1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 release_atomic_write_cnt(inode); 196 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 197 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 198 clear_inode_flag(inode, FI_ATOMIC_FILE); 199 stat_dec_atomic_inode(inode); 200 201 F2FS_I(inode)->atomic_write_task = NULL; 202 203 if (clean) { 204 truncate_inode_pages_final(inode->i_mapping); 205 f2fs_i_size_write(inode, fi->original_i_size); 206 fi->original_i_size = 0; 207 } 208 /* avoid stale dirty inode during eviction */ 209 sync_inode_metadata(inode, 0); 210 } 211 212 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 213 block_t new_addr, block_t *old_addr, bool recover) 214 { 215 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 216 struct dnode_of_data dn; 217 struct node_info ni; 218 int err; 219 220 retry: 221 set_new_dnode(&dn, inode, NULL, NULL, 0); 222 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 223 if (err) { 224 if (err == -ENOMEM) { 225 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 226 goto retry; 227 } 228 return err; 229 } 230 231 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 232 if (err) { 233 f2fs_put_dnode(&dn); 234 return err; 235 } 236 237 if (recover) { 238 /* dn.data_blkaddr is always valid */ 239 if (!__is_valid_data_blkaddr(new_addr)) { 240 if (new_addr == NULL_ADDR) 241 dec_valid_block_count(sbi, inode, 1); 242 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 243 f2fs_update_data_blkaddr(&dn, new_addr); 244 } else { 245 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 246 new_addr, ni.version, true, true); 247 } 248 } else { 249 blkcnt_t count = 1; 250 251 err = inc_valid_block_count(sbi, inode, &count); 252 if (err) { 253 f2fs_put_dnode(&dn); 254 return err; 255 } 256 257 *old_addr = dn.data_blkaddr; 258 f2fs_truncate_data_blocks_range(&dn, 1); 259 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 260 261 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 262 ni.version, true, false); 263 } 264 265 f2fs_put_dnode(&dn); 266 267 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode, 268 index, old_addr ? *old_addr : 0, new_addr, recover); 269 return 0; 270 } 271 272 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 273 bool revoke) 274 { 275 struct revoke_entry *cur, *tmp; 276 pgoff_t start_index = 0; 277 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 278 279 list_for_each_entry_safe(cur, tmp, head, list) { 280 if (revoke) { 281 __replace_atomic_write_block(inode, cur->index, 282 cur->old_addr, NULL, true); 283 } else if (truncate) { 284 f2fs_truncate_hole(inode, start_index, cur->index); 285 start_index = cur->index + 1; 286 } 287 288 list_del(&cur->list); 289 kmem_cache_free(revoke_entry_slab, cur); 290 } 291 292 if (!revoke && truncate) 293 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false); 294 } 295 296 static int __f2fs_commit_atomic_write(struct inode *inode) 297 { 298 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 299 struct f2fs_inode_info *fi = F2FS_I(inode); 300 struct inode *cow_inode = fi->cow_inode; 301 struct revoke_entry *new; 302 struct list_head revoke_list; 303 block_t blkaddr; 304 struct dnode_of_data dn; 305 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 306 pgoff_t off = 0, blen, index; 307 int ret = 0, i; 308 309 INIT_LIST_HEAD(&revoke_list); 310 311 while (len) { 312 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 313 314 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 315 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 316 if (ret && ret != -ENOENT) { 317 goto out; 318 } else if (ret == -ENOENT) { 319 ret = 0; 320 if (dn.max_level == 0) 321 goto out; 322 goto next; 323 } 324 325 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 326 len); 327 index = off; 328 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 329 blkaddr = f2fs_data_blkaddr(&dn); 330 331 if (!__is_valid_data_blkaddr(blkaddr)) { 332 continue; 333 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 334 DATA_GENERIC_ENHANCE)) { 335 f2fs_put_dnode(&dn); 336 ret = -EFSCORRUPTED; 337 f2fs_handle_error(sbi, 338 ERROR_INVALID_BLKADDR); 339 goto out; 340 } 341 342 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 343 true, NULL); 344 345 ret = __replace_atomic_write_block(inode, index, blkaddr, 346 &new->old_addr, false); 347 if (ret) { 348 f2fs_put_dnode(&dn); 349 kmem_cache_free(revoke_entry_slab, new); 350 goto out; 351 } 352 353 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 354 new->index = index; 355 list_add_tail(&new->list, &revoke_list); 356 } 357 f2fs_put_dnode(&dn); 358 next: 359 off += blen; 360 len -= blen; 361 } 362 363 out: 364 if (ret) { 365 sbi->revoked_atomic_block += fi->atomic_write_cnt; 366 } else { 367 sbi->committed_atomic_block += fi->atomic_write_cnt; 368 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 369 } 370 371 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 372 373 return ret; 374 } 375 376 int f2fs_commit_atomic_write(struct inode *inode) 377 { 378 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 379 struct f2fs_inode_info *fi = F2FS_I(inode); 380 int err; 381 382 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 383 if (err) 384 return err; 385 386 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 387 f2fs_lock_op(sbi); 388 389 err = __f2fs_commit_atomic_write(inode); 390 391 f2fs_unlock_op(sbi); 392 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 393 394 return err; 395 } 396 397 /* 398 * This function balances dirty node and dentry pages. 399 * In addition, it controls garbage collection. 400 */ 401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 402 { 403 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 404 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 405 406 /* balance_fs_bg is able to be pending */ 407 if (need && excess_cached_nats(sbi)) 408 f2fs_balance_fs_bg(sbi, false); 409 410 if (!f2fs_is_checkpoint_ready(sbi)) 411 return; 412 413 /* 414 * We should do GC or end up with checkpoint, if there are so many dirty 415 * dir/node pages without enough free segments. 416 */ 417 if (has_enough_free_secs(sbi, 0, 0)) 418 return; 419 420 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 421 sbi->gc_thread->f2fs_gc_task) { 422 DEFINE_WAIT(wait); 423 424 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 425 TASK_UNINTERRUPTIBLE); 426 wake_up(&sbi->gc_thread->gc_wait_queue_head); 427 io_schedule(); 428 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 429 } else { 430 struct f2fs_gc_control gc_control = { 431 .victim_segno = NULL_SEGNO, 432 .init_gc_type = BG_GC, 433 .no_bg_gc = true, 434 .should_migrate_blocks = false, 435 .err_gc_skipped = false, 436 .nr_free_secs = 1 }; 437 f2fs_down_write(&sbi->gc_lock); 438 stat_inc_gc_call_count(sbi, FOREGROUND); 439 f2fs_gc(sbi, &gc_control); 440 } 441 } 442 443 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 444 { 445 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 446 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 447 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 448 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 449 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 450 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 451 unsigned int threshold = sbi->blocks_per_seg * factor * 452 DEFAULT_DIRTY_THRESHOLD; 453 unsigned int global_threshold = threshold * 3 / 2; 454 455 if (dents >= threshold || qdata >= threshold || 456 nodes >= threshold || meta >= threshold || 457 imeta >= threshold) 458 return true; 459 return dents + qdata + nodes + meta + imeta > global_threshold; 460 } 461 462 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 463 { 464 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 465 return; 466 467 /* try to shrink extent cache when there is no enough memory */ 468 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 469 f2fs_shrink_read_extent_tree(sbi, 470 READ_EXTENT_CACHE_SHRINK_NUMBER); 471 472 /* try to shrink age extent cache when there is no enough memory */ 473 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 474 f2fs_shrink_age_extent_tree(sbi, 475 AGE_EXTENT_CACHE_SHRINK_NUMBER); 476 477 /* check the # of cached NAT entries */ 478 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 479 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 480 481 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 482 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 483 else 484 f2fs_build_free_nids(sbi, false, false); 485 486 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 487 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 488 goto do_sync; 489 490 /* there is background inflight IO or foreground operation recently */ 491 if (is_inflight_io(sbi, REQ_TIME) || 492 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 493 return; 494 495 /* exceed periodical checkpoint timeout threshold */ 496 if (f2fs_time_over(sbi, CP_TIME)) 497 goto do_sync; 498 499 /* checkpoint is the only way to shrink partial cached entries */ 500 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 501 f2fs_available_free_memory(sbi, INO_ENTRIES)) 502 return; 503 504 do_sync: 505 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 506 struct blk_plug plug; 507 508 mutex_lock(&sbi->flush_lock); 509 510 blk_start_plug(&plug); 511 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 512 blk_finish_plug(&plug); 513 514 mutex_unlock(&sbi->flush_lock); 515 } 516 stat_inc_cp_call_count(sbi, BACKGROUND); 517 f2fs_sync_fs(sbi->sb, 1); 518 } 519 520 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 521 struct block_device *bdev) 522 { 523 int ret = blkdev_issue_flush(bdev); 524 525 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 526 test_opt(sbi, FLUSH_MERGE), ret); 527 if (!ret) 528 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0); 529 return ret; 530 } 531 532 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 533 { 534 int ret = 0; 535 int i; 536 537 if (!f2fs_is_multi_device(sbi)) 538 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 539 540 for (i = 0; i < sbi->s_ndevs; i++) { 541 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 542 continue; 543 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 544 if (ret) 545 break; 546 } 547 return ret; 548 } 549 550 static int issue_flush_thread(void *data) 551 { 552 struct f2fs_sb_info *sbi = data; 553 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 554 wait_queue_head_t *q = &fcc->flush_wait_queue; 555 repeat: 556 if (kthread_should_stop()) 557 return 0; 558 559 if (!llist_empty(&fcc->issue_list)) { 560 struct flush_cmd *cmd, *next; 561 int ret; 562 563 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 564 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 565 566 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 567 568 ret = submit_flush_wait(sbi, cmd->ino); 569 atomic_inc(&fcc->issued_flush); 570 571 llist_for_each_entry_safe(cmd, next, 572 fcc->dispatch_list, llnode) { 573 cmd->ret = ret; 574 complete(&cmd->wait); 575 } 576 fcc->dispatch_list = NULL; 577 } 578 579 wait_event_interruptible(*q, 580 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 581 goto repeat; 582 } 583 584 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 585 { 586 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 587 struct flush_cmd cmd; 588 int ret; 589 590 if (test_opt(sbi, NOBARRIER)) 591 return 0; 592 593 if (!test_opt(sbi, FLUSH_MERGE)) { 594 atomic_inc(&fcc->queued_flush); 595 ret = submit_flush_wait(sbi, ino); 596 atomic_dec(&fcc->queued_flush); 597 atomic_inc(&fcc->issued_flush); 598 return ret; 599 } 600 601 if (atomic_inc_return(&fcc->queued_flush) == 1 || 602 f2fs_is_multi_device(sbi)) { 603 ret = submit_flush_wait(sbi, ino); 604 atomic_dec(&fcc->queued_flush); 605 606 atomic_inc(&fcc->issued_flush); 607 return ret; 608 } 609 610 cmd.ino = ino; 611 init_completion(&cmd.wait); 612 613 llist_add(&cmd.llnode, &fcc->issue_list); 614 615 /* 616 * update issue_list before we wake up issue_flush thread, this 617 * smp_mb() pairs with another barrier in ___wait_event(), see 618 * more details in comments of waitqueue_active(). 619 */ 620 smp_mb(); 621 622 if (waitqueue_active(&fcc->flush_wait_queue)) 623 wake_up(&fcc->flush_wait_queue); 624 625 if (fcc->f2fs_issue_flush) { 626 wait_for_completion(&cmd.wait); 627 atomic_dec(&fcc->queued_flush); 628 } else { 629 struct llist_node *list; 630 631 list = llist_del_all(&fcc->issue_list); 632 if (!list) { 633 wait_for_completion(&cmd.wait); 634 atomic_dec(&fcc->queued_flush); 635 } else { 636 struct flush_cmd *tmp, *next; 637 638 ret = submit_flush_wait(sbi, ino); 639 640 llist_for_each_entry_safe(tmp, next, list, llnode) { 641 if (tmp == &cmd) { 642 cmd.ret = ret; 643 atomic_dec(&fcc->queued_flush); 644 continue; 645 } 646 tmp->ret = ret; 647 complete(&tmp->wait); 648 } 649 } 650 } 651 652 return cmd.ret; 653 } 654 655 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 656 { 657 dev_t dev = sbi->sb->s_bdev->bd_dev; 658 struct flush_cmd_control *fcc; 659 660 if (SM_I(sbi)->fcc_info) { 661 fcc = SM_I(sbi)->fcc_info; 662 if (fcc->f2fs_issue_flush) 663 return 0; 664 goto init_thread; 665 } 666 667 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 668 if (!fcc) 669 return -ENOMEM; 670 atomic_set(&fcc->issued_flush, 0); 671 atomic_set(&fcc->queued_flush, 0); 672 init_waitqueue_head(&fcc->flush_wait_queue); 673 init_llist_head(&fcc->issue_list); 674 SM_I(sbi)->fcc_info = fcc; 675 if (!test_opt(sbi, FLUSH_MERGE)) 676 return 0; 677 678 init_thread: 679 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 680 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 681 if (IS_ERR(fcc->f2fs_issue_flush)) { 682 int err = PTR_ERR(fcc->f2fs_issue_flush); 683 684 fcc->f2fs_issue_flush = NULL; 685 return err; 686 } 687 688 return 0; 689 } 690 691 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 692 { 693 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 694 695 if (fcc && fcc->f2fs_issue_flush) { 696 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 697 698 fcc->f2fs_issue_flush = NULL; 699 kthread_stop(flush_thread); 700 } 701 if (free) { 702 kfree(fcc); 703 SM_I(sbi)->fcc_info = NULL; 704 } 705 } 706 707 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 708 { 709 int ret = 0, i; 710 711 if (!f2fs_is_multi_device(sbi)) 712 return 0; 713 714 if (test_opt(sbi, NOBARRIER)) 715 return 0; 716 717 for (i = 1; i < sbi->s_ndevs; i++) { 718 int count = DEFAULT_RETRY_IO_COUNT; 719 720 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 721 continue; 722 723 do { 724 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 725 if (ret) 726 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 727 } while (ret && --count); 728 729 if (ret) { 730 f2fs_stop_checkpoint(sbi, false, 731 STOP_CP_REASON_FLUSH_FAIL); 732 break; 733 } 734 735 spin_lock(&sbi->dev_lock); 736 