbedc449238)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	release_atomic_write_cnt(inode);
196 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
197 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
198 	clear_inode_flag(inode, FI_ATOMIC_FILE);
199 	stat_dec_atomic_inode(inode);
200 
201 	F2FS_I(inode)->atomic_write_task = NULL;
202 
203 	if (clean) {
204 		truncate_inode_pages_final(inode->i_mapping);
205 		f2fs_i_size_write(inode, fi->original_i_size);
206 		fi->original_i_size = 0;
207 	}
208 	/* avoid stale dirty inode during eviction */
209 	sync_inode_metadata(inode, 0);
210 }
211 
212 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
213 			block_t new_addr, block_t *old_addr, bool recover)
214 {
215 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
216 	struct dnode_of_data dn;
217 	struct node_info ni;
218 	int err;
219 
220 retry:
221 	set_new_dnode(&dn, inode, NULL, NULL, 0);
222 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
223 	if (err) {
224 		if (err == -ENOMEM) {
225 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
226 			goto retry;
227 		}
228 		return err;
229 	}
230 
231 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
232 	if (err) {
233 		f2fs_put_dnode(&dn);
234 		return err;
235 	}
236 
237 	if (recover) {
238 		/* dn.data_blkaddr is always valid */
239 		if (!__is_valid_data_blkaddr(new_addr)) {
240 			if (new_addr == NULL_ADDR)
241 				dec_valid_block_count(sbi, inode, 1);
242 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
243 			f2fs_update_data_blkaddr(&dn, new_addr);
244 		} else {
245 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
246 				new_addr, ni.version, true, true);
247 		}
248 	} else {
249 		blkcnt_t count = 1;
250 
251 		err = inc_valid_block_count(sbi, inode, &count);
252 		if (err) {
253 			f2fs_put_dnode(&dn);
254 			return err;
255 		}
256 
257 		*old_addr = dn.data_blkaddr;
258 		f2fs_truncate_data_blocks_range(&dn, 1);
259 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
260 
261 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
262 					ni.version, true, false);
263 	}
264 
265 	f2fs_put_dnode(&dn);
266 
267 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
268 			index, old_addr ? *old_addr : 0, new_addr, recover);
269 	return 0;
270 }
271 
272 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
273 					bool revoke)
274 {
275 	struct revoke_entry *cur, *tmp;
276 	pgoff_t start_index = 0;
277 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
278 
279 	list_for_each_entry_safe(cur, tmp, head, list) {
280 		if (revoke) {
281 			__replace_atomic_write_block(inode, cur->index,
282 						cur->old_addr, NULL, true);
283 		} else if (truncate) {
284 			f2fs_truncate_hole(inode, start_index, cur->index);
285 			start_index = cur->index + 1;
286 		}
287 
288 		list_del(&cur->list);
289 		kmem_cache_free(revoke_entry_slab, cur);
290 	}
291 
292 	if (!revoke && truncate)
293 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
294 }
295 
296 static int __f2fs_commit_atomic_write(struct inode *inode)
297 {
298 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
299 	struct f2fs_inode_info *fi = F2FS_I(inode);
300 	struct inode *cow_inode = fi->cow_inode;
301 	struct revoke_entry *new;
302 	struct list_head revoke_list;
303 	block_t blkaddr;
304 	struct dnode_of_data dn;
305 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
306 	pgoff_t off = 0, blen, index;
307 	int ret = 0, i;
308 
309 	INIT_LIST_HEAD(&revoke_list);
310 
311 	while (len) {
312 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
313 
314 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
315 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
316 		if (ret && ret != -ENOENT) {
317 			goto out;
318 		} else if (ret == -ENOENT) {
319 			ret = 0;
320 			if (dn.max_level == 0)
321 				goto out;
322 			goto next;
323 		}
324 
325 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
326 				len);
327 		index = off;
328 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
329 			blkaddr = f2fs_data_blkaddr(&dn);
330 
331 			if (!__is_valid_data_blkaddr(blkaddr)) {
332 				continue;
333 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
334 					DATA_GENERIC_ENHANCE)) {
335 				f2fs_put_dnode(&dn);
336 				ret = -EFSCORRUPTED;
337 				f2fs_handle_error(sbi,
338 						ERROR_INVALID_BLKADDR);
339 				goto out;
340 			}
341 
342 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
343 							true, NULL);
344 
345 			ret = __replace_atomic_write_block(inode, index, blkaddr,
346 							&new->old_addr, false);
347 			if (ret) {
348 				f2fs_put_dnode(&dn);
349 				kmem_cache_free(revoke_entry_slab, new);
350 				goto out;
351 			}
352 
353 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
354 			new->index = index;
355 			list_add_tail(&new->list, &revoke_list);
356 		}
357 		f2fs_put_dnode(&dn);
358 next:
359 		off += blen;
360 		len -= blen;
361 	}
362 
363 out:
364 	if (ret) {
365 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
366 	} else {
367 		sbi->committed_atomic_block += fi->atomic_write_cnt;
368 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
369 	}
370 
371 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
372 
373 	return ret;
374 }
375 
376 int f2fs_commit_atomic_write(struct inode *inode)
377 {
378 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
379 	struct f2fs_inode_info *fi = F2FS_I(inode);
380 	int err;
381 
382 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
383 	if (err)
384 		return err;
385 
386 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
387 	f2fs_lock_op(sbi);
388 
389 	err = __f2fs_commit_atomic_write(inode);
390 
391 	f2fs_unlock_op(sbi);
392 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
393 
394 	return err;
395 }
396 
397 /*
398  * This function balances dirty node and dentry pages.
399  * In addition, it controls garbage collection.
400  */
401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
402 {
403 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
404 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
405 
406 	/* balance_fs_bg is able to be pending */
407 	if (need && excess_cached_nats(sbi))
408 		f2fs_balance_fs_bg(sbi, false);
409 
410 	if (!f2fs_is_checkpoint_ready(sbi))
411 		return;
412 
413 	/*
414 	 * We should do GC or end up with checkpoint, if there are so many dirty
415 	 * dir/node pages without enough free segments.
416 	 */
417 	if (has_enough_free_secs(sbi, 0, 0))
418 		return;
419 
420 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
421 				sbi->gc_thread->f2fs_gc_task) {
422 		DEFINE_WAIT(wait);
423 
424 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
425 					TASK_UNINTERRUPTIBLE);
426 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
427 		io_schedule();
428 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
429 	} else {
430 		struct f2fs_gc_control gc_control = {
431 			.victim_segno = NULL_SEGNO,
432 			.init_gc_type = BG_GC,
433 			.no_bg_gc = true,
434 			.should_migrate_blocks = false,
435 			.err_gc_skipped = false,
436 			.nr_free_secs = 1 };
437 		f2fs_down_write(&sbi->gc_lock);
438 		stat_inc_gc_call_count(sbi, FOREGROUND);
439 		f2fs_gc(sbi, &gc_control);
440 	}
441 }
442 
443 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
444 {
445 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
446 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
447 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
448 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
449 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
450 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
451 	unsigned int threshold = sbi->blocks_per_seg * factor *
452 					DEFAULT_DIRTY_THRESHOLD;
453 	unsigned int global_threshold = threshold * 3 / 2;
454 
455 	if (dents >= threshold || qdata >= threshold ||
456 		nodes >= threshold || meta >= threshold ||
457 		imeta >= threshold)
458 		return true;
459 	return dents + qdata + nodes + meta + imeta >  global_threshold;
460 }
461 
462 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
463 {
464 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
465 		return;
466 
467 	/* try to shrink extent cache when there is no enough memory */
468 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
469 		f2fs_shrink_read_extent_tree(sbi,
470 				READ_EXTENT_CACHE_SHRINK_NUMBER);
471 
472 	/* try to shrink age extent cache when there is no enough memory */
473 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
474 		f2fs_shrink_age_extent_tree(sbi,
475 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
476 
477 	/* check the # of cached NAT entries */
478 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
479 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
480 
481 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
482 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
483 	else
484 		f2fs_build_free_nids(sbi, false, false);
485 
486 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
487 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
488 		goto do_sync;
489 
490 	/* there is background inflight IO or foreground operation recently */
491 	if (is_inflight_io(sbi, REQ_TIME) ||
492 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
493 		return;
494 
495 	/* exceed periodical checkpoint timeout threshold */
496 	if (f2fs_time_over(sbi, CP_TIME))
497 		goto do_sync;
498 
499 	/* checkpoint is the only way to shrink partial cached entries */
500 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
501 		f2fs_available_free_memory(sbi, INO_ENTRIES))
502 		return;
503 
504 do_sync:
505 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
506 		struct blk_plug plug;
507 
508 		mutex_lock(&sbi->flush_lock);
509 
510 		blk_start_plug(&plug);
511 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
512 		blk_finish_plug(&plug);
513 
514 		mutex_unlock(&sbi->flush_lock);
515 	}
516 	stat_inc_cp_call_count(sbi, BACKGROUND);
517 	f2fs_sync_fs(sbi->sb, 1);
518 }
519 
520 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
521 				struct block_device *bdev)
522 {
523 	int ret = blkdev_issue_flush(bdev);
524 
525 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
526 				test_opt(sbi, FLUSH_MERGE), ret);
527 	if (!ret)
528 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
529 	return ret;
530 }
531 
532 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
533 {
534 	int ret = 0;
535 	int i;
536 
537 	if (!f2fs_is_multi_device(sbi))
538 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
539 
540 	for (i = 0; i < sbi->s_ndevs; i++) {
541 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
542 			continue;
543 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
544 		if (ret)
545 			break;
546 	}
547 	return ret;
548 }
549 
550 static int issue_flush_thread(void *data)
551 {
552 	struct f2fs_sb_info *sbi = data;
553 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
554 	wait_queue_head_t *q = &fcc->flush_wait_queue;
555 repeat:
556 	if (kthread_should_stop())
557 		return 0;
558 
559 	if (!llist_empty(&fcc->issue_list)) {
560 		struct flush_cmd *cmd, *next;
561 		int ret;
562 
563 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
564 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
565 
566 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
567 
568 		ret = submit_flush_wait(sbi, cmd->ino);
569 		atomic_inc(&fcc->issued_flush);
570 
571 		llist_for_each_entry_safe(cmd, next,
572 					  fcc->dispatch_list, llnode) {
573 			cmd->ret = ret;
574 			complete(&cmd->wait);
575 		}
576 		fcc->dispatch_list = NULL;
577 	}
578 
579 	wait_event_interruptible(*q,
580 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
581 	goto repeat;
582 }
583 
584 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
585 {
586 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
587 	struct flush_cmd cmd;
588 	int ret;
589 
590 	if (test_opt(sbi, NOBARRIER))
591 		return 0;
592 
593 	if (!test_opt(sbi, FLUSH_MERGE)) {
594 		atomic_inc(&fcc->queued_flush);
595 		ret = submit_flush_wait(sbi, ino);
596 		atomic_dec(&fcc->queued_flush);
597 		atomic_inc(&fcc->issued_flush);
598 		return ret;
599 	}
600 
601 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
602 	    f2fs_is_multi_device(sbi)) {
603 		ret = submit_flush_wait(sbi, ino);
604 		atomic_dec(&fcc->queued_flush);
605 
606 		atomic_inc(&fcc->issued_flush);
607 		return ret;
608 	}
609 
610 	cmd.ino = ino;
611 	init_completion(&cmd.wait);
612 
613 	llist_add(&cmd.llnode, &fcc->issue_list);
614 
615 	/*
616 	 * update issue_list before we wake up issue_flush thread, this
617 	 * smp_mb() pairs with another barrier in ___wait_event(), see
618 	 * more details in comments of waitqueue_active().
619 	 */
620 	smp_mb();
621 
622 	if (waitqueue_active(&fcc->flush_wait_queue))
623 		wake_up(&fcc->flush_wait_queue);
624 
625 	if (fcc->f2fs_issue_flush) {
626 		wait_for_completion(&cmd.wait);
627 		atomic_dec(&fcc->queued_flush);
628 	} else {
629 		struct llist_node *list;
630 
631 		list = llist_del_all(&fcc->issue_list);
632 		if (!list) {
633 			wait_for_completion(&cmd.wait);
634 			atomic_dec(&fcc->queued_flush);
635 		} else {
636 			struct flush_cmd *tmp, *next;
637 
638 			ret = submit_flush_wait(sbi, ino);
639 
640 			llist_for_each_entry_safe(tmp, next, list, llnode) {
641 				if (tmp == &cmd) {
642 					cmd.ret = ret;
643 					atomic_dec(&fcc->queued_flush);
644 					continue;
645 				}
646 				tmp->ret = ret;
647 				complete(&tmp->wait);
648 			}
649 		}
650 	}
651 
652 	return cmd.ret;
653 }
654 
655 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
656 {
657 	dev_t dev = sbi->sb->s_bdev->bd_dev;
658 	struct flush_cmd_control *fcc;
659 
660 	if (SM_I(sbi)->fcc_info) {
661 		fcc = SM_I(sbi)->fcc_info;
662 		if (fcc->f2fs_issue_flush)
663 			return 0;
664 		goto init_thread;
665 	}
666 
667 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
668 	if (!fcc)
669 		return -ENOMEM;
670 	atomic_set(&fcc->issued_flush, 0);
671 	atomic_set(&fcc->queued_flush, 0);
672 	init_waitqueue_head(&fcc->flush_wait_queue);
673 	init_llist_head(&fcc->issue_list);
674 	SM_I(sbi)->fcc_info = fcc;
675 	if (!test_opt(sbi, FLUSH_MERGE))
676 		return 0;
677 
678 init_thread:
679 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
680 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
681 	if (IS_ERR(fcc->f2fs_issue_flush)) {
682 		int err = PTR_ERR(fcc->f2fs_issue_flush);
683 
684 		fcc->f2fs_issue_flush = NULL;
685 		return err;
686 	}
687 
688 	return 0;
689 }
690 
691 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
692 {
693 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
694 
695 	if (fcc && fcc->f2fs_issue_flush) {
696 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
697 
698 		fcc->f2fs_issue_flush = NULL;
699 		kthread_stop(flush_thread);
700 	}
701 	if (free) {
702 		kfree(fcc);
703 		SM_I(sbi)->fcc_info = NULL;
704 	}
705 }
706 
707 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
708 {
709 	int ret = 0, i;
710 
711 	if (!f2fs_is_multi_device(sbi))
712 		return 0;
713 
714 	if (test_opt(sbi, NOBARRIER))
715 		return 0;
716 
717 	for (i = 1; i < sbi->s_ndevs; i++) {
718 		int count = DEFAULT_RETRY_IO_COUNT;
719 
720 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
721 			continue;
722 
723 		do {
724 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
725 			if (ret)
726 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
727 		} while (ret && --count);
728 
729 		if (ret) {
730 			f2fs_stop_checkpoint(sbi, false,
731 					STOP_CP_REASON_FLUSH_FAIL);
732 			break;
733 		}
734 
735 		spin_lock(&sbi->dev_lock);
736 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
737 		spin_unlock(&sbi->dev_lock);
738 	}
739 
740 	return ret;
741 }
742 
743 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
744 		enum dirty_type dirty_type)
745 {
746 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
747 
748 	/* need not be added */
749 	if (IS_CURSEG(sbi, segno))
750 		return;
751 
752 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
753 		dirty_i->nr_dirty[dirty_type]++;
754 
755 	if (dirty_type == DIRTY) {
756 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
757 		enum dirty_type t = sentry->type;
758 
759 		if (unlikely(t >= DIRTY)) {
760 			f2fs_bug_on(sbi, 1);
761 			return;
762 		}
763 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
764 			dirty_i->nr_dirty[t]++;
765 
766 		if (__is_large_section(sbi)) {
767 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
768 			block_t valid_blocks =
769 				get_valid_blocks(sbi, segno, true);
770 
771 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
772 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
773 
774 			if (!IS_CURSEC(sbi, secno))
775 				set_bit(secno, dirty_i->dirty_secmap);
776 		}
777 	}
778 }
779 
780 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781 		enum dirty_type dirty_type)
782 {
783 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784 	block_t valid_blocks;
785 
786 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787 		dirty_i->nr_dirty[dirty_type]--;
788 
789 	if (dirty_type == DIRTY) {
790 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
791 		enum dirty_type t = sentry->type;
792 
793 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
794 			dirty_i->nr_dirty[t]--;
795 
796 		valid_blocks = get_valid_blocks(sbi, segno, true);
797 		if (valid_blocks == 0) {
798 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
799 						dirty_i->victim_secmap);
800 #ifdef CONFIG_F2FS_CHECK_FS
801 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
802 #endif
803 		}
804 		if (__is_large_section(sbi)) {
805 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
806 
807 			if (!valid_blocks ||
808 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
809 				clear_bit(secno, dirty_i->dirty_secmap);
810 				return;
811 			}
812 
813 			if (!IS_CURSEC(sbi, secno))
814 				set_bit(secno, dirty_i->dirty_secmap);
815 		}
816 	}
817 }
818 
819 /*
820  * Should not occur error such as -ENOMEM.
821  * Adding dirty entry into seglist is not critical operation.
822  * If a given segment is one of current working segments, it won't be added.
