1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 #include <linux/freezer.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "trace.h" 25 #include <trace/events/f2fs.h> 26 27 #define __reverse_ffz(x) __reverse_ffs(~(x)) 28 29 static struct kmem_cache *discard_entry_slab; 30 static struct kmem_cache *discard_cmd_slab; 31 static struct kmem_cache *sit_entry_set_slab; 32 static struct kmem_cache *inmem_entry_slab; 33 34 static unsigned long __reverse_ulong(unsigned char *str) 35 { 36 unsigned long tmp = 0; 37 int shift = 24, idx = 0; 38 39 #if BITS_PER_LONG == 64 40 shift = 56; 41 #endif 42 while (shift >= 0) { 43 tmp |= (unsigned long)str[idx++] << shift; 44 shift -= BITS_PER_BYTE; 45 } 46 return tmp; 47 } 48 49 /* 50 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 51 * MSB and LSB are reversed in a byte by f2fs_set_bit. 52 */ 53 static inline unsigned long __reverse_ffs(unsigned long word) 54 { 55 int num = 0; 56 57 #if BITS_PER_LONG == 64 58 if ((word & 0xffffffff00000000UL) == 0) 59 num += 32; 60 else 61 word >>= 32; 62 #endif 63 if ((word & 0xffff0000) == 0) 64 num += 16; 65 else 66 word >>= 16; 67 68 if ((word & 0xff00) == 0) 69 num += 8; 70 else 71 word >>= 8; 72 73 if ((word & 0xf0) == 0) 74 num += 4; 75 else 76 word >>= 4; 77 78 if ((word & 0xc) == 0) 79 num += 2; 80 else 81 word >>= 2; 82 83 if ((word & 0x2) == 0) 84 num += 1; 85 return num; 86 } 87 88 /* 89 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 90 * f2fs_set_bit makes MSB and LSB reversed in a byte. 91 * @size must be integral times of unsigned long. 92 * Example: 93 * MSB <--> LSB 94 * f2fs_set_bit(0, bitmap) => 1000 0000 95 * f2fs_set_bit(7, bitmap) => 0000 0001 96 */ 97 static unsigned long __find_rev_next_bit(const unsigned long *addr, 98 unsigned long size, unsigned long offset) 99 { 100 const unsigned long *p = addr + BIT_WORD(offset); 101 unsigned long result = size; 102 unsigned long tmp; 103 104 if (offset >= size) 105 return size; 106 107 size -= (offset & ~(BITS_PER_LONG - 1)); 108 offset %= BITS_PER_LONG; 109 110 while (1) { 111 if (*p == 0) 112 goto pass; 113 114 tmp = __reverse_ulong((unsigned char *)p); 115 116 tmp &= ~0UL >> offset; 117 if (size < BITS_PER_LONG) 118 tmp &= (~0UL << (BITS_PER_LONG - size)); 119 if (tmp) 120 goto found; 121 pass: 122 if (size <= BITS_PER_LONG) 123 break; 124 size -= BITS_PER_LONG; 125 offset = 0; 126 p++; 127 } 128 return result; 129 found: 130 return result - size + __reverse_ffs(tmp); 131 } 132 133 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 134 unsigned long size, unsigned long offset) 135 { 136 const unsigned long *p = addr + BIT_WORD(offset); 137 unsigned long result = size; 138 unsigned long tmp; 139 140 if (offset >= size) 141 return size; 142 143 size -= (offset & ~(BITS_PER_LONG - 1)); 144 offset %= BITS_PER_LONG; 145 146 while (1) { 147 if (*p == ~0UL) 148 goto pass; 149 150 tmp = __reverse_ulong((unsigned char *)p); 151 152 if (offset) 153 tmp |= ~0UL << (BITS_PER_LONG - offset); 154 if (size < BITS_PER_LONG) 155 tmp |= ~0UL >> size; 156 if (tmp != ~0UL) 157 goto found; 158 pass: 159 if (size <= BITS_PER_LONG) 160 break; 161 size -= BITS_PER_LONG; 162 offset = 0; 163 p++; 164 } 165 return result; 166 found: 167 return result - size + __reverse_ffz(tmp); 168 } 169 170 void register_inmem_page(struct inode *inode, struct page *page) 171 { 172 struct f2fs_inode_info *fi = F2FS_I(inode); 173 struct inmem_pages *new; 174 175 f2fs_trace_pid(page); 176 177 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 178 SetPagePrivate(page); 179 180 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 181 182 /* add atomic page indices to the list */ 183 new->page = page; 184 INIT_LIST_HEAD(&new->list); 185 186 /* increase reference count with clean state */ 187 mutex_lock(&fi->inmem_lock); 188 get_page(page); 189 list_add_tail(&new->list, &fi->inmem_pages); 190 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 191 mutex_unlock(&fi->inmem_lock); 192 193 trace_f2fs_register_inmem_page(page, INMEM); 194 } 195 196 static int __revoke_inmem_pages(struct inode *inode, 197 struct list_head *head, bool drop, bool recover) 198 { 199 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 200 struct inmem_pages *cur, *tmp; 201 int err = 0; 202 203 list_for_each_entry_safe(cur, tmp, head, list) { 204 struct page *page = cur->page; 205 206 if (drop) 207 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 208 209 lock_page(page); 210 211 if (recover) { 212 struct dnode_of_data dn; 213 struct node_info ni; 214 215 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 216 217 set_new_dnode(&dn, inode, NULL, NULL, 0); 218 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 219 err = -EAGAIN; 220 goto next; 221 } 222 get_node_info(sbi, dn.nid, &ni); 223 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 224 cur->old_addr, ni.version, true, true); 225 f2fs_put_dnode(&dn); 226 } 227 next: 228 /* we don't need to invalidate this in the sccessful status */ 229 if (drop || recover) 230 ClearPageUptodate(page); 231 set_page_private(page, 0); 232 ClearPagePrivate(page); 233 f2fs_put_page(page, 1); 234 235 list_del(&cur->list); 236 kmem_cache_free(inmem_entry_slab, cur); 237 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 238 } 239 return err; 240 } 241 242 void drop_inmem_pages(struct inode *inode) 243 { 244 struct f2fs_inode_info *fi = F2FS_I(inode); 245 246 mutex_lock(&fi->inmem_lock); 247 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 248 mutex_unlock(&fi->inmem_lock); 249 250 clear_inode_flag(inode, FI_ATOMIC_FILE); 251 stat_dec_atomic_write(inode); 252 } 253 254 void drop_inmem_page(struct inode *inode, struct page *page) 255 { 256 struct f2fs_inode_info *fi = F2FS_I(inode); 257 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 258 struct list_head *head = &fi->inmem_pages; 259 struct inmem_pages *cur = NULL; 260 261 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 262 263 mutex_lock(&fi->inmem_lock); 264 list_for_each_entry(cur, head, list) { 265 if (cur->page == page) 266 break; 267 } 268 269 f2fs_bug_on(sbi, !cur || cur->page != page); 270 list_del(&cur->list); 271 mutex_unlock(&fi->inmem_lock); 272 273 dec_page_count(sbi, F2FS_INMEM_PAGES); 274 kmem_cache_free(inmem_entry_slab, cur); 275 276 ClearPageUptodate(page); 277 set_page_private(page, 0); 278 ClearPagePrivate(page); 279 f2fs_put_page(page, 0); 280 281 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 282 } 283 284 static int __commit_inmem_pages(struct inode *inode, 285 struct list_head *revoke_list) 286 { 287 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 288 struct f2fs_inode_info *fi = F2FS_I(inode); 289 struct inmem_pages *cur, *tmp; 290 struct f2fs_io_info fio = { 291 .sbi = sbi, 292 .type = DATA, 293 .op = REQ_OP_WRITE, 294 .op_flags = REQ_SYNC | REQ_PRIO, 295 }; 296 pgoff_t last_idx = ULONG_MAX; 297 int err = 0; 298 299 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 300 struct page *page = cur->page; 301 302 lock_page(page); 303 if (page->mapping == inode->i_mapping) { 304 trace_f2fs_commit_inmem_page(page, INMEM); 305 306 set_page_dirty(page); 307 f2fs_wait_on_page_writeback(page, DATA, true); 308 if (clear_page_dirty_for_io(page)) { 309 inode_dec_dirty_pages(inode); 310 remove_dirty_inode(inode); 311 } 312 313 fio.page = page; 314 fio.old_blkaddr = NULL_ADDR; 315 fio.encrypted_page = NULL; 316 fio.need_lock = LOCK_DONE; 317 err = do_write_data_page(&fio); 318 if (err) { 319 unlock_page(page); 320 break; 321 } 322 323 /* record old blkaddr for revoking */ 324 cur->old_addr = fio.old_blkaddr; 325 last_idx = page->index; 326 } 327 unlock_page(page); 328 list_move_tail(&cur->list, revoke_list); 329 } 330 331 if (last_idx != ULONG_MAX) 332 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA); 333 334 if (!err) 335 __revoke_inmem_pages(inode, revoke_list, false, false); 336 337 return err; 338 } 339 340 int commit_inmem_pages(struct inode *inode) 341 { 342 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 343 struct f2fs_inode_info *fi = F2FS_I(inode); 344 struct list_head revoke_list; 345 int err; 346 347 INIT_LIST_HEAD(&revoke_list); 348 f2fs_balance_fs(sbi, true); 349 f2fs_lock_op(sbi); 350 351 set_inode_flag(inode, FI_ATOMIC_COMMIT); 352 353 mutex_lock(&fi->inmem_lock); 354 err = __commit_inmem_pages(inode, &revoke_list); 355 if (err) { 356 int ret; 357 /* 358 * try to revoke all committed pages, but still we could fail 359 * due to no memory or other reason, if that happened, EAGAIN 360 * will be returned, which means in such case, transaction is 361 * already not integrity, caller should use journal to do the 362 * recovery or rewrite & commit last transaction. For other 363 * error number, revoking was done by filesystem itself. 364 */ 365 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 366 if (ret) 367 err = ret; 368 369 /* drop all uncommitted pages */ 370 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 371 } 372 mutex_unlock(&fi->inmem_lock); 373 374 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 375 376 f2fs_unlock_op(sbi); 377 return err; 378 } 379 380 /* 381 * This function balances dirty node and dentry pages. 382 * In addition, it controls garbage collection. 383 */ 384 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 385 { 386 #ifdef CONFIG_F2FS_FAULT_INJECTION 387 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 388 f2fs_show_injection_info(FAULT_CHECKPOINT); 389 f2fs_stop_checkpoint(sbi, false); 390 } 391 #endif 392 393 /* balance_fs_bg is able to be pending */ 394 if (need && excess_cached_nats(sbi)) 395 f2fs_balance_fs_bg(sbi); 396 397 /* 398 * We should do GC or end up with checkpoint, if there are so many dirty 399 * dir/node pages without enough free segments. 400 */ 401 if (has_not_enough_free_secs(sbi, 0, 0)) { 402 mutex_lock(&sbi->gc_mutex); 403 f2fs_gc(sbi, false, false, NULL_SEGNO); 404 } 405 } 406 407 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 408 { 409 /* try to shrink extent cache when there is no enough memory */ 410 if (!available_free_memory(sbi, EXTENT_CACHE)) 411 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 412 413 /* check the # of cached NAT entries */ 414 if (!available_free_memory(sbi, NAT_ENTRIES)) 415 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 416 417 if (!available_free_memory(sbi, FREE_NIDS)) 418 try_to_free_nids(sbi, MAX_FREE_NIDS); 419 else 420 build_free_nids(sbi, false, false); 421 422 if (!is_idle(sbi) && !excess_dirty_nats(sbi)) 423 return; 424 425 /* checkpoint is the only way to shrink partial cached entries */ 426 if (!available_free_memory(sbi, NAT_ENTRIES) || 427 !available_free_memory(sbi, INO_ENTRIES) || 428 excess_prefree_segs(sbi) || 429 excess_dirty_nats(sbi) || 430 f2fs_time_over(sbi, CP_TIME)) { 431 if (test_opt(sbi, DATA_FLUSH)) { 432 struct blk_plug plug; 433 434 blk_start_plug(&plug); 435 sync_dirty_inodes(sbi, FILE_INODE); 436 blk_finish_plug(&plug); 437 } 438 f2fs_sync_fs(sbi->sb, true); 439 stat_inc_bg_cp_count(sbi->stat_info); 440 } 441 } 442 443 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 444 struct block_device *bdev) 445 { 446 struct bio *bio = f2fs_bio_alloc(0); 447 int ret; 448 449 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 450 bio->bi_bdev = bdev; 451 ret = submit_bio_wait(bio); 452 bio_put(bio); 453 454 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 455 test_opt(sbi, FLUSH_MERGE), ret); 456 return ret; 457 } 458 459 static int submit_flush_wait(struct f2fs_sb_info *sbi) 460 { 461 int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev); 462 int i; 463 464 if (!sbi->s_ndevs || ret) 465 return ret; 466 467 for (i = 1; i < sbi->s_ndevs; i++) { 468 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 469 if (ret) 470 break; 471 } 472 return ret; 473 } 474 475 static int issue_flush_thread(void *data) 476 { 477 struct f2fs_sb_info *sbi = data; 478 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 479 wait_queue_head_t *q = &fcc->flush_wait_queue; 480 repeat: 481 if (kthread_should_stop()) 482 return 0; 483 484 if (!llist_empty(&fcc->issue_list)) { 485 struct flush_cmd *cmd, *next; 486 int ret; 487 488 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 489 