xref: /linux/fs/f2fs/segment.c (revision df9b455633aee0bad3e5c3dc9fc1c860b13c96d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 		clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 		f2fs_mark_inode_dirty_sync(inode, true);
205 	}
206 	stat_dec_atomic_inode(inode);
207 
208 	F2FS_I(inode)->atomic_write_task = NULL;
209 
210 	if (clean) {
211 		f2fs_i_size_write(inode, fi->original_i_size);
212 		fi->original_i_size = 0;
213 	}
214 	/* avoid stale dirty inode during eviction */
215 	sync_inode_metadata(inode, 0);
216 }
217 
218 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
219 			block_t new_addr, block_t *old_addr, bool recover)
220 {
221 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 	struct dnode_of_data dn;
223 	struct node_info ni;
224 	int err;
225 
226 retry:
227 	set_new_dnode(&dn, inode, NULL, NULL, 0);
228 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
229 	if (err) {
230 		if (err == -ENOMEM) {
231 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
232 			goto retry;
233 		}
234 		return err;
235 	}
236 
237 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
238 	if (err) {
239 		f2fs_put_dnode(&dn);
240 		return err;
241 	}
242 
243 	if (recover) {
244 		/* dn.data_blkaddr is always valid */
245 		if (!__is_valid_data_blkaddr(new_addr)) {
246 			if (new_addr == NULL_ADDR)
247 				dec_valid_block_count(sbi, inode, 1);
248 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
249 			f2fs_update_data_blkaddr(&dn, new_addr);
250 		} else {
251 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
252 				new_addr, ni.version, true, true);
253 		}
254 	} else {
255 		blkcnt_t count = 1;
256 
257 		err = inc_valid_block_count(sbi, inode, &count, true);
258 		if (err) {
259 			f2fs_put_dnode(&dn);
260 			return err;
261 		}
262 
263 		*old_addr = dn.data_blkaddr;
264 		f2fs_truncate_data_blocks_range(&dn, 1);
265 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
266 
267 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
268 					ni.version, true, false);
269 	}
270 
271 	f2fs_put_dnode(&dn);
272 
273 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
274 			index, old_addr ? *old_addr : 0, new_addr, recover);
275 	return 0;
276 }
277 
278 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
279 					bool revoke)
280 {
281 	struct revoke_entry *cur, *tmp;
282 	pgoff_t start_index = 0;
283 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
284 
285 	list_for_each_entry_safe(cur, tmp, head, list) {
286 		if (revoke) {
287 			__replace_atomic_write_block(inode, cur->index,
288 						cur->old_addr, NULL, true);
289 		} else if (truncate) {
290 			f2fs_truncate_hole(inode, start_index, cur->index);
291 			start_index = cur->index + 1;
292 		}
293 
294 		list_del(&cur->list);
295 		kmem_cache_free(revoke_entry_slab, cur);
296 	}
297 
298 	if (!revoke && truncate)
299 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
300 }
301 
302 static int __f2fs_commit_atomic_write(struct inode *inode)
303 {
304 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
305 	struct f2fs_inode_info *fi = F2FS_I(inode);
306 	struct inode *cow_inode = fi->cow_inode;
307 	struct revoke_entry *new;
308 	struct list_head revoke_list;
309 	block_t blkaddr;
310 	struct dnode_of_data dn;
311 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
312 	pgoff_t off = 0, blen, index;
313 	int ret = 0, i;
314 
315 	INIT_LIST_HEAD(&revoke_list);
316 
317 	while (len) {
318 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
319 
320 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
321 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
322 		if (ret && ret != -ENOENT) {
323 			goto out;
324 		} else if (ret == -ENOENT) {
325 			ret = 0;
326 			if (dn.max_level == 0)
327 				goto out;
328 			goto next;
329 		}
330 
331 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
332 				len);
333 		index = off;
334 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
335 			blkaddr = f2fs_data_blkaddr(&dn);
336 
337 			if (!__is_valid_data_blkaddr(blkaddr)) {
338 				continue;
339 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
340 					DATA_GENERIC_ENHANCE)) {
341 				f2fs_put_dnode(&dn);
342 				ret = -EFSCORRUPTED;
343 				goto out;
344 			}
345 
346 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
347 							true, NULL);
348 
349 			ret = __replace_atomic_write_block(inode, index, blkaddr,
350 							&new->old_addr, false);
351 			if (ret) {
352 				f2fs_put_dnode(&dn);
353 				kmem_cache_free(revoke_entry_slab, new);
354 				goto out;
355 			}
356 
357 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
358 			new->index = index;
359 			list_add_tail(&new->list, &revoke_list);
360 		}
361 		f2fs_put_dnode(&dn);
362 next:
363 		off += blen;
364 		len -= blen;
365 	}
366 
367 out:
368 	if (ret) {
369 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
370 	} else {
371 		sbi->committed_atomic_block += fi->atomic_write_cnt;
372 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
373 		if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
374 			clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
375 			f2fs_mark_inode_dirty_sync(inode, true);
376 		}
377 	}
378 
379 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
380 
381 	return ret;
382 }
383 
384 int f2fs_commit_atomic_write(struct inode *inode)
385 {
386 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
387 	struct f2fs_inode_info *fi = F2FS_I(inode);
388 	int err;
389 
390 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
391 	if (err)
392 		return err;
393 
394 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
395 	f2fs_lock_op(sbi);
396 
397 	err = __f2fs_commit_atomic_write(inode);
398 
399 	f2fs_unlock_op(sbi);
400 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
401 
402 	return err;
403 }
404 
405 /*
406  * This function balances dirty node and dentry pages.
407  * In addition, it controls garbage collection.
408  */
409 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
410 {
411 	if (f2fs_cp_error(sbi))
412 		return;
413 
414 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
415 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
416 
417 	/* balance_fs_bg is able to be pending */
418 	if (need && excess_cached_nats(sbi))
419 		f2fs_balance_fs_bg(sbi, false);
420 
421 	if (!f2fs_is_checkpoint_ready(sbi))
422 		return;
423 
424 	/*
425 	 * We should do GC or end up with checkpoint, if there are so many dirty
426 	 * dir/node pages without enough free segments.
427 	 */
428 	if (has_enough_free_secs(sbi, 0, 0))
429 		return;
430 
431 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
432 				sbi->gc_thread->f2fs_gc_task) {
433 		DEFINE_WAIT(wait);
434 
435 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
436 					TASK_UNINTERRUPTIBLE);
437 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
438 		io_schedule();
439 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
440 	} else {
441 		struct f2fs_gc_control gc_control = {
442 			.victim_segno = NULL_SEGNO,
443 			.init_gc_type = BG_GC,
444 			.no_bg_gc = true,
445 			.should_migrate_blocks = false,
446 			.err_gc_skipped = false,
447 			.nr_free_secs = 1 };
448 		f2fs_down_write(&sbi->gc_lock);
449 		stat_inc_gc_call_count(sbi, FOREGROUND);
450 		f2fs_gc(sbi, &gc_control);
451 	}
452 }
453 
454 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
455 {
456 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
457 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
458 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
459 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
460 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
461 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
462 	unsigned int threshold =
463 		SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
464 	unsigned int global_threshold = threshold * 3 / 2;
465 
466 	if (dents >= threshold || qdata >= threshold ||
467 		nodes >= threshold || meta >= threshold ||
468 		imeta >= threshold)
469 		return true;
470 	return dents + qdata + nodes + meta + imeta >  global_threshold;
471 }
472 
473 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
474 {
475 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
476 		return;
477 
478 	/* try to shrink extent cache when there is no enough memory */
479 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
480 		f2fs_shrink_read_extent_tree(sbi,
481 				READ_EXTENT_CACHE_SHRINK_NUMBER);
482 
483 	/* try to shrink age extent cache when there is no enough memory */
484 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
485 		f2fs_shrink_age_extent_tree(sbi,
486 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
487 
488 	/* check the # of cached NAT entries */
489 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
490 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
491 
492 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
493 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
494 	else
495 		f2fs_build_free_nids(sbi, false, false);
496 
497 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
498 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
499 		goto do_sync;
500 
501 	/* there is background inflight IO or foreground operation recently */
502 	if (is_inflight_io(sbi, REQ_TIME) ||
503 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
504 		return;
505 
506 	/* exceed periodical checkpoint timeout threshold */
507 	if (f2fs_time_over(sbi, CP_TIME))
508 		goto do_sync;
509 
510 	/* checkpoint is the only way to shrink partial cached entries */
511 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
512 		f2fs_available_free_memory(sbi, INO_ENTRIES))
513 		return;
514 
515 do_sync:
516 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
517 		struct blk_plug plug;
518 
519 		mutex_lock(&sbi->flush_lock);
520 
521 		blk_start_plug(&plug);
522 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
523 		blk_finish_plug(&plug);
524 
525 		mutex_unlock(&sbi->flush_lock);
526 	}
527 	stat_inc_cp_call_count(sbi, BACKGROUND);
528 	f2fs_sync_fs(sbi->sb, 1);
529 }
530 
531 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
532 				struct block_device *bdev)
533 {
534 	int ret = blkdev_issue_flush(bdev);
535 
536 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
537 				test_opt(sbi, FLUSH_MERGE), ret);
538 	if (!ret)
539 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
540 	return ret;
541 }
542 
543 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
544 {
545 	int ret = 0;
546 	int i;
547 
548 	if (!f2fs_is_multi_device(sbi))
549 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
550 
551 	for (i = 0; i < sbi->s_ndevs; i++) {
552 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
553 			continue;
554 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
555 		if (ret)
556 			break;
557 	}
558 	return ret;
559 }
560 
561 static int issue_flush_thread(void *data)
562 {
563 	struct f2fs_sb_info *sbi = data;
564 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
565 	wait_queue_head_t *q = &fcc->flush_wait_queue;
566 repeat:
567 	if (kthread_should_stop())
568 		return 0;
569 
570 	if (!llist_empty(&fcc->issue_list)) {
571 		struct flush_cmd *cmd, *next;
572 		int ret;
573 
574 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
575 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
576 
577 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
578 
579 		ret = submit_flush_wait(sbi, cmd->ino);
580 		atomic_inc(&fcc->issued_flush);
581 
582 		llist_for_each_entry_safe(cmd, next,
583 					  fcc->dispatch_list, llnode) {
584 			cmd->ret = ret;
585 			complete(&cmd->wait);
586 		}
587 		fcc->dispatch_list = NULL;
588 	}
589 
590 	wait_event_interruptible(*q,
591 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
592 	goto repeat;
593 }
594 
595 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
596 {
597 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
598 	struct flush_cmd cmd;
599 	int ret;
600 
601 	if (test_opt(sbi, NOBARRIER))
602 		return 0;
603 
604 	if (!test_opt(sbi, FLUSH_MERGE)) {
605 		atomic_inc(&fcc->queued_flush);
606 		ret = submit_flush_wait(sbi, ino);
607 		atomic_dec(&fcc->queued_flush);
608 		atomic_inc(&fcc->issued_flush);
609 		return ret;
610 	}
611 
612 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
613 	    f2fs_is_multi_device(sbi)) {
614 		ret = submit_flush_wait(sbi, ino);
615 		atomic_dec(&fcc->queued_flush);
616 
617 		atomic_inc(&fcc->issued_flush);
618 		return ret;
619 	}
620 
621 	cmd.ino = ino;
622 	init_completion(&cmd.wait);
623 
624 	llist_add(&cmd.llnode, &fcc->issue_list);
625 
626 	/*
627 	 * update issue_list before we wake up issue_flush thread, this
628 	 * smp_mb() pairs with another barrier in ___wait_event(), see
629 	 * more details in comments of waitqueue_active().
630 	 */
631 	smp_mb();
632 
633 	if (waitqueue_active(&fcc->flush_wait_queue))
634 		wake_up(&fcc->flush_wait_queue);
635 
636 	if (fcc->f2fs_issue_flush) {
637 		wait_for_completion(&cmd.wait);
638 		atomic_dec(&fcc->queued_flush);
639 	} else {
640 		struct llist_node *list;
641 
642 		list = llist_del_all(&fcc->issue_list);
643 		if (!list) {
644 			wait_for_completion(&cmd.wait);
645 			atomic_dec(&fcc->queued_flush);
646 		} else {
647 			struct flush_cmd *tmp, *next;
648 
649 			ret = submit_flush_wait(sbi, ino);
650 
651 			llist_for_each_entry_safe(tmp, next, list, llnode) {
652 				if (tmp == &cmd) {
653 					cmd.ret = ret;
654 					atomic_dec(&fcc->queued_flush);
655 					continue;
656 				}
657 				tmp->ret = ret;
658 				complete(&tmp->wait);
659 			}
660 		}
661 	}
662 
663 	return cmd.ret;
664 }
665 
666 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
667 {
668 	dev_t dev = sbi->sb->s_bdev->bd_dev;
669 	struct flush_cmd_control *fcc;
670 
671 	if (SM_I(sbi)->fcc_info) {
672 		fcc = SM_I(sbi)->fcc_info;
673 		if (fcc->f2fs_issue_flush)
674 			return 0;
675 		goto init_thread;
676 	}
677 
678 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
679 	if (!fcc)
680 		return -ENOMEM;
681 	atomic_set(&fcc->issued_flush, 0);
682 	atomic_set(&fcc->queued_flush, 0);
683 	init_waitqueue_head(&fcc->flush_wait_queue);
684 	init_llist_head(&fcc->issue_list);
685 	SM_I(sbi)->fcc_info = fcc;
686 	if (!test_opt(sbi, FLUSH_MERGE))
687 		return 0;
688 
689 init_thread:
690 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
691 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
692 	if (IS_ERR(fcc->f2fs_issue_flush)) {
693 		int err = PTR_ERR(fcc->f2fs_issue_flush);
694 
695 		fcc->f2fs_issue_flush = NULL;
696 		return err;
697 	}
698 
699 	return 0;
700 }
701 
702 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
703 {
704 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
705 
706 	if (fcc && fcc->f2fs_issue_flush) {
707 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
708 
709 		fcc->f2fs_issue_flush = NULL;
710 		kthread_stop(flush_thread);
711 	}
712 	if (free) {
713 		kfree(fcc);
714 		SM_I(sbi)->fcc_info = NULL;
715 	}
716 }
717 
718 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
719 {
720 	int ret = 0, i;
721 
722 	if (!f2fs_is_multi_device(sbi))
723 		return 0;
724 
725 	if (test_opt(sbi, NOBARRIER))
726 		return 0;
727 
728 	for (i = 1; i < sbi->s_ndevs; i++) {
729 		int count = DEFAULT_RETRY_IO_COUNT;
730 
731 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
732 			continue;
733 
734 		do {
735 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
736 			if (ret)
737 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
738 		} while (ret && --count);
739 
740 		if (ret) {
741 			f2fs_stop_checkpoint(sbi, false,
742 					STOP_CP_REASON_FLUSH_FAIL);
743 			break;
744 		}
745 
746 		spin_lock(&sbi->dev_lock);
747 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
748 		spin_unlock(&sbi->dev_lock);
749 	}
750 
751 	return ret;
752 }
753 
754 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
755 		enum dirty_type dirty_type)
756 {
757 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
758 
759 	/* need not be added */
760 	if (IS_CURSEG(sbi, segno))
761 		return;
762 
763 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
764 		dirty_i->nr_dirty[dirty_type]++;
765 
766 	if (dirty_type == DIRTY) {
767 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
768 		enum dirty_type t = sentry->type;
769 
770 		if (unlikely(t >= DIRTY)) {
771 			f2fs_bug_on(sbi, 1);
772 			return;
773 		}
774 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
775 			dirty_i->nr_dirty[t]++;
776 
777 		if (__is_large_section(sbi)) {
778 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
779 			block_t valid_blocks =
780 				get_valid_blocks(sbi, segno, true);
781 
782 			f2fs_bug_on(sbi,
783 				(!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
784 				!valid_blocks) ||
785 				valid_blocks == CAP_BLKS_PER_SEC(sbi));
786 
787 			if (!IS_CURSEC(sbi, secno))
788 				set_bit(secno, dirty_i->dirty_secmap);
789 		}
790 	}
791 }
792 
793 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
794 		enum dirty_type dirty_type)
795 {
796 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
797 	block_t valid_blocks;
798 
799 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
800 		dirty_i->nr_dirty[dirty_type]--;
801 
802 	if (dirty_type == DIRTY) {
803 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
804 		enum dirty_type t = sentry->type;
805 
806 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
807 			dirty_i->nr_dirty[t]--;
808 
809 		valid_blocks = get_valid_blocks(sbi, segno, true);
810 		if (valid_blocks == 0) {
811 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
812 						dirty_i->victim_secmap);
813 #ifdef CONFIG_F2FS_CHECK_FS
814 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
815 #endif
816 		}
817 		if (__is_large_section(sbi)) {
818 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
819 
820 			if (!valid_blocks ||
821 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
822 				clear_bit(secno, dirty_i->dirty_secmap);
823 				return;
824 			}
825 
826 			if (!IS_CURSEC(sbi, secno))
827 				set_bit(secno, dirty_i->dirty_secmap);
828 		}
829 	}
830 }
831 
832 /*
833  * Should not occur error such as -ENOMEM.
834  * Adding dirty entry into seglist is not critical operation.
835  * If a given segment is one of current working segments, it won't be added.