823  */
824 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
825 {
826 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
827 	unsigned short valid_blocks, ckpt_valid_blocks;
828 	unsigned int usable_blocks;
829 
830 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
831 		return;
832 
833 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
834 	mutex_lock(&dirty_i->seglist_lock);
835 
836 	valid_blocks = get_valid_blocks(sbi, segno, false);
837 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
838 
839 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
840 		ckpt_valid_blocks == usable_blocks)) {
841 		__locate_dirty_segment(sbi, segno, PRE);
842 		__remove_dirty_segment(sbi, segno, DIRTY);
843 	} else if (valid_blocks < usable_blocks) {
844 		__locate_dirty_segment(sbi, segno, DIRTY);
845 	} else {
846 		/* Recovery routine with SSR needs this */
847 		__remove_dirty_segment(sbi, segno, DIRTY);
848 	}
849 
850 	mutex_unlock(&dirty_i->seglist_lock);
851 }
852 
853 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
854 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
855 {
856 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
857 	unsigned int segno;
858 
859 	mutex_lock(&dirty_i->seglist_lock);
860 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
861 		if (get_valid_blocks(sbi, segno, false))
862 			continue;
863 		if (IS_CURSEG(sbi, segno))
864 			continue;
865 		__locate_dirty_segment(sbi, segno, PRE);
866 		__remove_dirty_segment(sbi, segno, DIRTY);
867 	}
868 	mutex_unlock(&dirty_i->seglist_lock);
869 }
870 
871 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
872 {
873 	int ovp_hole_segs =
874 		(overprovision_segments(sbi) - reserved_segments(sbi));
875 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
876 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877 	block_t holes[2] = {0, 0};	/* DATA and NODE */
878 	block_t unusable;
879 	struct seg_entry *se;
880 	unsigned int segno;
881 
882 	mutex_lock(&dirty_i->seglist_lock);
883 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
884 		se = get_seg_entry(sbi, segno);
885 		if (IS_NODESEG(se->type))
886 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
887 							se->valid_blocks;
888 		else
889 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
890 							se->valid_blocks;
891 	}
892 	mutex_unlock(&dirty_i->seglist_lock);
893 
894 	unusable = max(holes[DATA], holes[NODE]);
895 	if (unusable > ovp_holes)
896 		return unusable - ovp_holes;
897 	return 0;
898 }
899 
900 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
901 {
902 	int ovp_hole_segs =
903 		(overprovision_segments(sbi) - reserved_segments(sbi));
904 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
905 		return -EAGAIN;
906 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
907 		dirty_segments(sbi) > ovp_hole_segs)
908 		return -EAGAIN;
909 	return 0;
910 }
911 
912 /* This is only used by SBI_CP_DISABLED */
913 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
914 {
915 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
916 	unsigned int segno = 0;
917 
918 	mutex_lock(&dirty_i->seglist_lock);
919 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
920 		if (get_valid_blocks(sbi, segno, false))
921 			continue;
922 		if (get_ckpt_valid_blocks(sbi, segno, false))
923 			continue;
924 		mutex_unlock(&dirty_i->seglist_lock);
925 		return segno;
926 	}
927 	mutex_unlock(&dirty_i->seglist_lock);
928 	return NULL_SEGNO;
929 }
930 
931 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
932 		struct block_device *bdev, block_t lstart,
933 		block_t start, block_t len)
934 {
935 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
936 	struct list_head *pend_list;
937 	struct discard_cmd *dc;
938 
939 	f2fs_bug_on(sbi, !len);
940 
941 	pend_list = &dcc->pend_list[plist_idx(len)];
942 
943 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
944 	INIT_LIST_HEAD(&dc->list);
945 	dc->bdev = bdev;
946 	dc->di.lstart = lstart;
947 	dc->di.start = start;
948 	dc->di.len = len;
949 	dc->ref = 0;
950 	dc->state = D_PREP;
951 	dc->queued = 0;
952 	dc->error = 0;
953 	init_completion(&dc->wait);
954 	list_add_tail(&dc->list, pend_list);
955 	spin_lock_init(&dc->lock);
956 	dc->bio_ref = 0;
957 	atomic_inc(&dcc->discard_cmd_cnt);
958 	dcc->undiscard_blks += len;
959 
960 	return dc;
961 }
962 
963 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
964 {
965 #ifdef CONFIG_F2FS_CHECK_FS
966 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
967 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
968 	struct discard_cmd *cur_dc, *next_dc;
969 
970 	while (cur) {
971 		next = rb_next(cur);
972 		if (!next)
973 			return true;
974 
975 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
976 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
977 
978 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
979 			f2fs_info(sbi, "broken discard_rbtree, "
980 				"cur(%u, %u) next(%u, %u)",
981 				cur_dc->di.lstart, cur_dc->di.len,
982 				next_dc->di.lstart, next_dc->di.len);
983 			return false;
984 		}
985 		cur = next;
986 	}
987 #endif
988 	return true;
989 }
990 
991 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
992 						block_t blkaddr)
993 {
994 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
995 	struct rb_node *node = dcc->root.rb_root.rb_node;
996 	struct discard_cmd *dc;
997 
998 	while (node) {
999 		dc = rb_entry(node, struct discard_cmd, rb_node);
1000 
1001 		if (blkaddr < dc->di.lstart)
1002 			node = node->rb_left;
1003 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1004 			node = node->rb_right;
1005 		else
1006 			return dc;
1007 	}
1008 	return NULL;
1009 }
1010 
1011 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1012 				block_t blkaddr,
1013 				struct discard_cmd **prev_entry,
1014 				struct discard_cmd **next_entry,
1015 				struct rb_node ***insert_p,
1016 				struct rb_node **insert_parent)
1017 {
1018 	struct rb_node **pnode = &root->rb_root.rb_node;
1019 	struct rb_node *parent = NULL, *tmp_node;
1020 	struct discard_cmd *dc;
1021 
1022 	*insert_p = NULL;
1023 	*insert_parent = NULL;
1024 	*prev_entry = NULL;
1025 	*next_entry = NULL;
1026 
1027 	if (RB_EMPTY_ROOT(&root->rb_root))
1028 		return NULL;
1029 
1030 	while (*pnode) {
1031 		parent = *pnode;
1032 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1033 
1034 		if (blkaddr < dc->di.lstart)
1035 			pnode = &(*pnode)->rb_left;
1036 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1037 			pnode = &(*pnode)->rb_right;
1038 		else
1039 			goto lookup_neighbors;
1040 	}
1041 
1042 	*insert_p = pnode;
1043 	*insert_parent = parent;
1044 
1045 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1046 	tmp_node = parent;
1047 	if (parent && blkaddr > dc->di.lstart)
1048 		tmp_node = rb_next(parent);
1049 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1050 
1051 	tmp_node = parent;
1052 	if (parent && blkaddr < dc->di.lstart)
1053 		tmp_node = rb_prev(parent);
1054 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1055 	return NULL;
1056 
1057 lookup_neighbors:
1058 	/* lookup prev node for merging backward later */
1059 	tmp_node = rb_prev(&dc->rb_node);
1060 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1061 
1062 	/* lookup next node for merging frontward later */
1063 	tmp_node = rb_next(&dc->rb_node);
1064 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1065 	return dc;
1066 }
1067 
1068 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1069 							struct discard_cmd *dc)
1070 {
1071 	if (dc->state == D_DONE)
1072 		atomic_sub(dc->queued, &dcc->queued_discard);
1073 
1074 	list_del(&dc->list);
1075 	rb_erase_cached(&dc->rb_node, &dcc->root);
1076 	dcc->undiscard_blks -= dc->di.len;
1077 
1078 	kmem_cache_free(discard_cmd_slab, dc);
1079 
1080 	atomic_dec(&dcc->discard_cmd_cnt);
1081 }
1082 
1083 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1084 							struct discard_cmd *dc)
1085 {
1086 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1087 	unsigned long flags;
1088 
1089 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1090 
1091 	spin_lock_irqsave(&dc->lock, flags);
1092 	if (dc->bio_ref) {
1093 		spin_unlock_irqrestore(&dc->lock, flags);
1094 		return;
1095 	}
1096 	spin_unlock_irqrestore(&dc->lock, flags);
1097 
1098 	f2fs_bug_on(sbi, dc->ref);
1099 
1100 	if (dc->error == -EOPNOTSUPP)
1101 		dc->error = 0;
1102 
1103 	if (dc->error)
1104 		printk_ratelimited(
1105 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1106 			KERN_INFO, sbi->sb->s_id,
1107 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1108 	__detach_discard_cmd(dcc, dc);
1109 }
1110 
1111 static void f2fs_submit_discard_endio(struct bio *bio)
1112 {
1113 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1114 	unsigned long flags;
1115 
1116 	spin_lock_irqsave(&dc->lock, flags);
1117 	if (!dc->error)
1118 		dc->error = blk_status_to_errno(bio->bi_status);
1119 	dc->bio_ref--;
1120 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1121 		dc->state = D_DONE;
1122 		complete_all(&dc->wait);
1123 	}
1124 	spin_unlock_irqrestore(&dc->lock, flags);
1125 	bio_put(bio);
1126 }
1127 
1128 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1129 				block_t start, block_t end)
1130 {
1131 #ifdef CONFIG_F2FS_CHECK_FS
1132 	struct seg_entry *sentry;
1133 	unsigned int segno;
1134 	block_t blk = start;
1135 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1136 	unsigned long *map;
1137 
1138 	while (blk < end) {
1139 		segno = GET_SEGNO(sbi, blk);
1140 		sentry = get_seg_entry(sbi, segno);
1141 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1142 
1143 		if (end < START_BLOCK(sbi, segno + 1))
1144 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1145 		else
1146 			size = max_blocks;
1147 		map = (unsigned long *)(sentry->cur_valid_map);
1148 		offset = __find_rev_next_bit(map, size, offset);
1149 		f2fs_bug_on(sbi, offset != size);
1150 		blk = START_BLOCK(sbi, segno + 1);
1151 	}
1152 #endif
1153 }
1154 
1155 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1156 				struct discard_policy *dpolicy,
1157 				int discard_type, unsigned int granularity)
1158 {
1159 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1160 
1161 	/* common policy */
1162 	dpolicy->type = discard_type;
1163 	dpolicy->sync = true;
1164 	dpolicy->ordered = false;
1165 	dpolicy->granularity = granularity;
1166 
1167 	dpolicy->max_requests = dcc->max_discard_request;
1168 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1169 	dpolicy->timeout = false;
1170 
1171 	if (discard_type == DPOLICY_BG) {
1172 		dpolicy->min_interval = dcc->min_discard_issue_time;
1173 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1174 		dpolicy->max_interval = dcc->max_discard_issue_time;
1175 		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1176 			dpolicy->io_aware = true;
1177 		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1178 			dpolicy->io_aware = false;
1179 		dpolicy->sync = false;
1180 		dpolicy->ordered = true;
1181 		if (utilization(sbi) > dcc->discard_urgent_util) {
1182 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1183 			if (atomic_read(&dcc->discard_cmd_cnt))
1184 				dpolicy->max_interval =
1185 					dcc->min_discard_issue_time;
1186 		}
1187 	} else if (discard_type == DPOLICY_FORCE) {
1188 		dpolicy->min_interval = dcc->min_discard_issue_time;
1189 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1190 		dpolicy->max_interval = dcc->max_discard_issue_time;
1191 		dpolicy->io_aware = false;
1192 	} else if (discard_type == DPOLICY_FSTRIM) {
1193 		dpolicy->io_aware = false;
1194 	} else if (discard_type == DPOLICY_UMOUNT) {
1195 		dpolicy->io_aware = false;
1196 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1197 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1198 		dpolicy->timeout = true;
1199 	}
1200 }
1201 
1202 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1203 				struct block_device *bdev, block_t lstart,
1204 				block_t start, block_t len);
1205 
1206 #ifdef CONFIG_BLK_DEV_ZONED
1207 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1208 				   struct discard_cmd *dc, blk_opf_t flag,
1209 				   struct list_head *wait_list,
1210 				   unsigned int *issued)
1211 {
1212 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1213 	struct block_device *bdev = dc->bdev;
1214 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1215 	unsigned long flags;
1216 
1217 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1218 
1219 	spin_lock_irqsave(&dc->lock, flags);
1220 	dc->state = D_SUBMIT;
1221 	dc->bio_ref++;
1222 	spin_unlock_irqrestore(&dc->lock, flags);
1223 
1224 	if (issued)
1225 		(*issued)++;
1226 
1227 	atomic_inc(&dcc->queued_discard);
1228 	dc->queued++;
1229 	list_move_tail(&dc->list, wait_list);
1230 
1231 	/* sanity check on discard range */
1232 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1233 
1234 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1235 	bio->bi_private = dc;
1236 	bio->bi_end_io = f2fs_submit_discard_endio;
1237 	submit_bio(bio);
1238 
1239 	atomic_inc(&dcc->issued_discard);
1240 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1241 }
1242 #endif
1243 
1244 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1245 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1246 				struct discard_policy *dpolicy,
1247 				struct discard_cmd *dc, int *issued)
1248 {
1249 	struct block_device *bdev = dc->bdev;
1250 	unsigned int max_discard_blocks =
1251 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1252 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1253 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1254 					&(dcc->fstrim_list) : &(dcc->wait_list);
1255 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1256 	block_t lstart, start, len, total_len;
1257 	int err = 0;
1258 
1259 	if (dc->state != D_PREP)
1260 		return 0;
1261 
1262 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1263 		return 0;
1264 
1265 #ifdef CONFIG_BLK_DEV_ZONED
1266 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1267 		int devi = f2fs_bdev_index(sbi, bdev);
1268 
1269 		if (devi < 0)
1270 			return -EINVAL;
1271 
1272 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1273 			__submit_zone_reset_cmd(sbi, dc, flag,
1274 						wait_list, issued);
1275 			return 0;
1276 		}
1277 	}
1278 #endif
1279 
1280 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1281 
1282 	lstart = dc->di.lstart;
1283 	start = dc->di.start;
1284 	len = dc->di.len;
1285 	total_len = len;
1286 
1287 	dc->di.len = 0;
1288 
1289 	while (total_len && *issued < dpolicy->max_requests && !err) {
1290 		struct bio *bio = NULL;
1291 		unsigned long flags;
1292 		bool last = true;
1293 
1294 		if (len > max_discard_blocks) {
1295 			len = max_discard_blocks;
1296 			last = false;
1297 		}
1298 
1299 		(*issued)++;
1300 		if (*issued == dpolicy->max_requests)
1301 			last = true;
1302 
1303 		dc->di.len += len;
1304 
1305 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1306 			err = -EIO;
1307 		} else {
1308 			err = __blkdev_issue_discard(bdev,
1309 					SECTOR_FROM_BLOCK(start),
1310 					SECTOR_FROM_BLOCK(len),
1311 					GFP_NOFS, &bio);
1312 		}
1313 		if (err) {
1314 			spin_lock_irqsave(&dc->lock, flags);
1315 			if (dc->state == D_PARTIAL)
1316 				dc->state = D_SUBMIT;
1317 			spin_unlock_irqrestore(&dc->lock, flags);
1318 
1319 			break;
1320 		}
1321 
1322 		f2fs_bug_on(sbi, !bio);
1323 
1324 		/*
1325 		 * should keep before submission to avoid D_DONE
1326 		 * right away
1327 		 */
1328 		spin_lock_irqsave(&dc->lock, flags);
1329 		if (last)
1330 			dc->state = D_SUBMIT;
1331 		else
1332 			dc->state = D_PARTIAL;
1333 		dc->bio_ref++;
1334 		spin_unlock_irqrestore(&dc->lock, flags);
1335 
1336 		atomic_inc(&dcc->queued_discard);
1337 		dc->queued++;
1338 		list_move_tail(&dc->list, wait_list);
1339 
1340 		/* sanity check on discard range */
1341 		__check_sit_bitmap(sbi, lstart, lstart + len);
1342 
1343 		bio->bi_private = dc;
1344 		bio->bi_end_io = f2fs_submit_discard_endio;
1345 		bio->bi_opf |= flag;
1346 		submit_bio(bio);
1347 
1348 		atomic_inc(&dcc->issued_discard);
1349 
1350 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1351 
1352 		lstart += len;
1353 		start += len;
1354 		total_len -= len;
1355 		len = total_len;
1356 	}
1357 
1358 	if (!err && len) {
1359 		dcc->undiscard_blks -= len;
1360 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1361 	}
1362 	return err;
1363 }
1364 
1365 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1366 				struct block_device *bdev, block_t lstart,
1367 				block_t start, block_t len)
1368 {
1369 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1370 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1371 	struct rb_node *parent = NULL;
1372 	struct discard_cmd *dc;
1373 	bool leftmost = true;
1374 
1375 	/* look up rb tree to find parent node */
1376 	while (*p) {
1377 		parent = *p;
1378 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1379 
1380 		if (lstart < dc->di.lstart) {
1381 			p = &(*p)->rb_left;
1382 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1383 			p = &(*p)->rb_right;
1384 			leftmost = false;
1385 		} else {
1386 			/* Let's skip to add, if exists */
1387 			return;
1388 		}
1389 	}
1390 
1391 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1392 
1393 	rb_link_node(&dc->rb_node, parent, p);
1394 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1395 }
1396 
1397 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1398 						struct discard_cmd *dc)
1399 {
1400 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1401 }
1402 
1403 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1404 				struct discard_cmd *dc, block_t blkaddr)
1405 {
1406 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407 	struct discard_info di = dc->di;
1408 	bool modified = false;
1409 
1410 	if (dc->state == D_DONE || dc->di.len == 1) {
1411 		__remove_discard_cmd(sbi, dc);
1412 		return;
1413 	}
1414 
1415 	dcc->undiscard_blks -= di.len;
1416 
1417 	if (blkaddr > di.lstart) {
1418 		dc->di.len = blkaddr - dc->di.lstart;
1419 		dcc->undiscard_blks += dc->di.len;
1420 		__relocate_discard_cmd(dcc, dc);
1421 		modified = true;
1422 	}
1423 
1424 	if (blkaddr < di.lstart + di.len - 1) {
1425 		if (modified) {
1426 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1427 					di.start + blkaddr + 1 - di.lstart,
1428 					di.lstart + di.len - 1 - blkaddr);
1429 		} else {
1430 			dc->di.lstart++;
1431 			dc->di.len--;
1432 			dc->di.start++;
1433 			dcc->undiscard_blks += dc->di.len;
1434 			__relocate_discard_cmd(dcc, dc);
1435 		}
1436 	}
1437 }
1438 
1439 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1440 				struct block_device *bdev, block_t lstart,
1441 				block_t start, block_t len)
1442 {
1443 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1444 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1445 	struct discard_cmd *dc;
1446 	struct discard_info di = {0};
1447 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1448 	unsigned int max_discard_blocks =
1449 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1450 	block_t end = lstart + len;
1451 
1452 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1453 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1454 	if (dc)
1455 		prev_dc = dc;
1456 
1457 	if (!prev_dc) {
1458 		di.lstart = lstart;
1459 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1460 		di.len = min(di.len, len);
1461 		di.start = start;
1462 	}
1463 
1464 	while (1) {
1465 		struct rb_node *node;
1466 		bool merged = false;
1467 		struct discard_cmd *tdc = NULL;
1468 
1469 		if (prev_dc) {
1470 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1471 			if (di.lstart < lstart)
1472 				di.lstart = lstart;
1473 			if (di.lstart >= end)
1474 				break;
1475 
1476 			if (!next_dc || next_dc->di.lstart > end)
1477 				di.len = end - di.lstart;
1478 			else
1479 				di.len = next_dc->di.lstart - di.lstart;
1480 			di.start = start + di.lstart - lstart;
1481 		}
1482 
1483 		if (!di.len)
1484 			goto next;
1485 
1486 		if (prev_dc && prev_dc->state == D_PREP &&
1487 			prev_dc->bdev == bdev &&
1488 			__is_discard_back_mergeable(&di, &prev_dc->di,
1489 							max_discard_blocks)) {
1490 			prev_dc->di.len += di.len;
1491 			dcc->undiscard_blks += di.len;
1492 			__relocate_discard_cmd(dcc, prev_dc);
1493 			di = prev_dc->di;
1494 			tdc = prev_dc;
1495 			merged = true;
1496 		}
1497 
1498 		if (next_dc && next_dc->state == D_PREP &&
1499 			next_dc->bdev == bdev &&
1500 			__is_discard_front_mergeable(&di, &next_dc->di,
1501 							max_discard_blocks)) {
1502 			next_dc->di.lstart = di.lstart;
1503 			next_dc->di.len += di.len;
1504 			next_dc->di.start = di.start;
1505 			dcc->undiscard_blks += di.len;
1506 			__relocate_discard_cmd(dcc, next_dc);
1507 			if (tdc)
1508 				__remove_discard_cmd(sbi, tdc);
1509 			merged = true;
1510 		}
1511 
1512 		if (!merged)
1513 			__insert_discard_cmd(sbi, bdev,
1514 						di.lstart, di.start, di.len);
1515  next:
1516 		prev_dc = next_dc;
1517 		if (!prev_dc)
1518 			break;
1519 
1520 		node = rb_next(&prev_dc->rb_node);
1521 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1522 	}
1523 }
1524 
1525 #ifdef CONFIG_BLK_DEV_ZONED
1526 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1527 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1528 		block_t blklen)
1529 {
1530 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1531 
1532 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1533 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1534 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1535 }
1536 #endif
1537 
1538 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1539 		struct block_device *bdev, block_t blkstart, block_t blklen)
1540 {
1541 	block_t lblkstart = blkstart;
1542 
1543 	if (!f2fs_bdev_support_discard(bdev))
1544 		return;
1545 
1546 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1547 
1548 	if (f2fs_is_multi_device(sbi)) {
1549 		int devi = f2fs_target_device_index(sbi, blkstart);
1550 
1551 		blkstart -= FDEV(devi).start_blk;
1552 	}
1553 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1554 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1555 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1556 }
1557 
1558 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1559 		struct discard_policy *dpolicy, int *issued)
1560 {
1561 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1562 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1563 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1564 	struct discard_cmd *dc;
1565 	struct blk_plug plug;
1566 	bool io_interrupted = false;
1567 
1568 	mutex_lock(&dcc->cmd_lock);
1569 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1570 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1571 	if (!dc)
1572 		dc = next_dc;
1573 
1574 	blk_start_plug(&plug);
