1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 #include <linux/freezer.h> 20 #include <linux/sched/signal.h> 21 22 #include "f2fs.h" 23 #include "segment.h" 24 #include "node.h" 25 #include "gc.h" 26 #include "trace.h" 27 #include <trace/events/f2fs.h> 28 29 #define __reverse_ffz(x) __reverse_ffs(~(x)) 30 31 static struct kmem_cache *discard_entry_slab; 32 static struct kmem_cache *discard_cmd_slab; 33 static struct kmem_cache *sit_entry_set_slab; 34 static struct kmem_cache *inmem_entry_slab; 35 36 static unsigned long __reverse_ulong(unsigned char *str) 37 { 38 unsigned long tmp = 0; 39 int shift = 24, idx = 0; 40 41 #if BITS_PER_LONG == 64 42 shift = 56; 43 #endif 44 while (shift >= 0) { 45 tmp |= (unsigned long)str[idx++] << shift; 46 shift -= BITS_PER_BYTE; 47 } 48 return tmp; 49 } 50 51 /* 52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 53 * MSB and LSB are reversed in a byte by f2fs_set_bit. 54 */ 55 static inline unsigned long __reverse_ffs(unsigned long word) 56 { 57 int num = 0; 58 59 #if BITS_PER_LONG == 64 60 if ((word & 0xffffffff00000000UL) == 0) 61 num += 32; 62 else 63 word >>= 32; 64 #endif 65 if ((word & 0xffff0000) == 0) 66 num += 16; 67 else 68 word >>= 16; 69 70 if ((word & 0xff00) == 0) 71 num += 8; 72 else 73 word >>= 8; 74 75 if ((word & 0xf0) == 0) 76 num += 4; 77 else 78 word >>= 4; 79 80 if ((word & 0xc) == 0) 81 num += 2; 82 else 83 word >>= 2; 84 85 if ((word & 0x2) == 0) 86 num += 1; 87 return num; 88 } 89 90 /* 91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 92 * f2fs_set_bit makes MSB and LSB reversed in a byte. 93 * @size must be integral times of unsigned long. 94 * Example: 95 * MSB <--> LSB 96 * f2fs_set_bit(0, bitmap) => 1000 0000 97 * f2fs_set_bit(7, bitmap) => 0000 0001 98 */ 99 static unsigned long __find_rev_next_bit(const unsigned long *addr, 100 unsigned long size, unsigned long offset) 101 { 102 const unsigned long *p = addr + BIT_WORD(offset); 103 unsigned long result = size; 104 unsigned long tmp; 105 106 if (offset >= size) 107 return size; 108 109 size -= (offset & ~(BITS_PER_LONG - 1)); 110 offset %= BITS_PER_LONG; 111 112 while (1) { 113 if (*p == 0) 114 goto pass; 115 116 tmp = __reverse_ulong((unsigned char *)p); 117 118 tmp &= ~0UL >> offset; 119 if (size < BITS_PER_LONG) 120 tmp &= (~0UL << (BITS_PER_LONG - size)); 121 if (tmp) 122 goto found; 123 pass: 124 if (size <= BITS_PER_LONG) 125 break; 126 size -= BITS_PER_LONG; 127 offset = 0; 128 p++; 129 } 130 return result; 131 found: 132 return result - size + __reverse_ffs(tmp); 133 } 134 135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 136 unsigned long size, unsigned long offset) 137 { 138 const unsigned long *p = addr + BIT_WORD(offset); 139 unsigned long result = size; 140 unsigned long tmp; 141 142 if (offset >= size) 143 return size; 144 145 size -= (offset & ~(BITS_PER_LONG - 1)); 146 offset %= BITS_PER_LONG; 147 148 while (1) { 149 if (*p == ~0UL) 150 goto pass; 151 152 tmp = __reverse_ulong((unsigned char *)p); 153 154 if (offset) 155 tmp |= ~0UL << (BITS_PER_LONG - offset); 156 if (size < BITS_PER_LONG) 157 tmp |= ~0UL >> size; 158 if (tmp != ~0UL) 159 goto found; 160 pass: 161 if (size <= BITS_PER_LONG) 162 break; 163 size -= BITS_PER_LONG; 164 offset = 0; 165 p++; 166 } 167 return result; 168 found: 169 return result - size + __reverse_ffz(tmp); 170 } 171 172 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 173 { 174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 177 178 if (test_opt(sbi, LFS)) 179 return false; 180 if (sbi->gc_mode == GC_URGENT) 181 return true; 182 183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 185 } 186 187 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 188 { 189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 struct inmem_pages *new; 192 193 f2fs_trace_pid(page); 194 195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 196 SetPagePrivate(page); 197 198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 199 200 /* add atomic page indices to the list */ 201 new->page = page; 202 INIT_LIST_HEAD(&new->list); 203 204 /* increase reference count with clean state */ 205 mutex_lock(&fi->inmem_lock); 206 get_page(page); 207 list_add_tail(&new->list, &fi->inmem_pages); 208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 209 if (list_empty(&fi->inmem_ilist)) 210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 213 mutex_unlock(&fi->inmem_lock); 214 215 trace_f2fs_register_inmem_page(page, INMEM); 216 } 217 218 static int __revoke_inmem_pages(struct inode *inode, 219 struct list_head *head, bool drop, bool recover) 220 { 221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 222 struct inmem_pages *cur, *tmp; 223 int err = 0; 224 225 list_for_each_entry_safe(cur, tmp, head, list) { 226 struct page *page = cur->page; 227 228 if (drop) 229 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 230 231 lock_page(page); 232 233 f2fs_wait_on_page_writeback(page, DATA, true); 234 235 if (recover) { 236 struct dnode_of_data dn; 237 struct node_info ni; 238 239 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 240 retry: 241 set_new_dnode(&dn, inode, NULL, NULL, 0); 242 err = f2fs_get_dnode_of_data(&dn, page->index, 243 LOOKUP_NODE); 244 if (err) { 245 if (err == -ENOMEM) { 246 congestion_wait(BLK_RW_ASYNC, HZ/50); 247 cond_resched(); 248 goto retry; 249 } 250 err = -EAGAIN; 251 goto next; 252 } 253 254 err = f2fs_get_node_info(sbi, dn.nid, &ni); 255 if (err) { 256 f2fs_put_dnode(&dn); 257 return err; 258 } 259 260 if (cur->old_addr == NEW_ADDR) { 261 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 262 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 263 } else 264 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 265 cur->old_addr, ni.version, true, true); 266 f2fs_put_dnode(&dn); 267 } 268 next: 269 /* we don't need to invalidate this in the sccessful status */ 270 if (drop || recover) 271 ClearPageUptodate(page); 272 set_page_private(page, 0); 273 ClearPagePrivate(page); 274 f2fs_put_page(page, 1); 275 276 list_del(&cur->list); 277 kmem_cache_free(inmem_entry_slab, cur); 278 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 279 } 280 return err; 281 } 282 283 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 284 { 285 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 286 struct inode *inode; 287 struct f2fs_inode_info *fi; 288 next: 289 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 290 if (list_empty(head)) { 291 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 292 return; 293 } 294 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 295 inode = igrab(&fi->vfs_inode); 296 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 297 298 if (inode) { 299 if (gc_failure) { 300 if (fi->i_gc_failures[GC_FAILURE_ATOMIC]) 301 goto drop; 302 goto skip; 303 } 304 drop: 305 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 306 f2fs_drop_inmem_pages(inode); 307 iput(inode); 308 } 309 skip: 310 congestion_wait(BLK_RW_ASYNC, HZ/50); 311 cond_resched(); 312 goto next; 313 } 314 315 void f2fs_drop_inmem_pages(struct inode *inode) 316 { 317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 318 struct f2fs_inode_info *fi = F2FS_I(inode); 319 320 mutex_lock(&fi->inmem_lock); 321 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 322 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 323 if (!list_empty(&fi->inmem_ilist)) 324 list_del_init(&fi->inmem_ilist); 325 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 326 mutex_unlock(&fi->inmem_lock); 327 328 clear_inode_flag(inode, FI_ATOMIC_FILE); 329 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 330 stat_dec_atomic_write(inode); 331 } 332 333 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 334 { 335 struct f2fs_inode_info *fi = F2FS_I(inode); 336 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 337 struct list_head *head = &fi->inmem_pages; 338 struct inmem_pages *cur = NULL; 339 340 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 341 342 mutex_lock(&fi->inmem_lock); 343 list_for_each_entry(cur, head, list) { 344 if (cur->page == page) 345 break; 346 } 347 348 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 349 list_del(&cur->list); 350 mutex_unlock(&fi->inmem_lock); 351 352 dec_page_count(sbi, F2FS_INMEM_PAGES); 353 kmem_cache_free(inmem_entry_slab, cur); 354 355 ClearPageUptodate(page); 356 set_page_private(page, 0); 357 ClearPagePrivate(page); 358 f2fs_put_page(page, 0); 359 360 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 361 } 362 363 static int __f2fs_commit_inmem_pages(struct inode *inode) 364 { 365 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 366 struct f2fs_inode_info *fi = F2FS_I(inode); 367 struct inmem_pages *cur, *tmp; 368 struct f2fs_io_info fio = { 369 .sbi = sbi, 370 .ino = inode->i_ino, 371 .type = DATA, 372 .op = REQ_OP_WRITE, 373 .op_flags = REQ_SYNC | REQ_PRIO, 374 .io_type = FS_DATA_IO, 375 }; 376 struct list_head revoke_list; 377 pgoff_t last_idx = ULONG_MAX; 378 int err = 0; 379 380 INIT_LIST_HEAD(&revoke_list); 381 382 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 383 struct page *page = cur->page; 384 385 lock_page(page); 386 if (page->mapping == inode->i_mapping) { 387 trace_f2fs_commit_inmem_page(page, INMEM); 388 389 set_page_dirty(page); 390 f2fs_wait_on_page_writeback(page, DATA, true); 391 if (clear_page_dirty_for_io(page)) { 392 inode_dec_dirty_pages(inode); 393 f2fs_remove_dirty_inode(inode); 394 } 395 retry: 396 fio.page = page; 397 fio.old_blkaddr = NULL_ADDR; 398 fio.encrypted_page = NULL; 399 fio.need_lock = LOCK_DONE; 400 err = f2fs_do_write_data_page(&fio); 401 if (err) { 402 if (err == -ENOMEM) { 403 congestion_wait(BLK_RW_ASYNC, HZ/50); 404 cond_resched(); 405 goto retry; 406 } 407 unlock_page(page); 408 break; 409 } 410 /* record old blkaddr for revoking */ 411 cur->old_addr = fio.old_blkaddr; 412 last_idx = page->index; 413 } 414 unlock_page(page); 415 list_move_tail(&cur->list, &revoke_list); 416 } 417 418 if (last_idx != ULONG_MAX) 419 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA); 420 421 if (err) { 422 /* 423 * try to revoke all committed pages, but still we could fail 424 * due to no memory or other reason, if that happened, EAGAIN 425 * will be returned, which means in such case, transaction is 426 * already not integrity, caller should use journal to do the 427 * recovery or rewrite & commit last transaction. For other 428 * error number, revoking was done by filesystem itself. 429 */ 430 err = __revoke_inmem_pages(inode, &revoke_list, false, true); 431 432 /* drop all uncommitted pages */ 433 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 434 } else { 435 __revoke_inmem_pages(inode, &revoke_list, false, false); 436 } 437 438 return err; 439 } 440 441 int f2fs_commit_inmem_pages(struct inode *inode) 442 { 443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 444 struct f2fs_inode_info *fi = F2FS_I(inode); 445 int err; 446 447 f2fs_balance_fs(sbi, true); 448 449 down_write(&fi->i_gc_rwsem[WRITE]); 450 451 f2fs_lock_op(sbi); 452 set_inode_flag(inode, FI_ATOMIC_COMMIT); 453 454 mutex_lock(&fi->inmem_lock); 455 err = __f2fs_commit_inmem_pages(inode); 456 457 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 458 if (!list_empty(&fi->inmem_ilist)) 459 list_del_init(&fi->inmem_ilist); 460 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 461 mutex_unlock(&fi->inmem_lock); 462 463 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 464 465 f2fs_unlock_op(sbi); 466 up_write(&fi->i_gc_rwsem[WRITE]); 467 468 return err; 469 } 470 471 /* 472 * This function balances dirty node and dentry pages. 473 * In addition, it controls garbage collection. 474 */ 475 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 476 { 477 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 478 f2fs_show_injection_info(FAULT_CHECKPOINT); 479 f2fs_stop_checkpoint(sbi, false); 480 } 481 482 /* balance_fs_bg is able to be pending */ 483 if (need && excess_cached_nats(sbi)) 484 f2fs_balance_fs_bg(sbi); 485 486 /* 487 * We should do GC or end up with checkpoint, if there are so many dirty 488 * dir/node pages without enough free segments. 489 */ 490 if (has_not_enough_free_secs(sbi, 0, 0)) { 491 mutex_lock(&sbi->gc_mutex); 492 f2fs_gc(sbi, false, false, NULL_SEGNO); 493 } 494 } 495 496 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 497 { 498 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 499 return; 500 501 /* try to shrink extent cache when there is no enough memory */ 502 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 503 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 504 505 /* check the # of cached NAT entries */ 506 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 507 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 508 509 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 510 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 511 else 512 f2fs_build_free_nids(sbi, false, false); 513 514 if (!is_idle(sbi) && 515 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 516 return; 517 518 /* checkpoint is the only way to shrink partial cached entries */ 519 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 520 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 521 excess_prefree_segs(sbi) || 522 excess_dirty_nats(sbi) || 523 excess_dirty_nodes(sbi) || 524 f2fs_time_over(sbi, CP_TIME)) { 525 if (test_opt(sbi, DATA_FLUSH)) { 526 struct blk_plug plug; 527 528 blk_start_plug(&plug); 529 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 530 blk_finish_plug(&plug); 531 } 532 f2fs_sync_fs(sbi->sb, true); 533 stat_inc_bg_cp_count(sbi->stat_info); 534 } 535 } 536 537 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 538 struct block_device *bdev) 539 { 540 struct bio *bio = f2fs_bio_alloc(sbi, 0, true); 541 int ret; 542 543 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 544 bio_set_dev(bio, bdev); 545 ret = submit_bio_wait(bio); 546 bio_put(bio); 547 548 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 549 test_opt(sbi, FLUSH_MERGE), ret); 550 return ret; 551 } 552 553 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 554 { 555 int ret = 0; 556 int i; 557 558 if (!sbi->s_ndevs) 559 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 560 561 for (i = 0; i < sbi->s_ndevs; i++) { 562 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 563 continue; 564 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 565 if (ret) 566 break; 567 } 568 return ret; 569 } 570 571 static int issue_flush_thread(void *data) 572 { 573 struct f2fs_sb_info *sbi = data; 574 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 575 wait_queue_head_t *q = &fcc->flush_wait_queue; 576 repeat: 577 if (kthread_should_stop()) 578 return 0; 579 580 sb_start_intwrite(sbi->sb); 581 582 if (!llist_empty(&fcc->issue_list)) { 583 struct flush_cmd *cmd, *next; 584 int ret; 585 586 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 587 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 588 589 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 590 591 ret = submit_flush_wait(sbi, cmd->ino); 592 atomic_inc(&fcc->issued_flush); 593 594 llist_for_each_entry_safe(cmd, next, 595 fcc->dispatch_list, llnode) { 596 cmd->ret = ret; 597 