836  */
837 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
838 {
839 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
840 	unsigned short valid_blocks, ckpt_valid_blocks;
841 	unsigned int usable_blocks;
842 
843 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
844 		return;
845 
846 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
847 	mutex_lock(&dirty_i->seglist_lock);
848 
849 	valid_blocks = get_valid_blocks(sbi, segno, false);
850 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
851 
852 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
853 		ckpt_valid_blocks == usable_blocks)) {
854 		__locate_dirty_segment(sbi, segno, PRE);
855 		__remove_dirty_segment(sbi, segno, DIRTY);
856 	} else if (valid_blocks < usable_blocks) {
857 		__locate_dirty_segment(sbi, segno, DIRTY);
858 	} else {
859 		/* Recovery routine with SSR needs this */
860 		__remove_dirty_segment(sbi, segno, DIRTY);
861 	}
862 
863 	mutex_unlock(&dirty_i->seglist_lock);
864 }
865 
866 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
867 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
868 {
869 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
870 	unsigned int segno;
871 
872 	mutex_lock(&dirty_i->seglist_lock);
873 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
874 		if (get_valid_blocks(sbi, segno, false))
875 			continue;
876 		if (IS_CURSEG(sbi, segno))
877 			continue;
878 		__locate_dirty_segment(sbi, segno, PRE);
879 		__remove_dirty_segment(sbi, segno, DIRTY);
880 	}
881 	mutex_unlock(&dirty_i->seglist_lock);
882 }
883 
884 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
885 {
886 	int ovp_hole_segs =
887 		(overprovision_segments(sbi) - reserved_segments(sbi));
888 	block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
889 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
890 	block_t holes[2] = {0, 0};	/* DATA and NODE */
891 	block_t unusable;
892 	struct seg_entry *se;
893 	unsigned int segno;
894 
895 	mutex_lock(&dirty_i->seglist_lock);
896 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
897 		se = get_seg_entry(sbi, segno);
898 		if (IS_NODESEG(se->type))
899 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
900 							se->valid_blocks;
901 		else
902 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
903 							se->valid_blocks;
904 	}
905 	mutex_unlock(&dirty_i->seglist_lock);
906 
907 	unusable = max(holes[DATA], holes[NODE]);
908 	if (unusable > ovp_holes)
909 		return unusable - ovp_holes;
910 	return 0;
911 }
912 
913 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
914 {
915 	int ovp_hole_segs =
916 		(overprovision_segments(sbi) - reserved_segments(sbi));
917 
918 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
919 		return 0;
920 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
921 		return -EAGAIN;
922 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
923 		dirty_segments(sbi) > ovp_hole_segs)
924 		return -EAGAIN;
925 	if (has_not_enough_free_secs(sbi, 0, 0))
926 		return -EAGAIN;
927 	return 0;
928 }
929 
930 /* This is only used by SBI_CP_DISABLED */
931 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
932 {
933 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
934 	unsigned int segno = 0;
935 
936 	mutex_lock(&dirty_i->seglist_lock);
937 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
938 		if (get_valid_blocks(sbi, segno, false))
939 			continue;
940 		if (get_ckpt_valid_blocks(sbi, segno, false))
941 			continue;
942 		mutex_unlock(&dirty_i->seglist_lock);
943 		return segno;
944 	}
945 	mutex_unlock(&dirty_i->seglist_lock);
946 	return NULL_SEGNO;
947 }
948 
949 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
950 		struct block_device *bdev, block_t lstart,
951 		block_t start, block_t len)
952 {
953 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
954 	struct list_head *pend_list;
955 	struct discard_cmd *dc;
956 
957 	f2fs_bug_on(sbi, !len);
958 
959 	pend_list = &dcc->pend_list[plist_idx(len)];
960 
961 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
962 	INIT_LIST_HEAD(&dc->list);
963 	dc->bdev = bdev;
964 	dc->di.lstart = lstart;
965 	dc->di.start = start;
966 	dc->di.len = len;
967 	dc->ref = 0;
968 	dc->state = D_PREP;
969 	dc->queued = 0;
970 	dc->error = 0;
971 	init_completion(&dc->wait);
972 	list_add_tail(&dc->list, pend_list);
973 	spin_lock_init(&dc->lock);
974 	dc->bio_ref = 0;
975 	atomic_inc(&dcc->discard_cmd_cnt);
976 	dcc->undiscard_blks += len;
977 
978 	return dc;
979 }
980 
981 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
982 {
983 #ifdef CONFIG_F2FS_CHECK_FS
984 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
985 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
986 	struct discard_cmd *cur_dc, *next_dc;
987 
988 	while (cur) {
989 		next = rb_next(cur);
990 		if (!next)
991 			return true;
992 
993 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
994 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
995 
996 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
997 			f2fs_info(sbi, "broken discard_rbtree, "
998 				"cur(%u, %u) next(%u, %u)",
999 				cur_dc->di.lstart, cur_dc->di.len,
1000 				next_dc->di.lstart, next_dc->di.len);
1001 			return false;
1002 		}
1003 		cur = next;
1004 	}
1005 #endif
1006 	return true;
1007 }
1008 
1009 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1010 						block_t blkaddr)
1011 {
1012 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1013 	struct rb_node *node = dcc->root.rb_root.rb_node;
1014 	struct discard_cmd *dc;
1015 
1016 	while (node) {
1017 		dc = rb_entry(node, struct discard_cmd, rb_node);
1018 
1019 		if (blkaddr < dc->di.lstart)
1020 			node = node->rb_left;
1021 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1022 			node = node->rb_right;
1023 		else
1024 			return dc;
1025 	}
1026 	return NULL;
1027 }
1028 
1029 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1030 				block_t blkaddr,
1031 				struct discard_cmd **prev_entry,
1032 				struct discard_cmd **next_entry,
1033 				struct rb_node ***insert_p,
1034 				struct rb_node **insert_parent)
1035 {
1036 	struct rb_node **pnode = &root->rb_root.rb_node;
1037 	struct rb_node *parent = NULL, *tmp_node;
1038 	struct discard_cmd *dc;
1039 
1040 	*insert_p = NULL;
1041 	*insert_parent = NULL;
1042 	*prev_entry = NULL;
1043 	*next_entry = NULL;
1044 
1045 	if (RB_EMPTY_ROOT(&root->rb_root))
1046 		return NULL;
1047 
1048 	while (*pnode) {
1049 		parent = *pnode;
1050 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1051 
1052 		if (blkaddr < dc->di.lstart)
1053 			pnode = &(*pnode)->rb_left;
1054 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1055 			pnode = &(*pnode)->rb_right;
1056 		else
1057 			goto lookup_neighbors;
1058 	}
1059 
1060 	*insert_p = pnode;
1061 	*insert_parent = parent;
1062 
1063 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1064 	tmp_node = parent;
1065 	if (parent && blkaddr > dc->di.lstart)
1066 		tmp_node = rb_next(parent);
1067 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1068 
1069 	tmp_node = parent;
1070 	if (parent && blkaddr < dc->di.lstart)
1071 		tmp_node = rb_prev(parent);
1072 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1073 	return NULL;
1074 
1075 lookup_neighbors:
1076 	/* lookup prev node for merging backward later */
1077 	tmp_node = rb_prev(&dc->rb_node);
1078 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1079 
1080 	/* lookup next node for merging frontward later */
1081 	tmp_node = rb_next(&dc->rb_node);
1082 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1083 	return dc;
1084 }
1085 
1086 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1087 							struct discard_cmd *dc)
1088 {
1089 	if (dc->state == D_DONE)
1090 		atomic_sub(dc->queued, &dcc->queued_discard);
1091 
1092 	list_del(&dc->list);
1093 	rb_erase_cached(&dc->rb_node, &dcc->root);
1094 	dcc->undiscard_blks -= dc->di.len;
1095 
1096 	kmem_cache_free(discard_cmd_slab, dc);
1097 
1098 	atomic_dec(&dcc->discard_cmd_cnt);
1099 }
1100 
1101 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1102 							struct discard_cmd *dc)
1103 {
1104 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1105 	unsigned long flags;
1106 
1107 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1108 
1109 	spin_lock_irqsave(&dc->lock, flags);
1110 	if (dc->bio_ref) {
1111 		spin_unlock_irqrestore(&dc->lock, flags);
1112 		return;
1113 	}
1114 	spin_unlock_irqrestore(&dc->lock, flags);
1115 
1116 	f2fs_bug_on(sbi, dc->ref);
1117 
1118 	if (dc->error == -EOPNOTSUPP)
1119 		dc->error = 0;
1120 
1121 	if (dc->error)
1122 		f2fs_info_ratelimited(sbi,
1123 			"Issue discard(%u, %u, %u) failed, ret: %d",
1124 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1125 	__detach_discard_cmd(dcc, dc);
1126 }
1127 
1128 static void f2fs_submit_discard_endio(struct bio *bio)
1129 {
1130 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1131 	unsigned long flags;
1132 
1133 	spin_lock_irqsave(&dc->lock, flags);
1134 	if (!dc->error)
1135 		dc->error = blk_status_to_errno(bio->bi_status);
1136 	dc->bio_ref--;
1137 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1138 		dc->state = D_DONE;
1139 		complete_all(&dc->wait);
1140 	}
1141 	spin_unlock_irqrestore(&dc->lock, flags);
1142 	bio_put(bio);
1143 }
1144 
1145 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1146 				block_t start, block_t end)
1147 {
1148 #ifdef CONFIG_F2FS_CHECK_FS
1149 	struct seg_entry *sentry;
1150 	unsigned int segno;
1151 	block_t blk = start;
1152 	unsigned long offset, size, *map;
1153 
1154 	while (blk < end) {
1155 		segno = GET_SEGNO(sbi, blk);
1156 		sentry = get_seg_entry(sbi, segno);
1157 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1158 
1159 		if (end < START_BLOCK(sbi, segno + 1))
1160 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1161 		else
1162 			size = BLKS_PER_SEG(sbi);
1163 		map = (unsigned long *)(sentry->cur_valid_map);
1164 		offset = __find_rev_next_bit(map, size, offset);
1165 		f2fs_bug_on(sbi, offset != size);
1166 		blk = START_BLOCK(sbi, segno + 1);
1167 	}
1168 #endif
1169 }
1170 
1171 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1172 				struct discard_policy *dpolicy,
1173 				int discard_type, unsigned int granularity)
1174 {
1175 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1176 
1177 	/* common policy */
1178 	dpolicy->type = discard_type;
1179 	dpolicy->sync = true;
1180 	dpolicy->ordered = false;
1181 	dpolicy->granularity = granularity;
1182 
1183 	dpolicy->max_requests = dcc->max_discard_request;
1184 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1185 	dpolicy->timeout = false;
1186 
1187 	if (discard_type == DPOLICY_BG) {
1188 		dpolicy->min_interval = dcc->min_discard_issue_time;
1189 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1190 		dpolicy->max_interval = dcc->max_discard_issue_time;
1191 		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1192 			dpolicy->io_aware = true;
1193 		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1194 			dpolicy->io_aware = false;
1195 		dpolicy->sync = false;
1196 		dpolicy->ordered = true;
1197 		if (utilization(sbi) > dcc->discard_urgent_util) {
1198 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1199 			if (atomic_read(&dcc->discard_cmd_cnt))
1200 				dpolicy->max_interval =
1201 					dcc->min_discard_issue_time;
1202 		}
1203 	} else if (discard_type == DPOLICY_FORCE) {
1204 		dpolicy->min_interval = dcc->min_discard_issue_time;
1205 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1206 		dpolicy->max_interval = dcc->max_discard_issue_time;
1207 		dpolicy->io_aware = false;
1208 	} else if (discard_type == DPOLICY_FSTRIM) {
1209 		dpolicy->io_aware = false;
1210 	} else if (discard_type == DPOLICY_UMOUNT) {
1211 		dpolicy->io_aware = false;
1212 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1213 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1214 		dpolicy->timeout = true;
1215 	}
1216 }
1217 
1218 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1219 				struct block_device *bdev, block_t lstart,
1220 				block_t start, block_t len);
1221 
1222 #ifdef CONFIG_BLK_DEV_ZONED
1223 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1224 				   struct discard_cmd *dc, blk_opf_t flag,
1225 				   struct list_head *wait_list,
1226 				   unsigned int *issued)
1227 {
1228 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1229 	struct block_device *bdev = dc->bdev;
1230 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1231 	unsigned long flags;
1232 
1233 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1234 
1235 	spin_lock_irqsave(&dc->lock, flags);
1236 	dc->state = D_SUBMIT;
1237 	dc->bio_ref++;
1238 	spin_unlock_irqrestore(&dc->lock, flags);
1239 
1240 	if (issued)
1241 		(*issued)++;
1242 
1243 	atomic_inc(&dcc->queued_discard);
1244 	dc->queued++;
1245 	list_move_tail(&dc->list, wait_list);
1246 
1247 	/* sanity check on discard range */
1248 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1249 
1250 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1251 	bio->bi_private = dc;
1252 	bio->bi_end_io = f2fs_submit_discard_endio;
1253 	submit_bio(bio);
1254 
1255 	atomic_inc(&dcc->issued_discard);
1256 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1257 }
1258 #endif
1259 
1260 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1261 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1262 				struct discard_policy *dpolicy,
1263 				struct discard_cmd *dc, int *issued)
1264 {
1265 	struct block_device *bdev = dc->bdev;
1266 	unsigned int max_discard_blocks =
1267 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1268 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1269 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1270 					&(dcc->fstrim_list) : &(dcc->wait_list);
1271 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1272 	block_t lstart, start, len, total_len;
1273 	int err = 0;
1274 
1275 	if (dc->state != D_PREP)
1276 		return 0;
1277 
1278 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1279 		return 0;
1280 
1281 #ifdef CONFIG_BLK_DEV_ZONED
1282 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1283 		int devi = f2fs_bdev_index(sbi, bdev);
1284 
1285 		if (devi < 0)
1286 			return -EINVAL;
1287 
1288 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1289 			__submit_zone_reset_cmd(sbi, dc, flag,
1290 						wait_list, issued);
1291 			return 0;
1292 		}
1293 
1294 		/*
1295 		 * Issue discard for conventional zones only if the device
1296 		 * supports discard.
1297 		 */
1298 		if (!bdev_max_discard_sectors(bdev))
1299 			return -EOPNOTSUPP;
1300 	}
1301 #endif
1302 
1303 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1304 
1305 	lstart = dc->di.lstart;
1306 	start = dc->di.start;
1307 	len = dc->di.len;
1308 	total_len = len;
1309 
1310 	dc->di.len = 0;
1311 
1312 	while (total_len && *issued < dpolicy->max_requests && !err) {
1313 		struct bio *bio = NULL;
1314 		unsigned long flags;
1315 		bool last = true;
1316 
1317 		if (len > max_discard_blocks) {
1318 			len = max_discard_blocks;
1319 			last = false;
1320 		}
1321 
1322 		(*issued)++;
1323 		if (*issued == dpolicy->max_requests)
1324 			last = true;
1325 
1326 		dc->di.len += len;
1327 
1328 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1329 			err = -EIO;
1330 		} else {
1331 			err = __blkdev_issue_discard(bdev,
1332 					SECTOR_FROM_BLOCK(start),
1333 					SECTOR_FROM_BLOCK(len),
1334 					GFP_NOFS, &bio);
1335 		}
1336 		if (err) {
1337 			spin_lock_irqsave(&dc->lock, flags);
1338 			if (dc->state == D_PARTIAL)
1339 				dc->state = D_SUBMIT;
1340 			spin_unlock_irqrestore(&dc->lock, flags);
1341 
1342 			break;
1343 		}
1344 
1345 		f2fs_bug_on(sbi, !bio);
1346 
1347 		/*
1348 		 * should keep before submission to avoid D_DONE
1349 		 * right away
1350 		 */
1351 		spin_lock_irqsave(&dc->lock, flags);
1352 		if (last)
1353 			dc->state = D_SUBMIT;
1354 		else
1355 			dc->state = D_PARTIAL;
1356 		dc->bio_ref++;
1357 		spin_unlock_irqrestore(&dc->lock, flags);
1358 
1359 		atomic_inc(&dcc->queued_discard);
1360 		dc->queued++;
1361 		list_move_tail(&dc->list, wait_list);
1362 
1363 		/* sanity check on discard range */
1364 		__check_sit_bitmap(sbi, lstart, lstart + len);
1365 
1366 		bio->bi_private = dc;
1367 		bio->bi_end_io = f2fs_submit_discard_endio;
1368 		bio->bi_opf |= flag;
1369 		submit_bio(bio);
1370 
1371 		atomic_inc(&dcc->issued_discard);
1372 
1373 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1374 
1375 		lstart += len;
1376 		start += len;
1377 		total_len -= len;
1378 		len = total_len;
1379 	}
1380 
1381 	if (!err && len) {
1382 		dcc->undiscard_blks -= len;
1383 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1384 	}
1385 	return err;
1386 }
1387 
1388 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1389 				struct block_device *bdev, block_t lstart,
1390 				block_t start, block_t len)
1391 {
1392 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1393 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1394 	struct rb_node *parent = NULL;
1395 	struct discard_cmd *dc;
1396 	bool leftmost = true;
1397 
1398 	/* look up rb tree to find parent node */
1399 	while (*p) {
1400 		parent = *p;
1401 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1402 
1403 		if (lstart < dc->di.lstart) {
1404 			p = &(*p)->rb_left;
1405 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1406 			p = &(*p)->rb_right;
1407 			leftmost = false;
1408 		} else {
1409 			/* Let's skip to add, if exists */
1410 			return;
1411 		}
1412 	}
1413 
1414 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1415 
1416 	rb_link_node(&dc->rb_node, parent, p);
1417 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1418 }
1419 
1420 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1421 						struct discard_cmd *dc)
1422 {
1423 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1424 }
1425 
1426 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1427 				struct discard_cmd *dc, block_t blkaddr)
1428 {
1429 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1430 	struct discard_info di = dc->di;
1431 	bool modified = false;
1432 
1433 	if (dc->state == D_DONE || dc->di.len == 1) {
1434 		__remove_discard_cmd(sbi, dc);
1435 		return;
1436 	}
1437 
1438 	dcc->undiscard_blks -= di.len;
1439 
1440 	if (blkaddr > di.lstart) {
1441 		dc->di.len = blkaddr - dc->di.lstart;
1442 		dcc->undiscard_blks += dc->di.len;
1443 		__relocate_discard_cmd(dcc, dc);
1444 		modified = true;
1445 	}
1446 
1447 	if (blkaddr < di.lstart + di.len - 1) {
1448 		if (modified) {
1449 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1450 					di.start + blkaddr + 1 - di.lstart,
1451 					di.lstart + di.len - 1 - blkaddr);
1452 		} else {
1453 			dc->di.lstart++;
1454 			dc->di.len--;
1455 			dc->di.start++;
1456 			dcc->undiscard_blks += dc->di.len;
1457 			__relocate_discard_cmd(dcc, dc);
1458 		}
1459 	}
1460 }
1461 
1462 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1463 				struct block_device *bdev, block_t lstart,
1464 				block_t start, block_t len)
1465 {
1466 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1467 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1468 	struct discard_cmd *dc;
1469 	struct discard_info di = {0};
1470 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1471 	unsigned int max_discard_blocks =
1472 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1473 	block_t end = lstart + len;
1474 
1475 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1476 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1477 	if (dc)
1478 		prev_dc = dc;
1479 
1480 	if (!prev_dc) {
1481 		di.lstart = lstart;
1482 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1483 		di.len = min(di.len, len);
1484 		di.start = start;
1485 	}
1486 
1487 	while (1) {
1488 		struct rb_node *node;
1489 		bool merged = false;
1490 		struct discard_cmd *tdc = NULL;
1491 
1492 		if (prev_dc) {
1493 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1494 			if (di.lstart < lstart)
1495 				di.lstart = lstart;
1496 			if (di.lstart >= end)
1497 				break;
1498 
1499 			if (!next_dc || next_dc->di.lstart > end)
1500 				di.len = end - di.lstart;
1501 			else
1502 				di.len = next_dc->di.lstart - di.lstart;
1503 			di.start = start + di.lstart - lstart;
1504 		}
1505 
1506 		if (!di.len)
1507 			goto next;
1508 
1509 		if (prev_dc && prev_dc->state == D_PREP &&
1510 			prev_dc->bdev == bdev &&
1511 			__is_discard_back_mergeable(&di, &prev_dc->di,
1512 							max_discard_blocks)) {
1513 			prev_dc->di.len += di.len;
1514 			dcc->undiscard_blks += di.len;
1515 			__relocate_discard_cmd(dcc, prev_dc);
1516 			di = prev_dc->di;
1517 			tdc = prev_dc;
1518 			merged = true;
1519 		}
1520 
1521 		if (next_dc && next_dc->state == D_PREP &&
1522 			next_dc->bdev == bdev &&
1523 			__is_discard_front_mergeable(&di, &next_dc->di,
1524 							max_discard_blocks)) {
1525 			next_dc->di.lstart = di.lstart;
1526 			next_dc->di.len += di.len;
1527 			next_dc->di.start = di.start;
1528 			dcc->undiscard_blks += di.len;
1529 			__relocate_discard_cmd(dcc, next_dc);
1530 			if (tdc)
1531 				__remove_discard_cmd(sbi, tdc);
1532 			merged = true;
1533 		}
1534 
1535 		if (!merged)
1536 			__insert_discard_cmd(sbi, bdev,
1537 						di.lstart, di.start, di.len);
1538  next:
1539 		prev_dc = next_dc;
1540 		if (!prev_dc)
1541 			break;
1542 
1543 		node = rb_next(&prev_dc->rb_node);
1544 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1545 	}
1546 }
1547 
1548 #ifdef CONFIG_BLK_DEV_ZONED
1549 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1550 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1551 		block_t blklen)
1552 {
1553 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1554 
1555 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1556 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1557 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1558 }
1559 #endif
1560 
1561 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1562 		struct block_device *bdev, block_t blkstart, block_t blklen)
1563 {
1564 	block_t lblkstart = blkstart;
1565 
1566 	if (!f2fs_bdev_support_discard(bdev))
1567 		return;
1568 
1569 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1570 
1571 	if (f2fs_is_multi_device(sbi)) {
1572 		int devi = f2fs_target_device_index(sbi, blkstart);
1573 
1574 		blkstart -= FDEV(devi).start_blk;
1575 	}
1576 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1577 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1578 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1579 }
1580 
1581 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1582 		struct discard_policy *dpolicy, int *issued)
1583 {
1584 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1585 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1586 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1587 	struct discard_cmd *dc;
1588 	struct blk_plug plug;
1589 	bool io_interrupted = false;
1590 
1591 	mutex_lock(&dcc->cmd_lock);
1592 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1593 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1594 	if (!dc)