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 737 spin_unlock(&sbi->dev_lock); 738 } 739 740 return ret; 741 } 742 743 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 744 enum dirty_type dirty_type) 745 { 746 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 747 748 /* need not be added */ 749 if (IS_CURSEG(sbi, segno)) 750 return; 751 752 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 753 dirty_i->nr_dirty[dirty_type]++; 754 755 if (dirty_type == DIRTY) { 756 struct seg_entry *sentry = get_seg_entry(sbi, segno); 757 enum dirty_type t = sentry->type; 758 759 if (unlikely(t >= DIRTY)) { 760 f2fs_bug_on(sbi, 1); 761 return; 762 } 763 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 764 dirty_i->nr_dirty[t]++; 765 766 if (__is_large_section(sbi)) { 767 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 768 block_t valid_blocks = 769 get_valid_blocks(sbi, segno, true); 770 771 f2fs_bug_on(sbi, unlikely(!valid_blocks || 772 valid_blocks == CAP_BLKS_PER_SEC(sbi))); 773 774 if (!IS_CURSEC(sbi, secno)) 775 set_bit(secno, dirty_i->dirty_secmap); 776 } 777 } 778 } 779 780 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 781 enum dirty_type dirty_type) 782 { 783 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 784 block_t valid_blocks; 785 786 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 787 dirty_i->nr_dirty[dirty_type]--; 788 789 if (dirty_type == DIRTY) { 790 struct seg_entry *sentry = get_seg_entry(sbi, segno); 791 enum dirty_type t = sentry->type; 792 793 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 794 dirty_i->nr_dirty[t]--; 795 796 valid_blocks = get_valid_blocks(sbi, segno, true); 797 if (valid_blocks == 0) { 798 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 799 dirty_i->victim_secmap); 800 #ifdef CONFIG_F2FS_CHECK_FS 801 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 802 #endif 803 } 804 if (__is_large_section(sbi)) { 805 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 806 807 if (!valid_blocks || 808 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 809 clear_bit(secno, dirty_i->dirty_secmap); 810 return; 811 } 812 813 if (!IS_CURSEC(sbi, secno)) 814 set_bit(secno, dirty_i->dirty_secmap); 815 } 816 } 817 } 818 819 /* 820 * Should not occur error such as -ENOMEM. 821 * Adding dirty entry into seglist is not critical operation. 822 * If a given segment is one of current working segments, it won't be added. 823 */ 824 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 825 { 826 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 827 unsigned short valid_blocks, ckpt_valid_blocks; 828 unsigned int usable_blocks; 829 830 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 831 return; 832 833 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 834 mutex_lock(&dirty_i->seglist_lock); 835 836 valid_blocks = get_valid_blocks(sbi, segno, false); 837 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 838 839 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 840 ckpt_valid_blocks == usable_blocks)) { 841 __locate_dirty_segment(sbi, segno, PRE); 842 __remove_dirty_segment(sbi, segno, DIRTY); 843 } else if (valid_blocks < usable_blocks) { 844 __locate_dirty_segment(sbi, segno, DIRTY); 845 } else { 846 /* Recovery routine with SSR needs this */ 847 __remove_dirty_segment(sbi, segno, DIRTY); 848 } 849 850 mutex_unlock(&dirty_i->seglist_lock); 851 } 852 853 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 854 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 855 { 856 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 857 unsigned int segno; 858 859 mutex_lock(&dirty_i->seglist_lock); 860 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 861 if (get_valid_blocks(sbi, segno, false)) 862 continue; 863 if (IS_CURSEG(sbi, segno)) 864 continue; 865 __locate_dirty_segment(sbi, segno, PRE); 866 __remove_dirty_segment(sbi, segno, DIRTY); 867 } 868 mutex_unlock(&dirty_i->seglist_lock); 869 } 870 871 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 872 { 873 int ovp_hole_segs = 874 (overprovision_segments(sbi) - reserved_segments(sbi)); 875 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 876 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 877 block_t holes[2] = {0, 0}; /* DATA and NODE */ 878 block_t unusable; 879 struct seg_entry *se; 880 unsigned int segno; 881 882 mutex_lock(&dirty_i->seglist_lock); 883 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 884 se = get_seg_entry(sbi, segno); 885 if (IS_NODESEG(se->type)) 886 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 887 se->valid_blocks; 888 else 889 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 890 se->valid_blocks; 891 } 892 mutex_unlock(&dirty_i->seglist_lock); 893 894 unusable = max(holes[DATA], holes[NODE]); 895 if (unusable > ovp_holes) 896 return unusable - ovp_holes; 897 return 0; 898 } 899 900 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 901 { 902 int ovp_hole_segs = 903 (overprovision_segments(sbi) - reserved_segments(sbi)); 904 if (unusable > F2FS_OPTION(sbi).unusable_cap) 905 return -EAGAIN; 906 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 907 dirty_segments(sbi) > ovp_hole_segs) 908 return -EAGAIN; 909 return 0; 910 } 911 912 /* This is only used by SBI_CP_DISABLED */ 913 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 914 { 915 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 916 unsigned int segno = 0; 917 918 mutex_lock(&dirty_i->seglist_lock); 919 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 920 if (get_valid_blocks(sbi, segno, false)) 921 continue; 922 if (get_ckpt_valid_blocks(sbi, segno, false)) 923 continue; 924 mutex_unlock(&dirty_i->seglist_lock); 925 return segno; 926 } 927 mutex_unlock(&dirty_i->seglist_lock); 928 return NULL_SEGNO; 929 } 930 931 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 932 struct block_device *bdev, block_t lstart, 933 block_t start, block_t len) 934 { 935 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 936 struct list_head *pend_list; 937 struct discard_cmd *dc; 938 939 f2fs_bug_on(sbi, !len); 940 941 pend_list = &dcc->pend_list[plist_idx(len)]; 942 943 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 944 INIT_LIST_HEAD(&dc->list); 945 dc->bdev = bdev; 946 dc->di.lstart = lstart; 947 dc->di.start = start; 948 dc->di.len = len; 949 dc->ref = 0; 950 dc->state = D_PREP; 951 dc->queued = 0; 952 dc->error = 0; 953 init_completion(&dc->wait); 954 list_add_tail(&dc->list, pend_list); 955 spin_lock_init(&dc->lock); 956 dc->bio_ref = 0; 957 atomic_inc(&dcc->discard_cmd_cnt); 958 dcc->undiscard_blks += len; 959 960 return dc; 961 } 962 963 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi) 964 { 965 #ifdef CONFIG_F2FS_CHECK_FS 966 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 967 struct rb_node *cur = rb_first_cached(&dcc->root), *next; 968 struct discard_cmd *cur_dc, *next_dc; 969 970 while (cur) { 971 next = rb_next(cur); 972 if (!next) 973 return true; 974 975 cur_dc = rb_entry(cur, struct discard_cmd, rb_node); 976 next_dc = rb_entry(next, struct discard_cmd, rb_node); 977 978 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) { 979 f2fs_info(sbi, "broken discard_rbtree, " 980 "cur(%u, %u) next(%u, %u)", 981 cur_dc->di.lstart, cur_dc->di.len, 982 next_dc->di.lstart, next_dc->di.len); 983 return false; 984 } 985 cur = next; 986 } 987 #endif 988 return true; 989 } 990 991 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi, 992 block_t