1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 #include <linux/freezer.h> 20 #include <linux/sched/signal.h> 21 22 #include "f2fs.h" 23 #include "segment.h" 24 #include "node.h" 25 #include "gc.h" 26 #include "trace.h" 27 #include <trace/events/f2fs.h> 28 29 #define __reverse_ffz(x) __reverse_ffs(~(x)) 30 31 static struct kmem_cache *discard_entry_slab; 32 static struct kmem_cache *discard_cmd_slab; 33 static struct kmem_cache *sit_entry_set_slab; 34 static struct kmem_cache *inmem_entry_slab; 35 36 static unsigned long __reverse_ulong(unsigned char *str) 37 { 38 unsigned long tmp = 0; 39 int shift = 24, idx = 0; 40 41 #if BITS_PER_LONG == 64 42 shift = 56; 43 #endif 44 while (shift >= 0) { 45 tmp |= (unsigned long)str[idx++] << shift; 46 shift -= BITS_PER_BYTE; 47 } 48 return tmp; 49 } 50 51 /* 52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 53 * MSB and LSB are reversed in a byte by f2fs_set_bit. 54 */ 55 static inline unsigned long __reverse_ffs(unsigned long word) 56 { 57 int num = 0; 58 59 #if BITS_PER_LONG == 64 60 if ((word & 0xffffffff00000000UL) == 0) 61 num += 32; 62 else 63 word >>= 32; 64 #endif 65 if ((word & 0xffff0000) == 0) 66 num += 16; 67 else 68 word >>= 16; 69 70 if ((word & 0xff00) == 0) 71 num += 8; 72 else 73 word >>= 8; 74 75 if ((word & 0xf0) == 0) 76 num += 4; 77 else 78 word >>= 4; 79 80 if ((word & 0xc) == 0) 81 num += 2; 82 else 83 word >>= 2; 84 85 if ((word & 0x2) == 0) 86 num += 1; 87 return num; 88 } 89 90 /* 91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 92 * f2fs_set_bit makes MSB and LSB reversed in a byte. 93 * @size must be integral times of unsigned long. 94 * Example: 95 * MSB <--> LSB 96 * f2fs_set_bit(0, bitmap) => 1000 0000 97 * f2fs_set_bit(7, bitmap) => 0000 0001 98 */ 99 static unsigned long __find_rev_next_bit(const unsigned long *addr, 100 unsigned long size, unsigned long offset) 101 { 102 const unsigned long *p = addr + BIT_WORD(offset); 103 unsigned long result = size; 104 unsigned long tmp; 105 106 if (offset >= size) 107 return size; 108 109 size -= (offset & ~(BITS_PER_LONG - 1)); 110 offset %= BITS_PER_LONG; 111 112 while (1) { 113 if (*p == 0) 114 goto pass; 115 116 tmp = __reverse_ulong((unsigned char *)p); 117 118 tmp &= ~0UL >> offset; 119 if (size < BITS_PER_LONG) 120 tmp &= (~0UL << (BITS_PER_LONG - size)); 121 if (tmp) 122 goto found; 123 pass: 124 if (size <= BITS_PER_LONG) 125 break; 126 size -= BITS_PER_LONG; 127 offset = 0; 128 p++; 129 } 130 return result; 131 found: 132 return result - size + __reverse_ffs(tmp); 133 } 134 135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 136 unsigned long size, unsigned long offset) 137 { 138 const unsigned long *p = addr + BIT_WORD(offset); 139 unsigned long result = size; 140 unsigned long tmp; 141 142 if (offset >= size) 143 return size; 144 145 size -= (offset & ~(BITS_PER_LONG - 1)); 146 offset %= BITS_PER_LONG; 147 148 while (1) { 149 if (*p == ~0UL) 150 goto pass; 151 152 tmp = __reverse_ulong((unsigned char *)p); 153 154 if (offset) 155 tmp |= ~0UL << (BITS_PER_LONG - offset); 156 if (size < BITS_PER_LONG) 157 tmp |= ~0UL >> size; 158 if (tmp != ~0UL) 159 goto found; 160 pass: 161 if (size <= BITS_PER_LONG) 162 break; 163 size -= BITS_PER_LONG; 164 offset = 0; 165 p++; 166 } 167 return result; 168 found: 169 return result - size + __reverse_ffz(tmp); 170 } 171 172 bool need_SSR(struct f2fs_sb_info *sbi) 173 { 174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 177 178 if (test_opt(sbi, LFS)) 179 return false; 180 if (sbi->gc_thread && sbi->gc_thread->gc_urgent) 181 return true; 182 183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 185 } 186 187 void register_inmem_page(struct inode *inode, struct page *page) 188 { 189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 struct inmem_pages *new; 192 193 f2fs_trace_pid(page); 194 195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 196 SetPagePrivate(page); 197 198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 199 200 /* add atomic page indices to the list */ 201 new->page = page; 202 INIT_LIST_HEAD(&new->list); 203 204 /* increase reference count with clean state */ 205 mutex_lock(&fi->inmem_lock); 206 get_page(page); 207 list_add_tail(&new->list, &fi->inmem_pages); 208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 209 if (list_empty(&fi->inmem_ilist)) 210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 213 mutex_unlock(&fi->inmem_lock); 214 215 trace_f2fs_register_inmem_page(page, INMEM); 216 } 217 218 static int __revoke_inmem_pages(struct inode *inode, 219 struct list_head *head, bool drop, bool recover) 220 { 221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 222 struct inmem_pages *cur, *tmp; 223 int err = 0; 224 225 list_for_each_entry_safe(cur, tmp, head, list) { 226 struct page *page = cur->page; 227 228 if (drop) 229 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 230 231 lock_page(page); 232 233 if (recover) { 234 struct dnode_of_data dn; 235 struct node_info ni; 236 237 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 238 retry: 239 set_new_dnode(&dn, inode, NULL, NULL, 0); 240 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 241 if (err) { 242 if (err == -ENOMEM) { 243 congestion_wait(BLK_RW_ASYNC, HZ/50); 244 cond_resched(); 245 goto retry; 246 } 247 err = -EAGAIN; 248 goto next; 249 } 250 get_node_info(sbi, dn.nid, &ni); 251 if (cur->old_addr == NEW_ADDR) { 252 invalidate_blocks(sbi, dn.data_blkaddr); 253 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 254 } else 255 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 256 cur->old_addr, ni.version, true, true); 257 f2fs_put_dnode(&dn); 258 } 259 next: 260 /* we don't need to invalidate this in the sccessful status */ 261 if (drop || recover) 262 ClearPageUptodate(page); 263 set_page_private(page, 0); 264 ClearPagePrivate(page); 265 f2fs_put_page(page, 1); 266 267 list_del(&cur->list); 268 kmem_cache_free(inmem_entry_slab, cur); 269 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 270 } 271 return err; 272 } 273 274 void drop_inmem_pages_all(struct f2fs_sb_info *sbi) 275 { 276 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 277 struct inode *inode; 278 struct f2fs_inode_info *fi; 279 next: 280 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 281 if (list_empty(head)) { 282 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 283 return; 284 } 285 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 286 inode = igrab(&fi->vfs_inode); 287 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 288 289 if (inode) { 290 drop_inmem_pages(inode); 291 iput(inode); 292 } 293 congestion_wait(BLK_RW_ASYNC, HZ/50); 294 cond_resched(); 295 goto next; 296 } 297 298 void drop_inmem_pages(struct inode *inode) 299 { 300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 301 struct f2fs_inode_info *fi = F2FS_I(inode); 302 303 mutex_lock(&fi->inmem_lock); 304 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 305 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 306 if (!list_empty(&fi->inmem_ilist)) 307 list_del_init(&fi->inmem_ilist); 308 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 309 mutex_unlock(&fi->inmem_lock); 310 311 clear_inode_flag(inode, FI_ATOMIC_FILE); 312 clear_inode_flag(inode, FI_HOT_DATA); 313 stat_dec_atomic_write(inode); 314 } 315 316 void drop_inmem_page(struct inode *inode, struct page *page) 317 { 318 struct f2fs_inode_info *fi = F2FS_I(inode); 319 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 320 struct list_head *head = &fi->inmem_pages; 321 struct inmem_pages *cur = NULL; 322 323 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 324 325 mutex_lock(&fi->inmem_lock); 326 list_for_each_entry(cur, head, list) { 327 if (cur->page == page) 328 break; 329 } 330 331 f2fs_bug_on(sbi, !cur || cur->page != page); 332 list_del(&cur->list); 333 mutex_unlock(&fi->inmem_lock); 334 335 dec_page_count(sbi, F2FS_INMEM_PAGES); 336 kmem_cache_free(inmem_entry_slab, cur); 337 338 ClearPageUptodate(page); 339 set_page_private(page, 0); 340 ClearPagePrivate(page); 341 f2fs_put_page(page, 0); 342 343 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 344 } 345 346 static int __commit_inmem_pages(struct inode *inode, 347 struct list_head *revoke_list) 348 { 349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 350 struct f2fs_inode_info *fi = F2FS_I(inode); 351 struct inmem_pages *cur, *tmp; 352 struct f2fs_io_info fio = { 353 .sbi = sbi, 354 .ino = inode->i_ino, 355 .type = DATA, 356 .op = REQ_OP_WRITE, 357 .op_flags = REQ_SYNC | REQ_PRIO, 358 .io_type = FS_DATA_IO, 359 }; 360 pgoff_t last_idx = ULONG_MAX; 361 int err = 0; 362 363 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 364 struct page *page = cur->page; 365 366 lock_page(page); 367 if (page->mapping == inode->i_mapping) { 368 trace_f2fs_commit_inmem_page(page, INMEM); 369 370 set_page_dirty(page); 371 f2fs_wait_on_page_writeback(page, DATA, true); 372 if (clear_page_dirty_for_io(page)) { 373 inode_dec_dirty_pages(inode); 374 remove_dirty_inode(inode); 375 } 376 retry: 377 fio.page = page; 378 fio.old_blkaddr = NULL_ADDR; 379 fio.encrypted_page = NULL; 380 fio.need_lock = LOCK_DONE; 381 err = do_write_data_page(&fio); 382 if (err) { 383 if (err == -ENOMEM) { 384 congestion_wait(BLK_RW_ASYNC, HZ/50); 385 cond_resched(); 386 goto retry; 387 } 388 unlock_page(page); 389 break; 390 } 391 /* record old blkaddr for revoking */ 392 cur->old_addr = fio.old_blkaddr; 393 last_idx = page->index; 394 } 395 unlock_page(page); 396 list_move_tail(&cur->list, revoke_list); 397 } 398 399 if (last_idx != ULONG_MAX) 400 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA); 401 402 if (!err) 403 __revoke_inmem_pages(inode, revoke_list, false, false); 404 405 return err; 406 } 407 408 int commit_inmem_pages(struct inode *inode) 409 { 410 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 411 struct f2fs_inode_info *fi = F2FS_I(inode); 412 struct list_head revoke_list; 413 int err; 414 415 INIT_LIST_HEAD(&revoke_list); 416 f2fs_balance_fs(sbi, true); 417 f2fs_lock_op(sbi); 418 419 set_inode_flag(inode, FI_ATOMIC_COMMIT); 420 421 mutex_lock(&fi->inmem_lock); 422 err = __commit_inmem_pages(inode, &revoke_list); 423 if (err) { 424 int ret; 425 /* 426 * try to revoke all committed pages, but still we could fail 427 * due to no memory or other reason, if that happened, EAGAIN 428 * will be returned, which means in such case, transaction is 429 * already not integrity, caller should use journal to do the 430 * recovery or rewrite & commit last transaction. For other 431 * error number, revoking was done by filesystem itself. 432 */ 433 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 434 if (ret) 435 err = ret; 436 437 /* drop all uncommitted pages */ 438 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 439 } 440 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 441 if (!list_empty(&fi->inmem_ilist)) 442 list_del_init(&fi->inmem_ilist); 443 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 444 mutex_unlock(&fi->inmem_lock); 445 446 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 447 448 f2fs_unlock_op(sbi); 449 return err; 450 } 451 452 /* 453 * This function balances dirty node and dentry pages. 454 * In addition, it controls garbage collection. 455 */ 456 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 457 { 458 #ifdef CONFIG_F2FS_FAULT_INJECTION 459 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 460 f2fs_show_injection_info(FAULT_CHECKPOINT); 461 f2fs_stop_checkpoint(sbi, false); 462 } 463 #endif 464 465 /* balance_fs_bg is able to be pending */ 466 if (need && excess_cached_nats(sbi)) 467 f2fs_balance_fs_bg(sbi); 468 469 /* 470 * We should do GC or end up with checkpoint, if there are so many dirty 471 * dir/node pages without enough free segments. 472 */ 473 if (has_not_enough_free_secs(sbi, 0, 0)) { 474 mutex_lock(&sbi->gc_mutex); 475 f2fs_gc(sbi, false, false, NULL_SEGNO); 476 } 477 } 478 479 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 480 { 481 /* try to shrink extent cache when there is no enough memory */ 482 if (!available_free_memory(sbi, EXTENT_CACHE)) 483 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 484 485 /* check the # of cached NAT entries */ 486 if (!available_free_memory(sbi, NAT_ENTRIES)) 487 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 488 489 if (!available_free_memory(sbi, FREE_NIDS)) 490 try_to_free_nids(sbi, MAX_FREE_NIDS); 491 else 492 build_free_nids(sbi, false, false); 493 494 if (!is_idle(sbi) && !excess_dirty_nats(sbi)) 495 return; 496 497 /* checkpoint is the only way to shrink partial cached entries */ 498 if (!available_free_memory(sbi, NAT_ENTRIES) || 499 !available_free_memory(sbi, INO_ENTRIES) || 500 excess_prefree_segs(sbi) || 501 excess_dirty_nats(sbi) || 502 f2fs_time_over(sbi, CP_TIME)) { 503 if (test_opt(sbi, DATA_FLUSH)) { 504 struct blk_plug plug; 505 506 blk_start_plug(&plug); 507 sync_dirty_inodes(sbi, FILE_INODE); 508 blk_finish_plug(&plug); 509 } 510 f2fs_sync_fs(sbi->sb, true); 511 stat_inc_bg_cp_count(sbi->stat_info); 512 } 513 } 514 515 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 516 struct block_device *bdev) 517 { 518 struct bio *bio = f2fs_bio_alloc(sbi, 0, true); 519 int ret; 520 521 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 522 bio_set_dev(bio, bdev); 523 ret = submit_bio_wait(bio); 524 bio_put(bio); 525 526 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 527 test_opt(sbi, FLUSH_MERGE), ret); 528 return ret; 529 } 530 531 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 532 { 533 int ret = 0; 534 int i; 535 536 if (!sbi->s_ndevs) 537 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 538 539 for (i = 0; i < sbi->s_ndevs; i++) { 540 if (!is_dirty_device(sbi, ino, i, FLUSH_INO)) 541 continue; 542 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 543 if (ret) 544 break; 545 } 546 return ret; 547 } 548 549 static int issue_flush_thread(void *data) 550 { 551 struct f2fs_sb_info *sbi = data; 552 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 553 wait_queue_head_t *q = &fcc->flush_wait_queue; 554 repeat: 555 if (kthread_should_stop()) 556 return 0; 557 558 sb_start_intwrite(sbi->sb); 559 560 if (!llist_empty(&fcc->issue_list)) { 561 struct flush_cmd *cmd, *next; 562 int ret; 563 564 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 565 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 566 567 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 568 569 ret = submit_flush_wait(sbi, cmd->ino); 570 atomic_inc(&fcc->issued_flush); 571 572 llist_for_each_entry_safe(cmd, next, 573 fcc->dispatch_list, llnode) { 574 cmd->ret = ret; 575 complete(&cmd->wait); 576 } 577 fcc->dispatch_list = NULL; 578 } 579 580 sb_end_intwrite(sbi->sb); 581 582 wait_event_interruptible(*q, 583 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 584 goto repeat; 585 } 586 587 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 588 { 589 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 590 struct flush_cmd cmd; 591 int ret; 592 593 if (test_opt(sbi, NOBARRIER)) 594 return 0; 595 596 if (!test_opt(sbi, FLUSH_MERGE)) { 597 ret = submit_flush_wait(sbi, ino); 598 atomic_inc(&fcc->issued_flush); 599 return ret; 600 } 601 602 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) { 603 ret = submit_flush_wait(sbi, ino); 604 atomic_dec(&fcc->issing_flush); 605 606 atomic_inc(&fcc->issued_flush); 607 return ret; 608 } 609 610 cmd.ino = ino; 611 init_completion(&cmd.wait); 612 613 llist_add(&cmd.llnode, &fcc->issue_list); 614 615 /* update issue_list before we wake up issue_flush thread */ 616 smp_mb(); 617 618 if (waitqueue_active(&fcc->flush_wait_queue)) 619 wake_up(&fcc->flush_wait_queue); 620 621 if (fcc->f2fs_issue_flush) { 622 wait_for_completion(&cmd.wait); 623 atomic_dec(&fcc->issing_flush); 624 } else { 625 struct llist_node *list; 626 627 list = llist_del_all(&fcc->issue_list); 628 if (!list) { 629 wait_for_completion(&cmd.wait); 630 atomic_dec(&fcc->issing_flush); 631 } else { 632 struct flush_cmd *tmp, *next; 633 634 ret = submit_flush_wait(sbi, ino); 635 636 llist_for_each_entry_safe(tmp, next, list, llnode) { 637 if (tmp == &cmd) { 638 cmd.ret = ret; 639 atomic_dec(&fcc->issing_flush); 640 continue; 641 } 642 tmp->ret = ret; 643 complete(&tmp->wait); 644 } 645 } 646 } 647 648 return cmd.ret; 649 } 650 651 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 652 { 653 dev_t dev = sbi->sb->s_bdev->bd_dev; 654 struct flush_cmd_control *fcc; 655 int err = 0; 656 657 if (SM_I(sbi)->fcc_info) { 658 fcc = SM_I(sbi)->fcc_info; 659 if (fcc->f2fs_issue_flush) 660 return err; 661 goto init_thread; 662 } 663 664 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 665 if (!fcc) 666 return -ENOMEM; 667 atomic_set(&fcc->issued_flush, 0); 668 atomic_set(&fcc->issing_flush, 0); 669 init_waitqueue_head(&fcc->flush_wait_queue); 670 init_llist_head(&fcc->issue_list); 671 SM_I(sbi)->fcc_info = fcc; 672 if (!test_opt(sbi, FLUSH_MERGE)) 673 return err; 674 675 init_thread: 676 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 677 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 678 if (IS_ERR(fcc->f2fs_issue_flush)) { 679 err = PTR_ERR(fcc->f2fs_issue_flush); 680 kfree(fcc); 681 SM_I(sbi)->fcc_info = NULL; 682 return err; 683 } 684 685 return err; 686 } 687 688 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 689 { 690 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 691 692 if (fcc && fcc->f2fs_issue_flush) { 693 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 694 695 fcc->f2fs_issue_flush = NULL; 696 kthread_stop(flush_thread); 697 } 698 if (free) { 699 kfree(fcc); 700 SM_I(sbi)->fcc_info = NULL; 701 } 702 } 703 704 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 705 { 706 int ret = 0, i; 707 708 if (!sbi->s_ndevs) 709 return 0; 710 711 for (i = 1; i < sbi->s_ndevs; i++) { 712 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 713 continue; 714 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 715 if (ret) 716 break; 717 718 spin_lock(&sbi->dev_lock); 719 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 720 spin_unlock(&sbi->dev_lock); 721 } 722 723 return ret; 724 } 725 726 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 727 enum dirty_type dirty_type) 728 { 729 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 730 731 /* need not be added */ 732 if (IS_CURSEG(sbi, segno)) 733 return; 734 735 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 736 dirty_i->nr_dirty[dirty_type]++; 737 738 if (dirty_type == DIRTY) { 739 struct seg_entry *sentry = get_seg_entry(sbi, segno); 740 enum dirty_type t = sentry->type; 741 742 if (unlikely(t >= DIRTY)) { 743 f2fs_bug_on(sbi, 1); 744 return; 745 } 746 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 747 dirty_i->nr_dirty[t]++; 748 } 749 } 750 751 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 752 enum dirty_type dirty_type) 753 { 754 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 755 756 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 757 dirty_i->nr_dirty[dirty_type]--; 758 759 if (dirty_type == DIRTY) { 760 struct seg_entry *sentry = get_seg_entry(sbi, segno); 761 enum dirty_type t = sentry->type; 762 763 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 764 dirty_i->nr_dirty[t]--; 765 766 if (get_valid_blocks(sbi, segno, true) == 0) 767 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 768 dirty_i->victim_secmap); 769 } 770 } 771 772 /* 773 * Should not occur error such as -ENOMEM. 774 * Adding dirty entry into seglist is not critical operation. 775 * If a given segment is one of current working segments, it won't be added. 776 */ 777 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 778 { 779 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 780 unsigned short valid_blocks; 781 782 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 783 return; 784 785 mutex_lock(&dirty_i->seglist_lock); 786 787 valid_blocks = get_valid_blocks(sbi, segno, false); 788 789 if (valid_blocks == 0) { 790 __locate_dirty_segment(sbi, segno, PRE); 791 __remove_dirty_segment(sbi, segno, DIRTY); 792 } else if (valid_blocks < sbi->blocks_per_seg) { 793 __locate_dirty_segment(sbi, segno, DIRTY); 794 } else { 795 /* Recovery routine with SSR needs this */ 796 __remove_dirty_segment(sbi, segno, DIRTY); 797 } 798 799 mutex_unlock(&dirty_i->seglist_lock); 800 } 801 802 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 803 struct block_device *bdev, block_t lstart, 804 block_t start, block_t len) 805 { 806 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 807 struct list_head *pend_list; 808 struct discard_cmd *dc; 809 810 f2fs_bug_on(sbi, !len); 811 812 pend_list = &dcc->pend_list[plist_idx(len)]; 813 814 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 815 INIT_LIST_HEAD(&dc->list); 816 dc->bdev = bdev; 817 dc->lstart = lstart; 818 dc->start = start; 819 dc->len = len; 820 dc->ref = 0; 821 dc->state = D_PREP; 822 dc->error = 0; 823 init_completion(&dc->wait); 824 list_add_tail(&dc->list, pend_list); 825 atomic_inc(&dcc->discard_cmd_cnt); 826 dcc->undiscard_blks += len; 827 828 return dc; 829 } 830 831 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 832 struct block_device *bdev, block_t lstart, 833 block_t start, block_t len, 834 struct rb_node *parent, struct rb_node **p) 835 { 836 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 837 struct discard_cmd *dc; 838 839 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 840 841 rb_link_node(&dc->rb_node, parent, p); 842 rb_insert_color(&dc->rb_node, &dcc->root); 843 844 return dc; 845 } 846 847 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 848 struct discard_cmd *dc) 849 { 850 if (dc->state == D_DONE) 851 atomic_dec(&dcc->issing_discard); 852 853 list_del(&dc->list); 854 rb_erase(&dc->rb_node, &dcc->root); 855 dcc->undiscard_blks -= dc->len; 856 857 kmem_cache_free(discard_cmd_slab, dc); 858 859 atomic_dec(&dcc->discard_cmd_cnt); 860 } 861 862 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 863 struct discard_cmd *dc) 864 { 865 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 866 867 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 868 869 f2fs_bug_on(sbi, dc->ref); 870 871 if (dc->error == -EOPNOTSUPP) 872 dc->error = 0; 873 874 if (dc->error) 875 f2fs_msg(sbi->sb, KERN_INFO, 876 "Issue discard(%u, %u, %u) failed, ret: %d", 877 dc->lstart, dc->start, dc->len, dc->error); 878 __detach_discard_cmd(dcc, dc); 879 } 880 881 static void f2fs_submit_discard_endio(struct bio *bio) 882 { 883 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 884 885 dc->error = blk_status_to_errno(bio->bi_status); 886 dc->state = D_DONE; 887 complete_all(&dc->wait); 888 bio_put(bio); 889 } 890 891 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 892 block_t start, block_t end) 893 { 894 #ifdef CONFIG_F2FS_CHECK_FS 895 struct seg_entry *sentry; 896 unsigned int segno; 897 block_t blk = start; 898 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 899 unsigned long *map; 900 901 while (blk < end) { 902 segno = GET_SEGNO(sbi, blk); 903 sentry = get_seg_entry(sbi, segno); 904 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 905 906 if (end < START_BLOCK(sbi, segno + 1)) 907 size = GET_BLKOFF_FROM_SEG0(sbi, end); 908 else 909 size = max_blocks; 910 map = (unsigned long *)(sentry->cur_valid_map); 911 offset = __find_rev_next_bit(map, size, offset); 912 f2fs_bug_on(sbi, offset != size); 913 blk = START_BLOCK(sbi, segno + 1); 914 } 915 #endif 916 } 917 918 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 919 static void __submit_discard_cmd(struct f2fs_sb_info *sbi, 920 struct discard_policy *dpolicy, 921 struct discard_cmd *dc) 922 { 923 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 924 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 925 &(dcc->fstrim_list) : &(dcc->wait_list); 926 struct bio *bio = NULL; 927 int flag = dpolicy->sync ? REQ_SYNC : 0; 928 929 if (dc->state != D_PREP) 930 return; 931 932 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len); 933 934 dc->error = __blkdev_issue_discard(dc->bdev, 935 SECTOR_FROM_BLOCK(dc->start), 936 SECTOR_FROM_BLOCK(dc->len), 937 GFP_NOFS, 0, &bio); 938 if (!dc->error) { 939 /* should keep before submission to avoid D_DONE right away */ 940 dc->state = D_SUBMIT; 941 atomic_inc(&dcc->issued_discard); 942 atomic_inc(&dcc->issing_discard); 943 if (bio) { 944 bio->bi_private = dc; 945 bio->bi_end_io = f2fs_submit_discard_endio; 946 bio->bi_opf |= flag; 947 submit_bio(bio); 948 list_move_tail(&dc->list, wait_list); 949 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len); 950 951 f2fs_update_iostat(sbi, FS_DISCARD, 1); 952 } 953 } else { 954 __remove_discard_cmd(sbi, dc); 955 } 956 } 957 958 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 959 struct block_device *bdev, block_t lstart, 960 block_t start, block_t len, 961 struct rb_node **insert_p, 962 struct rb_node *insert_parent) 963 { 964 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 965 struct rb_node **p; 966 struct rb_node *parent = NULL; 967 struct discard_cmd *dc = NULL; 968 969 if (insert_p && insert_parent) { 970 parent = insert_parent; 971 p = insert_p; 972 goto do_insert; 973 } 974 975 p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart); 976 do_insert: 977 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p); 978 if (!dc) 979 return NULL; 980 981 return dc; 982 } 983 984 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 985 struct discard_cmd *dc) 986 { 987 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 988 } 989 990 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 991 struct discard_cmd *dc, block_t blkaddr) 992 { 993 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 994 struct discard_info di = dc->di; 995 bool modified = false; 996 997 if (dc->state == D_DONE || dc->len == 1) { 998 __remove_discard_cmd(sbi, dc); 999 return; 1000 } 1001 1002 dcc->undiscard_blks -= di.len; 1003 1004 if (blkaddr > di.lstart) { 1005 dc->len = blkaddr - dc->lstart; 1006 dcc->undiscard_blks += dc->len; 1007 __relocate_discard_cmd(dcc, dc); 1008 modified = true; 1009 } 1010 1011 if (blkaddr < di.lstart + di.len - 1) { 1012 if (modified) { 1013 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1014 di.start + blkaddr + 1 - di.lstart, 1015 di.lstart + di.len - 1 - blkaddr, 1016 NULL, NULL); 1017 } else { 1018 dc->lstart++; 1019 dc->len--; 1020 dc->start++; 1021 dcc->undiscard_blks += dc->len; 1022 __relocate_discard_cmd(dcc, dc); 1023 } 1024 } 1025 } 1026 1027 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1028 struct block_device *bdev, block_t lstart, 1029 block_t start, block_t len) 1030 { 1031 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1032 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1033 struct discard_cmd *dc; 1034 struct discard_info di = {0}; 1035 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1036 block_t end = lstart + len; 1037 1038 mutex_lock(&dcc->cmd_lock); 1039 1040 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root, 1041 NULL, lstart, 1042 (struct rb_entry **)&prev_dc, 1043 (struct rb_entry **)&next_dc, 1044 &insert_p, &insert_parent, true); 1045 if (dc) 1046 prev_dc = dc; 1047 1048 if (!prev_dc) { 1049 di.lstart = lstart; 1050 di.len = next_dc ? next_dc->lstart - lstart : len; 1051 di.len = min(di.len, len); 1052 di.start = start; 1053 } 1054 1055 while (1) { 1056 struct rb_node *node; 1057 bool merged = false; 1058 struct discard_cmd *tdc = NULL; 1059 1060 if (prev_dc) { 1061 di.lstart = prev_dc->lstart + prev_dc->len; 1062 if (di.lstart < lstart) 1063 di.lstart = lstart; 1064 if (di.lstart >= end) 1065 break; 1066 1067 if (!next_dc || next_dc->lstart > end) 1068 di.len = end - di.lstart; 1069 else 1070 di.len = next_dc->lstart - di.lstart; 1071 di.start = start + di.lstart - lstart; 1072 } 1073 1074 if (!di.len) 1075 goto next; 1076 1077 if (prev_dc && prev_dc->state == D_PREP && 1078 prev_dc->bdev == bdev && 1079 __is_discard_back_mergeable(&di, &prev_dc->di)) { 1080 prev_dc->di.len += di.len; 1081 dcc->undiscard_blks += di.len; 1082 __relocate_discard_cmd(dcc, prev_dc); 1083 di = prev_dc->di; 1084 tdc = prev_dc; 1085 merged = true; 1086 } 1087 1088 if (next_dc && next_dc->state == D_PREP && 