1595 		dc = next_dc;
1596 
1597 	blk_start_plug(&plug);
1598 
1599 	while (dc) {
1600 		struct rb_node *node;
1601 		int err = 0;
1602 
1603 		if (dc->state != D_PREP)
1604 			goto next;
1605 
1606 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1607 			io_interrupted = true;
1608 			break;
1609 		}
1610 
1611 		dcc->next_pos = dc->di.lstart + dc->di.len;
1612 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1613 
1614 		if (*issued >= dpolicy->max_requests)
1615 			break;
1616 next:
1617 		node = rb_next(&dc->rb_node);
1618 		if (err)
1619 			__remove_discard_cmd(sbi, dc);
1620 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1621 	}
1622 
1623 	blk_finish_plug(&plug);
1624 
1625 	if (!dc)
1626 		dcc->next_pos = 0;
1627 
1628 	mutex_unlock(&dcc->cmd_lock);
1629 
1630 	if (!(*issued) && io_interrupted)
1631 		*issued = -1;
1632 }
1633 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1634 					struct discard_policy *dpolicy);
1635 
1636 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1637 					struct discard_policy *dpolicy)
1638 {
1639 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1640 	struct list_head *pend_list;
1641 	struct discard_cmd *dc, *tmp;
1642 	struct blk_plug plug;
1643 	int i, issued;
1644 	bool io_interrupted = false;
1645 
1646 	if (dpolicy->timeout)
1647 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1648 
1649 retry:
1650 	issued = 0;
1651 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1652 		if (dpolicy->timeout &&
1653 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1654 			break;
1655 
1656 		if (i + 1 < dpolicy->granularity)
1657 			break;
1658 
1659 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1660 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1661 			return issued;
1662 		}
1663 
1664 		pend_list = &dcc->pend_list[i];
1665 
1666 		mutex_lock(&dcc->cmd_lock);
1667 		if (list_empty(pend_list))
1668 			goto next;
1669 		if (unlikely(dcc->rbtree_check))
1670 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1671 		blk_start_plug(&plug);
1672 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1673 			f2fs_bug_on(sbi, dc->state != D_PREP);
1674 
1675 			if (dpolicy->timeout &&
1676 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1677 				break;
1678 
1679 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1680 						!is_idle(sbi, DISCARD_TIME)) {
1681 				io_interrupted = true;
1682 				break;
1683 			}
1684 
1685 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1686 
1687 			if (issued >= dpolicy->max_requests)
1688 				break;
1689 		}
1690 		blk_finish_plug(&plug);
1691 next:
1692 		mutex_unlock(&dcc->cmd_lock);
1693 
1694 		if (issued >= dpolicy->max_requests || io_interrupted)
1695 			break;
1696 	}
1697 
1698 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1699 		__wait_all_discard_cmd(sbi, dpolicy);
1700 		goto retry;
1701 	}
1702 
1703 	if (!issued && io_interrupted)
1704 		issued = -1;
1705 
1706 	return issued;
1707 }
1708 
1709 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1710 {
1711 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1712 	struct list_head *pend_list;
1713 	struct discard_cmd *dc, *tmp;
1714 	int i;
1715 	bool dropped = false;
1716 
1717 	mutex_lock(&dcc->cmd_lock);
1718 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1719 		pend_list = &dcc->pend_list[i];
1720 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1721 			f2fs_bug_on(sbi, dc->state != D_PREP);
1722 			__remove_discard_cmd(sbi, dc);
1723 			dropped = true;
1724 		}
1725 	}
1726 	mutex_unlock(&dcc->cmd_lock);
1727 
1728 	return dropped;
1729 }
1730 
1731 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1732 {
1733 	__drop_discard_cmd(sbi);
1734 }
1735 
1736 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1737 							struct discard_cmd *dc)
1738 {
1739 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1740 	unsigned int len = 0;
1741 
1742 	wait_for_completion_io(&dc->wait);
1743 	mutex_lock(&dcc->cmd_lock);
1744 	f2fs_bug_on(sbi, dc->state != D_DONE);
1745 	dc->ref--;
1746 	if (!dc->ref) {
1747 		if (!dc->error)
1748 			len = dc->di.len;
1749 		__remove_discard_cmd(sbi, dc);
1750 	}
1751 	mutex_unlock(&dcc->cmd_lock);
1752 
1753 	return len;
1754 }
1755 
1756 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1757 						struct discard_policy *dpolicy,
1758 						block_t start, block_t end)
1759 {
1760 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1761 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1762 					&(dcc->fstrim_list) : &(dcc->wait_list);
1763 	struct discard_cmd *dc = NULL, *iter, *tmp;
1764 	unsigned int trimmed = 0;
1765 
1766 next:
1767 	dc = NULL;
1768 
1769 	mutex_lock(&dcc->cmd_lock);
1770 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1771 		if (iter->di.lstart + iter->di.len <= start ||
1772 					end <= iter->di.lstart)
1773 			continue;
1774 		if (iter->di.len < dpolicy->granularity)
1775 			continue;
1776 		if (iter->state == D_DONE && !iter->ref) {
1777 			wait_for_completion_io(&iter->wait);
1778 			if (!iter->error)
1779 				trimmed += iter->di.len;
1780 			__remove_discard_cmd(sbi, iter);
1781 		} else {
1782 			iter->ref++;
1783 			dc = iter;
1784 			break;
1785 		}
1786 	}
1787 	mutex_unlock(&dcc->cmd_lock);
1788 
1789 	if (dc) {
1790 		trimmed += __wait_one_discard_bio(sbi, dc);
1791 		goto next;
1792 	}
1793 
1794 	return trimmed;
1795 }
1796 
1797 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1798 						struct discard_policy *dpolicy)
1799 {
1800 	struct discard_policy dp;
1801 	unsigned int discard_blks;
1802 
1803 	if (dpolicy)
1804 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1805 
1806 	/* wait all */
1807 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1808 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1809 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1810 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1811 
1812 	return discard_blks;
1813 }
1814 
1815 /* This should be covered by global mutex, &sit_i->sentry_lock */
1816 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1817 {
1818 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1819 	struct discard_cmd *dc;
1820 	bool need_wait = false;
1821 
1822 	mutex_lock(&dcc->cmd_lock);
1823 	dc = __lookup_discard_cmd(sbi, blkaddr);
1824 #ifdef CONFIG_BLK_DEV_ZONED
1825 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1826 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1827 
1828 		if (devi < 0) {
1829 			mutex_unlock(&dcc->cmd_lock);
1830 			return;
1831 		}
1832 
1833 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1834 			/* force submit zone reset */
1835 			if (dc->state == D_PREP)
1836 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1837 							&dcc->wait_list, NULL);
1838 			dc->ref++;
1839 			mutex_unlock(&dcc->cmd_lock);
1840 			/* wait zone reset */
1841 			__wait_one_discard_bio(sbi, dc);
1842 			return;
1843 		}
1844 	}
1845 #endif
1846 	if (dc) {
1847 		if (dc->state == D_PREP) {
1848 			__punch_discard_cmd(sbi, dc, blkaddr);
1849 		} else {
1850 			dc->ref++;
1851 			need_wait = true;
1852 		}
1853 	}
1854 	mutex_unlock(&dcc->cmd_lock);
1855 
1856 	if (need_wait)
1857 		__wait_one_discard_bio(sbi, dc);
1858 }
1859 
1860 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1861 {
1862 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1863 
1864 	if (dcc && dcc->f2fs_issue_discard) {
1865 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1866 
1867 		dcc->f2fs_issue_discard = NULL;
1868 		kthread_stop(discard_thread);
1869 	}
1870 }
1871 
1872 /**
1873  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1874  * @sbi: the f2fs_sb_info data for discard cmd to issue
1875  *
1876  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1877  *
1878  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1879  */
1880 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1881 {
1882 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1883 	struct discard_policy dpolicy;
1884 	bool dropped;
1885 
1886 	if (!atomic_read(&dcc->discard_cmd_cnt))
1887 		return true;
1888 
1889 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1890 					dcc->discard_granularity);
1891 	__issue_discard_cmd(sbi, &dpolicy);
1892 	dropped = __drop_discard_cmd(sbi);
1893 
1894 	/* just to make sure there is no pending discard commands */
1895 	__wait_all_discard_cmd(sbi, NULL);
1896 
1897 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1898 	return !dropped;
1899 }
1900 
1901 static int issue_discard_thread(void *data)
1902 {
1903 	struct f2fs_sb_info *sbi = data;
1904 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1905 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1906 	struct discard_policy dpolicy;
1907 	unsigned int wait_ms = dcc->min_discard_issue_time;
1908 	int issued;
1909 
1910 	set_freezable();
1911 
1912 	do {
1913 		wait_event_freezable_timeout(*q,
1914 				kthread_should_stop() || dcc->discard_wake,
1915 				msecs_to_jiffies(wait_ms));
1916 
1917 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1918 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1919 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1920 						MIN_DISCARD_GRANULARITY);
1921 		else
1922 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1923 						dcc->discard_granularity);
1924 
1925 		if (dcc->discard_wake)
1926 			dcc->discard_wake = false;
1927 
1928 		/* clean up pending candidates before going to sleep */
1929 		if (atomic_read(&dcc->queued_discard))
1930 			__wait_all_discard_cmd(sbi, NULL);
1931 
1932 		if (f2fs_readonly(sbi->sb))
1933 			continue;
1934 		if (kthread_should_stop())
1935 			return 0;
1936 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1937 			!atomic_read(&dcc->discard_cmd_cnt)) {
1938 			wait_ms = dpolicy.max_interval;
1939 			continue;
1940 		}
1941 
1942 		sb_start_intwrite(sbi->sb);
1943 
1944 		issued = __issue_discard_cmd(sbi, &dpolicy);
1945 		if (issued > 0) {
1946 			__wait_all_discard_cmd(sbi, &dpolicy);
1947 			wait_ms = dpolicy.min_interval;
1948 		} else if (issued == -1) {
1949 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1950 			if (!wait_ms)
1951 				wait_ms = dpolicy.mid_interval;
1952 		} else {
1953 			wait_ms = dpolicy.max_interval;
1954 		}
1955 		if (!atomic_read(&dcc->discard_cmd_cnt))
1956 			wait_ms = dpolicy.max_interval;
1957 
1958 		sb_end_intwrite(sbi->sb);
1959 
1960 	} while (!kthread_should_stop());
1961 	return 0;
1962 }
1963 
1964 #ifdef CONFIG_BLK_DEV_ZONED
1965 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1966 		struct block_device *bdev, block_t blkstart, block_t blklen)
1967 {
1968 	sector_t sector, nr_sects;
1969 	block_t lblkstart = blkstart;
1970 	int devi = 0;
1971 	u64 remainder = 0;
1972 
1973 	if (f2fs_is_multi_device(sbi)) {
1974 		devi = f2fs_target_device_index(sbi, blkstart);
1975 		if (blkstart < FDEV(devi).start_blk ||
1976 		    blkstart > FDEV(devi).end_blk) {
1977 			f2fs_err(sbi, "Invalid block %x", blkstart);
1978 			return -EIO;
1979 		}
1980 		blkstart -= FDEV(devi).start_blk;
1981 	}
1982 
1983 	/* For sequential zones, reset the zone write pointer */
1984 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1985 		sector = SECTOR_FROM_BLOCK(blkstart);
1986 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1987 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1988 
1989 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1990 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1991 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1992 				 blkstart, blklen);
1993 			return -EIO;
1994 		}
1995 
1996 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1997 			unsigned int nofs_flags;
1998 			int ret;
1999 
2000 			trace_f2fs_issue_reset_zone(bdev, blkstart);
2001 			nofs_flags = memalloc_nofs_save();
2002 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2003 						sector, nr_sects);
2004 			memalloc_nofs_restore(nofs_flags);
2005 			return ret;
2006 		}
2007 
2008 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2009 		return 0;
2010 	}
2011 
2012 	/* For conventional zones, use regular discard if supported */
2013 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2014 	return 0;
2015 }
2016 #endif
2017 
2018 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2019 		struct block_device *bdev, block_t blkstart, block_t blklen)
2020 {
2021 #ifdef CONFIG_BLK_DEV_ZONED
2022 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2023 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2024 #endif
2025 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2026 	return 0;
2027 }
2028 
2029 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2030 				block_t blkstart, block_t blklen)
2031 {
2032 	sector_t start = blkstart, len = 0;
2033 	struct block_device *bdev;
2034 	struct seg_entry *se;
2035 	unsigned int offset;
2036 	block_t i;
2037 	int err = 0;
2038 
2039 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2040 
2041 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2042 		if (i != start) {
2043 			struct block_device *bdev2 =
2044 				f2fs_target_device(sbi, i, NULL);
2045 
2046 			if (bdev2 != bdev) {
2047 				err = __issue_discard_async(sbi, bdev,
2048 						start, len);
2049 				if (err)
2050 					return err;
2051 				bdev = bdev2;
2052 				start = i;
2053 				len = 0;
2054 			}
2055 		}
2056 
2057 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2058 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2059 
2060 		if (f2fs_block_unit_discard(sbi) &&
2061 				!f2fs_test_and_set_bit(offset, se->discard_map))
2062 			sbi->discard_blks--;
2063 	}
2064 
2065 	if (len)
2066 		err = __issue_discard_async(sbi, bdev, start, len);
2067 	return err;
2068 }
2069 
2070 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2071 							bool check_only)
2072 {
2073 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2074 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2075 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2076 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2077 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2078 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2079 	unsigned int start = 0, end = -1;
2080 	bool force = (cpc->reason & CP_DISCARD);
2081 	struct discard_entry *de = NULL;
2082 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2083 	int i;
2084 
2085 	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2086 	    !f2fs_hw_support_discard(sbi) ||
2087 	    !f2fs_block_unit_discard(sbi))
2088 		return false;
2089 
2090 	if (!force) {
2091 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2092 			SM_I(sbi)->dcc_info->nr_discards >=
2093 				SM_I(sbi)->dcc_info->max_discards)
2094 			return false;
2095 	}
2096 
2097 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2098 	for (i = 0; i < entries; i++)
2099 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2100 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2101 
2102 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2103 				SM_I(sbi)->dcc_info->max_discards) {
2104 		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2105 		if (start >= BLKS_PER_SEG(sbi))
2106 			break;
2107 
2108 		end = __find_rev_next_zero_bit(dmap,
2109 						BLKS_PER_SEG(sbi), start + 1);
2110 		if (force && start && end != BLKS_PER_SEG(sbi) &&
2111 		    (end - start) < cpc->trim_minlen)
2112 			continue;
2113 
2114 		if (check_only)
2115 			return true;
2116 
2117 		if (!de) {
2118 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2119 						GFP_F2FS_ZERO, true, NULL);
2120 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2121 			list_add_tail(&de->list, head);
2122 		}
2123 
2124 		for (i = start; i < end; i++)
2125 			__set_bit_le(i, (void *)de->discard_map);
2126 
2127 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2128 	}
2129 	return false;
2130 }
2131 
2132 static void release_discard_addr(struct discard_entry *entry)
2133 {
2134 	list_del(&entry->list);
2135 	kmem_cache_free(discard_entry_slab, entry);
2136 }
2137 
2138 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2139 {
2140 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2141 	struct discard_entry *entry, *this;
2142 
2143 	/* drop caches */
2144 	list_for_each_entry_safe(entry, this, head, list)
2145 		release_discard_addr(entry);
2146 }
2147 
2148 /*
2149  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2150  */
2151 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2152 {
2153 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2154 	unsigned int segno;
2155 
2156 	mutex_lock(&dirty_i->seglist_lock);
2157 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2158 		__set_test_and_free(sbi, segno, false);
2159 	mutex_unlock(&dirty_i->seglist_lock);
2160 }
2161 
2162 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2163 						struct cp_control *cpc)
2164 {
2165 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2166 	struct list_head *head = &dcc->entry_list;
2167 	struct discard_entry *entry, *this;
2168 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2169 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2170 	unsigned int start = 0, end = -1;
2171 	unsigned int secno, start_segno;
2172 	bool force = (cpc->reason & CP_DISCARD);
2173 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2174 						DISCARD_UNIT_SECTION;
2175 
2176 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2177 		section_alignment = true;
2178 
2179 	mutex_lock(&dirty_i->seglist_lock);
2180 
2181 	while (1) {
2182 		int i;
2183 
2184 		if (section_alignment && end != -1)
2185 			end--;
2186 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2187 		if (start >= MAIN_SEGS(sbi))
2188 			break;
2189 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2190 								start + 1);
2191 
2192 		if (section_alignment) {
2193 			start = rounddown(start, SEGS_PER_SEC(sbi));
2194 			end = roundup(end, SEGS_PER_SEC(sbi));
2195 		}
2196 
2197 		for (i = start; i < end; i++) {
2198 			if (test_and_clear_bit(i, prefree_map))
2199 				dirty_i->nr_dirty[PRE]--;
2200 		}
2201 
2202 		if (!f2fs_realtime_discard_enable(sbi))
2203 			continue;
2204 
2205 		if (force && start >= cpc->trim_start &&
2206 					(end - 1) <= cpc->trim_end)
2207 			continue;
2208 
2209 		/* Should cover 2MB zoned device for zone-based reset */
2210 		if (!f2fs_sb_has_blkzoned(sbi) &&
2211 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2212 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2213 				SEGS_TO_BLKS(sbi, end - start));
2214 			continue;
2215 		}
2216 next:
2217 		secno = GET_SEC_FROM_SEG(sbi, start);
2218 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2219 		if (!IS_CURSEC(sbi, secno) &&
2220 			!get_valid_blocks(sbi, start, true))
2221 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2222 						BLKS_PER_SEC(sbi));
2223 
2224 		start = start_segno + SEGS_PER_SEC(sbi);
2225 		if (start < end)
2226 			goto next;
2227 		else
2228 			end = start - 1;
2229 	}
2230 	mutex_unlock(&dirty_i->seglist_lock);
2231 
2232 	if (!f2fs_block_unit_discard(sbi))
2233 		goto wakeup;
2234 
2235 	/* send small discards */
2236 	list_for_each_entry_safe(entry, this, head, list) {
2237 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2238 		bool is_valid = test_bit_le(0, entry->discard_map);
2239 
2240 find_next:
2241 		if (is_valid) {
2242 			next_pos = find_next_zero_bit_le(entry->discard_map,
2243 						BLKS_PER_SEG(sbi), cur_pos);
2244 			len = next_pos - cur_pos;
2245 
2246 			if (f2fs_sb_has_blkzoned(sbi) ||
2247 			    (force && len < cpc->trim_minlen))
2248 				goto skip;
2249 
2250 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2251 									len);
2252 			total_len += len;
2253 		} else {
2254 			next_pos = find_next_bit_le(entry->discard_map,
2255 						BLKS_PER_SEG(sbi), cur_pos);
2256 		}
2257 skip:
2258 		cur_pos = next_pos;
2259 		is_valid = !is_valid;
2260 
2261 		if (cur_pos < BLKS_PER_SEG(sbi))
2262 			goto find_next;
2263 
2264 		release_discard_addr(entry);
2265 		dcc->nr_discards -= total_len;
2266 	}
2267 
2268 wakeup:
2269 	wake_up_discard_thread(sbi, false);
2270 }
2271 
2272 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2273 {
2274 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2275 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2276 	int err = 0;
2277 
2278 	if (f2fs_sb_has_readonly(sbi)) {
2279 		f2fs_info(sbi,
2280 			"Skip to start discard thread for readonly image");
2281 		return 0;
2282 	}
2283 
2284 	if (!f2fs_realtime_discard_enable(sbi))
2285 		return 0;
2286 
2287 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2288 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2289 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2290 		err = PTR_ERR(dcc->f2fs_issue_discard);
2291 		dcc->f2fs_issue_discard = NULL;
2292 	}
2293 
2294 	return err;
2295 }
2296 
2297 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2298 {
2299 	struct discard_cmd_control *dcc;
2300 	int err = 0, i;
2301 
2302 	if (SM_I(sbi)->dcc_info) {
2303 		dcc = SM_I(sbi)->dcc_info;
2304 		goto init_thread;
2305 	}
2306 
2307 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2308 	if (!dcc)
2309 		return -ENOMEM;
2310 
2311 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2312 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2313 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2314 	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2315 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2316 		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2317 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2318 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2319 
2320 	INIT_LIST_HEAD(&dcc->entry_list);
2321 	for (i = 0; i < MAX_PLIST_NUM; i++)
2322 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2323 	INIT_LIST_HEAD(&dcc->wait_list);
2324 	INIT_LIST_HEAD(&dcc->fstrim_list);
2325 	mutex_init(&dcc->cmd_lock);
2326 	atomic_set(&dcc->issued_discard, 0);
2327 	atomic_set(&dcc->queued_discard, 0);
2328 	atomic_set(&dcc->discard_cmd_cnt, 0);
2329 	dcc->nr_discards = 0;
2330 	dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2331 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2332 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2333 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2334 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2335 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2336 	dcc->undiscard_blks = 0;
2337 	dcc->next_pos = 0;
2338 	dcc->root = RB_ROOT_CACHED;
2339 	dcc->rbtree_check = false;
2340 
2341 	init_waitqueue_head(&dcc->discard_wait_queue);
2342 	SM_I(sbi)->dcc_info = dcc;
2343 init_thread:
2344 	err = f2fs_start_discard_thread(sbi);
2345 	if (err) {
2346 		kfree(dcc);
2347 		SM_I(sbi)->dcc_info = NULL;
2348 	}
2349 
2350 	return err;
2351 }
2352 
2353 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2354 {
2355 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2356 
2357 	if (!dcc)
2358 		return;
2359 
2360 	f2fs_stop_discard_thread(sbi);
2361 
2362 	/*
2363 	 * Recovery can cache discard commands, so in error path of
2364 	 * fill_super(), it needs to give a chance to handle them.