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 490 491 ret = submit_flush_wait(sbi); 492 atomic_inc(&fcc->issued_flush); 493 494 llist_for_each_entry_safe(cmd, next, 495 fcc->dispatch_list, llnode) { 496 cmd->ret = ret; 497 complete(&cmd->wait); 498 } 499 fcc->dispatch_list = NULL; 500 } 501 502 wait_event_interruptible(*q, 503 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 504 goto repeat; 505 } 506 507 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 508 { 509 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 510 struct flush_cmd cmd; 511 int ret; 512 513 if (test_opt(sbi, NOBARRIER)) 514 return 0; 515 516 if (!test_opt(sbi, FLUSH_MERGE)) { 517 ret = submit_flush_wait(sbi); 518 atomic_inc(&fcc->issued_flush); 519 return ret; 520 } 521 522 if (!atomic_read(&fcc->issing_flush)) { 523 atomic_inc(&fcc->issing_flush); 524 ret = submit_flush_wait(sbi); 525 atomic_dec(&fcc->issing_flush); 526 527 atomic_inc(&fcc->issued_flush); 528 return ret; 529 } 530 531 init_completion(&cmd.wait); 532 533 atomic_inc(&fcc->issing_flush); 534 llist_add(&cmd.llnode, &fcc->issue_list); 535 536 if (!fcc->dispatch_list) 537 wake_up(&fcc->flush_wait_queue); 538 539 if (fcc->f2fs_issue_flush) { 540 wait_for_completion(&cmd.wait); 541 atomic_dec(&fcc->issing_flush); 542 } else { 543 llist_del_all(&fcc->issue_list); 544 atomic_set(&fcc->issing_flush, 0); 545 } 546 547 return cmd.ret; 548 } 549 550 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 551 { 552 dev_t dev = sbi->sb->s_bdev->bd_dev; 553 struct flush_cmd_control *fcc; 554 int err = 0; 555 556 if (SM_I(sbi)->fcc_info) { 557 fcc = SM_I(sbi)->fcc_info; 558 if (fcc->f2fs_issue_flush) 559 return err; 560 goto init_thread; 561 } 562 563 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 564 if (!fcc) 565 return -ENOMEM; 566 atomic_set(&fcc->issued_flush, 0); 567 atomic_set(&fcc->issing_flush, 0); 568 init_waitqueue_head(&fcc->flush_wait_queue); 569 init_llist_head(&fcc->issue_list); 570 SM_I(sbi)->fcc_info = fcc; 571 if (!test_opt(sbi, FLUSH_MERGE)) 572 return err; 573 574 init_thread: 575 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 576 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 577 if (IS_ERR(fcc->f2fs_issue_flush)) { 578 err = PTR_ERR(fcc->f2fs_issue_flush); 579 kfree(fcc); 580 SM_I(sbi)->fcc_info = NULL; 581 return err; 582 } 583 584 return err; 585 } 586 587 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 588 { 589 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 590 591 if (fcc && fcc->f2fs_issue_flush) { 592 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 593 594 fcc->f2fs_issue_flush = NULL; 595 kthread_stop(flush_thread); 596 } 597 if (free) { 598 kfree(fcc); 599 SM_I(sbi)->fcc_info = NULL; 600 } 601 } 602 603 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 604 enum dirty_type dirty_type) 605 { 606 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 607 608 /* need not be added */ 609 if (IS_CURSEG(sbi, segno)) 610 return; 611 612 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 613 dirty_i->nr_dirty[dirty_type]++; 614 615 if (dirty_type == DIRTY) { 616 struct seg_entry *sentry = get_seg_entry(sbi, segno); 617 enum dirty_type t = sentry->type; 618 619 if (unlikely(t >= DIRTY)) { 620 f2fs_bug_on(sbi, 1); 621 return; 622 } 623 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 624 dirty_i->nr_dirty[t]++; 625 } 626 } 627 628 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 629 enum dirty_type dirty_type) 630 { 631 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 632 633 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 634 dirty_i->nr_dirty[dirty_type]--; 635 636 if (dirty_type == DIRTY) { 637 struct seg_entry *sentry = get_seg_entry(sbi, segno); 638 enum dirty_type t = sentry->type; 639 640 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 641 dirty_i->nr_dirty[t]--; 642 643 if (get_valid_blocks(sbi, segno, true) == 0) 644 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 645 dirty_i->victim_secmap); 646 } 647 } 648 649 /* 650 * Should not occur error such as -ENOMEM. 651 * Adding dirty entry into seglist is not critical operation. 652 * If a given segment is one of current working segments, it won't be added. 653 */ 654 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 655 { 656 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 657 unsigned short valid_blocks; 658 659 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 660 return; 661 662 mutex_lock(&dirty_i->seglist_lock); 663 664 valid_blocks = get_valid_blocks(sbi, segno, false); 665 666 if (valid_blocks == 0) { 667 __locate_dirty_segment(sbi, segno, PRE); 668 __remove_dirty_segment(sbi, segno, DIRTY); 669 } else if (valid_blocks < sbi->blocks_per_seg) { 670 __locate_dirty_segment(sbi, segno, DIRTY); 671 } else { 672 /* Recovery routine with SSR needs this */ 673 __remove_dirty_segment(sbi, segno, DIRTY); 674 } 675 676 mutex_unlock(&dirty_i->seglist_lock); 677 } 678 679 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 680 struct block_device *bdev, block_t lstart, 681 block_t start, block_t len) 682 { 683 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 684 struct list_head *pend_list; 685 struct discard_cmd *dc; 686 687 f2fs_bug_on(sbi, !len); 688 689 pend_list = &dcc->pend_list[plist_idx(len)]; 690 691 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 692 INIT_LIST_HEAD(&dc->list); 693 dc->bdev = bdev; 694 dc->lstart = lstart; 695 dc->start = start; 696 dc->len = len; 697 dc->ref = 0; 698 dc->state = D_PREP; 699 dc->error = 0; 700 init_completion(&dc->wait); 701 list_add_tail(&dc->list, pend_list); 702 atomic_inc(&dcc->discard_cmd_cnt); 703 dcc->undiscard_blks += len; 704 705 return dc; 706 } 707 708 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 709 struct block_device *bdev, block_t lstart, 710 block_t start, block_t len, 711 struct rb_node *parent, struct rb_node **p) 712 { 713 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 714 struct discard_cmd *dc; 715 716 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 717 718 rb_link_node(&dc->rb_node, parent, p); 719 rb_insert_color(&dc->rb_node, &dcc->root); 720 721 return dc; 722 } 723 724 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 725 struct discard_cmd *dc) 726 { 727 if (dc->state == D_DONE) 728 atomic_dec(&dcc->issing_discard); 729 730 list_del(&dc->list); 731 rb_erase(&dc->rb_node, &dcc->root); 732 dcc->undiscard_blks -= dc->len; 733 734 kmem_cache_free(discard_cmd_slab, dc); 735 736 atomic_dec(&dcc->discard_cmd_cnt); 737 } 738 739 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 740 struct discard_cmd *dc) 741 { 742 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 743 744 f2fs_bug_on(sbi, dc->ref); 745 746 if (dc->error == -EOPNOTSUPP) 747 dc->error = 0; 748 749 if (dc->error) 750 f2fs_msg(sbi->sb, KERN_INFO, 751 "Issue discard(%u, %u, %u) failed, ret: %d", 752 dc->lstart, dc->start, dc->len, dc->error); 753 __detach_discard_cmd(dcc, dc); 754 } 755 756 static void f2fs_submit_discard_endio(struct bio *bio) 757 { 758 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 759 760 dc->error = blk_status_to_errno(bio->bi_status); 761 dc->state = D_DONE; 762 complete_all(&dc->wait); 763 bio_put(bio); 764 } 765 766 void __check_sit_bitmap(struct f2fs_sb_info *sbi, 767 block_t start, block_t end) 768 { 769 #ifdef CONFIG_F2FS_CHECK_FS 770 struct seg_entry *sentry; 771 unsigned int segno; 772 block_t blk = start; 773 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 774 unsigned long *map; 775 776 while (blk < end) { 777 segno = GET_SEGNO(sbi, blk); 778 sentry = get_seg_entry(sbi, segno); 779 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 780 781 size = min((unsigned long)(end - blk), max_blocks); 782 map = (unsigned long *)(sentry->cur_valid_map); 783 offset = __find_rev_next_bit(map, size, offset); 784 f2fs_bug_on(sbi, offset != size); 785 blk += size; 786 } 787 #endif 788 } 789 790 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 791 static void __submit_discard_cmd(struct f2fs_sb_info *sbi, 792 struct discard_cmd *dc) 793 { 794 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 795 struct bio *bio = NULL; 796 797 if (dc->state != D_PREP) 798 return; 799 800 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len); 801 802 dc->error = __blkdev_issue_discard(dc->bdev, 803 SECTOR_FROM_BLOCK(dc->start), 804 SECTOR_FROM_BLOCK(dc->len), 805 GFP_NOFS, 0, &bio); 806 if (!dc->error) { 807 /* should keep before submission to avoid D_DONE right away */ 808 dc->state = D_SUBMIT; 809 atomic_inc(&dcc->issued_discard); 810 atomic_inc(&dcc->issing_discard); 811 if (bio) { 812 bio->bi_private = dc; 813 bio->bi_end_io = f2fs_submit_discard_endio; 814 bio->bi_opf |= REQ_SYNC; 815 submit_bio(bio); 816 list_move_tail(&dc->list, &dcc->wait_list); 817 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len); 818 } 819 } else { 820 __remove_discard_cmd(sbi, dc); 821 } 822 } 823 824 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 825 struct block_device *bdev, block_t lstart, 826 block_t start, block_t len, 827 struct rb_node **insert_p, 828 struct rb_node *insert_parent) 829 { 830 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 831 struct rb_node **p = &dcc->root.rb_node; 832 struct rb_node *parent = NULL; 833 struct discard_cmd *dc = NULL; 834 835 if (insert_p && insert_parent) { 836 parent = insert_parent; 837 p = insert_p; 838 goto do_insert; 839 } 840 841 p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart); 842 do_insert: 843 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p); 844 if (!dc) 845 return NULL; 846 847 return dc; 848 } 849 850 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 851 struct discard_cmd *dc) 852 { 853 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 854 } 855 856 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 857 struct discard_cmd *dc, block_t blkaddr) 858 { 859 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 860 struct discard_info di = dc->di; 861 bool modified = false; 862 863 if (dc->state == D_DONE || dc->len == 1) { 864 __remove_discard_cmd(sbi, dc); 865 return; 866 } 867 868 dcc->undiscard_blks -= di.len; 869 870 if (blkaddr > di.lstart) { 871 dc->len = blkaddr - dc->lstart; 872 dcc->undiscard_blks += dc->len; 873 __relocate_discard_cmd(dcc, dc); 874 modified = true; 875 } 876 877 if (blkaddr < di.lstart + di.len - 1) { 878 if (modified) { 879 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 880 di.start + blkaddr + 1 - di.lstart, 881 di.lstart + di.len - 1 - blkaddr, 882 NULL, NULL); 883 } else { 884 dc->lstart++; 885 dc->len--; 886 dc->start++; 887 dcc->undiscard_blks += dc->len; 888 __relocate_discard_cmd(dcc, dc); 889 } 890 } 891 } 892 893 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 894 struct block_device *bdev, block_t lstart, 895 block_t start, block_t len) 896 { 897 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 898 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 899 struct discard_cmd *dc; 900 struct discard_info di = {0}; 901 struct rb_node **insert_p = NULL, *insert_parent = NULL; 902 block_t end = lstart + len; 903 904 mutex_lock(&dcc->cmd_lock); 905 906 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root, 907 NULL, lstart, 908 (struct rb_entry **)&prev_dc, 909 (struct rb_entry **)&next_dc, 910 &insert_p, &insert_parent, true); 911 if (dc) 912 prev_dc = dc; 913 914 if (!prev_dc) { 915 di.lstart = lstart; 916 di.len = next_dc ? next_dc->lstart - lstart : len; 917 di.len = min(di.len, len); 918 di.start = start; 919 } 920 921 while (1) { 922 struct rb_node *node; 923 bool merged = false; 924 struct discard_cmd *tdc = NULL; 925 926 if (prev_dc) { 927 di.lstart = prev_dc->lstart + prev_dc->len; 928 if (di.lstart < lstart) 929 di.lstart = lstart; 930 if (di.lstart >= end) 931 break; 932 933 if (!next_dc || next_dc->lstart > end) 934 di.len = end - di.lstart; 935 else 936 di.len = next_dc->lstart - di.lstart; 937 di.start = start + di.lstart - lstart; 938 } 939 940 if (!di.len) 941 goto next; 942 943 if (prev_dc && prev_dc->state == D_PREP && 944 prev_dc->bdev == bdev && 945 __is_discard_back_mergeable(&di, &prev_dc->di)) { 946 prev_dc->di.len += di.len; 947 dcc->undiscard_blks += di.len; 948 __relocate_discard_cmd(dcc, prev_dc); 949 di = prev_dc->di; 950 tdc = prev_dc; 951 merged = true; 952 } 953 954 if (next_dc && next_dc->state == D_PREP && 955 next_dc->bdev == bdev && 956 __is_discard_front_mergeable(&di, &next_dc->di)) { 957 next_dc->di.lstart = di.lstart; 958 next_dc->di.len += di.len; 959 next_dc->di.start = di.start; 960 dcc->undiscard_blks += di.len; 961 __relocate_discard_cmd(dcc, next_dc); 962 if (tdc) 963 __remove_discard_cmd(sbi, tdc); 964 merged = true; 965 } 966 967 if (!merged) { 968 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 969 di.len, NULL, NULL); 970 } 971 next: 972 prev_dc = next_dc; 973 if (!prev_dc) 974 break; 975 976 node = rb_next(&prev_dc->rb_node); 977 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 978 } 979 980 mutex_unlock(&dcc->cmd_lock); 981 } 982 983 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 984 struct block_device *bdev, block_t blkstart, block_t blklen) 985 { 986 block_t lblkstart = blkstart; 987 988 trace_f2fs_queue_discard(bdev, blkstart, blklen); 989 990 if (sbi->s_ndevs) { 991 int devi = f2fs_target_device_index(sbi, blkstart); 992 993 blkstart -= FDEV(devi).start_blk; 994 } 995 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 996 return 0; 997 } 998 999 static void __issue_discard_cmd(struct f2fs_sb_info *sbi, bool issue_cond) 1000 { 1001 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1002 struct list_head *pend_list; 1003 struct discard_cmd *dc, *tmp; 1004 struct blk_plug plug; 1005 int i, iter = 0; 1006 1007 mutex_lock(&dcc->cmd_lock); 1008 f2fs_bug_on(sbi, 1009 !