complete(&cmd->wait); 598 } 599 fcc->dispatch_list = NULL; 600 } 601 602 sb_end_intwrite(sbi->sb); 603 604 wait_event_interruptible(*q, 605 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 606 goto repeat; 607 } 608 609 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 610 { 611 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 612 struct flush_cmd cmd; 613 int ret; 614 615 if (test_opt(sbi, NOBARRIER)) 616 return 0; 617 618 if (!test_opt(sbi, FLUSH_MERGE)) { 619 ret = submit_flush_wait(sbi, ino); 620 atomic_inc(&fcc->issued_flush); 621 return ret; 622 } 623 624 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) { 625 ret = submit_flush_wait(sbi, ino); 626 atomic_dec(&fcc->issing_flush); 627 628 atomic_inc(&fcc->issued_flush); 629 return ret; 630 } 631 632 cmd.ino = ino; 633 init_completion(&cmd.wait); 634 635 llist_add(&cmd.llnode, &fcc->issue_list); 636 637 /* update issue_list before we wake up issue_flush thread */ 638 smp_mb(); 639 640 if (waitqueue_active(&fcc->flush_wait_queue)) 641 wake_up(&fcc->flush_wait_queue); 642 643 if (fcc->f2fs_issue_flush) { 644 wait_for_completion(&cmd.wait); 645 atomic_dec(&fcc->issing_flush); 646 } else { 647 struct llist_node *list; 648 649 list = llist_del_all(&fcc->issue_list); 650 if (!list) { 651 wait_for_completion(&cmd.wait); 652 atomic_dec(&fcc->issing_flush); 653 } else { 654 struct flush_cmd *tmp, *next; 655 656 ret = submit_flush_wait(sbi, ino); 657 658 llist_for_each_entry_safe(tmp, next, list, llnode) { 659 if (tmp == &cmd) { 660 cmd.ret = ret; 661 atomic_dec(&fcc->issing_flush); 662 continue; 663 } 664 tmp->ret = ret; 665 complete(&tmp->wait); 666 } 667 } 668 } 669 670 return cmd.ret; 671 } 672 673 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 674 { 675 dev_t dev = sbi->sb->s_bdev->bd_dev; 676 struct flush_cmd_control *fcc; 677 int err = 0; 678 679 if (SM_I(sbi)->fcc_info) { 680 fcc = SM_I(sbi)->fcc_info; 681 if (fcc->f2fs_issue_flush) 682 return err; 683 goto init_thread; 684 } 685 686 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 687 if (!fcc) 688 return -ENOMEM; 689 atomic_set(&fcc->issued_flush, 0); 690 atomic_set(&fcc->issing_flush, 0); 691 init_waitqueue_head(&fcc->flush_wait_queue); 692 init_llist_head(&fcc->issue_list); 693 SM_I(sbi)->fcc_info = fcc; 694 if (!test_opt(sbi, FLUSH_MERGE)) 695 return err; 696 697 init_thread: 698 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 699 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 700 if (IS_ERR(fcc->f2fs_issue_flush)) { 701 err = PTR_ERR(fcc->f2fs_issue_flush); 702 kfree(fcc); 703 SM_I(sbi)->fcc_info = NULL; 704 return err; 705 } 706 707 return err; 708 } 709 710 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 711 { 712 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 713 714 if (fcc && fcc->f2fs_issue_flush) { 715 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 716 717 fcc->f2fs_issue_flush = NULL; 718 kthread_stop(flush_thread); 719 } 720 if (free) { 721 kfree(fcc); 722 SM_I(sbi)->fcc_info = NULL; 723 } 724 } 725 726 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 727 { 728 int ret = 0, i; 729 730 if (!sbi->s_ndevs) 731 return 0; 732 733 for (i = 1; i < sbi->s_ndevs; i++) { 734 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 735 continue; 736 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 737 if (ret) 738 break; 739 740 spin_lock(&sbi->dev_lock); 741 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 742 spin_unlock(&sbi->dev_lock); 743 } 744 745 return ret; 746 } 747 748 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 749 enum dirty_type dirty_type) 750 { 751 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 752 753 /* need not be added */ 754 if (IS_CURSEG(sbi, segno)) 755 return; 756 757 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 758 dirty_i->nr_dirty[dirty_type]++; 759 760 if (dirty_type == DIRTY) { 761 struct seg_entry *sentry = get_seg_entry(sbi, segno); 762 enum dirty_type t = sentry->type; 763 764 if (unlikely(t >= DIRTY)) { 765 f2fs_bug_on(sbi, 1); 766 return; 767 } 768 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 769 dirty_i->nr_dirty[t]++; 770 } 771 } 772 773 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 774 enum dirty_type dirty_type) 775 { 776 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 777 778 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 779 dirty_i->nr_dirty[dirty_type]--; 780 781 if (dirty_type == DIRTY) { 782 struct seg_entry *sentry = get_seg_entry(sbi, segno); 783 enum dirty_type t = sentry->type; 784 785 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 786 dirty_i->nr_dirty[t]--; 787 788 if (get_valid_blocks(sbi, segno, true) == 0) 789 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 790 dirty_i->victim_secmap); 791 } 792 } 793 794 /* 795 * Should not occur error such as -ENOMEM. 796 * Adding dirty entry into seglist is not critical operation. 797 * If a given segment is one of current working segments, it won't be added. 798 */ 799 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 800 { 801 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 802 unsigned short valid_blocks; 803 804 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 805 return; 806 807 mutex_lock(&dirty_i->seglist_lock); 808 809 valid_blocks = get_valid_blocks(sbi, segno, false); 810 811 if (valid_blocks == 0) { 812 __locate_dirty_segment(sbi, segno, PRE); 813 __remove_dirty_segment(sbi, segno, DIRTY); 814 } else if (valid_blocks < sbi->blocks_per_seg) { 815 __locate_dirty_segment(sbi, segno, DIRTY); 816 } else { 817 /* Recovery routine with SSR needs this */ 818 __remove_dirty_segment(sbi, segno, DIRTY); 819 } 820 821 mutex_unlock(&dirty_i->seglist_lock); 822 } 823 824 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 825 struct block_device *bdev, block_t lstart, 826 block_t start, block_t len) 827 { 828 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 829 struct list_head *pend_list; 830 struct discard_cmd *dc; 831 832 f2fs_bug_on(sbi, !len); 833 834 pend_list = &dcc->pend_list[plist_idx(len)]; 835 836 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 837 INIT_LIST_HEAD(&dc->list); 838 dc->bdev = bdev; 839 dc->lstart = lstart; 840 dc->start = start; 841 dc->len = len; 842 dc->ref = 0; 843 dc->state = D_PREP; 844 dc->issuing = 0; 845 dc->error = 0; 846 init_completion(&dc->wait); 847 list_add_tail(&dc->list, pend_list); 848 spin_lock_init(&dc->lock); 849 dc->bio_ref = 0; 850 atomic_inc(&dcc->discard_cmd_cnt); 851 dcc->undiscard_blks += len; 852 853 return dc; 854 } 855 856 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 857 struct block_device *bdev, block_t lstart, 858 block_t start, block_t len, 859 struct rb_node *parent, struct rb_node **p) 860 { 861 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 862 struct discard_cmd *dc; 863 864 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 865 866 rb_link_node(&dc->rb_node, parent, p); 867 rb_insert_color(&dc->rb_node, &dcc->root); 868 869 return dc; 870 } 871 872 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 873 struct discard_cmd *dc) 874 { 875 if (dc->state == D_DONE) 876 atomic_sub(dc->issuing, &dcc->issing_discard); 877 878 list_del(&dc->list); 879 rb_erase(&dc->rb_node, &dcc->root); 880 dcc->undiscard_blks -= dc->len; 881 882 kmem_cache_free(discard_cmd_slab, dc); 883 884 atomic_dec(&dcc->discard_cmd_cnt); 885 } 886 887 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 888 struct discard_cmd *dc) 889 { 890 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 891 unsigned long flags; 892 893 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 894 895 spin_lock_irqsave(&dc->lock, flags); 896 if (dc->bio_ref) { 897 spin_unlock_irqrestore(&dc->lock, flags); 898 return; 899 } 900 spin_unlock_irqrestore(&dc->lock, flags); 901 902 f2fs_bug_on(sbi, dc->ref); 903 904 if (dc->error == -EOPNOTSUPP) 905 dc->error = 0; 906 907 if (dc->error) 908 f2fs_msg(sbi->sb, KERN_INFO, 909 "Issue discard(%u, %u, %u) failed, ret: %d", 910 dc->lstart, dc->start, dc->len, dc->error); 911 __detach_discard_cmd(dcc, dc); 912 } 913 914 static void f2fs_submit_discard_endio(struct bio *bio) 915 { 916 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 917 unsigned long flags; 918 919 dc->error = blk_status_to_errno(bio->bi_status); 920 921 spin_lock_irqsave(&dc->lock, flags); 922 dc->bio_ref--; 923 if (!dc->bio_ref && dc->state == D_SUBMIT) { 924 dc->state = D_DONE; 925 complete_all(&dc->wait); 926 } 927 spin_unlock_irqrestore(&dc->lock, flags); 928 bio_put(bio); 929 } 930 931 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 932 block_t start, block_t end) 933 { 934 #ifdef CONFIG_F2FS_CHECK_FS 935 struct seg_entry *sentry; 936 unsigned int segno; 937 block_t blk = start; 938 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 939 unsigned long *map; 940 941 while (blk < end) { 942 segno = GET_SEGNO(sbi, blk); 943 sentry = get_seg_entry(sbi, segno); 944 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 945 946 if (end < START_BLOCK(sbi, segno + 1)) 947 size = GET_BLKOFF_FROM_SEG0(sbi, end); 948 else 949 size = max_blocks; 950 map = (unsigned long *)(sentry->cur_valid_map); 951 offset = __find_rev_next_bit(map, size, offset); 952 f2fs_bug_on(sbi, offset != size); 953 blk = START_BLOCK(sbi, segno + 1); 954 } 955 #endif 956 } 957 958 static void __init_discard_policy(struct f2fs_sb_info *sbi, 959 struct discard_policy *dpolicy, 960 int discard_type, unsigned int granularity) 961 { 962 /* common policy */ 963 dpolicy->type = discard_type; 964 dpolicy->sync = true; 965 dpolicy->ordered = false; 966 dpolicy->granularity = granularity; 967 968 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 969 dpolicy->io_aware_gran = MAX_PLIST_NUM; 970 971 if (discard_type == DPOLICY_BG) { 972 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 973 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 974 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 975 dpolicy->io_aware = true; 976 dpolicy->sync = false; 977 dpolicy->ordered = true; 978 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 979 dpolicy->granularity = 1; 980 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 981 } 982 } else if (discard_type == DPOLICY_FORCE) { 983 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 984 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 985 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 986 dpolicy->io_aware = false; 987 } else if (discard_type == DPOLICY_FSTRIM) { 988 dpolicy->io_aware = false; 989 } else if (discard_type == DPOLICY_UMOUNT) { 990 dpolicy->max_requests = UINT_MAX; 991 dpolicy->io_aware = false; 992 } 993 } 994 995 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 996 struct block_device *bdev, block_t lstart, 997 block_t start, block_t len); 998 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 999 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1000 struct discard_policy *dpolicy, 1001 struct discard_cmd *dc, 1002 unsigned int *issued) 1003 { 1004 struct block_device *bdev = dc->bdev; 1005 struct request_queue *q = bdev_get_queue(bdev); 1006 unsigned int max_discard_blocks = 1007 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1008 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1009 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1010 &(dcc->fstrim_list) : &(dcc->wait_list); 1011 int flag = dpolicy->sync ? REQ_SYNC : 0; 1012 block_t lstart, start, len, total_len; 1013 int err = 0; 1014 1015 if (dc->state != D_PREP) 1016 return 0; 1017 1018 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1019 return 0; 1020 1021 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1022 1023 lstart = dc->lstart; 1024 start = dc->start; 1025 len = dc->len; 1026 total_len = len; 1027 1028 dc->len = 0; 1029 1030 while (total_len && *issued < dpolicy->max_requests && !err) { 1031 struct bio *bio = NULL; 1032 unsigned long flags; 1033 bool last = true; 1034 1035 if (len > max_discard_blocks) { 1036 len = max_discard_blocks; 1037 last = false; 1038 } 1039 1040 (*issued)++; 1041 if (*issued == dpolicy->max_requests) 1042 last = true; 1043 1044 dc->len += len; 1045 1046 if (time_to_inject(sbi, FAULT_DISCARD)) { 1047 f2fs_show_injection_info(FAULT_DISCARD); 1048 err = -EIO; 1049 goto submit; 1050 } 1051 err = __blkdev_issue_discard(bdev, 1052 SECTOR_FROM_BLOCK(start), 1053 SECTOR_FROM_BLOCK(len), 1054 GFP_NOFS, 0, &bio); 1055 submit: 1056 if (err) { 1057 spin_lock_irqsave(&dc->lock, flags); 1058 if (dc->state == D_PARTIAL) 1059 dc->state = D_SUBMIT; 1060 spin_unlock_irqrestore(&dc->lock, flags); 1061 1062 break; 1063 } 1064 1065 f2fs_bug_on(sbi, !bio); 1066 1067 /* 1068 * should keep before submission to avoid D_DONE 1069 * right away 1070 */ 1071 spin_lock_irqsave(&dc->lock, flags); 1072 if (last) 1073 dc->state = D_SUBMIT; 1074 else 1075 dc->state = D_PARTIAL; 1076 dc->bio_ref++; 1077 spin_unlock_irqrestore(&dc->lock, flags); 1078 1079 atomic_inc(&dcc->issing_discard); 1080 dc->issuing++; 1081 list_move_tail(&dc->list, wait_list); 1082 1083 /* sanity check on discard range */ 1084 __check_sit_bitmap(sbi, start, start + len); 1085 1086 bio->bi_private = dc; 1087 bio->bi_end_io = f2fs_submit_discard_endio; 1088 bio->bi_opf |= flag; 1089 submit_bio(bio); 1090 1091 atomic_inc(&dcc->issued_discard); 1092 1093 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1094 1095 lstart += len; 1096 start += len; 1097 total_len -= len; 1098 len = total_len; 1099 } 1100 1101 if (!err && len) 1102 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1103 return err; 1104 } 1105 1106 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 1107 struct block_device *bdev, block_t lstart, 1108 block_t start, block_t len, 1109 struct rb_node **insert_p, 1110 struct rb_node *insert_parent) 1111 { 1112 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1113 struct rb_node **p; 1114 struct rb_node *parent = NULL; 1115 struct discard_cmd *dc = NULL; 1116 1117 if (insert_p && insert_parent) { 1118 parent = insert_parent; 1119 p = insert_p; 1120 goto do_insert; 1121 } 1122 1123 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart); 1124 do_insert: 1125 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p); 1126 if (!dc) 1127 return NULL; 1128 1129 return dc; 1130 } 1131 1132 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1133 struct discard_cmd *dc) 1134 { 1135 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1136 } 1137 1138 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1139 struct discard_cmd *dc, block_t blkaddr) 1140 { 1141 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1142 struct discard_info di = dc->di; 1143 bool modified = false; 1144 1145 if (dc->state == D_DONE || dc->len == 1) { 1146 __remove_discard_cmd(sbi, dc); 1147 return; 1148 } 1149 1150 dcc->undiscard_blks -= di.len; 1151 1152 if (blkaddr > di.lstart) { 1153 dc->len = blkaddr - dc->lstart; 1154 dcc->undiscard_blks += dc->len; 1155 __relocate_discard_cmd(dcc, dc); 1156 modified = true; 1157 } 1158 1159 if (blkaddr < di.lstart + di.len - 1) { 1160 if (modified) { 1161 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1162 di.start + blkaddr + 1 - di.lstart, 1163 di.lstart + di.len - 1 - blkaddr, 1164 NULL, NULL); 1165 } else { 