2365 	 */
2366 	f2fs_issue_discard_timeout(sbi);
2367 
2368 	kfree(dcc);
2369 	SM_I(sbi)->dcc_info = NULL;
2370 }
2371 
2372 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2373 {
2374 	struct sit_info *sit_i = SIT_I(sbi);
2375 
2376 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2377 		sit_i->dirty_sentries++;
2378 		return false;
2379 	}
2380 
2381 	return true;
2382 }
2383 
2384 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2385 					unsigned int segno, int modified)
2386 {
2387 	struct seg_entry *se = get_seg_entry(sbi, segno);
2388 
2389 	se->type = type;
2390 	if (modified)
2391 		__mark_sit_entry_dirty(sbi, segno);
2392 }
2393 
2394 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2395 								block_t blkaddr)
2396 {
2397 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2398 
2399 	if (segno == NULL_SEGNO)
2400 		return 0;
2401 	return get_seg_entry(sbi, segno)->mtime;
2402 }
2403 
2404 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2405 						unsigned long long old_mtime)
2406 {
2407 	struct seg_entry *se;
2408 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2409 	unsigned long long ctime = get_mtime(sbi, false);
2410 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2411 
2412 	if (segno == NULL_SEGNO)
2413 		return;
2414 
2415 	se = get_seg_entry(sbi, segno);
2416 
2417 	if (!se->mtime)
2418 		se->mtime = mtime;
2419 	else
2420 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2421 						se->valid_blocks + 1);
2422 
2423 	if (ctime > SIT_I(sbi)->max_mtime)
2424 		SIT_I(sbi)->max_mtime = ctime;
2425 }
2426 
2427 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2428 {
2429 	struct seg_entry *se;
2430 	unsigned int segno, offset;
2431 	long int new_vblocks;
2432 	bool exist;
2433 #ifdef CONFIG_F2FS_CHECK_FS
2434 	bool mir_exist;
2435 #endif
2436 
2437 	segno = GET_SEGNO(sbi, blkaddr);
2438 	if (segno == NULL_SEGNO)
2439 		return;
2440 
2441 	se = get_seg_entry(sbi, segno);
2442 	new_vblocks = se->valid_blocks + del;
2443 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2444 
2445 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2446 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2447 
2448 	se->valid_blocks = new_vblocks;
2449 
2450 	/* Update valid block bitmap */
2451 	if (del > 0) {
2452 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2453 #ifdef CONFIG_F2FS_CHECK_FS
2454 		mir_exist = f2fs_test_and_set_bit(offset,
2455 						se->cur_valid_map_mir);
2456 		if (unlikely(exist != mir_exist)) {
2457 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2458 				 blkaddr, exist);
2459 			f2fs_bug_on(sbi, 1);
2460 		}
2461 #endif
2462 		if (unlikely(exist)) {
2463 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2464 				 blkaddr);
2465 			f2fs_bug_on(sbi, 1);
2466 			se->valid_blocks--;
2467 			del = 0;
2468 		}
2469 
2470 		if (f2fs_block_unit_discard(sbi) &&
2471 				!f2fs_test_and_set_bit(offset, se->discard_map))
2472 			sbi->discard_blks--;
2473 
2474 		/*
2475 		 * SSR should never reuse block which is checkpointed
2476 		 * or newly invalidated.
2477 		 */
2478 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2479 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2480 				se->ckpt_valid_blocks++;
2481 		}
2482 	} else {
2483 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2484 #ifdef CONFIG_F2FS_CHECK_FS
2485 		mir_exist = f2fs_test_and_clear_bit(offset,
2486 						se->cur_valid_map_mir);
2487 		if (unlikely(exist != mir_exist)) {
2488 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2489 				 blkaddr, exist);
2490 			f2fs_bug_on(sbi, 1);
2491 		}
2492 #endif
2493 		if (unlikely(!exist)) {
2494 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2495 				 blkaddr);
2496 			f2fs_bug_on(sbi, 1);
2497 			se->valid_blocks++;
2498 			del = 0;
2499 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2500 			/*
2501 			 * If checkpoints are off, we must not reuse data that
2502 			 * was used in the previous checkpoint. If it was used
2503 			 * before, we must track that to know how much space we
2504 			 * really have.
2505 			 */
2506 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2507 				spin_lock(&sbi->stat_lock);
2508 				sbi->unusable_block_count++;
2509 				spin_unlock(&sbi->stat_lock);
2510 			}
2511 		}
2512 
2513 		if (f2fs_block_unit_discard(sbi) &&
2514 			f2fs_test_and_clear_bit(offset, se->discard_map))
2515 			sbi->discard_blks++;
2516 	}
2517 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2518 		se->ckpt_valid_blocks += del;
2519 
2520 	__mark_sit_entry_dirty(sbi, segno);
2521 
2522 	/* update total number of valid blocks to be written in ckpt area */
2523 	SIT_I(sbi)->written_valid_blocks += del;
2524 
2525 	if (__is_large_section(sbi))
2526 		get_sec_entry(sbi, segno)->valid_blocks += del;
2527 }
2528 
2529 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2530 {
2531 	unsigned int segno = GET_SEGNO(sbi, addr);
2532 	struct sit_info *sit_i = SIT_I(sbi);
2533 
2534 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2535 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2536 		return;
2537 
2538 	f2fs_invalidate_internal_cache(sbi, addr);
2539 
2540 	/* add it into sit main buffer */
2541 	down_write(&sit_i->sentry_lock);
2542 
2543 	update_segment_mtime(sbi, addr, 0);
2544 	update_sit_entry(sbi, addr, -1);
2545 
2546 	/* add it into dirty seglist */
2547 	locate_dirty_segment(sbi, segno);
2548 
2549 	up_write(&sit_i->sentry_lock);
2550 }
2551 
2552 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2553 {
2554 	struct sit_info *sit_i = SIT_I(sbi);
2555 	unsigned int segno, offset;
2556 	struct seg_entry *se;
2557 	bool is_cp = false;
2558 
2559 	if (!__is_valid_data_blkaddr(blkaddr))
2560 		return true;
2561 
2562 	down_read(&sit_i->sentry_lock);
2563 
2564 	segno = GET_SEGNO(sbi, blkaddr);
2565 	se = get_seg_entry(sbi, segno);
2566 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2567 
2568 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2569 		is_cp = true;
2570 
2571 	up_read(&sit_i->sentry_lock);
2572 
2573 	return is_cp;
2574 }
2575 
2576 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2577 {
2578 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2579 
2580 	if (sbi->ckpt->alloc_type[type] == SSR)
2581 		return BLKS_PER_SEG(sbi);
2582 	return curseg->next_blkoff;
2583 }
2584 
2585 /*
2586  * Calculate the number of current summary pages for writing
2587  */
2588 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2589 {
2590 	int valid_sum_count = 0;
2591 	int i, sum_in_page;
2592 
2593 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2594 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2595 			valid_sum_count +=
2596 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2597 		else
2598 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2599 	}
2600 
2601 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2602 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2603 	if (valid_sum_count <= sum_in_page)
2604 		return 1;
2605 	else if ((valid_sum_count - sum_in_page) <=
2606 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2607 		return 2;
2608 	return 3;
2609 }
2610 
2611 /*
2612  * Caller should put this summary page
2613  */
2614 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2615 {
2616 	if (unlikely(f2fs_cp_error(sbi)))
2617 		return ERR_PTR(-EIO);
2618 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2619 }
2620 
2621 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2622 					void *src, block_t blk_addr)
2623 {
2624 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2625 
2626 	memcpy(page_address(page), src, PAGE_SIZE);
2627 	set_page_dirty(page);
2628 	f2fs_put_page(page, 1);
2629 }
2630 
2631 static void write_sum_page(struct f2fs_sb_info *sbi,
2632 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2633 {
2634 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2635 }
2636 
2637 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2638 						int type, block_t blk_addr)
2639 {
2640 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2641 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2642 	struct f2fs_summary_block *src = curseg->sum_blk;
2643 	struct f2fs_summary_block *dst;
2644 
2645 	dst = (struct f2fs_summary_block *)page_address(page);
2646 	memset(dst, 0, PAGE_SIZE);
2647 
2648 	mutex_lock(&curseg->curseg_mutex);
2649 
2650 	down_read(&curseg->journal_rwsem);
2651 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2652 	up_read(&curseg->journal_rwsem);
2653 
2654 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2655 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2656 
2657 	mutex_unlock(&curseg->curseg_mutex);
2658 
2659 	set_page_dirty(page);
2660 	f2fs_put_page(page, 1);
2661 }
2662 
2663 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2664 				struct curseg_info *curseg)
2665 {
2666 	unsigned int segno = curseg->segno + 1;
2667 	struct free_segmap_info *free_i = FREE_I(sbi);
2668 
2669 	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2670 		return !test_bit(segno, free_i->free_segmap);
2671 	return 0;
2672 }
2673 
2674 /*
2675  * Find a new segment from the free segments bitmap to right order
2676  * This function should be returned with success, otherwise BUG
2677  */
2678 static int get_new_segment(struct f2fs_sb_info *sbi,
2679 			unsigned int *newseg, bool new_sec, bool pinning)
2680 {
2681 	struct free_segmap_info *free_i = FREE_I(sbi);
2682 	unsigned int segno, secno, zoneno;
2683 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2684 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2685 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2686 	bool init = true;
2687 	int i;
2688 	int ret = 0;
2689 
2690 	spin_lock(&free_i->segmap_lock);
2691 
2692 	if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2693 		ret = -ENOSPC;
2694 		goto out_unlock;
2695 	}
2696 
2697 	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2698 		segno = find_next_zero_bit(free_i->free_segmap,
2699 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2700 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2701 			goto got_it;
2702 	}
2703 
2704 #ifdef CONFIG_BLK_DEV_ZONED
2705 	/*
2706 	 * If we format f2fs on zoned storage, let's try to get pinned sections
2707 	 * from beginning of the storage, which should be a conventional one.
2708 	 */
2709 	if (f2fs_sb_has_blkzoned(sbi)) {
2710 		/* Prioritize writing to conventional zones */
2711 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2712 			segno = 0;
2713 		else
2714 			segno = max(first_zoned_segno(sbi), *newseg);
2715 		hint = GET_SEC_FROM_SEG(sbi, segno);
2716 	}
2717 #endif
2718 
2719 find_other_zone:
2720 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2721 
2722 #ifdef CONFIG_BLK_DEV_ZONED
2723 	if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2724 		/* Write only to sequential zones */
2725 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2726 			hint = GET_SEC_FROM_SEG(sbi, first_zoned_segno(sbi));
2727 			secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2728 		} else
2729 			secno = find_first_zero_bit(free_i->free_secmap,
2730 								MAIN_SECS(sbi));
2731 		if (secno >= MAIN_SECS(sbi)) {
2732 			ret = -ENOSPC;
2733 			f2fs_bug_on(sbi, 1);
2734 			goto out_unlock;
2735 		}
2736 	}
2737 #endif
2738 
2739 	if (secno >= MAIN_SECS(sbi)) {
2740 		secno = find_first_zero_bit(free_i->free_secmap,
2741 							MAIN_SECS(sbi));
2742 		if (secno >= MAIN_SECS(sbi)) {
2743 			ret = -ENOSPC;
2744 			f2fs_bug_on(sbi, 1);
2745 			goto out_unlock;
2746 		}
2747 	}
2748 	segno = GET_SEG_FROM_SEC(sbi, secno);
2749 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2750 
2751 	/* give up on finding another zone */
2752 	if (!init)
2753 		goto got_it;
2754 	if (sbi->secs_per_zone == 1)
2755 		goto got_it;
2756 	if (zoneno == old_zoneno)
2757 		goto got_it;
2758 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2759 		if (CURSEG_I(sbi, i)->zone == zoneno)
2760 			break;
2761 
2762 	if (i < NR_CURSEG_TYPE) {
2763 		/* zone is in user, try another */
2764 		if (zoneno + 1 >= total_zones)
2765 			hint = 0;
2766 		else
2767 			hint = (zoneno + 1) * sbi->secs_per_zone;
2768 		init = false;
2769 		goto find_other_zone;
2770 	}
2771 got_it:
2772 	/* set it as dirty segment in free segmap */
2773 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2774 
2775 	/* no free section in conventional zone */
2776 	if (new_sec && pinning &&
2777 		!f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2778 		ret = -EAGAIN;
2779 		goto out_unlock;
2780 	}
2781 	__set_inuse(sbi, segno);
2782 	*newseg = segno;
2783 out_unlock:
2784 	spin_unlock(&free_i->segmap_lock);
2785 
2786 	if (ret == -ENOSPC)
2787 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2788 	return ret;
2789 }
2790 
2791 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2792 {
2793 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2794 	struct summary_footer *sum_footer;
2795 	unsigned short seg_type = curseg->seg_type;
2796 
2797 	/* only happen when get_new_segment() fails */
2798 	if (curseg->next_segno == NULL_SEGNO)
2799 		return;
2800 
2801 	curseg->inited = true;
2802 	curseg->segno = curseg->next_segno;
2803 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2804 	curseg->next_blkoff = 0;
2805 	curseg->next_segno = NULL_SEGNO;
2806 
2807 	sum_footer = &(curseg->sum_blk->footer);
2808 	memset(sum_footer, 0, sizeof(struct summary_footer));
2809 
2810 	sanity_check_seg_type(sbi, seg_type);
2811 
2812 	if (IS_DATASEG(seg_type))
2813 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2814 	if (IS_NODESEG(seg_type))
2815 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2816 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2817 }
2818 
2819 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2820 {
2821 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2822 	unsigned short seg_type = curseg->seg_type;
2823 
2824 	sanity_check_seg_type(sbi, seg_type);
2825 	if (__is_large_section(sbi)) {
2826 		if (f2fs_need_rand_seg(sbi)) {
2827 			unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2828 
2829 			if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2830 				return curseg->segno;
2831 			return get_random_u32_inclusive(curseg->segno + 1,
2832 					GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2833 		}
2834 		return curseg->segno;
2835 	} else if (f2fs_need_rand_seg(sbi)) {
2836 		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2837 	}
2838 
2839 	/* inmem log may not locate on any segment after mount */
2840 	if (!curseg->inited)
2841 		return 0;
2842 
2843 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2844 		return 0;
2845 
2846 	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2847 		return 0;
2848 
2849 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2850 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2851 
2852 	/* find segments from 0 to reuse freed segments */
2853 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2854 		return 0;
2855 
2856 	return curseg->segno;
2857 }
2858 
2859 /*
2860  * Allocate a current working segment.
2861  * This function always allocates a free segment in LFS manner.