blkaddr) 993 { 994 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 995 struct rb_node *node = dcc->root.rb_root.rb_node; 996 struct discard_cmd *dc; 997 998 while (node) { 999 dc = rb_entry(node, struct discard_cmd, rb_node); 1000 1001 if (blkaddr < dc->di.lstart) 1002 node = node->rb_left; 1003 else if (blkaddr >= dc->di.lstart + dc->di.len) 1004 node = node->rb_right; 1005 else 1006 return dc; 1007 } 1008 return NULL; 1009 } 1010 1011 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root, 1012 block_t blkaddr, 1013 struct discard_cmd **prev_entry, 1014 struct discard_cmd **next_entry, 1015 struct rb_node ***insert_p, 1016 struct rb_node **insert_parent) 1017 { 1018 struct rb_node **pnode = &root->rb_root.rb_node; 1019 struct rb_node *parent = NULL, *tmp_node; 1020 struct discard_cmd *dc; 1021 1022 *insert_p = NULL; 1023 *insert_parent = NULL; 1024 *prev_entry = NULL; 1025 *next_entry = NULL; 1026 1027 if (RB_EMPTY_ROOT(&root->rb_root)) 1028 return NULL; 1029 1030 while (*pnode) { 1031 parent = *pnode; 1032 dc = rb_entry(*pnode, struct discard_cmd, rb_node); 1033 1034 if (blkaddr < dc->di.lstart) 1035 pnode = &(*pnode)->rb_left; 1036 else if (blkaddr >= dc->di.lstart + dc->di.len) 1037 pnode = &(*pnode)->rb_right; 1038 else 1039 goto lookup_neighbors; 1040 } 1041 1042 *insert_p = pnode; 1043 *insert_parent = parent; 1044 1045 dc = rb_entry(parent, struct discard_cmd, rb_node); 1046 tmp_node = parent; 1047 if (parent && blkaddr > dc->di.lstart) 1048 tmp_node = rb_next(parent); 1049 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1050 1051 tmp_node = parent; 1052 if (parent && blkaddr < dc->di.lstart) 1053 tmp_node = rb_prev(parent); 1054 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1055 return NULL; 1056 1057 lookup_neighbors: 1058 /* lookup prev node for merging backward later */ 1059 tmp_node = rb_prev(&dc->rb_node); 1060 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1061 1062 /* lookup next node for merging frontward later */ 1063 tmp_node = rb_next(&dc->rb_node); 1064 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1065 return dc; 1066 } 1067 1068 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1069 struct discard_cmd *dc) 1070 { 1071 if (dc->state == D_DONE) 1072 atomic_sub(dc->queued, &dcc->queued_discard); 1073 1074 list_del(&dc->list); 1075 rb_erase_cached(&dc->rb_node, &dcc->root); 1076 dcc->undiscard_blks -= dc->di.len; 1077 1078 kmem_cache_free(discard_cmd_slab, dc); 1079 1080 atomic_dec(&dcc->discard_cmd_cnt); 1081 } 1082 1083 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1084 struct discard_cmd *dc) 1085 { 1086 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1087 unsigned long flags; 1088 1089 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len); 1090 1091 spin_lock_irqsave(&dc->lock, flags); 1092 if (dc->bio_ref) { 1093 spin_unlock_irqrestore(&dc->lock, flags); 1094 return; 1095 } 1096 spin_unlock_irqrestore(&dc->lock, flags); 1097 1098 f2fs_bug_on(sbi, dc->ref); 1099 1100 if (dc->error == -EOPNOTSUPP) 1101 dc->error = 0; 1102 1103 if (dc->error) 1104 printk_ratelimited( 1105 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1106 KERN_INFO, sbi->sb->s_id, 1107 dc->di.lstart, dc->di.start, dc->di.len, dc->error); 1108 __detach_discard_cmd(dcc, dc); 1109 } 1110 1111 static void f2fs_submit_discard_endio(struct bio *bio) 1112 { 1113 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1114 unsigned long flags; 1115 1116 spin_lock_irqsave(&dc->lock, flags); 1117 if (!dc->error) 1118 dc->error = blk_status_to_errno(bio->bi_status); 1119 dc->bio_ref--; 1120 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1121 dc->state = D_DONE; 1122 complete_all(&dc->wait); 1123 } 1124 spin_unlock_irqrestore(&dc->lock, flags); 1125 bio_put(bio); 1126 } 1127 1128 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1129 block_t start, block_t end) 1130 { 1131 #ifdef CONFIG_F2FS_CHECK_FS 1132 struct seg_entry *sentry; 1133 unsigned int segno; 1134 block_t blk = start; 1135 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1136 unsigned long *map; 1137 1138 while (blk < end) { 1139 segno = GET_SEGNO(sbi, blk); 1140 sentry = get_seg_entry(sbi, segno); 1141 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1142 1143 if (end < START_BLOCK(sbi, segno + 1)) 1144 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1145 else 1146 size = max_blocks; 1147 map = (unsigned long *)(sentry->cur_valid_map); 1148 offset = __find_rev_next_bit(map, size, offset); 1149 f2fs_bug_on(sbi, offset != size); 1150 blk = START_BLOCK(sbi, segno + 1); 1151 } 1152 #endif 1153 } 1154 1155 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1156 struct discard_policy *dpolicy, 1157 int discard_type, unsigned int granularity) 1158 { 1159 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1160 1161 /* common policy */ 1162 dpolicy->type = discard_type; 1163 dpolicy->sync = true; 1164 dpolicy->ordered = false; 1165 dpolicy->granularity = granularity; 1166 1167 dpolicy->max_requests = dcc->max_discard_request; 1168 dpolicy->io_aware_gran = dcc->discard_io_aware_gran; 1169 dpolicy->timeout = false; 1170 1171 if (discard_type == DPOLICY_BG) { 1172 dpolicy->min_interval = dcc->min_discard_issue_time; 1173 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1174 dpolicy->max_interval = dcc->max_discard_issue_time; 1175 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE) 1176 dpolicy->io_aware = true; 1177 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE) 1178 dpolicy->io_aware = false; 1179 dpolicy->sync = false; 1180 dpolicy->ordered = true; 1181 if (utilization(sbi) > dcc->discard_urgent_util) { 1182 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1183 if (atomic_read(&dcc->discard_cmd_cnt)) 1184 dpolicy->max_interval = 1185 dcc->min_discard_issue_time; 1186 } 1187 } else if (discard_type == DPOLICY_FORCE) { 1188 dpolicy->min_interval = dcc->min_discard_issue_time; 1189 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1190 dpolicy->max_interval = dcc->max_discard_issue_time; 1191 dpolicy->io_aware = false; 1192 } else if (discard_type == DPOLICY_FSTRIM) { 1193 dpolicy->io_aware = false; 1194 } else if (discard_type == DPOLICY_UMOUNT) { 1195 dpolicy->io_aware = false; 1196 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1197 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1198 dpolicy->timeout = true; 1199 } 1200 } 1201 1202 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1203 struct block_device *bdev, block_t lstart, 1204 block_t start, block_t len); 1205 1206 #ifdef CONFIG_BLK_DEV_ZONED 1207 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi, 1208 struct discard_cmd *dc, blk_opf_t flag, 1209 struct list_head *wait_list, 1210 unsigned int *issued) 1211 { 1212 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1213 struct block_device *bdev = dc->bdev; 1214 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS); 1215 unsigned long flags; 1216 1217 trace_f2fs_issue_reset_zone(bdev, dc->di.start); 1218 1219 spin_lock_irqsave(&dc->lock, flags); 1220 dc->state = D_SUBMIT; 1221 dc->bio_ref++; 1222 spin_unlock_irqrestore(&dc->lock, flags); 1223 1224 if (issued) 1225 (*issued)++; 1226 1227 atomic_inc(&dcc->queued_discard); 1228 dc->queued++; 1229 list_move_tail(&dc->list, wait_list); 1230 1231 /* sanity check on discard range */ 1232 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len); 1233 1234 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start); 