1575 
1576 	while (dc) {
1577 		struct rb_node *node;
1578 		int err = 0;
1579 
1580 		if (dc->state != D_PREP)
1581 			goto next;
1582 
1583 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1584 			io_interrupted = true;
1585 			break;
1586 		}
1587 
1588 		dcc->next_pos = dc->di.lstart + dc->di.len;
1589 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1590 
1591 		if (*issued >= dpolicy->max_requests)
1592 			break;
1593 next:
1594 		node = rb_next(&dc->rb_node);
1595 		if (err)
1596 			__remove_discard_cmd(sbi, dc);
1597 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1598 	}
1599 
1600 	blk_finish_plug(&plug);
1601 
1602 	if (!dc)
1603 		dcc->next_pos = 0;
1604 
1605 	mutex_unlock(&dcc->cmd_lock);
1606 
1607 	if (!(*issued) && io_interrupted)
1608 		*issued = -1;
1609 }
1610 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1611 					struct discard_policy *dpolicy);
1612 
1613 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1614 					struct discard_policy *dpolicy)
1615 {
1616 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1617 	struct list_head *pend_list;
1618 	struct discard_cmd *dc, *tmp;
1619 	struct blk_plug plug;
1620 	int i, issued;
1621 	bool io_interrupted = false;
1622 
1623 	if (dpolicy->timeout)
1624 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1625 
1626 retry:
1627 	issued = 0;
1628 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1629 		if (dpolicy->timeout &&
1630 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1631 			break;
1632 
1633 		if (i + 1 < dpolicy->granularity)
1634 			break;
1635 
1636 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1637 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1638 			return issued;
1639 		}
1640 
1641 		pend_list = &dcc->pend_list[i];
1642 
1643 		mutex_lock(&dcc->cmd_lock);
1644 		if (list_empty(pend_list))
1645 			goto next;
1646 		if (unlikely(dcc->rbtree_check))
1647 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1648 		blk_start_plug(&plug);
1649 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1650 			f2fs_bug_on(sbi, dc->state != D_PREP);
1651 
1652 			if (dpolicy->timeout &&
1653 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1654 				break;
1655 
1656 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1657 						!is_idle(sbi, DISCARD_TIME)) {
1658 				io_interrupted = true;
1659 				break;
1660 			}
1661 
1662 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1663 
1664 			if (issued >= dpolicy->max_requests)
1665 				break;
1666 		}
1667 		blk_finish_plug(&plug);
1668 next:
1669 		mutex_unlock(&dcc->cmd_lock);
1670 
1671 		if (issued >= dpolicy->max_requests || io_interrupted)
1672 			break;
1673 	}
1674 
1675 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1676 		__wait_all_discard_cmd(sbi, dpolicy);
1677 		goto retry;
1678 	}
1679 
1680 	if (!issued && io_interrupted)
1681 		issued = -1;
1682 
1683 	return issued;
1684 }
1685 
1686 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1687 {
1688 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1689 	struct list_head *pend_list;
1690 	struct discard_cmd *dc, *tmp;
1691 	int i;
1692 	bool dropped = false;
1693 
1694 	mutex_lock(&dcc->cmd_lock);
1695 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1696 		pend_list = &dcc->pend_list[i];
1697 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1698 			f2fs_bug_on(sbi, dc->state != D_PREP);
1699 			__remove_discard_cmd(sbi, dc);
1700 			dropped = true;
1701 		}
1702 	}
1703 	mutex_unlock(&dcc->cmd_lock);
1704 
1705 	return dropped;
1706 }
1707 
1708 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1709 {
1710 	__drop_discard_cmd(sbi);
1711 }
1712 
1713 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1714 							struct discard_cmd *dc)
1715 {
1716 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1717 	unsigned int len = 0;
1718 
1719 	wait_for_completion_io(&dc->wait);
1720 	mutex_lock(&dcc->cmd_lock);
1721 	f2fs_bug_on(sbi, dc->state != D_DONE);
1722 	dc->ref--;
1723 	if (!dc->ref) {
1724 		if (!dc->error)
1725 			len = dc->di.len;
1726 		__remove_discard_cmd(sbi, dc);
1727 	}
1728 	mutex_unlock(&dcc->cmd_lock);
1729 
1730 	return len;
1731 }
1732 
1733 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1734 						struct discard_policy *dpolicy,
1735 						block_t start, block_t end)
1736 {
1737 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1738 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1739 					&(dcc->fstrim_list) : &(dcc->wait_list);
1740 	struct discard_cmd *dc = NULL, *iter, *tmp;
1741 	unsigned int trimmed = 0;
1742 
1743 next:
1744 	dc = NULL;
1745 
1746 	mutex_lock(&dcc->cmd_lock);
1747 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1748 		if (iter->di.lstart + iter->di.len <= start ||
1749 					end <= iter->di.lstart)
1750 			continue;
1751 		if (iter->di.len < dpolicy->granularity)
1752 			continue;
1753 		if (iter->state == D_DONE && !iter->ref) {
1754 			wait_for_completion_io(&iter->wait);
1755 			if (!iter->error)
1756 				trimmed += iter->di.len;
1757 			__remove_discard_cmd(sbi, iter);
1758 		} else {
1759 			iter->ref++;
1760 			dc = iter;
1761 			break;
1762 		}
1763 	}
1764 	mutex_unlock(&dcc->cmd_lock);
1765 
1766 	if (dc) {
1767 		trimmed += __wait_one_discard_bio(sbi, dc);
1768 		goto next;
1769 	}
1770 
1771 	return trimmed;
1772 }
1773 
1774 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1775 						struct discard_policy *dpolicy)
1776 {
1777 	struct discard_policy dp;
1778 	unsigned int discard_blks;
1779 
1780 	if (dpolicy)
1781 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1782 
1783 	/* wait all */
1784 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1785 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1786 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1787 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1788 
1789 	return discard_blks;
1790 }
1791 
1792 /* This should be covered by global mutex, &sit_i->sentry_lock */
1793 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1794 {
1795 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1796 	struct discard_cmd *dc;
1797 	bool need_wait = false;
1798 
1799 	mutex_lock(&dcc->cmd_lock);
1800 	dc = __lookup_discard_cmd(sbi, blkaddr);
1801 #ifdef CONFIG_BLK_DEV_ZONED
1802 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1803 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1804 
1805 		if (devi < 0) {
1806 			mutex_unlock(&dcc->cmd_lock);
1807 			return;
1808 		}
1809 
1810 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1811 			/* force submit zone reset */
1812 			if (dc->state == D_PREP)
1813 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1814 							&dcc->wait_list, NULL);
1815 			dc->ref++;
1816 			mutex_unlock(&dcc->cmd_lock);
1817 			/* wait zone reset */
1818 			__wait_one_discard_bio(sbi, dc);
1819 			return;
1820 		}
1821 	}
1822 #endif
1823 	if (dc) {
1824 		if (dc->state == D_PREP) {
1825 			__punch_discard_cmd(sbi, dc, blkaddr);
1826 		} else {
1827 			dc->ref++;
1828 			need_wait = true;
1829 		}
1830 	}
1831 	mutex_unlock(&dcc->cmd_lock);
1832 
1833 	if (need_wait)
1834 		__wait_one_discard_bio(sbi, dc);
1835 }
1836 
1837 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1838 {
1839 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1840 
1841 	if (dcc && dcc->f2fs_issue_discard) {
1842 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1843 
1844 		dcc->f2fs_issue_discard = NULL;
1845 		kthread_stop(discard_thread);
1846 	}
1847 }
1848 
1849 /**
1850  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1851  * @sbi: the f2fs_sb_info data for discard cmd to issue
1852  *
1853  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1854  *
1855  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1856  */
1857 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1858 {
1859 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1860 	struct discard_policy dpolicy;
1861 	bool dropped;
1862 
1863 	if (!atomic_read(&dcc->discard_cmd_cnt))
1864 		return true;
1865 
1866 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1867 					dcc->discard_granularity);
1868 	__issue_discard_cmd(sbi, &dpolicy);
1869 	dropped = __drop_discard_cmd(sbi);
1870 
1871 	/* just to make sure there is no pending discard commands */
1872 	__wait_all_discard_cmd(sbi, NULL);
1873 
1874 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1875 	return !dropped;
1876 }
1877 
1878 static int issue_discard_thread(void *data)
1879 {
1880 	struct f2fs_sb_info *sbi = data;
1881 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1882 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1883 	struct discard_policy dpolicy;
1884 	unsigned int wait_ms = dcc->min_discard_issue_time;
1885 	int issued;
1886 
1887 	set_freezable();
1888 
1889 	do {
1890 		wait_event_freezable_timeout(*q,
1891 				kthread_should_stop() || dcc->discard_wake,
1892 				msecs_to_jiffies(wait_ms));
1893 
1894 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1895 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1896 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1897 						MIN_DISCARD_GRANULARITY);
1898 		else
1899 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1900 						dcc->discard_granularity);
1901 
1902 		if (dcc->discard_wake)
1903 			dcc->discard_wake = false;
1904 
1905 		/* clean up pending candidates before going to sleep */
1906 		if (atomic_read(&dcc->queued_discard))
1907 			__wait_all_discard_cmd(sbi, NULL);
1908 
1909 		if (f2fs_readonly(sbi->sb))
1910 			continue;
1911 		if (kthread_should_stop())
1912 			return 0;
1913 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1914 			!atomic_read(&dcc->discard_cmd_cnt)) {
1915 			wait_ms = dpolicy.max_interval;
1916 			continue;
1917 		}
1918 
1919 		sb_start_intwrite(sbi->sb);
1920 
1921 		issued = __issue_discard_cmd(sbi, &dpolicy);
1922 		if (issued > 0) {
1923 			__wait_all_discard_cmd(sbi, &dpolicy);
1924 			wait_ms = dpolicy.min_interval;
1925 		} else if (issued == -1) {
1926 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1927 			if (!wait_ms)
1928 				wait_ms = dpolicy.mid_interval;
1929 		} else {
1930 			wait_ms = dpolicy.max_interval;
1931 		}
1932 		if (!atomic_read(&dcc->discard_cmd_cnt))
1933 			wait_ms = dpolicy.max_interval;
1934 
1935 		sb_end_intwrite(sbi->sb);
1936 
1937 	} while (!kthread_should_stop());
1938 	return 0;
1939 }
1940 
1941 #ifdef CONFIG_BLK_DEV_ZONED
1942 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1943 		struct block_device *bdev, block_t blkstart, block_t blklen)
1944 {
1945 	sector_t sector, nr_sects;
1946 	block_t lblkstart = blkstart;
1947 	int devi = 0;
1948 	u64 remainder = 0;
1949 
1950 	if (f2fs_is_multi_device(sbi)) {
1951 		devi = f2fs_target_device_index(sbi, blkstart);
1952 		if (blkstart < FDEV(devi).start_blk ||
1953 		    blkstart > FDEV(devi).end_blk) {
1954 			f2fs_err(sbi, "Invalid block %x", blkstart);
1955 			return -EIO;
1956 		}
1957 		blkstart -= FDEV(devi).start_blk;
1958 	}
1959 
1960 	/* For sequential zones, reset the zone write pointer */
1961 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1962 		sector = SECTOR_FROM_BLOCK(blkstart);
1963 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1964 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1965 
1966 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1967 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1968 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1969 				 blkstart, blklen);
1970 			return -EIO;
1971 		}
1972 
1973 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1974 			unsigned int nofs_flags;
1975 			int ret;
1976 
1977 			trace_f2fs_issue_reset_zone(bdev, blkstart);
1978 			nofs_flags = memalloc_nofs_save();
1979 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1980 						sector, nr_sects);
1981 			memalloc_nofs_restore(nofs_flags);
1982 			return ret;
1983 		}
1984 
1985 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1986 		return 0;
1987 	}
1988 
1989 	/* For conventional zones, use regular discard if supported */
1990 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1991 	return 0;
1992 }
1993 #endif
1994 
1995 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1996 		struct block_device *bdev, block_t blkstart, block_t blklen)
1997 {
1998 #ifdef CONFIG_BLK_DEV_ZONED
1999 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2000 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2001 #endif
2002 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2003 	return 0;
2004 }
2005 
2006 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2007 				block_t blkstart, block_t blklen)
2008 {
2009 	sector_t start = blkstart, len = 0;
2010 	struct block_device *bdev;
2011 	struct seg_entry *se;
2012 	unsigned int offset;
2013 	block_t i;
2014 	int err = 0;
2015 
2016 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2017 
2018 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2019 		if (i != start) {
2020 			struct block_device *bdev2 =
2021 				f2fs_target_device(sbi, i, NULL);
2022 
2023 			if (bdev2 != bdev) {
2024 				err = __issue_discard_async(sbi, bdev,
2025 						start, len);
2026 				if (err)
2027 					return err;
2028 				bdev = bdev2;
2029 				start = i;
2030 				len = 0;
2031 			}
2032 		}
2033 
2034 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2035 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2036 
2037 		if (f2fs_block_unit_discard(sbi) &&
2038 				!f2fs_test_and_set_bit(offset, se->discard_map))
2039 			sbi->discard_blks--;
2040 	}
2041 
2042 	if (len)
2043 		err = __issue_discard_async(sbi, bdev, start, len);
2044 	return err;
2045 }
2046 
2047 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2048 							bool check_only)
2049 {
2050 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2051 	int max_blocks = sbi->blocks_per_seg;
2052 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2053 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2054 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2055 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2056 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2057 	unsigned int start = 0, end = -1;
2058 	bool force = (cpc->reason & CP_DISCARD);
2059 	struct discard_entry *de = NULL;
2060 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2061 	int i;
2062 
2063 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
2064 			!f2fs_block_unit_discard(sbi))
2065 		return false;
2066 
2067 	if (!force) {
2068 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2069 			SM_I(sbi)->dcc_info->nr_discards >=
2070 				SM_I(sbi)->dcc_info->max_discards)
2071 			return false;
2072 	}
2073 
2074 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2075 	for (i = 0; i < entries; i++)
2076 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2077 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2078 
2079 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2080 				SM_I(sbi)->dcc_info->max_discards) {
2081 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
2082 		if (start >= max_blocks)
2083 			break;
2084 
2085 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2086 		if (force && start && end != max_blocks
2087 					&& (end - start) < cpc->trim_minlen)
2088 			continue;
2089 
2090 		if (check_only)
2091 			return true;
2092 
2093 		if (!de) {
2094 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2095 						GFP_F2FS_ZERO, true, NULL);
2096 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2097 			list_add_tail(&de->list, head);
2098 		}
2099 
2100 		for (i = start; i < end; i++)
2101 			__set_bit_le(i, (void *)de->discard_map);
2102 
2103 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2104 	}
2105 	return false;
2106 }
2107 
2108 static void release_discard_addr(struct discard_entry *entry)
2109 {
2110 	list_del(&entry->list);
2111 	kmem_cache_free(discard_entry_slab, entry);
2112 }
2113 
2114 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2115 {
2116 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2117 	struct discard_entry *entry, *this;
2118 
2119 	/* drop caches */
2120 	list_for_each_entry_safe(entry, this, head, list)
2121 		release_discard_addr(entry);
2122 }
2123 
2124 /*
2125  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2126  */
2127 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2128 {
2129 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2130 	unsigned int segno;
2131 
2132 	mutex_lock(&dirty_i->seglist_lock);
2133 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2134 		__set_test_and_free(sbi, segno, false);
2135 	mutex_unlock(&dirty_i->seglist_lock);
2136 }
2137 
2138 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2139 						struct cp_control *cpc)
2140 {
2141 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2142 	struct list_head *head = &dcc->entry_list;
2143 	struct discard_entry *entry, *this;
2144 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2145 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2146 	unsigned int start = 0, end = -1;
2147 	unsigned int secno, start_segno;
2148 	bool force = (cpc->reason & CP_DISCARD);
2149 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2150 						DISCARD_UNIT_SECTION;
2151 
2152 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2153 		section_alignment = true;
2154 
2155 	mutex_lock(&dirty_i->seglist_lock);
2156 
2157 	while (1) {
2158 		int i;
2159 
2160 		if (section_alignment && end != -1)
2161 			end--;
2162 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2163 		if (start >= MAIN_SEGS(sbi))
2164 			break;
2165 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2166 								start + 1);
2167 
2168 		if (section_alignment) {
2169 			start = rounddown(start, sbi->segs_per_sec);
2170 			end = roundup(end, sbi->segs_per_sec);
2171 		}
2172 
2173 		for (i = start; i < end; i++) {
2174 			if (test_and_clear_bit(i, prefree_map))
2175 				dirty_i->nr_dirty[PRE]--;
2176 		}
2177 
2178 		if (!f2fs_realtime_discard_enable(sbi))
2179 			continue;
2180 
2181 		if (force && start >= cpc->trim_start &&
2182 					(end - 1) <= cpc->trim_end)
2183 			continue;
2184 
2185 		/* Should cover 2MB zoned device for zone-based reset */
2186 		if (!f2fs_sb_has_blkzoned(sbi) &&
2187 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2188 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2189 				(end - start) << sbi->log_blocks_per_seg);
2190 			continue;
2191 		}
2192 next:
2193 		secno = GET_SEC_FROM_SEG(sbi, start);
2194 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2195 		if (!IS_CURSEC(sbi, secno) &&
2196 			!get_valid_blocks(sbi, start, true))
2197 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2198 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2199 
2200 		start = start_segno + sbi->segs_per_sec;
2201 		if (start < end)
2202 			goto next;
2203 		else
2204 			end = start - 1;
2205 	}
2206 	mutex_unlock(&dirty_i->seglist_lock);
2207 
2208 	if (!f2fs_block_unit_discard(sbi))
2209 		goto wakeup;
2210 
2211 	/* send small discards */
2212 	list_for_each_entry_safe(entry, this, head, list) {
2213 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2214 		bool is_valid = test_bit_le(0, entry->discard_map);
2215 
2216 find_next:
2217 		if (is_valid) {
2218 			next_pos = find_next_zero_bit_le(entry->discard_map,
2219 					sbi->blocks_per_seg, cur_pos);
2220 			len = next_pos - cur_pos;
2221 
2222 			if (f2fs_sb_has_blkzoned(sbi) ||
2223 			    (force && len < cpc->trim_minlen))
2224 				goto skip;
2225 
2226 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2227 									len);
2228 			total_len += len;
2229 		} else {
2230 			next_pos = find_next_bit_le(entry->discard_map,
2231 					sbi->blocks_per_seg, cur_pos);
2232 		}
2233 skip:
2234 		cur_pos = next_pos;
2235 		is_valid = !is_valid;
2236 
2237 		if (cur_pos < sbi->blocks_per_seg)
2238 			goto find_next;
2239 
2240 		release_discard_addr(entry);
2241 		dcc->nr_discards -= total_len;
2242 	}
2243 
2244 wakeup:
2245 	wake_up_discard_thread(sbi, false);
2246 }
2247 
2248 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2249 {
2250 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2251 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2252 	int err = 0;
2253 
2254 	if (!f2fs_realtime_discard_enable(sbi))
2255 		return 0;
2256 
2257 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2258 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2259 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2260 		err = PTR_ERR(dcc->f2fs_issue_discard);
2261 		dcc->f2fs_issue_discard = NULL;
2262 	}
2263 
2264 	return err;
2265 }
2266 
2267 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2268 {
2269 	struct discard_cmd_control *dcc;
2270 	int err = 0, i;
2271 
2272 	if (SM_I(sbi)->dcc_info) {
2273 		dcc = SM_I(sbi)->dcc_info;
2274 		goto init_thread;
2275 	}
2276 
2277 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2278 	if (!dcc)
2279 		return -ENOMEM;
2280 
2281 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2282 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2283 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2284 	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2285 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2286 		dcc->discard_granularity = sbi->blocks_per_seg;
2287 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2288 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2289 
2290 	INIT_LIST_HEAD(&dcc->entry_list);
2291 	for (i = 0; i < MAX_PLIST_NUM; i++)
2292 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2293 	INIT_LIST_HEAD(&dcc->wait_list);
2294 	INIT_LIST_HEAD(&dcc->fstrim_list);
2295 	mutex_init(&dcc->cmd_lock);
2296 	atomic_set(&dcc->issued_discard, 0);
2297 	atomic_set(&dcc->queued_discard, 0);
2298 	atomic_set(&dcc->discard_cmd_cnt, 0);
2299 	dcc->nr_discards = 0;
2300 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2301 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2302 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2303 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2304 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2305 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2306 	dcc->undiscard_blks = 0;
2307 	dcc->next_pos = 0;
2308 	dcc->root = RB_ROOT_CACHED;
2309 	dcc->rbtree_check = false;
2310 
2311 	init_waitqueue_head(&dcc->discard_wait_queue);
2312 	SM_I(sbi)->dcc_info = dcc;
2313 init_thread:
2314 	err = f2fs_start_discard_thread(sbi);
2315 	if (err) {
2316 		kfree(dcc);
2317 		SM_I(sbi)->dcc_info = NULL;
2318 	}
2319 
2320 	return err;
2321 }
2322 
2323 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2324 {
2325 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2326 
2327 	if (!dcc)
2328 		return;
2329 
2330 	f2fs_stop_discard_thread(sbi);
2331 
2332 	/*
2333 	 * Recovery can cache discard commands, so in error path of
2334 	 * fill_super(), it needs to give a chance to handle them.