2862  */
2863 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2864 {
2865 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2866 	unsigned int segno = curseg->segno;
2867 	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2868 	int ret;
2869 
2870 	if (curseg->inited)
2871 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2872 
2873 	segno = __get_next_segno(sbi, type);
2874 	ret = get_new_segment(sbi, &segno, new_sec, pinning);
2875 	if (ret) {
2876 		if (ret == -ENOSPC)
2877 			curseg->segno = NULL_SEGNO;
2878 		return ret;
2879 	}
2880 
2881 	curseg->next_segno = segno;
2882 	reset_curseg(sbi, type, 1);
2883 	curseg->alloc_type = LFS;
2884 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2885 		curseg->fragment_remained_chunk =
2886 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2887 	return 0;
2888 }
2889 
2890 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2891 					int segno, block_t start)
2892 {
2893 	struct seg_entry *se = get_seg_entry(sbi, segno);
2894 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2895 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2896 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2897 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2898 	int i;
2899 
2900 	for (i = 0; i < entries; i++)
2901 		target_map[i] = ckpt_map[i] | cur_map[i];
2902 
2903 	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2904 }
2905 
2906 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2907 		struct curseg_info *seg)
2908 {
2909 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2910 }
2911 
2912 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2913 {
2914 	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2915 }
2916 
2917 /*
2918  * This function always allocates a used segment(from dirty seglist) by SSR
2919  * manner, so it should recover the existing segment information of valid blocks
2920  */
2921 static int change_curseg(struct f2fs_sb_info *sbi, int type)
2922 {
2923 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2924 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2925 	unsigned int new_segno = curseg->next_segno;
2926 	struct f2fs_summary_block *sum_node;
2927 	struct page *sum_page;
2928 
2929 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2930 
2931 	__set_test_and_inuse(sbi, new_segno);
2932 
2933 	mutex_lock(&dirty_i->seglist_lock);
2934 	__remove_dirty_segment(sbi, new_segno, PRE);
2935 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2936 	mutex_unlock(&dirty_i->seglist_lock);
2937 
2938 	reset_curseg(sbi, type, 1);
2939 	curseg->alloc_type = SSR;
2940 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2941 
2942 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2943 	if (IS_ERR(sum_page)) {
2944 		/* GC won't be able to use stale summary pages by cp_error */
2945 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2946 		return PTR_ERR(sum_page);
2947 	}
2948 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2949 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2950 	f2fs_put_page(sum_page, 1);
2951 	return 0;
2952 }
2953 
2954 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2955 				int alloc_mode, unsigned long long age);
2956 
2957 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2958 					int target_type, int alloc_mode,
2959 					unsigned long long age)
2960 {
2961 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2962 	int ret = 0;
2963 
2964 	curseg->seg_type = target_type;
2965 
2966 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2967 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2968 
2969 		curseg->seg_type = se->type;
2970 		ret = change_curseg(sbi, type);
2971 	} else {
2972 		/* allocate cold segment by default */
2973 		curseg->seg_type = CURSEG_COLD_DATA;
2974 		ret = new_curseg(sbi, type, true);
2975 	}
2976 	stat_inc_seg_type(sbi, curseg);
2977 	return ret;
2978 }
2979 
2980 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
2981 {
2982 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2983 	int ret = 0;
2984 
2985 	if (!sbi->am.atgc_enabled && !force)
2986 		return 0;
2987 
2988 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2989 
2990 	mutex_lock(&curseg->curseg_mutex);
2991 	down_write(&SIT_I(sbi)->sentry_lock);
2992 
2993 	ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
2994 					CURSEG_COLD_DATA, SSR, 0);
2995 
2996 	up_write(&SIT_I(sbi)->sentry_lock);
2997 	mutex_unlock(&curseg->curseg_mutex);
2998 
2999 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3000 	return ret;
3001 }
3002 
3003 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3004 {
3005 	return __f2fs_init_atgc_curseg(sbi, false);
3006 }
3007 
3008 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3009 {
3010 	int ret;
3011 
3012 	if (!test_opt(sbi, ATGC))
3013 		return 0;
3014 	if (sbi->am.atgc_enabled)
3015 		return 0;
3016 	if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3017 			sbi->am.age_threshold)
3018 		return 0;
3019 
3020 	ret = __f2fs_init_atgc_curseg(sbi, true);
3021 	if (!ret) {
3022 		sbi->am.atgc_enabled = true;
3023 		f2fs_info(sbi, "reenabled age threshold GC");
3024 	}
3025 	return ret;
3026 }
3027 
3028 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3029 {
3030 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3031 
3032 	mutex_lock(&curseg->curseg_mutex);
3033 	if (!curseg->inited)
3034 		goto out;
3035 
3036 	if (get_valid_blocks(sbi, curseg->segno, false)) {
3037 		write_sum_page(sbi, curseg->sum_blk,
3038 				GET_SUM_BLOCK(sbi, curseg->segno));
3039 	} else {
3040 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3041 		__set_test_and_free(sbi, curseg->segno, true);
3042 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3043 	}
3044 out:
3045 	mutex_unlock(&curseg->curseg_mutex);
3046 }
3047 
3048 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3049 {
3050 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3051 
3052 	if (sbi->am.atgc_enabled)
3053 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3054 }
3055 
3056 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3057 {
3058 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3059 
3060 	mutex_lock(&curseg->curseg_mutex);
3061 	if (!curseg->inited)
3062 		goto out;
3063 	if (get_valid_blocks(sbi, curseg->segno, false))
3064 		goto out;
3065 
3066 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3067 	__set_test_and_inuse(sbi, curseg->segno);
3068 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3069 out:
3070 	mutex_unlock(&curseg->curseg_mutex);
3071 }
3072 
3073 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3074 {
3075 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3076 
3077 	if (sbi->am.atgc_enabled)
3078 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3079 }
3080 
3081 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3082 				int alloc_mode, unsigned long long age)
3083 {
3084 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3085 	unsigned segno = NULL_SEGNO;
3086 	unsigned short seg_type = curseg->seg_type;
3087 	int i, cnt;
3088 	bool reversed = false;
3089 
3090 	sanity_check_seg_type(sbi, seg_type);
3091 
3092 	/* f2fs_need_SSR() already forces to do this */
3093 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3094 				alloc_mode, age, false)) {
3095 		curseg->next_segno = segno;
3096 		return 1;
3097 	}
3098 
3099 	/* For node segments, let's do SSR more intensively */
3100 	if (IS_NODESEG(seg_type)) {
3101 		if (seg_type >= CURSEG_WARM_NODE) {
3102 			reversed = true;
3103 			i = CURSEG_COLD_NODE;
3104 		} else {
3105 			i = CURSEG_HOT_NODE;
3106 		}
3107 		cnt = NR_CURSEG_NODE_TYPE;
3108 	} else {
3109 		if (seg_type >= CURSEG_WARM_DATA) {
3110 			reversed = true;
3111 			i = CURSEG_COLD_DATA;
3112 		} else {
3113 			i = CURSEG_HOT_DATA;
3114 		}
3115 		cnt = NR_CURSEG_DATA_TYPE;
3116 	}
3117 
3118 	for (; cnt-- > 0; reversed ? i-- : i++) {
3119 		if (i == seg_type)
3120 			continue;
3121 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3122 					alloc_mode, age, false)) {
3123 			curseg->next_segno = segno;
3124 			return 1;
3125 		}
3126 	}
3127 
3128 	/* find valid_blocks=0 in dirty list */
3129 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3130 		segno = get_free_segment(sbi);
3131 		if (segno != NULL_SEGNO) {
3132 			curseg->next_segno = segno;
3133 			return 1;
3134 		}
3135 	}
3136 	return 0;
3137 }
3138 
3139 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3140 {
3141 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3142 
3143 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3144 	    curseg->seg_type == CURSEG_WARM_NODE)
3145 		return true;
3146 	if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3147 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3148 		return true;
3149 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3150 		return true;
3151 	return false;
3152 }
3153 
3154 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3155 					unsigned int start, unsigned int end)
3156 {
3157 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3158 	unsigned int segno;
3159 	int ret = 0;
3160 
3161 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3162 	mutex_lock(&curseg->curseg_mutex);
3163 	down_write(&SIT_I(sbi)->sentry_lock);
3164 
3165 	segno = CURSEG_I(sbi, type)->segno;
3166 	if (segno < start || segno > end)
3167 		goto unlock;
3168 
3169 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3170 		ret = change_curseg(sbi, type);
3171 	else
3172 		ret = new_curseg(sbi, type, true);
3173 
3174 	stat_inc_seg_type(sbi, curseg);
3175 
3176 	locate_dirty_segment(sbi, segno);
3177 unlock:
3178 	up_write(&SIT_I(sbi)->sentry_lock);
3179 
3180 	if (segno != curseg->segno)
3181 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3182 			    type, segno, curseg->segno);
3183 
3184 	mutex_unlock(&curseg->curseg_mutex);
3185 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3186 	return ret;
3187 }
3188 
3189 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3190 						bool new_sec, bool force)
3191 {
3192 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3193 	unsigned int old_segno;
3194 	int err = 0;
3195 
3196 	if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3197 		goto allocate;
3198 
3199 	if (!force && curseg->inited &&
3200 	    !curseg->next_blkoff &&
3201 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3202 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3203 		return 0;
3204 
3205 allocate:
3206 	old_segno = curseg->segno;
3207 	err = new_curseg(sbi, type, true);
3208 	if (err)
3209 		return err;
3210 	stat_inc_seg_type(sbi, curseg);
3211 	locate_dirty_segment(sbi, old_segno);
3212 	return 0;
3213 }
3214 
3215 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3216 {
3217 	int ret;
3218 
3219 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3220 	down_write(&SIT_I(sbi)->sentry_lock);
3221 	ret = __allocate_new_segment(sbi, type, true, force);
3222 	up_write(&SIT_I(sbi)->sentry_lock);
3223 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3224 
3225 	return ret;
3226 }
3227 
3228 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3229 {
3230 	int err;
3231 	bool gc_required = true;
3232 
3233 retry:
3234 	f2fs_lock_op(sbi);
3235 	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3236 	f2fs_unlock_op(sbi);
3237 
3238 	if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3239 		f2fs_down_write(&sbi->gc_lock);
3240 		err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1);
3241 		f2fs_up_write(&sbi->gc_lock);
3242 
3243 		gc_required = false;
3244 		if (!err)
3245 			goto retry;
3246 	}
3247 
3248 	return err;
3249 }
3250 
3251 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3252 {
3253 	int i;
3254 	int err = 0;
3255 
3256 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3257 	down_write(&SIT_I(sbi)->sentry_lock);
3258 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3259 		err += __allocate_new_segment(sbi, i, false, false);
3260 	up_write(&SIT_I(sbi)->sentry_lock);
3261 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3262 
3263 	return err;
3264 }
3265 
3266 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3267 						struct cp_control *cpc)
3268 {
3269 	__u64 trim_start = cpc->trim_start;
3270 	bool has_candidate = false;
3271 
3272 	down_write(&SIT_I(sbi)->sentry_lock);
3273 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3274 		if (add_discard_addrs(sbi, cpc, true)) {
3275 			has_candidate = true;
3276 			break;
3277 		}
3278 	}
3279 	up_write(&SIT_I(sbi)->sentry_lock);
3280 
3281 	cpc->trim_start = trim_start;
3282 	return has_candidate;
3283 }
3284 
3285 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3286 					struct discard_policy *dpolicy,
3287 					unsigned int start, unsigned int end)
3288 {
3289 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3290 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3291 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3292 	struct discard_cmd *dc;
3293 	struct blk_plug plug;
3294 	int issued;
3295 	unsigned int trimmed = 0;
3296 
3297 next:
3298 	issued = 0;
3299 
3300 	mutex_lock(&dcc->cmd_lock);
3301 	if (unlikely(dcc->rbtree_check))
3302 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3303 
3304 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3305 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3306 	if (!dc)
3307 		dc = next_dc;
3308 
3309 	blk_start_plug(&plug);
3310 
3311 	while (dc && dc->di.lstart <= end) {
3312 		struct rb_node *node;
3313 		int err = 0;
3314 
3315 		if (dc->di.len < dpolicy->granularity)
3316 			goto skip;
3317 
3318 		if (dc->state != D_PREP) {
3319 			list_move_tail(&dc->list, &dcc->fstrim_list);
3320 			goto skip;
3321 		}
3322 
3323 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3324 
3325 		if (issued >= dpolicy->max_requests) {
3326 			start = dc->di.lstart + dc->di.len;
3327 
3328 			if (err)
3329 				__remove_discard_cmd(sbi, dc);
3330 
3331 			blk_finish_plug(&plug);
3332 			mutex_unlock(&dcc->cmd_lock);
3333 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3334 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3335 			goto next;
3336 		}
3337 skip:
3338 		node = rb_next(&dc->rb_node);
3339 		if (err)
3340 			__remove_discard_cmd(sbi, dc);
3341 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3342 
3343 		if (fatal_signal_pending(current))
3344 			break;
3345 	}
3346 
3347 	blk_finish_plug(&plug);
3348 	mutex_unlock(&dcc->cmd_lock);
3349 
3350 	return trimmed;
3351 }
3352 
3353 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3354 {
3355 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3356 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3357 	unsigned int start_segno, end_segno;
3358 	block_t start_block, end_block;
3359 	struct cp_control cpc;
3360 	struct discard_policy dpolicy;
3361 	unsigned long long trimmed = 0;
3362 	int err = 0;
3363 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3364 
3365 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3366 		return -EINVAL;
3367 
3368 	if (end < MAIN_BLKADDR(sbi))
3369 		goto out;
3370 
3371 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3372 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3373 		return -EFSCORRUPTED;
3374 	}
3375 
3376 	/* start/end segment number in main_area */
3377 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3378 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3379 						GET_SEGNO(sbi, end);
3380 	if (need_align) {
3381 		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3382 		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3383 	}
3384 
3385 	cpc.reason = CP_DISCARD;
3386 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3387 	cpc.trim_start = start_segno;
3388 	cpc.trim_end = end_segno;
3389 
3390 	if (sbi->discard_blks == 0)
3391 		goto out;
3392 
3393 	f2fs_down_write(&sbi->gc_lock);
3394 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3395 	err = f2fs_write_checkpoint(sbi, &cpc);
3396 	f2fs_up_write(&sbi->gc_lock);
3397 	if (err)
3398 		goto out;
3399 
3400 	/*
3401 	 * We filed discard candidates, but actually we don't need to wait for
3402 	 * all of them, since they'll be issued in idle time along with runtime
3403 	 * discard option. User configuration looks like using runtime discard
3404 	 * or periodic fstrim instead of it.
3405 	 */
3406 	if (f2fs_realtime_discard_enable(sbi))
3407 		goto out;
3408 
3409 	start_block = START_BLOCK(sbi, start_segno);
3410 	end_block = START_BLOCK(sbi, end_segno + 1);
3411 
3412 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3413 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3414 					start_block, end_block);
3415 
3416 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3417 					start_block, end_block);
3418 out:
3419 	if (!err)
3420 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3421 	return err;
3422 }
3423 
3424 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3425 {
3426 	if (F2FS_OPTION(sbi).active_logs == 2)
3427 		return CURSEG_HOT_DATA;
3428 	else if (F2FS_OPTION(sbi).active_logs == 4)
3429 		return CURSEG_COLD_DATA;
3430 
3431 	/* active_log == 6 */
3432 	switch (hint) {
3433 	case WRITE_LIFE_SHORT:
3434 		return CURSEG_HOT_DATA;
3435 	case WRITE_LIFE_EXTREME:
3436 		return CURSEG_COLD_DATA;
3437 	default:
3438 		return CURSEG_WARM_DATA;
3439 	}
3440 }
3441 
3442 /*
3443  * This returns write hints for each segment type. This hints will be
3444  * passed down to block layer as below by default.
3445  *
3446  * User                  F2FS                     Block
3447  * ----                  ----                     -----
3448  *                       META                     WRITE_LIFE_NONE|REQ_META
3449  *                       HOT_NODE                 WRITE_LIFE_NONE
3450  *                       WARM_NODE                WRITE_LIFE_MEDIUM
3451  *                       COLD_NODE                WRITE_LIFE_LONG
3452  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3453  * extension list        "                        "
3454  *
3455  * -- buffered io
3456  *                       COLD_DATA                WRITE_LIFE_EXTREME
3457  *                       HOT_DATA                 WRITE_LIFE_SHORT
3458  *                       WARM_DATA                WRITE_LIFE_NOT_SET
3459  *
3460  * -- direct io
3461  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3462  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3463  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3464  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3465  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3466  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3467  */
3468 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3469 				enum page_type type, enum temp_type temp)
3470 {
3471 	switch (type) {
3472 	case DATA:
3473 		switch (temp) {
3474 		case WARM:
3475 			return WRITE_LIFE_NOT_SET;
3476 		case HOT:
3477 			return WRITE_LIFE_SHORT;
3478 		case COLD:
3479 			return WRITE_LIFE_EXTREME;
3480 		default:
3481 			return WRITE_LIFE_NONE;
3482 		}
3483 	case NODE:
3484 		switch (temp) {
3485 		case WARM:
3486 			return WRITE_LIFE_MEDIUM;
3487 		case HOT:
3488 			return WRITE_LIFE_NONE;
3489 		case COLD:
3490 			return WRITE_LIFE_LONG;
3491 		default:
3492 			return WRITE_LIFE_NONE;
3493 		}
3494 	case META:
3495 		return WRITE_LIFE_NONE;
3496 	default:
3497 		return WRITE_LIFE_NONE;
3498 	}
3499 }
3500 
3501 static int __get_segment_type_2(struct f2fs_io_info *fio)
3502 {
3503 	if (fio->type == DATA)
3504 		return CURSEG_HOT_DATA;
3505 	else
3506 		return CURSEG_HOT_NODE;
3507 }
3508 
3509 static int __get_segment_type_4(struct f2fs_io_info *fio)
3510 {
3511 	if (fio->type == DATA) {
3512 		struct inode *inode = fio->page->mapping->host;
3513 
3514 		if (S_ISDIR(inode->i_mode))
3515 			return CURSEG_HOT_DATA;
3516 		else
3517 			return CURSEG_COLD_DATA;
3518 	} else {
3519 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3520 			return CURSEG_WARM_NODE;
3521 		else
3522 			return CURSEG_COLD_NODE;
3523 	}
3524 }
3525 
3526 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3527 {
3528 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3529 	struct extent_info ei = {};
3530 
3531 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3532 		if (!ei.age)
3533 			return NO_CHECK_TYPE;
3534 		if (ei.age <= sbi->hot_data_age_threshold)
3535 			return CURSEG_HOT_DATA;
3536 		if (ei.age <= sbi->warm_data_age_threshold)
3537 			return CURSEG_WARM_DATA;
3538 		return CURSEG_COLD_DATA;
3539 	}
3540 	return NO_CHECK_TYPE;
3541 }
3542 
3543 static int __get_segment_type_6(struct f2fs_io_info *fio)
3544 {
3545 	if (fio->type == DATA) {
3546 		struct inode *inode = fio->page->mapping->host;
3547 		int type;
3548 
3549 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3550 			return CURSEG_COLD_DATA_PINNED;
3551 
3552 		if (page_private_gcing(fio->page)) {
3553 			if (fio->sbi->am.atgc_enabled &&
3554 				(fio->io_type == FS_DATA_IO) &&
3555 				(fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3556 				__is_valid_data_blkaddr(fio->old_blkaddr) &&
3557 				!is_inode_flag_set(inode, FI_OPU_WRITE))
3558 				return CURSEG_ALL_DATA_ATGC;
3559 			else
3560 				return CURSEG_COLD_DATA;
3561 		}
3562 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3563 			return CURSEG_COLD_DATA;
3564 
3565 		type = __get_age_segment_type(inode,
3566 				page_folio(fio->page)->index);
3567 		if (type != NO_CHECK_TYPE)
3568 			return type;
3569 
3570 		if (file_is_hot(inode) ||
3571 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3572 				f2fs_is_cow_file(inode))
3573 			return CURSEG_HOT_DATA;
3574 		return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3575 						inode->i_write_hint);
3576 	} else {
3577 		if (IS_DNODE(fio->page))
3578 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3579 						CURSEG_HOT_NODE;
3580 		return CURSEG_COLD_NODE;
3581 	}
3582 }
3583 
3584 int f2fs_get_segment_temp(int seg_type)
3585 {
3586 	if (IS_HOT(seg_type))
3587 		return HOT;
3588 	else if (IS_WARM(seg_type))
3589 		return WARM;
3590 	return COLD;
3591 }
3592 
3593 static int __get_segment_type(struct f2fs_io_info *fio)
3594 {
3595 	int type = 0;
3596 
3597 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3598 	case 2:
3599 		type = __get_segment_type_2(fio);
3600 		break;
3601 	case 4:
3602 		type = __get_segment_type_4(fio);
3603 		break;
3604 	case 6:
3605 		type = __get_segment_type_6(fio);
3606 		break;
3607 	default:
3608 		f2fs_bug_on(fio->sbi, true);
3609 	}
3610 
3611 	fio->temp = f2fs_get_segment_temp(type);
3612 
3613 	return type;
3614 }
3615 
3616 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3617 		struct curseg_info *seg)
3618 {
3619 	/* To allocate block chunks in different sizes, use random number */
3620 	if (--seg->fragment_remained_chunk > 0)
3621 		return;
3622 
3623 	seg->fragment_remained_chunk =
3624 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3625 	seg->next_blkoff +=
3626 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3627 }
3628 
3629 static void reset_curseg_fields(struct curseg_info *curseg)
3630 {
3631 	curseg->inited = false;
3632 	curseg->segno = NULL_SEGNO;
3633 	curseg->next_segno = 0;
3634 }
3635 
3636 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3637 		block_t old_blkaddr, block_t *new_blkaddr,
3638 		struct f2fs_summary *sum, int type,
3639 		struct f2fs_io_info *fio)
3640 {
3641 	struct sit_info *sit_i = SIT_I(sbi);
3642 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3643 	unsigned long long old_mtime;
3644 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3645 	struct seg_entry *se = NULL;
3646 	bool segment_full = false;
3647 	int ret = 0;
3648 
3649 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3650 
3651 	mutex_lock(&curseg->curseg_mutex);
3652 	down_write(&sit_i->sentry_lock);
3653 
3654 	if (curseg->segno == NULL_SEGNO) {
3655 		ret = -ENOSPC;
3656 		goto out_err;
3657 	}
3658 
3659 	if (from_gc) {
3660 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3661 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3662 		sanity_check_seg_type(sbi, se->type);
3663 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3664 	}
3665 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3666 
3667 	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3668 
3669 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3670 
3671 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3672 	if (curseg->alloc_type == SSR) {
3673 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3674 	} else {
3675 		curseg->next_blkoff++;
3676 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3677 			f2fs_randomize_chunk(sbi, curseg);
3678 	}
3679 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3680 		segment_full = true;
3681 	stat_inc_block_count(sbi, curseg);
3682 
3683 	if (from_gc) {
3684 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3685 	} else {
3686 		update_segment_mtime(sbi, old_blkaddr, 0);
3687 		old_mtime = 0;
3688 	}
3689 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3690 
3691 	/*
3692 	 * SIT information should be updated before segment allocation,
3693 	 * since SSR needs latest valid block information.