1235 bio->bi_private = dc; 1236 bio->bi_end_io = f2fs_submit_discard_endio; 1237 submit_bio(bio); 1238 1239 atomic_inc(&dcc->issued_discard); 1240 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE); 1241 } 1242 #endif 1243 1244 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1245 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1246 struct discard_policy *dpolicy, 1247 struct discard_cmd *dc, int *issued) 1248 { 1249 struct block_device *bdev = dc->bdev; 1250 unsigned int max_discard_blocks = 1251 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1252 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1253 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1254 &(dcc->fstrim_list) : &(dcc->wait_list); 1255 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1256 block_t lstart, start, len, total_len; 1257 int err = 0; 1258 1259 if (dc->state != D_PREP) 1260 return 0; 1261 1262 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1263 return 0; 1264 1265 #ifdef CONFIG_BLK_DEV_ZONED 1266 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) { 1267 int devi = f2fs_bdev_index(sbi, bdev); 1268 1269 if (devi < 0) 1270 return -EINVAL; 1271 1272 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1273 __submit_zone_reset_cmd(sbi, dc, flag, 1274 wait_list, issued); 1275 return 0; 1276 } 1277 } 1278 #endif 1279 1280 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len); 1281 1282 lstart = dc->di.lstart; 1283 start = dc->di.start; 1284 len = dc->di.len; 1285 total_len = len; 1286 1287 dc->di.len = 0; 1288 1289 while (total_len && *issued < dpolicy->max_requests && !err) { 1290 struct bio *bio = NULL; 1291 unsigned long flags; 1292 bool last = true; 1293 1294 if (len > max_discard_blocks) { 1295 len = max_discard_blocks; 1296 last = false; 1297 } 1298 1299 (*issued)++; 1300 if (*issued == dpolicy->max_requests) 1301 last = true; 1302 1303 dc->di.len += len; 1304 1305 if (time_to_inject(sbi, FAULT_DISCARD)) { 1306 err = -EIO; 1307 } else { 1308 err = __blkdev_issue_discard(bdev, 1309 SECTOR_FROM_BLOCK(start), 1310 SECTOR_FROM_BLOCK(len), 1311 GFP_NOFS, &bio); 1312 } 1313 if (err) { 1314 spin_lock_irqsave(&dc->lock, flags); 1315 if (dc->state == D_PARTIAL) 1316 dc->state = D_SUBMIT; 1317 spin_unlock_irqrestore(&dc->lock, flags); 1318 1319 break; 1320 } 1321 1322 f2fs_bug_on(sbi, !bio); 1323 1324 /* 1325 * should keep before submission to avoid D_DONE 1326 * right away 1327 */ 1328 spin_lock_irqsave(&dc->lock, flags); 1329 if (last) 1330 dc->state = D_SUBMIT; 1331 else 1332 dc->state = D_PARTIAL; 1333 dc->bio_ref++; 1334 spin_unlock_irqrestore(&dc->lock, flags); 1335 1336 atomic_inc(&dcc->queued_discard); 1337 dc->queued++; 1338 list_move_tail(&dc->list, wait_list); 1339 1340 /* sanity check on discard range */ 1341 __check_sit_bitmap(sbi, lstart, lstart + len); 1342 1343 bio->bi_private = dc; 1344 bio->bi_end_io = f2fs_submit_discard_endio; 1345 bio->bi_opf |= flag; 1346 submit_bio(bio); 1347 1348 atomic_inc(&dcc->issued_discard); 1349 1350 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE); 1351 1352 lstart += len; 1353 start += len; 1354 total_len -= len; 1355 len = total_len; 1356 } 1357 1358 if (!err && len) { 1359 dcc->undiscard_blks -= len; 1360 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1361 } 1362 return err; 1363 } 1364 1365 static void __insert_discard_cmd(struct f2fs_sb_info *sbi, 1366 struct block_device *bdev, block_t lstart, 1367 block_t start, block_t len) 1368 { 1369 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1370 struct rb_node **p = &dcc->root.rb_root.rb_node; 1371 struct rb_node *parent = NULL; 1372 struct discard_cmd *dc; 1373 bool leftmost = true; 1374 1375 /* look up rb tree to find parent node */ 1376 while (*p) { 1377 parent = *p; 1378 dc = rb_entry(parent, struct discard_cmd, rb_node); 1379 1380 if (lstart < dc->di.lstart) { 1381 p = &(*p)->rb_left; 1382 } else if (lstart >= dc->di.lstart + dc->di.len) { 1383 p = &(*p)->rb_right; 1384 leftmost = false; 1385 } else { 1386 /* Let's skip to add, if exists */ 1387 return; 1388 } 1389 } 1390 1391 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1392 1393 rb_link_node(&dc->rb_node, parent, p); 1394 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1395 } 1396 1397 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1398 struct discard_cmd *dc) 1399 { 1400 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]); 1401 } 1402 1403 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1404 struct discard_cmd *dc, block_t blkaddr) 1405 { 1406 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1407 struct discard_info di = dc->di; 1408 bool modified = false; 1409 1410 if (dc->state == D_DONE || dc->di.len == 1) { 1411 __remove_discard_cmd(sbi, dc); 1412 return; 1413 } 1414 1415 dcc->undiscard_blks -= di.len; 1416 1417 if (blkaddr > di.lstart) { 1418 dc->di.len = blkaddr - dc->di.lstart; 1419 dcc->undiscard_blks += dc->di.len; 1420 __relocate_discard_cmd(dcc, dc); 1421 modified = true; 1422 } 1423 1424 if (blkaddr < di.lstart + di.len - 1) { 1425 if (modified) { 1426 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1, 1427 di.start + blkaddr + 1 - di.lstart, 1428 di.lstart + di.len - 1 - blkaddr); 1429 } else { 1430 dc->di.lstart++; 1431 dc->di.len--; 1432 dc->di.start++; 1433 dcc->undiscard_blks += dc->di.len; 1434 __relocate_discard_cmd(dcc, dc); 1435 } 1436 } 1437 } 1438 1439 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1440 struct block_device *bdev, block_t lstart, 1441 block_t start, block_t len) 1442 { 1443 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1444 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1445 struct discard_cmd *dc; 1446 struct discard_info di = {0}; 1447 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1448 unsigned int max_discard_blocks = 1449 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1450 block_t end = lstart + len; 1451 1452 dc = __lookup_discard_cmd_ret(&dcc->root, lstart, 1453 &prev_dc, &next_dc, &insert_p, &insert_parent); 1454 if (dc) 1455 prev_dc = dc; 1456 1457 if (!prev_dc) { 1458 di.lstart = lstart; 1459 di.len = next_dc ? next_dc->di.lstart - lstart : len; 1460 di.len = min(di.len, len); 1461 di.start = start; 1462 } 1463 1464 while (1) { 1465 struct rb_node *node; 1466 bool merged = false; 1467 struct discard_cmd *tdc = NULL; 1468 1469 if (prev_dc) { 1470 di.lstart = prev_dc->di.lstart + prev_dc->di.len; 1471 if (di.lstart < lstart) 1472 di.lstart = lstart; 1473 if (di.lstart >= end) 1474 break; 1475 1476 if (!next_dc || next_dc->di.lstart > end) 1477 di.len = end - di.lstart; 1478 else 1479 di.len = next_dc->di.lstart - di.lstart; 1480 di.start = start + di.lstart - lstart; 1481 } 1482 1483 if (!di.len) 1484 goto next; 1485 1486 if (prev_dc && prev_dc->state == D_PREP && 1487 prev_dc->bdev == bdev && 1488 __is_discard_back_mergeable(&di, &prev_dc->di, 1489 max_discard_blocks)) { 1490 prev_dc->di.len += di.len; 1491 dcc->undiscard_blks += di.len; 1492 __relocate_discard_cmd(dcc, prev_dc); 1493 di = prev_dc->di; 1494 tdc = prev_dc; 1495 merged = true; 1496 } 1497 1498 if (next_dc && next_dc->state == D_PREP && 1499 next_dc->bdev == bdev && 1500 __is_discard_front_mergeable(&di, &next_dc->di, 1501 max_discard_blocks)) { 1502 next_dc->di.lstart = di.lstart; 1503 next_dc->di.len += di.len; 1504 next_dc->di.start = di.start; 1505 dcc->undiscard_blks += di.len; 1506 __relocate_discard_cmd(dcc, next_dc); 1507 if (tdc) 