2335 	 */
2336 	f2fs_issue_discard_timeout(sbi);
2337 
2338 	kfree(dcc);
2339 	SM_I(sbi)->dcc_info = NULL;
2340 }
2341 
2342 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2343 {
2344 	struct sit_info *sit_i = SIT_I(sbi);
2345 
2346 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2347 		sit_i->dirty_sentries++;
2348 		return false;
2349 	}
2350 
2351 	return true;
2352 }
2353 
2354 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2355 					unsigned int segno, int modified)
2356 {
2357 	struct seg_entry *se = get_seg_entry(sbi, segno);
2358 
2359 	se->type = type;
2360 	if (modified)
2361 		__mark_sit_entry_dirty(sbi, segno);
2362 }
2363 
2364 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2365 								block_t blkaddr)
2366 {
2367 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2368 
2369 	if (segno == NULL_SEGNO)
2370 		return 0;
2371 	return get_seg_entry(sbi, segno)->mtime;
2372 }
2373 
2374 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2375 						unsigned long long old_mtime)
2376 {
2377 	struct seg_entry *se;
2378 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2379 	unsigned long long ctime = get_mtime(sbi, false);
2380 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2381 
2382 	if (segno == NULL_SEGNO)
2383 		return;
2384 
2385 	se = get_seg_entry(sbi, segno);
2386 
2387 	if (!se->mtime)
2388 		se->mtime = mtime;
2389 	else
2390 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2391 						se->valid_blocks + 1);
2392 
2393 	if (ctime > SIT_I(sbi)->max_mtime)
2394 		SIT_I(sbi)->max_mtime = ctime;
2395 }
2396 
2397 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2398 {
2399 	struct seg_entry *se;
2400 	unsigned int segno, offset;
2401 	long int new_vblocks;
2402 	bool exist;
2403 #ifdef CONFIG_F2FS_CHECK_FS
2404 	bool mir_exist;
2405 #endif
2406 
2407 	segno = GET_SEGNO(sbi, blkaddr);
2408 
2409 	se = get_seg_entry(sbi, segno);
2410 	new_vblocks = se->valid_blocks + del;
2411 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2412 
2413 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2414 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2415 
2416 	se->valid_blocks = new_vblocks;
2417 
2418 	/* Update valid block bitmap */
2419 	if (del > 0) {
2420 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2421 #ifdef CONFIG_F2FS_CHECK_FS
2422 		mir_exist = f2fs_test_and_set_bit(offset,
2423 						se->cur_valid_map_mir);
2424 		if (unlikely(exist != mir_exist)) {
2425 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2426 				 blkaddr, exist);
2427 			f2fs_bug_on(sbi, 1);
2428 		}
2429 #endif
2430 		if (unlikely(exist)) {
2431 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2432 				 blkaddr);
2433 			f2fs_bug_on(sbi, 1);
2434 			se->valid_blocks--;
2435 			del = 0;
2436 		}
2437 
2438 		if (f2fs_block_unit_discard(sbi) &&
2439 				!f2fs_test_and_set_bit(offset, se->discard_map))
2440 			sbi->discard_blks--;
2441 
2442 		/*
2443 		 * SSR should never reuse block which is checkpointed
2444 		 * or newly invalidated.
2445 		 */
2446 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2447 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2448 				se->ckpt_valid_blocks++;
2449 		}
2450 	} else {
2451 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2452 #ifdef CONFIG_F2FS_CHECK_FS
2453 		mir_exist = f2fs_test_and_clear_bit(offset,
2454 						se->cur_valid_map_mir);
2455 		if (unlikely(exist != mir_exist)) {
2456 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2457 				 blkaddr, exist);
2458 			f2fs_bug_on(sbi, 1);
2459 		}
2460 #endif
2461 		if (unlikely(!exist)) {
2462 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2463 				 blkaddr);
2464 			f2fs_bug_on(sbi, 1);
2465 			se->valid_blocks++;
2466 			del = 0;
2467 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2468 			/*
2469 			 * If checkpoints are off, we must not reuse data that
2470 			 * was used in the previous checkpoint. If it was used
2471 			 * before, we must track that to know how much space we
2472 			 * really have.
2473 			 */
2474 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2475 				spin_lock(&sbi->stat_lock);
2476 				sbi->unusable_block_count++;
2477 				spin_unlock(&sbi->stat_lock);
2478 			}
2479 		}
2480 
2481 		if (f2fs_block_unit_discard(sbi) &&
2482 			f2fs_test_and_clear_bit(offset, se->discard_map))
2483 			sbi->discard_blks++;
2484 	}
2485 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2486 		se->ckpt_valid_blocks += del;
2487 
2488 	__mark_sit_entry_dirty(sbi, segno);
2489 
2490 	/* update total number of valid blocks to be written in ckpt area */
2491 	SIT_I(sbi)->written_valid_blocks += del;
2492 
2493 	if (__is_large_section(sbi))
2494 		get_sec_entry(sbi, segno)->valid_blocks += del;
2495 }
2496 
2497 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2498 {
2499 	unsigned int segno = GET_SEGNO(sbi, addr);
2500 	struct sit_info *sit_i = SIT_I(sbi);
2501 
2502 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2503 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2504 		return;
2505 
2506 	f2fs_invalidate_internal_cache(sbi, addr);
2507 
2508 	/* add it into sit main buffer */
2509 	down_write(&sit_i->sentry_lock);
2510 
2511 	update_segment_mtime(sbi, addr, 0);
2512 	update_sit_entry(sbi, addr, -1);
2513 
2514 	/* add it into dirty seglist */
2515 	locate_dirty_segment(sbi, segno);
2516 
2517 	up_write(&sit_i->sentry_lock);
2518 }
2519 
2520 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2521 {
2522 	struct sit_info *sit_i = SIT_I(sbi);
2523 	unsigned int segno, offset;
2524 	struct seg_entry *se;
2525 	bool is_cp = false;
2526 
2527 	if (!__is_valid_data_blkaddr(blkaddr))
2528 		return true;
2529 
2530 	down_read(&sit_i->sentry_lock);
2531 
2532 	segno = GET_SEGNO(sbi, blkaddr);
2533 	se = get_seg_entry(sbi, segno);
2534 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2535 
2536 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2537 		is_cp = true;
2538 
2539 	up_read(&sit_i->sentry_lock);
2540 
2541 	return is_cp;
2542 }
2543 
2544 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2545 {
2546 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2547 
2548 	if (sbi->ckpt->alloc_type[type] == SSR)
2549 		return sbi->blocks_per_seg;
2550 	return curseg->next_blkoff;
2551 }
2552 
2553 /*
2554  * Calculate the number of current summary pages for writing
2555  */
2556 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2557 {
2558 	int valid_sum_count = 0;
2559 	int i, sum_in_page;
2560 
2561 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2562 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2563 			valid_sum_count +=
2564 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2565 		else
2566 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2567 	}
2568 
2569 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2570 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2571 	if (valid_sum_count <= sum_in_page)
2572 		return 1;
2573 	else if ((valid_sum_count - sum_in_page) <=
2574 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2575 		return 2;
2576 	return 3;
2577 }
2578 
2579 /*
2580  * Caller should put this summary page
2581  */
2582 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2583 {
2584 	if (unlikely(f2fs_cp_error(sbi)))
2585 		return ERR_PTR(-EIO);
2586 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2587 }
2588 
2589 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2590 					void *src, block_t blk_addr)
2591 {
2592 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2593 
2594 	memcpy(page_address(page), src, PAGE_SIZE);
2595 	set_page_dirty(page);
2596 	f2fs_put_page(page, 1);
2597 }
2598 
2599 static void write_sum_page(struct f2fs_sb_info *sbi,
2600 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2601 {
2602 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2603 }
2604 
2605 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2606 						int type, block_t blk_addr)
2607 {
2608 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2609 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2610 	struct f2fs_summary_block *src = curseg->sum_blk;
2611 	struct f2fs_summary_block *dst;
2612 
2613 	dst = (struct f2fs_summary_block *)page_address(page);
2614 	memset(dst, 0, PAGE_SIZE);
2615 
2616 	mutex_lock(&curseg->curseg_mutex);
2617 
2618 	down_read(&curseg->journal_rwsem);
2619 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2620 	up_read(&curseg->journal_rwsem);
2621 
2622 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2623 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2624 
2625 	mutex_unlock(&curseg->curseg_mutex);
2626 
2627 	set_page_dirty(page);
2628 	f2fs_put_page(page, 1);
2629 }
2630 
2631 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2632 				struct curseg_info *curseg, int type)
2633 {
2634 	unsigned int segno = curseg->segno + 1;
2635 	struct free_segmap_info *free_i = FREE_I(sbi);
2636 
2637 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2638 		return !test_bit(segno, free_i->free_segmap);
2639 	return 0;
2640 }
2641 
2642 /*
2643  * Find a new segment from the free segments bitmap to right order
2644  * This function should be returned with success, otherwise BUG
2645  */
2646 static void get_new_segment(struct f2fs_sb_info *sbi,
2647 			unsigned int *newseg, bool new_sec, int dir)
2648 {
2649 	struct free_segmap_info *free_i = FREE_I(sbi);
2650 	unsigned int segno, secno, zoneno;
2651 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2652 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2653 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2654 	unsigned int left_start = hint;
2655 	bool init = true;
2656 	int go_left = 0;
2657 	int i;
2658 
2659 	spin_lock(&free_i->segmap_lock);
2660 
2661 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2662 		segno = find_next_zero_bit(free_i->free_segmap,
2663 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2664 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2665 			goto got_it;
2666 	}
2667 find_other_zone:
2668 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2669 	if (secno >= MAIN_SECS(sbi)) {
2670 		if (dir == ALLOC_RIGHT) {
2671 			secno = find_first_zero_bit(free_i->free_secmap,
2672 							MAIN_SECS(sbi));
2673 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2674 		} else {
2675 			go_left = 1;
2676 			left_start = hint - 1;
2677 		}
2678 	}
2679 	if (go_left == 0)
2680 		goto skip_left;
2681 
2682 	while (test_bit(left_start, free_i->free_secmap)) {
2683 		if (left_start > 0) {
2684 			left_start--;
2685 			continue;
2686 		}
2687 		left_start = find_first_zero_bit(free_i->free_secmap,
2688 							MAIN_SECS(sbi));
2689 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2690 		break;
2691 	}
2692 	secno = left_start;
2693 skip_left:
2694 	segno = GET_SEG_FROM_SEC(sbi, secno);
2695 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2696 
2697 	/* give up on finding another zone */
2698 	if (!init)
2699 		goto got_it;
2700 	if (sbi->secs_per_zone == 1)
2701 		goto got_it;
2702 	if (zoneno == old_zoneno)
2703 		goto got_it;
2704 	if (dir == ALLOC_LEFT) {
2705 		if (!go_left && zoneno + 1 >= total_zones)
2706 			goto got_it;
2707 		if (go_left && zoneno == 0)
2708 			goto got_it;
2709 	}
2710 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2711 		if (CURSEG_I(sbi, i)->zone == zoneno)
2712 			break;
2713 
2714 	if (i < NR_CURSEG_TYPE) {
2715 		/* zone is in user, try another */
2716 		if (go_left)
2717 			hint = zoneno * sbi->secs_per_zone - 1;
2718 		else if (zoneno + 1 >= total_zones)
2719 			hint = 0;
2720 		else
2721 			hint = (zoneno + 1) * sbi->secs_per_zone;
2722 		init = false;
2723 		goto find_other_zone;
2724 	}
2725 got_it:
2726 	/* set it as dirty segment in free segmap */
2727 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2728 	__set_inuse(sbi, segno);
2729 	*newseg = segno;
2730 	spin_unlock(&free_i->segmap_lock);
2731 }
2732 
2733 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2734 {
2735 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2736 	struct summary_footer *sum_footer;
2737 	unsigned short seg_type = curseg->seg_type;
2738 
2739 	curseg->inited = true;
2740 	curseg->segno = curseg->next_segno;
2741 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2742 	curseg->next_blkoff = 0;
2743 	curseg->next_segno = NULL_SEGNO;
2744 
2745 	sum_footer = &(curseg->sum_blk->footer);
2746 	memset(sum_footer, 0, sizeof(struct summary_footer));
2747 
2748 	sanity_check_seg_type(sbi, seg_type);
2749 
2750 	if (IS_DATASEG(seg_type))
2751 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2752 	if (IS_NODESEG(seg_type))
2753 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2754 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2755 }
2756 
2757 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2758 {
2759 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2760 	unsigned short seg_type = curseg->seg_type;
2761 
2762 	sanity_check_seg_type(sbi, seg_type);
2763 	if (f2fs_need_rand_seg(sbi))
2764 		return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2765 
2766 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2767 	if (__is_large_section(sbi))
2768 		return curseg->segno;
2769 
2770 	/* inmem log may not locate on any segment after mount */
2771 	if (!curseg->inited)
2772 		return 0;
2773 
2774 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2775 		return 0;
2776 
2777 	if (test_opt(sbi, NOHEAP) &&
2778 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2779 		return 0;
2780 
2781 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2782 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2783 
2784 	/* find segments from 0 to reuse freed segments */
2785 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2786 		return 0;
2787 
2788 	return curseg->segno;
2789 }
2790 
2791 /*
2792  * Allocate a current working segment.
2793  * This function always allocates a free segment in LFS manner.