__check_rb_tree_consistence(sbi, &dcc->root)); 1010 blk_start_plug(&plug); 1011 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1012 pend_list = &dcc->pend_list[i]; 1013 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1014 f2fs_bug_on(sbi, dc->state != D_PREP); 1015 1016 if (!issue_cond || is_idle(sbi)) 1017 __submit_discard_cmd(sbi, dc); 1018 if (issue_cond && iter++ > DISCARD_ISSUE_RATE) 1019 goto out; 1020 } 1021 } 1022 out: 1023 blk_finish_plug(&plug); 1024 mutex_unlock(&dcc->cmd_lock); 1025 } 1026 1027 static void __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1028 struct discard_cmd *dc) 1029 { 1030 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1031 1032 wait_for_completion_io(&dc->wait); 1033 mutex_lock(&dcc->cmd_lock); 1034 f2fs_bug_on(sbi, dc->state != D_DONE); 1035 dc->ref--; 1036 if (!dc->ref) 1037 __remove_discard_cmd(sbi, dc); 1038 mutex_unlock(&dcc->cmd_lock); 1039 } 1040 1041 static void __wait_discard_cmd(struct f2fs_sb_info *sbi, bool wait_cond) 1042 { 1043 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1044 struct list_head *wait_list = &(dcc->wait_list); 1045 struct discard_cmd *dc, *tmp; 1046 bool need_wait; 1047 1048 next: 1049 need_wait = false; 1050 1051 mutex_lock(&dcc->cmd_lock); 1052 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1053 if (!wait_cond || (dc->state == D_DONE && !dc->ref)) { 1054 wait_for_completion_io(&dc->wait); 1055 __remove_discard_cmd(sbi, dc); 1056 } else { 1057 dc->ref++; 1058 need_wait = true; 1059 break; 1060 } 1061 } 1062 mutex_unlock(&dcc->cmd_lock); 1063 1064 if (need_wait) { 1065 __wait_one_discard_bio(sbi, dc); 1066 goto next; 1067 } 1068 } 1069 1070 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1071 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1072 { 1073 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1074 struct discard_cmd *dc; 1075 bool need_wait = false; 1076 1077 mutex_lock(&dcc->cmd_lock); 1078 dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr); 1079 if (dc) { 1080 if (dc->state == D_PREP) { 1081 __punch_discard_cmd(sbi, dc, blkaddr); 1082 } else { 1083 dc->ref++; 1084 need_wait = true; 1085 } 1086 } 1087 mutex_unlock(&dcc->cmd_lock); 1088 1089 if (need_wait) 1090 __wait_one_discard_bio(sbi, dc); 1091 } 1092 1093 void stop_discard_thread(struct f2fs_sb_info *sbi) 1094 { 1095 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1096 1097 if (dcc && dcc->f2fs_issue_discard) { 1098 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1099 1100 dcc->f2fs_issue_discard = NULL; 1101 kthread_stop(discard_thread); 1102 } 1103 } 1104 1105 /* This comes from f2fs_put_super */ 1106 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi) 1107 { 1108 __issue_discard_cmd(sbi, false); 1109 __wait_discard_cmd(sbi, false); 1110 } 1111 1112 static int issue_discard_thread(void *data) 1113 { 1114 struct f2fs_sb_info *sbi = data; 1115 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1116 wait_queue_head_t *q = &dcc->discard_wait_queue; 1117 1118 set_freezable(); 1119 1120 do { 1121 wait_event_interruptible(*q, kthread_should_stop() || 1122 freezing(current) || 1123 atomic_read(&dcc->discard_cmd_cnt)); 1124 if (try_to_freeze()) 1125 continue; 1126 if (kthread_should_stop()) 1127 return 0; 1128 1129 __issue_discard_cmd(sbi, true); 1130 __wait_discard_cmd(sbi, true); 1131 1132 congestion_wait(BLK_RW_SYNC, HZ/50); 1133 } while (!kthread_should_stop()); 1134 return 0; 1135 } 1136 1137 #ifdef CONFIG_BLK_DEV_ZONED 1138 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1139 struct block_device *bdev, block_t blkstart, block_t blklen) 1140 { 1141 sector_t sector, nr_sects; 1142 block_t lblkstart = blkstart; 1143 int devi = 0; 1144 1145 if (sbi->s_ndevs) { 1146 devi = f2fs_target_device_index(sbi, blkstart); 1147 blkstart -= FDEV(devi).start_blk; 1148 } 1149 1150 /* 1151 * We need to know the type of the zone: for conventional zones, 1152 * use regular discard if the drive supports it. For sequential 1153 * zones, reset the zone write pointer. 1154 */ 1155 switch (get_blkz_type(sbi, bdev, blkstart)) { 1156 1157 case BLK_ZONE_TYPE_CONVENTIONAL: 1158 if (!blk_queue_discard(bdev_get_queue(bdev))) 1159 return 0; 1160 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1161 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1162 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1163 sector = SECTOR_FROM_BLOCK(blkstart); 1164 nr_sects = SECTOR_FROM_BLOCK(blklen); 1165 1166 if (sector & (bdev_zone_sectors(bdev) - 1) || 1167 nr_sects != bdev_zone_sectors(bdev)) { 1168 f2fs_msg(sbi->sb, KERN_INFO, 1169 "(%d) %s: Unaligned discard attempted (block %x + %x)", 1170 devi, sbi->s_ndevs ? FDEV(devi).path: "", 1171 blkstart, blklen); 1172 return -EIO; 1173 } 1174 trace_f2fs_issue_reset_zone(bdev, blkstart); 1175 return blkdev_reset_zones(bdev, sector, 1176 nr_sects, GFP_NOFS); 1177 default: 1178 /* Unknown zone type: broken device ? */ 1179 return -EIO; 1180 } 1181 } 1182 #endif 1183 1184 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1185 struct block_device *bdev, block_t blkstart, block_t blklen) 1186 { 1187 #ifdef CONFIG_BLK_DEV_ZONED 1188 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 1189 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 1190 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1191 #endif 1192 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1193 } 1194 1195 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1196 block_t blkstart, block_t blklen) 1197 { 1198 sector_t start = blkstart, len = 0; 1199 struct block_device *bdev; 1200 struct seg_entry *se; 1201 unsigned int offset; 1202 block_t i; 1203 int err = 0; 1204 1205 bdev = f2fs_target_device(sbi, blkstart, NULL); 1206 1207 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1208 if (i != start) { 1209 struct block_device *bdev2 = 1210 f2fs_target_device(sbi, i, NULL); 1211 1212 if (bdev2 != bdev) { 1213 err = __issue_discard_async(sbi, bdev, 1214 start, len); 1215 if (err) 1216 return err; 1217 bdev = bdev2; 1218 start = i; 1219 len = 0; 1220 } 1221 } 1222 1223 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1224 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1225 1226 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1227 sbi->discard_blks--; 1228 } 1229 1230 if (len) 1231 err = __issue_discard_async(sbi, bdev, start, len); 1232 return err; 1233 } 1234 1235 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1236 bool check_only) 1237 { 1238 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1239 int max_blocks = sbi->blocks_per_seg; 1240 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1241 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1242 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1243 unsigned long *discard_map = (unsigned long *)se->discard_map; 1244 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1245 unsigned int start = 0, end = -1; 1246 bool force = (cpc->reason & CP_DISCARD); 1247 struct discard_entry *de = NULL; 1248 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1249 int i; 1250 1251 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 1252 return false; 1253 1254 if (!force) { 1255 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 1256 SM_I(sbi)->dcc_info->nr_discards >= 1257 SM_I(sbi)->dcc_info->max_discards) 1258 return false; 1259 } 1260 1261 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1262 for (i = 0; i < entries; i++) 1263 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1264 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1265 1266 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1267 SM_I(sbi)->dcc_info->max_discards) { 1268 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1269 if (start >= max_blocks) 1270 break; 1271 1272 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1273 if (force && start && end != max_blocks 1274 && (end - start) < cpc->trim_minlen) 1275 continue; 1276 1277 if (check_only) 1278 return true; 1279 1280 if (!de) { 1281 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1282 GFP_F2FS_ZERO); 1283 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1284 list_add_tail(&de->list, head); 1285 } 1286 1287 for (i = start; i < end; i++) 1288 __set_bit_le(i, (void *)de->discard_map); 1289 1290 SM_I(sbi)->dcc_info->nr_discards += end - start; 1291 } 1292 return false; 1293 } 1294 1295 void release_discard_addrs(struct f2fs_sb_info *sbi) 1296 { 1297 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1298 struct discard_entry *entry, *this; 1299 1300 /* drop caches */ 1301 list_for_each_entry_safe(entry, this, head, list) { 1302 list_del(&entry->list); 1303 kmem_cache_free(discard_entry_slab, entry); 1304 } 1305 } 1306 1307 /* 1308 * Should call clear_prefree_segments after checkpoint is done. 1309 */ 1310 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1311 { 1312 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1313 unsigned int segno; 1314 1315 mutex_lock(&dirty_i->seglist_lock); 1316 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1317 __set_test_and_free(sbi, segno); 1318 mutex_unlock(&dirty_i->seglist_lock); 1319 } 1320 1321 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1322 { 1323 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1324 struct discard_entry *entry, *this; 1325 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1326 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1327 unsigned int start = 0, end = -1; 1328 unsigned int secno, start_segno; 1329 bool force = (cpc->reason & CP_DISCARD); 1330 1331 mutex_lock(&dirty_i->seglist_lock); 1332 1333 while (1) { 1334 int i; 1335 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1336 if (start >= MAIN_SEGS(sbi)) 1337 break; 1338 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1339 start + 1); 1340 1341 for (i = start; i < end; i++) 1342 clear_bit(i, prefree_map); 1343 1344 dirty_i->nr_dirty[PRE] -= end - start; 1345 1346 if (!test_opt(sbi, DISCARD)) 1347 continue; 1348 1349 if (force && start >= cpc->trim_start && 1350 (end - 1) <= cpc->trim_end) 1351 continue; 1352 1353 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 1354 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1355 (end - start) << sbi->log_blocks_per_seg); 1356 continue; 1357 } 1358 next: 1359 secno = GET_SEC_FROM_SEG(sbi, start); 1360 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1361 if (!IS_CURSEC(sbi, secno) && 1362 !get_valid_blocks(sbi, start, true)) 1363 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1364 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1365 1366 start = start_segno + sbi->segs_per_sec; 