3694 	 */
3695 	update_sit_entry(sbi, *new_blkaddr, 1);
3696 	update_sit_entry(sbi, old_blkaddr, -1);
3697 
3698 	/*
3699 	 * If the current segment is full, flush it out and replace it with a
3700 	 * new segment.
3701 	 */
3702 	if (segment_full) {
3703 		if (type == CURSEG_COLD_DATA_PINNED &&
3704 		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3705 			write_sum_page(sbi, curseg->sum_blk,
3706 					GET_SUM_BLOCK(sbi, curseg->segno));
3707 			reset_curseg_fields(curseg);
3708 			goto skip_new_segment;
3709 		}
3710 
3711 		if (from_gc) {
3712 			ret = get_atssr_segment(sbi, type, se->type,
3713 						AT_SSR, se->mtime);
3714 		} else {
3715 			if (need_new_seg(sbi, type))
3716 				ret = new_curseg(sbi, type, false);
3717 			else
3718 				ret = change_curseg(sbi, type);
3719 			stat_inc_seg_type(sbi, curseg);
3720 		}
3721 
3722 		if (ret)
3723 			goto out_err;
3724 	}
3725 
3726 skip_new_segment:
3727 	/*
3728 	 * segment dirty status should be updated after segment allocation,
3729 	 * so we just need to update status only one time after previous
3730 	 * segment being closed.
3731 	 */
3732 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3733 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3734 
3735 	if (IS_DATASEG(curseg->seg_type))
3736 		atomic64_inc(&sbi->allocated_data_blocks);
3737 
3738 	up_write(&sit_i->sentry_lock);
3739 
3740 	if (page && IS_NODESEG(curseg->seg_type)) {
3741 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3742 
3743 		f2fs_inode_chksum_set(sbi, page);
3744 	}
3745 
3746 	if (fio) {
3747 		struct f2fs_bio_info *io;
3748 
3749 		INIT_LIST_HEAD(&fio->list);
3750 		fio->in_list = 1;
3751 		io = sbi->write_io[fio->type] + fio->temp;
3752 		spin_lock(&io->io_lock);
3753 		list_add_tail(&fio->list, &io->io_list);
3754 		spin_unlock(&io->io_lock);
3755 	}
3756 
3757 	mutex_unlock(&curseg->curseg_mutex);
3758 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3759 	return 0;
3760 
3761 out_err:
3762 	*new_blkaddr = NULL_ADDR;
3763 	up_write(&sit_i->sentry_lock);
3764 	mutex_unlock(&curseg->curseg_mutex);
3765 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3766 	return ret;
3767 }
3768 
3769 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3770 					block_t blkaddr, unsigned int blkcnt)
3771 {
3772 	if (!f2fs_is_multi_device(sbi))
3773 		return;
3774 
3775 	while (1) {
3776 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3777 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3778 
3779 		/* update device state for fsync */
3780 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3781 
3782 		/* update device state for checkpoint */
3783 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3784 			spin_lock(&sbi->dev_lock);
3785 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3786 			spin_unlock(&sbi->dev_lock);
3787 		}
3788 
3789 		if (blkcnt <= blks)
3790 			break;
3791 		blkcnt -= blks;
3792 		blkaddr += blks;
3793 	}
3794 }
3795 
3796 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3797 {
3798 	int type = __get_segment_type(fio);
3799 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3800 
3801 	if (keep_order)
3802 		f2fs_down_read(&fio->sbi->io_order_lock);
3803 
3804 	if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3805 			&fio->new_blkaddr, sum, type, fio)) {
3806 		if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host))
3807 			fscrypt_finalize_bounce_page(&fio->encrypted_page);
3808 		end_page_writeback(fio->page);
3809 		if (f2fs_in_warm_node_list(fio->sbi, fio->page))
3810 			f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3811 		goto out;
3812 	}
3813 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3814 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3815 
3816 	/* writeout dirty page into bdev */
3817 	f2fs_submit_page_write(fio);
3818 
3819 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3820 out:
3821 	if (keep_order)
3822 		f2fs_up_read(&fio->sbi->io_order_lock);
3823 }
3824 
3825 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3826 					enum iostat_type io_type)
3827 {
3828 	struct f2fs_io_info fio = {
3829 		.sbi = sbi,
3830 		.type = META,
3831 		.temp = HOT,
3832 		.op = REQ_OP_WRITE,
3833 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3834 		.old_blkaddr = folio->index,
3835 		.new_blkaddr = folio->index,
3836 		.page = folio_page(folio, 0),
3837 		.encrypted_page = NULL,
3838 		.in_list = 0,
3839 	};
3840 
3841 	if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
3842 		fio.op_flags &= ~REQ_META;
3843 
3844 	folio_start_writeback(folio);
3845 	f2fs_submit_page_write(&fio);
3846 
3847 	stat_inc_meta_count(sbi, folio->index);
3848 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3849 }
3850 
3851 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3852 {
3853 	struct f2fs_summary sum;
3854 
3855 	set_summary(&sum, nid, 0, 0);
3856 	do_write_page(&sum, fio);
3857 
3858 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3859 }
3860 
3861 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3862 					struct f2fs_io_info *fio)
3863 {
3864 	struct f2fs_sb_info *sbi = fio->sbi;
3865 	struct f2fs_summary sum;
3866 
3867 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3868 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3869 		f2fs_update_age_extent_cache(dn);
3870 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3871 	do_write_page(&sum, fio);
3872 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3873 
3874 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3875 }
3876 
3877 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3878 {
3879 	int err;
3880 	struct f2fs_sb_info *sbi = fio->sbi;
3881 	unsigned int segno;
3882 
3883 	fio->new_blkaddr = fio->old_blkaddr;
3884 	/* i/o temperature is needed for passing down write hints */
3885 	__get_segment_type(fio);
3886 
3887 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3888 
3889 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3890 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3891 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3892 			  __func__, segno);
3893 		err = -EFSCORRUPTED;
3894 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3895 		goto drop_bio;
3896 	}
3897 
3898 	if (f2fs_cp_error(sbi)) {
3899 		err = -EIO;
3900 		goto drop_bio;
3901 	}
3902 
3903 	if (fio->meta_gc)
3904 		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3905 
3906 	stat_inc_inplace_blocks(fio->sbi);
3907 
3908 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3909 		err = f2fs_merge_page_bio(fio);
3910 	else
3911 		err = f2fs_submit_page_bio(fio);
3912 	if (!err) {
3913 		f2fs_update_device_state(fio->sbi, fio->ino,
3914 						fio->new_blkaddr, 1);
3915 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3916 						fio->io_type, F2FS_BLKSIZE);
3917 	}
3918 
3919 	return err;
3920 drop_bio:
3921 	if (fio->bio && *(fio->bio)) {
3922 		struct bio *bio = *(fio->bio);
3923 
3924 		bio->bi_status = BLK_STS_IOERR;
3925 		bio_endio(bio);
3926 		*(fio->bio) = NULL;
3927 	}
3928 	return err;
3929 }
3930 
3931 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3932 						unsigned int segno)
3933 {
3934 	int i;
3935 
3936 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3937 		if (CURSEG_I(sbi, i)->segno == segno)
3938 			break;
3939 	}
3940 	return i;
3941 }
3942 
3943 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3944 				block_t old_blkaddr, block_t new_blkaddr,
3945 				bool recover_curseg, bool recover_newaddr,
3946 				bool from_gc)
3947 {
3948 	struct sit_info *sit_i = SIT_I(sbi);
3949 	struct curseg_info *curseg;
3950 	unsigned int segno, old_cursegno;
3951 	struct seg_entry *se;
3952 	int type;
3953 	unsigned short old_blkoff;
3954 	unsigned char old_alloc_type;
3955 
3956 	segno = GET_SEGNO(sbi, new_blkaddr);
3957 	se = get_seg_entry(sbi, segno);
3958 	type = se->type;
3959 
3960 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3961 
3962 	if (!recover_curseg) {
3963 		/* for recovery flow */
3964 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3965 			if (old_blkaddr == NULL_ADDR)
3966 				type = CURSEG_COLD_DATA;
3967 			else
3968 				type = CURSEG_WARM_DATA;
3969 		}
3970 	} else {
3971 		if (IS_CURSEG(sbi, segno)) {
3972 			/* se->type is volatile as SSR allocation */
3973 			type = __f2fs_get_curseg(sbi, segno);
3974 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3975 		} else {
3976 			type = CURSEG_WARM_DATA;
3977 		}
3978 	}
3979 
3980 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3981 	curseg = CURSEG_I(sbi, type);
3982 
3983 	mutex_lock(&curseg->curseg_mutex);
3984 	down_write(&sit_i->sentry_lock);
3985 
3986 	old_cursegno = curseg->segno;
3987 	old_blkoff = curseg->next_blkoff;
3988 	old_alloc_type = curseg->alloc_type;
3989 
3990 	/* change the current segment */
3991 	if (segno != curseg->segno) {
3992 		curseg->next_segno = segno;
3993 		if (change_curseg(sbi, type))
3994 			goto out_unlock;
3995 	}
3996 
3997 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3998 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3999 
4000 	if (!recover_curseg || recover_newaddr) {
4001 		if (!from_gc)
4002 			update_segment_mtime(sbi, new_blkaddr, 0);
4003 		update_sit_entry(sbi, new_blkaddr, 1);
4004 	}
4005 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4006 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
4007 		if (!from_gc)
4008 			update_segment_mtime(sbi, old_blkaddr, 0);
4009 		update_sit_entry(sbi, old_blkaddr, -1);
4010 	}
4011 
4012 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4013 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4014 
4015 	locate_dirty_segment(sbi, old_cursegno);
4016 
4017 	if (recover_curseg) {
4018 		if (old_cursegno != curseg->segno) {
4019 			curseg->next_segno = old_cursegno;
4020 			if (change_curseg(sbi, type))
4021 				goto out_unlock;
4022 		}
4023 		curseg->next_blkoff = old_blkoff;
4024 		curseg->alloc_type = old_alloc_type;
4025 	}
4026 
4027 out_unlock:
4028 	up_write(&sit_i->sentry_lock);
4029 	mutex_unlock(&curseg->curseg_mutex);
4030 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
4031 }
4032 
4033 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4034 				block_t old_addr, block_t new_addr,
4035 				unsigned char version, bool recover_curseg,
4036 				bool recover_newaddr)
4037 {
4038 	struct f2fs_summary sum;
4039 
4040 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4041 
4042 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4043 					recover_curseg, recover_newaddr, false);
4044 
4045 	f2fs_update_data_blkaddr(dn, new_addr);
4046 }
4047 
4048 void f2fs_wait_on_page_writeback(struct page *page,
4049 				enum page_type type, bool ordered, bool locked)
4050 {
4051 	if (folio_test_writeback(page_folio(page))) {
4052 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
4053 
4054 		/* submit cached LFS IO */
4055 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
4056 		/* submit cached IPU IO */
4057 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
4058 		if (ordered) {
4059 			wait_on_page_writeback(page);
4060 			f2fs_bug_on(sbi, locked &&
4061 				folio_test_writeback(page_folio(page)));
4062 		} else {
4063 			wait_for_stable_page(page);
4064 		}
4065 	}
4066 }
4067 
4068 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4069 {
4070 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4071 	struct page *cpage;
4072 
4073 	if (!f2fs_meta_inode_gc_required(inode))
4074 		return;
4075 
4076 	if (!__is_valid_data_blkaddr(blkaddr))
4077 		return;
4078 
4079 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
4080 	if (cpage) {
4081 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
4082 		f2fs_put_page(cpage, 1);
4083 	}
4084 }
4085 
4086 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4087 								block_t len)
4088 {
4089 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4090 	block_t i;
4091 
4092 	if (!f2fs_meta_inode_gc_required(inode))
4093 		return;
4094 
4095 	for (i = 0; i < len; i++)
4096 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
4097 
4098 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4099 }
4100 
4101 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4102 {
4103 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4104 	struct curseg_info *seg_i;
4105 	unsigned char *kaddr;
4106 	struct page *page;
4107 	block_t start;
4108 	int i, j, offset;
4109 
4110 	start = start_sum_block(sbi);
4111 
4112 	page = f2fs_get_meta_page(sbi, start++);
4113 	if (IS_ERR(page))
4114 		return PTR_ERR(page);
4115 	kaddr = (unsigned char *)page_address(page);
4116 
4117 	/* Step 1: restore nat cache */
4118 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4119 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4120 
4121 	/* Step 2: restore sit cache */
4122 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4123 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4124 	offset = 2 * SUM_JOURNAL_SIZE;
4125 
4126 	/* Step 3: restore summary entries */
4127 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4128 		unsigned short blk_off;
4129 		unsigned int segno;
4130 
4131 		seg_i = CURSEG_I(sbi, i);
4132 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4133 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4134 		seg_i->next_segno = segno;
4135 		reset_curseg(sbi, i, 0);
4136 		seg_i->alloc_type = ckpt->alloc_type[i];
4137 		seg_i->next_blkoff = blk_off;
4138 
4139 		if (seg_i->alloc_type == SSR)
4140 			blk_off = BLKS_PER_SEG(sbi);
4141 
4142 		for (j = 0; j < blk_off; j++) {
4143 			struct f2fs_summary *s;
4144 
4145 			s = (struct f2fs_summary *)(kaddr + offset);
4146 			seg_i->sum_blk->entries[j] = *s;
4147 			offset += SUMMARY_SIZE;
4148 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4149 						SUM_FOOTER_SIZE)
4150 				continue;
4151 
4152 			f2fs_put_page(page, 1);
4153 			page = NULL;
4154 
4155 			page = f2fs_get_meta_page(sbi, start++);
4156 			if (IS_ERR(page))
4157 				return PTR_ERR(page);
4158 			kaddr = (unsigned char *)page_address(page);
4159 			offset = 0;
4160 		}
4161 	}
4162 	f2fs_put_page(page, 1);
4163 	return 0;
4164 }
4165 
4166 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4167 {
4168 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4169 	struct f2fs_summary_block *sum;
4170 	struct curseg_info *curseg;
4171 	struct page *new;
4172 	unsigned short blk_off;
4173 	unsigned int segno = 0;
4174 	block_t blk_addr = 0;
4175 	int err = 0;
4176 
4177 	/* get segment number and block addr */
4178 	if (IS_DATASEG(type)) {
4179 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4180 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4181 							CURSEG_HOT_DATA]);
4182 		if (__exist_node_summaries(sbi))
4183 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4184 		else
4185 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4186 	} else {
4187 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
4188 							CURSEG_HOT_NODE]);
4189 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4190 							CURSEG_HOT_NODE]);
4191 		if (__exist_node_summaries(sbi))
4192 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4193 							type - CURSEG_HOT_NODE);
4194 		else
4195 			blk_addr = GET_SUM_BLOCK(sbi, segno);
4196 	}
4197 
4198 	new = f2fs_get_meta_page(sbi, blk_addr);
4199 	if (IS_ERR(new))
4200 		return PTR_ERR(new);
4201 	sum = (struct f2fs_summary_block *)page_address(new);
4202 
4203 	if (IS_NODESEG(type)) {
4204 		if (__exist_node_summaries(sbi)) {
4205 			struct f2fs_summary *ns = &sum->entries[0];
4206 			int i;
4207 
4208 			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4209 				ns->version = 0;
4210 				ns->ofs_in_node = 0;
4211 			}
4212 		} else {
4213 			err = f2fs_restore_node_summary(sbi, segno, sum);
4214 			if (err)
4215 				goto out;
4216 		}
4217 	}
4218 
4219 	/* set uncompleted segment to curseg */
4220 	curseg = CURSEG_I(sbi, type);
4221 	mutex_lock(&curseg->curseg_mutex);
4222 
4223 	/* update journal info */
4224 	down_write(&curseg->journal_rwsem);
4225 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4226 	up_write(&curseg->journal_rwsem);
4227 
4228 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4229 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4230 	curseg->next_segno = segno;
4231 	reset_curseg(sbi, type, 0);
4232 	curseg->alloc_type = ckpt->alloc_type[type];
4233 	curseg->next_blkoff = blk_off;
4234 	mutex_unlock(&curseg->curseg_mutex);
4235 out:
4236 	f2fs_put_page(new, 1);
4237 	return err;
4238 }
4239 
4240 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4241 {
4242 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4243 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4244 	int type = CURSEG_HOT_DATA;
4245 	int err;
4246 
4247 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4248 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4249 
4250 		if (npages >= 2)
4251 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4252 							META_CP, true);
4253 
4254 		/* restore for compacted data summary */
4255 		err = read_compacted_summaries(sbi);
4256 		if (err)
4257 			return err;
4258 		type = CURSEG_HOT_NODE;
4259 	}
4260 
4261 	if (__exist_node_summaries(sbi))
4262 		f2fs_ra_meta_pages(sbi,
4263 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4264 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4265 
4266 	for (; type <= CURSEG_COLD_NODE; type++) {
4267 		err = read_normal_summaries(sbi, type);
4268 		if (err)
4269 			return err;
4270 	}
4271 
4272 	/* sanity check for summary blocks */
4273 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4274 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4275 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4276 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4277 		return -EINVAL;
4278 	}
4279 
4280 	return 0;
4281 }
4282 
4283 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4284 {
4285 	struct page *page;
4286 	unsigned char *kaddr;
4287 	struct f2fs_summary *summary;
4288 	struct curseg_info *seg_i;
4289 	int written_size = 0;
4290 	int i, j;
4291 
4292 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4293 	kaddr = (unsigned char *)page_address(page);
4294 	memset(kaddr, 0, PAGE_SIZE);
4295 
4296 	/* Step 1: write nat cache */
4297 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4298 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4299 	written_size += SUM_JOURNAL_SIZE;
4300 
4301 	/* Step 2: write sit cache */
4302 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4303 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4304 	written_size += SUM_JOURNAL_SIZE;
4305 
4306 	/* Step 3: write summary entries */
4307 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4308 		seg_i = CURSEG_I(sbi, i);
4309 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4310 			if (!page) {
4311 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4312 				kaddr = (unsigned char *)page_address(page);
4313 				memset(kaddr, 0, PAGE_SIZE);
4314 				written_size = 0;
4315 			}
4316 			summary = (struct f2fs_summary *)(kaddr + written_size);
4317 			*summary = seg_i->sum_blk->entries[j];
4318 			written_size += SUMMARY_SIZE;
4319 
4320 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4321 							SUM_FOOTER_SIZE)
4322 				continue;
4323 
4324 			set_page_dirty(page);
4325 			f2fs_put_page(page, 1);
4326 			page = NULL;
4327 		}
4328 	}
4329 	if (page) {
4330 		set_page_dirty(page);
4331 		f2fs_put_page(page, 1);
4332 	}
4333 }
4334 
4335 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4336 					block_t blkaddr, int type)
4337 {
4338 	int i, end;
4339 
4340 	if (IS_DATASEG(type))
4341 		end = type + NR_CURSEG_DATA_TYPE;
4342 	else
4343 		end = type + NR_CURSEG_NODE_TYPE;
4344 
4345 	for (i = type; i < end; i++)
4346 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4347 }
4348 
4349 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4350 {
4351 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4352 		write_compacted_summaries(sbi, start_blk);
4353 	else
4354 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4355 }
4356 
4357 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4358 {
4359 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4360 }
4361 
4362 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4363 					unsigned int val, int alloc)
4364 {
4365 	int i;
4366 
4367 	if (type == NAT_JOURNAL) {
4368 		for (i = 0; i < nats_in_cursum(journal); i++) {
4369 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4370 				return i;
4371 		}
4372 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4373 			return update_nats_in_cursum(journal, 1);
4374 	} else if (type == SIT_JOURNAL) {
4375 		for (i = 0; i < sits_in_cursum(journal); i++)
4376 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4377 				return i;
4378 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4379 			return update_sits_in_cursum(journal, 1);
4380 	}
4381 	return -1;
4382 }
4383 
4384 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4385 					unsigned int segno)
4386 {
4387 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4388 }
4389 
4390 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4391 					unsigned int start)
4392 {
4393 	struct sit_info *sit_i = SIT_I(sbi);
4394 	struct page *page;
4395 	pgoff_t src_off, dst_off;
4396 
4397 	src_off = current_sit_addr(sbi, start);
4398 	dst_off = next_sit_addr(sbi, src_off);
4399 
4400 	page = f2fs_grab_meta_page(sbi, dst_off);
4401 	seg_info_to_sit_page(sbi, page, start);
4402 
4403 	set_page_dirty(page);
4404 	set_to_next_sit(sit_i, start);
4405 
4406 	return page;
4407 }
4408 
4409 static struct sit_entry_set *grab_sit_entry_set(void)
4410 {
4411 	struct sit_entry_set *ses =
4412 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4413 						GFP_NOFS, true, NULL);
4414 
4415 	ses->entry_cnt = 0;
4416 	INIT_LIST_HEAD(&ses->set_list);
4417 	return ses;
4418 }
4419 
4420 static void release_sit_entry_set(struct sit_entry_set *ses)
4421 {
4422 	list_del(&ses->set_list);
4423 	kmem_cache_free(sit_entry_set_slab, ses);
4424 }
4425 
4426 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4427 						struct list_head *head)
4428 {
4429 	struct sit_entry_set *next = ses;
4430 
4431 	if (list_is_last(&ses->set_list, head))
4432 		return;
4433 
4434 	list_for_each_entry_continue(next, head, set_list)
4435 		if (ses->entry_cnt <= next->entry_cnt) {
4436 			list_move_tail(&ses->set_list, &next->set_list);
4437 			return;
4438 		}
4439 
4440 	list_move_tail(&ses->set_list, head);
4441 }
4442 
4443 static void add_sit_entry(unsigned int segno, struct list_head *head)
4444 {
4445 	struct sit_entry_set *ses;
4446 	unsigned int start_segno = START_SEGNO(segno);
4447 
4448 	list_for_each_entry(ses, head, set_list) {
4449 		if (ses->start_segno == start_segno) {
4450 			ses->entry_cnt++;
4451 			adjust_sit_entry_set(ses, head);
4452 			return;
4453 		}
4454 	}
4455 
4456 	ses = grab_sit_entry_set();
4457 
4458 	ses->start_segno = start_segno;
4459 	ses->entry_cnt++;
4460 	list_add(&ses->set_list, head);
4461 }
4462 
4463 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4464 {
4465 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4466 	struct list_head *set_list = &sm_info->sit_entry_set;
4467 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4468 	unsigned int segno;
4469 
4470 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4471 		add_sit_entry(segno, set_list);
4472 }
4473 
4474 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4475 {
4476 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4477 	struct f2fs_journal *journal = curseg->journal;
4478 	int i;
4479 
4480 	down_write(&curseg->journal_rwsem);
4481 	for (i = 0; i < sits_in_cursum(journal); i++) {
4482 		unsigned int segno;
4483 		bool dirtied;
4484 
4485 		segno = le32_to_cpu(segno_in_journal(journal, i));
4486 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4487 
4488 		if (!dirtied)
4489 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4490 	}
4491 	update_sits_in_cursum(journal, -i);
4492 	up_write(&curseg->journal_rwsem);
4493 }
4494 
4495 /*
4496  * CP calls this function, which flushes SIT entries including sit_journal,
4497  * and moves prefree segs to free segs.