2794  */
2795 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2796 {
2797 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2798 	unsigned short seg_type = curseg->seg_type;
2799 	unsigned int segno = curseg->segno;
2800 	int dir = ALLOC_LEFT;
2801 
2802 	if (curseg->inited)
2803 		write_sum_page(sbi, curseg->sum_blk,
2804 				GET_SUM_BLOCK(sbi, segno));
2805 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2806 		dir = ALLOC_RIGHT;
2807 
2808 	if (test_opt(sbi, NOHEAP))
2809 		dir = ALLOC_RIGHT;
2810 
2811 	segno = __get_next_segno(sbi, type);
2812 	get_new_segment(sbi, &segno, new_sec, dir);
2813 	curseg->next_segno = segno;
2814 	reset_curseg(sbi, type, 1);
2815 	curseg->alloc_type = LFS;
2816 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2817 		curseg->fragment_remained_chunk =
2818 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2819 }
2820 
2821 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2822 					int segno, block_t start)
2823 {
2824 	struct seg_entry *se = get_seg_entry(sbi, segno);
2825 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2826 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2827 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2828 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2829 	int i;
2830 
2831 	for (i = 0; i < entries; i++)
2832 		target_map[i] = ckpt_map[i] | cur_map[i];
2833 
2834 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2835 }
2836 
2837 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2838 		struct curseg_info *seg)
2839 {
2840 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2841 }
2842 
2843 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2844 {
2845 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2846 }
2847 
2848 /*
2849  * This function always allocates a used segment(from dirty seglist) by SSR
2850  * manner, so it should recover the existing segment information of valid blocks
2851  */
2852 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2853 {
2854 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2855 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2856 	unsigned int new_segno = curseg->next_segno;
2857 	struct f2fs_summary_block *sum_node;
2858 	struct page *sum_page;
2859 
2860 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2861 
2862 	__set_test_and_inuse(sbi, new_segno);
2863 
2864 	mutex_lock(&dirty_i->seglist_lock);
2865 	__remove_dirty_segment(sbi, new_segno, PRE);
2866 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2867 	mutex_unlock(&dirty_i->seglist_lock);
2868 
2869 	reset_curseg(sbi, type, 1);
2870 	curseg->alloc_type = SSR;
2871 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2872 
2873 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2874 	if (IS_ERR(sum_page)) {
2875 		/* GC won't be able to use stale summary pages by cp_error */
2876 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2877 		return;
2878 	}
2879 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2880 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2881 	f2fs_put_page(sum_page, 1);
2882 }
2883 
2884 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2885 				int alloc_mode, unsigned long long age);
2886 
2887 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2888 					int target_type, int alloc_mode,
2889 					unsigned long long age)
2890 {
2891 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2892 
2893 	curseg->seg_type = target_type;
2894 
2895 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2896 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2897 
2898 		curseg->seg_type = se->type;
2899 		change_curseg(sbi, type);
2900 	} else {
2901 		/* allocate cold segment by default */
2902 		curseg->seg_type = CURSEG_COLD_DATA;
2903 		new_curseg(sbi, type, true);
2904 	}
2905 	stat_inc_seg_type(sbi, curseg);
2906 }
2907 
2908 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2909 {
2910 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2911 
2912 	if (!sbi->am.atgc_enabled)
2913 		return;
2914 
2915 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2916 
2917 	mutex_lock(&curseg->curseg_mutex);
2918 	down_write(&SIT_I(sbi)->sentry_lock);
2919 
2920 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2921 
2922 	up_write(&SIT_I(sbi)->sentry_lock);
2923 	mutex_unlock(&curseg->curseg_mutex);
2924 
2925 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2926 
2927 }
2928 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2929 {
2930 	__f2fs_init_atgc_curseg(sbi);
2931 }
2932 
2933 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2934 {
2935 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2936 
2937 	mutex_lock(&curseg->curseg_mutex);
2938 	if (!curseg->inited)
2939 		goto out;
2940 
2941 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2942 		write_sum_page(sbi, curseg->sum_blk,
2943 				GET_SUM_BLOCK(sbi, curseg->segno));
2944 	} else {
2945 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2946 		__set_test_and_free(sbi, curseg->segno, true);
2947 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2948 	}
2949 out:
2950 	mutex_unlock(&curseg->curseg_mutex);
2951 }
2952 
2953 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2954 {
2955 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2956 
2957 	if (sbi->am.atgc_enabled)
2958 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2959 }
2960 
2961 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2962 {
2963 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2964 
2965 	mutex_lock(&curseg->curseg_mutex);
2966 	if (!curseg->inited)
2967 		goto out;
2968 	if (get_valid_blocks(sbi, curseg->segno, false))
2969 		goto out;
2970 
2971 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2972 	__set_test_and_inuse(sbi, curseg->segno);
2973 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2974 out:
2975 	mutex_unlock(&curseg->curseg_mutex);
2976 }
2977 
2978 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2979 {
2980 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2981 
2982 	if (sbi->am.atgc_enabled)
2983 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2984 }
2985 
2986 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2987 				int alloc_mode, unsigned long long age)
2988 {
2989 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2990 	unsigned segno = NULL_SEGNO;
2991 	unsigned short seg_type = curseg->seg_type;
2992 	int i, cnt;
2993 	bool reversed = false;
2994 
2995 	sanity_check_seg_type(sbi, seg_type);
2996 
2997 	/* f2fs_need_SSR() already forces to do this */
2998 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2999 		curseg->next_segno = segno;
3000 		return 1;
3001 	}
3002 
3003 	/* For node segments, let's do SSR more intensively */
3004 	if (IS_NODESEG(seg_type)) {
3005 		if (seg_type >= CURSEG_WARM_NODE) {
3006 			reversed = true;
3007 			i = CURSEG_COLD_NODE;
3008 		} else {
3009 			i = CURSEG_HOT_NODE;
3010 		}
3011 		cnt = NR_CURSEG_NODE_TYPE;
3012 	} else {
3013 		if (seg_type >= CURSEG_WARM_DATA) {
3014 			reversed = true;
3015 			i = CURSEG_COLD_DATA;
3016 		} else {
3017 			i = CURSEG_HOT_DATA;
3018 		}
3019 		cnt = NR_CURSEG_DATA_TYPE;
3020 	}
3021 
3022 	for (; cnt-- > 0; reversed ? i-- : i++) {
3023 		if (i == seg_type)
3024 			continue;
3025 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3026 			curseg->next_segno = segno;
3027 			return 1;
3028 		}
3029 	}
3030 
3031 	/* find valid_blocks=0 in dirty list */
3032 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3033 		segno = get_free_segment(sbi);
3034 		if (segno != NULL_SEGNO) {
3035 			curseg->next_segno = segno;
3036 			return 1;
3037 		}
3038 	}
3039 	return 0;
3040 }
3041 
3042 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3043 {
3044 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3045 
3046 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3047 	    curseg->seg_type == CURSEG_WARM_NODE)
3048 		return true;
3049 	if (curseg->alloc_type == LFS &&
3050 	    is_next_segment_free(sbi, curseg, type) &&
3051 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3052 		return true;
3053 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3054 		return true;
3055 	return false;
3056 }
3057 
3058 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3059 					unsigned int start, unsigned int end)
3060 {
3061 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3062 	unsigned int segno;
3063 
3064 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3065 	mutex_lock(&curseg->curseg_mutex);
3066 	down_write(&SIT_I(sbi)->sentry_lock);
3067 
3068 	segno = CURSEG_I(sbi, type)->segno;
3069 	if (segno < start || segno > end)
3070 		goto unlock;
3071 
3072 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3073 		change_curseg(sbi, type);
3074 	else
3075 		new_curseg(sbi, type, true);
3076 
3077 	stat_inc_seg_type(sbi, curseg);
3078 
3079 	locate_dirty_segment(sbi, segno);
3080 unlock:
3081 	up_write(&SIT_I(sbi)->sentry_lock);
3082 
3083 	if (segno != curseg->segno)
3084 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3085 			    type, segno, curseg->segno);
3086 
3087 	mutex_unlock(&curseg->curseg_mutex);
3088 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3089 }
3090 
3091 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3092 						bool new_sec, bool force)
3093 {
3094 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3095 	unsigned int old_segno;
3096 
3097 	if (!force && curseg->inited &&
3098 	    !curseg->next_blkoff &&
3099 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3100 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3101 		return;
3102 
3103 	old_segno = curseg->segno;
3104 	new_curseg(sbi, type, true);
3105 	stat_inc_seg_type(sbi, curseg);
3106 	locate_dirty_segment(sbi, old_segno);
3107 }
3108 
3109 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3110 {
3111 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3112 	down_write(&SIT_I(sbi)->sentry_lock);
3113 	__allocate_new_segment(sbi, type, true, force);
3114 	up_write(&SIT_I(sbi)->sentry_lock);
3115 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3116 }
3117 
3118 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3119 {
3120 	int i;
3121 
3122 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3123 	down_write(&SIT_I(sbi)->sentry_lock);
3124 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3125 		__allocate_new_segment(sbi, i, false, false);
3126 	up_write(&SIT_I(sbi)->sentry_lock);
3127 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3128 }
3129 
3130 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3131 						struct cp_control *cpc)
3132 {
3133 	__u64 trim_start = cpc->trim_start;
3134 	bool has_candidate = false;
3135 
3136 	down_write(&SIT_I(sbi)->sentry_lock);
3137 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3138 		if (add_discard_addrs(sbi, cpc, true)) {
3139 			has_candidate = true;
3140 			break;
3141 		}
3142 	}
3143 	up_write(&SIT_I(sbi)->sentry_lock);
3144 
3145 	cpc->trim_start = trim_start;
3146 	return has_candidate;
3147 }
3148 
3149 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3150 					struct discard_policy *dpolicy,
3151 					unsigned int start, unsigned int end)
3152 {
3153 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3154 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3155 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3156 	struct discard_cmd *dc;
3157 	struct blk_plug plug;
3158 	int issued;
3159 	unsigned int trimmed = 0;
3160 
3161 next:
3162 	issued = 0;
3163 
3164 	mutex_lock(&dcc->cmd_lock);
3165 	if (unlikely(dcc->rbtree_check))
3166 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3167 
3168 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3169 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3170 	if (!dc)
3171 		dc = next_dc;
3172 
3173 	blk_start_plug(&plug);
3174 
3175 	while (dc && dc->di.lstart <= end) {
3176 		struct rb_node *node;
3177 		int err = 0;
3178 
3179 		if (dc->di.len < dpolicy->granularity)
3180 			goto skip;
3181 
3182 		if (dc->state != D_PREP) {
3183 			list_move_tail(&dc->list, &dcc->fstrim_list);
3184 			goto skip;
3185 		}
3186 
3187 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3188 
3189 		if (issued >= dpolicy->max_requests) {
3190 			start = dc->di.lstart + dc->di.len;
3191 
3192 			if (err)
3193 				__remove_discard_cmd(sbi, dc);
3194 
3195 			blk_finish_plug(&plug);
3196 			mutex_unlock(&dcc->cmd_lock);
3197 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3198 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3199 			goto next;
3200 		}
3201 skip:
3202 		node = rb_next(&dc->rb_node);
3203 		if (err)
3204 			__remove_discard_cmd(sbi, dc);
3205 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3206 
3207 		if (fatal_signal_pending(current))
3208 			break;
3209 	}
3210 
3211 	blk_finish_plug(&plug);
3212 	mutex_unlock(&dcc->cmd_lock);
3213 
3214 	return trimmed;
3215 }
3216 
3217 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3218 {
3219 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3220 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3221 	unsigned int start_segno, end_segno;
3222 	block_t start_block, end_block;
3223 	struct cp_control cpc;
3224 	struct discard_policy dpolicy;
3225 	unsigned long long trimmed = 0;
3226 	int err = 0;
3227 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3228 
3229 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3230 		return -EINVAL;
3231 
3232 	if (end < MAIN_BLKADDR(sbi))
3233 		goto out;
3234 
3235 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3236 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3237 		return -EFSCORRUPTED;
3238 	}
3239 
3240 	/* start/end segment number in main_area */
3241 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3242 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3243 						GET_SEGNO(sbi, end);
3244 	if (need_align) {
3245 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3246 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3247 	}
3248 
3249 	cpc.reason = CP_DISCARD;
3250 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3251 	cpc.trim_start = start_segno;
3252 	cpc.trim_end = end_segno;
3253 
3254 	if (sbi->discard_blks == 0)
3255 		goto out;
3256 
3257 	f2fs_down_write(&sbi->gc_lock);
3258 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3259 	err = f2fs_write_checkpoint(sbi, &cpc);
3260 	f2fs_up_write(&sbi->gc_lock);
3261 	if (err)
3262 		goto out;
3263 
3264 	/*
3265 	 * We filed discard candidates, but actually we don't need to wait for
3266 	 * all of them, since they'll be issued in idle time along with runtime
3267 	 * discard option. User configuration looks like using runtime discard
3268 	 * or periodic fstrim instead of it.
3269 	 */
3270 	if (f2fs_realtime_discard_enable(sbi))
3271 		goto out;
3272 
3273 	start_block = START_BLOCK(sbi, start_segno);
3274 	end_block = START_BLOCK(sbi, end_segno + 1);
3275 
3276 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3277 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3278 					start_block, end_block);
3279 
3280 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3281 					start_block, end_block);
3282 out:
3283 	if (!err)
3284 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3285 	return err;
3286 }
3287 
3288 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3289 {
3290 	switch (hint) {
3291 	case WRITE_LIFE_SHORT:
3292 		return CURSEG_HOT_DATA;
3293 	case WRITE_LIFE_EXTREME:
3294 		return CURSEG_COLD_DATA;
3295 	default:
3296 		return CURSEG_WARM_DATA;
3297 	}
3298 }
3299 
3300 static int __get_segment_type_2(struct f2fs_io_info *fio)
3301 {
3302 	if (fio->type == DATA)
3303 		return CURSEG_HOT_DATA;
3304 	else
3305 		return CURSEG_HOT_NODE;
3306 }
3307 
3308 static int __get_segment_type_4(struct f2fs_io_info *fio)
3309 {
3310 	if (fio->type == DATA) {
3311 		struct inode *inode = fio->page->mapping->host;
3312 
3313 		if (S_ISDIR(inode->i_mode))
3314 			return CURSEG_HOT_DATA;
3315 		else
3316 			return CURSEG_COLD_DATA;
3317 	} else {
3318 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3319 			return CURSEG_WARM_NODE;
3320 		else
3321 			return CURSEG_COLD_NODE;
3322 	}
3323 }
3324 
3325 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3326 {
3327 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3328 	struct extent_info ei = {};
3329 
3330 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3331 		if (!ei.age)
3332 			return NO_CHECK_TYPE;
3333 		if (ei.age <= sbi->hot_data_age_threshold)
3334 			return CURSEG_HOT_DATA;
3335 		if (ei.age <= sbi->warm_data_age_threshold)
3336 			return CURSEG_WARM_DATA;
3337 		return CURSEG_COLD_DATA;
3338 	}
3339 	return NO_CHECK_TYPE;
3340 }
3341 
3342 static int __get_segment_type_6(struct f2fs_io_info *fio)
3343 {
3344 	if (fio->type == DATA) {
3345 		struct inode *inode = fio->page->mapping->host;
3346 		int type;
3347 
3348 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3349 			return CURSEG_COLD_DATA_PINNED;
3350 
3351 		if (page_private_gcing(fio->page)) {
3352 			if (fio->sbi->am.atgc_enabled &&
3353 				(fio->io_type == FS_DATA_IO) &&
3354 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3355 				return CURSEG_ALL_DATA_ATGC;
3356 			else
3357 				return CURSEG_COLD_DATA;
3358 		}
3359 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3360 			return CURSEG_COLD_DATA;
3361 
3362 		type = __get_age_segment_type(inode, fio->page->index);
3363 		if (type != NO_CHECK_TYPE)
3364 			return type;
3365 
3366 		if (file_is_hot(inode) ||
3367 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3368 				f2fs_is_cow_file(inode))
3369 			return CURSEG_HOT_DATA;
3370 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3371 	} else {
3372 		if (IS_DNODE(fio->page))
3373 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3374 						CURSEG_HOT_NODE;
3375 		return CURSEG_COLD_NODE;
3376 	}
3377 }
3378 
3379 static int __get_segment_type(struct f2fs_io_info *fio)
3380 {
3381 	int type = 0;
3382 
3383 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3384 	case 2:
3385 		type = __get_segment_type_2(fio);
3386 		break;
3387 	case 4:
3388 		type = __get_segment_type_4(fio);
3389 		break;
3390 	case 6:
3391 		type = __get_segment_type_6(fio);
3392 		break;
3393 	default:
3394 		f2fs_bug_on(fio->sbi, true);
3395 	}
3396 
3397 	if (IS_HOT(type))
3398 		fio->temp = HOT;
3399 	else if (IS_WARM(type))
3400 		fio->temp = WARM;
3401 	else
3402 		fio->temp = COLD;
3403 	return type;
3404 }
3405 
3406 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3407 		struct curseg_info *seg)
3408 {
3409 	/* To allocate block chunks in different sizes, use random number */
3410 	if (--seg->fragment_remained_chunk > 0)
3411 		return;
3412 
3413 	seg->fragment_remained_chunk =
3414 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3415 	seg->next_blkoff +=
3416 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3417 }
3418 
3419 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3420 		block_t old_blkaddr, block_t *new_blkaddr,
3421 		struct f2fs_summary *sum, int type,
3422 		struct f2fs_io_info *fio)
3423 {
3424 	struct sit_info *sit_i = SIT_I(sbi);
3425 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3426 	unsigned long long old_mtime;
3427 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3428 	struct seg_entry *se = NULL;
3429 	bool segment_full = false;
3430 
3431 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3432 
3433 	mutex_lock(&curseg->curseg_mutex);
3434 	down_write(&sit_i->sentry_lock);
3435 
3436 	if (from_gc) {
3437 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3438 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3439 		sanity_check_seg_type(sbi, se->type);
3440 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3441 	}
3442 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3443 
3444 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3445 
3446 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3447 
3448 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3449 	if (curseg->alloc_type == SSR) {
3450 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3451 	} else {
3452 		curseg->next_blkoff++;
3453 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3454 			f2fs_randomize_chunk(sbi, curseg);
3455 	}
3456 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3457 		segment_full = true;
3458 	stat_inc_block_count(sbi, curseg);
3459 
3460 	if (from_gc) {
3461 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3462 	} else {
3463 		update_segment_mtime(sbi, old_blkaddr, 0);
3464 		old_mtime = 0;
3465 	}
3466 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3467 
3468 	/*
3469 	 * SIT information should be updated before segment allocation,
3470 	 * since SSR needs latest valid block information.
3471 	 */
3472 	update_sit_entry(sbi, *new_blkaddr, 1);
3473 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3474 		update_sit_entry(sbi, old_blkaddr, -1);
3475 
3476 	/*
3477 	 * If the current segment is full, flush it out and replace it with a
3478 	 * new segment.
3479 	 */
3480 	if (segment_full) {
3481 		if (from_gc) {
3482 			get_atssr_segment(sbi, type, se->type,
3483 						AT_SSR, se->mtime);
3484 		} else {
3485 			if (need_new_seg(sbi, type))
3486 				new_curseg(sbi, type, false);
3487 			else
3488 				change_curseg(sbi, type);
3489 			stat_inc_seg_type(sbi, curseg);
3490 		}
3491 	}
3492 	/*
3493 	 * segment dirty status should be updated after segment allocation,
3494 	 * so we just need to update status only one time after previous
3495 	 * segment being closed.