1367 if (start < end) 1368 goto next; 1369 else 1370 end = start - 1; 1371 } 1372 mutex_unlock(&dirty_i->seglist_lock); 1373 1374 /* send small discards */ 1375 list_for_each_entry_safe(entry, this, head, list) { 1376 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1377 bool is_valid = test_bit_le(0, entry->discard_map); 1378 1379 find_next: 1380 if (is_valid) { 1381 next_pos = find_next_zero_bit_le(entry->discard_map, 1382 sbi->blocks_per_seg, cur_pos); 1383 len = next_pos - cur_pos; 1384 1385 if (f2fs_sb_mounted_blkzoned(sbi->sb) || 1386 (force && len < cpc->trim_minlen)) 1387 goto skip; 1388 1389 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 1390 len); 1391 cpc->trimmed += len; 1392 total_len += len; 1393 } else { 1394 next_pos = find_next_bit_le(entry->discard_map, 1395 sbi->blocks_per_seg, cur_pos); 1396 } 1397 skip: 1398 cur_pos = next_pos; 1399 is_valid = !is_valid; 1400 1401 if (cur_pos < sbi->blocks_per_seg) 1402 goto find_next; 1403 1404 list_del(&entry->list); 1405 SM_I(sbi)->dcc_info->nr_discards -= total_len; 1406 kmem_cache_free(discard_entry_slab, entry); 1407 } 1408 1409 wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue); 1410 } 1411 1412 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 1413 { 1414 dev_t dev = sbi->sb->s_bdev->bd_dev; 1415 struct discard_cmd_control *dcc; 1416 int err = 0, i; 1417 1418 if (SM_I(sbi)->dcc_info) { 1419 dcc = SM_I(sbi)->dcc_info; 1420 goto init_thread; 1421 } 1422 1423 dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL); 1424 if (!dcc) 1425 return -ENOMEM; 1426 1427 INIT_LIST_HEAD(&dcc->entry_list); 1428 for (i = 0; i < MAX_PLIST_NUM; i++) 1429 INIT_LIST_HEAD(&dcc->pend_list[i]); 1430 INIT_LIST_HEAD(&dcc->wait_list); 1431 mutex_init(&dcc->cmd_lock); 1432 atomic_set(&dcc->issued_discard, 0); 1433 atomic_set(&dcc->issing_discard, 0); 1434 atomic_set(&dcc->discard_cmd_cnt, 0); 1435 dcc->nr_discards = 0; 1436 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 1437 dcc->undiscard_blks = 0; 1438 dcc->root = RB_ROOT; 1439 1440 init_waitqueue_head(&dcc->discard_wait_queue); 1441 SM_I(sbi)->dcc_info = dcc; 1442 init_thread: 1443 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 1444 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 1445 if (IS_ERR(dcc->f2fs_issue_discard)) { 1446 err = PTR_ERR(dcc->f2fs_issue_discard); 1447 kfree(dcc); 1448 SM_I(sbi)->dcc_info = NULL; 1449 return err; 1450 } 1451 1452 return err; 1453 } 1454 1455 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 1456 { 1457 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1458 1459 if (!dcc) 1460 return; 1461 1462 stop_discard_thread(sbi); 1463 1464 kfree(dcc); 1465 SM_I(sbi)->dcc_info = NULL; 1466 } 1467 1468 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 1469 { 1470 struct sit_info *sit_i = SIT_I(sbi); 1471 1472 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 1473 sit_i->dirty_sentries++; 1474 return false; 1475 } 1476 1477 return true; 1478 } 1479 1480 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 1481 unsigned int segno, int modified) 1482 { 1483 struct seg_entry *se = get_seg_entry(sbi, segno); 1484 se->type = type; 1485 if (modified) 1486 __mark_sit_entry_dirty(sbi, segno); 1487 } 1488 1489 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 1490 { 1491 struct seg_entry *se; 1492 unsigned int segno, offset; 1493 long int new_vblocks; 1494 1495 segno = GET_SEGNO(sbi, blkaddr); 1496 1497 se = get_seg_entry(sbi, segno); 1498 new_vblocks = se->valid_blocks + del; 1499 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1500 1501 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 1502 (new_vblocks > sbi->blocks_per_seg))); 1503 1504 se->valid_blocks = new_vblocks; 1505 se->mtime = get_mtime(sbi); 1506 SIT_I(sbi)->max_mtime = se->mtime; 1507 1508 /* Update valid block bitmap */ 1509 if (del > 0) { 1510 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) { 1511 #ifdef CONFIG_F2FS_CHECK_FS 1512 if (f2fs_test_and_set_bit(offset, 1513 se->cur_valid_map_mir)) 1514 f2fs_bug_on(sbi, 1); 1515 else 1516 WARN_ON(1); 1517 #else 1518 f2fs_bug_on(sbi, 1); 1519 #endif 1520 } 1521 if (f2fs_discard_en(sbi) && 1522 !f2fs_test_and_set_bit(offset, se->discard_map)) 1523 sbi->discard_blks--; 1524 1525 /* don't overwrite by SSR to keep node chain */ 1526 if (se->type == CURSEG_WARM_NODE) { 1527 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 1528 se->ckpt_valid_blocks++; 1529 } 1530 } else { 1531 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) { 1532 #ifdef CONFIG_F2FS_CHECK_FS 1533 if (!f2fs_test_and_clear_bit(offset, 1534 se->cur_valid_map_mir)) 1535 f2fs_bug_on(sbi, 1); 1536 else 1537 WARN_ON(1); 1538 #else 1539 f2fs_bug_on(sbi, 1); 1540 #endif 1541 } 1542 if (f2fs_discard_en(sbi) && 1543 f2fs_test_and_clear_bit(offset, se->discard_map)) 1544 sbi->discard_blks++; 1545 } 1546 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 1547 se->ckpt_valid_blocks += del; 1548 1549 __mark_sit_entry_dirty(sbi, segno); 1550 1551 /* update total number of valid blocks to be written in ckpt area */ 1552 SIT_I(sbi)->written_valid_blocks += del; 1553 1554 if (sbi->segs_per_sec > 1) 1555 get_sec_entry(sbi, segno)->valid_blocks += del; 1556 } 1557 1558 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 1559 { 1560 update_sit_entry(sbi, new, 1); 1561 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 1562 update_sit_entry(sbi, old, -1); 1563 1564 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 1565 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 1566 } 1567 1568 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 1569 { 1570 unsigned int segno = GET_SEGNO(sbi, addr); 1571 struct sit_info *sit_i = SIT_I(sbi); 1572 1573 f2fs_bug_on(sbi, addr == NULL_ADDR); 1574 if (addr == NEW_ADDR) 1575 return; 1576 1577 /* add it into sit main buffer */ 1578 mutex_lock(&sit_i->sentry_lock); 1579 1580 update_sit_entry(sbi, addr, -1); 1581 1582 /* add it into dirty seglist */ 1583 locate_dirty_segment(sbi, segno); 1584 1585 mutex_unlock(&sit_i->sentry_lock); 1586 } 1587 1588 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 1589 { 1590 struct sit_info *sit_i = SIT_I(sbi); 1591 unsigned int segno, offset; 1592 struct seg_entry *se; 1593 bool is_cp = false; 1594 1595 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1596 return true; 1597 1598 mutex_lock(&sit_i->sentry_lock); 1599 1600 segno = GET_SEGNO(sbi, blkaddr); 1601 se = get_seg_entry(sbi, segno); 1602 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1603 1604 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 1605 is_cp = true; 1606 1607 mutex_unlock(&sit_i->sentry_lock); 1608 1609 return is_cp; 1610 } 1611 1612 /* 1613 * This function should be resided under the curseg_mutex lock 1614 */ 1615 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1616 struct f2fs_summary *sum) 1617 { 1618 struct curseg_info *curseg = CURSEG_I(sbi, type); 1619 void *addr = curseg->sum_blk; 1620 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1621 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1622 } 1623 1624 /* 1625 * Calculate the number of current summary pages for writing 1626 */ 1627 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1628 { 1629 int valid_sum_count = 0; 1630 int i, sum_in_page; 1631 1632 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1633 if (sbi->ckpt->alloc_type[i] == SSR) 1634 valid_sum_count += sbi->blocks_per_seg; 1635 else { 1636 if (for_ra) 1637 valid_sum_count += le16_to_cpu( 1638 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1639 else 1640 valid_sum_count += curseg_blkoff(sbi, i); 1641 } 1642 } 1643 1644 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1645 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1646 if (valid_sum_count <= sum_in_page) 1647 return 1; 1648 else if ((valid_sum_count - sum_in_page) <= 1649 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1650 return 2; 1651 return 3; 1652 } 1653 1654 /* 1655 * Caller should put this summary page 1656 */ 1657 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1658 { 1659 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1660 } 1661 1662 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 1663 { 1664 struct page *page = grab_meta_page(sbi, blk_addr); 1665 void *dst = page_address(page); 1666 1667 if (src) 1668 memcpy(dst, src, PAGE_SIZE); 1669 else 1670 memset(dst, 0, PAGE_SIZE); 1671 set_page_dirty(page); 1672 f2fs_put_page(page, 1); 1673 } 1674 1675 static void write_sum_page(struct f2fs_sb_info *sbi, 1676 struct f2fs_summary_block *sum_blk, block_t blk_addr) 1677 { 1678 update_meta_page(sbi, (void *)sum_blk, blk_addr); 1679 } 1680 1681 static void write_current_sum_page(struct f2fs_sb_info *sbi, 1682 int type, block_t blk_addr) 1683 { 1684 struct curseg_info *curseg = CURSEG_I(sbi, type); 1685 struct page *page = grab_meta_page(sbi, blk_addr); 1686 struct f2fs_summary_block *src = curseg->sum_blk; 1687 struct f2fs_summary_block *dst; 1688 1689 dst = (struct f2fs_summary_block *)page_address(page); 1690 1691 mutex_lock(&curseg->curseg_mutex); 1692 1693 down_read(&curseg->journal_rwsem); 1694 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 1695 up_read(&curseg->journal_rwsem); 1696 1697 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 1698 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 1699 1700 mutex_unlock(&curseg->curseg_mutex); 1701 1702 set_page_dirty(page); 1703 f2fs_put_page(page, 1); 1704 } 1705 1706 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 1707 { 1708 struct curseg_info *curseg = CURSEG_I(sbi, type); 1709 unsigned int segno = curseg->segno + 1; 1710 struct free_segmap_info *free_i = FREE_I(sbi); 1711 1712 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 1713 return !test_bit(segno, free_i->free_segmap); 1714 return 0; 1715 } 1716 1717 /* 1718 * Find a new segment from the free segments bitmap to right order 1719 * This function should be returned with success, otherwise BUG 1720 */ 1721 static void get_new_segment(struct f2fs_sb_info *sbi, 1722 unsigned int *newseg, bool new_sec, int dir) 1723 { 1724 struct free_segmap_info *free_i = FREE_I(sbi); 1725 unsigned int segno, secno, zoneno; 1726 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1727 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 1728 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 1729 unsigned int left_start = hint; 1730 bool init = true; 1731 int go_left = 0; 1732 int i; 1733 1734 spin_lock(&free_i->segmap_lock); 1735 1736 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1737 segno = find_next_zero_bit(free_i->free_segmap, 1738 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 1739 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 1740 goto got_it; 1741 } 1742 find_other_zone: 1743 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1744 if (secno >= MAIN_SECS(sbi)) { 1745 if (dir == ALLOC_RIGHT) { 1746 secno = find_next_zero_bit(free_i->free_secmap, 1747 MAIN_SECS(sbi), 0); 1748 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1749 } else { 1750 go_left = 1; 1751 left_start = hint - 1; 1752 } 1753 } 1754 if (go_left == 0) 1755 goto skip_left; 1756 1757 while (test_bit(left_start, free_i->free_secmap)) { 1758 if (left_start > 0) { 1759 left_start--; 1760 continue; 1761 } 1762 left_start = find_next_zero_bit(free_i->free_secmap, 1763 MAIN_SECS(sbi), 0); 1764 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1765 break; 1766 } 1767 secno = left_start; 1768 skip_left: 1769 hint = secno; 1770 segno = GET_SEG_FROM_SEC(sbi, secno); 1771 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 1772 1773 /* give up on finding another zone */ 1774 if (!init) 1775 goto got_it; 1776 if (sbi->secs_per_zone == 1) 1777 goto got_it; 1778 if (zoneno == old_zoneno) 1779 goto got_it; 1780 if (dir == ALLOC_LEFT) { 1781 if (!go_left && zoneno + 1 >= total_zones) 1782 goto got_it; 1783 if (go_left && zoneno == 0) 1784 goto got_it; 1785 } 1786 for (i = 0; i < NR_CURSEG_TYPE; i++) 1787 if (CURSEG_I(sbi, i)->zone == zoneno) 1788 break; 1789 1790 if (i < NR_CURSEG_TYPE) { 1791 /* zone is in user, try another */ 1792 if (go_left) 1793 hint = zoneno * sbi->secs_per_zone - 1; 1794 else if (zoneno + 1 >= total_zones) 1795 hint = 0; 1796 else 1797 hint = (zoneno + 1) * sbi->secs_per_zone; 1798 init = false; 1799 goto find_other_zone; 1800 } 1801 got_it: 1802 /* set it as dirty segment in free segmap */ 1803 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1804 __set_inuse(sbi, segno); 1805 *newseg = segno; 1806 spin_unlock(&free_i->segmap_lock); 1807 } 1808 1809 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1810 { 1811 struct curseg_info *curseg = CURSEG_I(sbi, type); 1812 struct summary_footer *sum_footer; 1813 1814 curseg->segno = curseg->next_segno; 1815 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 1816 curseg->next_blkoff = 0; 1817 curseg->next_segno = NULL_SEGNO; 1818 1819 sum_footer = &(curseg->sum_blk->footer); 1820 memset(sum_footer, 0, sizeof(struct summary_footer)); 1821 if (IS_DATASEG(type)) 1822 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1823 if (IS_NODESEG(type)) 1824 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1825 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1826 } 1827 1828 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 1829 { 1830 /* if segs_per_sec is large than 1, we need to keep original policy. */ 1831 if (sbi->segs_per_sec != 1) 1832 return CURSEG_I(sbi, type)->segno; 1833 1834 if (type == CURSEG_HOT_DATA || IS_NODESEG(type)) 1835 return 0; 1836 1837 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 1838 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 1839 return CURSEG_I(sbi, type)->segno; 1840 } 1841 1842 /* 1843 * Allocate a current working segment. 