1508 __remove_discard_cmd(sbi, tdc); 1509 merged = true; 1510 } 1511 1512 if (!merged) 1513 __insert_discard_cmd(sbi, bdev, 1514 di.lstart, di.start, di.len); 1515 next: 1516 prev_dc = next_dc; 1517 if (!prev_dc) 1518 break; 1519 1520 node = rb_next(&prev_dc->rb_node); 1521 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1522 } 1523 } 1524 1525 #ifdef CONFIG_BLK_DEV_ZONED 1526 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi, 1527 struct block_device *bdev, block_t blkstart, block_t lblkstart, 1528 block_t blklen) 1529 { 1530 trace_f2fs_queue_reset_zone(bdev, blkstart); 1531 1532 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1533 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen); 1534 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1535 } 1536 #endif 1537 1538 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1539 struct block_device *bdev, block_t blkstart, block_t blklen) 1540 { 1541 block_t lblkstart = blkstart; 1542 1543 if (!f2fs_bdev_support_discard(bdev)) 1544 return; 1545 1546 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1547 1548 if (f2fs_is_multi_device(sbi)) { 1549 int devi = f2fs_target_device_index(sbi, blkstart); 1550 1551 blkstart -= FDEV(devi).start_blk; 1552 } 1553 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1554 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1555 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1556 } 1557 1558 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1559 struct discard_policy *dpolicy, int *issued) 1560 { 1561 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1562 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1563 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1564 struct discard_cmd *dc; 1565 struct blk_plug plug; 1566 bool io_interrupted = false; 1567 1568 mutex_lock(&dcc->cmd_lock); 1569 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos, 1570 &prev_dc, &next_dc, &insert_p, &insert_parent); 1571 if (!dc) 1572 dc = next_dc; 1573 1574 blk_start_plug(&plug); 1575 1576 while (dc) { 1577 struct rb_node *node; 1578 int err = 0; 1579 1580 if (dc->state != D_PREP) 1581 goto next; 1582 1583 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1584 io_interrupted = true; 1585 break; 1586 } 1587 1588 dcc->next_pos = dc->di.lstart + dc->di.len; 1589 err = __submit_discard_cmd(sbi, dpolicy, dc, issued); 1590 1591 if (*issued >= dpolicy->max_requests) 1592 break; 1593 next: 1594 node = rb_next(&dc->rb_node); 1595 if (err) 1596 __remove_discard_cmd(sbi, dc); 1597 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1598 } 1599 1600 blk_finish_plug(&plug); 1601 1602 if (!dc) 1603 dcc->next_pos = 0; 1604 1605 mutex_unlock(&dcc->cmd_lock); 1606 1607 if (!(*issued) && io_interrupted) 1608 *issued = -1; 1609 } 1610 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1611 struct discard_policy *dpolicy); 1612 1613 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1614 struct discard_policy *dpolicy) 1615 { 1616 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1617 struct list_head *pend_list; 1618 struct discard_cmd *dc, *tmp; 1619 struct blk_plug plug; 1620 int i, issued; 1621 bool io_interrupted = false; 1622 1623 if (dpolicy->timeout) 1624 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1625 1626 retry: 1627 issued = 0; 1628 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1629 if (dpolicy->timeout && 1630 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1631 break; 1632 1633 if (i + 1 < dpolicy->granularity) 1634 break; 1635 1636 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) { 1637 __issue_discard_cmd_orderly(sbi, dpolicy, &issued); 1638 return issued; 1639 } 1640 1641 pend_list = &dcc->pend_list[i]; 1642 1643 mutex_lock(&dcc->cmd_lock); 1644 if (list_empty(pend_list)) 1645 goto next; 1646 if (unlikely(dcc->rbtree_check)) 1647 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 1648 blk_start_plug(&plug); 1649 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1650 f2fs_bug_on(sbi, dc->state != D_PREP); 1651 1652 if (dpolicy->timeout && 1653 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1654 break; 1655 1656 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1657 !is_idle(sbi, DISCARD_TIME)) { 1658 io_interrupted = true; 1659 break; 1660 } 1661 1662 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1663 1664 if (issued >= dpolicy->max_requests) 1665 break; 1666 } 1667 blk_finish_plug(&plug); 1668 next: 1669 mutex_unlock(&dcc->cmd_lock); 1670 1671 if (issued >= dpolicy->max_requests || io_interrupted) 1672 break; 1673 } 1674 1675 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1676 __wait_all_discard_cmd(sbi, dpolicy); 1677 goto retry; 1678 } 1679 1680 if (!issued && io_interrupted) 1681 issued = -1; 1682 1683 return issued; 1684 } 1685 1686 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1687 { 1688 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1689 struct list_head *pend_list; 1690 struct discard_cmd *dc, *tmp; 1691 int i; 1692 bool dropped = false; 1693 1694 mutex_lock(&dcc->cmd_lock); 1695 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1696 pend_list = &dcc->pend_list[i]; 1697 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1698 f2fs_bug_on(sbi, dc->state != D_PREP); 1699 __remove_discard_cmd(sbi, dc); 1700 dropped = true; 1701 } 1702 } 1703 mutex_unlock(&dcc->cmd_lock); 1704 1705 return dropped; 1706 } 1707 1708 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1709 { 1710 __drop_discard_cmd(sbi); 1711 } 1712 1713 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1714 struct discard_cmd *dc) 1715 { 1716 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1717 unsigned int len = 0; 1718 1719 wait_for_completion_io(&dc->wait); 1720 mutex_lock(&dcc->cmd_lock); 1721 f2fs_bug_on(sbi, dc->state != D_DONE); 1722 dc->ref--; 1723 if (!dc->ref) { 1724 if (!dc->error) 1725 len = dc->di.len; 1726 __remove_discard_cmd(sbi, dc); 1727 } 1728 mutex_unlock(&dcc->cmd_lock); 1729 1730 return len; 1731 } 1732 1733 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1734 struct discard_policy *dpolicy, 1735 block_t start, block_t end) 1736 { 1737 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1738 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1739 &(dcc->fstrim_list) : &(dcc->wait_list); 1740 struct discard_cmd *dc = NULL, *iter, *tmp; 1741 unsigned int trimmed = 0; 1742 1743 next: 1744 dc = NULL; 1745 1746 mutex_lock(&dcc->cmd_lock); 1747 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1748 if (iter->di.lstart + iter->di.len <= start || 1749 end <= iter->di.lstart) 1750 continue; 1751 if (iter->di.len < dpolicy->granularity) 1752 continue; 1753 if (iter->state == D_DONE && !iter->ref) { 1754 wait_for_completion_io(&iter->wait); 1755 if (!iter->error) 1756 trimmed += iter->di.len; 1757 __remove_discard_cmd(sbi, iter); 1758 } else { 1759 iter->ref++; 1760 dc = iter; 1761 break; 1762 } 1763 } 1764 mutex_unlock(&dcc->cmd_lock); 1765 1766 if (dc) { 1767 trimmed += __wait_one_discard_bio(sbi, dc); 1768 goto next; 1769 } 1770 1771 return trimmed; 1772 } 1773 1774 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1775 struct discard_policy *dpolicy) 1776 { 1777 struct discard_policy dp; 1778 unsigned int discard_blks; 1779 1780 if (dpolicy) 1781 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1782 1783 /* wait all */ 1784 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY); 1785 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1786 