1089 next_dc->bdev == bdev && 1090 __is_discard_front_mergeable(&di, &next_dc->di)) { 1091 next_dc->di.lstart = di.lstart; 1092 next_dc->di.len += di.len; 1093 next_dc->di.start = di.start; 1094 dcc->undiscard_blks += di.len; 1095 __relocate_discard_cmd(dcc, next_dc); 1096 if (tdc) 1097 __remove_discard_cmd(sbi, tdc); 1098 merged = true; 1099 } 1100 1101 if (!merged) { 1102 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1103 di.len, NULL, NULL); 1104 } 1105 next: 1106 prev_dc = next_dc; 1107 if (!prev_dc) 1108 break; 1109 1110 node = rb_next(&prev_dc->rb_node); 1111 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1112 } 1113 1114 mutex_unlock(&dcc->cmd_lock); 1115 } 1116 1117 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1118 struct block_device *bdev, block_t blkstart, block_t blklen) 1119 { 1120 block_t lblkstart = blkstart; 1121 1122 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1123 1124 if (sbi->s_ndevs) { 1125 int devi = f2fs_target_device_index(sbi, blkstart); 1126 1127 blkstart -= FDEV(devi).start_blk; 1128 } 1129 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1130 return 0; 1131 } 1132 1133 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 1134 struct discard_policy *dpolicy, 1135 unsigned int start, unsigned int end) 1136 { 1137 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1138 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1139 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1140 struct discard_cmd *dc; 1141 struct blk_plug plug; 1142 int issued; 1143 1144 next: 1145 issued = 0; 1146 1147 mutex_lock(&dcc->cmd_lock); 1148 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root)); 1149 1150 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root, 1151 NULL, start, 1152 (struct rb_entry **)&prev_dc, 1153 (struct rb_entry **)&next_dc, 1154 &insert_p, &insert_parent, true); 1155 if (!dc) 1156 dc = next_dc; 1157 1158 blk_start_plug(&plug); 1159 1160 while (dc && dc->lstart <= end) { 1161 struct rb_node *node; 1162 1163 if (dc->len < dpolicy->granularity) 1164 goto skip; 1165 1166 if (dc->state != D_PREP) { 1167 list_move_tail(&dc->list, &dcc->fstrim_list); 1168 goto skip; 1169 } 1170 1171 __submit_discard_cmd(sbi, dpolicy, dc); 1172 1173 if (++issued >= dpolicy->max_requests) { 1174 start = dc->lstart + dc->len; 1175 1176 blk_finish_plug(&plug); 1177 mutex_unlock(&dcc->cmd_lock); 1178 1179 schedule(); 1180 1181 goto next; 1182 } 1183 skip: 1184 node = rb_next(&dc->rb_node); 1185 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1186 1187 if (fatal_signal_pending(current)) 1188 break; 1189 } 1190 1191 blk_finish_plug(&plug); 1192 mutex_unlock(&dcc->cmd_lock); 1193 } 1194 1195 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1196 struct discard_policy *dpolicy) 1197 { 1198 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1199 struct list_head *pend_list; 1200 struct discard_cmd *dc, *tmp; 1201 struct blk_plug plug; 1202 int i, iter = 0, issued = 0; 1203 bool io_interrupted = false; 1204 1205 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1206 if (i + 1 < dpolicy->granularity) 1207 break; 1208 pend_list = &dcc->pend_list[i]; 1209 1210 mutex_lock(&dcc->cmd_lock); 1211 if (list_empty(pend_list)) 1212 goto next; 1213 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root)); 1214 blk_start_plug(&plug); 1215 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1216 f2fs_bug_on(sbi, dc->state != D_PREP); 1217 1218 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1219 !is_idle(sbi)) { 1220 io_interrupted = true; 1221 goto skip; 1222 } 1223 1224 __submit_discard_cmd(sbi, dpolicy, dc); 1225 issued++; 1226 skip: 1227 if (++iter >= dpolicy->max_requests) 1228 break; 1229 } 1230 blk_finish_plug(&plug); 1231 next: 1232 mutex_unlock(&dcc->cmd_lock); 1233 1234 if (iter >= dpolicy->max_requests) 1235 break; 1236 } 1237 1238 if (!issued && io_interrupted) 1239 issued = -1; 1240 1241 return issued; 1242 } 1243 1244 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1245 { 1246 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1247 struct list_head *pend_list; 1248 struct discard_cmd *dc, *tmp; 1249 int i; 1250 bool dropped = false; 1251 1252 mutex_lock(&dcc->cmd_lock); 1253 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1254 pend_list = &dcc->pend_list[i]; 1255 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1256 f2fs_bug_on(sbi, dc->state != D_PREP); 1257 __remove_discard_cmd(sbi, dc); 1258 dropped = true; 1259 } 1260 } 1261 mutex_unlock(&dcc->cmd_lock); 1262 1263 return dropped; 1264 } 1265 1266 void drop_discard_cmd(struct f2fs_sb_info *sbi) 1267 { 1268 __drop_discard_cmd(sbi); 1269 } 1270 1271 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1272 struct discard_cmd *dc) 1273 { 1274 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1275 unsigned int len = 0; 1276 1277 wait_for_completion_io(&dc->wait); 1278 mutex_lock(&dcc->cmd_lock); 1279 f2fs_bug_on(sbi, dc->state != D_DONE); 1280 dc->ref--; 1281 if (!dc->ref) { 1282 if (!dc->error) 1283 len = dc->len; 1284 __remove_discard_cmd(sbi, dc); 1285 } 1286 mutex_unlock(&dcc->cmd_lock); 1287 1288 return len; 1289 } 1290 1291 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1292 struct discard_policy *dpolicy, 1293 block_t start, block_t end) 1294 { 1295 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1296 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1297 &(dcc->fstrim_list) : &(dcc->wait_list); 1298 struct discard_cmd *dc, *tmp; 1299 bool need_wait; 1300 unsigned int trimmed = 0; 1301 1302 next: 1303 need_wait = false; 1304 1305 mutex_lock(&dcc->cmd_lock); 1306 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1307 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1308 continue; 1309 if (dc->len < dpolicy->granularity) 1310 continue; 1311 if (dc->state == D_DONE && !dc->ref) { 1312 wait_for_completion_io(&dc->wait); 1313 if (!dc->error) 1314 trimmed += dc->len; 1315 __remove_discard_cmd(sbi, dc); 1316 } else { 1317 dc->ref++; 1318 need_wait = true; 1319 break; 1320 } 1321 } 1322 mutex_unlock(&dcc->cmd_lock); 1323 1324 if (need_wait) { 1325 trimmed += __wait_one_discard_bio(sbi, dc); 1326 goto next; 1327 } 1328 1329 return trimmed; 1330 } 1331 1332 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1333 struct discard_policy *dpolicy) 1334 { 1335 __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1336 } 1337 1338 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1339 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1340 { 1341 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1342 struct discard_cmd *dc; 1343 bool need_wait = false; 1344 1345 mutex_lock(&dcc->cmd_lock); 1346 dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr); 1347 if (dc) { 1348 if (dc->state == D_PREP) { 1349 __punch_discard_cmd(sbi, dc, blkaddr); 1350 } else { 1351 dc->ref++; 1352 need_wait = true; 1353 } 1354 } 1355 mutex_unlock(&dcc->cmd_lock); 1356 1357 if (need_wait) 1358 __wait_one_discard_bio(sbi, dc); 1359 } 1360 1361 void stop_discard_thread(struct f2fs_sb_info *sbi) 1362 { 1363 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1364 1365 if (dcc && dcc->f2fs_issue_discard) { 1366 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1367 1368 dcc->f2fs_issue_discard = NULL; 1369 kthread_stop(discard_thread); 1370 } 1371 } 1372 1373 /* This comes from f2fs_put_super */ 1374 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi) 1375 { 1376 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1377 struct discard_policy dpolicy; 1378 bool dropped; 1379 1380 init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity); 1381 __issue_discard_cmd(sbi, &dpolicy); 1382 dropped = __drop_discard_cmd(sbi); 1383 __wait_all_discard_cmd(sbi, &dpolicy); 1384 1385 return dropped; 1386 } 1387 1388 static int issue_discard_thread(void *data) 1389 { 1390 struct f2fs_sb_info *sbi = data; 1391 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1392 wait_queue_head_t *q = &dcc->discard_wait_queue; 1393 struct discard_policy dpolicy; 1394 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1395 int issued; 1396 1397 set_freezable(); 1398 1399 do { 1400 init_discard_policy(&dpolicy, DPOLICY_BG, 1401 dcc->discard_granularity); 1402 1403 wait_event_interruptible_timeout(*q, 1404 kthread_should_stop() || freezing(current) || 1405 dcc->discard_wake, 1406 msecs_to_jiffies(wait_ms)); 1407 if (try_to_freeze()) 1408 continue; 1409 if (f2fs_readonly(sbi->sb)) 1410 continue; 1411 if (kthread_should_stop()) 1412 return 0; 1413 1414 if (dcc->discard_wake) 1415 dcc->discard_wake = 0; 1416 1417 if (sbi->gc_thread && sbi->gc_thread->gc_urgent) 1418 init_discard_policy(&dpolicy, DPOLICY_FORCE, 1); 1419 1420 sb_start_intwrite(sbi->sb); 1421 1422 issued = __issue_discard_cmd(sbi, &dpolicy); 1423 if (issued) { 1424 __wait_all_discard_cmd(sbi, &dpolicy); 1425 wait_ms = dpolicy.min_interval; 1426 } else { 1427 wait_ms = dpolicy.max_interval; 1428 } 1429 1430 sb_end_intwrite(sbi->sb); 1431 1432 } while (!kthread_should_stop()); 1433 return 0; 1434 } 1435 1436 #ifdef CONFIG_BLK_DEV_ZONED 1437 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1438 struct block_device *bdev, block_t blkstart, block_t blklen) 1439 { 1440 sector_t sector, nr_sects; 1441 block_t lblkstart = blkstart; 1442 int devi = 0; 1443 1444 if (sbi->s_ndevs) { 1445 devi = f2fs_target_device_index(sbi, blkstart); 1446 blkstart -= FDEV(devi).start_blk; 1447 } 1448 1449 /* 1450 * We need to know the type of the zone: for conventional zones, 1451 * use regular discard if the drive supports it. For sequential 1452 * zones, reset the zone write pointer. 1453 */ 1454 switch (get_blkz_type(sbi, bdev, blkstart)) { 1455 1456 case BLK_ZONE_TYPE_CONVENTIONAL: 1457 if (!blk_queue_discard(bdev_get_queue(bdev))) 1458 return 0; 1459 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1460 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1461 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1462 sector = SECTOR_FROM_BLOCK(blkstart); 1463 nr_sects = SECTOR_FROM_BLOCK(blklen); 1464 1465 if (sector & (bdev_zone_sectors(bdev) - 1) || 1466 nr_sects != bdev_zone_sectors(bdev)) { 1467 f2fs_msg(sbi->sb, KERN_INFO, 1468 "(%d) %s: Unaligned discard attempted (block %x + %x)", 1469 devi, sbi->s_ndevs ? FDEV(devi).path: "", 1470 blkstart, blklen); 1471 return -EIO; 1472 } 1473 trace_f2fs_issue_reset_zone(bdev, blkstart); 1474 return blkdev_reset_zones(bdev, sector, 1475 nr_sects, GFP_NOFS); 1476 default: 1477 /* Unknown zone type: broken device ? */ 1478 return -EIO; 1479 } 1480 } 1481 #endif 1482 1483 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1484 struct block_device *bdev, block_t blkstart, block_t blklen) 1485 { 1486 #ifdef CONFIG_BLK_DEV_ZONED 1487 if (f2fs_sb_has_blkzoned(sbi->sb) && 1488 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 1489 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1490 #endif 1491 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1492 } 1493 1494 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1495 block_t blkstart, block_t blklen) 1496 { 1497 sector_t start = blkstart, len = 0; 1498 struct block_device *bdev; 1499 struct seg_entry *se; 1500 unsigned int offset; 1501 block_t i; 1502 int err = 0; 1503 1504 bdev = f2fs_target_device(sbi, blkstart, NULL); 1505 1506 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1507 if (i != start) { 1508 struct block_device *bdev2 = 1509 f2fs_target_device(sbi, i, NULL); 1510 1511 if (bdev2 != bdev) { 1512 err = __issue_discard_async(sbi, bdev, 1513 start, len); 1514 if (err) 1515 return err; 1516 bdev = bdev2; 1517 start = i; 1518 len = 0; 1519 } 1520 } 1521 1522 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1523 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1524 1525 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1526 sbi->discard_blks--; 1527 } 1528 1529 if (len) 1530 err = __issue_discard_async(sbi, bdev, start, len); 1531 return err; 1532 } 1533 1534 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1535 bool check_only) 1536 { 1537 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1538 int max_blocks = sbi->blocks_per_seg; 1539 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1540 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1541 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1542 unsigned long *discard_map = (unsigned long *)se->discard_map; 1543 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1544 unsigned int start = 0, end = -1; 1545 bool force = (cpc->reason & CP_DISCARD); 1546 struct discard_entry *de = NULL; 1547 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1548 int i; 1549 1550 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 1551 return false; 1552 1553 if (!force) { 1554 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 1555 SM_I(sbi)->dcc_info->nr_discards >= 1556 SM_I(sbi)->dcc_info->max_discards) 1557 return false; 1558 } 1559 1560 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1561 for (i = 0; i < entries; i++) 1562 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1563 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1564 1565 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1566 SM_I(sbi)->dcc_info->max_discards) { 1567 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1568 if (start >= max_blocks) 1569 break; 1570 1571 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1572 if (force && start && end != max_blocks 1573 && (end - start) < cpc->trim_minlen) 1574 continue; 1575 1576 if (check_only) 1577 return true; 1578 1579 if (!de) { 1580 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1581 GFP_F2FS_ZERO); 1582 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1583 list_add_tail(&de->list, head); 1584 } 1585 1586 for (i = start; i < end; i++) 1587 __set_bit_le(i, (void *)de->discard_map); 1588 1589 SM_I(sbi)->dcc_info->nr_discards += end - start; 1590 } 1591 return false; 1592 } 1593 1594 void release_discard_addrs(struct f2fs_sb_info *sbi) 1595 { 1596 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1597 struct discard_entry *entry, *this; 1598 1599 /* drop caches */ 1600 