1844 * This function always allocates a free segment in LFS manner. 1845 */ 1846 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1847 { 1848 struct curseg_info *curseg = CURSEG_I(sbi, type); 1849 unsigned int segno = curseg->segno; 1850 int dir = ALLOC_LEFT; 1851 1852 write_sum_page(sbi, curseg->sum_blk, 1853 GET_SUM_BLOCK(sbi, segno)); 1854 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1855 dir = ALLOC_RIGHT; 1856 1857 if (test_opt(sbi, NOHEAP)) 1858 dir = ALLOC_RIGHT; 1859 1860 segno = __get_next_segno(sbi, type); 1861 get_new_segment(sbi, &segno, new_sec, dir); 1862 curseg->next_segno = segno; 1863 reset_curseg(sbi, type, 1); 1864 curseg->alloc_type = LFS; 1865 } 1866 1867 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1868 struct curseg_info *seg, block_t start) 1869 { 1870 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1871 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1872 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1873 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1874 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1875 int i, pos; 1876 1877 for (i = 0; i < entries; i++) 1878 target_map[i] = ckpt_map[i] | cur_map[i]; 1879 1880 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1881 1882 seg->next_blkoff = pos; 1883 } 1884 1885 /* 1886 * If a segment is written by LFS manner, next block offset is just obtained 1887 * by increasing the current block offset. However, if a segment is written by 1888 * SSR manner, next block offset obtained by calling __next_free_blkoff 1889 */ 1890 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1891 struct curseg_info *seg) 1892 { 1893 if (seg->alloc_type == SSR) 1894 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1895 else 1896 seg->next_blkoff++; 1897 } 1898 1899 /* 1900 * This function always allocates a used segment(from dirty seglist) by SSR 1901 * manner, so it should recover the existing segment information of valid blocks 1902 */ 1903 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1904 { 1905 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1906 struct curseg_info *curseg = CURSEG_I(sbi, type); 1907 unsigned int new_segno = curseg->next_segno; 1908 struct f2fs_summary_block *sum_node; 1909 struct page *sum_page; 1910 1911 write_sum_page(sbi, curseg->sum_blk, 1912 GET_SUM_BLOCK(sbi, curseg->segno)); 1913 __set_test_and_inuse(sbi, new_segno); 1914 1915 mutex_lock(&dirty_i->seglist_lock); 1916 __remove_dirty_segment(sbi, new_segno, PRE); 1917 __remove_dirty_segment(sbi, new_segno, DIRTY); 1918 mutex_unlock(&dirty_i->seglist_lock); 1919 1920 reset_curseg(sbi, type, 1); 1921 curseg->alloc_type = SSR; 1922 __next_free_blkoff(sbi, curseg, 0); 1923 1924 if (reuse) { 1925 sum_page = get_sum_page(sbi, new_segno); 1926 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1927 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1928 f2fs_put_page(sum_page, 1); 1929 } 1930 } 1931 1932 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1933 { 1934 struct curseg_info *curseg = CURSEG_I(sbi, type); 1935 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1936 unsigned segno = NULL_SEGNO; 1937 int i, cnt; 1938 bool reversed = false; 1939 1940 /* need_SSR() already forces to do this */ 1941 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 1942 curseg->next_segno = segno; 1943 return 1; 1944 } 1945 1946 /* For node segments, let's do SSR more intensively */ 1947 if (IS_NODESEG(type)) { 1948 if (type >= CURSEG_WARM_NODE) { 1949 reversed = true; 1950 i = CURSEG_COLD_NODE; 1951 } else { 1952 i = CURSEG_HOT_NODE; 1953 } 1954 cnt = NR_CURSEG_NODE_TYPE; 1955 } else { 1956 if (type >= CURSEG_WARM_DATA) { 1957 reversed = true; 1958 i = CURSEG_COLD_DATA; 1959 } else { 1960 i = CURSEG_HOT_DATA; 1961 } 1962 cnt = NR_CURSEG_DATA_TYPE; 1963 } 1964 1965 for (; cnt-- > 0; reversed ? i-- : i++) { 1966 if (i == type) 1967 continue; 1968 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 1969 curseg->next_segno = segno; 1970 return 1; 1971 } 1972 } 1973 return 0; 1974 } 1975 1976 /* 1977 * flush out current segment and replace it with new segment 1978 * This function should be returned with success, otherwise BUG 1979 */ 1980 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1981 int type, bool force) 1982 { 1983 struct curseg_info *curseg = CURSEG_I(sbi, type); 1984 1985 if (force) 1986 new_curseg(sbi, type, true); 1987 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 1988 type == CURSEG_WARM_NODE) 1989 new_curseg(sbi, type, false); 1990 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1991 new_curseg(sbi, type, false); 1992 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1993 change_curseg(sbi, type, true); 1994 else 1995 new_curseg(sbi, type, false); 1996 1997 stat_inc_seg_type(sbi, curseg); 1998 } 1999 2000 void allocate_new_segments(struct f2fs_sb_info *sbi) 2001 { 2002 struct curseg_info *curseg; 2003 unsigned int old_segno; 2004 int i; 2005 2006 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2007 curseg = CURSEG_I(sbi, i); 2008 old_segno = curseg->segno; 2009 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2010 locate_dirty_segment(sbi, old_segno); 2011 } 2012 } 2013 2014 static const struct segment_allocation default_salloc_ops = { 2015 .allocate_segment = allocate_segment_by_default, 2016 }; 2017 2018 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2019 { 2020 __u64 trim_start = cpc->trim_start; 2021 bool has_candidate = false; 2022 2023 mutex_lock(&SIT_I(sbi)->sentry_lock); 2024 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2025 if (add_discard_addrs(sbi, cpc, true)) { 2026 has_candidate = true; 2027 break; 2028 } 2029 } 2030 mutex_unlock(&SIT_I(sbi)->sentry_lock); 2031 2032 cpc->trim_start = trim_start; 2033 return has_candidate; 2034 } 2035 2036 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2037 { 2038 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2039 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2040 unsigned int start_segno, end_segno; 2041 struct cp_control cpc; 2042 int err = 0; 2043 2044 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2045 return -EINVAL; 2046 2047 cpc.trimmed = 0; 2048 if (end <= MAIN_BLKADDR(sbi)) 2049 goto out; 2050 2051 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2052 f2fs_msg(sbi->sb, KERN_WARNING, 2053 "Found FS corruption, run fsck to fix."); 2054 goto out; 2055 } 2056 2057 /* start/end segment number in main_area */ 2058 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2059 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2060 GET_SEGNO(sbi, end); 2061 cpc.reason = CP_DISCARD; 2062 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2063 2064 /* do checkpoint to issue discard commands safely */ 2065 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 2066 cpc.trim_start = start_segno; 2067 2068 if (sbi->discard_blks == 0) 2069 break; 2070 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 2071 cpc.trim_end = end_segno; 2072 else 2073 cpc.trim_end = min_t(unsigned int, 2074 rounddown(start_segno + 2075 BATCHED_TRIM_SEGMENTS(sbi), 2076 sbi->segs_per_sec) - 1, end_segno); 2077 2078 mutex_lock(&sbi->gc_mutex); 2079 err = write_checkpoint(sbi, &cpc); 2080 mutex_unlock(&sbi->gc_mutex); 2081 if (err) 2082 break; 2083 2084 schedule(); 2085 } 2086 out: 2087 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 2088 return err; 2089 } 2090 2091 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2092 { 2093 struct curseg_info *curseg = CURSEG_I(sbi, type); 2094 if (curseg->next_blkoff < sbi->blocks_per_seg) 2095 return true; 2096 return false; 2097 } 2098 2099 static int __get_segment_type_2(struct f2fs_io_info *fio) 2100 { 2101 if (fio->type == DATA) 2102 return CURSEG_HOT_DATA; 2103 else 2104 return CURSEG_HOT_NODE; 2105 } 2106 2107 static int __get_segment_type_4(struct f2fs_io_info *fio) 2108 { 2109 if (fio->type == DATA) { 2110 struct inode *inode = fio->page->mapping->host; 2111 2112 if (S_ISDIR(inode->i_mode)) 2113 return CURSEG_HOT_DATA; 2114 else 2115 return CURSEG_COLD_DATA; 2116 } else { 2117 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 2118 return CURSEG_WARM_NODE; 2119 else 2120 return CURSEG_COLD_NODE; 2121 } 2122 } 2123 2124 static int __get_segment_type_6(struct f2fs_io_info *fio) 2125 { 2126 if (fio->type == DATA) { 2127 struct inode *inode = fio->page->mapping->host; 2128 2129 if (is_cold_data(fio->page) || file_is_cold(inode)) 2130 return CURSEG_COLD_DATA; 2131 if (is_inode_flag_set(inode, FI_HOT_DATA)) 2132 return CURSEG_HOT_DATA; 2133 return CURSEG_WARM_DATA; 2134 } else { 2135 if (IS_DNODE(fio->page)) 2136 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 2137 CURSEG_HOT_NODE; 2138 return CURSEG_COLD_NODE; 2139 } 2140 } 2141 2142 static int __get_segment_type(struct f2fs_io_info *fio) 2143 { 2144 int type = 0; 2145 2146 switch (fio->sbi->active_logs) { 2147 case 2: 2148 type = __get_segment_type_2(fio); 2149 break; 2150 case 4: 2151 type = __get_segment_type_4(fio); 2152 break; 2153 case 6: 2154 type = __get_segment_type_6(fio); 2155 break; 2156 default: 2157 f2fs_bug_on(fio->sbi, true); 2158 } 2159 2160 if (IS_HOT(type)) 2161 fio->temp = HOT; 2162 else if (IS_WARM(type)) 2163 fio->temp = WARM; 2164 else 2165 fio->temp = COLD; 2166 return type; 2167 } 2168 2169 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2170 block_t old_blkaddr, block_t *new_blkaddr, 2171 struct f2fs_summary *sum, int type, 2172 struct f2fs_io_info *fio, bool add_list) 2173 { 2174 struct sit_info *sit_i = SIT_I(sbi); 2175 struct curseg_info *curseg = CURSEG_I(sbi, type); 2176 2177 mutex_lock(&curseg->curseg_mutex); 2178 mutex_lock(&sit_i->sentry_lock); 2179 2180 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 2181 2182 f2fs_wait_discard_bio(sbi, *new_blkaddr); 2183 2184 /* 2185 * __add_sum_entry should be resided under the curseg_mutex 2186 * because, this function updates a summary entry in the 2187 * current summary block. 2188 */ 2189 __add_sum_entry(sbi, type, sum); 2190 2191 __refresh_next_blkoff(sbi, curseg); 2192 2193 stat_inc_block_count(sbi, curseg); 2194 2195 if (!