1166 dc->lstart++; 1167 dc->len--; 1168 dc->start++; 1169 dcc->undiscard_blks += dc->len; 1170 __relocate_discard_cmd(dcc, dc); 1171 } 1172 } 1173 } 1174 1175 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1176 struct block_device *bdev, block_t lstart, 1177 block_t start, block_t len) 1178 { 1179 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1180 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1181 struct discard_cmd *dc; 1182 struct discard_info di = {0}; 1183 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1184 struct request_queue *q = bdev_get_queue(bdev); 1185 unsigned int max_discard_blocks = 1186 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1187 block_t end = lstart + len; 1188 1189 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1190 NULL, lstart, 1191 (struct rb_entry **)&prev_dc, 1192 (struct rb_entry **)&next_dc, 1193 &insert_p, &insert_parent, true); 1194 if (dc) 1195 prev_dc = dc; 1196 1197 if (!prev_dc) { 1198 di.lstart = lstart; 1199 di.len = next_dc ? next_dc->lstart - lstart : len; 1200 di.len = min(di.len, len); 1201 di.start = start; 1202 } 1203 1204 while (1) { 1205 struct rb_node *node; 1206 bool merged = false; 1207 struct discard_cmd *tdc = NULL; 1208 1209 if (prev_dc) { 1210 di.lstart = prev_dc->lstart + prev_dc->len; 1211 if (di.lstart < lstart) 1212 di.lstart = lstart; 1213 if (di.lstart >= end) 1214 break; 1215 1216 if (!next_dc || next_dc->lstart > end) 1217 di.len = end - di.lstart; 1218 else 1219 di.len = next_dc->lstart - di.lstart; 1220 di.start = start + di.lstart - lstart; 1221 } 1222 1223 if (!di.len) 1224 goto next; 1225 1226 if (prev_dc && prev_dc->state == D_PREP && 1227 prev_dc->bdev == bdev && 1228 __is_discard_back_mergeable(&di, &prev_dc->di, 1229 max_discard_blocks)) { 1230 prev_dc->di.len += di.len; 1231 dcc->undiscard_blks += di.len; 1232 __relocate_discard_cmd(dcc, prev_dc); 1233 di = prev_dc->di; 1234 tdc = prev_dc; 1235 merged = true; 1236 } 1237 1238 if (next_dc && next_dc->state == D_PREP && 1239 next_dc->bdev == bdev && 1240 __is_discard_front_mergeable(&di, &next_dc->di, 1241 max_discard_blocks)) { 1242 next_dc->di.lstart = di.lstart; 1243 next_dc->di.len += di.len; 1244 next_dc->di.start = di.start; 1245 dcc->undiscard_blks += di.len; 1246 __relocate_discard_cmd(dcc, next_dc); 1247 if (tdc) 1248 __remove_discard_cmd(sbi, tdc); 1249 merged = true; 1250 } 1251 1252 if (!merged) { 1253 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1254 di.len, NULL, NULL); 1255 } 1256 next: 1257 prev_dc = next_dc; 1258 if (!prev_dc) 1259 break; 1260 1261 node = rb_next(&prev_dc->rb_node); 1262 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1263 } 1264 } 1265 1266 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1267 struct block_device *bdev, block_t blkstart, block_t blklen) 1268 { 1269 block_t lblkstart = blkstart; 1270 1271 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1272 1273 if (sbi->s_ndevs) { 1274 int devi = f2fs_target_device_index(sbi, blkstart); 1275 1276 blkstart -= FDEV(devi).start_blk; 1277 } 1278 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1279 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1280 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1281 return 0; 1282 } 1283 1284 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1285 struct discard_policy *dpolicy) 1286 { 1287 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1288 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1289 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1290 struct discard_cmd *dc; 1291 struct blk_plug plug; 1292 unsigned int pos = dcc->next_pos; 1293 unsigned int issued = 0; 1294 bool io_interrupted = false; 1295 1296 mutex_lock(&dcc->cmd_lock); 1297 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1298 NULL, pos, 1299 (struct rb_entry **)&prev_dc, 1300 (struct rb_entry **)&next_dc, 1301 &insert_p, &insert_parent, true); 1302 if (!dc) 1303 dc = next_dc; 1304 1305 blk_start_plug(&plug); 1306 1307 while (dc) { 1308 struct rb_node *node; 1309 int err = 0; 1310 1311 if (dc->state != D_PREP) 1312 goto next; 1313 1314 if (dpolicy->io_aware && !is_idle(sbi)) { 1315 io_interrupted = true; 1316 break; 1317 } 1318 1319 dcc->next_pos = dc->lstart + dc->len; 1320 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1321 1322 if (issued >= dpolicy->max_requests) 1323 break; 1324 next: 1325 node = rb_next(&dc->rb_node); 1326 if (err) 1327 __remove_discard_cmd(sbi, dc); 1328 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1329 } 1330 1331 blk_finish_plug(&plug); 1332 1333 if (!dc) 1334 dcc->next_pos = 0; 1335 1336 mutex_unlock(&dcc->cmd_lock); 1337 1338 if (!issued && io_interrupted) 1339 issued = -1; 1340 1341 return issued; 1342 } 1343 1344 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1345 struct discard_policy *dpolicy) 1346 { 1347 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1348 struct list_head *pend_list; 1349 struct discard_cmd *dc, *tmp; 1350 struct blk_plug plug; 1351 int i, issued = 0; 1352 bool io_interrupted = false; 1353 1354 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1355 if (i + 1 < dpolicy->granularity) 1356 break; 1357 1358 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1359 return __issue_discard_cmd_orderly(sbi, dpolicy); 1360 1361 pend_list = &dcc->pend_list[i]; 1362 1363 mutex_lock(&dcc->cmd_lock); 1364 if (list_empty(pend_list)) 1365 goto next; 1366 if (unlikely(dcc->rbtree_check)) 1367 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1368 &dcc->root)); 1369 blk_start_plug(&plug); 1370 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1371 f2fs_bug_on(sbi, dc->state != D_PREP); 1372 1373 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1374 !is_idle(sbi)) { 1375 io_interrupted = true; 1376 break; 1377 } 1378 1379 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1380 1381 if (issued >= dpolicy->max_requests) 1382 break; 1383 } 1384 blk_finish_plug(&plug); 1385 next: 1386 mutex_unlock(&dcc->cmd_lock); 1387 1388 if (issued >= dpolicy->max_requests || io_interrupted) 1389 break; 1390 } 1391 1392 if (!issued && io_interrupted) 1393 issued = -1; 1394 1395 return issued; 1396 } 1397 1398 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1399 { 1400 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1401 struct list_head *pend_list; 1402 struct discard_cmd *dc, *tmp; 1403 int i; 1404 bool dropped = false; 1405 1406 mutex_lock(&dcc->cmd_lock); 1407 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1408 pend_list = &dcc->pend_list[i]; 1409 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1410 f2fs_bug_on(sbi, dc->state != D_PREP); 1411 __remove_discard_cmd(sbi, dc); 1412 dropped = true; 1413 } 1414 } 1415 mutex_unlock(&dcc->cmd_lock); 1416 1417 return dropped; 1418 } 1419 1420 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1421 { 1422 __drop_discard_cmd(sbi); 1423 } 1424 1425 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1426 struct discard_cmd *dc) 1427 { 1428 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1429 unsigned int len = 0; 1430 1431 wait_for_completion_io(&dc->wait); 1432 mutex_lock(&dcc->cmd_lock); 1433 f2fs_bug_on(sbi, dc->state != D_DONE); 1434 dc->ref--; 1435 if (!dc->ref) { 1436 if (!dc->error) 1437 len = dc->len; 1438 __remove_discard_cmd(sbi, dc); 1439 } 1440 mutex_unlock(&dcc->cmd_lock); 1441 1442 return len; 1443 } 1444 1445 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1446 struct discard_policy *dpolicy, 1447 block_t start, block_t end) 1448 { 1449 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1450 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1451 &(dcc->fstrim_list) : &(dcc->wait_list); 1452 struct discard_cmd *dc, *tmp; 1453 bool need_wait; 1454 unsigned int trimmed = 0; 1455 1456 next: 1457 need_wait = false; 1458 1459 mutex_lock(&dcc->cmd_lock); 1460 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1461 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1462 continue; 1463 if (dc->len < dpolicy->granularity) 1464 continue; 1465 if (dc->state == D_DONE && !dc->ref) { 1466 wait_for_completion_io(&dc->wait); 1467 if (!dc->error) 1468 trimmed += dc->len; 1469 __remove_discard_cmd(sbi, dc); 1470 } else { 1471 dc->ref++; 1472 need_wait = true; 1473 break; 1474 } 1475 } 1476 mutex_unlock(&dcc->cmd_lock); 1477 1478 if (need_wait) { 1479 trimmed += __wait_one_discard_bio(sbi, dc); 1480 goto next; 1481 } 1482 1483 return trimmed; 1484 } 1485 1486 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1487 struct discard_policy *dpolicy) 1488 { 1489 struct discard_policy dp; 1490 unsigned int discard_blks; 1491 1492 if (dpolicy) 1493 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1494 1495 /* wait all */ 1496 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1497 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1498 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1499 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1500 1501 return discard_blks; 1502 } 1503 1504 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1505 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1506 { 1507 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1508 struct discard_cmd *dc; 1509 bool need_wait = false; 1510 1511 mutex_lock(&dcc->cmd_lock); 1512 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1513 NULL, blkaddr); 1514 if (dc) { 1515 if (dc->state == D_PREP) { 1516 __punch_discard_cmd(sbi, dc, blkaddr); 1517 } else { 1518 dc->ref++; 1519 need_wait = true; 1520 } 1521 } 1522 mutex_unlock(&dcc->cmd_lock); 1523 1524 if (need_wait) 1525 __wait_one_discard_bio(sbi, dc); 1526 } 1527 1528 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1529 { 1530 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1531 1532 if (dcc && dcc->f2fs_issue_discard) { 1533 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1534 1535 dcc->f2fs_issue_discard = NULL; 1536 kthread_stop(discard_thread); 1537 } 1538 } 1539 1540 /* This comes from f2fs_put_super */ 1541 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi) 1542 { 1543 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1544 struct discard_policy dpolicy; 1545 bool dropped; 1546 1547 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1548 dcc->discard_granularity); 1549 __issue_discard_cmd(sbi, &dpolicy); 1550 dropped = __drop_discard_cmd(sbi); 1551 1552 /* just to make sure there is no pending discard commands */ 1553 __wait_all_discard_cmd(sbi, NULL); 1554 1555 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1556 return dropped; 1557 } 1558 1559 static int issue_discard_thread(void *data) 1560 { 1561 struct f2fs_sb_info *sbi = data; 1562 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1563 wait_queue_head_t *q = &dcc->discard_wait_queue; 1564 struct discard_policy dpolicy; 1565 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1566 int issued; 1567 1568 set_freezable(); 1569 1570 do { 1571 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1572 dcc->discard_granularity); 1573 1574 wait_event_interruptible_timeout(*q, 1575 kthread_should_stop() || freezing(current) || 1576 dcc->discard_wake, 1577 msecs_to_jiffies(wait_ms)); 1578 1579 if (dcc->discard_wake) 1580 dcc->discard_wake = 0; 1581 1582 if (try_to_freeze()) 1583 continue; 1584 if (f2fs_readonly(sbi->sb)) 1585 continue; 1586 if (kthread_should_stop()) 1587 return 0; 1588 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1589 wait_ms = dpolicy.max_interval; 1590 continue; 1591 } 1592 1593 if (sbi->gc_mode == GC_URGENT) 1594 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1595 1596 sb_start_intwrite(sbi->sb); 1597 1598 issued = __issue_discard_cmd(sbi, &dpolicy); 1599 if (issued > 0) { 1600 __wait_all_discard_cmd(sbi, &dpolicy); 1601 wait_ms = dpolicy.min_interval; 1602 } else if (issued == -1){ 1603 wait_ms = dpolicy.mid_interval; 1604 } else { 1605 wait_ms = dpolicy.max_interval; 1606 } 1607 1608 sb_end_intwrite(sbi->sb); 1609 1610 } while (!kthread_should_stop()); 1611 return 0; 1612 } 1613 1614 #ifdef CONFIG_BLK_DEV_ZONED 1615 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1616 struct block_device *bdev, block_t blkstart, block_t blklen) 1617 { 1618 sector_t sector, nr_sects; 1619 block_t lblkstart = blkstart; 1620 int devi = 0; 1621 1622 if (sbi->s_ndevs) { 1623 devi = f2fs_target_device_index(sbi, blkstart); 1624 blkstart -= FDEV(devi).start_blk; 1625 } 1626 1627 /* 1628 * We need to know the type of the zone: for conventional zones, 1629 * use regular discard if the drive supports it. For sequential 1630 * zones, reset the zone write pointer. 1631 */ 1632 switch (get_blkz_type(sbi, bdev, blkstart)) { 1633 1634 case BLK_ZONE_TYPE_CONVENTIONAL: 1635 if (!blk_queue_discard(bdev_get_queue(bdev))) 1636 return 0; 1637 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1638 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1639 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1640 sector = SECTOR_FROM_BLOCK(blkstart); 1641 nr_sects = SECTOR_FROM_BLOCK(blklen); 1642 1643 if (sector & (bdev_zone_sectors(bdev) - 1) || 1644 nr_sects != bdev_zone_sectors(bdev)) { 1645 f2fs_msg(sbi->sb, KERN_INFO, 1646 "(%d) %s: Unaligned discard attempted (block %x + %x)", 1647 devi, sbi->s_ndevs ? FDEV(devi).path: "", 1648 blkstart, blklen); 1649 return -EIO; 1650 } 1651 trace_f2fs_issue_reset_zone(bdev, blkstart); 1652 return blkdev_reset_zones(bdev, sector, 1653 nr_sects, GFP_NOFS); 1654 default: 1655 /* Unknown zone type: broken device ? */ 1656 return -EIO; 1657 } 1658 } 1659 #endif 1660 1661 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1662 struct block_device *bdev, block_t blkstart, block_t blklen) 1663 { 1664 #ifdef CONFIG_BLK_DEV_ZONED 1665 if (f2fs_sb_has_blkzoned(sbi->sb) && 1666 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 1667 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1668 #endif 1669 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1670 } 1671 1672 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1673 block_t blkstart, block_t blklen) 1674 { 1675 sector_t start = blkstart, len = 0; 1676 struct block_device *bdev; 1677 struct seg_entry *se; 1678 unsigned int offset; 1679 block_t i; 1680 int err = 0; 1681 1682 bdev = f2fs_target_device(sbi, blkstart, NULL); 1683 1684 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1685 if (i != start) { 1686 struct block_device *bdev2 = 1687 f2fs_target_device(sbi, i, NULL); 1688 1689 if (bdev2 != bdev) { 1690 err = __issue_discard_async(sbi, bdev, 1691 start, len); 1692 if (err) 1693 return err; 1694 bdev = bdev2; 1695 start = i; 1696 len = 0; 1697 } 1698 } 1699 1700 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1701 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1702 1703 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1704 sbi->discard_blks--; 1705 } 1706 1707 if (len) 1708 err = __issue_discard_async(sbi, bdev, start, len); 1709 return err; 1710 } 1711 1712 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1713 bool check_only) 1714 { 1715 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1716 int max_blocks = sbi->blocks_per_seg; 1717 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1718 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1719 