list_for_each_entry_safe(entry, this, head, list) { 1601 list_del(&entry->list); 1602 kmem_cache_free(discard_entry_slab, entry); 1603 } 1604 } 1605 1606 /* 1607 * Should call clear_prefree_segments after checkpoint is done. 1608 */ 1609 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1610 { 1611 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1612 unsigned int segno; 1613 1614 mutex_lock(&dirty_i->seglist_lock); 1615 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1616 __set_test_and_free(sbi, segno); 1617 mutex_unlock(&dirty_i->seglist_lock); 1618 } 1619 1620 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1621 { 1622 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1623 struct list_head *head = &dcc->entry_list; 1624 struct discard_entry *entry, *this; 1625 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1626 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1627 unsigned int start = 0, end = -1; 1628 unsigned int secno, start_segno; 1629 bool force = (cpc->reason & CP_DISCARD); 1630 1631 mutex_lock(&dirty_i->seglist_lock); 1632 1633 while (1) { 1634 int i; 1635 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1636 if (start >= MAIN_SEGS(sbi)) 1637 break; 1638 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1639 start + 1); 1640 1641 for (i = start; i < end; i++) 1642 clear_bit(i, prefree_map); 1643 1644 dirty_i->nr_dirty[PRE] -= end - start; 1645 1646 if (!test_opt(sbi, DISCARD)) 1647 continue; 1648 1649 if (force && start >= cpc->trim_start && 1650 (end - 1) <= cpc->trim_end) 1651 continue; 1652 1653 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 1654 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1655 (end - start) << sbi->log_blocks_per_seg); 1656 continue; 1657 } 1658 next: 1659 secno = GET_SEC_FROM_SEG(sbi, start); 1660 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1661 if (!IS_CURSEC(sbi, secno) && 1662 !get_valid_blocks(sbi, start, true)) 1663 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1664 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1665 1666 start = start_segno + sbi->segs_per_sec; 1667 if (start < end) 1668 goto next; 1669 else 1670 end = start - 1; 1671 } 1672 mutex_unlock(&dirty_i->seglist_lock); 1673 1674 /* send small discards */ 1675 list_for_each_entry_safe(entry, this, head, list) { 1676 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1677 bool is_valid = test_bit_le(0, entry->discard_map); 1678 1679 find_next: 1680 if (is_valid) { 1681 next_pos = find_next_zero_bit_le(entry->discard_map, 1682 sbi->blocks_per_seg, cur_pos); 1683 len = next_pos - cur_pos; 1684 1685 if (f2fs_sb_has_blkzoned(sbi->sb) || 1686 (force && len < cpc->trim_minlen)) 1687 goto skip; 1688 1689 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 1690 len); 1691 total_len += len; 1692 } else { 1693 next_pos = find_next_bit_le(entry->discard_map, 1694 sbi->blocks_per_seg, cur_pos); 1695 } 1696 skip: 1697 cur_pos = next_pos; 1698 is_valid = !is_valid; 1699 1700 if (cur_pos < sbi->blocks_per_seg) 1701 goto find_next; 1702 1703 list_del(&entry->list); 1704 dcc->nr_discards -= total_len; 1705 kmem_cache_free(discard_entry_slab, entry); 1706 } 1707 1708 wake_up_discard_thread(sbi, false); 1709 } 1710 1711 void init_discard_policy(struct discard_policy *dpolicy, 1712 int discard_type, unsigned int granularity) 1713 { 1714 /* common policy */ 1715 dpolicy->type = discard_type; 1716 dpolicy->sync = true; 1717 dpolicy->granularity = granularity; 1718 1719 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1720 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1721 1722 if (discard_type == DPOLICY_BG) { 1723 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1724 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1725 dpolicy->io_aware = true; 1726 } else if (discard_type == DPOLICY_FORCE) { 1727 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1728 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1729 dpolicy->io_aware = false; 1730 } else if (discard_type == DPOLICY_FSTRIM) { 1731 dpolicy->io_aware = false; 1732 } else if (discard_type == DPOLICY_UMOUNT) { 1733 dpolicy->io_aware = false; 1734 } 1735 } 1736 1737 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 1738 { 1739 dev_t dev = sbi->sb->s_bdev->bd_dev; 1740 struct discard_cmd_control *dcc; 1741 int err = 0, i; 1742 1743 if (SM_I(sbi)->dcc_info) { 1744 dcc = SM_I(sbi)->dcc_info; 1745 goto init_thread; 1746 } 1747 1748 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 1749 if (!dcc) 1750 return -ENOMEM; 1751 1752 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 1753 INIT_LIST_HEAD(&dcc->entry_list); 1754 for (i = 0; i < MAX_PLIST_NUM; i++) 1755 INIT_LIST_HEAD(&dcc->pend_list[i]); 1756 INIT_LIST_HEAD(&dcc->wait_list); 1757 INIT_LIST_HEAD(&dcc->fstrim_list); 1758 mutex_init(&dcc->cmd_lock); 1759 atomic_set(&dcc->issued_discard, 0); 1760 atomic_set(&dcc->issing_discard, 0); 1761 atomic_set(&dcc->discard_cmd_cnt, 0); 1762 dcc->nr_discards = 0; 1763 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 1764 dcc->undiscard_blks = 0; 1765 dcc->root = RB_ROOT; 1766 1767 init_waitqueue_head(&dcc->discard_wait_queue); 1768 SM_I(sbi)->dcc_info = dcc; 1769 init_thread: 1770 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 1771 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 1772 if (IS_ERR(dcc->f2fs_issue_discard)) { 1773 err = PTR_ERR(dcc->f2fs_issue_discard); 1774 kfree(dcc); 1775 SM_I(sbi)->dcc_info = NULL; 1776 return err; 1777 } 1778 1779 return err; 1780 } 1781 1782 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 1783 { 1784 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1785 1786 if (!dcc) 1787 return; 1788 1789 stop_discard_thread(sbi); 1790 1791 kfree(dcc); 1792 SM_I(sbi)->dcc_info = NULL; 1793 } 1794 1795 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 1796 { 1797 struct sit_info *sit_i = SIT_I(sbi); 1798 1799 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 1800 sit_i->dirty_sentries++; 1801 return false; 1802 } 1803 1804 return true; 1805 } 1806 1807 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 1808 unsigned int segno, int modified) 1809 { 1810 struct seg_entry *se = get_seg_entry(sbi, segno); 1811 se->type = type; 1812 if (modified) 1813 __mark_sit_entry_dirty(sbi, segno); 1814 } 1815 1816 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 1817 { 1818 struct seg_entry *se; 1819 unsigned int segno, offset; 1820 long int new_vblocks; 1821 bool exist; 1822 #ifdef CONFIG_F2FS_CHECK_FS 1823 bool mir_exist; 1824 #endif 1825 1826 segno = GET_SEGNO(sbi, blkaddr); 1827 1828 se = get_seg_entry(sbi, segno); 1829 new_vblocks = se->valid_blocks + del; 1830 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1831 1832 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 1833 (new_vblocks > sbi->blocks_per_seg))); 1834 1835 se->valid_blocks = new_vblocks; 1836 se->mtime = get_mtime(sbi); 1837 SIT_I(sbi)->max_mtime = se->mtime; 1838 1839 /* Update valid block bitmap */ 1840 if (del > 0) { 1841 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 1842 #ifdef CONFIG_F2FS_CHECK_FS 1843 mir_exist = f2fs_test_and_set_bit(offset, 1844 se->cur_valid_map_mir); 1845 if (unlikely(exist != mir_exist)) { 1846 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 1847 "when setting bitmap, blk:%u, old bit:%d", 1848 blkaddr, exist); 1849 f2fs_bug_on(sbi, 1); 1850 } 1851 #endif 1852 if (unlikely(exist)) { 1853 f2fs_msg(sbi->sb, KERN_ERR, 1854 "Bitmap was wrongly set, blk:%u", blkaddr); 1855 f2fs_bug_on(sbi, 1); 1856 se->valid_blocks--; 1857 del = 0; 1858 } 1859 1860 if (f2fs_discard_en(sbi) && 1861 !f2fs_test_and_set_bit(offset, se->discard_map)) 1862 sbi->discard_blks--; 1863 1864 /* don't overwrite by SSR to keep node chain */ 1865 if (IS_NODESEG(se->type)) { 1866 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 1867 se->ckpt_valid_blocks++; 1868 } 1869 } else { 1870 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 1871 #ifdef CONFIG_F2FS_CHECK_FS 1872 mir_exist = f2fs_test_and_clear_bit(offset, 1873 se->cur_valid_map_mir); 1874 if (unlikely(exist != mir_exist)) { 1875 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 1876 "when clearing bitmap, blk:%u, old bit:%d", 1877 blkaddr, exist); 1878 f2fs_bug_on(sbi, 1); 1879 } 1880 #endif 1881 if (unlikely(!exist)) { 1882 f2fs_msg(sbi->sb, KERN_ERR, 1883 "Bitmap was wrongly cleared, blk:%u", blkaddr); 1884 f2fs_bug_on(sbi, 1); 1885 se->valid_blocks++; 1886 del = 0; 1887 } 1888 1889 if (f2fs_discard_en(sbi) && 1890 f2fs_test_and_clear_bit(offset, se->discard_map)) 1891 sbi->discard_blks++; 1892 } 1893 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 1894 se->ckpt_valid_blocks += del; 1895 1896 __mark_sit_entry_dirty(sbi, segno); 1897 1898 /* update total number of valid blocks to be written in ckpt area */ 1899 SIT_I(sbi)->written_valid_blocks += del; 1900 1901 if (sbi->segs_per_sec > 1) 1902 get_sec_entry(sbi, segno)->valid_blocks += del; 1903 } 1904 1905 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 1906 { 1907 unsigned int segno = GET_SEGNO(sbi, addr); 1908 struct sit_info *sit_i = SIT_I(sbi); 1909 1910 f2fs_bug_on(sbi, addr == NULL_ADDR); 1911 if (addr == NEW_ADDR) 1912 return; 1913 1914 /* add it into sit main buffer */ 1915 down_write(&sit_i->sentry_lock); 1916 1917 update_sit_entry(sbi, addr, -1); 1918 1919 /* add it into dirty seglist */ 1920 locate_dirty_segment(sbi, segno); 1921 1922 up_write(&sit_i->sentry_lock); 1923 } 1924 1925 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 1926 { 1927 struct sit_info *sit_i = SIT_I(sbi); 1928 unsigned int segno, offset; 1929 struct seg_entry *se; 1930 bool is_cp = false; 1931 1932 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1933 return true; 1934 1935 down_read(&sit_i->sentry_lock); 1936 1937 segno = GET_SEGNO(sbi, blkaddr); 1938 se = get_seg_entry(sbi, segno); 1939 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1940 1941 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 1942 is_cp = true; 1943 1944 up_read(&sit_i->sentry_lock); 1945 1946 return is_cp; 1947 } 1948 1949 /* 1950 * This function should be resided under the curseg_mutex lock 1951 */ 1952 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1953 struct f2fs_summary *sum) 1954 { 1955 struct curseg_info *curseg = CURSEG_I(sbi, type); 1956 void *addr = curseg->sum_blk; 1957 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1958 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1959 } 1960 1961 /* 1962 * Calculate the number of current summary pages for writing 1963 */ 1964 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1965 { 1966 int valid_sum_count = 0; 1967 int i, sum_in_page; 1968 1969 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1970 if (sbi->ckpt->alloc_type[i] == SSR) 1971 valid_sum_count += sbi->blocks_per_seg; 1972 else { 1973 if (for_ra) 1974 valid_sum_count += le16_to_cpu( 1975 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1976 else 1977 valid_sum_count += curseg_blkoff(sbi, i); 1978 } 1979 } 1980 1981 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1982 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1983 if (valid_sum_count <= sum_in_page) 1984 return 1; 1985 else if ((valid_sum_count - sum_in_page) <= 1986 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1987 return 2; 1988 return 3; 1989 } 1990 1991 /* 1992 * Caller should put this summary page 1993 */ 1994 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1995 { 1996 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1997 } 1998 1999 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 2000 { 2001 struct page *page = grab_meta_page(sbi, blk_addr); 2002 2003 memcpy(page_address(page), src, PAGE_SIZE); 2004 set_page_dirty(page); 2005 f2fs_put_page(page, 1); 2006 } 2007 2008 static void write_sum_page(struct f2fs_sb_info *sbi, 2009 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2010 { 2011 update_meta_page(sbi, (void *)sum_blk, blk_addr); 2012 } 2013 2014 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2015 int type, block_t blk_addr) 2016 { 2017 struct curseg_info *curseg = CURSEG_I(sbi, type); 2018 struct page *page = grab_meta_page(sbi, blk_addr); 2019 struct f2fs_summary_block *src = curseg->sum_blk; 2020 struct f2fs_summary_block *dst; 2021 2022 dst = (struct f2fs_summary_block *)page_address(page); 2023 2024 mutex_lock(&curseg->curseg_mutex); 2025 2026 down_read(&curseg->journal_rwsem); 2027 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2028 up_read(&curseg->journal_rwsem); 2029 2030 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2031 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2032 2033 mutex_unlock(&curseg->curseg_mutex); 2034 2035 set_page_dirty(page); 2036 f2fs_put_page(page, 1); 2037 } 2038 2039 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2040 { 2041 struct curseg_info *curseg = CURSEG_I(sbi, type); 2042 unsigned int segno = curseg->segno + 1; 2043 struct free_segmap_info *free_i = FREE_I(sbi); 2044 2045 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2046 return !test_bit(segno, free_i->free_segmap); 2047 return 0; 2048 } 2049 2050 /* 2051 * Find a new segment from the free segments bitmap to right order 2052 * This function should be returned with success, otherwise BUG 2053 */ 2054 static void get_new_segment(struct f2fs_sb_info *sbi, 2055 unsigned int *newseg, bool new_sec, int dir) 2056 { 2057 struct free_segmap_info *free_i = FREE_I(sbi); 2058 unsigned int segno, secno, zoneno; 2059 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2060 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2061 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2062 unsigned int left_start = hint; 2063 bool init = true; 2064 int go_left = 0; 2065 int i; 2066 2067 spin_lock(&free_i->segmap_lock); 2068 2069 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2070 segno = find_next_zero_bit(free_i->free_segmap, 2071 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2072 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2073 goto got_it; 2074 } 2075 find_other_zone: 2076 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2077 if (secno >= MAIN_SECS(sbi)) { 2078 if (dir == ALLOC_RIGHT) { 2079 secno = find_next_zero_bit(free_i->free_secmap, 2080 MAIN_SECS(sbi), 0); 2081 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2082 } else { 2083 go_left = 1; 2084 left_start = hint - 1; 2085 } 2086 } 2087 if (go_left == 0) 2088 goto skip_left; 2089 2090 while (test_bit(left_start, free_i->free_secmap)) { 2091 if (left_start > 0) { 2092 left_start--; 2093 continue; 2094 } 2095 left_start = find_next_zero_bit(free_i->free_secmap, 2096 MAIN_SECS(sbi), 0); 2097 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2098 break; 2099 } 2100 secno = left_start; 2101 skip_left: 2102 segno = GET_SEG_FROM_SEC(sbi, secno); 2103 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2104 2105 /* give up on finding another zone */ 2106 if (!init) 2107 goto got_it; 2108 if (sbi->secs_per_zone == 1) 2109 goto got_it; 2110 if (zoneno == old_zoneno) 2111 goto got_it; 2112 if (dir == ALLOC_LEFT) { 2113 if (!go_left && zoneno + 1 >= total_zones) 2114 goto got_it; 2115 if (go_left && zoneno == 0) 2116 goto got_it; 2117 } 2118 for (i = 0; i < NR_CURSEG_TYPE; i++) 2119 if (CURSEG_I(sbi, i)->zone == zoneno) 2120 break; 2121 2122 if (i < NR_CURSEG_TYPE) { 2123 /* zone is in user, try another */ 2124 if (go_left) 2125 hint = zoneno * sbi->secs_per_zone - 1; 2126 else if (zoneno + 1 >= total_zones) 2127 hint = 0; 2128 else 2129 hint = (zoneno + 1) * sbi->secs_per_zone; 2130 init = false; 2131 goto find_other_zone; 2132 } 2133 got_it: 2134 /* set it as dirty segment in free segmap */ 2135 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2136 __set_inuse(sbi, segno); 2137 *newseg = segno; 2138 spin_unlock(&free_i->segmap_lock); 2139 } 2140 2141 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2142 { 2143 struct curseg_info *curseg = CURSEG_I(sbi, type); 2144 struct summary_footer *sum_footer; 2145 2146 curseg->segno = curseg->next_segno; 2147 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2148 curseg->next_blkoff = 0; 2149 curseg->next_segno = NULL_SEGNO; 2150 2151 sum_footer = &(curseg->sum_blk->footer); 2152 memset(sum_footer, 0, sizeof(struct summary_footer)); 2153 if (IS_DATASEG(type)) 2154 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2155 if (IS_NODESEG(type)) 2156 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2157 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2158 } 2159 2160 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2161 { 2162 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2163 if (sbi->segs_per_sec != 1) 2164 return CURSEG_I(sbi, type)->segno; 2165 2166 if (test_opt(sbi, NOHEAP) && 2167 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2168 return 0; 2169 2170 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2171 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2172 2173 /* find segments from 0 to reuse freed segments */ 2174 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2175 return 0; 2176 2177 return CURSEG_I(sbi, type)->segno; 2178 } 2179 2180 /* 2181 * Allocate a current working segment. 2182 * This function always allocates a free segment in LFS manner. 2183 */ 2184 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2185 { 2186 struct curseg_info *curseg = CURSEG_I(sbi, type); 2187 unsigned int segno = curseg->segno; 2188 int dir = ALLOC_LEFT; 2189 2190 write_sum_page(sbi, curseg->sum_blk, 2191 GET_SUM_BLOCK(sbi, segno)); 2192 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2193 dir = ALLOC_RIGHT; 2194 2195 if (test_opt(sbi, NOHEAP)) 2196 dir = ALLOC_RIGHT; 2197 2198 segno = __get_next_segno(sbi, type); 2199 get_new_segment(sbi, &segno, new_sec, dir); 2200 curseg->next_segno = segno; 2201 reset_curseg(sbi, type, 1); 2202 curseg->alloc_type = LFS; 2203 } 2204 2205 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2206 struct curseg_info *seg, block_t start) 2207 { 2208 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2209 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2210 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2211 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2212 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2213 int i, pos; 2214 2215 for (i = 0; i < entries; i++) 2216 target_map[i] = ckpt_map[i] | cur_map[i]; 2217 2218 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2219 2220 seg->next_blkoff = pos; 2221 } 2222 2223 /* 2224 * If a segment is written by LFS manner, next block offset is just obtained 2225 * by increasing the current block offset. However, if a segment is written by 2226 * SSR manner, next block offset obtained by calling __next_free_blkoff 2227 */ 2228 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2229 struct curseg_info *seg) 2230 { 2231 if (seg->alloc_type == SSR) 2232 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2233 else 2234 seg->next_blkoff++; 2235 } 2236 2237 /* 2238 * This function always allocates a used segment(from dirty seglist) by SSR 2239 * manner, so it should recover the existing segment information of valid blocks 2240 */ 2241 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2242 { 2243 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2244 struct curseg_info *curseg = CURSEG_I(sbi, type); 2245 unsigned int new_segno = curseg->next_segno; 2246 struct f2fs_summary_block *sum_node; 2247 struct page *sum_page; 2248 2249 write_sum_page(sbi, curseg->sum_blk, 2250 GET_SUM_BLOCK(sbi, curseg->segno)); 2251 __set_test_and_inuse(sbi, new_segno); 2252 2253 mutex_lock(&dirty_i->seglist_lock); 2254 __remove_dirty_segment(sbi, new_segno, PRE); 2255 __remove_dirty_segment(sbi, new_segno, DIRTY); 2256 mutex_unlock(&dirty_i->seglist_lock); 2257 2258 reset_curseg(sbi, type, 1); 2259 curseg->alloc_type = SSR; 2260 __next_free_blkoff(sbi, curseg, 0); 2261 2262 sum_page = get_sum_page(sbi, new_segno); 2263 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2264 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2265 f2fs_put_page(sum_page, 1); 2266 } 2267 2268 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2269 { 2270 struct curseg_info *curseg = CURSEG_I(sbi, type); 2271 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2272 unsigned segno = NULL_SEGNO; 2273 int i, cnt; 2274 bool reversed = false; 2275 2276 /* need_SSR() already forces to do this */ 2277 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2278 curseg->next_segno = segno; 2279 return 1; 2280 } 2281 2282 /* For node segments, let's do SSR more intensively */ 2283 if (IS_NODESEG(type)) { 2284 if (type >= CURSEG_WARM_NODE) { 2285 reversed = true; 2286 i = CURSEG_COLD_NODE; 2287 } else { 2288 i = CURSEG_HOT_NODE; 2289 } 2290 cnt = NR_CURSEG_NODE_TYPE; 2291 } else { 2292 if (type >= CURSEG_WARM_DATA) { 2293 reversed = true; 2294 i = CURSEG_COLD_DATA; 2295 } else { 2296 i = CURSEG_HOT_DATA; 2297 } 2298 cnt = NR_CURSEG_DATA_TYPE; 2299 } 2300 2301 for (; cnt-- > 0; reversed ? i-- : i++) { 2302 if (i == type) 2303 continue; 2304 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2305 curseg->next_segno = segno; 2306 return 1; 2307 } 2308 } 2309 return 0; 2310 } 2311 2312 /* 2313 * flush out current segment and replace it with new segment 2314 * This function should be returned with success, otherwise BUG 2315 */ 2316 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2317 int type, bool force) 2318 { 2319 struct curseg_info *curseg = CURSEG_I(sbi, type); 2320 2321 if (force) 2322 new_curseg(sbi, type, true); 2323 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2324 type == CURSEG_WARM_NODE) 2325 new_curseg(sbi, type, false); 2326 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 2327 new_curseg(sbi, type, false); 2328 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 2329 change_curseg(sbi, type); 2330 else 2331 new_curseg(sbi, type, false); 2332 2333 stat_inc_seg_type(sbi, curseg); 2334 } 2335 2336 void allocate_new_segments(struct f2fs_sb_info *sbi) 2337 { 2338 struct curseg_info *curseg; 2339 unsigned int old_segno; 2340 int i; 2341 2342 down_write(&SIT_I(sbi)->sentry_lock); 2343 2344 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2345 curseg = CURSEG_I(sbi, i); 2346 old_segno = curseg->segno; 2347 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2348 locate_dirty_segment(sbi, old_segno); 2349 } 2350 2351 up_write(&SIT_I(sbi)->sentry_lock); 2352 } 2353 2354 static const struct segment_allocation default_salloc_ops = { 2355 .allocate_segment = allocate_segment_by_default, 2356 }; 2357 2358 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2359 { 2360 __u64 trim_start = cpc->trim_start; 2361 bool has_candidate = false; 2362 2363 down_write(&SIT_I(sbi)->sentry_lock); 2364 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2365 if (add_discard_addrs(sbi, cpc, true)) { 2366 has_candidate = true; 2367 break; 2368 } 2369 } 2370 up_write(&SIT_I(sbi)->sentry_lock); 2371 2372 cpc->trim_start = trim_start; 2373 return has_candidate; 2374 } 2375 2376 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2377 { 2378 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2379 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2380 unsigned int start_segno, end_segno, cur_segno; 2381 block_t start_block, end_block; 2382 struct cp_control cpc; 2383 struct discard_policy dpolicy; 2384 unsigned long long trimmed = 0; 2385 int err = 0; 2386 2387 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2388 return -EINVAL; 2389 2390 if (end <= MAIN_BLKADDR(sbi)) 2391 goto out; 2392 2393 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2394 f2fs_msg(sbi->sb, KERN_WARNING, 2395 "Found FS corruption, run fsck to fix."); 2396 goto out; 2397 } 2398 2399 /* start/end segment number in main_area */ 2400 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2401 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2402 GET_SEGNO(sbi, end); 2403 2404 cpc.reason = CP_DISCARD; 2405 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2406 2407 /* do checkpoint to issue discard commands safely */ 2408 for (cur_segno = start_segno; cur_segno <= end_segno; 2409 cur_segno = cpc.trim_end + 1) { 2410 cpc.trim_start = cur_segno; 2411 2412 if (sbi->discard_blks == 0) 2413 break; 2414 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 2415 cpc.trim_end = end_segno; 2416 else 2417 cpc.trim_end = min_t(unsigned int, 2418 rounddown(cur_segno + 2419 BATCHED_TRIM_SEGMENTS(sbi), 2420 sbi->segs_per_sec) - 1, end_segno); 2421 2422 mutex_lock(&sbi->gc_mutex); 2423 err = write_checkpoint(sbi, &cpc); 2424 mutex_unlock(&sbi->gc_mutex); 2425 if (err) 2426 break; 2427 2428 schedule(); 2429 } 2430 2431 start_block = START_BLOCK(sbi, start_segno); 2432 end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1); 2433 2434 init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2435 __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block); 2436 trimmed = __wait_discard_cmd_range(sbi, &dpolicy, 2437 start_block, end_block); 2438 out: 2439 range->len = F2FS_BLK_TO_BYTES(trimmed); 2440 return err; 2441 } 2442 2443 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2444 { 2445 struct curseg_info *curseg = CURSEG_I(sbi, type); 2446 if (curseg->next_blkoff < sbi->blocks_per_seg) 2447 return true; 2448 return false; 2449 } 2450 2451 int rw_hint_to_seg_type(enum rw_hint hint) 2452 { 2453 switch (hint) { 2454 case WRITE_LIFE_SHORT: 2455 return CURSEG_HOT_DATA; 2456 case WRITE_LIFE_EXTREME: 2457 return CURSEG_COLD_DATA; 2458 default: 2459 return CURSEG_WARM_DATA; 2460 } 2461 } 2462 2463 /* This returns write hints for each segment type. This hints will be 2464 * passed down to block layer. There are mapping tables which depend on 2465 * the mount option 'whint_mode'. 2466 * 2467 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2468 * 2469 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2470 * 2471 * User F2FS Block 2472 * ---- ---- ----- 2473 * META WRITE_LIFE_NOT_SET 2474 * HOT_NODE " 2475 * WARM_NODE " 2476 * COLD_NODE " 2477 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2478 * extension list " " 2479 * 2480 * -- buffered io 2481 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2482 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2483 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2484 * WRITE_LIFE_NONE " " 2485 * WRITE_LIFE_MEDIUM " " 2486 * WRITE_LIFE_LONG " " 2487 * 2488 * -- direct io 2489 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2490 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2491 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2492 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2493 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2494 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2495 * 2496 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2497 * 2498 * User F2FS Block 2499 * ---- ---- ----- 2500 * META WRITE_LIFE_MEDIUM; 2501 * HOT_NODE WRITE_LIFE_NOT_SET 2502 * WARM_NODE " 2503 * COLD_NODE WRITE_LIFE_NONE 2504 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2505 * extension list " " 2506 * 2507 * -- buffered io 2508 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2509 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2510 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2511 * WRITE_LIFE_NONE " " 2512 * WRITE_LIFE_MEDIUM " " 2513 * WRITE_LIFE_LONG " " 2514 * 2515 * -- direct io 2516 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2517 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2518 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2519 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2520 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2521 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2522 */ 2523 2524 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2525 enum page_type type, enum temp_type temp) 2526 { 2527 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 2528 if (type == DATA) { 2529 if (temp == WARM) 2530 return WRITE_LIFE_NOT_SET; 2531 else if (temp == HOT) 2532 return WRITE_LIFE_SHORT; 2533 else if (temp == COLD) 2534 return WRITE_LIFE_EXTREME; 2535 } else { 2536 return WRITE_LIFE_NOT_SET; 2537 } 2538 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 2539 if (type == DATA) { 2540 if (temp == WARM) 2541 return WRITE_LIFE_LONG; 2542 else if (temp == HOT) 2543 return WRITE_LIFE_SHORT; 2544 else if (temp == COLD) 2545 return WRITE_LIFE_EXTREME; 2546 } else if (type == NODE) { 2547 if (temp == WARM || temp == HOT) 2548 return WRITE_LIFE_NOT_SET; 2549 else if (temp == COLD) 2550 return WRITE_LIFE_NONE; 2551 } else if (type == META) { 2552 return WRITE_LIFE_MEDIUM; 2553 } 2554 } 2555 return WRITE_LIFE_NOT_SET; 2556 } 2557 2558 static int __get_segment_type_2(struct f2fs_io_info *fio) 2559 { 2560 if (fio->type == DATA) 2561 return CURSEG_HOT_DATA; 2562 else 2563 return CURSEG_HOT_NODE; 2564 } 2565 2566 static int __get_segment_type_4(struct f2fs_io_info *fio) 2567 { 2568 if (fio->type == DATA) { 2569 struct inode *inode = fio->page->mapping->host; 2570 2571 if (S_ISDIR(inode->i_mode)) 2572 return CURSEG_HOT_DATA; 2573 else 2574 return CURSEG_COLD_DATA; 2575 } else { 2576 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 2577 return CURSEG_WARM_NODE; 2578 else 2579 return CURSEG_COLD_NODE; 2580 } 2581 } 2582 2583 static int __get_segment_type_6(struct f2fs_io_info *fio) 2584 { 2585 if (fio->type == DATA) { 2586 struct inode *inode = fio->page->mapping->host; 2587 2588 if (is_cold_data(fio->page) || file_is_cold(inode)) 2589 return CURSEG_COLD_DATA; 2590 if (file_is_hot(inode) || 2591 is_inode_flag_set(inode, FI_HOT_DATA)) 2592 return CURSEG_HOT_DATA; 2593 return rw_hint_to_seg_type(inode->i_write_hint); 2594 } else { 2595 if (IS_DNODE(fio->page)) 2596 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 2597 CURSEG_HOT_NODE; 2598 return CURSEG_COLD_NODE; 2599 } 2600 } 2601 2602 static int __get_segment_type(struct f2fs_io_info *fio) 2603 { 2604 int type = 0; 2605 2606 switch (F2FS_OPTION(fio->sbi).active_logs) { 2607 case 2: 2608 type = __get_segment_type_2(fio); 2609 break; 2610 case 4: 2611 type = __get_segment_type_4(fio); 2612 break; 2613 case 6: 2614 type = __get_segment_type_6(fio); 2615 break; 2616 default: 2617 f2fs_bug_on(fio->sbi, true); 2618 } 2619 2620 if (IS_HOT(type)) 2621 fio->temp = HOT; 2622 else if (IS_WARM(type)) 2623 fio->temp = WARM; 2624 else 2625 fio->temp = COLD; 2626 return type; 2627 } 2628 2629 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2630 block_t old_blkaddr, block_t *new_blkaddr, 2631 struct f2fs_summary *sum, int type, 2632 struct f2fs_io_info *fio, bool add_list) 2633 { 2634 struct sit_info *sit_i = SIT_I(sbi); 2635 struct curseg_info *curseg = CURSEG_I(sbi, type); 2636 2637 down_read(&SM_I(sbi)->curseg_lock); 2638 2639 mutex_lock(&curseg->curseg_mutex); 2640 down_write(&sit_i->sentry_lock); 2641 2642 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 2643 2644 f2fs_wait_discard_bio(sbi, *new_blkaddr); 2645 2646 /* 2647 * __add_sum_entry should be resided under the curseg_mutex 2648 * because, this function updates a summary entry in the 2649 * current summary block. 2650 */ 2651 __add_sum_entry(sbi, type, sum); 2652 2653 __refresh_next_blkoff(sbi, curseg); 2654 2655 stat_inc_block_count(sbi, curseg); 2656 2657 /* 2658 * SIT information should be updated before segment allocation, 2659 * since SSR needs latest valid block information. 2660 */ 2661 update_sit_entry(sbi, *new_blkaddr, 1); 2662 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 2663 update_sit_entry(sbi, old_blkaddr, -1); 2664 2665 if (!__has_curseg_space(sbi, type)) 2666 sit_i->s_ops->allocate_segment(sbi, type, false); 2667 2668 /* 2669 * segment dirty status should be updated after segment allocation, 2670 * so we just need to update status only one time after previous 2671 * segment being closed. 2672 */ 2673 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 2674 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 2675 2676 up_write(&sit_i->sentry_lock); 2677 2678 if (page && IS_NODESEG(type)) { 2679 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 2680 2681 f2fs_inode_chksum_set(sbi, page); 2682 } 2683 2684 if (add_list) { 2685 struct f2fs_bio_info *io; 2686 2687 INIT_LIST_HEAD(&fio->list); 2688 fio->in_list = true; 2689 io = sbi->write_io[fio->type] + fio->temp; 2690 spin_lock(&io->io_lock); 2691 list_add_tail(&fio->list, &io->io_list); 2692 spin_unlock(&io->io_lock); 2693 } 2694 2695 mutex_unlock(&curseg->curseg_mutex); 2696 2697 up_read(&SM_I(sbi)->curseg_lock); 2698 } 2699 2700 static void update_device_state(struct f2fs_io_info *fio) 2701 { 2702 struct f2fs_sb_info *sbi = fio->sbi; 2703 unsigned int devidx; 2704 2705 if (!sbi->s_ndevs) 2706 return; 2707 2708 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 2709 2710 /* update device state for fsync */ 2711 set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 2712 2713 /* update device state for checkpoint */ 2714 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 2715 spin_lock(&sbi->dev_lock); 2716 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 2717 spin_unlock(&sbi->dev_lock); 2718 } 2719 } 2720 2721 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 2722 { 2723 int type = __get_segment_type(fio); 2724 int err; 2725 2726 reallocate: 2727 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 2728 &fio->new_blkaddr, sum, type, fio, true); 2729 2730 /* writeout dirty page into bdev */ 2731 err = f2fs_submit_page_write(fio); 2732 if (err == -EAGAIN) { 2733 fio->old_blkaddr = fio->new_blkaddr; 2734 goto reallocate; 2735 } else if (!err) { 2736 update_device_state(fio); 2737 } 2738 } 2739 2740 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2741 enum iostat_type io_type) 2742 { 2743 struct f2fs_io_info fio = { 2744 .sbi = sbi, 2745 .type = META, 2746 .temp = HOT, 2747 .op = REQ_OP_WRITE, 2748 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 2749 .old_blkaddr = page->index, 2750 .new_blkaddr = page->index, 2751 .page = page, 2752 .encrypted_page = NULL, 2753 .in_list = false, 2754 }; 2755 2756 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 2757 fio.op_flags &= ~REQ_META; 2758 2759 set_page_writeback(page); 2760 f2fs_submit_page_write(&fio); 2761 2762 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 2763 } 2764 2765 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 2766 { 2767 struct f2fs_summary sum; 2768 2769 set_summary(&sum, nid, 0, 0); 2770 do_write_page(&sum, fio); 2771 2772 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 2773 } 2774 2775 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 2776 { 2777 struct f2fs_sb_info *sbi = fio->sbi; 2778 struct f2fs_summary sum; 2779 struct node_info ni; 2780 2781 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 2782 get_node_info(sbi, dn->nid, &ni); 2783 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 2784 do_write_page(&sum, fio); 2785 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 2786 2787 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 2788 } 2789 2790 int rewrite_data_page(struct f2fs_io_info *fio) 2791 { 2792 int err; 2793 struct f2fs_sb_info *sbi = fio->sbi; 2794 2795 fio->new_blkaddr = fio->old_blkaddr; 2796 /* i/o temperature is needed for passing down write hints */ 2797 __get_segment_type(fio); 2798 2799 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi, 2800 GET_SEGNO(sbi, fio->new_blkaddr))->type)); 2801 2802 stat_inc_inplace_blocks(fio->sbi); 2803 2804 err = f2fs_submit_page_bio(fio); 2805 if (!err) 2806 update_device_state(fio); 2807 2808 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 2809 2810 return err; 2811 } 2812 2813 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 2814 unsigned int segno) 2815 { 2816 int i; 2817 2818 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 2819 if (CURSEG_I(sbi, i)->segno == segno) 2820 break; 2821 } 2822 return i; 2823 } 2824 2825 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2826 block_t old_blkaddr, block_t new_blkaddr, 2827 bool recover_curseg, bool recover_newaddr) 2828 { 2829 struct sit_info *sit_i = SIT_I(sbi); 2830 struct curseg_info *curseg; 2831 unsigned int segno, old_cursegno; 2832 struct seg_entry *se; 2833 int type; 2834 unsigned short old_blkoff; 2835 2836 segno = GET_SEGNO(sbi, new_blkaddr); 2837 se = get_seg_entry(sbi, segno); 2838 type = se->type; 2839 2840 down_write(&SM_I(sbi)->curseg_lock); 2841 2842 if (!recover_curseg) { 2843 /* for recovery flow */ 2844 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 2845 if (old_blkaddr == NULL_ADDR) 2846 type = CURSEG_COLD_DATA; 2847 else 2848 type = CURSEG_WARM_DATA; 2849 } 2850 } else { 2851 if (IS_CURSEG(sbi, segno)) { 2852 /* se->type is volatile as SSR allocation */ 2853 type = __f2fs_get_curseg(sbi, segno); 2854 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 2855 } else { 2856 type = CURSEG_WARM_DATA; 2857 } 2858 } 2859 2860 f2fs_bug_on(sbi, !IS_DATASEG(type)); 2861 curseg = CURSEG_I(sbi, type); 2862 2863 mutex_lock(&curseg->curseg_mutex); 2864 down_write(&sit_i->sentry_lock); 2865 2866 old_cursegno = curseg->segno; 2867 old_blkoff = curseg->next_blkoff; 2868 2869 /* change the current segment */ 2870 if (segno != curseg->segno) { 2871 curseg->next_segno = segno; 2872 change_curseg(sbi, type); 2873 } 2874 2875 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 2876 __add_sum_entry(sbi, type, sum); 2877 2878 if (!recover_curseg || recover_newaddr) 2879 update_sit_entry(sbi, new_blkaddr, 1); 2880 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 2881 update_sit_entry(sbi, old_blkaddr, -1); 2882 2883 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 2884 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 2885 2886 locate_dirty_segment(sbi, old_cursegno); 2887 2888 if (recover_curseg) { 2889 if (old_cursegno != curseg->segno) { 2890 curseg->next_segno = old_cursegno; 2891 change_curseg(sbi, type); 2892 } 2893 curseg->next_blkoff = old_blkoff; 2894 } 2895 2896 up_write(&sit_i->sentry_lock); 2897 mutex_unlock(&curseg->curseg_mutex); 2898 up_write(&SM_I(sbi)->curseg_lock); 2899 } 2900 2901 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2902 block_t old_addr, block_t new_addr, 2903 unsigned char version, bool recover_curseg, 2904 bool recover_newaddr) 2905 { 2906 struct f2fs_summary sum; 2907 2908 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 2909 2910 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 2911 recover_curseg, recover_newaddr); 2912 2913 f2fs_update_data_blkaddr(dn, new_addr); 2914 } 2915 2916 void f2fs_wait_on_page_writeback(struct page *page, 2917 enum page_type type, bool ordered) 2918 { 2919 if (PageWriteback(page)) { 2920 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 2921 2922 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 2923 0, page->index, type); 2924 if (ordered) 2925 wait_on_page_writeback(page); 2926 else 2927 wait_for_stable_page(page); 2928 } 2929 } 2930 2931 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr) 2932 { 2933 struct page *cpage; 2934 2935 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2936 return; 2937 2938 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 2939 if (cpage) { 2940 f2fs_wait_on_page_writeback(cpage, DATA, true); 2941 f2fs_put_page(cpage, 1); 2942 } 2943 } 2944 2945 static void read_compacted_summaries(struct f2fs_sb_info *sbi) 2946 { 2947 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2948 struct curseg_info *seg_i; 2949 unsigned char *kaddr; 2950 struct page *page; 2951 block_t start; 2952 int i, j, offset; 2953 2954 start = start_sum_block(sbi); 2955 2956 page = get_meta_page(sbi, start++); 2957 kaddr = (unsigned char *)page_address(page); 2958 2959 /* Step 1: restore nat cache */ 2960 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 2961 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 2962 2963 /* Step 2: restore sit cache */ 2964 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 2965 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 2966 offset = 2 * SUM_JOURNAL_SIZE; 2967 2968 /* Step 3: restore summary entries */ 2969 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2970 unsigned short blk_off; 2971 unsigned int segno; 2972 2973 seg_i = CURSEG_I(sbi, i); 2974 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 2975 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 2976 seg_i->next_segno = segno; 2977 reset_curseg(sbi, i, 0); 2978 seg_i->alloc_type = ckpt->alloc_type[i]; 2979 seg_i->next_blkoff = blk_off; 2980 2981 if (seg_i->alloc_type == SSR) 2982 blk_off = sbi->blocks_per_seg; 2983 2984 for (j = 0; j < blk_off; j++) { 2985 struct f2fs_summary *s; 2986 s = (struct f2fs_summary *)(kaddr + offset); 2987 seg_i->sum_blk->entries[j] = *s; 2988 offset += SUMMARY_SIZE; 2989 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 2990 SUM_FOOTER_SIZE) 2991 continue; 2992 2993 f2fs_put_page(page, 1); 2994 page = NULL; 2995 2996 page = get_meta_page(sbi, start++); 2997 kaddr = (unsigned char *)page_address(page); 2998 offset = 0; 2999 } 3000 } 3001 f2fs_put_page(page, 1); 3002 } 3003 3004 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3005 { 3006 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3007 struct f2fs_summary_block *sum; 3008 struct curseg_info *curseg; 3009 struct page *new; 3010 unsigned short blk_off; 3011 unsigned int segno = 0; 3012 block_t blk_addr = 0; 3013 3014 /* get segment number and block addr */ 3015 if (IS_DATASEG(type)) { 3016 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3017 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3018 CURSEG_HOT_DATA]); 3019 if (__exist_node_summaries(sbi)) 3020 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3021 else 3022 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3023 } else { 3024 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3025 CURSEG_HOT_NODE]); 3026 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3027 CURSEG_HOT_NODE]); 3028 if (__exist_node_summaries(sbi)) 3029 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3030 type - CURSEG_HOT_NODE); 3031 else 3032 blk_addr = GET_SUM_BLOCK(sbi, segno); 3033 } 3034 3035 new = get_meta_page(sbi, blk_addr); 3036 sum = (struct f2fs_summary_block *)page_address(new); 3037 3038 if (IS_NODESEG(type)) { 3039 if (__exist_node_summaries(sbi)) { 3040 struct f2fs_summary *ns = &sum->entries[0]; 