__has_curseg_space(sbi, type)) 2196 sit_i->s_ops->allocate_segment(sbi, type, false); 2197 /* 2198 * SIT information should be updated after segment allocation, 2199 * since we need to keep dirty segments precisely under SSR. 2200 */ 2201 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 2202 2203 mutex_unlock(&sit_i->sentry_lock); 2204 2205 if (page && IS_NODESEG(type)) 2206 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 2207 2208 if (add_list) { 2209 struct f2fs_bio_info *io; 2210 2211 INIT_LIST_HEAD(&fio->list); 2212 fio->in_list = true; 2213 io = sbi->write_io[fio->type] + fio->temp; 2214 spin_lock(&io->io_lock); 2215 list_add_tail(&fio->list, &io->io_list); 2216 spin_unlock(&io->io_lock); 2217 } 2218 2219 mutex_unlock(&curseg->curseg_mutex); 2220 } 2221 2222 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 2223 { 2224 int type = __get_segment_type(fio); 2225 int err; 2226 2227 reallocate: 2228 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 2229 &fio->new_blkaddr, sum, type, fio, true); 2230 2231 /* writeout dirty page into bdev */ 2232 err = f2fs_submit_page_write(fio); 2233 if (err == -EAGAIN) { 2234 fio->old_blkaddr = fio->new_blkaddr; 2235 goto reallocate; 2236 } 2237 } 2238 2239 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 2240 { 2241 struct f2fs_io_info fio = { 2242 .sbi = sbi, 2243 .type = META, 2244 .op = REQ_OP_WRITE, 2245 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 2246 .old_blkaddr = page->index, 2247 .new_blkaddr = page->index, 2248 .page = page, 2249 .encrypted_page = NULL, 2250 .in_list = false, 2251 }; 2252 2253 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 2254 fio.op_flags &= ~REQ_META; 2255 2256 set_page_writeback(page); 2257 f2fs_submit_page_write(&fio); 2258 } 2259 2260 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 2261 { 2262 struct f2fs_summary sum; 2263 2264 set_summary(&sum, nid, 0, 0); 2265 do_write_page(&sum, fio); 2266 } 2267 2268 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 2269 { 2270 struct f2fs_sb_info *sbi = fio->sbi; 2271 struct f2fs_summary sum; 2272 struct node_info ni; 2273 2274 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 2275 get_node_info(sbi, dn->nid, &ni); 2276 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 2277 do_write_page(&sum, fio); 2278 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 2279 } 2280 2281 int rewrite_data_page(struct f2fs_io_info *fio) 2282 { 2283 fio->new_blkaddr = fio->old_blkaddr; 2284 stat_inc_inplace_blocks(fio->sbi); 2285 return f2fs_submit_page_bio(fio); 2286 } 2287 2288 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2289 block_t old_blkaddr, block_t new_blkaddr, 2290 bool recover_curseg, bool recover_newaddr) 2291 { 2292 struct sit_info *sit_i = SIT_I(sbi); 2293 struct curseg_info *curseg; 2294 unsigned int segno, old_cursegno; 2295 struct seg_entry *se; 2296 int type; 2297 unsigned short old_blkoff; 2298 2299 segno = GET_SEGNO(sbi, new_blkaddr); 2300 se = get_seg_entry(sbi, segno); 2301 type = se->type; 2302 2303 if (!recover_curseg) { 2304 /* for recovery flow */ 2305 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 2306 if (old_blkaddr == NULL_ADDR) 2307 type = CURSEG_COLD_DATA; 2308 else 2309 type = CURSEG_WARM_DATA; 2310 } 2311 } else { 2312 if (!IS_CURSEG(sbi, segno)) 2313 type = CURSEG_WARM_DATA; 2314 } 2315 2316 curseg = CURSEG_I(sbi, type); 2317 2318 mutex_lock(&curseg->curseg_mutex); 2319 mutex_lock(&sit_i->sentry_lock); 2320 2321 old_cursegno = curseg->segno; 2322 old_blkoff = curseg->next_blkoff; 2323 2324 /* change the current segment */ 2325 if (segno != curseg->segno) { 2326 curseg->next_segno = segno; 2327 change_curseg(sbi, type, true); 2328 } 2329 2330 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 2331 __add_sum_entry(sbi, type, sum); 2332 2333 if (!recover_curseg || recover_newaddr) 2334 update_sit_entry(sbi, new_blkaddr, 1); 2335 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 2336 update_sit_entry(sbi, old_blkaddr, -1); 2337 2338 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 2339 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 2340 2341 locate_dirty_segment(sbi, old_cursegno); 2342 2343 if (recover_curseg) { 2344 if (old_cursegno != curseg->segno) { 2345 curseg->next_segno = old_cursegno; 2346 change_curseg(sbi, type, true); 2347 } 2348 curseg->next_blkoff = old_blkoff; 2349 } 2350 2351 mutex_unlock(&sit_i->sentry_lock); 2352 mutex_unlock(&curseg->curseg_mutex); 2353 } 2354 2355 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2356 block_t old_addr, block_t new_addr, 2357 unsigned char version, bool recover_curseg, 2358 bool recover_newaddr) 2359 { 2360 struct f2fs_summary sum; 2361 2362 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 2363 2364 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 2365 recover_curseg, recover_newaddr); 2366 2367 f2fs_update_data_blkaddr(dn, new_addr); 2368 } 2369 2370 void f2fs_wait_on_page_writeback(struct page *page, 2371 enum page_type type, bool ordered) 2372 { 2373 if (PageWriteback(page)) { 2374 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 2375 2376 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 2377 0, page->index, type); 2378 if (ordered) 2379 wait_on_page_writeback(page); 2380 else 2381 wait_for_stable_page(page); 2382 } 2383 } 2384 2385 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 2386 block_t blkaddr) 2387 { 2388 struct page *cpage; 2389 2390 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2391 return; 2392 2393 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 2394 if (cpage) { 2395 f2fs_wait_on_page_writeback(cpage, DATA, true); 2396 f2fs_put_page(cpage, 1); 2397 } 2398 } 2399 2400 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 2401 { 2402 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2403 struct curseg_info *seg_i; 2404 unsigned char *kaddr; 2405 struct page *page; 2406 block_t start; 2407 int i, j, offset; 2408 2409 start = start_sum_block(sbi); 2410 2411 page = get_meta_page(sbi, start++); 2412 kaddr = (unsigned char *)page_address(page); 2413 2414 /* Step 1: restore nat cache */ 2415 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 2416 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 2417 2418 /* Step 2: restore sit cache */ 2419 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 2420 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 2421 offset = 2 * SUM_JOURNAL_SIZE; 2422 2423 /* Step 3: restore summary entries */ 2424 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2425 unsigned short blk_off; 2426 unsigned int segno; 2427 2428 seg_i = CURSEG_I(sbi, i); 2429 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 2430 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 2431 seg_i->next_segno = segno; 2432 reset_curseg(sbi, i, 0); 2433 seg_i->alloc_type = ckpt->alloc_type[i]; 2434 seg_i->next_blkoff = blk_off; 2435 2436 if (seg_i->alloc_type == SSR) 2437 blk_off = sbi->blocks_per_seg; 2438 2439 for (j = 0; j < blk_off; j++) { 2440 struct f2fs_summary *s; 2441 s = (struct f2fs_summary *)(kaddr + offset); 2442 seg_i->sum_blk->entries[j] = *s; 2443 offset += SUMMARY_SIZE; 2444 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 2445 SUM_FOOTER_SIZE) 2446 continue; 2447 2448 f2fs_put_page(page, 1); 2449 page = NULL; 2450 2451 page = get_meta_page(sbi, start++); 2452 kaddr = (unsigned char *)page_address(page); 2453 offset = 0; 2454 } 2455 } 2456 f2fs_put_page(page, 1); 2457 return 0; 2458 } 2459 2460 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 2461 { 2462 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2463 struct f2fs_summary_block *sum; 2464 struct curseg_info *curseg; 2465 struct page *new; 2466 unsigned short blk_off; 2467 unsigned int segno = 0; 2468 block_t blk_addr = 0; 2469 2470 /* get segment number and block addr */ 2471 if (IS_DATASEG(type)) { 2472 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 2473 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 2474 CURSEG_HOT_DATA]); 2475 if (__exist_node_summaries(sbi)) 2476 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 2477 else 2478 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 2479 } else { 2480 segno = le32_to_cpu(ckpt->cur_node_segno[type - 2481 CURSEG_HOT_NODE]); 2482 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 2483 CURSEG_HOT_NODE]); 2484 if (__exist_node_summaries(sbi)) 2485 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 2486 type - CURSEG_HOT_NODE); 2487 else 2488 blk_addr = GET_SUM_BLOCK(sbi, segno); 2489 } 2490 2491 new = get_meta_page(sbi, blk_addr); 2492 sum = (struct f2fs_summary_block *)page_address(new); 2493 2494 if (IS_NODESEG(type)) { 2495 if (__exist_node_summaries(sbi)) { 2496 struct f2fs_summary *ns = &sum->entries[0]; 2497 int i; 2498 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 2499 ns->version = 0; 2500 ns->ofs_in_node = 0; 2501 } 2502 } else { 2503 int err; 2504 2505 err = restore_node_summary(sbi, segno, sum); 2506 if (err) { 2507 f2fs_put_page(new, 1); 2508 return err; 2509 } 2510 } 2511 } 2512 2513 /* set uncompleted segment to curseg */ 2514 curseg = CURSEG_I(sbi, type); 2515 mutex_lock(&curseg->curseg_mutex); 2516 2517 /* update journal info */ 2518 down_write(&curseg->journal_rwsem); 2519 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 2520 up_write(&curseg->journal_rwsem); 2521 2522 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 2523 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 2524 curseg->next_segno = segno; 2525 reset_curseg(sbi, type, 0); 2526 curseg->alloc_type = ckpt->alloc_type[type]; 2527 curseg->next_blkoff = blk_off; 2528 mutex_unlock(&curseg->curseg_mutex); 2529 f2fs_put_page(new, 1); 2530 return 0; 2531 } 2532 2533 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 2534 { 2535 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 2536 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 2537 int type = CURSEG_HOT_DATA; 2538 int err; 2539 2540 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 2541 int npages = npages_for_summary_flush(sbi, true); 2542 2543 if (npages >= 2) 2544 ra_meta_pages(sbi, start_sum_block(sbi), npages, 2545 META_CP, true); 2546 2547 /* restore for compacted data summary */ 2548 if (read_compacted_summaries(sbi)) 2549 return -EINVAL; 2550 type = CURSEG_HOT_NODE; 2551 } 2552 2553 if (__exist_node_summaries(sbi)) 2554 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 2555 NR_CURSEG_TYPE - type, META_CP, true); 2556 2557 for (; type <= CURSEG_COLD_NODE; type++) { 2558 err = read_normal_summaries(sbi, type); 2559 if (err) 2560 return err; 2561 } 2562 2563 /* sanity check for summary blocks */ 2564 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 2565 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) 2566 return -EINVAL; 2567 2568 return 0; 2569 } 2570 2571 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 2572 { 2573 struct page *page; 2574 unsigned char *kaddr; 2575 struct f2fs_summary *summary; 2576 struct curseg_info *seg_i; 2577 int written_size = 0; 2578 int i, j; 2579 2580 page = grab_meta_page(sbi, blkaddr++); 2581 kaddr = (unsigned char *)page_address(page); 2582 2583 /* Step 1: write nat cache */ 2584 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 2585 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 2586 written_size += SUM_JOURNAL_SIZE; 2587 2588 /* Step 2: write sit cache */ 2589 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 2590 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 2591 written_size += SUM_JOURNAL_SIZE; 2592 2593 /* Step 3: write summary entries */ 2594 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2595 unsigned short blkoff; 2596 seg_i = CURSEG_I(sbi, i); 2597 if (sbi->ckpt->alloc_type[i] == SSR) 2598 blkoff = sbi->blocks_per_seg; 2599 else 2600 blkoff = curseg_blkoff(sbi, i); 2601 2602 for (j = 0; j < blkoff; j++) { 2603 if (!page) { 2604 page = grab_meta_page(sbi, blkaddr++); 2605 kaddr = (unsigned char *)page_address(page); 2606 written_size = 0; 2607 } 2608 summary = (struct f2fs_summary *)(kaddr + written_size); 2609 *summary = seg_i->sum_blk->entries[j]; 2610 written_size += SUMMARY_SIZE; 2611 2612 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 2613 SUM_FOOTER_SIZE) 2614 continue; 2615 2616 set_page_dirty(page); 2617 f2fs_put_page(page, 1); 2618 page = NULL; 2619 } 2620 } 2621 if (page) { 2622 set_page_dirty(page); 2623 f2fs_put_page(page, 1); 2624 } 2625 } 2626 2627 static void write_normal_summaries(struct f2fs_sb_info *sbi, 2628 block_t blkaddr, int type) 2629 { 2630 int i, end; 2631 if (IS_DATASEG(type)) 2632 end = type + NR_CURSEG_DATA_TYPE; 2633 else 2634 end = type + NR_CURSEG_NODE_TYPE; 2635 2636 for (i = type; i < end; i++) 2637 write_current_sum_page(sbi, i, blkaddr + (i - type)); 