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1720 unsigned long *discard_map = (unsigned long *)se->discard_map; 1721 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1722 unsigned int start = 0, end = -1; 1723 bool force = (cpc->reason & CP_DISCARD); 1724 struct discard_entry *de = NULL; 1725 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1726 int i; 1727 1728 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 1729 return false; 1730 1731 if (!force) { 1732 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 1733 SM_I(sbi)->dcc_info->nr_discards >= 1734 SM_I(sbi)->dcc_info->max_discards) 1735 return false; 1736 } 1737 1738 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1739 for (i = 0; i < entries; i++) 1740 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1741 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1742 1743 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1744 SM_I(sbi)->dcc_info->max_discards) { 1745 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1746 if (start >= max_blocks) 1747 break; 1748 1749 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1750 if (force && start && end != max_blocks 1751 && (end - start) < cpc->trim_minlen) 1752 continue; 1753 1754 if (check_only) 1755 return true; 1756 1757 if (!de) { 1758 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1759 GFP_F2FS_ZERO); 1760 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1761 list_add_tail(&de->list, head); 1762 } 1763 1764 for (i = start; i < end; i++) 1765 __set_bit_le(i, (void *)de->discard_map); 1766 1767 SM_I(sbi)->dcc_info->nr_discards += end - start; 1768 } 1769 return false; 1770 } 1771 1772 static void release_discard_addr(struct discard_entry *entry) 1773 { 1774 list_del(&entry->list); 1775 kmem_cache_free(discard_entry_slab, entry); 1776 } 1777 1778 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1779 { 1780 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1781 struct discard_entry *entry, *this; 1782 1783 /* drop caches */ 1784 list_for_each_entry_safe(entry, this, head, list) 1785 release_discard_addr(entry); 1786 } 1787 1788 /* 1789 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1790 */ 1791 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1792 { 1793 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1794 unsigned int segno; 1795 1796 mutex_lock(&dirty_i->seglist_lock); 1797 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1798 __set_test_and_free(sbi, segno); 1799 mutex_unlock(&dirty_i->seglist_lock); 1800 } 1801 1802 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1803 struct cp_control *cpc) 1804 { 1805 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1806 struct list_head *head = &dcc->entry_list; 1807 struct discard_entry *entry, *this; 1808 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1809 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1810 unsigned int start = 0, end = -1; 1811 unsigned int secno, start_segno; 1812 bool force = (cpc->reason & CP_DISCARD); 1813 bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1; 1814 1815 mutex_lock(&dirty_i->seglist_lock); 1816 1817 while (1) { 1818 int i; 1819 1820 if (need_align && end != -1) 1821 end--; 1822 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1823 if (start >= MAIN_SEGS(sbi)) 1824 break; 1825 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1826 start + 1); 1827 1828 if (need_align) { 1829 start = rounddown(start, sbi->segs_per_sec); 1830 end = roundup(end, sbi->segs_per_sec); 1831 } 1832 1833 for (i = start; i < end; i++) { 1834 if (test_and_clear_bit(i, prefree_map)) 1835 dirty_i->nr_dirty[PRE]--; 1836 } 1837 1838 if (!test_opt(sbi, DISCARD)) 1839 continue; 1840 1841 if (force && start >= cpc->trim_start && 1842 (end - 1) <= cpc->trim_end) 1843 continue; 1844 1845 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 1846 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1847 (end - start) << sbi->log_blocks_per_seg); 1848 continue; 1849 } 1850 next: 1851 secno = GET_SEC_FROM_SEG(sbi, start); 1852 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1853 if (!IS_CURSEC(sbi, secno) && 1854 !get_valid_blocks(sbi, start, true)) 1855 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1856 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1857 1858 start = start_segno + sbi->segs_per_sec; 1859 if (start < end) 1860 goto next; 1861 else 1862 end = start - 1; 1863 } 1864 mutex_unlock(&dirty_i->seglist_lock); 1865 1866 /* send small discards */ 1867 list_for_each_entry_safe(entry, this, head, list) { 1868 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1869 bool is_valid = test_bit_le(0, entry->discard_map); 1870 1871 find_next: 1872 if (is_valid) { 1873 next_pos = find_next_zero_bit_le(entry->discard_map, 1874 sbi->blocks_per_seg, cur_pos); 1875 len = next_pos - cur_pos; 1876 1877 if (f2fs_sb_has_blkzoned(sbi->sb) || 1878 (force && len < cpc->trim_minlen)) 1879 goto skip; 1880 1881 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 1882 len); 1883 total_len += len; 1884 } else { 1885 next_pos = find_next_bit_le(entry->discard_map, 1886 sbi->blocks_per_seg, cur_pos); 1887 } 1888 skip: 1889 cur_pos = next_pos; 1890 is_valid = !is_valid; 1891 1892 if (cur_pos < sbi->blocks_per_seg) 1893 goto find_next; 1894 1895 release_discard_addr(entry); 1896 dcc->nr_discards -= total_len; 1897 } 1898 1899 wake_up_discard_thread(sbi, false); 1900 } 1901 1902 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 1903 { 1904 dev_t dev = sbi->sb->s_bdev->bd_dev; 1905 struct discard_cmd_control *dcc; 1906 int err = 0, i; 1907 1908 if (SM_I(sbi)->dcc_info) { 1909 dcc = SM_I(sbi)->dcc_info; 1910 goto init_thread; 1911 } 1912 1913 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 1914 if (!dcc) 1915 return -ENOMEM; 1916 1917 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 1918 INIT_LIST_HEAD(&dcc->entry_list); 1919 for (i = 0; i < MAX_PLIST_NUM; i++) 1920 INIT_LIST_HEAD(&dcc->pend_list[i]); 1921 INIT_LIST_HEAD(&dcc->wait_list); 1922 INIT_LIST_HEAD(&dcc->fstrim_list); 1923 mutex_init(&dcc->cmd_lock); 1924 atomic_set(&dcc->issued_discard, 0); 1925 atomic_set(&dcc->issing_discard, 0); 1926 atomic_set(&dcc->discard_cmd_cnt, 0); 1927 dcc->nr_discards = 0; 1928 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 1929 dcc->undiscard_blks = 0; 1930 dcc->next_pos = 0; 1931 dcc->root = RB_ROOT; 1932 dcc->rbtree_check = false; 1933 1934 init_waitqueue_head(&dcc->discard_wait_queue); 1935 SM_I(sbi)->dcc_info = dcc; 1936 init_thread: 1937 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 1938 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 1939 if (IS_ERR(dcc->f2fs_issue_discard)) { 1940 err = PTR_ERR(dcc->f2fs_issue_discard); 1941 kfree(dcc); 1942 SM_I(sbi)->dcc_info = NULL; 1943 return err; 1944 } 1945 1946 return err; 1947 } 1948 1949 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 1950 { 1951 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1952 1953 if (!dcc) 1954 return; 1955 1956 f2fs_stop_discard_thread(sbi); 1957 1958 kfree(dcc); 1959 SM_I(sbi)->dcc_info = NULL; 1960 } 1961 1962 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 1963 { 1964 struct sit_info *sit_i = SIT_I(sbi); 1965 1966 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 1967 sit_i->dirty_sentries++; 1968 return false; 1969 } 1970 1971 return true; 1972 } 1973 1974 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 1975 unsigned int segno, int modified) 1976 { 1977 struct seg_entry *se = get_seg_entry(sbi, segno); 1978 se->type = type; 1979 if (modified) 1980 __mark_sit_entry_dirty(sbi, segno); 1981 } 1982 1983 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 1984 { 1985 struct seg_entry *se; 1986 unsigned int segno, offset; 1987 long int new_vblocks; 1988 bool exist; 1989 #ifdef CONFIG_F2FS_CHECK_FS 1990 bool mir_exist; 1991 #endif 1992 1993 segno = GET_SEGNO(sbi, blkaddr); 1994 1995 se = get_seg_entry(sbi, segno); 1996 new_vblocks = se->valid_blocks + del; 1997 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1998 1999 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 2000 (new_vblocks > sbi->blocks_per_seg))); 2001 2002 se->valid_blocks = new_vblocks; 2003 se->mtime = get_mtime(sbi, false); 2004 if (se->mtime > SIT_I(sbi)->max_mtime) 2005 SIT_I(sbi)->max_mtime = se->mtime; 2006 2007 /* Update valid block bitmap */ 2008 if (del > 0) { 2009 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2010 #ifdef CONFIG_F2FS_CHECK_FS 2011 mir_exist = f2fs_test_and_set_bit(offset, 2012 se->cur_valid_map_mir); 2013 if (unlikely(exist != mir_exist)) { 2014 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 2015 "when setting bitmap, blk:%u, old bit:%d", 2016 blkaddr, exist); 2017 f2fs_bug_on(sbi, 1); 2018 } 2019 #endif 2020 if (unlikely(exist)) { 2021 f2fs_msg(sbi->sb, KERN_ERR, 2022 "Bitmap was wrongly set, blk:%u", blkaddr); 2023 f2fs_bug_on(sbi, 1); 2024 se->valid_blocks--; 2025 del = 0; 2026 } 2027 2028 if (f2fs_discard_en(sbi) && 2029 !f2fs_test_and_set_bit(offset, se->discard_map)) 2030 sbi->discard_blks--; 2031 2032 /* don't overwrite by SSR to keep node chain */ 2033 if (IS_NODESEG(se->type)) { 2034 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2035 se->ckpt_valid_blocks++; 2036 } 2037 } else { 2038 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2039 #ifdef CONFIG_F2FS_CHECK_FS 2040 mir_exist = f2fs_test_and_clear_bit(offset, 2041 se->cur_valid_map_mir); 2042 if (unlikely(exist != mir_exist)) { 2043 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 2044 "when clearing bitmap, blk:%u, old bit:%d", 2045 blkaddr, exist); 2046 f2fs_bug_on(sbi, 1); 2047 } 2048 #endif 2049 if (unlikely(!exist)) { 2050 f2fs_msg(sbi->sb, KERN_ERR, 2051 "Bitmap was wrongly cleared, blk:%u", blkaddr); 2052 f2fs_bug_on(sbi, 1); 2053 se->valid_blocks++; 2054 del = 0; 2055 } 2056 2057 if (f2fs_discard_en(sbi) && 2058 f2fs_test_and_clear_bit(offset, se->discard_map)) 2059 sbi->discard_blks++; 2060 } 2061 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2062 se->ckpt_valid_blocks += del; 2063 2064 __mark_sit_entry_dirty(sbi, segno); 2065 2066 /* update total number of valid blocks to be written in ckpt area */ 2067 SIT_I(sbi)->written_valid_blocks += del; 2068 2069 if (sbi->segs_per_sec > 1) 2070 get_sec_entry(sbi, segno)->valid_blocks += del; 2071 } 2072 2073 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2074 { 2075 unsigned int segno = GET_SEGNO(sbi, addr); 2076 struct sit_info *sit_i = SIT_I(sbi); 2077 2078 f2fs_bug_on(sbi, addr == NULL_ADDR); 2079 if (addr == NEW_ADDR) 2080 return; 2081 2082 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2083 2084 /* add it into sit main buffer */ 2085 down_write(&sit_i->sentry_lock); 2086 2087 update_sit_entry(sbi, addr, -1); 2088 2089 /* add it into dirty seglist */ 2090 locate_dirty_segment(sbi, segno); 2091 2092 up_write(&sit_i->sentry_lock); 2093 } 2094 2095 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2096 { 2097 struct sit_info *sit_i = SIT_I(sbi); 2098 unsigned int segno, offset; 2099 struct seg_entry *se; 2100 bool is_cp = false; 2101 2102 if (!is_valid_data_blkaddr(sbi, blkaddr)) 2103 return true; 2104 2105 down_read(&sit_i->sentry_lock); 2106 2107 segno = GET_SEGNO(sbi, blkaddr); 2108 se = get_seg_entry(sbi, segno); 2109 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2110 2111 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2112 is_cp = true; 2113 2114 up_read(&sit_i->sentry_lock); 2115 2116 return is_cp; 2117 } 2118 2119 /* 2120 * This function should be resided under the curseg_mutex lock 2121 */ 2122 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2123 struct f2fs_summary *sum) 2124 { 2125 struct curseg_info *curseg = CURSEG_I(sbi, type); 2126 void *addr = curseg->sum_blk; 2127 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2128 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2129 } 2130 2131 /* 2132 * Calculate the number of current summary pages for writing 2133 */ 2134 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2135 { 2136 int valid_sum_count = 0; 2137 int i, sum_in_page; 2138 2139 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2140 if (sbi->ckpt->alloc_type[i] == SSR) 2141 valid_sum_count += sbi->blocks_per_seg; 2142 else { 2143 if (for_ra) 2144 valid_sum_count += le16_to_cpu( 2145 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2146 else 2147 valid_sum_count += curseg_blkoff(sbi, i); 2148 } 2149 } 2150 2151 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2152 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2153 if (valid_sum_count <= sum_in_page) 2154 return 1; 2155 else if ((valid_sum_count - sum_in_page) <= 2156 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2157 return 2; 2158 return 3; 2159 } 2160 2161 /* 2162 * Caller should put this summary page 2163 */ 2164 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2165 { 2166 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); 2167 } 2168 2169 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2170 void *src, block_t blk_addr) 2171 { 2172 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2173 2174 memcpy(page_address(page), src, PAGE_SIZE); 2175 set_page_dirty(page); 2176 f2fs_put_page(page, 1); 2177 } 2178 2179 static void write_sum_page(struct f2fs_sb_info *sbi, 2180 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2181 { 2182 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2183 } 2184 2185 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2186 int type, block_t blk_addr) 2187 { 2188 struct curseg_info *curseg = CURSEG_I(sbi, type); 2189 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2190 struct f2fs_summary_block *src = curseg->sum_blk; 2191 struct f2fs_summary_block *dst; 2192 2193 dst = (struct f2fs_summary_block *)page_address(page); 2194 memset(dst, 0, PAGE_SIZE); 2195 2196 mutex_lock(&curseg->curseg_mutex); 2197 2198 down_read(&curseg->journal_rwsem); 2199 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2200 up_read(&curseg->journal_rwsem); 2201 2202 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2203 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2204 2205 mutex_unlock(&curseg->curseg_mutex); 2206 2207 set_page_dirty(page); 2208 f2fs_put_page(page, 1); 2209 } 2210 2211 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2212 { 2213 struct curseg_info *curseg = CURSEG_I(sbi, type); 2214 unsigned int segno = curseg->segno + 1; 2215 struct free_segmap_info *free_i = FREE_I(sbi); 2216 2217 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2218 return !test_bit(segno, free_i->free_segmap); 2219 return 0; 2220 } 2221 2222 /* 2223 * Find a new segment from the free segments bitmap to right order 2224 * This function should be returned with success, otherwise BUG 2225 */ 2226 static void get_new_segment(struct f2fs_sb_info *sbi, 2227 unsigned int *newseg, bool new_sec, int dir) 2228 { 2229 struct free_segmap_info *free_i = FREE_I(sbi); 2230 unsigned int segno, secno, zoneno; 2231 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2232 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2233 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2234 unsigned int left_start = hint; 2235 bool init = true; 2236 int go_left = 0; 2237 int i; 2238 2239 spin_lock(&free_i->segmap_lock); 