4498  */
4499 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4500 {
4501 	struct sit_info *sit_i = SIT_I(sbi);
4502 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4503 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4504 	struct f2fs_journal *journal = curseg->journal;
4505 	struct sit_entry_set *ses, *tmp;
4506 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4507 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4508 	struct seg_entry *se;
4509 
4510 	down_write(&sit_i->sentry_lock);
4511 
4512 	if (!sit_i->dirty_sentries)
4513 		goto out;
4514 
4515 	/*
4516 	 * add and account sit entries of dirty bitmap in sit entry
4517 	 * set temporarily
4518 	 */
4519 	add_sits_in_set(sbi);
4520 
4521 	/*
4522 	 * if there are no enough space in journal to store dirty sit
4523 	 * entries, remove all entries from journal and add and account
4524 	 * them in sit entry set.
4525 	 */
4526 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4527 								!to_journal)
4528 		remove_sits_in_journal(sbi);
4529 
4530 	/*
4531 	 * there are two steps to flush sit entries:
4532 	 * #1, flush sit entries to journal in current cold data summary block.
4533 	 * #2, flush sit entries to sit page.
4534 	 */
4535 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4536 		struct page *page = NULL;
4537 		struct f2fs_sit_block *raw_sit = NULL;
4538 		unsigned int start_segno = ses->start_segno;
4539 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4540 						(unsigned long)MAIN_SEGS(sbi));
4541 		unsigned int segno = start_segno;
4542 
4543 		if (to_journal &&
4544 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4545 			to_journal = false;
4546 
4547 		if (to_journal) {
4548 			down_write(&curseg->journal_rwsem);
4549 		} else {
4550 			page = get_next_sit_page(sbi, start_segno);
4551 			raw_sit = page_address(page);
4552 		}
4553 
4554 		/* flush dirty sit entries in region of current sit set */
4555 		for_each_set_bit_from(segno, bitmap, end) {
4556 			int offset, sit_offset;
4557 
4558 			se = get_seg_entry(sbi, segno);
4559 #ifdef CONFIG_F2FS_CHECK_FS
4560 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4561 						SIT_VBLOCK_MAP_SIZE))
4562 				f2fs_bug_on(sbi, 1);
4563 #endif
4564 
4565 			/* add discard candidates */
4566 			if (!(cpc->reason & CP_DISCARD)) {
4567 				cpc->trim_start = segno;
4568 				add_discard_addrs(sbi, cpc, false);
4569 			}
4570 
4571 			if (to_journal) {
4572 				offset = f2fs_lookup_journal_in_cursum(journal,
4573 							SIT_JOURNAL, segno, 1);
4574 				f2fs_bug_on(sbi, offset < 0);
4575 				segno_in_journal(journal, offset) =
4576 							cpu_to_le32(segno);
4577 				seg_info_to_raw_sit(se,
4578 					&sit_in_journal(journal, offset));
4579 				check_block_count(sbi, segno,
4580 					&sit_in_journal(journal, offset));
4581 			} else {
4582 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4583 				seg_info_to_raw_sit(se,
4584 						&raw_sit->entries[sit_offset]);
4585 				check_block_count(sbi, segno,
4586 						&raw_sit->entries[sit_offset]);
4587 			}
4588 
4589 			__clear_bit(segno, bitmap);
4590 			sit_i->dirty_sentries--;
4591 			ses->entry_cnt--;
4592 		}
4593 
4594 		if (to_journal)
4595 			up_write(&curseg->journal_rwsem);
4596 		else
4597 			f2fs_put_page(page, 1);
4598 
4599 		f2fs_bug_on(sbi, ses->entry_cnt);
4600 		release_sit_entry_set(ses);
4601 	}
4602 
4603 	f2fs_bug_on(sbi, !list_empty(head));
4604 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4605 out:
4606 	if (cpc->reason & CP_DISCARD) {
4607 		__u64 trim_start = cpc->trim_start;
4608 
4609 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4610 			add_discard_addrs(sbi, cpc, false);
4611 
4612 		cpc->trim_start = trim_start;
4613 	}
4614 	up_write(&sit_i->sentry_lock);
4615 
4616 	set_prefree_as_free_segments(sbi);
4617 }
4618 
4619 static int build_sit_info(struct f2fs_sb_info *sbi)
4620 {
4621 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4622 	struct sit_info *sit_i;
4623 	unsigned int sit_segs, start;
4624 	char *src_bitmap, *bitmap;
4625 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4626 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4627 
4628 	/* allocate memory for SIT information */
4629 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4630 	if (!sit_i)
4631 		return -ENOMEM;
4632 
4633 	SM_I(sbi)->sit_info = sit_i;
4634 
4635 	sit_i->sentries =
4636 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4637 					      MAIN_SEGS(sbi)),
4638 			      GFP_KERNEL);
4639 	if (!sit_i->sentries)
4640 		return -ENOMEM;
4641 
4642 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4643 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4644 								GFP_KERNEL);
4645 	if (!sit_i->dirty_sentries_bitmap)
4646 		return -ENOMEM;
4647 
4648 #ifdef CONFIG_F2FS_CHECK_FS
4649 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4650 #else
4651 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4652 #endif
4653 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4654 	if (!sit_i->bitmap)
4655 		return -ENOMEM;
4656 
4657 	bitmap = sit_i->bitmap;
4658 
4659 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4660 		sit_i->sentries[start].cur_valid_map = bitmap;
4661 		bitmap += SIT_VBLOCK_MAP_SIZE;
4662 
4663 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4664 		bitmap += SIT_VBLOCK_MAP_SIZE;
4665 
4666 #ifdef CONFIG_F2FS_CHECK_FS
4667 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4668 		bitmap += SIT_VBLOCK_MAP_SIZE;
4669 #endif
4670 
4671 		if (discard_map) {
4672 			sit_i->sentries[start].discard_map = bitmap;
4673 			bitmap += SIT_VBLOCK_MAP_SIZE;
4674 		}
4675 	}
4676 
4677 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4678 	if (!sit_i->tmp_map)
4679 		return -ENOMEM;
4680 
4681 	if (__is_large_section(sbi)) {
4682 		sit_i->sec_entries =
4683 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4684 						      MAIN_SECS(sbi)),
4685 				      GFP_KERNEL);
4686 		if (!sit_i->sec_entries)
4687 			return -ENOMEM;
4688 	}
4689 
4690 	/* get information related with SIT */
4691 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4692 
4693 	/* setup SIT bitmap from ckeckpoint pack */
4694 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4695 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4696 
4697 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4698 	if (!sit_i->sit_bitmap)
4699 		return -ENOMEM;
4700 
4701 #ifdef CONFIG_F2FS_CHECK_FS
4702 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4703 					sit_bitmap_size, GFP_KERNEL);
4704 	if (!sit_i->sit_bitmap_mir)
4705 		return -ENOMEM;
4706 
4707 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4708 					main_bitmap_size, GFP_KERNEL);
4709 	if (!sit_i->invalid_segmap)
4710 		return -ENOMEM;
4711 #endif
4712 
4713 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4714 	sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4715 	sit_i->written_valid_blocks = 0;
4716 	sit_i->bitmap_size = sit_bitmap_size;
4717 	sit_i->dirty_sentries = 0;
4718 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4719 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4720 	sit_i->mounted_time = ktime_get_boottime_seconds();
4721 	init_rwsem(&sit_i->sentry_lock);
4722 	return 0;
4723 }
4724 
4725 static int build_free_segmap(struct f2fs_sb_info *sbi)
4726 {
4727 	struct free_segmap_info *free_i;
4728 	unsigned int bitmap_size, sec_bitmap_size;
4729 
4730 	/* allocate memory for free segmap information */
4731 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4732 	if (!free_i)
4733 		return -ENOMEM;
4734 
4735 	SM_I(sbi)->free_info = free_i;
4736 
4737 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4738 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4739 	if (!free_i->free_segmap)
4740 		return -ENOMEM;
4741 
4742 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4743 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4744 	if (!free_i->free_secmap)
4745 		return -ENOMEM;
4746 
4747 	/* set all segments as dirty temporarily */
4748 	memset(free_i->free_segmap, 0xff, bitmap_size);
4749 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4750 
4751 	/* init free segmap information */
4752 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4753 	free_i->free_segments = 0;
4754 	free_i->free_sections = 0;
4755 	spin_lock_init(&free_i->segmap_lock);
4756 	return 0;
4757 }
4758 
4759 static int build_curseg(struct f2fs_sb_info *sbi)
4760 {
4761 	struct curseg_info *array;
4762 	int i;
4763 
4764 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4765 					sizeof(*array)), GFP_KERNEL);
4766 	if (!array)
4767 		return -ENOMEM;
4768 
4769 	SM_I(sbi)->curseg_array = array;
4770 
4771 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4772 		mutex_init(&array[i].curseg_mutex);
4773 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4774 		if (!array[i].sum_blk)
4775 			return -ENOMEM;
4776 		init_rwsem(&array[i].journal_rwsem);
4777 		array[i].journal = f2fs_kzalloc(sbi,
4778 				sizeof(struct f2fs_journal), GFP_KERNEL);
4779 		if (!array[i].journal)
4780 			return -ENOMEM;
4781 		if (i < NR_PERSISTENT_LOG)
4782 			array[i].seg_type = CURSEG_HOT_DATA + i;
4783 		else if (i == CURSEG_COLD_DATA_PINNED)
4784 			array[i].seg_type = CURSEG_COLD_DATA;
4785 		else if (i == CURSEG_ALL_DATA_ATGC)
4786 			array[i].seg_type = CURSEG_COLD_DATA;
4787 		reset_curseg_fields(&array[i]);
4788 	}
4789 	return restore_curseg_summaries(sbi);
4790 }
4791 
4792 static int build_sit_entries(struct f2fs_sb_info *sbi)
4793 {
4794 	struct sit_info *sit_i = SIT_I(sbi);
4795 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4796 	struct f2fs_journal *journal = curseg->journal;
4797 	struct seg_entry *se;
4798 	struct f2fs_sit_entry sit;
4799 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4800 	unsigned int i, start, end;
4801 	unsigned int readed, start_blk = 0;
4802 	int err = 0;
4803 	block_t sit_valid_blocks[2] = {0, 0};
4804 
4805 	do {
4806 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4807 							META_SIT, true);
4808 
4809 		start = start_blk * sit_i->sents_per_block;
4810 		end = (start_blk + readed) * sit_i->sents_per_block;
4811 
4812 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4813 			struct f2fs_sit_block *sit_blk;
4814 			struct page *page;
4815 
4816 			se = &sit_i->sentries[start];
4817 			page = get_current_sit_page(sbi, start);
4818 			if (IS_ERR(page))
4819 				return PTR_ERR(page);
4820 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4821 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4822 			f2fs_put_page(page, 1);
4823 
4824 			err = check_block_count(sbi, start, &sit);
4825 			if (err)
4826 				return err;
4827 			seg_info_from_raw_sit(se, &sit);
4828 
4829 			if (se->type >= NR_PERSISTENT_LOG) {
4830 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4831 							se->type, start);
4832 				f2fs_handle_error(sbi,
4833 						ERROR_INCONSISTENT_SUM_TYPE);
4834 				return -EFSCORRUPTED;
4835 			}
4836 
4837 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4838 
4839 			if (!f2fs_block_unit_discard(sbi))
4840 				goto init_discard_map_done;
4841 
4842 			/* build discard map only one time */
4843 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4844 				memset(se->discard_map, 0xff,
4845 						SIT_VBLOCK_MAP_SIZE);
4846 				goto init_discard_map_done;
4847 			}
4848 			memcpy(se->discard_map, se->cur_valid_map,
4849 						SIT_VBLOCK_MAP_SIZE);
4850 			sbi->discard_blks += BLKS_PER_SEG(sbi) -
4851 						se->valid_blocks;
4852 init_discard_map_done:
4853 			if (__is_large_section(sbi))
4854 				get_sec_entry(sbi, start)->valid_blocks +=
4855 							se->valid_blocks;
4856 		}
4857 		start_blk += readed;
4858 	} while (start_blk < sit_blk_cnt);
4859 
4860 	down_read(&curseg->journal_rwsem);
4861 	for (i = 0; i < sits_in_cursum(journal); i++) {
4862 		unsigned int old_valid_blocks;
4863 
4864 		start = le32_to_cpu(segno_in_journal(journal, i));
4865 		if (start >= MAIN_SEGS(sbi)) {
4866 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4867 				 start);
4868 			err = -EFSCORRUPTED;
4869 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4870 			break;
4871 		}
4872 
4873 		se = &sit_i->sentries[start];
4874 		sit = sit_in_journal(journal, i);
4875 
4876 		old_valid_blocks = se->valid_blocks;
4877 
4878 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4879 
4880 		err = check_block_count(sbi, start, &sit);
4881 		if (err)
4882 			break;
4883 		seg_info_from_raw_sit(se, &sit);
4884 
4885 		if (se->type >= NR_PERSISTENT_LOG) {
4886 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4887 							se->type, start);
4888 			err = -EFSCORRUPTED;
4889 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4890 			break;
4891 		}
4892 
4893 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4894 
4895 		if (f2fs_block_unit_discard(sbi)) {
4896 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4897 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4898 			} else {
4899 				memcpy(se->discard_map, se->cur_valid_map,
4900 							SIT_VBLOCK_MAP_SIZE);
4901 				sbi->discard_blks += old_valid_blocks;
4902 				sbi->discard_blks -= se->valid_blocks;
4903 			}
4904 		}
4905 
4906 		if (__is_large_section(sbi)) {
4907 			get_sec_entry(sbi, start)->valid_blocks +=
4908 							se->valid_blocks;
4909 			get_sec_entry(sbi, start)->valid_blocks -=
4910 							old_valid_blocks;
4911 		}
4912 	}
4913 	up_read(&curseg->journal_rwsem);
4914 
4915 	if (err)
4916 		return err;
4917 
4918 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4919 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4920 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4921 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4922 		return -EFSCORRUPTED;
4923 	}
4924 
4925 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4926 				valid_user_blocks(sbi)) {
4927 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4928 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4929 			 valid_user_blocks(sbi));
4930 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4931 		return -EFSCORRUPTED;
4932 	}
4933 
4934 	return 0;
4935 }
4936 
4937 static void init_free_segmap(struct f2fs_sb_info *sbi)
4938 {
4939 	unsigned int start;
4940 	int type;
4941 	struct seg_entry *sentry;
4942 
4943 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4944 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4945 			continue;
4946 		sentry = get_seg_entry(sbi, start);
4947 		if (!sentry->valid_blocks)
4948 			__set_free(sbi, start);
4949 		else
4950 			SIT_I(sbi)->written_valid_blocks +=
4951 						sentry->valid_blocks;
4952 	}
4953 
4954 	/* set use the current segments */
4955 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4956 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4957 
4958 		__set_test_and_inuse(sbi, curseg_t->segno);
4959 	}
4960 }
4961 
4962 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4963 {
4964 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4965 	struct free_segmap_info *free_i = FREE_I(sbi);
4966 	unsigned int segno = 0, offset = 0, secno;
4967 	block_t valid_blocks, usable_blks_in_seg;
4968 
4969 	while (1) {
4970 		/* find dirty segment based on free segmap */
4971 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4972 		if (segno >= MAIN_SEGS(sbi))
4973 			break;
4974 		offset = segno + 1;
4975 		valid_blocks = get_valid_blocks(sbi, segno, false);
4976 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4977 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4978 			continue;
4979 		if (valid_blocks > usable_blks_in_seg) {
4980 			f2fs_bug_on(sbi, 1);
4981 			continue;
4982 		}
4983 		mutex_lock(&dirty_i->seglist_lock);
4984 		__locate_dirty_segment(sbi, segno, DIRTY);
4985 		mutex_unlock(&dirty_i->seglist_lock);
4986 	}
4987 
4988 	if (!__is_large_section(sbi))
4989 		return;
4990 
4991 	mutex_lock(&dirty_i->seglist_lock);
4992 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
4993 		valid_blocks = get_valid_blocks(sbi, segno, true);
4994 		secno = GET_SEC_FROM_SEG(sbi, segno);
4995 
4996 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4997 			continue;
4998 		if (IS_CURSEC(sbi, secno))
4999 			continue;
5000 		set_bit(secno, dirty_i->dirty_secmap);
5001 	}
5002 	mutex_unlock(&dirty_i->seglist_lock);
5003 }
5004 
5005 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5006 {
5007 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5008 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5009 
5010 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5011 	if (!dirty_i->victim_secmap)
5012 		return -ENOMEM;
5013 
5014 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5015 	if (!dirty_i->pinned_secmap)
5016 		return -ENOMEM;
5017 
5018 	dirty_i->pinned_secmap_cnt = 0;
5019 	dirty_i->enable_pin_section = true;
5020 	return 0;
5021 }
5022 
5023 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5024 {
5025 	struct dirty_seglist_info *dirty_i;
5026 	unsigned int bitmap_size, i;
5027 
5028 	/* allocate memory for dirty segments list information */
5029 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5030 								GFP_KERNEL);
5031 	if (!dirty_i)
5032 		return -ENOMEM;
5033 
5034 	SM_I(sbi)->dirty_info = dirty_i;
5035 	mutex_init(&dirty_i->seglist_lock);
5036 
5037 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5038 
5039 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
5040 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5041 								GFP_KERNEL);
5042 		if (!dirty_i->dirty_segmap[i])
5043 			return -ENOMEM;
5044 	}
5045 
5046 	if (__is_large_section(sbi)) {
5047 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5048 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5049 						bitmap_size, GFP_KERNEL);
5050 		if (!dirty_i->dirty_secmap)
5051 			return -ENOMEM;
5052 	}
5053 
5054 	init_dirty_segmap(sbi);
5055 	return init_victim_secmap(sbi);
5056 }
5057 
5058 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5059 {
5060 	int i;
5061 
5062 	/*
5063 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5064 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5065 	 */
5066 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5067 		struct curseg_info *curseg = CURSEG_I(sbi, i);
5068 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5069 		unsigned int blkofs = curseg->next_blkoff;
5070 
5071 		if (f2fs_sb_has_readonly(sbi) &&
5072 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5073 			continue;
5074 
5075 		sanity_check_seg_type(sbi, curseg->seg_type);
5076 
5077 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5078 			f2fs_err(sbi,
5079 				 "Current segment has invalid alloc_type:%d",
5080 				 curseg->alloc_type);
5081 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5082 			return -EFSCORRUPTED;
5083 		}
5084 
5085 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
5086 			goto out;
5087 
5088 		if (curseg->alloc_type == SSR)
5089 			continue;
5090 
5091 		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5092 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5093 				continue;
5094 out:
5095 			f2fs_err(sbi,
5096 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5097 				 i, curseg->segno, curseg->alloc_type,
5098 				 curseg->next_blkoff, blkofs);
5099 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5100 			return -EFSCORRUPTED;
5101 		}
5102 	}
5103 	return 0;
5104 }
5105 
5106 #ifdef CONFIG_BLK_DEV_ZONED
5107 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5108 				    struct f2fs_dev_info *fdev,
5109 				    struct blk_zone *zone)
5110 {
5111 	unsigned int zone_segno;
5112 	block_t zone_block, valid_block_cnt;
5113 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5114 	int ret;
5115 	unsigned int nofs_flags;
5116 
5117 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5118 		return 0;
5119 
5120 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5121 	zone_segno = GET_SEGNO(sbi, zone_block);
5122 
5123 	/*
5124 	 * Skip check of zones cursegs point to, since
5125 	 * fix_curseg_write_pointer() checks them.