2638 } 2639 2640 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2641 { 2642 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 2643 write_compacted_summaries(sbi, start_blk); 2644 else 2645 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 2646 } 2647 2648 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2649 { 2650 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 2651 } 2652 2653 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2654 unsigned int val, int alloc) 2655 { 2656 int i; 2657 2658 if (type == NAT_JOURNAL) { 2659 for (i = 0; i < nats_in_cursum(journal); i++) { 2660 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 2661 return i; 2662 } 2663 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 2664 return update_nats_in_cursum(journal, 1); 2665 } else if (type == SIT_JOURNAL) { 2666 for (i = 0; i < sits_in_cursum(journal); i++) 2667 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 2668 return i; 2669 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 2670 return update_sits_in_cursum(journal, 1); 2671 } 2672 return -1; 2673 } 2674 2675 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 2676 unsigned int segno) 2677 { 2678 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 2679 } 2680 2681 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 2682 unsigned int start) 2683 { 2684 struct sit_info *sit_i = SIT_I(sbi); 2685 struct page *src_page, *dst_page; 2686 pgoff_t src_off, dst_off; 2687 void *src_addr, *dst_addr; 2688 2689 src_off = current_sit_addr(sbi, start); 2690 dst_off = next_sit_addr(sbi, src_off); 2691 2692 /* get current sit block page without lock */ 2693 src_page = get_meta_page(sbi, src_off); 2694 dst_page = grab_meta_page(sbi, dst_off); 2695 f2fs_bug_on(sbi, PageDirty(src_page)); 2696 2697 src_addr = page_address(src_page); 2698 dst_addr = page_address(dst_page); 2699 memcpy(dst_addr, src_addr, PAGE_SIZE); 2700 2701 set_page_dirty(dst_page); 2702 f2fs_put_page(src_page, 1); 2703 2704 set_to_next_sit(sit_i, start); 2705 2706 return dst_page; 2707 } 2708 2709 static struct sit_entry_set *grab_sit_entry_set(void) 2710 { 2711 struct sit_entry_set *ses = 2712 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 2713 2714 ses->entry_cnt = 0; 2715 INIT_LIST_HEAD(&ses->set_list); 2716 return ses; 2717 } 2718 2719 static void release_sit_entry_set(struct sit_entry_set *ses) 2720 { 2721 list_del(&ses->set_list); 2722 kmem_cache_free(sit_entry_set_slab, ses); 2723 } 2724 2725 static void adjust_sit_entry_set(struct sit_entry_set *ses, 2726 struct list_head *head) 2727 { 2728 struct sit_entry_set *next = ses; 2729 2730 if (list_is_last(&ses->set_list, head)) 2731 return; 2732 2733 list_for_each_entry_continue(next, head, set_list) 2734 if (ses->entry_cnt <= next->entry_cnt) 2735 break; 2736 2737 list_move_tail(&ses->set_list, &next->set_list); 2738 } 2739 2740 static void add_sit_entry(unsigned int segno, struct list_head *head) 2741 { 2742 struct sit_entry_set *ses; 2743 unsigned int start_segno = START_SEGNO(segno); 2744 2745 list_for_each_entry(ses, head, set_list) { 2746 if (ses->start_segno == start_segno) { 2747 ses->entry_cnt++; 2748 adjust_sit_entry_set(ses, head); 2749 return; 2750 } 2751 } 2752 2753 ses = grab_sit_entry_set(); 2754 2755 ses->start_segno = start_segno; 2756 ses->entry_cnt++; 2757 list_add(&ses->set_list, head); 2758 } 2759 2760 static void add_sits_in_set(struct f2fs_sb_info *sbi) 2761 { 2762 struct f2fs_sm_info *sm_info = SM_I(sbi); 2763 struct list_head *set_list = &sm_info->sit_entry_set; 2764 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 2765 unsigned int segno; 2766 2767 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 2768 add_sit_entry(segno, set_list); 2769 } 2770 2771 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 2772 { 2773 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2774 struct f2fs_journal *journal = curseg->journal; 2775 int i; 2776 2777 down_write(&curseg->journal_rwsem); 2778 for (i = 0; i < sits_in_cursum(journal); i++) { 2779 unsigned int segno; 2780 bool dirtied; 2781 2782 segno = le32_to_cpu(segno_in_journal(journal, i)); 2783 dirtied = __mark_sit_entry_dirty(sbi, segno); 2784 2785 if (!dirtied) 2786 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 2787 } 2788 update_sits_in_cursum(journal, -i); 2789 up_write(&curseg->journal_rwsem); 2790 } 2791 2792 /* 2793 * CP calls this function, which flushes SIT entries including sit_journal, 2794 * and moves prefree segs to free segs. 2795 */ 2796 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2797 { 2798 struct sit_info *sit_i = SIT_I(sbi); 2799 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 2800 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2801 struct f2fs_journal *journal = curseg->journal; 2802 struct sit_entry_set *ses, *tmp; 2803 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2804 bool to_journal = true; 2805 struct seg_entry *se; 2806 2807 mutex_lock(&sit_i->sentry_lock); 2808 2809 if (!sit_i->dirty_sentries) 2810 goto out; 2811 2812 /* 2813 * add and account sit entries of dirty bitmap in sit entry 2814 * set temporarily 2815 */ 2816 add_sits_in_set(sbi); 2817 2818 /* 2819 * if there are no enough space in journal to store dirty sit 2820 * entries, remove all entries from journal and add and account 2821 * them in sit entry set. 2822 */ 2823 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2824 remove_sits_in_journal(sbi); 2825 2826 /* 2827 * there are two steps to flush sit entries: 2828 * #1, flush sit entries to journal in current cold data summary block. 2829 * #2, flush sit entries to sit page. 2830 */ 2831 list_for_each_entry_safe(ses, tmp, head, set_list) { 2832 struct page *page = NULL; 2833 struct f2fs_sit_block *raw_sit = NULL; 2834 unsigned int start_segno = ses->start_segno; 2835 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2836 (unsigned long)MAIN_SEGS(sbi)); 2837 unsigned int segno = start_segno; 2838 2839 if (to_journal && 2840 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2841 to_journal = false; 2842 2843 if (to_journal) { 2844 down_write(&curseg->journal_rwsem); 2845 } else { 2846 page = get_next_sit_page(sbi, start_segno); 2847 raw_sit = page_address(page); 2848 } 2849 2850 /* flush dirty sit entries in region of current sit set */ 2851 for_each_set_bit_from(segno, bitmap, end) { 2852 int offset, sit_offset; 2853 2854 se = get_seg_entry(sbi, segno); 2855 2856 /* add discard candidates */ 2857 if (!(cpc->reason & CP_DISCARD)) { 2858 cpc->trim_start = segno; 2859 add_discard_addrs(sbi, cpc, false); 2860 } 2861 2862 if (to_journal) { 2863 offset = lookup_journal_in_cursum(journal, 2864 SIT_JOURNAL, segno, 1); 2865 f2fs_bug_on(sbi, offset < 0); 2866 segno_in_journal(journal, offset) = 2867 cpu_to_le32(segno); 2868 seg_info_to_raw_sit(se, 2869 &sit_in_journal(journal, offset)); 2870 } else { 2871 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2872 seg_info_to_raw_sit(se, 2873 &raw_sit->entries[sit_offset]); 2874 } 2875 2876 __clear_bit(segno, bitmap); 2877 sit_i->dirty_sentries--; 2878 ses->entry_cnt--; 2879 } 2880 2881 if (to_journal) 2882 up_write(&curseg->journal_rwsem); 2883 else 2884 f2fs_put_page(page, 1); 2885 2886 f2fs_bug_on(sbi, ses->entry_cnt); 2887 release_sit_entry_set(ses); 2888 } 2889 2890 f2fs_bug_on(sbi, !list_empty(head)); 2891 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2892 out: 2893 if (cpc->reason & CP_DISCARD) { 2894 __u64 trim_start = cpc->trim_start; 2895 2896 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2897 add_discard_addrs(sbi, cpc, false); 2898 2899 cpc->trim_start = trim_start; 2900 } 2901 mutex_unlock(&sit_i->sentry_lock); 2902 2903 set_prefree_as_free_segments(sbi); 2904 } 2905 2906 static int build_sit_info(struct f2fs_sb_info *sbi) 2907 { 2908 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2909 struct sit_info *sit_i; 2910 unsigned int sit_segs, start; 2911 char *src_bitmap; 2912 unsigned int bitmap_size; 2913 2914 /* allocate memory for SIT information */ 2915 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2916 if (!sit_i) 2917 return -ENOMEM; 2918 2919 SM_I(sbi)->sit_info = sit_i; 2920 2921 sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) * 2922 sizeof(struct seg_entry), GFP_KERNEL); 2923 if (!sit_i->sentries) 2924 return -ENOMEM; 2925 2926 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2927 sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL); 2928 if (!sit_i->dirty_sentries_bitmap) 2929 return -ENOMEM; 2930 2931 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2932 sit_i->sentries[start].cur_valid_map 2933 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2934 sit_i->sentries[start].ckpt_valid_map 2935 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2936 if (!sit_i->sentries[start].cur_valid_map || 2937 !sit_i->sentries[start].ckpt_valid_map) 2938 return -ENOMEM; 2939 2940 #ifdef CONFIG_F2FS_CHECK_FS 2941 sit_i->sentries[start].cur_valid_map_mir 2942 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2943 if (!sit_i->sentries[start].cur_valid_map_mir) 2944 return -ENOMEM; 2945 #endif 2946 2947 if (f2fs_discard_en(sbi)) { 2948 sit_i->sentries[start].discard_map 2949 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2950 if (!sit_i->sentries[start].discard_map) 2951 return -ENOMEM; 2952 } 2953 } 2954 2955 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2956 if (!sit_i->tmp_map) 2957 return -ENOMEM; 2958 2959 if (sbi->segs_per_sec > 1) { 2960 sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) * 2961 sizeof(struct sec_entry), GFP_KERNEL); 2962 if (!sit_i->sec_entries) 2963 return -ENOMEM; 2964 } 2965 2966 /* get information related with SIT */ 2967 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2968 2969 /* setup SIT bitmap from ckeckpoint pack */ 2970 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2971 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2972 2973 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2974 if (!sit_i->sit_bitmap) 2975 return -ENOMEM; 2976 2977 #ifdef CONFIG_F2FS_CHECK_FS 2978 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2979 if (!sit_i->sit_bitmap_mir) 2980 return -ENOMEM; 2981 #endif 2982 2983 /* init SIT information */ 2984 sit_i->s_ops = &default_salloc_ops; 2985 2986 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2987 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2988 sit_i->written_valid_blocks = 0; 2989 sit_i->bitmap_size = bitmap_size; 2990 sit_i->dirty_sentries = 0; 2991 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2992 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2993 sit_i->mounted_time = ktime_get_real_seconds(); 2994 mutex_init(&sit_i->sentry_lock); 2995 return 0; 2996 } 2997 2998 static int build_free_segmap(struct f2fs_sb_info *sbi) 2999 { 3000 struct free_segmap_info *free_i; 3001 unsigned int bitmap_size, sec_bitmap_size; 3002 3003 /* allocate memory for free segmap information */ 3004 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 3005 if (!free_i) 3006 return -ENOMEM; 3007 3008 SM_I(sbi)->free_info = free_i; 3009 3010 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3011 free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL); 3012 if (!free_i->free_segmap) 3013 return -ENOMEM; 3014 3015 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3016 free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL); 3017 if (!free_i->free_secmap) 3018 return -ENOMEM; 3019 3020 /* set all segments as dirty temporarily */ 3021 memset(free_i->free_segmap, 0xff, bitmap_size); 3022 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 3023 3024 /* init free segmap information */ 3025 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 3026 free_i->free_segments = 0; 3027 free_i->free_sections = 0; 3028 spin_lock_init(&free_i->segmap_lock); 3029 return 0; 3030 } 3031 3032 static int build_curseg(struct f2fs_sb_info *sbi) 3033 { 3034 struct curseg_info *array; 3035 int i; 3036 3037 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 3038 if (!array) 3039 return -ENOMEM; 3040 3041 SM_I(sbi)->curseg_array = array; 3042 3043 for (i = 0; i < NR_CURSEG_TYPE; i++) { 3044 mutex_init(&array[i].curseg_mutex); 3045 