2240 2241 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2242 segno = find_next_zero_bit(free_i->free_segmap, 2243 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2244 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2245 goto got_it; 2246 } 2247 find_other_zone: 2248 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2249 if (secno >= MAIN_SECS(sbi)) { 2250 if (dir == ALLOC_RIGHT) { 2251 secno = find_next_zero_bit(free_i->free_secmap, 2252 MAIN_SECS(sbi), 0); 2253 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2254 } else { 2255 go_left = 1; 2256 left_start = hint - 1; 2257 } 2258 } 2259 if (go_left == 0) 2260 goto skip_left; 2261 2262 while (test_bit(left_start, free_i->free_secmap)) { 2263 if (left_start > 0) { 2264 left_start--; 2265 continue; 2266 } 2267 left_start = find_next_zero_bit(free_i->free_secmap, 2268 MAIN_SECS(sbi), 0); 2269 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2270 break; 2271 } 2272 secno = left_start; 2273 skip_left: 2274 segno = GET_SEG_FROM_SEC(sbi, secno); 2275 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2276 2277 /* give up on finding another zone */ 2278 if (!init) 2279 goto got_it; 2280 if (sbi->secs_per_zone == 1) 2281 goto got_it; 2282 if (zoneno == old_zoneno) 2283 goto got_it; 2284 if (dir == ALLOC_LEFT) { 2285 if (!go_left && zoneno + 1 >= total_zones) 2286 goto got_it; 2287 if (go_left && zoneno == 0) 2288 goto got_it; 2289 } 2290 for (i = 0; i < NR_CURSEG_TYPE; i++) 2291 if (CURSEG_I(sbi, i)->zone == zoneno) 2292 break; 2293 2294 if (i < NR_CURSEG_TYPE) { 2295 /* zone is in user, try another */ 2296 if (go_left) 2297 hint = zoneno * sbi->secs_per_zone - 1; 2298 else if (zoneno + 1 >= total_zones) 2299 hint = 0; 2300 else 2301 hint = (zoneno + 1) * sbi->secs_per_zone; 2302 init = false; 2303 goto find_other_zone; 2304 } 2305 got_it: 2306 /* set it as dirty segment in free segmap */ 2307 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2308 __set_inuse(sbi, segno); 2309 *newseg = segno; 2310 spin_unlock(&free_i->segmap_lock); 2311 } 2312 2313 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2314 { 2315 struct curseg_info *curseg = CURSEG_I(sbi, type); 2316 struct summary_footer *sum_footer; 2317 2318 curseg->segno = curseg->next_segno; 2319 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2320 curseg->next_blkoff = 0; 2321 curseg->next_segno = NULL_SEGNO; 2322 2323 sum_footer = &(curseg->sum_blk->footer); 2324 memset(sum_footer, 0, sizeof(struct summary_footer)); 2325 if (IS_DATASEG(type)) 2326 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2327 if (IS_NODESEG(type)) 2328 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2329 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2330 } 2331 2332 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2333 { 2334 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2335 if (sbi->segs_per_sec != 1) 2336 return CURSEG_I(sbi, type)->segno; 2337 2338 if (test_opt(sbi, NOHEAP) && 2339 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2340 return 0; 2341 2342 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2343 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2344 2345 /* find segments from 0 to reuse freed segments */ 2346 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2347 return 0; 2348 2349 return CURSEG_I(sbi, type)->segno; 2350 } 2351 2352 /* 2353 * Allocate a current working segment. 2354 * This function always allocates a free segment in LFS manner. 2355 */ 2356 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2357 { 2358 struct curseg_info *curseg = CURSEG_I(sbi, type); 2359 unsigned int segno = curseg->segno; 2360 int dir = ALLOC_LEFT; 2361 2362 write_sum_page(sbi, curseg->sum_blk, 2363 GET_SUM_BLOCK(sbi, segno)); 2364 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2365 dir = ALLOC_RIGHT; 2366 2367 if (test_opt(sbi, NOHEAP)) 2368 dir = ALLOC_RIGHT; 2369 2370 segno = __get_next_segno(sbi, type); 2371 get_new_segment(sbi, &segno, new_sec, dir); 2372 curseg->next_segno = segno; 2373 reset_curseg(sbi, type, 1); 2374 curseg->alloc_type = LFS; 2375 } 2376 2377 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2378 struct curseg_info *seg, block_t start) 2379 { 2380 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2381 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2382 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2383 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2384 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2385 int i, pos; 2386 2387 for (i = 0; i < entries; i++) 2388 target_map[i] = ckpt_map[i] | cur_map[i]; 2389 2390 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2391 2392 seg->next_blkoff = pos; 2393 } 2394 2395 /* 2396 * If a segment is written by LFS manner, next block offset is just obtained 2397 * by increasing the current block offset. However, if a segment is written by 2398 * SSR manner, next block offset obtained by calling __next_free_blkoff 2399 */ 2400 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2401 struct curseg_info *seg) 2402 { 2403 if (seg->alloc_type == SSR) 2404 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2405 else 2406 seg->next_blkoff++; 2407 } 2408 2409 /* 2410 * This function always allocates a used segment(from dirty seglist) by SSR 2411 * manner, so it should recover the existing segment information of valid blocks 2412 */ 2413 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2414 { 2415 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2416 struct curseg_info *curseg = CURSEG_I(sbi, type); 2417 unsigned int new_segno = curseg->next_segno; 2418 struct f2fs_summary_block *sum_node; 2419 struct page *sum_page; 2420 2421 write_sum_page(sbi, curseg->sum_blk, 2422 GET_SUM_BLOCK(sbi, curseg->segno)); 2423 __set_test_and_inuse(sbi, new_segno); 2424 2425 mutex_lock(&dirty_i->seglist_lock); 2426 __remove_dirty_segment(sbi, new_segno, PRE); 2427 __remove_dirty_segment(sbi, new_segno, DIRTY); 2428 mutex_unlock(&dirty_i->seglist_lock); 2429 2430 reset_curseg(sbi, type, 1); 2431 curseg->alloc_type = SSR; 2432 __next_free_blkoff(sbi, curseg, 0); 2433 2434 sum_page = f2fs_get_sum_page(sbi, new_segno); 2435 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2436 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2437 f2fs_put_page(sum_page, 1); 2438 } 2439 2440 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2441 { 2442 struct curseg_info *curseg = CURSEG_I(sbi, type); 2443 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2444 unsigned segno = NULL_SEGNO; 2445 int i, cnt; 2446 bool reversed = false; 2447 2448 /* f2fs_need_SSR() already forces to do this */ 2449 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2450 curseg->next_segno = segno; 2451 return 1; 2452 } 2453 2454 /* For node segments, let's do SSR more intensively */ 2455 if (IS_NODESEG(type)) { 2456 if (type >= CURSEG_WARM_NODE) { 2457 reversed = true; 2458 i = CURSEG_COLD_NODE; 2459 } else { 2460 i = CURSEG_HOT_NODE; 2461 } 2462 cnt = NR_CURSEG_NODE_TYPE; 2463 } else { 2464 if (type >= CURSEG_WARM_DATA) { 2465 reversed = true; 2466 i = CURSEG_COLD_DATA; 2467 } else { 2468 i = CURSEG_HOT_DATA; 2469 } 2470 cnt = NR_CURSEG_DATA_TYPE; 2471 } 2472 2473 for (; cnt-- > 0; reversed ? i-- : i++) { 2474 if (i == type) 2475 continue; 2476 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2477 curseg->next_segno = segno; 2478 return 1; 2479 } 2480 } 2481 return 0; 2482 } 2483 2484 /* 2485 * flush out current segment and replace it with new segment 2486 * This function should be returned with success, otherwise BUG 2487 */ 2488 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2489 int type, bool force) 2490 { 2491 struct curseg_info *curseg = CURSEG_I(sbi, type); 2492 2493 if (force) 2494 new_curseg(sbi, type, true); 2495 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2496 type == CURSEG_WARM_NODE) 2497 new_curseg(sbi, type, false); 2498 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 2499 new_curseg(sbi, type, false); 2500 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2501 change_curseg(sbi, type); 2502 else 2503 new_curseg(sbi, type, false); 2504 2505 stat_inc_seg_type(sbi, curseg); 2506 } 2507 2508 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2509 { 2510 struct curseg_info *curseg; 2511 unsigned int old_segno; 2512 int i; 2513 2514 down_write(&SIT_I(sbi)->sentry_lock); 2515 2516 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2517 curseg = CURSEG_I(sbi, i); 2518 old_segno = curseg->segno; 2519 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2520 locate_dirty_segment(sbi, old_segno); 2521 } 2522 2523 up_write(&SIT_I(sbi)->sentry_lock); 2524 } 2525 2526 static const struct segment_allocation default_salloc_ops = { 2527 .allocate_segment = allocate_segment_by_default, 2528 }; 2529 2530 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2531 struct cp_control *cpc) 2532 { 2533 __u64 trim_start = cpc->trim_start; 2534 bool has_candidate = false; 2535 2536 down_write(&SIT_I(sbi)->sentry_lock); 2537 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2538 if (add_discard_addrs(sbi, cpc, true)) { 2539 has_candidate = true; 2540 break; 2541 } 2542 } 2543 up_write(&SIT_I(sbi)->sentry_lock); 2544 2545 cpc->trim_start = trim_start; 2546 return has_candidate; 2547 } 2548 2549 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2550 struct discard_policy *dpolicy, 2551 unsigned int start, unsigned int end) 2552 { 2553 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2554 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2555 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2556 struct discard_cmd *dc; 2557 struct blk_plug plug; 2558 int issued; 2559 unsigned int trimmed = 0; 2560 2561 next: 2562 issued = 0; 2563 2564 mutex_lock(&dcc->cmd_lock); 2565 if (unlikely(dcc->rbtree_check)) 2566 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2567 &dcc->root)); 2568 2569 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2570 NULL, start, 2571 (struct rb_entry **)&prev_dc, 2572 (struct rb_entry **)&next_dc, 2573 &insert_p, &insert_parent, true); 2574 if (!dc) 2575 dc = next_dc; 2576 2577 blk_start_plug(&plug); 2578 2579 while (dc && dc->lstart <= end) { 2580 struct rb_node *node; 2581 int err = 0; 2582 2583 if (dc->len < dpolicy->granularity) 2584 goto skip; 2585 2586 if (dc->state != D_PREP) { 2587 list_move_tail(&dc->list, &dcc->fstrim_list); 2588 goto skip; 2589 } 2590 2591 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2592 2593 if (issued >= dpolicy->max_requests) { 2594 start = dc->lstart + dc->len; 2595 2596 if (err) 2597 __remove_discard_cmd(sbi, dc); 2598 2599 blk_finish_plug(&plug); 2600 mutex_unlock(&dcc->cmd_lock); 2601 trimmed += __wait_all_discard_cmd(sbi, NULL); 2602 congestion_wait(BLK_RW_ASYNC, HZ/50); 2603 goto next; 2604 } 2605 skip: 2606 node = rb_next(&dc->rb_node); 2607 if (err) 2608 __remove_discard_cmd(sbi, dc); 2609 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2610 2611 if (fatal_signal_pending(current)) 2612 break; 2613 } 2614 2615 blk_finish_plug(&plug); 2616 mutex_unlock(&dcc->cmd_lock); 2617 2618 return trimmed; 2619 } 2620 2621 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2622 { 2623 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2624 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2625 unsigned int start_segno, end_segno; 2626 block_t start_block, end_block; 2627 struct cp_control cpc; 2628 struct discard_policy dpolicy; 2629 unsigned long long trimmed = 0; 2630 int err = 0; 2631 bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1; 2632 2633 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2634 return -EINVAL; 2635 2636 if (end < MAIN_BLKADDR(sbi)) 2637 goto out; 2638 2639 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2640 f2fs_msg(sbi->sb, KERN_WARNING, 2641 "Found FS corruption, run fsck to fix."); 2642 return -EIO; 2643 } 2644 2645 /* start/end segment number in main_area */ 2646 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2647 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2648 GET_SEGNO(sbi, end); 2649 if (need_align) { 2650 start_segno = rounddown(start_segno, sbi->segs_per_sec); 2651 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 2652 } 2653 2654 cpc.reason = CP_DISCARD; 2655 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2656 cpc.trim_start = start_segno; 2657 cpc.trim_end = end_segno; 2658 2659 if (sbi->discard_blks == 0) 2660 goto out; 2661 2662 mutex_lock(&sbi->gc_mutex); 2663 err = f2fs_write_checkpoint(sbi, &cpc); 2664 mutex_unlock(&sbi->gc_mutex); 2665 if (err) 2666 goto out; 2667 2668 /* 2669 * We filed discard candidates, but actually we don't need to wait for 2670 * all of them, since they'll be issued in idle time along with runtime 2671 * discard option. User configuration looks like using runtime discard 2672 * or periodic fstrim instead of it. 2673 */ 2674 if (test_opt(sbi, DISCARD)) 2675 goto out; 2676 2677 start_block = START_BLOCK(sbi, start_segno); 2678 end_block = START_BLOCK(sbi, end_segno + 1); 2679 2680 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2681 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 2682 start_block, end_block); 2683 2684 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 2685 start_block, end_block); 2686 out: 2687 if (!err) 2688 range->len = F2FS_BLK_TO_BYTES(trimmed); 2689 return err; 2690 } 2691 2692 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2693 { 2694 struct curseg_info *curseg = CURSEG_I(sbi, type); 2695 if (curseg->next_blkoff < sbi->blocks_per_seg) 2696 return true; 2697 return false; 2698 } 2699 2700 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2701 { 2702 switch (hint) { 2703 case WRITE_LIFE_SHORT: 2704 return CURSEG_HOT_DATA; 2705 case WRITE_LIFE_EXTREME: 2706 return CURSEG_COLD_DATA; 2707 default: 2708 return CURSEG_WARM_DATA; 2709 } 2710 } 2711 2712 /* This returns write hints for each segment type. This hints will be 2713 * passed down to block layer. There are mapping tables which depend on 2714 * the mount option 'whint_mode'. 