3041 int i; 3042 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3043 ns->version = 0; 3044 ns->ofs_in_node = 0; 3045 } 3046 } else { 3047 restore_node_summary(sbi, segno, sum); 3048 } 3049 } 3050 3051 /* set uncompleted segment to curseg */ 3052 curseg = CURSEG_I(sbi, type); 3053 mutex_lock(&curseg->curseg_mutex); 3054 3055 /* update journal info */ 3056 down_write(&curseg->journal_rwsem); 3057 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3058 up_write(&curseg->journal_rwsem); 3059 3060 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3061 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3062 curseg->next_segno = segno; 3063 reset_curseg(sbi, type, 0); 3064 curseg->alloc_type = ckpt->alloc_type[type]; 3065 curseg->next_blkoff = blk_off; 3066 mutex_unlock(&curseg->curseg_mutex); 3067 f2fs_put_page(new, 1); 3068 return 0; 3069 } 3070 3071 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3072 { 3073 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3074 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3075 int type = CURSEG_HOT_DATA; 3076 int err; 3077 3078 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3079 int npages = npages_for_summary_flush(sbi, true); 3080 3081 if (npages >= 2) 3082 ra_meta_pages(sbi, start_sum_block(sbi), npages, 3083 META_CP, true); 3084 3085 /* restore for compacted data summary */ 3086 read_compacted_summaries(sbi); 3087 type = CURSEG_HOT_NODE; 3088 } 3089 3090 if (__exist_node_summaries(sbi)) 3091 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3092 NR_CURSEG_TYPE - type, META_CP, true); 3093 3094 for (; type <= CURSEG_COLD_NODE; type++) { 3095 err = read_normal_summaries(sbi, type); 3096 if (err) 3097 return err; 3098 } 3099 3100 /* sanity check for summary blocks */ 3101 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3102 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) 3103 return -EINVAL; 3104 3105 return 0; 3106 } 3107 3108 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3109 { 3110 struct page *page; 3111 unsigned char *kaddr; 3112 struct f2fs_summary *summary; 3113 struct curseg_info *seg_i; 3114 int written_size = 0; 3115 int i, j; 3116 3117 page = grab_meta_page(sbi, blkaddr++); 3118 kaddr = (unsigned char *)page_address(page); 3119 3120 /* Step 1: write nat cache */ 3121 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3122 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3123 written_size += SUM_JOURNAL_SIZE; 3124 3125 /* Step 2: write sit cache */ 3126 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3127 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3128 written_size += SUM_JOURNAL_SIZE; 3129 3130 /* Step 3: write summary entries */ 3131 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3132 unsigned short blkoff; 3133 seg_i = CURSEG_I(sbi, i); 3134 if (sbi->ckpt->alloc_type[i] == SSR) 3135 blkoff = sbi->blocks_per_seg; 3136 else 3137 blkoff = curseg_blkoff(sbi, i); 3138 3139 for (j = 0; j < blkoff; j++) { 3140 if (!page) { 3141 page = grab_meta_page(sbi, blkaddr++); 3142 kaddr = (unsigned char *)page_address(page); 3143 written_size = 0; 3144 } 3145 summary = (struct f2fs_summary *)(kaddr + written_size); 3146 *summary = seg_i->sum_blk->entries[j]; 3147 written_size += SUMMARY_SIZE; 3148 3149 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3150 SUM_FOOTER_SIZE) 3151 continue; 3152 3153 set_page_dirty(page); 3154 f2fs_put_page(page, 1); 3155 page = NULL; 3156 } 3157 } 3158 if (page) { 3159 set_page_dirty(page); 3160 f2fs_put_page(page, 1); 3161 } 3162 } 3163 3164 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3165 block_t blkaddr, int type) 3166 { 3167 int i, end; 3168 if (IS_DATASEG(type)) 3169 end = type + NR_CURSEG_DATA_TYPE; 3170 else 3171 end = type + NR_CURSEG_NODE_TYPE; 3172 3173 for (i = type; i < end; i++) 3174 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3175 } 3176 3177 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3178 { 3179 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3180 write_compacted_summaries(sbi, start_blk); 3181 else 3182 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3183 } 3184 3185 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3186 { 3187 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3188 } 3189 3190 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3191 unsigned int val, int alloc) 3192 { 3193 int i; 3194 3195 if (type == NAT_JOURNAL) { 3196 for (i = 0; i < nats_in_cursum(journal); i++) { 3197 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3198 return i; 3199 } 3200 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3201 return update_nats_in_cursum(journal, 1); 3202 } else if (type == SIT_JOURNAL) { 3203 for (i = 0; i < sits_in_cursum(journal); i++) 3204 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3205 return i; 3206 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3207 return update_sits_in_cursum(journal, 1); 3208 } 3209 return -1; 3210 } 3211 3212 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3213 unsigned int segno) 3214 { 3215 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 3216 } 3217 3218 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3219 unsigned int start) 3220 { 3221 struct sit_info *sit_i = SIT_I(sbi); 3222 struct page *page; 3223 pgoff_t src_off, dst_off; 3224 3225 src_off = current_sit_addr(sbi, start); 3226 dst_off = next_sit_addr(sbi, src_off); 3227 3228 page = grab_meta_page(sbi, dst_off); 3229 seg_info_to_sit_page(sbi, page, start); 3230 3231 set_page_dirty(page); 3232 set_to_next_sit(sit_i, start); 3233 3234 return page; 3235 } 3236 3237 static struct sit_entry_set *grab_sit_entry_set(void) 3238 { 3239 struct sit_entry_set *ses = 3240 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3241 3242 ses->entry_cnt = 0; 3243 INIT_LIST_HEAD(&ses->set_list); 3244 return ses; 3245 } 3246 3247 static void release_sit_entry_set(struct sit_entry_set *ses) 3248 { 3249 list_del(&ses->set_list); 3250 kmem_cache_free(sit_entry_set_slab, ses); 3251 } 3252 3253 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3254 struct list_head *head) 3255 { 3256 struct sit_entry_set *next = ses; 3257 3258 if (list_is_last(&ses->set_list, head)) 3259 return; 3260 3261 list_for_each_entry_continue(next, head, set_list) 3262 if (ses->entry_cnt <= next->entry_cnt) 3263 break; 3264 3265 list_move_tail(&ses->set_list, &next->set_list); 3266 } 3267 3268 static void add_sit_entry(unsigned int segno, struct list_head *head) 3269 { 3270 struct sit_entry_set *ses; 3271 unsigned int start_segno = START_SEGNO(segno); 3272 3273 list_for_each_entry(ses, head, set_list) { 3274 if (ses->start_segno == start_segno) { 3275 ses->entry_cnt++; 3276 adjust_sit_entry_set(ses, head); 3277 return; 3278 } 3279 } 3280 3281 ses = grab_sit_entry_set(); 3282 3283 ses->start_segno = start_segno; 3284 ses->entry_cnt++; 3285 list_add(&ses->set_list, head); 3286 } 3287 3288 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3289 { 3290 struct f2fs_sm_info *sm_info = SM_I(sbi); 3291 struct list_head *set_list = &sm_info->sit_entry_set; 3292 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3293 unsigned int segno; 3294 3295 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3296 add_sit_entry(segno, set_list); 3297 } 3298 3299 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3300 { 3301 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3302 struct f2fs_journal *journal = curseg->journal; 3303 int i; 3304 3305 down_write(&curseg->journal_rwsem); 3306 for (i = 0; i < sits_in_cursum(journal); i++) { 3307 unsigned int segno; 3308 bool dirtied; 3309 3310 segno = le32_to_cpu(segno_in_journal(journal, i)); 3311 dirtied = __mark_sit_entry_dirty(sbi, segno); 3312 3313 if (!dirtied) 3314 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3315 } 3316 update_sits_in_cursum(journal, -i); 3317 up_write(&curseg->journal_rwsem); 3318 } 3319 3320 /* 3321 * CP calls this function, which flushes SIT entries including sit_journal, 3322 * and moves prefree segs to free segs. 3323 */ 3324 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3325 { 3326 struct sit_info *sit_i = SIT_I(sbi); 3327 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3328 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3329 struct f2fs_journal *journal = curseg->journal; 3330 struct sit_entry_set *ses, *tmp; 3331 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3332 bool to_journal = true; 3333 struct seg_entry *se; 3334 3335 down_write(&sit_i->sentry_lock); 3336 3337 if (!sit_i->dirty_sentries) 3338 goto out; 3339 3340 /* 3341 * add and account sit entries of dirty bitmap in sit entry 3342 * set temporarily 3343 */ 3344 add_sits_in_set(sbi); 3345 3346 /* 3347 * if there are no enough space in journal to store dirty sit 3348 * entries, remove all entries from journal and add and account 3349 * them in sit entry set. 3350 */ 3351 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 3352 remove_sits_in_journal(sbi); 3353 3354 /* 3355 * there are two steps to flush sit entries: 3356 * #1, flush sit entries to journal in current cold data summary block. 3357 * #2, flush sit entries to sit page. 3358 */ 3359 list_for_each_entry_safe(ses, tmp, head, set_list) { 3360 struct page *page = NULL; 3361 struct f2fs_sit_block *raw_sit = NULL; 3362 unsigned int start_segno = ses->start_segno; 3363 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3364 (unsigned long)MAIN_SEGS(sbi)); 3365 unsigned int segno = start_segno; 3366 3367 if (to_journal && 3368 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3369 to_journal = false; 3370 3371 if (to_journal) { 3372 down_write(&curseg->journal_rwsem); 3373 } else { 3374 page = get_next_sit_page(sbi, start_segno); 3375 raw_sit = page_address(page); 3376 } 3377 3378 /* flush dirty sit entries in region of current sit set */ 3379 for_each_set_bit_from(segno, bitmap, end) { 3380 int offset, sit_offset; 3381 3382 se = get_seg_entry(sbi, segno); 3383 3384 /* add discard candidates */ 3385 if (!(cpc->reason & CP_DISCARD)) { 3386 cpc->trim_start = segno; 3387 add_discard_addrs(sbi, cpc, false); 3388 } 3389 3390 if (to_journal) { 3391 offset = lookup_journal_in_cursum(journal, 3392 SIT_JOURNAL, segno, 1); 3393 f2fs_bug_on(sbi, offset < 0); 3394 segno_in_journal(journal, offset) = 3395 cpu_to_le32(segno); 3396 seg_info_to_raw_sit(se, 3397 &sit_in_journal(journal, offset)); 3398 } else { 3399 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3400 seg_info_to_raw_sit(se, 3401 &raw_sit->entries[sit_offset]); 3402 } 3403 3404 __clear_bit(segno, bitmap); 3405 sit_i->dirty_sentries--; 3406 ses->entry_cnt--; 3407 } 3408 3409 if (to_journal) 3410 up_write(&curseg->journal_rwsem); 3411 else 3412 f2fs_put_page(page, 1); 3413 3414 f2fs_bug_on(sbi, ses->entry_cnt); 3415 release_sit_entry_set(ses); 3416 } 3417 3418 f2fs_bug_on(sbi, !list_empty(head)); 3419 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3420 out: 3421 if (cpc->reason & CP_DISCARD) { 3422 __u64 trim_start = cpc->trim_start; 3423 3424 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3425 add_discard_addrs(sbi, cpc, false); 3426 3427 cpc->trim_start = trim_start; 3428 } 3429 up_write(&sit_i->sentry_lock); 3430 3431 set_prefree_as_free_segments(sbi); 3432 } 3433 3434 static int build_sit_info(struct f2fs_sb_info *sbi) 3435 { 3436 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3437 struct sit_info *sit_i; 3438 unsigned int sit_segs, start; 3439 char *src_bitmap; 3440 unsigned int bitmap_size; 3441 3442 /* allocate memory for SIT information */ 3443 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3444 if (!sit_i) 3445 return -ENOMEM; 3446 3447 SM_I(sbi)->sit_info = sit_i; 3448 3449 sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) * 3450 sizeof(struct seg_entry), GFP_KERNEL); 3451 if (!sit_i->sentries) 3452 return -ENOMEM; 3453 3454 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3455 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size, 3456 GFP_KERNEL); 3457 if (!sit_i->dirty_sentries_bitmap) 3458 return -ENOMEM; 3459 3460 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3461 sit_i->sentries[start].cur_valid_map 3462 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3463 sit_i->sentries[start].ckpt_valid_map 3464 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3465 if (!sit_i->sentries[start].cur_valid_map || 3466 !sit_i->sentries[start].ckpt_valid_map) 3467 return -ENOMEM; 3468 3469 #ifdef CONFIG_F2FS_CHECK_FS 3470 sit_i->sentries[start].cur_valid_map_mir 3471 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3472 if (!sit_i->sentries[start].cur_valid_map_mir) 3473 return -ENOMEM; 3474 #endif 3475 3476 if (f2fs_discard_en(sbi)) { 3477 sit_i->sentries[start].discard_map 3478 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, 3479 GFP_KERNEL); 3480 if (!sit_i->sentries[start].discard_map) 3481 return -ENOMEM; 3482 } 3483 } 3484 3485 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3486 if (!sit_i->tmp_map) 3487 return -ENOMEM; 3488 3489 if (sbi->segs_per_sec > 1) { 3490 sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) * 3491 sizeof(struct sec_entry), GFP_KERNEL); 3492 if (!sit_i->sec_entries) 3493 return -ENOMEM; 3494 } 3495 3496 /* get information related with SIT */ 3497 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 3498 3499 /* setup SIT bitmap from ckeckpoint pack */ 3500 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 3501 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 3502 3503 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3504 if (!sit_i->sit_bitmap) 3505 return -ENOMEM; 3506 3507 #ifdef CONFIG_F2FS_CHECK_FS 3508 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3509 if (!sit_i->sit_bitmap_mir) 3510 return -ENOMEM; 3511 #endif 3512 3513 /* init SIT information */ 3514 sit_i->s_ops = &default_salloc_ops; 3515 3516 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 3517 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 3518 sit_i->written_valid_blocks = 0; 3519 sit_i->bitmap_size = bitmap_size; 3520 sit_i->dirty_sentries = 0; 3521 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 3522 