3496 	 */
3497 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3498 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3499 
3500 	if (IS_DATASEG(type))
3501 		atomic64_inc(&sbi->allocated_data_blocks);
3502 
3503 	up_write(&sit_i->sentry_lock);
3504 
3505 	if (page && IS_NODESEG(type)) {
3506 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3507 
3508 		f2fs_inode_chksum_set(sbi, page);
3509 	}
3510 
3511 	if (fio) {
3512 		struct f2fs_bio_info *io;
3513 
3514 		if (F2FS_IO_ALIGNED(sbi))
3515 			fio->retry = 0;
3516 
3517 		INIT_LIST_HEAD(&fio->list);
3518 		fio->in_list = 1;
3519 		io = sbi->write_io[fio->type] + fio->temp;
3520 		spin_lock(&io->io_lock);
3521 		list_add_tail(&fio->list, &io->io_list);
3522 		spin_unlock(&io->io_lock);
3523 	}
3524 
3525 	mutex_unlock(&curseg->curseg_mutex);
3526 
3527 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3528 }
3529 
3530 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3531 					block_t blkaddr, unsigned int blkcnt)
3532 {
3533 	if (!f2fs_is_multi_device(sbi))
3534 		return;
3535 
3536 	while (1) {
3537 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3538 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3539 
3540 		/* update device state for fsync */
3541 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3542 
3543 		/* update device state for checkpoint */
3544 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3545 			spin_lock(&sbi->dev_lock);
3546 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3547 			spin_unlock(&sbi->dev_lock);
3548 		}
3549 
3550 		if (blkcnt <= blks)
3551 			break;
3552 		blkcnt -= blks;
3553 		blkaddr += blks;
3554 	}
3555 }
3556 
3557 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3558 {
3559 	int type = __get_segment_type(fio);
3560 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3561 
3562 	if (keep_order)
3563 		f2fs_down_read(&fio->sbi->io_order_lock);
3564 reallocate:
3565 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3566 			&fio->new_blkaddr, sum, type, fio);
3567 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3568 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3569 
3570 	/* writeout dirty page into bdev */
3571 	f2fs_submit_page_write(fio);
3572 	if (fio->retry) {
3573 		fio->old_blkaddr = fio->new_blkaddr;
3574 		goto reallocate;
3575 	}
3576 
3577 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3578 
3579 	if (keep_order)
3580 		f2fs_up_read(&fio->sbi->io_order_lock);
3581 }
3582 
3583 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3584 					enum iostat_type io_type)
3585 {
3586 	struct f2fs_io_info fio = {
3587 		.sbi = sbi,
3588 		.type = META,
3589 		.temp = HOT,
3590 		.op = REQ_OP_WRITE,
3591 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3592 		.old_blkaddr = page->index,
3593 		.new_blkaddr = page->index,
3594 		.page = page,
3595 		.encrypted_page = NULL,
3596 		.in_list = 0,
3597 	};
3598 
3599 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3600 		fio.op_flags &= ~REQ_META;
3601 
3602 	set_page_writeback(page);
3603 	f2fs_submit_page_write(&fio);
3604 
3605 	stat_inc_meta_count(sbi, page->index);
3606 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3607 }
3608 
3609 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3610 {
3611 	struct f2fs_summary sum;
3612 
3613 	set_summary(&sum, nid, 0, 0);
3614 	do_write_page(&sum, fio);
3615 
3616 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3617 }
3618 
3619 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3620 					struct f2fs_io_info *fio)
3621 {
3622 	struct f2fs_sb_info *sbi = fio->sbi;
3623 	struct f2fs_summary sum;
3624 
3625 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3626 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3627 		f2fs_update_age_extent_cache(dn);
3628 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3629 	do_write_page(&sum, fio);
3630 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3631 
3632 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3633 }
3634 
3635 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3636 {
3637 	int err;
3638 	struct f2fs_sb_info *sbi = fio->sbi;
3639 	unsigned int segno;
3640 
3641 	fio->new_blkaddr = fio->old_blkaddr;
3642 	/* i/o temperature is needed for passing down write hints */
3643 	__get_segment_type(fio);
3644 
3645 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3646 
3647 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3648 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3649 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3650 			  __func__, segno);
3651 		err = -EFSCORRUPTED;
3652 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3653 		goto drop_bio;
3654 	}
3655 
3656 	if (f2fs_cp_error(sbi)) {
3657 		err = -EIO;
3658 		goto drop_bio;
3659 	}
3660 
3661 	if (fio->post_read)
3662 		invalidate_mapping_pages(META_MAPPING(sbi),
3663 				fio->new_blkaddr, fio->new_blkaddr);
3664 
3665 	stat_inc_inplace_blocks(fio->sbi);
3666 
3667 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3668 		err = f2fs_merge_page_bio(fio);
3669 	else
3670 		err = f2fs_submit_page_bio(fio);
3671 	if (!err) {
3672 		f2fs_update_device_state(fio->sbi, fio->ino,
3673 						fio->new_blkaddr, 1);
3674 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3675 						fio->io_type, F2FS_BLKSIZE);
3676 	}
3677 
3678 	return err;
3679 drop_bio:
3680 	if (fio->bio && *(fio->bio)) {
3681 		struct bio *bio = *(fio->bio);
3682 
3683 		bio->bi_status = BLK_STS_IOERR;
3684 		bio_endio(bio);
3685 		*(fio->bio) = NULL;
3686 	}
3687 	return err;
3688 }
3689 
3690 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3691 						unsigned int segno)
3692 {
3693 	int i;
3694 
3695 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3696 		if (CURSEG_I(sbi, i)->segno == segno)
3697 			break;
3698 	}
3699 	return i;
3700 }
3701 
3702 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3703 				block_t old_blkaddr, block_t new_blkaddr,
3704 				bool recover_curseg, bool recover_newaddr,
3705 				bool from_gc)
3706 {
3707 	struct sit_info *sit_i = SIT_I(sbi);
3708 	struct curseg_info *curseg;
3709 	unsigned int segno, old_cursegno;
3710 	struct seg_entry *se;
3711 	int type;
3712 	unsigned short old_blkoff;
3713 	unsigned char old_alloc_type;
3714 
3715 	segno = GET_SEGNO(sbi, new_blkaddr);
3716 	se = get_seg_entry(sbi, segno);
3717 	type = se->type;
3718 
3719 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3720 
3721 	if (!recover_curseg) {
3722 		/* for recovery flow */
3723 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3724 			if (old_blkaddr == NULL_ADDR)
3725 				type = CURSEG_COLD_DATA;
3726 			else
3727 				type = CURSEG_WARM_DATA;
3728 		}
3729 	} else {
3730 		if (IS_CURSEG(sbi, segno)) {
3731 			/* se->type is volatile as SSR allocation */
3732 			type = __f2fs_get_curseg(sbi, segno);
3733 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3734 		} else {
3735 			type = CURSEG_WARM_DATA;
3736 		}
3737 	}
3738 
3739 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3740 	curseg = CURSEG_I(sbi, type);
3741 
3742 	mutex_lock(&curseg->curseg_mutex);
3743 	down_write(&sit_i->sentry_lock);
3744 
3745 	old_cursegno = curseg->segno;
3746 	old_blkoff = curseg->next_blkoff;
3747 	old_alloc_type = curseg->alloc_type;
3748 
3749 	/* change the current segment */
3750 	if (segno != curseg->segno) {
3751 		curseg->next_segno = segno;
3752 		change_curseg(sbi, type);
3753 	}
3754 
3755 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3756 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3757 
3758 	if (!recover_curseg || recover_newaddr) {
3759 		if (!from_gc)
3760 			update_segment_mtime(sbi, new_blkaddr, 0);
3761 		update_sit_entry(sbi, new_blkaddr, 1);
3762 	}
3763 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3764 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3765 		if (!from_gc)
3766 			update_segment_mtime(sbi, old_blkaddr, 0);
3767 		update_sit_entry(sbi, old_blkaddr, -1);
3768 	}
3769 
3770 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3771 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3772 
3773 	locate_dirty_segment(sbi, old_cursegno);
3774 
3775 	if (recover_curseg) {
3776 		if (old_cursegno != curseg->segno) {
3777 			curseg->next_segno = old_cursegno;
3778 			change_curseg(sbi, type);
3779 		}
3780 		curseg->next_blkoff = old_blkoff;
3781 		curseg->alloc_type = old_alloc_type;
3782 	}
3783 
3784 	up_write(&sit_i->sentry_lock);
3785 	mutex_unlock(&curseg->curseg_mutex);
3786 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3787 }
3788 
3789 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3790 				block_t old_addr, block_t new_addr,
3791 				unsigned char version, bool recover_curseg,
3792 				bool recover_newaddr)
3793 {
3794 	struct f2fs_summary sum;
3795 
3796 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3797 
3798 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3799 					recover_curseg, recover_newaddr, false);
3800 
3801 	f2fs_update_data_blkaddr(dn, new_addr);
3802 }
3803 
3804 void f2fs_wait_on_page_writeback(struct page *page,
3805 				enum page_type type, bool ordered, bool locked)
3806 {
3807 	if (PageWriteback(page)) {
3808 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3809 
3810 		/* submit cached LFS IO */
3811 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3812 		/* submit cached IPU IO */
3813 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3814 		if (ordered) {
3815 			wait_on_page_writeback(page);
3816 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3817 		} else {
3818 			wait_for_stable_page(page);
3819 		}
3820 	}
3821 }
3822 
3823 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3824 {
3825 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3826 	struct page *cpage;
3827 
3828 	if (!f2fs_post_read_required(inode))
3829 		return;
3830 
3831 	if (!__is_valid_data_blkaddr(blkaddr))
3832 		return;
3833 
3834 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3835 	if (cpage) {
3836 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3837 		f2fs_put_page(cpage, 1);
3838 	}
3839 }
3840 
3841 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3842 								block_t len)
3843 {
3844 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3845 	block_t i;
3846 
3847 	if (!f2fs_post_read_required(inode))
3848 		return;
3849 
3850 	for (i = 0; i < len; i++)
3851 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3852 
3853 	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3854 }
3855 
3856 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3857 {
3858 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3859 	struct curseg_info *seg_i;
3860 	unsigned char *kaddr;
3861 	struct page *page;
3862 	block_t start;
3863 	int i, j, offset;
3864 
3865 	start = start_sum_block(sbi);
3866 
3867 	page = f2fs_get_meta_page(sbi, start++);
3868 	if (IS_ERR(page))
3869 		return PTR_ERR(page);
3870 	kaddr = (unsigned char *)page_address(page);
3871 
3872 	/* Step 1: restore nat cache */
3873 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3874 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3875 
3876 	/* Step 2: restore sit cache */
3877 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3878 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3879 	offset = 2 * SUM_JOURNAL_SIZE;
3880 
3881 	/* Step 3: restore summary entries */
3882 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3883 		unsigned short blk_off;
3884 		unsigned int segno;
3885 
3886 		seg_i = CURSEG_I(sbi, i);
3887 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3888 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3889 		seg_i->next_segno = segno;
3890 		reset_curseg(sbi, i, 0);
3891 		seg_i->alloc_type = ckpt->alloc_type[i];
3892 		seg_i->next_blkoff = blk_off;
3893 
3894 		if (seg_i->alloc_type == SSR)
3895 			blk_off = sbi->blocks_per_seg;
3896 
3897 		for (j = 0; j < blk_off; j++) {
3898 			struct f2fs_summary *s;
3899 
3900 			s = (struct f2fs_summary *)(kaddr + offset);
3901 			seg_i->sum_blk->entries[j] = *s;
3902 			offset += SUMMARY_SIZE;
3903 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3904 						SUM_FOOTER_SIZE)
3905 				continue;
3906 
3907 			f2fs_put_page(page, 1);
3908 			page = NULL;
3909 
3910 			page = f2fs_get_meta_page(sbi, start++);
3911 			if (IS_ERR(page))
3912 				return PTR_ERR(page);
3913 			kaddr = (unsigned char *)page_address(page);
3914 			offset = 0;
3915 		}
3916 	}
3917 	f2fs_put_page(page, 1);
3918 	return 0;
3919 }
3920 
3921 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3922 {
3923 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3924 	struct f2fs_summary_block *sum;
3925 	struct curseg_info *curseg;
3926 	struct page *new;
3927 	unsigned short blk_off;
3928 	unsigned int segno = 0;
3929 	block_t blk_addr = 0;
3930 	int err = 0;
3931 
3932 	/* get segment number and block addr */
3933 	if (IS_DATASEG(type)) {
3934 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3935 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3936 							CURSEG_HOT_DATA]);
3937 		if (__exist_node_summaries(sbi))
3938 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3939 		else
3940 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3941 	} else {
3942 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3943 							CURSEG_HOT_NODE]);
3944 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3945 							CURSEG_HOT_NODE]);
3946 		if (__exist_node_summaries(sbi))
3947 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3948 							type - CURSEG_HOT_NODE);
3949 		else
3950 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3951 	}
3952 
3953 	new = f2fs_get_meta_page(sbi, blk_addr);
3954 	if (IS_ERR(new))
3955 		return PTR_ERR(new);
3956 	sum = (struct f2fs_summary_block *)page_address(new);
3957 
3958 	if (IS_NODESEG(type)) {
3959 		if (__exist_node_summaries(sbi)) {
3960 			struct f2fs_summary *ns = &sum->entries[0];
3961 			int i;
3962 
3963 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3964 				ns->version = 0;
3965 				ns->ofs_in_node = 0;
3966 			}
3967 		} else {
3968 			err = f2fs_restore_node_summary(sbi, segno, sum);
3969 			if (err)
3970 				goto out;
3971 		}
3972 	}
3973 
3974 	/* set uncompleted segment to curseg */
3975 	curseg = CURSEG_I(sbi, type);
3976 	mutex_lock(&curseg->curseg_mutex);
3977 
3978 	/* update journal info */
3979 	down_write(&curseg->journal_rwsem);
3980 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3981 	up_write(&curseg->journal_rwsem);
3982 
3983 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3984 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3985 	curseg->next_segno = segno;
3986 	reset_curseg(sbi, type, 0);
3987 	curseg->alloc_type = ckpt->alloc_type[type];
3988 	curseg->next_blkoff = blk_off;
3989 	mutex_unlock(&curseg->curseg_mutex);
3990 out:
3991 	f2fs_put_page(new, 1);
3992 	return err;
3993 }
3994 
3995 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3996 {
3997 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3998 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3999 	int type = CURSEG_HOT_DATA;
4000 	int err;
4001 
4002 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4003 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4004 
4005 		if (npages >= 2)
4006 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4007 							META_CP, true);
4008 
4009 		/* restore for compacted data summary */
4010 		err = read_compacted_summaries(sbi);
4011 		if (err)
4012 			return err;
4013 		type = CURSEG_HOT_NODE;
4014 	}
4015 
4016 	if (__exist_node_summaries(sbi))
4017 		f2fs_ra_meta_pages(sbi,
4018 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4019 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4020 
4021 	for (; type <= CURSEG_COLD_NODE; type++) {
4022 		err = read_normal_summaries(sbi, type);
4023 		if (err)
4024 			return err;
4025 	}
4026 
4027 	/* sanity check for summary blocks */
4028 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4029 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4030 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4031 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4032 		return -EINVAL;
4033 	}
4034 
4035 	return 0;
4036 }
4037 
4038 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4039 {
4040 	struct page *page;
4041 	unsigned char *kaddr;
4042 	struct f2fs_summary *summary;
4043 	struct curseg_info *seg_i;
4044 	int written_size = 0;
4045 	int i, j;
4046 
4047 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4048 	kaddr = (unsigned char *)page_address(page);
4049 	memset(kaddr, 0, PAGE_SIZE);
4050 
4051 	/* Step 1: write nat cache */
4052 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4053 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4054 	written_size += SUM_JOURNAL_SIZE;
4055 
4056 	/* Step 2: write sit cache */
4057 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4058 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4059 	written_size += SUM_JOURNAL_SIZE;
4060 
4061 	/* Step 3: write summary entries */
4062 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4063 		seg_i = CURSEG_I(sbi, i);
4064 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4065 			if (!page) {
4066 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4067 				kaddr = (unsigned char *)page_address(page);
4068 				memset(kaddr, 0, PAGE_SIZE);
4069 				written_size = 0;
4070 			}
4071 			summary = (struct f2fs_summary *)(kaddr + written_size);
4072 			*summary = seg_i->sum_blk->entries[j];
4073 			written_size += SUMMARY_SIZE;
4074 
4075 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4076 							SUM_FOOTER_SIZE)
4077 				continue;
4078 
4079 			set_page_dirty(page);
4080 			f2fs_put_page(page, 1);
4081 			page = NULL;
4082 		}
4083 	}
4084 	if (page) {
4085 		set_page_dirty(page);
4086 		f2fs_put_page(page, 1);
4087 	}
4088 }
4089 
4090 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4091 					block_t blkaddr, int type)
4092 {
4093 	int i, end;
4094 
4095 	if (IS_DATASEG(type))
4096 		end = type + NR_CURSEG_DATA_TYPE;
4097 	else
4098 		end = type + NR_CURSEG_NODE_TYPE;
4099 
4100 	for (i = type; i < end; i++)
4101 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4102 }
4103 
4104 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4105 {
4106 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4107 		write_compacted_summaries(sbi, start_blk);
4108 	else
4109 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4110 }
4111 
4112 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4113 {
4114 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4115 }
4116 
4117 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4118 					unsigned int val, int alloc)
4119 {
4120 	int i;
4121 
4122 	if (type == NAT_JOURNAL) {
4123 		for (i = 0; i < nats_in_cursum(journal); i++) {
4124 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4125 				return i;
4126 		}
4127 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4128 			return update_nats_in_cursum(journal, 1);
4129 	} else if (type == SIT_JOURNAL) {
4130 		for (i = 0; i < sits_in_cursum(journal); i++)
4131 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4132 				return i;
4133 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4134 			return update_sits_in_cursum(journal, 1);
4135 	}
4136 	return -1;
4137 }
4138 
4139 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4140 					unsigned int segno)
4141 {
4142 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4143 }
4144 
4145 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4146 					unsigned int start)
4147 {
4148 	struct sit_info *sit_i = SIT_I(sbi);
4149 	struct page *page;
4150 	pgoff_t src_off, dst_off;
4151 
4152 	src_off = current_sit_addr(sbi, start);
4153 	dst_off = next_sit_addr(sbi, src_off);
4154 
4155 	page = f2fs_grab_meta_page(sbi, dst_off);
4156 	seg_info_to_sit_page(sbi, page, start);
4157 
4158 	set_page_dirty(page);
4159 	set_to_next_sit(sit_i, start);
4160 
4161 	return page;
4162 }
4163 
4164 static struct sit_entry_set *grab_sit_entry_set(void)
4165 {
4166 	struct sit_entry_set *ses =
4167 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4168 						GFP_NOFS, true, NULL);
4169 
4170 	ses->entry_cnt = 0;
4171 	INIT_LIST_HEAD(&ses->set_list);
4172 	return ses;
4173 }
4174 
4175 static void release_sit_entry_set(struct sit_entry_set *ses)
4176 {
4177 	list_del(&ses->set_list);
4178 	kmem_cache_free(sit_entry_set_slab, ses);
4179 }
4180 
4181 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4182 						struct list_head *head)
4183 {
4184 	struct sit_entry_set *next = ses;
4185 
4186 	if (list_is_last(&ses->set_list, head))
4187 		return;
4188 
4189 	list_for_each_entry_continue(next, head, set_list)
4190 		if (ses->entry_cnt <= next->entry_cnt) {
4191 			list_move_tail(&ses->set_list, &next->set_list);
4192 			return;
4193 		}
4194 
4195 	list_move_tail(&ses->set_list, head);
4196 }
4197 
4198 static void add_sit_entry(unsigned int segno, struct list_head *head)
4199 {
4200 	struct sit_entry_set *ses;
4201 	unsigned int start_segno = START_SEGNO(segno);
4202 
4203 	list_for_each_entry(ses, head, set_list) {
4204 		if (ses->start_segno == start_segno) {
4205 			ses->entry_cnt++;
4206 			adjust_sit_entry_set(ses, head);
4207 			return;
4208 		}
4209 	}
4210 
4211 	ses = grab_sit_entry_set();
4212 
4213 	ses->start_segno = start_segno;
4214 	ses->entry_cnt++;
4215 	list_add(&ses->set_list, head);
4216 }
4217 
4218 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4219 {
4220 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4221 	struct list_head *set_list = &sm_info->sit_entry_set;
4222 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4223 	unsigned int segno;
4224 
4225 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4226 		add_sit_entry(segno, set_list);
4227 }
4228 
4229 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4230 {
4231 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4232 	struct f2fs_journal *journal = curseg->journal;
4233 	int i;
4234 
4235 	down_write(&curseg->journal_rwsem);
4236 	for (i = 0; i < sits_in_cursum(journal); i++) {
4237 		unsigned int segno;
4238 		bool dirtied;
4239 
4240 		segno = le32_to_cpu(segno_in_journal(journal, i));
4241 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4242 
4243 		if (!dirtied)
4244 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4245 	}
4246 	update_sits_in_cursum(journal, -i);
4247 	up_write(&curseg->journal_rwsem);
4248 }
4249 
4250 /*
4251  * CP calls this function, which flushes SIT entries including sit_journal,
4252  * and moves prefree segs to free segs.