2715 * 2716 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2717 * 2718 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2719 * 2720 * User F2FS Block 2721 * ---- ---- ----- 2722 * META WRITE_LIFE_NOT_SET 2723 * HOT_NODE " 2724 * WARM_NODE " 2725 * COLD_NODE " 2726 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2727 * extension list " " 2728 * 2729 * -- buffered io 2730 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2731 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2732 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2733 * WRITE_LIFE_NONE " " 2734 * WRITE_LIFE_MEDIUM " " 2735 * WRITE_LIFE_LONG " " 2736 * 2737 * -- direct io 2738 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2739 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2740 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2741 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2742 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2743 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2744 * 2745 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2746 * 2747 * User F2FS Block 2748 * ---- ---- ----- 2749 * META WRITE_LIFE_MEDIUM; 2750 * HOT_NODE WRITE_LIFE_NOT_SET 2751 * WARM_NODE " 2752 * COLD_NODE WRITE_LIFE_NONE 2753 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2754 * extension list " " 2755 * 2756 * -- buffered io 2757 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2758 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2759 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2760 * WRITE_LIFE_NONE " " 2761 * WRITE_LIFE_MEDIUM " " 2762 * WRITE_LIFE_LONG " " 2763 * 2764 * -- direct io 2765 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2766 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2767 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2768 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2769 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2770 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2771 */ 2772 2773 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2774 enum page_type type, enum temp_type temp) 2775 { 2776 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 2777 if (type == DATA) { 2778 if (temp == WARM) 2779 return WRITE_LIFE_NOT_SET; 2780 else if (temp == HOT) 2781 return WRITE_LIFE_SHORT; 2782 else if (temp == COLD) 2783 return WRITE_LIFE_EXTREME; 2784 } else { 2785 return WRITE_LIFE_NOT_SET; 2786 } 2787 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 2788 if (type == DATA) { 2789 if (temp == WARM) 2790 return WRITE_LIFE_LONG; 2791 else if (temp == HOT) 2792 return WRITE_LIFE_SHORT; 2793 else if (temp == COLD) 2794 return WRITE_LIFE_EXTREME; 2795 } else if (type == NODE) { 2796 if (temp == WARM || temp == HOT) 2797 return WRITE_LIFE_NOT_SET; 2798 else if (temp == COLD) 2799 return WRITE_LIFE_NONE; 2800 } else if (type == META) { 2801 return WRITE_LIFE_MEDIUM; 2802 } 2803 } 2804 return WRITE_LIFE_NOT_SET; 2805 } 2806 2807 static int __get_segment_type_2(struct f2fs_io_info *fio) 2808 { 2809 if (fio->type == DATA) 2810 return CURSEG_HOT_DATA; 2811 else 2812 return CURSEG_HOT_NODE; 2813 } 2814 2815 static int __get_segment_type_4(struct f2fs_io_info *fio) 2816 { 2817 if (fio->type == DATA) { 2818 struct inode *inode = fio->page->mapping->host; 2819 2820 if (S_ISDIR(inode->i_mode)) 2821 return CURSEG_HOT_DATA; 2822 else 2823 return CURSEG_COLD_DATA; 2824 } else { 2825 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 2826 return CURSEG_WARM_NODE; 2827 else 2828 return CURSEG_COLD_NODE; 2829 } 2830 } 2831 2832 static int __get_segment_type_6(struct f2fs_io_info *fio) 2833 { 2834 if (fio->type == DATA) { 2835 struct inode *inode = fio->page->mapping->host; 2836 2837 if (is_cold_data(fio->page) || file_is_cold(inode)) 2838 return CURSEG_COLD_DATA; 2839 if (file_is_hot(inode) || 2840 is_inode_flag_set(inode, FI_HOT_DATA) || 2841 f2fs_is_atomic_file(inode) || 2842 f2fs_is_volatile_file(inode)) 2843 return CURSEG_HOT_DATA; 2844 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 2845 } else { 2846 if (IS_DNODE(fio->page)) 2847 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 2848 CURSEG_HOT_NODE; 2849 return CURSEG_COLD_NODE; 2850 } 2851 } 2852 2853 static int __get_segment_type(struct f2fs_io_info *fio) 2854 { 2855 int type = 0; 2856 2857 switch (F2FS_OPTION(fio->sbi).active_logs) { 2858 case 2: 2859 type = __get_segment_type_2(fio); 2860 break; 2861 case 4: 2862 type = __get_segment_type_4(fio); 2863 break; 2864 case 6: 2865 type = __get_segment_type_6(fio); 2866 break; 2867 default: 2868 f2fs_bug_on(fio->sbi, true); 2869 } 2870 2871 if (IS_HOT(type)) 2872 fio->temp = HOT; 2873 else if (IS_WARM(type)) 2874 fio->temp = WARM; 2875 else 2876 fio->temp = COLD; 2877 return type; 2878 } 2879 2880 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2881 block_t old_blkaddr, block_t *new_blkaddr, 2882 struct f2fs_summary *sum, int type, 2883 struct f2fs_io_info *fio, bool add_list) 2884 { 2885 struct sit_info *sit_i = SIT_I(sbi); 2886 struct curseg_info *curseg = CURSEG_I(sbi, type); 2887 2888 down_read(&SM_I(sbi)->curseg_lock); 2889 2890 mutex_lock(&curseg->curseg_mutex); 2891 down_write(&sit_i->sentry_lock); 2892 2893 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 2894 2895 f2fs_wait_discard_bio(sbi, *new_blkaddr); 2896 2897 /* 2898 * __add_sum_entry should be resided under the curseg_mutex 2899 * because, this function updates a summary entry in the 2900 * current summary block. 2901 */ 2902 __add_sum_entry(sbi, type, sum); 2903 2904 __refresh_next_blkoff(sbi, curseg); 2905 2906 stat_inc_block_count(sbi, curseg); 2907 2908 /* 2909 * SIT information should be updated before segment allocation, 2910 * since SSR needs latest valid block information. 2911 */ 2912 update_sit_entry(sbi, *new_blkaddr, 1); 2913 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 2914 update_sit_entry(sbi, old_blkaddr, -1); 2915 2916 if (!__has_curseg_space(sbi, type)) 2917 sit_i->s_ops->allocate_segment(sbi, type, false); 2918 2919 /* 2920 * segment dirty status should be updated after segment allocation, 2921 * so we just need to update status only one time after previous 2922 * segment being closed. 2923 */ 2924 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 2925 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 2926 2927 up_write(&sit_i->sentry_lock); 2928 2929 if (page && IS_NODESEG(type)) { 2930 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 2931 2932 f2fs_inode_chksum_set(sbi, page); 2933 } 2934 2935 if (add_list) { 2936 struct f2fs_bio_info *io; 2937 2938 INIT_LIST_HEAD(&fio->list); 2939 fio->in_list = true; 2940 fio->retry = false; 2941 io = sbi->write_io[fio->type] + fio->temp; 2942 spin_lock(&io->io_lock); 2943 list_add_tail(&fio->list, &io->io_list); 2944 spin_unlock(&io->io_lock); 2945 } 2946 2947 mutex_unlock(&curseg->curseg_mutex); 2948 2949 up_read(&SM_I(sbi)->curseg_lock); 2950 } 2951 2952 static void update_device_state(struct f2fs_io_info *fio) 2953 { 2954 struct f2fs_sb_info *sbi = fio->sbi; 2955 unsigned int devidx; 2956 2957 if (!sbi->s_ndevs) 2958 return; 2959 2960 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 2961 2962 /* update device state for fsync */ 2963 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 2964 2965 /* update device state for checkpoint */ 2966 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 2967 spin_lock(&sbi->dev_lock); 2968 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 2969 spin_unlock(&sbi->dev_lock); 2970 } 2971 } 2972 2973 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 2974 { 2975 int type = __get_segment_type(fio); 2976 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA); 2977 2978 if (keep_order) 2979 down_read(&fio->sbi->io_order_lock); 2980 reallocate: 2981 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 2982 &fio->new_blkaddr, sum, type, fio, true); 2983 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 2984 invalidate_mapping_pages(META_MAPPING(fio->sbi), 2985 fio->old_blkaddr, fio->old_blkaddr); 2986 2987 /* writeout dirty page into bdev */ 2988 f2fs_submit_page_write(fio); 2989 if (fio->retry) { 2990 fio->old_blkaddr = fio->new_blkaddr; 2991 goto reallocate; 2992 } 2993 2994 update_device_state(fio); 2995 2996 if (keep_order) 2997 up_read(&fio->sbi->io_order_lock); 2998 } 2999 3000 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3001 enum iostat_type io_type) 3002 { 3003 struct f2fs_io_info fio = { 3004 .sbi = sbi, 3005 .type = META, 3006 .temp = HOT, 3007 .op = REQ_OP_WRITE, 3008 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3009 .old_blkaddr = page->index, 3010 .new_blkaddr = page->index, 3011 .page = page, 3012 .encrypted_page = NULL, 3013 .in_list = false, 3014 }; 3015 3016 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3017 fio.op_flags &= ~REQ_META; 3018 3019 set_page_writeback(page); 3020 ClearPageError(page); 3021 f2fs_submit_page_write(&fio); 3022 3023 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3024 } 3025 3026 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3027 { 3028 struct f2fs_summary sum; 3029 3030 set_summary(&sum, nid, 0, 0); 3031 do_write_page(&sum, fio); 3032 3033 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3034 } 3035 3036 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3037 struct f2fs_io_info *fio) 3038 { 3039 struct f2fs_sb_info *sbi = fio->sbi; 3040 struct f2fs_summary sum; 3041 3042 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3043 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3044 do_write_page(&sum, fio); 3045 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3046 3047 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3048 } 3049 3050 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3051 { 3052 int err; 3053 struct f2fs_sb_info *sbi = fio->sbi; 3054 3055 fio->new_blkaddr = fio->old_blkaddr; 3056 /* i/o temperature is needed for passing down write hints */ 3057 __get_segment_type(fio); 3058 3059 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi, 3060 GET_SEGNO(sbi, fio->new_blkaddr))->type)); 3061 3062 stat_inc_inplace_blocks(fio->sbi); 3063 3064 err = f2fs_submit_page_bio(fio); 3065 if (!err) 3066 update_device_state(fio); 3067 3068 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3069 3070 return err; 3071 } 3072 3073 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3074 unsigned int segno) 3075 { 3076 int i; 3077 3078 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3079 if (CURSEG_I(sbi, i)->segno == segno) 3080 break; 3081 } 3082 return i; 3083 } 3084 3085 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3086 block_t old_blkaddr, block_t new_blkaddr, 3087 bool recover_curseg, bool recover_newaddr) 3088 { 3089 struct sit_info *sit_i = SIT_I(sbi); 3090 struct curseg_info *curseg; 3091 unsigned int segno, old_cursegno; 3092 struct seg_entry *se; 3093 int type; 3094 unsigned short old_blkoff; 3095 3096 segno = GET_SEGNO(sbi, new_blkaddr); 3097 se = get_seg_entry(sbi, segno); 3098 type = se->type; 3099 3100 down_write(&SM_I(sbi)->curseg_lock); 3101 3102 if (!recover_curseg) { 3103 /* for recovery flow */ 3104 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3105 if (old_blkaddr == NULL_ADDR) 3106 type = CURSEG_COLD_DATA; 3107 else 3108 type = CURSEG_WARM_DATA; 3109 } 3110 } else { 3111 if (IS_CURSEG(sbi, segno)) { 3112 /* se->type is volatile as SSR allocation */ 3113 type = __f2fs_get_curseg(sbi, segno); 3114 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3115 } else { 3116 type = CURSEG_WARM_DATA; 3117 } 3118 } 3119 3120 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3121 curseg = CURSEG_I(sbi, type); 3122 3123 mutex_lock(&curseg->curseg_mutex); 3124 down_write(&sit_i->sentry_lock); 3125 3126 old_cursegno = curseg->segno; 3127 old_blkoff = curseg->next_blkoff; 3128 3129 /* change the current segment */ 3130 if (segno != curseg->segno) { 3131 curseg->next_segno = segno; 3132 change_curseg(sbi, type); 3133 } 3134 3135 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3136 __add_sum_entry(sbi, type, sum); 3137 3138 if (!recover_curseg || recover_newaddr) 3139 update_sit_entry(sbi, new_blkaddr, 1); 3140 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3141 invalidate_mapping_pages(META_MAPPING(sbi), 3142 old_blkaddr, old_blkaddr); 3143 update_sit_entry(sbi, old_blkaddr, -1); 3144 } 3145 3146 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3147 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3148 3149 locate_dirty_segment(sbi, old_cursegno); 3150 3151 if (recover_curseg) { 3152 if (old_cursegno != curseg->segno) { 3153 curseg->next_segno = old_cursegno; 3154 change_curseg(sbi, type); 3155 } 3156 curseg->next_blkoff = old_blkoff; 3157 } 3158 3159 up_write(&sit_i->sentry_lock); 3160 mutex_unlock(&curseg->curseg_mutex); 3161 up_write(&SM_I(sbi)->curseg_lock); 3162 } 3163 3164 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3165 block_t old_addr, block_t new_addr, 3166 unsigned char version, bool recover_curseg, 3167 bool recover_newaddr) 3168 { 3169 struct f2fs_summary sum; 3170 3171 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3172 3173 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3174 recover_curseg, recover_newaddr); 3175 3176 f2fs_update_data_blkaddr(dn, new_addr); 3177 } 3178 3179 void f2fs_wait_on_page_writeback(struct page *page, 3180 enum page_type type, bool ordered) 3181 { 3182 if (PageWriteback(page)) { 3183 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3184 3185 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 3186 0, page->index, type); 3187 if (ordered) 3188 wait_on_page_writeback(page); 3189 else 3190 wait_for_stable_page(page); 3191 } 3192 } 3193 3194 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr) 3195 { 3196 struct page *cpage; 3197 3198 if (!is_valid_data_blkaddr(sbi, blkaddr)) 3199 return; 3200 3201 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3202 if (cpage) { 3203 f2fs_wait_on_page_writeback(cpage, DATA, true); 3204 f2fs_put_page(cpage, 1); 3205 } 3206 } 3207 3208 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3209 { 3210 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3211 struct curseg_info *seg_i; 3212 unsigned char *kaddr; 3213 struct page *page; 3214 block_t start; 3215 int i, j, offset; 3216 3217 start = start_sum_block(sbi); 3218 3219 page = f2fs_get_meta_page(sbi, start++); 3220 if (IS_ERR(page)) 3221 return PTR_ERR(page); 3222 kaddr = (unsigned char *)page_address(page); 3223 3224 /* Step 1: restore nat cache */ 3225 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3226 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3227 3228 /* Step 2: restore sit cache */ 3229 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3230 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3231 offset = 2 * SUM_JOURNAL_SIZE; 3232 3233 /* Step 3: restore summary entries */ 3234 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3235 unsigned short blk_off; 3236 unsigned int segno; 3237 3238 seg_i = CURSEG_I(sbi, i); 3239 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3240 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3241 seg_i->next_segno = segno; 3242 reset_curseg(sbi, i, 0); 3243 seg_i->alloc_type = ckpt->alloc_type[i]; 3244 seg_i->next_blkoff = blk_off; 3245 3246 if (seg_i->alloc_type == SSR) 3247 blk_off = sbi->blocks_per_seg; 3248 3249 for (j = 0; j < blk_off; j++) { 3250 struct f2fs_summary *s; 3251 s = (struct f2fs_summary *)(kaddr + offset); 3252 seg_i->sum_blk->entries[j] = *s; 3253 offset += SUMMARY_SIZE; 3254 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3255 SUM_FOOTER_SIZE) 3256 continue; 3257 3258 f2fs_put_page(page, 1); 3259 page = NULL; 3260 3261 page = f2fs_get_meta_page(sbi, start++); 3262 if (IS_ERR(page)) 3263 return PTR_ERR(page); 3264 kaddr = (unsigned char *)page_address(page); 3265 offset = 0; 3266 } 3267 } 3268 f2fs_put_page(page, 1); 3269 return 0; 3270 } 3271 3272 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3273 { 3274 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3275 struct f2fs_summary_block *sum; 3276 struct curseg_info *curseg; 3277 struct page *new; 3278 unsigned short blk_off; 3279 unsigned int segno = 0; 3280 block_t blk_addr = 0; 3281 int err = 0; 3282 3283 /* get segment number and block addr */ 3284 if (IS_DATASEG(type)) { 3285 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3286 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3287 