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY); 1787 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1788 1789 return discard_blks; 1790 } 1791 1792 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1793 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1794 { 1795 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1796 struct discard_cmd *dc; 1797 bool need_wait = false; 1798 1799 mutex_lock(&dcc->cmd_lock); 1800 dc = __lookup_discard_cmd(sbi, blkaddr); 1801 #ifdef CONFIG_BLK_DEV_ZONED 1802 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) { 1803 int devi = f2fs_bdev_index(sbi, dc->bdev); 1804 1805 if (devi < 0) { 1806 mutex_unlock(&dcc->cmd_lock); 1807 return; 1808 } 1809 1810 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1811 /* force submit zone reset */ 1812 if (dc->state == D_PREP) 1813 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC, 1814 &dcc->wait_list, NULL); 1815 dc->ref++; 1816 mutex_unlock(&dcc->cmd_lock); 1817 /* wait zone reset */ 1818 __wait_one_discard_bio(sbi, dc); 1819 return; 1820 } 1821 } 1822 #endif 1823 if (dc) { 1824 if (dc->state == D_PREP) { 1825 __punch_discard_cmd(sbi, dc, blkaddr); 1826 } else { 1827 dc->ref++; 1828 need_wait = true; 1829 } 1830 } 1831 mutex_unlock(&dcc->cmd_lock); 1832 1833 if (need_wait) 1834 __wait_one_discard_bio(sbi, dc); 1835 } 1836 1837 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1838 { 1839 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1840 1841 if (dcc && dcc->f2fs_issue_discard) { 1842 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1843 1844 dcc->f2fs_issue_discard = NULL; 1845 kthread_stop(discard_thread); 1846 } 1847 } 1848 1849 /** 1850 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT 1851 * @sbi: the f2fs_sb_info data for discard cmd to issue 1852 * 1853 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped 1854 * 1855 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false. 1856 */ 1857 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1858 { 1859 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1860 struct discard_policy dpolicy; 1861 bool dropped; 1862 1863 if (!atomic_read(&dcc->discard_cmd_cnt)) 1864 return true; 1865 1866 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1867 dcc->discard_granularity); 1868 __issue_discard_cmd(sbi, &dpolicy); 1869 dropped = __drop_discard_cmd(sbi); 1870 1871 /* just to make sure there is no pending discard commands */ 1872 __wait_all_discard_cmd(sbi, NULL); 1873 1874 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1875 return !dropped; 1876 } 1877 1878 static int issue_discard_thread(void *data) 1879 { 1880 struct f2fs_sb_info *sbi = data; 1881 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1882 wait_queue_head_t *q = &dcc->discard_wait_queue; 1883 struct discard_policy dpolicy; 1884 unsigned int wait_ms = dcc->min_discard_issue_time; 1885 int issued; 1886 1887 set_freezable(); 1888 1889 do { 1890 wait_event_freezable_timeout(*q, 1891 kthread_should_stop() || dcc->discard_wake, 1892 msecs_to_jiffies(wait_ms)); 1893 1894 if (sbi->gc_mode == GC_URGENT_HIGH || 1895 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1896 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1897 MIN_DISCARD_GRANULARITY); 1898 else 1899 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1900 dcc->discard_granularity); 1901 1902 if (dcc->discard_wake) 1903 dcc->discard_wake = false; 1904 1905 /* clean up pending candidates before going to sleep */ 1906 if (atomic_read(&dcc->queued_discard)) 1907 __wait_all_discard_cmd(sbi, NULL); 1908 1909 if (f2fs_readonly(sbi->sb)) 1910 continue; 1911 if (kthread_should_stop()) 1912 return 0; 1913 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1914 !atomic_read(&dcc->discard_cmd_cnt)) { 1915 wait_ms = dpolicy.max_interval; 1916 continue; 1917 } 1918 1919 sb_start_intwrite(sbi->sb); 1920 1921 issued = __issue_discard_cmd(sbi, &dpolicy); 1922 if (issued > 0) { 1923 __wait_all_discard_cmd(sbi, &dpolicy); 1924 wait_ms = dpolicy.min_interval; 1925 } else if (issued == -1) { 1926 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1927 if (!wait_ms) 1928 wait_ms = dpolicy.mid_interval; 1929 } else { 1930 wait_ms = dpolicy.max_interval; 1931 } 1932 if (!atomic_read(&dcc->discard_cmd_cnt)) 1933 wait_ms = dpolicy.max_interval; 1934 1935 sb_end_intwrite(sbi->sb); 1936 1937 } while (!kthread_should_stop()); 1938 return 0; 1939 } 1940 1941 #ifdef CONFIG_BLK_DEV_ZONED 1942 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1943 struct block_device *bdev, block_t blkstart, block_t blklen) 1944 { 1945 sector_t sector, nr_sects; 1946 block_t lblkstart = blkstart; 1947 int devi = 0; 1948 u64 remainder = 0; 1949 1950 if (f2fs_is_multi_device(sbi)) { 1951 devi = f2fs_target_device_index(sbi, blkstart); 1952 if (blkstart < FDEV(devi).start_blk || 1953 blkstart > FDEV(devi).end_blk) { 1954 f2fs_err(sbi, "Invalid block %x", blkstart); 1955 return -EIO; 1956 } 1957 blkstart -= FDEV(devi).start_blk; 1958 } 1959 1960 /* For sequential zones, reset the zone write pointer */ 1961 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1962 sector = SECTOR_FROM_BLOCK(blkstart); 1963 nr_sects = SECTOR_FROM_BLOCK(blklen); 1964 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder); 1965 1966 if (remainder || nr_sects != bdev_zone_sectors(bdev)) { 1967 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1968 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1969 blkstart, blklen); 1970 return -EIO; 1971 } 1972 1973 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) { 1974 trace_f2fs_issue_reset_zone(bdev, blkstart); 1975 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1976 sector, nr_sects, GFP_NOFS); 1977 } 1978 1979 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen); 1980 return 0; 1981 } 1982 1983 /* For conventional zones, use regular discard if supported */ 1984 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1985 return 0; 1986 } 1987 #endif 1988 1989 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1990 struct block_device *bdev, block_t blkstart, block_t blklen) 1991 { 1992 #ifdef CONFIG_BLK_DEV_ZONED 1993 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1994 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1995 #endif 1996 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1997 return 0; 1998 } 1999 2000 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 2001 block_t blkstart, block_t blklen) 2002 { 2003 sector_t start = blkstart, len = 0; 2004 struct block_device *bdev; 2005 struct seg_entry *se; 2006 unsigned int offset; 2007 block_t i; 2008 int err = 0; 2009 2010 bdev = f2fs_target_device(sbi, blkstart, NULL); 2011 2012 for (i = blkstart; i < blkstart + blklen; i++, len++) { 2013 if (i != start) { 2014 struct block_device *bdev2 = 2015 f2fs_target_device(sbi, i, NULL); 2016 2017 if (bdev2 != bdev) { 2018 err = __issue_discard_async(sbi, bdev, 2019 start, len); 2020 if (err) 2021 return err; 2022 bdev = bdev2; 2023 start = i; 2024 len = 0; 2025 } 2026 } 2027 2028 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 2029 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 2030 2031 if (f2fs_block_unit_discard(sbi) && 2032 !f2fs_test_and_set_bit(offset, se->discard_map)) 2033 sbi->discard_blks--; 2034 } 2035 2036 if (len) 2037 err = __issue_discard_async(sbi, bdev, start, len); 2038 return err; 2039 } 2040 2041 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 