4253  */
4254 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4255 {
4256 	struct sit_info *sit_i = SIT_I(sbi);
4257 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4258 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4259 	struct f2fs_journal *journal = curseg->journal;
4260 	struct sit_entry_set *ses, *tmp;
4261 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4262 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4263 	struct seg_entry *se;
4264 
4265 	down_write(&sit_i->sentry_lock);
4266 
4267 	if (!sit_i->dirty_sentries)
4268 		goto out;
4269 
4270 	/*
4271 	 * add and account sit entries of dirty bitmap in sit entry
4272 	 * set temporarily
4273 	 */
4274 	add_sits_in_set(sbi);
4275 
4276 	/*
4277 	 * if there are no enough space in journal to store dirty sit
4278 	 * entries, remove all entries from journal and add and account
4279 	 * them in sit entry set.
4280 	 */
4281 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4282 								!to_journal)
4283 		remove_sits_in_journal(sbi);
4284 
4285 	/*
4286 	 * there are two steps to flush sit entries:
4287 	 * #1, flush sit entries to journal in current cold data summary block.
4288 	 * #2, flush sit entries to sit page.
4289 	 */
4290 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4291 		struct page *page = NULL;
4292 		struct f2fs_sit_block *raw_sit = NULL;
4293 		unsigned int start_segno = ses->start_segno;
4294 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4295 						(unsigned long)MAIN_SEGS(sbi));
4296 		unsigned int segno = start_segno;
4297 
4298 		if (to_journal &&
4299 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4300 			to_journal = false;
4301 
4302 		if (to_journal) {
4303 			down_write(&curseg->journal_rwsem);
4304 		} else {
4305 			page = get_next_sit_page(sbi, start_segno);
4306 			raw_sit = page_address(page);
4307 		}
4308 
4309 		/* flush dirty sit entries in region of current sit set */
4310 		for_each_set_bit_from(segno, bitmap, end) {
4311 			int offset, sit_offset;
4312 
4313 			se = get_seg_entry(sbi, segno);
4314 #ifdef CONFIG_F2FS_CHECK_FS
4315 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4316 						SIT_VBLOCK_MAP_SIZE))
4317 				f2fs_bug_on(sbi, 1);
4318 #endif
4319 
4320 			/* add discard candidates */
4321 			if (!(cpc->reason & CP_DISCARD)) {
4322 				cpc->trim_start = segno;
4323 				add_discard_addrs(sbi, cpc, false);
4324 			}
4325 
4326 			if (to_journal) {
4327 				offset = f2fs_lookup_journal_in_cursum(journal,
4328 							SIT_JOURNAL, segno, 1);
4329 				f2fs_bug_on(sbi, offset < 0);
4330 				segno_in_journal(journal, offset) =
4331 							cpu_to_le32(segno);
4332 				seg_info_to_raw_sit(se,
4333 					&sit_in_journal(journal, offset));
4334 				check_block_count(sbi, segno,
4335 					&sit_in_journal(journal, offset));
4336 			} else {
4337 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4338 				seg_info_to_raw_sit(se,
4339 						&raw_sit->entries[sit_offset]);
4340 				check_block_count(sbi, segno,
4341 						&raw_sit->entries[sit_offset]);
4342 			}
4343 
4344 			__clear_bit(segno, bitmap);
4345 			sit_i->dirty_sentries--;
4346 			ses->entry_cnt--;
4347 		}
4348 
4349 		if (to_journal)
4350 			up_write(&curseg->journal_rwsem);
4351 		else
4352 			f2fs_put_page(page, 1);
4353 
4354 		f2fs_bug_on(sbi, ses->entry_cnt);
4355 		release_sit_entry_set(ses);
4356 	}
4357 
4358 	f2fs_bug_on(sbi, !list_empty(head));
4359 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4360 out:
4361 	if (cpc->reason & CP_DISCARD) {
4362 		__u64 trim_start = cpc->trim_start;
4363 
4364 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4365 			add_discard_addrs(sbi, cpc, false);
4366 
4367 		cpc->trim_start = trim_start;
4368 	}
4369 	up_write(&sit_i->sentry_lock);
4370 
4371 	set_prefree_as_free_segments(sbi);
4372 }
4373 
4374 static int build_sit_info(struct f2fs_sb_info *sbi)
4375 {
4376 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4377 	struct sit_info *sit_i;
4378 	unsigned int sit_segs, start;
4379 	char *src_bitmap, *bitmap;
4380 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4381 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4382 
4383 	/* allocate memory for SIT information */
4384 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4385 	if (!sit_i)
4386 		return -ENOMEM;
4387 
4388 	SM_I(sbi)->sit_info = sit_i;
4389 
4390 	sit_i->sentries =
4391 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4392 					      MAIN_SEGS(sbi)),
4393 			      GFP_KERNEL);
4394 	if (!sit_i->sentries)
4395 		return -ENOMEM;
4396 
4397 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4398 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4399 								GFP_KERNEL);
4400 	if (!sit_i->dirty_sentries_bitmap)
4401 		return -ENOMEM;
4402 
4403 #ifdef CONFIG_F2FS_CHECK_FS
4404 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4405 #else
4406 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4407 #endif
4408 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4409 	if (!sit_i->bitmap)
4410 		return -ENOMEM;
4411 
4412 	bitmap = sit_i->bitmap;
4413 
4414 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4415 		sit_i->sentries[start].cur_valid_map = bitmap;
4416 		bitmap += SIT_VBLOCK_MAP_SIZE;
4417 
4418 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4419 		bitmap += SIT_VBLOCK_MAP_SIZE;
4420 
4421 #ifdef CONFIG_F2FS_CHECK_FS
4422 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4423 		bitmap += SIT_VBLOCK_MAP_SIZE;
4424 #endif
4425 
4426 		if (discard_map) {
4427 			sit_i->sentries[start].discard_map = bitmap;
4428 			bitmap += SIT_VBLOCK_MAP_SIZE;
4429 		}
4430 	}
4431 
4432 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4433 	if (!sit_i->tmp_map)
4434 		return -ENOMEM;
4435 
4436 	if (__is_large_section(sbi)) {
4437 		sit_i->sec_entries =
4438 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4439 						      MAIN_SECS(sbi)),
4440 				      GFP_KERNEL);
4441 		if (!sit_i->sec_entries)
4442 			return -ENOMEM;
4443 	}
4444 
4445 	/* get information related with SIT */
4446 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4447 
4448 	/* setup SIT bitmap from ckeckpoint pack */
4449 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4450 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4451 
4452 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4453 	if (!sit_i->sit_bitmap)
4454 		return -ENOMEM;
4455 
4456 #ifdef CONFIG_F2FS_CHECK_FS
4457 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4458 					sit_bitmap_size, GFP_KERNEL);
4459 	if (!sit_i->sit_bitmap_mir)
4460 		return -ENOMEM;
4461 
4462 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4463 					main_bitmap_size, GFP_KERNEL);
4464 	if (!sit_i->invalid_segmap)
4465 		return -ENOMEM;
4466 #endif
4467 
4468 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4469 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4470 	sit_i->written_valid_blocks = 0;
4471 	sit_i->bitmap_size = sit_bitmap_size;
4472 	sit_i->dirty_sentries = 0;
4473 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4474 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4475 	sit_i->mounted_time = ktime_get_boottime_seconds();
4476 	init_rwsem(&sit_i->sentry_lock);
4477 	return 0;
4478 }
4479 
4480 static int build_free_segmap(struct f2fs_sb_info *sbi)
4481 {
4482 	struct free_segmap_info *free_i;
4483 	unsigned int bitmap_size, sec_bitmap_size;
4484 
4485 	/* allocate memory for free segmap information */
4486 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4487 	if (!free_i)
4488 		return -ENOMEM;
4489 
4490 	SM_I(sbi)->free_info = free_i;
4491 
4492 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4493 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4494 	if (!free_i->free_segmap)
4495 		return -ENOMEM;
4496 
4497 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4498 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4499 	if (!free_i->free_secmap)
4500 		return -ENOMEM;
4501 
4502 	/* set all segments as dirty temporarily */
4503 	memset(free_i->free_segmap, 0xff, bitmap_size);
4504 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4505 
4506 	/* init free segmap information */
4507 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4508 	free_i->free_segments = 0;
4509 	free_i->free_sections = 0;
4510 	spin_lock_init(&free_i->segmap_lock);
4511 	return 0;
4512 }
4513 
4514 static int build_curseg(struct f2fs_sb_info *sbi)
4515 {
4516 	struct curseg_info *array;
4517 	int i;
4518 
4519 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4520 					sizeof(*array)), GFP_KERNEL);
4521 	if (!array)
4522 		return -ENOMEM;
4523 
4524 	SM_I(sbi)->curseg_array = array;
4525 
4526 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4527 		mutex_init(&array[i].curseg_mutex);
4528 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4529 		if (!array[i].sum_blk)
4530 			return -ENOMEM;
4531 		init_rwsem(&array[i].journal_rwsem);
4532 		array[i].journal = f2fs_kzalloc(sbi,
4533 				sizeof(struct f2fs_journal), GFP_KERNEL);
4534 		if (!array[i].journal)
4535 			return -ENOMEM;
4536 		if (i < NR_PERSISTENT_LOG)
4537 			array[i].seg_type = CURSEG_HOT_DATA + i;
4538 		else if (i == CURSEG_COLD_DATA_PINNED)
4539 			array[i].seg_type = CURSEG_COLD_DATA;
4540 		else if (i == CURSEG_ALL_DATA_ATGC)
4541 			array[i].seg_type = CURSEG_COLD_DATA;
4542 		array[i].segno = NULL_SEGNO;
4543 		array[i].next_blkoff = 0;
4544 		array[i].inited = false;
4545 	}
4546 	return restore_curseg_summaries(sbi);
4547 }
4548 
4549 static int build_sit_entries(struct f2fs_sb_info *sbi)
4550 {
4551 	struct sit_info *sit_i = SIT_I(sbi);
4552 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4553 	struct f2fs_journal *journal = curseg->journal;
4554 	struct seg_entry *se;
4555 	struct f2fs_sit_entry sit;
4556 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4557 	unsigned int i, start, end;
4558 	unsigned int readed, start_blk = 0;
4559 	int err = 0;
4560 	block_t sit_valid_blocks[2] = {0, 0};
4561 
4562 	do {
4563 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4564 							META_SIT, true);
4565 
4566 		start = start_blk * sit_i->sents_per_block;
4567 		end = (start_blk + readed) * sit_i->sents_per_block;
4568 
4569 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4570 			struct f2fs_sit_block *sit_blk;
4571 			struct page *page;
4572 
4573 			se = &sit_i->sentries[start];
4574 			page = get_current_sit_page(sbi, start);
4575 			if (IS_ERR(page))
4576 				return PTR_ERR(page);
4577 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4578 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4579 			f2fs_put_page(page, 1);
4580 
4581 			err = check_block_count(sbi, start, &sit);
4582 			if (err)
4583 				return err;
4584 			seg_info_from_raw_sit(se, &sit);
4585 
4586 			if (se->type >= NR_PERSISTENT_LOG) {
4587 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4588 							se->type, start);
4589 				f2fs_handle_error(sbi,
4590 						ERROR_INCONSISTENT_SUM_TYPE);
4591 				return -EFSCORRUPTED;
4592 			}
4593 
4594 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4595 
4596 			if (f2fs_block_unit_discard(sbi)) {
4597 				/* build discard map only one time */
4598 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4599 					memset(se->discard_map, 0xff,
4600 						SIT_VBLOCK_MAP_SIZE);
4601 				} else {
4602 					memcpy(se->discard_map,
4603 						se->cur_valid_map,
4604 						SIT_VBLOCK_MAP_SIZE);
4605 					sbi->discard_blks +=
4606 						sbi->blocks_per_seg -
4607 						se->valid_blocks;
4608 				}
4609 			}
4610 
4611 			if (__is_large_section(sbi))
4612 				get_sec_entry(sbi, start)->valid_blocks +=
4613 							se->valid_blocks;
4614 		}
4615 		start_blk += readed;
4616 	} while (start_blk < sit_blk_cnt);
4617 
4618 	down_read(&curseg->journal_rwsem);
4619 	for (i = 0; i < sits_in_cursum(journal); i++) {
4620 		unsigned int old_valid_blocks;
4621 
4622 		start = le32_to_cpu(segno_in_journal(journal, i));
4623 		if (start >= MAIN_SEGS(sbi)) {
4624 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4625 				 start);
4626 			err = -EFSCORRUPTED;
4627 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4628 			break;
4629 		}
4630 
4631 		se = &sit_i->sentries[start];
4632 		sit = sit_in_journal(journal, i);
4633 
4634 		old_valid_blocks = se->valid_blocks;
4635 
4636 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4637 
4638 		err = check_block_count(sbi, start, &sit);
4639 		if (err)
4640 			break;
4641 		seg_info_from_raw_sit(se, &sit);
4642 
4643 		if (se->type >= NR_PERSISTENT_LOG) {
4644 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4645 							se->type, start);
4646 			err = -EFSCORRUPTED;
4647 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4648 			break;
4649 		}
4650 
4651 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4652 
4653 		if (f2fs_block_unit_discard(sbi)) {
4654 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4655 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4656 			} else {
4657 				memcpy(se->discard_map, se->cur_valid_map,
4658 							SIT_VBLOCK_MAP_SIZE);
4659 				sbi->discard_blks += old_valid_blocks;
4660 				sbi->discard_blks -= se->valid_blocks;
4661 			}
4662 		}
4663 
4664 		if (__is_large_section(sbi)) {
4665 			get_sec_entry(sbi, start)->valid_blocks +=
4666 							se->valid_blocks;
4667 			get_sec_entry(sbi, start)->valid_blocks -=
4668 							old_valid_blocks;
4669 		}
4670 	}
4671 	up_read(&curseg->journal_rwsem);
4672 
4673 	if (err)
4674 		return err;
4675 
4676 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4677 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4678 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4679 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4680 		return -EFSCORRUPTED;
4681 	}
4682 
4683 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4684 				valid_user_blocks(sbi)) {
4685 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4686 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4687 			 valid_user_blocks(sbi));
4688 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4689 		return -EFSCORRUPTED;
4690 	}
4691 
4692 	return 0;
4693 }
4694 
4695 static void init_free_segmap(struct f2fs_sb_info *sbi)
4696 {
4697 	unsigned int start;
4698 	int type;
4699 	struct seg_entry *sentry;
4700 
4701 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4702 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4703 			continue;
4704 		sentry = get_seg_entry(sbi, start);
4705 		if (!sentry->valid_blocks)
4706 			__set_free(sbi, start);
4707 		else
4708 			SIT_I(sbi)->written_valid_blocks +=
4709 						sentry->valid_blocks;
4710 	}
4711 
4712 	/* set use the current segments */
4713 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4714 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4715 
4716 		__set_test_and_inuse(sbi, curseg_t->segno);
4717 	}
4718 }
4719 
4720 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4721 {
4722 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4723 	struct free_segmap_info *free_i = FREE_I(sbi);
4724 	unsigned int segno = 0, offset = 0, secno;
4725 	block_t valid_blocks, usable_blks_in_seg;
4726 
4727 	while (1) {
4728 		/* find dirty segment based on free segmap */
4729 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4730 		if (segno >= MAIN_SEGS(sbi))
4731 			break;
4732 		offset = segno + 1;
4733 		valid_blocks = get_valid_blocks(sbi, segno, false);
4734 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4735 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4736 			continue;
4737 		if (valid_blocks > usable_blks_in_seg) {
4738 			f2fs_bug_on(sbi, 1);
4739 			continue;
4740 		}
4741 		mutex_lock(&dirty_i->seglist_lock);
4742 		__locate_dirty_segment(sbi, segno, DIRTY);
4743 		mutex_unlock(&dirty_i->seglist_lock);
4744 	}
4745 
4746 	if (!__is_large_section(sbi))
4747 		return;
4748 
4749 	mutex_lock(&dirty_i->seglist_lock);
4750 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4751 		valid_blocks = get_valid_blocks(sbi, segno, true);
4752 		secno = GET_SEC_FROM_SEG(sbi, segno);
4753 
4754 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4755 			continue;
4756 		if (IS_CURSEC(sbi, secno))
4757 			continue;
4758 		set_bit(secno, dirty_i->dirty_secmap);
4759 	}
4760 	mutex_unlock(&dirty_i->seglist_lock);
4761 }
4762 
4763 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4764 {
4765 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4766 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4767 
4768 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4769 	if (!dirty_i->victim_secmap)
4770 		return -ENOMEM;
4771 
4772 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4773 	if (!dirty_i->pinned_secmap)
4774 		return -ENOMEM;
4775 
4776 	dirty_i->pinned_secmap_cnt = 0;
4777 	dirty_i->enable_pin_section = true;
4778 	return 0;
4779 }
4780 
4781 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4782 {
4783 	struct dirty_seglist_info *dirty_i;
4784 	unsigned int bitmap_size, i;
4785 
4786 	/* allocate memory for dirty segments list information */
4787 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4788 								GFP_KERNEL);
4789 	if (!dirty_i)
4790 		return -ENOMEM;
4791 
4792 	SM_I(sbi)->dirty_info = dirty_i;
4793 	mutex_init(&dirty_i->seglist_lock);
4794 
4795 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4796 
4797 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4798 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4799 								GFP_KERNEL);
4800 		if (!dirty_i->dirty_segmap[i])
4801 			return -ENOMEM;
4802 	}
4803 
4804 	if (__is_large_section(sbi)) {
4805 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4806 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4807 						bitmap_size, GFP_KERNEL);
4808 		if (!dirty_i->dirty_secmap)
4809 			return -ENOMEM;
4810 	}
4811 
4812 	init_dirty_segmap(sbi);
4813 	return init_victim_secmap(sbi);
4814 }
4815 
4816 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4817 {
4818 	int i;
4819 
4820 	/*
4821 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4822 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4823 	 */
4824 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4825 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4826 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4827 		unsigned int blkofs = curseg->next_blkoff;
4828 
4829 		if (f2fs_sb_has_readonly(sbi) &&
4830 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4831 			continue;
4832 
4833 		sanity_check_seg_type(sbi, curseg->seg_type);
4834 
4835 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4836 			f2fs_err(sbi,
4837 				 "Current segment has invalid alloc_type:%d",
4838 				 curseg->alloc_type);
4839 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4840 			return -EFSCORRUPTED;
4841 		}
4842 
4843 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4844 			goto out;
4845 
4846 		if (curseg->alloc_type == SSR)
4847 			continue;
4848 
4849 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4850 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4851 				continue;
4852 out:
4853 			f2fs_err(sbi,
4854 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4855 				 i, curseg->segno, curseg->alloc_type,
4856 				 curseg->next_blkoff, blkofs);
4857 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4858 			return -EFSCORRUPTED;
4859 		}
4860 	}
4861 	return 0;
4862 }
4863 
4864 #ifdef CONFIG_BLK_DEV_ZONED
4865 
4866 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4867 				    struct f2fs_dev_info *fdev,
4868 				    struct blk_zone *zone)
4869 {
4870 	unsigned int zone_segno;
4871 	block_t zone_block, valid_block_cnt;
4872 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4873 	int ret;
4874 	unsigned int nofs_flags;
4875 
4876 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4877 		return 0;
4878 
4879 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4880 	zone_segno = GET_SEGNO(sbi, zone_block);
4881 
4882 	/*
4883 	 * Skip check of zones cursegs point to, since
4884 	 * fix_curseg_write_pointer() checks them.