CURSEG_HOT_DATA]); 3288 if (__exist_node_summaries(sbi)) 3289 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3290 else 3291 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3292 } else { 3293 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3294 CURSEG_HOT_NODE]); 3295 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3296 CURSEG_HOT_NODE]); 3297 if (__exist_node_summaries(sbi)) 3298 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3299 type - CURSEG_HOT_NODE); 3300 else 3301 blk_addr = GET_SUM_BLOCK(sbi, segno); 3302 } 3303 3304 new = f2fs_get_meta_page(sbi, blk_addr); 3305 if (IS_ERR(new)) 3306 return PTR_ERR(new); 3307 sum = (struct f2fs_summary_block *)page_address(new); 3308 3309 if (IS_NODESEG(type)) { 3310 if (__exist_node_summaries(sbi)) { 3311 struct f2fs_summary *ns = &sum->entries[0]; 3312 int i; 3313 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3314 ns->version = 0; 3315 ns->ofs_in_node = 0; 3316 } 3317 } else { 3318 err = f2fs_restore_node_summary(sbi, segno, sum); 3319 if (err) 3320 goto out; 3321 } 3322 } 3323 3324 /* set uncompleted segment to curseg */ 3325 curseg = CURSEG_I(sbi, type); 3326 mutex_lock(&curseg->curseg_mutex); 3327 3328 /* update journal info */ 3329 down_write(&curseg->journal_rwsem); 3330 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3331 up_write(&curseg->journal_rwsem); 3332 3333 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3334 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3335 curseg->next_segno = segno; 3336 reset_curseg(sbi, type, 0); 3337 curseg->alloc_type = ckpt->alloc_type[type]; 3338 curseg->next_blkoff = blk_off; 3339 mutex_unlock(&curseg->curseg_mutex); 3340 out: 3341 f2fs_put_page(new, 1); 3342 return err; 3343 } 3344 3345 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3346 { 3347 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3348 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3349 int type = CURSEG_HOT_DATA; 3350 int err; 3351 3352 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3353 int npages = f2fs_npages_for_summary_flush(sbi, true); 3354 3355 if (npages >= 2) 3356 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3357 META_CP, true); 3358 3359 /* restore for compacted data summary */ 3360 err = read_compacted_summaries(sbi); 3361 if (err) 3362 return err; 3363 type = CURSEG_HOT_NODE; 3364 } 3365 3366 if (__exist_node_summaries(sbi)) 3367 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3368 NR_CURSEG_TYPE - type, META_CP, true); 3369 3370 for (; type <= CURSEG_COLD_NODE; type++) { 3371 err = read_normal_summaries(sbi, type); 3372 if (err) 3373 return err; 3374 } 3375 3376 /* sanity check for summary blocks */ 3377 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3378 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) 3379 return -EINVAL; 3380 3381 return 0; 3382 } 3383 3384 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3385 { 3386 struct page *page; 3387 unsigned char *kaddr; 3388 struct f2fs_summary *summary; 3389 struct curseg_info *seg_i; 3390 int written_size = 0; 3391 int i, j; 3392 3393 page = f2fs_grab_meta_page(sbi, blkaddr++); 3394 kaddr = (unsigned char *)page_address(page); 3395 memset(kaddr, 0, PAGE_SIZE); 3396 3397 /* Step 1: write nat cache */ 3398 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3399 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3400 written_size += SUM_JOURNAL_SIZE; 3401 3402 /* Step 2: write sit cache */ 3403 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3404 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3405 written_size += SUM_JOURNAL_SIZE; 3406 3407 /* Step 3: write summary entries */ 3408 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3409 unsigned short blkoff; 3410 seg_i = CURSEG_I(sbi, i); 3411 if (sbi->ckpt->alloc_type[i] == SSR) 3412 blkoff = sbi->blocks_per_seg; 3413 else 3414 blkoff = curseg_blkoff(sbi, i); 3415 3416 for (j = 0; j < blkoff; j++) { 3417 if (!page) { 3418 page = f2fs_grab_meta_page(sbi, blkaddr++); 3419 kaddr = (unsigned char *)page_address(page); 3420 memset(kaddr, 0, PAGE_SIZE); 3421 written_size = 0; 3422 } 3423 summary = (struct f2fs_summary *)(kaddr + written_size); 3424 *summary = seg_i->sum_blk->entries[j]; 3425 written_size += SUMMARY_SIZE; 3426 3427 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3428 SUM_FOOTER_SIZE) 3429 continue; 3430 3431 set_page_dirty(page); 3432 f2fs_put_page(page, 1); 3433 page = NULL; 3434 } 3435 } 3436 if (page) { 3437 set_page_dirty(page); 3438 f2fs_put_page(page, 1); 3439 } 3440 } 3441 3442 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3443 block_t blkaddr, int type) 3444 { 3445 int i, end; 3446 if (IS_DATASEG(type)) 3447 end = type + NR_CURSEG_DATA_TYPE; 3448 else 3449 end = type + NR_CURSEG_NODE_TYPE; 3450 3451 for (i = type; i < end; i++) 3452 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3453 } 3454 3455 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3456 { 3457 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3458 write_compacted_summaries(sbi, start_blk); 3459 else 3460 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3461 } 3462 3463 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3464 { 3465 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3466 } 3467 3468 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3469 unsigned int val, int alloc) 3470 { 3471 int i; 3472 3473 if (type == NAT_JOURNAL) { 3474 for (i = 0; i < nats_in_cursum(journal); i++) { 3475 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3476 return i; 3477 } 3478 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3479 return update_nats_in_cursum(journal, 1); 3480 } else if (type == SIT_JOURNAL) { 3481 for (i = 0; i < sits_in_cursum(journal); i++) 3482 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3483 return i; 3484 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3485 return update_sits_in_cursum(journal, 1); 3486 } 3487 return -1; 3488 } 3489 3490 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3491 unsigned int segno) 3492 { 3493 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); 3494 } 3495 3496 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3497 unsigned int start) 3498 { 3499 struct sit_info *sit_i = SIT_I(sbi); 3500 struct page *page; 3501 pgoff_t src_off, dst_off; 3502 3503 src_off = current_sit_addr(sbi, start); 3504 dst_off = next_sit_addr(sbi, src_off); 3505 3506 page = f2fs_grab_meta_page(sbi, dst_off); 3507 seg_info_to_sit_page(sbi, page, start); 3508 3509 set_page_dirty(page); 3510 set_to_next_sit(sit_i, start); 3511 3512 return page; 3513 } 3514 3515 static struct sit_entry_set *grab_sit_entry_set(void) 3516 { 3517 struct sit_entry_set *ses = 3518 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3519 3520 ses->entry_cnt = 0; 3521 INIT_LIST_HEAD(&ses->set_list); 3522 return ses; 3523 } 3524 3525 static void release_sit_entry_set(struct sit_entry_set *ses) 3526 { 3527 list_del(&ses->set_list); 3528 kmem_cache_free(sit_entry_set_slab, ses); 3529 } 3530 3531 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3532 struct list_head *head) 3533 { 3534 struct sit_entry_set *next = ses; 3535 3536 if (list_is_last(&ses->set_list, head)) 3537 return; 3538 3539 list_for_each_entry_continue(next, head, set_list) 3540 if (ses->entry_cnt <= next->entry_cnt) 3541 break; 3542 3543 list_move_tail(&ses->set_list, &next->set_list); 3544 } 3545 3546 static void add_sit_entry(unsigned int segno, struct list_head *head) 3547 { 3548 struct sit_entry_set *ses; 3549 unsigned int start_segno = START_SEGNO(segno); 3550 3551 list_for_each_entry(ses, head, set_list) { 3552 if (ses->start_segno == start_segno) { 3553 ses->entry_cnt++; 3554 adjust_sit_entry_set(ses, head); 3555 return; 3556 } 3557 } 3558 3559 ses = grab_sit_entry_set(); 3560 3561 ses->start_segno = start_segno; 3562 ses->entry_cnt++; 3563 list_add(&ses->set_list, head); 3564 } 3565 3566 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3567 { 3568 struct f2fs_sm_info *sm_info = SM_I(sbi); 3569 struct list_head *set_list = &sm_info->sit_entry_set; 3570 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3571 unsigned int segno; 3572 3573 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3574 add_sit_entry(segno, set_list); 3575 } 3576 3577 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3578 { 3579 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3580 struct f2fs_journal *journal = curseg->journal; 3581 int i; 3582 3583 down_write(&curseg->journal_rwsem); 3584 for (i = 0; i < sits_in_cursum(journal); i++) { 3585 unsigned int segno; 3586 bool dirtied; 3587 3588 segno = le32_to_cpu(segno_in_journal(journal, i)); 3589 dirtied = __mark_sit_entry_dirty(sbi, segno); 3590 3591 if (!dirtied) 3592 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3593 } 3594 update_sits_in_cursum(journal, -i); 3595 up_write(&curseg->journal_rwsem); 3596 } 3597 3598 /* 3599 * CP calls this function, which flushes SIT entries including sit_journal, 3600 * and moves prefree segs to free segs. 3601 */ 3602 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3603 { 3604 struct sit_info *sit_i = SIT_I(sbi); 3605 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3606 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3607 struct f2fs_journal *journal = curseg->journal; 3608 struct sit_entry_set *ses, *tmp; 3609 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3610 bool to_journal = true; 3611 struct seg_entry *se; 3612 3613 down_write(&sit_i->sentry_lock); 3614 3615 if (!sit_i->dirty_sentries) 3616 goto out; 3617 3618 /* 3619 * add and account sit entries of dirty bitmap in sit entry 3620 * set temporarily 3621 */ 3622 add_sits_in_set(sbi); 3623 3624 /* 3625 * if there are no enough space in journal to store dirty sit 3626 * entries, remove all entries from journal and add and account 3627 * them in sit entry set. 3628 */ 3629 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 3630 remove_sits_in_journal(sbi); 3631 3632 /* 3633 * there are two steps to flush sit entries: 3634 * #1, flush sit entries to journal in current cold data summary block. 3635 * #2, flush sit entries to sit page. 3636 */ 3637 list_for_each_entry_safe(ses, tmp, head, set_list) { 3638 struct page *page = NULL; 3639 struct f2fs_sit_block *raw_sit = NULL; 3640 unsigned int start_segno = ses->start_segno; 3641 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3642 (unsigned long)MAIN_SEGS(sbi)); 3643 unsigned int segno = start_segno; 3644 3645 if (to_journal && 3646 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3647 to_journal = false; 3648 3649 if (to_journal) { 3650 down_write(&curseg->journal_rwsem); 3651 } else { 3652 page = get_next_sit_page(sbi, start_segno); 3653 raw_sit = page_address(page); 3654 } 3655 3656 /* flush dirty sit entries in region of current sit set */ 3657 for_each_set_bit_from(segno, bitmap, end) { 3658 int offset, sit_offset; 3659 3660 se = get_seg_entry(sbi, segno); 3661 #ifdef CONFIG_F2FS_CHECK_FS 3662 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3663 SIT_VBLOCK_MAP_SIZE)) 3664 f2fs_bug_on(sbi, 1); 3665 #endif 3666 3667 /* add discard candidates */ 3668 if (!(cpc->reason & CP_DISCARD)) { 3669 cpc->trim_start = segno; 3670 add_discard_addrs(sbi, cpc, false); 3671 } 3672 3673 if (to_journal) { 3674 offset = f2fs_lookup_journal_in_cursum(journal, 3675 SIT_JOURNAL, segno, 1); 3676 f2fs_bug_on(sbi, offset < 0); 3677 segno_in_journal(journal, offset) = 3678 cpu_to_le32(segno); 3679 seg_info_to_raw_sit(se, 3680 &sit_in_journal(journal, offset)); 3681 check_block_count(sbi, segno, 3682 &sit_in_journal(journal, offset)); 3683 } else { 3684 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3685 seg_info_to_raw_sit(se, 3686 &raw_sit->entries[sit_offset]); 3687 check_block_count(sbi, segno, 3688 &raw_sit->entries[sit_offset]); 3689 } 3690 3691 __clear_bit(segno, bitmap); 3692 sit_i->dirty_sentries--; 3693 ses->entry_cnt--; 3694 } 3695 3696 if (to_journal) 3697 up_write(&curseg->journal_rwsem); 3698 else 3699 f2fs_put_page(page, 1); 3700 3701 f2fs_bug_on(sbi, ses->entry_cnt); 3702 release_sit_entry_set(ses); 3703 } 3704 3705 f2fs_bug_on(sbi, !list_empty(head)); 3706 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3707 out: 3708 if (cpc->reason & CP_DISCARD) { 3709 __u64 trim_start = cpc->trim_start; 3710 3711 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3712 add_discard_addrs(sbi, cpc, false); 3713 3714 cpc->trim_start = trim_start; 3715 } 3716 up_write(&sit_i->sentry_lock); 3717 3718 set_prefree_as_free_segments(sbi); 3719 } 3720 3721 static int build_sit_info(struct f2fs_sb_info *sbi) 3722 { 3723 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3724 struct sit_info *sit_i; 3725 unsigned int sit_segs, start; 3726 char *src_bitmap; 3727 unsigned int bitmap_size; 3728 3729 /* allocate memory for SIT information */ 3730 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3731 if (!sit_i) 3732 return -ENOMEM; 3733 3734 SM_I(sbi)->sit_info = sit_i; 3735 3736 sit_i->sentries = 3737 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 3738 MAIN_SEGS(sbi)), 3739 GFP_KERNEL); 3740 if (!sit_i->sentries) 3741 return -ENOMEM; 3742 3743 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3744 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size, 3745 GFP_KERNEL); 3746 if (!sit_i->dirty_sentries_bitmap) 3747 return -ENOMEM; 3748 3749 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3750 sit_i->sentries[start].cur_valid_map 3751 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3752 sit_i->sentries[start].ckpt_valid_map 3753 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3754 if (!sit_i->sentries[start].cur_valid_map || 3755 !sit_i->sentries[start].ckpt_valid_map) 3756 return -ENOMEM; 3757 3758 #ifdef CONFIG_F2FS_CHECK_FS 3759 sit_i->sentries[start].cur_valid_map_mir 3760 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3761 if (!sit_i->sentries[start].cur_valid_map_mir) 3762 return -ENOMEM; 3763 #endif 3764 3765 if (f2fs_discard_en(sbi)) { 3766 sit_i->sentries[start].discard_map 3767 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, 3768 GFP_KERNEL); 3769 if (!sit_i->sentries[start].discard_map) 3770 return -ENOMEM; 3771 } 3772 } 3773 3774 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3775 if (!sit_i->tmp_map) 3776 return -ENOMEM; 3777 3778 if (sbi->segs_per_sec > 1) { 3779 sit_i->sec_entries = 3780 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 3781 MAIN_SECS(sbi)), 3782 GFP_KERNEL); 3783 if (!sit_i->sec_entries) 3784 return -ENOMEM; 3785 } 3786 3787 /* get information related with SIT */ 3788 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 3789 3790 /* setup SIT bitmap from ckeckpoint pack */ 3791 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 3792 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 3793 3794 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3795 if (!sit_i->sit_bitmap) 3796 return -ENOMEM; 3797 3798 #ifdef CONFIG_F2FS_CHECK_FS 3799 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3800 if (!sit_i->sit_bitmap_mir) 3801 return -ENOMEM; 3802 #endif 3803 3804 /* init SIT information */ 3805 sit_i->s_ops = &default_salloc_ops; 3806 3807 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 