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 3523 sit_i->mounted_time = ktime_get_real_seconds(); 3524 init_rwsem(&sit_i->sentry_lock); 3525 return 0; 3526 } 3527 3528 static int build_free_segmap(struct f2fs_sb_info *sbi) 3529 { 3530 struct free_segmap_info *free_i; 3531 unsigned int bitmap_size, sec_bitmap_size; 3532 3533 /* allocate memory for free segmap information */ 3534 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 3535 if (!free_i) 3536 return -ENOMEM; 3537 3538 SM_I(sbi)->free_info = free_i; 3539 3540 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3541 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 3542 if (!free_i->free_segmap) 3543 return -ENOMEM; 3544 3545 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3546 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 3547 if (!free_i->free_secmap) 3548 return -ENOMEM; 3549 3550 /* set all segments as dirty temporarily */ 3551 memset(free_i->free_segmap, 0xff, bitmap_size); 3552 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 3553 3554 /* init free segmap information */ 3555 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 3556 free_i->free_segments = 0; 3557 free_i->free_sections = 0; 3558 spin_lock_init(&free_i->segmap_lock); 3559 return 0; 3560 } 3561 3562 static int build_curseg(struct f2fs_sb_info *sbi) 3563 { 3564 struct curseg_info *array; 3565 int i; 3566 3567 array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL); 3568 if (!array) 3569 return -ENOMEM; 3570 3571 SM_I(sbi)->curseg_array = array; 3572 3573 for (i = 0; i < NR_CURSEG_TYPE; i++) { 3574 mutex_init(&array[i].curseg_mutex); 3575 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 3576 if (!array[i].sum_blk) 3577 return -ENOMEM; 3578 init_rwsem(&array[i].journal_rwsem); 3579 array[i].journal = f2fs_kzalloc(sbi, 3580 sizeof(struct f2fs_journal), GFP_KERNEL); 3581 if (!array[i].journal) 3582 return -ENOMEM; 3583 array[i].segno = NULL_SEGNO; 3584 array[i].next_blkoff = 0; 3585 } 3586 return restore_curseg_summaries(sbi); 3587 } 3588 3589 static int build_sit_entries(struct f2fs_sb_info *sbi) 3590 { 3591 struct sit_info *sit_i = SIT_I(sbi); 3592 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3593 struct f2fs_journal *journal = curseg->journal; 3594 struct seg_entry *se; 3595 struct f2fs_sit_entry sit; 3596 int sit_blk_cnt = SIT_BLK_CNT(sbi); 3597 unsigned int i, start, end; 3598 unsigned int readed, start_blk = 0; 3599 int err = 0; 3600 3601 do { 3602 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 3603 META_SIT, true); 3604 3605 start = start_blk * sit_i->sents_per_block; 3606 end = (start_blk + readed) * sit_i->sents_per_block; 3607 3608 for (; start < end && start < MAIN_SEGS(sbi); start++) { 3609 struct f2fs_sit_block *sit_blk; 3610 struct page *page; 3611 3612 se = &sit_i->sentries[start]; 3613 page = get_current_sit_page(sbi, start); 3614 sit_blk = (struct f2fs_sit_block *)page_address(page); 3615 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 3616 f2fs_put_page(page, 1); 3617 3618 err = check_block_count(sbi, start, &sit); 3619 if (err) 3620 return err; 3621 seg_info_from_raw_sit(se, &sit); 3622 3623 /* build discard map only one time */ 3624 if (f2fs_discard_en(sbi)) { 3625 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 3626 memset(se->discard_map, 0xff, 3627 SIT_VBLOCK_MAP_SIZE); 3628 } else { 3629 memcpy(se->discard_map, 3630 se->cur_valid_map, 3631 SIT_VBLOCK_MAP_SIZE); 3632 sbi->discard_blks += 3633 sbi->blocks_per_seg - 3634 se->valid_blocks; 3635 } 3636 } 3637 3638 if (sbi->segs_per_sec > 1) 3639 get_sec_entry(sbi, start)->valid_blocks += 3640 se->valid_blocks; 3641 } 3642 start_blk += readed; 3643 } while (start_blk < sit_blk_cnt); 3644 3645 down_read(&curseg->journal_rwsem); 3646 for (i = 0; i < sits_in_cursum(journal); i++) { 3647 unsigned int old_valid_blocks; 3648 3649 start = le32_to_cpu(segno_in_journal(journal, i)); 3650 se = &sit_i->sentries[start]; 3651 sit = sit_in_journal(journal, i); 3652 3653 old_valid_blocks = se->valid_blocks; 3654 3655 err = check_block_count(sbi, start, &sit); 3656 if (err) 3657 break; 3658 seg_info_from_raw_sit(se, &sit); 3659 3660 if (f2fs_discard_en(sbi)) { 3661 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 3662 memset(se->discard_map, 0xff, 3663 SIT_VBLOCK_MAP_SIZE); 3664 } else { 3665 memcpy(se->discard_map, se->cur_valid_map, 3666 SIT_VBLOCK_MAP_SIZE); 3667 sbi->discard_blks += old_valid_blocks - 3668 se->valid_blocks; 3669 } 3670 } 3671 3672 if (sbi->segs_per_sec > 1) 3673 get_sec_entry(sbi, start)->valid_blocks += 3674 se->valid_blocks - old_valid_blocks; 3675 } 3676 up_read(&curseg->journal_rwsem); 3677 return err; 3678 } 3679 3680 static void init_free_segmap(struct f2fs_sb_info *sbi) 3681 { 3682 unsigned int start; 3683 int type; 3684 3685 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3686 struct seg_entry *sentry = get_seg_entry(sbi, start); 3687 if (!sentry->valid_blocks) 3688 __set_free(sbi, start); 3689 else 3690 SIT_I(sbi)->written_valid_blocks += 3691 sentry->valid_blocks; 3692 } 3693 3694 /* set use the current segments */ 3695 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 3696 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 3697 __set_test_and_inuse(sbi, curseg_t->segno); 3698 } 3699 } 3700 3701 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 3702 { 3703 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3704 struct free_segmap_info *free_i = FREE_I(sbi); 3705 unsigned int segno = 0, offset = 0; 3706 unsigned short valid_blocks; 3707 3708 while (1) { 3709 /* find dirty segment based on free segmap */ 3710 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 3711 if (segno >= MAIN_SEGS(sbi)) 3712 break; 3713 offset = segno + 1; 3714 valid_blocks = get_valid_blocks(sbi, segno, false); 3715 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 3716 continue; 3717 if (valid_blocks > sbi->blocks_per_seg) { 3718 f2fs_bug_on(sbi, 1); 3719 continue; 3720 } 3721 mutex_lock(&dirty_i->seglist_lock); 3722 __locate_dirty_segment(sbi, segno, DIRTY); 3723 mutex_unlock(&dirty_i->seglist_lock); 3724 } 3725 } 3726 3727 static int init_victim_secmap(struct f2fs_sb_info *sbi) 3728 { 3729 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3730 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3731 3732 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 3733 if (!dirty_i->victim_secmap) 3734 return -ENOMEM; 3735 return 0; 3736 } 3737 3738 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 3739 { 3740 struct dirty_seglist_info *dirty_i; 3741 unsigned int bitmap_size, i; 3742 3743 /* allocate memory for dirty segments list information */ 3744 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 3745 GFP_KERNEL); 3746 if (!dirty_i) 3747 return -ENOMEM; 3748 3749 SM_I(sbi)->dirty_info = dirty_i; 3750 mutex_init(&dirty_i->seglist_lock); 3751 3752 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3753 3754 for (i = 0; i < NR_DIRTY_TYPE; i++) { 3755 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 3756 GFP_KERNEL); 3757 if (!dirty_i->dirty_segmap[i]) 3758 return -ENOMEM; 3759 } 3760 3761 init_dirty_segmap(sbi); 3762 return init_victim_secmap(sbi); 3763 } 3764 3765 /* 3766 * Update min, max modified time for cost-benefit GC algorithm 3767 */ 3768 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 3769 { 3770 struct sit_info *sit_i = SIT_I(sbi); 3771 unsigned int segno; 3772 3773 down_write(&sit_i->sentry_lock); 3774 3775 sit_i->min_mtime = LLONG_MAX; 3776 3777 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 3778 unsigned int i; 3779 unsigned long long mtime = 0; 3780 3781 for (i = 0; i < sbi->segs_per_sec; i++) 3782 mtime += get_seg_entry(sbi, segno + i)->mtime; 3783 3784 mtime = div_u64(mtime, sbi->segs_per_sec); 3785 3786 if (sit_i->min_mtime > mtime) 3787 sit_i->min_mtime = mtime; 3788 } 3789 sit_i->max_mtime = get_mtime(sbi); 3790 up_write(&sit_i->sentry_lock); 3791 } 3792 3793 int build_segment_manager(struct f2fs_sb_info *sbi) 3794 { 3795 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3796 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3797 struct f2fs_sm_info *sm_info; 3798 int err; 3799 3800 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 3801 if (!sm_info) 3802 return -ENOMEM; 3803 3804 /* init sm info */ 3805 sbi->sm_info = sm_info; 3806 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3807 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3808 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 3809 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3810 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3811 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 3812 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3813 sm_info->rec_prefree_segments = sm_info->main_segments * 3814 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 3815 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 3816 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 3817 3818 if (!test_opt(sbi, LFS)) 3819 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 3820 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 3821 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 3822 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 3823 sm_info->min_ssr_sections = reserved_sections(sbi); 3824 3825 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 3826 3827 INIT_LIST_HEAD(&sm_info->sit_entry_set); 3828 3829 init_rwsem(&sm_info->curseg_lock); 3830 3831 if (!f2fs_readonly(sbi->sb)) { 3832 err = create_flush_cmd_control(sbi); 3833 if (err) 3834 return err; 3835 } 3836 3837 err = create_discard_cmd_control(sbi); 3838 if (err) 3839 return err; 3840 3841 err = build_sit_info(sbi); 3842 if (err) 3843 return err; 3844 err = build_free_segmap(sbi); 3845 if (err) 3846 return err; 3847 err = build_curseg(sbi); 3848 if (err) 3849 return err; 3850 3851 /* reinit free segmap based on SIT */ 3852 err = build_sit_entries(sbi); 3853 if (err) 3854 return err; 3855 3856 init_free_segmap(sbi); 3857 err = build_dirty_segmap(sbi); 3858 if (err) 3859 return err; 3860 3861 init_min_max_mtime(sbi); 3862 return 0; 3863 } 3864 3865 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 3866 enum dirty_type dirty_type) 3867 { 3868 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3869 3870 mutex_lock(&dirty_i->seglist_lock); 3871 kvfree(dirty_i->dirty_segmap[dirty_type]); 3872 dirty_i->nr_dirty[dirty_type] = 0; 3873 mutex_unlock(&dirty_i->seglist_lock); 3874 } 3875 3876 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 3877 { 3878 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3879 kvfree(dirty_i->victim_secmap); 3880 } 3881 3882 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 3883 { 3884 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3885 int i; 3886 3887 if (!dirty_i) 3888 return; 3889 3890 /* discard pre-free/dirty segments list */ 3891 for (i = 0; i < NR_DIRTY_TYPE; i++) 3892 discard_dirty_segmap(sbi, i); 3893 3894 destroy_victim_secmap(sbi); 3895 SM_I(sbi)->dirty_info = NULL; 3896 kfree(dirty_i); 3897 } 3898 3899 static void destroy_curseg(struct f2fs_sb_info *sbi) 3900 { 3901 struct curseg_info *array = SM_I(sbi)->curseg_array; 3902 int i; 3903 3904 if (!array) 3905 return; 3906 SM_I(sbi)->curseg_array = NULL; 3907 for (i = 0; i < NR_CURSEG_TYPE; i++) { 3908 kfree(array[i].sum_blk); 3909 kfree(array[i].journal); 3910 } 3911 kfree(array); 3912 } 3913 3914 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 3915 { 3916 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 3917 if (!free_i) 3918 return; 3919 SM_I(sbi)->free_info = NULL; 3920 kvfree(free_i->free_segmap); 3921 kvfree(free_i->free_secmap); 3922 kfree(free_i); 3923 } 3924 3925 static void destroy_sit_info(struct f2fs_sb_info *sbi) 3926 { 3927 struct sit_info *sit_i = SIT_I(sbi); 3928 unsigned int start; 3929 3930 if (!sit_i) 3931 return; 3932 3933 if (sit_i->sentries) { 3934 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3935 kfree(sit_i->sentries[start].cur_valid_map); 3936 #ifdef CONFIG_F2FS_CHECK_FS 3937 kfree(sit_i->sentries[start].cur_valid_map_mir); 3938 #endif 3939 kfree(sit_i->sentries[start].ckpt_valid_map); 3940 kfree(sit_i->sentries[start].discard_map); 3941 } 3942 } 3943 kfree(sit_i->tmp_map); 3944 3945 kvfree(sit_i->sentries); 3946 kvfree(sit_i->sec_entries); 3947 kvfree(sit_i->dirty_sentries_bitmap); 3948 3949 SM_I(sbi)->sit_info = NULL; 3950 kfree(sit_i->sit_bitmap); 3951 #ifdef CONFIG_F2FS_CHECK_FS 3952 kfree(sit_i->sit_bitmap_mir); 3953 #endif 3954 kfree(sit_i); 3955 } 3956 3957 void destroy_segment_manager(struct f2fs_sb_info *sbi) 3958 { 3959 struct f2fs_sm_info *sm_info = SM_I(sbi); 3960 3961 if (!sm_info) 3962 return; 3963 destroy_flush_cmd_control(sbi, true); 3964 destroy_discard_cmd_control(sbi); 3965 destroy_dirty_segmap(sbi); 3966 destroy_curseg(sbi); 3967 destroy_free_segmap(sbi); 3968 destroy_sit_info(sbi); 3969 sbi->sm_info = NULL; 3970 kfree(sm_info); 3971 } 3972 3973 int __init create_segment_manager_caches(void) 3974 { 3975 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 3976 sizeof(struct discard_entry)); 3977 if (!discard_entry_slab) 3978 goto fail; 3979 3980 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 3981 sizeof(struct discard_cmd)); 3982 if (!discard_cmd_slab) 3983 goto destroy_discard_entry; 3984 3985 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 3986 sizeof(struct sit_entry_set)); 3987 if (!sit_entry_set_slab) 3988 goto destroy_discard_cmd; 3989 3990 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 3991 sizeof(struct inmem_pages)); 3992 if (!inmem_entry_slab) 3993 goto destroy_sit_entry_set; 3994 return 0; 3995 3996 destroy_sit_entry_set: 3997 kmem_cache_destroy(sit_entry_set_slab); 3998 destroy_discard_cmd: 3999 kmem_cache_destroy(discard_cmd_slab); 4000 destroy_discard_entry: 4001 kmem_cache_destroy(discard_entry_slab); 4002 fail: 4003 return -ENOMEM; 4004 } 4005 4006 void destroy_segment_manager_caches(void) 4007 { 4008 kmem_cache_destroy(sit_entry_set_slab); 4009 kmem_cache_destroy(discard_cmd_slab); 4010 kmem_cache_destroy(discard_entry_slab); 4011 kmem_cache_destroy(inmem_entry_slab); 4012 } 4013