4885 	 */
4886 	if (zone_segno >= MAIN_SEGS(sbi) ||
4887 	    IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno)))
4888 		return 0;
4889 
4890 	/*
4891 	 * Get # of valid block of the zone.
4892 	 */
4893 	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
4894 
4895 	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
4896 	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
4897 		return 0;
4898 
4899 	if (!valid_block_cnt) {
4900 		f2fs_notice(sbi, "Zone without valid block has non-zero write "
4901 			    "pointer. Reset the write pointer: cond[0x%x]",
4902 			    zone->cond);
4903 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4904 					zone->len >> log_sectors_per_block);
4905 		if (ret)
4906 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4907 				 fdev->path, ret);
4908 		return ret;
4909 	}
4910 
4911 	/*
4912 	 * If there are valid blocks and the write pointer doesn't match
4913 	 * with them, we need to report the inconsistency and fill
4914 	 * the zone till the end to close the zone. This inconsistency
4915 	 * does not cause write error because the zone will not be
4916 	 * selected for write operation until it get discarded.
4917 	 */
4918 	f2fs_notice(sbi, "Valid blocks are not aligned with write "
4919 		    "pointer: valid block[0x%x,0x%x] cond[0x%x]",
4920 		    zone_segno, valid_block_cnt, zone->cond);
4921 
4922 	nofs_flags = memalloc_nofs_save();
4923 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
4924 				zone->start, zone->len);
4925 	memalloc_nofs_restore(nofs_flags);
4926 	if (ret == -EOPNOTSUPP) {
4927 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4928 					zone->len - (zone->wp - zone->start),
4929 					GFP_NOFS, 0);
4930 		if (ret)
4931 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4932 					fdev->path, ret);
4933 	} else if (ret) {
4934 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
4935 				fdev->path, ret);
4936 	}
4937 
4938 	return ret;
4939 }
4940 
4941 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4942 						  block_t zone_blkaddr)
4943 {
4944 	int i;
4945 
4946 	for (i = 0; i < sbi->s_ndevs; i++) {
4947 		if (!bdev_is_zoned(FDEV(i).bdev))
4948 			continue;
4949 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4950 				zone_blkaddr <= FDEV(i).end_blk))
4951 			return &FDEV(i);
4952 	}
4953 
4954 	return NULL;
4955 }
4956 
4957 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4958 			      void *data)
4959 {
4960 	memcpy(data, zone, sizeof(struct blk_zone));
4961 	return 0;
4962 }
4963 
4964 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4965 {
4966 	struct curseg_info *cs = CURSEG_I(sbi, type);
4967 	struct f2fs_dev_info *zbd;
4968 	struct blk_zone zone;
4969 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4970 	block_t cs_zone_block, wp_block;
4971 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4972 	sector_t zone_sector;
4973 	int err;
4974 
4975 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4976 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4977 
4978 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4979 	if (!zbd)
4980 		return 0;
4981 
4982 	/* report zone for the sector the curseg points to */
4983 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4984 		<< log_sectors_per_block;
4985 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4986 				  report_one_zone_cb, &zone);
4987 	if (err != 1) {
4988 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4989 			 zbd->path, err);
4990 		return err;
4991 	}
4992 
4993 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4994 		return 0;
4995 
4996 	/*
4997 	 * When safely unmounted in the previous mount, we could use current
4998 	 * segments. Otherwise, allocate new sections.
4999 	 */
5000 	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5001 		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5002 		wp_segno = GET_SEGNO(sbi, wp_block);
5003 		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5004 		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5005 
5006 		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5007 				wp_sector_off == 0)
5008 			return 0;
5009 
5010 		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5011 			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5012 			    cs->next_blkoff, wp_segno, wp_blkoff);
5013 	}
5014 
5015 	/* Allocate a new section if it's not new. */
5016 	if (cs->next_blkoff) {
5017 		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5018 
5019 		f2fs_allocate_new_section(sbi, type, true);
5020 		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5021 				"[0x%x,0x%x] -> [0x%x,0x%x]",
5022 				type, old_segno, old_blkoff,
5023 				cs->segno, cs->next_blkoff);
5024 	}
5025 
5026 	/* check consistency of the zone curseg pointed to */
5027 	if (check_zone_write_pointer(sbi, zbd, &zone))
5028 		return -EIO;
5029 
5030 	/* check newly assigned zone */
5031 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5032 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5033 
5034 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5035 	if (!zbd)
5036 		return 0;
5037 
5038 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5039 		<< log_sectors_per_block;
5040 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5041 				  report_one_zone_cb, &zone);
5042 	if (err != 1) {
5043 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5044 			 zbd->path, err);
5045 		return err;
5046 	}
5047 
5048 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5049 		return 0;
5050 
5051 	if (zone.wp != zone.start) {
5052 		f2fs_notice(sbi,
5053 			    "New zone for curseg[%d] is not yet discarded. "
5054 			    "Reset the zone: curseg[0x%x,0x%x]",
5055 			    type, cs->segno, cs->next_blkoff);
5056 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5057 					zone.len >> log_sectors_per_block);
5058 		if (err) {
5059 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5060 				 zbd->path, err);
5061 			return err;
5062 		}
5063 	}
5064 
5065 	return 0;
5066 }
5067 
5068 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5069 {
5070 	int i, ret;
5071 
5072 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5073 		ret = fix_curseg_write_pointer(sbi, i);
5074 		if (ret)
5075 			return ret;
5076 	}
5077 
5078 	return 0;
5079 }
5080 
5081 struct check_zone_write_pointer_args {
5082 	struct f2fs_sb_info *sbi;
5083 	struct f2fs_dev_info *fdev;
5084 };
5085 
5086 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5087 				      void *data)
5088 {
5089 	struct check_zone_write_pointer_args *args;
5090 
5091 	args = (struct check_zone_write_pointer_args *)data;
5092 
5093 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5094 }
5095 
5096 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5097 {
5098 	int i, ret;
5099 	struct check_zone_write_pointer_args args;
5100 
5101 	for (i = 0; i < sbi->s_ndevs; i++) {
5102 		if (!bdev_is_zoned(FDEV(i).bdev))
5103 			continue;
5104 
5105 		args.sbi = sbi;
5106 		args.fdev = &FDEV(i);
5107 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5108 					  check_zone_write_pointer_cb, &args);
5109 		if (ret < 0)
5110 			return ret;
5111 	}
5112 
5113 	return 0;
5114 }
5115 
5116 /*
5117  * Return the number of usable blocks in a segment. The number of blocks
5118  * returned is always equal to the number of blocks in a segment for
5119  * segments fully contained within a sequential zone capacity or a
5120  * conventional zone. For segments partially contained in a sequential
5121  * zone capacity, the number of usable blocks up to the zone capacity
5122  * is returned. 0 is returned in all other cases.
5123  */
5124 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5125 			struct f2fs_sb_info *sbi, unsigned int segno)
5126 {
5127 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5128 	unsigned int secno;
5129 
5130 	if (!sbi->unusable_blocks_per_sec)
5131 		return sbi->blocks_per_seg;
5132 
5133 	secno = GET_SEC_FROM_SEG(sbi, segno);
5134 	seg_start = START_BLOCK(sbi, segno);
5135 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5136 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5137 
5138 	/*
5139 	 * If segment starts before zone capacity and spans beyond
5140 	 * zone capacity, then usable blocks are from seg start to
5141 	 * zone capacity. If the segment starts after the zone capacity,
5142 	 * then there are no usable blocks.
5143 	 */
5144 	if (seg_start >= sec_cap_blkaddr)
5145 		return 0;
5146 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5147 		return sec_cap_blkaddr - seg_start;
5148 
5149 	return sbi->blocks_per_seg;
5150 }
5151 #else
5152 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5153 {
5154 	return 0;
5155 }
5156 
5157 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5158 {
5159 	return 0;
5160 }
5161 
5162 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5163 							unsigned int segno)
5164 {
5165 	return 0;
5166 }
5167 
5168 #endif
5169 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5170 					unsigned int segno)
5171 {
5172 	if (f2fs_sb_has_blkzoned(sbi))
5173 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5174 
5175 	return sbi->blocks_per_seg;
5176 }
5177 
5178 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5179 					unsigned int segno)
5180 {
5181 	if (f2fs_sb_has_blkzoned(sbi))
5182 		return CAP_SEGS_PER_SEC(sbi);
5183 
5184 	return sbi->segs_per_sec;
5185 }
5186 
5187 /*
5188  * Update min, max modified time for cost-benefit GC algorithm
5189  */
5190 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5191 {
5192 	struct sit_info *sit_i = SIT_I(sbi);
5193 	unsigned int segno;
5194 
5195 	down_write(&sit_i->sentry_lock);
5196 
5197 	sit_i->min_mtime = ULLONG_MAX;
5198 
5199 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5200 		unsigned int i;
5201 		unsigned long long mtime = 0;
5202 
5203 		for (i = 0; i < sbi->segs_per_sec; i++)
5204 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5205 
5206 		mtime = div_u64(mtime, sbi->segs_per_sec);
5207 
5208 		if (sit_i->min_mtime > mtime)
5209 			sit_i->min_mtime = mtime;
5210 	}
5211 	sit_i->max_mtime = get_mtime(sbi, false);
5212 	sit_i->dirty_max_mtime = 0;
5213 	up_write(&sit_i->sentry_lock);
5214 }
5215 
5216 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5217 {
5218 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5219 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5220 	struct f2fs_sm_info *sm_info;
5221 	int err;
5222 
5223 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5224 	if (!sm_info)
5225 		return -ENOMEM;
5226 
5227 	/* init sm info */
5228 	sbi->sm_info = sm_info;
5229 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5230 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5231 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5232 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5233 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5234 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5235 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5236 	sm_info->rec_prefree_segments = sm_info->main_segments *
5237 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5238 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5239 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5240 
5241 	if (!f2fs_lfs_mode(sbi))
5242 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5243 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5244 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5245 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5246 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5247 	sm_info->min_ssr_sections = reserved_sections(sbi);
5248 
5249 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5250 
5251 	init_f2fs_rwsem(&sm_info->curseg_lock);
5252 
5253 	err = f2fs_create_flush_cmd_control(sbi);
5254 	if (err)
5255 		return err;
5256 
5257 	err = create_discard_cmd_control(sbi);
5258 	if (err)
5259 		return err;
5260 
5261 	err = build_sit_info(sbi);
5262 	if (err)
5263 		return err;
5264 	err = build_free_segmap(sbi);
5265 	if (err)
5266 		return err;
5267 	err = build_curseg(sbi);
5268 	if (err)
5269 		return err;
5270 
5271 	/* reinit free segmap based on SIT */
5272 	err = build_sit_entries(sbi);
5273 	if (err)
5274 		return err;
5275 
5276 	init_free_segmap(sbi);
5277 	err = build_dirty_segmap(sbi);
5278 	if (err)
5279 		return err;
5280 
5281 	err = sanity_check_curseg(sbi);
5282 	if (err)
5283 		return err;
5284 
5285 	init_min_max_mtime(sbi);
5286 	return 0;
5287 }
5288 
5289 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5290 		enum dirty_type dirty_type)
5291 {
5292 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5293 
5294 	mutex_lock(&dirty_i->seglist_lock);
5295 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5296 	dirty_i->nr_dirty[dirty_type] = 0;
5297 	mutex_unlock(&dirty_i->seglist_lock);
5298 }
5299 
5300 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5301 {
5302 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5303 
5304 	kvfree(dirty_i->pinned_secmap);
5305 	kvfree(dirty_i->victim_secmap);
5306 }
5307 
5308 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5309 {
5310 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5311 	int i;
5312 
5313 	if (!dirty_i)
5314 		return;
5315 
5316 	/* discard pre-free/dirty segments list */
5317 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5318 		discard_dirty_segmap(sbi, i);
5319 
5320 	if (__is_large_section(sbi)) {
5321 		mutex_lock(&dirty_i->seglist_lock);
5322 		kvfree(dirty_i->dirty_secmap);
5323 		mutex_unlock(&dirty_i->seglist_lock);
5324 	}
5325 
5326 	destroy_victim_secmap(sbi);
5327 	SM_I(sbi)->dirty_info = NULL;
5328 	kfree(dirty_i);
5329 }
5330 
5331 static void destroy_curseg(struct f2fs_sb_info *sbi)
5332 {
5333 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5334 	int i;
5335 
5336 	if (!array)
5337 		return;
5338 	SM_I(sbi)->curseg_array = NULL;
5339 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5340 		kfree(array[i].sum_blk);
5341 		kfree(array[i].journal);
5342 	}
5343 	kfree(array);
5344 }
5345 
5346 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5347 {
5348 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5349 
5350 	if (!free_i)
5351 		return;
5352 	SM_I(sbi)->free_info = NULL;
5353 	kvfree(free_i->free_segmap);
5354 	kvfree(free_i->free_secmap);
5355 	kfree(free_i);
5356 }
5357 
5358 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5359 {
5360 	struct sit_info *sit_i = SIT_I(sbi);
5361 
5362 	if (!sit_i)
5363 		return;
5364 
5365 	if (sit_i->sentries)
5366 		kvfree(sit_i->bitmap);
5367 	kfree(sit_i->tmp_map);
5368 
5369 	kvfree(sit_i->sentries);
5370 	kvfree(sit_i->sec_entries);
5371 	kvfree(sit_i->dirty_sentries_bitmap);
5372 
5373 	SM_I(sbi)->sit_info = NULL;
5374 	kvfree(sit_i->sit_bitmap);
5375 #ifdef CONFIG_F2FS_CHECK_FS
5376 	kvfree(sit_i->sit_bitmap_mir);
5377 	kvfree(sit_i->invalid_segmap);
5378 #endif
5379 	kfree(sit_i);
5380 }
5381 
5382 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5383 {
5384 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5385 
5386 	if (!sm_info)
5387 		return;
5388 	f2fs_destroy_flush_cmd_control(sbi, true);
5389 	destroy_discard_cmd_control(sbi);
5390 	destroy_dirty_segmap(sbi);
5391 	destroy_curseg(sbi);
5392 	destroy_free_segmap(sbi);
5393 	destroy_sit_info(sbi);
5394 	sbi->sm_info = NULL;
5395 	kfree(sm_info);
5396 }
5397 
5398 int __init f2fs_create_segment_manager_caches(void)
5399 {
5400 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5401 			sizeof(struct discard_entry));
5402 	if (!discard_entry_slab)
5403 		goto fail;
5404 
5405 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5406 			sizeof(struct discard_cmd));
5407 	if (!discard_cmd_slab)
5408 		goto destroy_discard_entry;
5409 
5410 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5411 			sizeof(struct sit_entry_set));
5412 	if (!sit_entry_set_slab)
5413 		goto destroy_discard_cmd;
5414 
5415 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5416 			sizeof(struct revoke_entry));
5417 	if (!revoke_entry_slab)
5418 		goto destroy_sit_entry_set;
5419 	return 0;
5420 
5421 destroy_sit_entry_set:
5422 	kmem_cache_destroy(sit_entry_set_slab);
5423 destroy_discard_cmd:
5424 	kmem_cache_destroy(discard_cmd_slab);
5425 destroy_discard_entry:
5426 	kmem_cache_destroy(discard_entry_slab);
5427 fail:
5428 	return -ENOMEM;
5429 }
5430 
5431 void f2fs_destroy_segment_manager_caches(void)
5432 {
5433 	kmem_cache_destroy(sit_entry_set_slab);
5434 	kmem_cache_destroy(discard_cmd_slab);
5435 	kmem_cache_destroy(discard_entry_slab);
5436 	kmem_cache_destroy(revoke_entry_slab);
5437 }
5438