3808 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 3809 sit_i->written_valid_blocks = 0; 3810 sit_i->bitmap_size = bitmap_size; 3811 sit_i->dirty_sentries = 0; 3812 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 3813 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 3814 sit_i->mounted_time = ktime_get_real_seconds(); 3815 init_rwsem(&sit_i->sentry_lock); 3816 return 0; 3817 } 3818 3819 static int build_free_segmap(struct f2fs_sb_info *sbi) 3820 { 3821 struct free_segmap_info *free_i; 3822 unsigned int bitmap_size, sec_bitmap_size; 3823 3824 /* allocate memory for free segmap information */ 3825 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 3826 if (!free_i) 3827 return -ENOMEM; 3828 3829 SM_I(sbi)->free_info = free_i; 3830 3831 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3832 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 3833 if (!free_i->free_segmap) 3834 return -ENOMEM; 3835 3836 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3837 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 3838 if (!free_i->free_secmap) 3839 return -ENOMEM; 3840 3841 /* set all segments as dirty temporarily */ 3842 memset(free_i->free_segmap, 0xff, bitmap_size); 3843 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 3844 3845 /* init free segmap information */ 3846 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 3847 free_i->free_segments = 0; 3848 free_i->free_sections = 0; 3849 spin_lock_init(&free_i->segmap_lock); 3850 return 0; 3851 } 3852 3853 static int build_curseg(struct f2fs_sb_info *sbi) 3854 { 3855 struct curseg_info *array; 3856 int i; 3857 3858 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), 3859 GFP_KERNEL); 3860 if (!array) 3861 return -ENOMEM; 3862 3863 SM_I(sbi)->curseg_array = array; 3864 3865 for (i = 0; i < NR_CURSEG_TYPE; i++) { 3866 mutex_init(&array[i].curseg_mutex); 3867 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 3868 if (!array[i].sum_blk) 3869 return -ENOMEM; 3870 init_rwsem(&array[i].journal_rwsem); 3871 array[i].journal = f2fs_kzalloc(sbi, 3872 sizeof(struct f2fs_journal), GFP_KERNEL); 3873 if (!array[i].journal) 3874 return -ENOMEM; 3875 array[i].segno = NULL_SEGNO; 3876 array[i].next_blkoff = 0; 3877 } 3878 return restore_curseg_summaries(sbi); 3879 } 3880 3881 static int build_sit_entries(struct f2fs_sb_info *sbi) 3882 { 3883 struct sit_info *sit_i = SIT_I(sbi); 3884 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3885 struct f2fs_journal *journal = curseg->journal; 3886 struct seg_entry *se; 3887 struct f2fs_sit_entry sit; 3888 int sit_blk_cnt = SIT_BLK_CNT(sbi); 3889 unsigned int i, start, end; 3890 unsigned int readed, start_blk = 0; 3891 int err = 0; 3892 block_t total_node_blocks = 0; 3893 3894 do { 3895 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 3896 META_SIT, true); 3897 3898 start = start_blk * sit_i->sents_per_block; 3899 end = (start_blk + readed) * sit_i->sents_per_block; 3900 3901 for (; start < end && start < MAIN_SEGS(sbi); start++) { 3902 struct f2fs_sit_block *sit_blk; 3903 struct page *page; 3904 3905 se = &sit_i->sentries[start]; 3906 page = get_current_sit_page(sbi, start); 3907 sit_blk = (struct f2fs_sit_block *)page_address(page); 3908 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 3909 f2fs_put_page(page, 1); 3910 3911 err = check_block_count(sbi, start, &sit); 3912 if (err) 3913 return err; 3914 seg_info_from_raw_sit(se, &sit); 3915 if (IS_NODESEG(se->type)) 3916 total_node_blocks += se->valid_blocks; 3917 3918 /* build discard map only one time */ 3919 if (f2fs_discard_en(sbi)) { 3920 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 3921 memset(se->discard_map, 0xff, 3922 SIT_VBLOCK_MAP_SIZE); 3923 } else { 3924 memcpy(se->discard_map, 3925 se->cur_valid_map, 3926 SIT_VBLOCK_MAP_SIZE); 3927 sbi->discard_blks += 3928 sbi->blocks_per_seg - 3929 se->valid_blocks; 3930 } 3931 } 3932 3933 if (sbi->segs_per_sec > 1) 3934 get_sec_entry(sbi, start)->valid_blocks += 3935 se->valid_blocks; 3936 } 3937 start_blk += readed; 3938 } while (start_blk < sit_blk_cnt); 3939 3940 down_read(&curseg->journal_rwsem); 3941 for (i = 0; i < sits_in_cursum(journal); i++) { 3942 unsigned int old_valid_blocks; 3943 3944 start = le32_to_cpu(segno_in_journal(journal, i)); 3945 if (start >= MAIN_SEGS(sbi)) { 3946 f2fs_msg(sbi->sb, KERN_ERR, 3947 "Wrong journal entry on segno %u", 3948 start); 3949 set_sbi_flag(sbi, SBI_NEED_FSCK); 3950 err = -EINVAL; 3951 break; 3952 } 3953 3954 se = &sit_i->sentries[start]; 3955 sit = sit_in_journal(journal, i); 3956 3957 old_valid_blocks = se->valid_blocks; 3958 if (IS_NODESEG(se->type)) 3959 total_node_blocks -= old_valid_blocks; 3960 3961 err = check_block_count(sbi, start, &sit); 3962 if (err) 3963 break; 3964 seg_info_from_raw_sit(se, &sit); 3965 if (IS_NODESEG(se->type)) 3966 total_node_blocks += se->valid_blocks; 3967 3968 if (f2fs_discard_en(sbi)) { 3969 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 3970 memset(se->discard_map, 0xff, 3971 SIT_VBLOCK_MAP_SIZE); 3972 } else { 3973 memcpy(se->discard_map, se->cur_valid_map, 3974 SIT_VBLOCK_MAP_SIZE); 3975 sbi->discard_blks += old_valid_blocks; 3976 sbi->discard_blks -= se->valid_blocks; 3977 } 3978 } 3979 3980 if (sbi->segs_per_sec > 1) { 3981 get_sec_entry(sbi, start)->valid_blocks += 3982 se->valid_blocks; 3983 get_sec_entry(sbi, start)->valid_blocks -= 3984 old_valid_blocks; 3985 } 3986 } 3987 up_read(&curseg->journal_rwsem); 3988 3989 if (!err && total_node_blocks != valid_node_count(sbi)) { 3990 f2fs_msg(sbi->sb, KERN_ERR, 3991 "SIT is corrupted node# %u vs %u", 3992 total_node_blocks, valid_node_count(sbi)); 3993 set_sbi_flag(sbi, SBI_NEED_FSCK); 3994 err = -EINVAL; 3995 } 3996 3997 return err; 3998 } 3999 4000 static void init_free_segmap(struct f2fs_sb_info *sbi) 4001 { 4002 unsigned int start; 4003 int type; 4004 4005 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4006 struct seg_entry *sentry = get_seg_entry(sbi, start); 4007 if (!sentry->valid_blocks) 4008 __set_free(sbi, start); 4009 else 4010 SIT_I(sbi)->written_valid_blocks += 4011 sentry->valid_blocks; 4012 } 4013 4014 /* set use the current segments */ 4015 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4016 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4017 __set_test_and_inuse(sbi, curseg_t->segno); 4018 } 4019 } 4020 4021 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4022 { 4023 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4024 struct free_segmap_info *free_i = FREE_I(sbi); 4025 unsigned int segno = 0, offset = 0; 4026 unsigned short valid_blocks; 4027 4028 while (1) { 4029 /* find dirty segment based on free segmap */ 4030 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4031 if (segno >= MAIN_SEGS(sbi)) 4032 break; 4033 offset = segno + 1; 4034 valid_blocks = get_valid_blocks(sbi, segno, false); 4035 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 4036 continue; 4037 if (valid_blocks > sbi->blocks_per_seg) { 4038 f2fs_bug_on(sbi, 1); 4039 continue; 4040 } 4041 mutex_lock(&dirty_i->seglist_lock); 4042 __locate_dirty_segment(sbi, segno, DIRTY); 4043 mutex_unlock(&dirty_i->seglist_lock); 4044 } 4045 } 4046 4047 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4048 { 4049 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4050 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4051 4052 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4053 if (!dirty_i->victim_secmap) 4054 return -ENOMEM; 4055 return 0; 4056 } 4057 4058 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4059 { 4060 struct dirty_seglist_info *dirty_i; 4061 unsigned int bitmap_size, i; 4062 4063 /* allocate memory for dirty segments list information */ 4064 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4065 GFP_KERNEL); 4066 if (!dirty_i) 4067 return -ENOMEM; 4068 4069 SM_I(sbi)->dirty_info = dirty_i; 4070 mutex_init(&dirty_i->seglist_lock); 4071 4072 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4073 4074 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4075 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4076 GFP_KERNEL); 4077 if (!dirty_i->dirty_segmap[i]) 4078 return -ENOMEM; 4079 } 4080 4081 init_dirty_segmap(sbi); 4082 return init_victim_secmap(sbi); 4083 } 4084 4085 /* 4086 * Update min, max modified time for cost-benefit GC algorithm 4087 */ 4088 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 4089 { 4090 struct sit_info *sit_i = SIT_I(sbi); 4091 unsigned int segno; 4092 4093 down_write(&sit_i->sentry_lock); 4094 4095 sit_i->min_mtime = ULLONG_MAX; 4096 4097 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4098 unsigned int i; 4099 unsigned long long mtime = 0; 4100 4101 for (i = 0; i < sbi->segs_per_sec; i++) 4102 mtime += get_seg_entry(sbi, segno + i)->mtime; 4103 4104 mtime = div_u64(mtime, sbi->segs_per_sec); 4105 4106 if (sit_i->min_mtime > mtime) 4107 sit_i->min_mtime = mtime; 4108 } 4109 sit_i->max_mtime = get_mtime(sbi, false); 4110 up_write(&sit_i->sentry_lock); 4111 } 4112 4113 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 4114 { 4115 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4116 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4117 struct f2fs_sm_info *sm_info; 4118 int err; 4119 4120 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 4121 if (!sm_info) 4122 return -ENOMEM; 4123 4124 /* init sm info */ 4125 sbi->sm_info = sm_info; 4126 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 4127 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 4128 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 4129 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4130 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4131 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 4132 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 4133 sm_info->rec_prefree_segments = sm_info->main_segments * 4134 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 4135 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 4136 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 4137 4138 if (!test_opt(sbi, LFS)) 4139 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 4140 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 4141 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 4142 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 4143 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 4144 sm_info->min_ssr_sections = reserved_sections(sbi); 4145 4146 INIT_LIST_HEAD(&sm_info->sit_entry_set); 4147 4148 init_rwsem(&sm_info->curseg_lock); 4149 4150 if (!f2fs_readonly(sbi->sb)) { 4151 err = f2fs_create_flush_cmd_control(sbi); 4152 if (err) 4153 return err; 4154 } 4155 4156 err = create_discard_cmd_control(sbi); 4157 if (err) 4158 return err; 4159 4160 err = build_sit_info(sbi); 4161 if (err) 4162 return err; 4163 err = build_free_segmap(sbi); 4164 if (err) 4165 return err; 4166 err = build_curseg(sbi); 4167 if (err) 4168 return err; 4169 4170 /* reinit free segmap based on SIT */ 4171 err = build_sit_entries(sbi); 4172 if (err) 4173 return err; 4174 4175 init_free_segmap(sbi); 4176 err = build_dirty_segmap(sbi); 4177 if (err) 4178 return err; 4179 4180 init_min_max_mtime(sbi); 4181 return 0; 4182 } 4183 4184 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 4185 enum dirty_type dirty_type) 4186 { 4187 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4188 4189 mutex_lock(&dirty_i->seglist_lock); 4190 kvfree(dirty_i->dirty_segmap[dirty_type]); 4191 dirty_i->nr_dirty[dirty_type] = 0; 4192 mutex_unlock(&dirty_i->seglist_lock); 4193 } 4194 4195 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 4196 { 4197 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4198 kvfree(dirty_i->victim_secmap); 4199 } 4200 4201 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 4202 { 4203 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4204 int i; 4205 4206 if (!dirty_i) 4207 return; 4208 4209 /* discard pre-free/dirty segments list */ 4210 for (i = 0; i < NR_DIRTY_TYPE; i++) 4211 discard_dirty_segmap(sbi, i); 4212 4213 destroy_victim_secmap(sbi); 4214 SM_I(sbi)->dirty_info = NULL; 4215 kfree(dirty_i); 4216 } 4217 4218 static void destroy_curseg(struct f2fs_sb_info *sbi) 4219 { 4220 struct curseg_info *array = SM_I(sbi)->curseg_array; 4221 int i; 4222 4223 if (!array) 4224 return; 4225 SM_I(sbi)->curseg_array = NULL; 4226 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4227 kfree(array[i].sum_blk); 4228 kfree(array[i].journal); 4229 } 4230 kfree(array); 4231 } 4232 4233 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4234 { 4235 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4236 if (!free_i) 4237 return; 4238 SM_I(sbi)->free_info = NULL; 4239 kvfree(free_i->free_segmap); 4240 kvfree(free_i->free_secmap); 4241 kfree(free_i); 4242 } 4243 4244 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4245 { 4246 struct sit_info *sit_i = SIT_I(sbi); 4247 unsigned int start; 4248 4249 if (!sit_i) 4250 return; 4251 4252 if (sit_i->sentries) { 4253 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4254 kfree(sit_i->sentries[start].cur_valid_map); 4255 #ifdef CONFIG_F2FS_CHECK_FS 4256 kfree(sit_i->sentries[start].cur_valid_map_mir); 4257 #endif 4258 kfree(sit_i->sentries[start].ckpt_valid_map); 4259 kfree(sit_i->sentries[start].discard_map); 4260 } 4261 } 4262 kfree(sit_i->tmp_map); 4263 4264 kvfree(sit_i->sentries); 4265 kvfree(sit_i->sec_entries); 4266 kvfree(sit_i->dirty_sentries_bitmap); 4267 4268 SM_I(sbi)->sit_info = NULL; 4269 kfree(sit_i->sit_bitmap); 4270 #ifdef CONFIG_F2FS_CHECK_FS 4271 kfree(sit_i->sit_bitmap_mir); 4272 #endif 4273 kfree(sit_i); 4274 } 4275 4276 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4277 { 4278 struct f2fs_sm_info *sm_info = SM_I(sbi); 4279 4280 if (!sm_info) 4281 return; 4282 f2fs_destroy_flush_cmd_control(sbi, true); 4283 destroy_discard_cmd_control(sbi); 4284 destroy_dirty_segmap(sbi); 4285 destroy_curseg(sbi); 4286 destroy_free_segmap(sbi); 4287 destroy_sit_info(sbi); 4288 sbi->sm_info = NULL; 4289 kfree(sm_info); 4290 } 4291 4292 int __init f2fs_create_segment_manager_caches(void) 4293 { 4294 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 4295 sizeof(struct discard_entry)); 4296 if (!discard_entry_slab) 4297 goto fail; 4298 4299 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 4300 sizeof(struct discard_cmd)); 4301 if (!discard_cmd_slab) 4302 goto destroy_discard_entry; 4303 4304 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 4305 sizeof(struct sit_entry_set)); 4306 if (!sit_entry_set_slab) 4307 goto destroy_discard_cmd; 4308 4309 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 4310 sizeof(struct inmem_pages)); 4311 if (!inmem_entry_slab) 4312 goto destroy_sit_entry_set; 4313 return 0; 4314 4315 destroy_sit_entry_set: 4316 kmem_cache_destroy(sit_entry_set_slab); 4317 destroy_discard_cmd: 4318 kmem_cache_destroy(discard_cmd_slab); 4319 destroy_discard_entry: 4320 kmem_cache_destroy(discard_entry_slab); 4321 fail: 4322 return -ENOMEM; 4323 } 4324 4325 void f2fs_destroy_segment_manager_caches(void) 4326 { 4327 kmem_cache_destroy(sit_entry_set_slab); 4328 kmem_cache_destroy(discard_cmd_slab); 4329 kmem_cache_destroy(discard_entry_slab); 4330 kmem_cache_destroy(inmem_entry_slab); 4331 } 4332