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 3046 if (!array[i].sum_blk) 3047 return -ENOMEM; 3048 init_rwsem(&array[i].journal_rwsem); 3049 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 3050 GFP_KERNEL); 3051 if (!array[i].journal) 3052 return -ENOMEM; 3053 array[i].segno = NULL_SEGNO; 3054 array[i].next_blkoff = 0; 3055 } 3056 return restore_curseg_summaries(sbi); 3057 } 3058 3059 static void build_sit_entries(struct f2fs_sb_info *sbi) 3060 { 3061 struct sit_info *sit_i = SIT_I(sbi); 3062 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3063 struct f2fs_journal *journal = curseg->journal; 3064 struct seg_entry *se; 3065 struct f2fs_sit_entry sit; 3066 int sit_blk_cnt = SIT_BLK_CNT(sbi); 3067 unsigned int i, start, end; 3068 unsigned int readed, start_blk = 0; 3069 3070 do { 3071 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 3072 META_SIT, true); 3073 3074 start = start_blk * sit_i->sents_per_block; 3075 end = (start_blk + readed) * sit_i->sents_per_block; 3076 3077 for (; start < end && start < MAIN_SEGS(sbi); start++) { 3078 struct f2fs_sit_block *sit_blk; 3079 struct page *page; 3080 3081 se = &sit_i->sentries[start]; 3082 page = get_current_sit_page(sbi, start); 3083 sit_blk = (struct f2fs_sit_block *)page_address(page); 3084 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 3085 f2fs_put_page(page, 1); 3086 3087 check_block_count(sbi, start, &sit); 3088 seg_info_from_raw_sit(se, &sit); 3089 3090 /* build discard map only one time */ 3091 if (f2fs_discard_en(sbi)) { 3092 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 3093 memset(se->discard_map, 0xff, 3094 SIT_VBLOCK_MAP_SIZE); 3095 } else { 3096 memcpy(se->discard_map, 3097 se->cur_valid_map, 3098 SIT_VBLOCK_MAP_SIZE); 3099 sbi->discard_blks += 3100 sbi->blocks_per_seg - 3101 se->valid_blocks; 3102 } 3103 } 3104 3105 if (sbi->segs_per_sec > 1) 3106 get_sec_entry(sbi, start)->valid_blocks += 3107 se->valid_blocks; 3108 } 3109 start_blk += readed; 3110 } while (start_blk < sit_blk_cnt); 3111 3112 down_read(&curseg->journal_rwsem); 3113 for (i = 0; i < sits_in_cursum(journal); i++) { 3114 unsigned int old_valid_blocks; 3115 3116 start = le32_to_cpu(segno_in_journal(journal, i)); 3117 se = &sit_i->sentries[start]; 3118 sit = sit_in_journal(journal, i); 3119 3120 old_valid_blocks = se->valid_blocks; 3121 3122 check_block_count(sbi, start, &sit); 3123 seg_info_from_raw_sit(se, &sit); 3124 3125 if (f2fs_discard_en(sbi)) { 3126 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 3127 memset(se->discard_map, 0xff, 3128 SIT_VBLOCK_MAP_SIZE); 3129 } else { 3130 memcpy(se->discard_map, se->cur_valid_map, 3131 SIT_VBLOCK_MAP_SIZE); 3132 sbi->discard_blks += old_valid_blocks - 3133 se->valid_blocks; 3134 } 3135 } 3136 3137 if (sbi->segs_per_sec > 1) 3138 get_sec_entry(sbi, start)->valid_blocks += 3139 se->valid_blocks - old_valid_blocks; 3140 } 3141 up_read(&curseg->journal_rwsem); 3142 } 3143 3144 static void init_free_segmap(struct f2fs_sb_info *sbi) 3145 { 3146 unsigned int start; 3147 int type; 3148 3149 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3150 struct seg_entry *sentry = get_seg_entry(sbi, start); 3151 if (!sentry->valid_blocks) 3152 __set_free(sbi, start); 3153 else 3154 SIT_I(sbi)->written_valid_blocks += 3155 sentry->valid_blocks; 3156 } 3157 3158 /* set use the current segments */ 3159 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 3160 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 3161 __set_test_and_inuse(sbi, curseg_t->segno); 3162 } 3163 } 3164 3165 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 3166 { 3167 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3168 struct free_segmap_info *free_i = FREE_I(sbi); 3169 unsigned int segno = 0, offset = 0; 3170 unsigned short valid_blocks; 3171 3172 while (1) { 3173 /* find dirty segment based on free segmap */ 3174 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 3175 if (segno >= MAIN_SEGS(sbi)) 3176 break; 3177 offset = segno + 1; 3178 valid_blocks = get_valid_blocks(sbi, segno, false); 3179 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 3180 continue; 3181 if (valid_blocks > sbi->blocks_per_seg) { 3182 f2fs_bug_on(sbi, 1); 3183 continue; 3184 } 3185 mutex_lock(&dirty_i->seglist_lock); 3186 __locate_dirty_segment(sbi, segno, DIRTY); 3187 mutex_unlock(&dirty_i->seglist_lock); 3188 } 3189 } 3190 3191 static int init_victim_secmap(struct f2fs_sb_info *sbi) 3192 { 3193 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3194 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3195 3196 dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL); 3197 if (!dirty_i->victim_secmap) 3198 return -ENOMEM; 3199 return 0; 3200 } 3201 3202 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 3203 { 3204 struct dirty_seglist_info *dirty_i; 3205 unsigned int bitmap_size, i; 3206 3207 /* allocate memory for dirty segments list information */ 3208 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 3209 if (!dirty_i) 3210 return -ENOMEM; 3211 3212 SM_I(sbi)->dirty_info = dirty_i; 3213 mutex_init(&dirty_i->seglist_lock); 3214 3215 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3216 3217 for (i = 0; i < NR_DIRTY_TYPE; i++) { 3218 dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL); 3219 if (!dirty_i->dirty_segmap[i]) 3220 return -ENOMEM; 3221 } 3222 3223 init_dirty_segmap(sbi); 3224 return init_victim_secmap(sbi); 3225 } 3226 3227 /* 3228 * Update min, max modified time for cost-benefit GC algorithm 3229 */ 3230 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 3231 { 3232 struct sit_info *sit_i = SIT_I(sbi); 3233 unsigned int segno; 3234 3235 mutex_lock(&sit_i->sentry_lock); 3236 3237 sit_i->min_mtime = LLONG_MAX; 3238 3239 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 3240 unsigned int i; 3241 unsigned long long mtime = 0; 3242 3243 for (i = 0; i < sbi->segs_per_sec; i++) 3244 mtime += get_seg_entry(sbi, segno + i)->mtime; 3245 3246 mtime = div_u64(mtime, sbi->segs_per_sec); 3247 3248 if (sit_i->min_mtime > mtime) 3249 sit_i->min_mtime = mtime; 3250 } 3251 sit_i->max_mtime = get_mtime(sbi); 3252 mutex_unlock(&sit_i->sentry_lock); 3253 } 3254 3255 int build_segment_manager(struct f2fs_sb_info *sbi) 3256 { 3257 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3258 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3259 struct f2fs_sm_info *sm_info; 3260 int err; 3261 3262 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 3263 if (!sm_info) 3264 return -ENOMEM; 3265 3266 /* init sm info */ 3267 sbi->sm_info = sm_info; 3268 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3269 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3270 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 3271 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3272 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3273 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 3274 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3275 sm_info->rec_prefree_segments = sm_info->main_segments * 3276 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 3277 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 3278 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 3279 3280 if (!test_opt(sbi, LFS)) 3281 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 3282 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 3283 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 3284 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 3285 3286 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 3287 3288 INIT_LIST_HEAD(&sm_info->sit_entry_set); 3289 3290 if (!f2fs_readonly(sbi->sb)) { 3291 err = create_flush_cmd_control(sbi); 3292 if (err) 3293 return err; 3294 } 3295 3296 err = create_discard_cmd_control(sbi); 3297 if (err) 3298 return err; 3299 3300 err = build_sit_info(sbi); 3301 if (err) 3302 return err; 3303 err = build_free_segmap(sbi); 3304 if (err) 3305 return err; 3306 err = build_curseg(sbi); 3307 if (err) 3308 return err; 3309 3310 /* reinit free segmap based on SIT */ 3311 build_sit_entries(sbi); 3312 3313 init_free_segmap(sbi); 3314 err = build_dirty_segmap(sbi); 3315 if (err) 3316 return err; 3317 3318 init_min_max_mtime(sbi); 3319 return 0; 3320 } 3321 3322 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 3323 enum dirty_type dirty_type) 3324 { 3325 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3326 3327 mutex_lock(&dirty_i->seglist_lock); 3328 kvfree(dirty_i->dirty_segmap[dirty_type]); 3329 dirty_i->nr_dirty[dirty_type] = 0; 3330 mutex_unlock(&dirty_i->seglist_lock); 3331 } 3332 3333 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 3334 { 3335 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3336 kvfree(dirty_i->victim_secmap); 3337 } 3338 3339 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 3340 { 3341 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3342 int i; 3343 3344 if (!dirty_i) 3345 return; 3346 3347 /* discard pre-free/dirty segments list */ 3348 for (i = 0; i < NR_DIRTY_TYPE; i++) 3349 discard_dirty_segmap(sbi, i); 3350 3351 destroy_victim_secmap(sbi); 3352 SM_I(sbi)->dirty_info = NULL; 3353 kfree(dirty_i); 3354 } 3355 3356 static void destroy_curseg(struct f2fs_sb_info *sbi) 3357 { 3358 struct curseg_info *array = SM_I(sbi)->curseg_array; 3359 int i; 3360 3361 if (!array) 3362 return; 3363 SM_I(sbi)->curseg_array = NULL; 3364 for (i = 0; i < NR_CURSEG_TYPE; i++) { 3365 kfree(array[i].sum_blk); 3366 kfree(array[i].journal); 3367 } 3368 kfree(array); 3369 } 3370 3371 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 3372 { 3373 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 3374 if (!free_i) 3375 return; 3376 SM_I(sbi)->free_info = NULL; 3377 kvfree(free_i->free_segmap); 3378 kvfree(free_i->free_secmap); 3379 kfree(free_i); 3380 } 3381 3382 static void destroy_sit_info(struct f2fs_sb_info *sbi) 3383 { 3384 struct sit_info *sit_i = SIT_I(sbi); 3385 unsigned int start; 3386 3387 if (!sit_i) 3388 return; 3389 3390 if (sit_i->sentries) { 3391 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3392 kfree(sit_i->sentries[start].cur_valid_map); 3393 #ifdef CONFIG_F2FS_CHECK_FS 3394 kfree(sit_i->sentries[start].cur_valid_map_mir); 3395 #endif 3396 kfree(sit_i->sentries[start].ckpt_valid_map); 3397 kfree(sit_i->sentries[start].discard_map); 3398 } 3399 } 3400 kfree(sit_i->tmp_map); 3401 3402 kvfree(sit_i->sentries); 3403 kvfree(sit_i->sec_entries); 3404 kvfree(sit_i->dirty_sentries_bitmap); 3405 3406 SM_I(sbi)->sit_info = NULL; 3407 kfree(sit_i->sit_bitmap); 3408 #ifdef CONFIG_F2FS_CHECK_FS 3409 kfree(sit_i->sit_bitmap_mir); 3410 #endif 3411 kfree(sit_i); 3412 } 3413 3414 void destroy_segment_manager(struct f2fs_sb_info *sbi) 3415 { 3416 struct f2fs_sm_info *sm_info = SM_I(sbi); 3417 3418 if (!sm_info) 3419 return; 3420 destroy_flush_cmd_control(sbi, true); 3421 destroy_discard_cmd_control(sbi); 3422 destroy_dirty_segmap(sbi); 3423 destroy_curseg(sbi); 3424 destroy_free_segmap(sbi); 3425 destroy_sit_info(sbi); 3426 sbi->sm_info = NULL; 3427 kfree(sm_info); 3428 } 3429 3430 int __init create_segment_manager_caches(void) 3431 { 3432 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 3433 sizeof(struct discard_entry)); 3434 if (!discard_entry_slab) 3435 goto fail; 3436 3437 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 3438 sizeof(struct discard_cmd)); 3439 if (!discard_cmd_slab) 3440 goto destroy_discard_entry; 3441 3442 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 3443 sizeof(struct sit_entry_set)); 3444 if (!sit_entry_set_slab) 3445 goto destroy_discard_cmd; 3446 3447 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 3448 sizeof(struct inmem_pages)); 3449 if (!inmem_entry_slab) 3450 goto destroy_sit_entry_set; 3451 return 0; 3452 3453 destroy_sit_entry_set: 3454 kmem_cache_destroy(sit_entry_set_slab); 3455 destroy_discard_cmd: 3456 kmem_cache_destroy(discard_cmd_slab); 3457 destroy_discard_entry: 3458 kmem_cache_destroy(discard_entry_slab); 3459 fail: 3460 return -ENOMEM; 3461 } 3462 3463 void destroy_segment_manager_caches(void) 3464 { 3465 kmem_cache_destroy(sit_entry_set_slab); 3466 kmem_cache_destroy(discard_cmd_slab); 3467 kmem_cache_destroy(discard_entry_slab); 3468 kmem_cache_destroy(inmem_entry_slab); 3469 } 3470