5126 	 */
5127 	if (zone_segno >= MAIN_SEGS(sbi))
5128 		return 0;
5129 
5130 	/*
5131 	 * Get # of valid block of the zone.
5132 	 */
5133 	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5134 	if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5135 		f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5136 				zone_segno, valid_block_cnt,
5137 				blk_zone_cond_str(zone->cond));
5138 		return 0;
5139 	}
5140 
5141 	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5142 	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5143 		return 0;
5144 
5145 	if (!valid_block_cnt) {
5146 		f2fs_notice(sbi, "Zone without valid block has non-zero write "
5147 			    "pointer. Reset the write pointer: cond[%s]",
5148 			    blk_zone_cond_str(zone->cond));
5149 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5150 					zone->len >> log_sectors_per_block);
5151 		if (ret)
5152 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5153 				 fdev->path, ret);
5154 		return ret;
5155 	}
5156 
5157 	/*
5158 	 * If there are valid blocks and the write pointer doesn't match
5159 	 * with them, we need to report the inconsistency and fill
5160 	 * the zone till the end to close the zone. This inconsistency
5161 	 * does not cause write error because the zone will not be
5162 	 * selected for write operation until it get discarded.
5163 	 */
5164 	f2fs_notice(sbi, "Valid blocks are not aligned with write "
5165 		    "pointer: valid block[0x%x,0x%x] cond[%s]",
5166 		    zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5167 
5168 	nofs_flags = memalloc_nofs_save();
5169 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5170 				zone->start, zone->len);
5171 	memalloc_nofs_restore(nofs_flags);
5172 	if (ret == -EOPNOTSUPP) {
5173 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5174 					zone->len - (zone->wp - zone->start),
5175 					GFP_NOFS, 0);
5176 		if (ret)
5177 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5178 					fdev->path, ret);
5179 	} else if (ret) {
5180 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5181 				fdev->path, ret);
5182 	}
5183 
5184 	return ret;
5185 }
5186 
5187 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5188 						  block_t zone_blkaddr)
5189 {
5190 	int i;
5191 
5192 	for (i = 0; i < sbi->s_ndevs; i++) {
5193 		if (!bdev_is_zoned(FDEV(i).bdev))
5194 			continue;
5195 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5196 				zone_blkaddr <= FDEV(i).end_blk))
5197 			return &FDEV(i);
5198 	}
5199 
5200 	return NULL;
5201 }
5202 
5203 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5204 			      void *data)
5205 {
5206 	memcpy(data, zone, sizeof(struct blk_zone));
5207 	return 0;
5208 }
5209 
5210 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5211 {
5212 	struct curseg_info *cs = CURSEG_I(sbi, type);
5213 	struct f2fs_dev_info *zbd;
5214 	struct blk_zone zone;
5215 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5216 	block_t cs_zone_block, wp_block;
5217 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5218 	sector_t zone_sector;
5219 	int err;
5220 
5221 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5222 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5223 
5224 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5225 	if (!zbd)
5226 		return 0;
5227 
5228 	/* report zone for the sector the curseg points to */
5229 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5230 		<< log_sectors_per_block;
5231 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5232 				  report_one_zone_cb, &zone);
5233 	if (err != 1) {
5234 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5235 			 zbd->path, err);
5236 		return err;
5237 	}
5238 
5239 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5240 		return 0;
5241 
5242 	/*
5243 	 * When safely unmounted in the previous mount, we could use current
5244 	 * segments. Otherwise, allocate new sections.
5245 	 */
5246 	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5247 		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5248 		wp_segno = GET_SEGNO(sbi, wp_block);
5249 		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5250 		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5251 
5252 		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5253 				wp_sector_off == 0)
5254 			return 0;
5255 
5256 		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5257 			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5258 			    cs->next_blkoff, wp_segno, wp_blkoff);
5259 	}
5260 
5261 	/* Allocate a new section if it's not new. */
5262 	if (cs->next_blkoff ||
5263 	    cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5264 		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5265 
5266 		f2fs_allocate_new_section(sbi, type, true);
5267 		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5268 				"[0x%x,0x%x] -> [0x%x,0x%x]",
5269 				type, old_segno, old_blkoff,
5270 				cs->segno, cs->next_blkoff);
5271 	}
5272 
5273 	/* check consistency of the zone curseg pointed to */
5274 	if (check_zone_write_pointer(sbi, zbd, &zone))
5275 		return -EIO;
5276 
5277 	/* check newly assigned zone */
5278 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5279 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5280 
5281 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5282 	if (!zbd)
5283 		return 0;
5284 
5285 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5286 		<< log_sectors_per_block;
5287 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5288 				  report_one_zone_cb, &zone);
5289 	if (err != 1) {
5290 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5291 			 zbd->path, err);
5292 		return err;
5293 	}
5294 
5295 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5296 		return 0;
5297 
5298 	if (zone.wp != zone.start) {
5299 		f2fs_notice(sbi,
5300 			    "New zone for curseg[%d] is not yet discarded. "
5301 			    "Reset the zone: curseg[0x%x,0x%x]",
5302 			    type, cs->segno, cs->next_blkoff);
5303 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5304 					zone.len >> log_sectors_per_block);
5305 		if (err) {
5306 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5307 				 zbd->path, err);
5308 			return err;
5309 		}
5310 	}
5311 
5312 	return 0;
5313 }
5314 
5315 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5316 {
5317 	int i, ret;
5318 
5319 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5320 		ret = fix_curseg_write_pointer(sbi, i);
5321 		if (ret)
5322 			return ret;
5323 	}
5324 
5325 	return 0;
5326 }
5327 
5328 struct check_zone_write_pointer_args {
5329 	struct f2fs_sb_info *sbi;
5330 	struct f2fs_dev_info *fdev;
5331 };
5332 
5333 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5334 				      void *data)
5335 {
5336 	struct check_zone_write_pointer_args *args;
5337 
5338 	args = (struct check_zone_write_pointer_args *)data;
5339 
5340 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5341 }
5342 
5343 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5344 {
5345 	int i, ret;
5346 	struct check_zone_write_pointer_args args;
5347 
5348 	for (i = 0; i < sbi->s_ndevs; i++) {
5349 		if (!bdev_is_zoned(FDEV(i).bdev))
5350 			continue;
5351 
5352 		args.sbi = sbi;
5353 		args.fdev = &FDEV(i);
5354 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5355 					  check_zone_write_pointer_cb, &args);
5356 		if (ret < 0)
5357 			return ret;
5358 	}
5359 
5360 	return 0;
5361 }
5362 
5363 /*
5364  * Return the number of usable blocks in a segment. The number of blocks
5365  * returned is always equal to the number of blocks in a segment for
5366  * segments fully contained within a sequential zone capacity or a
5367  * conventional zone. For segments partially contained in a sequential
5368  * zone capacity, the number of usable blocks up to the zone capacity
5369  * is returned. 0 is returned in all other cases.
5370  */
5371 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5372 			struct f2fs_sb_info *sbi, unsigned int segno)
5373 {
5374 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5375 	unsigned int secno;
5376 
5377 	if (!sbi->unusable_blocks_per_sec)
5378 		return BLKS_PER_SEG(sbi);
5379 
5380 	secno = GET_SEC_FROM_SEG(sbi, segno);
5381 	seg_start = START_BLOCK(sbi, segno);
5382 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5383 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5384 
5385 	/*
5386 	 * If segment starts before zone capacity and spans beyond
5387 	 * zone capacity, then usable blocks are from seg start to
5388 	 * zone capacity. If the segment starts after the zone capacity,
5389 	 * then there are no usable blocks.
5390 	 */
5391 	if (seg_start >= sec_cap_blkaddr)
5392 		return 0;
5393 	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5394 		return sec_cap_blkaddr - seg_start;
5395 
5396 	return BLKS_PER_SEG(sbi);
5397 }
5398 #else
5399 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5400 {
5401 	return 0;
5402 }
5403 
5404 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5405 {
5406 	return 0;
5407 }
5408 
5409 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5410 							unsigned int segno)
5411 {
5412 	return 0;
5413 }
5414 
5415 #endif
5416 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5417 					unsigned int segno)
5418 {
5419 	if (f2fs_sb_has_blkzoned(sbi))
5420 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5421 
5422 	return BLKS_PER_SEG(sbi);
5423 }
5424 
5425 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5426 {
5427 	if (f2fs_sb_has_blkzoned(sbi))
5428 		return CAP_SEGS_PER_SEC(sbi);
5429 
5430 	return SEGS_PER_SEC(sbi);
5431 }
5432 
5433 /*
5434  * Update min, max modified time for cost-benefit GC algorithm
5435  */
5436 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5437 {
5438 	struct sit_info *sit_i = SIT_I(sbi);
5439 	unsigned int segno;
5440 
5441 	down_write(&sit_i->sentry_lock);
5442 
5443 	sit_i->min_mtime = ULLONG_MAX;
5444 
5445 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5446 		unsigned int i;
5447 		unsigned long long mtime = 0;
5448 
5449 		for (i = 0; i < SEGS_PER_SEC(sbi); i++)
5450 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5451 
5452 		mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
5453 
5454 		if (sit_i->min_mtime > mtime)
5455 			sit_i->min_mtime = mtime;
5456 	}
5457 	sit_i->max_mtime = get_mtime(sbi, false);
5458 	sit_i->dirty_max_mtime = 0;
5459 	up_write(&sit_i->sentry_lock);
5460 }
5461 
5462 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5463 {
5464 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5465 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5466 	struct f2fs_sm_info *sm_info;
5467 	int err;
5468 
5469 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5470 	if (!sm_info)
5471 		return -ENOMEM;
5472 
5473 	/* init sm info */
5474 	sbi->sm_info = sm_info;
5475 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5476 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5477 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5478 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5479 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5480 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5481 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5482 	sm_info->rec_prefree_segments = sm_info->main_segments *
5483 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5484 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5485 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5486 
5487 	if (!f2fs_lfs_mode(sbi))
5488 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5489 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5490 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5491 	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5492 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5493 	sm_info->min_ssr_sections = reserved_sections(sbi);
5494 
5495 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5496 
5497 	init_f2fs_rwsem(&sm_info->curseg_lock);
5498 
5499 	err = f2fs_create_flush_cmd_control(sbi);
5500 	if (err)
5501 		return err;
5502 
5503 	err = create_discard_cmd_control(sbi);
5504 	if (err)
5505 		return err;
5506 
5507 	err = build_sit_info(sbi);
5508 	if (err)
5509 		return err;
5510 	err = build_free_segmap(sbi);
5511 	if (err)
5512 		return err;
5513 	err = build_curseg(sbi);
5514 	if (err)
5515 		return err;
5516 
5517 	/* reinit free segmap based on SIT */
5518 	err = build_sit_entries(sbi);
5519 	if (err)
5520 		return err;
5521 
5522 	init_free_segmap(sbi);
5523 	err = build_dirty_segmap(sbi);
5524 	if (err)
5525 		return err;
5526 
5527 	err = sanity_check_curseg(sbi);
5528 	if (err)
5529 		return err;
5530 
5531 	init_min_max_mtime(sbi);
5532 	return 0;
5533 }
5534 
5535 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5536 		enum dirty_type dirty_type)
5537 {
5538 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5539 
5540 	mutex_lock(&dirty_i->seglist_lock);
5541 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5542 	dirty_i->nr_dirty[dirty_type] = 0;
5543 	mutex_unlock(&dirty_i->seglist_lock);
5544 }
5545 
5546 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5547 {
5548 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5549 
5550 	kvfree(dirty_i->pinned_secmap);
5551 	kvfree(dirty_i->victim_secmap);
5552 }
5553 
5554 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5555 {
5556 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5557 	int i;
5558 
5559 	if (!dirty_i)
5560 		return;
5561 
5562 	/* discard pre-free/dirty segments list */
5563 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5564 		discard_dirty_segmap(sbi, i);
5565 
5566 	if (__is_large_section(sbi)) {
5567 		mutex_lock(&dirty_i->seglist_lock);
5568 		kvfree(dirty_i->dirty_secmap);
5569 		mutex_unlock(&dirty_i->seglist_lock);
5570 	}
5571 
5572 	destroy_victim_secmap(sbi);
5573 	SM_I(sbi)->dirty_info = NULL;
5574 	kfree(dirty_i);
5575 }
5576 
5577 static void destroy_curseg(struct f2fs_sb_info *sbi)
5578 {
5579 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5580 	int i;
5581 
5582 	if (!array)
5583 		return;
5584 	SM_I(sbi)->curseg_array = NULL;
5585 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5586 		kfree(array[i].sum_blk);
5587 		kfree(array[i].journal);
5588 	}
5589 	kfree(array);
5590 }
5591 
5592 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5593 {
5594 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5595 
5596 	if (!free_i)
5597 		return;
5598 	SM_I(sbi)->free_info = NULL;
5599 	kvfree(free_i->free_segmap);
5600 	kvfree(free_i->free_secmap);
5601 	kfree(free_i);
5602 }
5603 
5604 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5605 {
5606 	struct sit_info *sit_i = SIT_I(sbi);
5607 
5608 	if (!sit_i)
5609 		return;
5610 
5611 	if (sit_i->sentries)
5612 		kvfree(sit_i->bitmap);
5613 	kfree(sit_i->tmp_map);
5614 
5615 	kvfree(sit_i->sentries);
5616 	kvfree(sit_i->sec_entries);
5617 	kvfree(sit_i->dirty_sentries_bitmap);
5618 
5619 	SM_I(sbi)->sit_info = NULL;
5620 	kvfree(sit_i->sit_bitmap);
5621 #ifdef CONFIG_F2FS_CHECK_FS
5622 	kvfree(sit_i->sit_bitmap_mir);
5623 	kvfree(sit_i->invalid_segmap);
5624 #endif
5625 	kfree(sit_i);
5626 }
5627 
5628 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5629 {
5630 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5631 
5632 	if (!sm_info)
5633 		return;
5634 	f2fs_destroy_flush_cmd_control(sbi, true);
5635 	destroy_discard_cmd_control(sbi);
5636 	destroy_dirty_segmap(sbi);
5637 	destroy_curseg(sbi);
5638 	destroy_free_segmap(sbi);
5639 	destroy_sit_info(sbi);
5640 	sbi->sm_info = NULL;
5641 	kfree(sm_info);
5642 }
5643 
5644 int __init f2fs_create_segment_manager_caches(void)
5645 {
5646 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5647 			sizeof(struct discard_entry));
5648 	if (!discard_entry_slab)
5649 		goto fail;
5650 
5651 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5652 			sizeof(struct discard_cmd));
5653 	if (!discard_cmd_slab)
5654 		goto destroy_discard_entry;
5655 
5656 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5657 			sizeof(struct sit_entry_set));
5658 	if (!sit_entry_set_slab)
5659 		goto destroy_discard_cmd;
5660 
5661 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5662 			sizeof(struct revoke_entry));
5663 	if (!revoke_entry_slab)
5664 		goto destroy_sit_entry_set;
5665 	return 0;
5666 
5667 destroy_sit_entry_set:
5668 	kmem_cache_destroy(sit_entry_set_slab);
5669 destroy_discard_cmd:
5670 	kmem_cache_destroy(discard_cmd_slab);
5671 destroy_discard_entry:
5672 	kmem_cache_destroy(discard_entry_slab);
5673 fail:
5674 	return -ENOMEM;
5675 }
5676 
5677 void f2fs_destroy_segment_manager_caches(void)
5678 {
5679 	kmem_cache_destroy(sit_entry_set_slab);
5680 	kmem_cache_destroy(discard_cmd_slab);
5681 	kmem_cache_destroy(discard_entry_slab);
5682 	kmem_cache_destroy(revoke_entry_slab);
5683 }
5684