2042 bool check_only) 2043 { 2044 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2045 int max_blocks = sbi->blocks_per_seg; 2046 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 2047 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2048 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2049 unsigned long *discard_map = (unsigned long *)se->discard_map; 2050 unsigned long *dmap = SIT_I(sbi)->tmp_map; 2051 unsigned int start = 0, end = -1; 2052 bool force = (cpc->reason & CP_DISCARD); 2053 struct discard_entry *de = NULL; 2054 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 2055 int i; 2056 2057 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) || 2058 !f2fs_block_unit_discard(sbi)) 2059 return false; 2060 2061 if (!force) { 2062 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 2063 SM_I(sbi)->dcc_info->nr_discards >= 2064 SM_I(sbi)->dcc_info->max_discards) 2065 return false; 2066 } 2067 2068 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 2069 for (i = 0; i < entries; i++) 2070 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 2071 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 2072 2073 while (force || SM_I(sbi)->dcc_info->nr_discards <= 2074 SM_I(sbi)->dcc_info->max_discards) { 2075 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 2076 if (start >= max_blocks) 2077 break; 2078 2079 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 2080 if (force && start && end != max_blocks 2081 && (end - start) < cpc->trim_minlen) 2082 continue; 2083 2084 if (check_only) 2085 return true; 2086 2087 if (!de) { 2088 de = f2fs_kmem_cache_alloc(discard_entry_slab, 2089 GFP_F2FS_ZERO, true, NULL); 2090 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 2091 list_add_tail(&de->list, head); 2092 } 2093 2094 for (i = start; i < end; i++) 2095 __set_bit_le(i, (void *)de->discard_map); 2096 2097 SM_I(sbi)->dcc_info->nr_discards += end - start; 2098 } 2099 return false; 2100 } 2101 2102 static void release_discard_addr(struct discard_entry *entry) 2103 { 2104 list_del(&entry->list); 2105 kmem_cache_free(discard_entry_slab, entry); 2106 } 2107 2108 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2109 { 2110 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2111 struct discard_entry *entry, *this; 2112 2113 /* drop caches */ 2114 list_for_each_entry_safe(entry, this, head, list) 2115 release_discard_addr(entry); 2116 } 2117 2118 /* 2119 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2120 */ 2121 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2122 { 2123 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2124 unsigned int segno; 2125 2126 mutex_lock(&dirty_i->seglist_lock); 2127 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2128 __set_test_and_free(sbi, segno, false); 2129 mutex_unlock(&dirty_i->seglist_lock); 2130 } 2131 2132 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2133 struct cp_control *cpc) 2134 { 2135 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2136 struct list_head *head = &dcc->entry_list; 2137 struct discard_entry *entry, *this; 2138 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2139 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2140 unsigned int start = 0, end = -1; 2141 unsigned int secno, start_segno; 2142 bool force = (cpc->reason & CP_DISCARD); 2143 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2144 DISCARD_UNIT_SECTION; 2145 2146 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2147 section_alignment = true; 2148 2149 mutex_lock(&dirty_i->seglist_lock); 2150 2151 while (1) { 2152 int i; 2153 2154 if (section_alignment && end != -1) 2155 end--; 2156 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2157 if (start >= MAIN_SEGS(sbi)) 2158 break; 2159 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2160 start + 1); 2161 2162 if (section_alignment) { 2163 start = rounddown(start, sbi->segs_per_sec); 2164 end = roundup(end, sbi->segs_per_sec); 2165 } 2166 2167 for (i = start; i < end; i++) { 2168 if (test_and_clear_bit(i, prefree_map)) 2169 dirty_i->nr_dirty[PRE]--; 2170 } 2171 2172 if (!f2fs_realtime_discard_enable(sbi)) 2173 continue; 2174 2175 if (force && start >= cpc->trim_start && 2176 (end - 1) <= cpc->trim_end) 2177 continue; 2178 2179 /* Should cover 2MB zoned device for zone-based reset */ 2180 if (!f2fs_sb_has_blkzoned(sbi) && 2181 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) { 2182 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2183 (end - start) << sbi->log_blocks_per_seg); 2184 continue; 2185 } 2186 next: 2187 secno = GET_SEC_FROM_SEG(sbi, start); 2188 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2189 if (!IS_CURSEC(sbi, secno) && 2190 !get_valid_blocks(sbi, start, true)) 2191 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2192 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2193 2194 start = start_segno + sbi->segs_per_sec; 2195 if (start < end) 2196 goto next; 2197 else 2198 end = start - 1; 2199 } 2200 mutex_unlock(&dirty_i->seglist_lock); 2201 2202 if (!f2fs_block_unit_discard(sbi)) 2203 goto wakeup; 2204 2205 /* send small discards */ 2206 list_for_each_entry_safe(entry, this, head, list) { 2207 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2208 bool is_valid = test_bit_le(0, entry->discard_map); 2209 2210 find_next: 2211 if (is_valid) { 2212 next_pos = find_next_zero_bit_le(entry->discard_map, 2213 sbi->blocks_per_seg, cur_pos); 2214 len = next_pos - cur_pos; 2215 2216 if (f2fs_sb_has_blkzoned(sbi) || 2217 (force && len < cpc->trim_minlen)) 2218 goto skip; 2219 2220 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2221 len); 2222 total_len += len; 2223 } else { 2224 next_pos = find_next_bit_le(entry->discard_map, 2225 sbi->blocks_per_seg, cur_pos); 2226 } 2227 skip: 2228 cur_pos = next_pos; 2229 is_valid = !is_valid; 2230 2231 if (cur_pos < sbi->blocks_per_seg) 2232 goto find_next; 2233 2234 release_discard_addr(entry); 2235 dcc->nr_discards -= total_len; 2236 } 2237 2238 wakeup: 2239 wake_up_discard_thread(sbi, false); 2240 } 2241 2242 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2243 { 2244 dev_t dev = sbi->sb->s_bdev->bd_dev; 2245 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2246 int err = 0; 2247 2248 if (!f2fs_realtime_discard_enable(sbi)) 2249 return 0; 2250 2251 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2252 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2253 if (IS_ERR(dcc->f2fs_issue_discard)) { 2254 err = PTR_ERR(dcc->f2fs_issue_discard); 2255 dcc->f2fs_issue_discard = NULL; 2256 } 2257 2258 return err; 2259 } 2260 2261 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2262 { 2263 struct discard_cmd_control *dcc; 2264 int err = 0, i; 2265 2266 if (SM_I(sbi)->dcc_info) { 2267 dcc = SM_I(sbi)->dcc_info; 2268 goto init_thread; 2269 } 2270 2271 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2272 if (!dcc) 2273 return -ENOMEM; 2274 2275 dcc->discard_io_aware_gran = MAX_PLIST_NUM; 2276 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2277 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2278 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE; 2279 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2280 dcc->discard_granularity = sbi->blocks_per_seg; 2281 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2282 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2283 2284 INIT_LIST_HEAD(&dcc->entry_list); 2285 for (i = 0; i < MAX_PLIST_NUM; i++) 2286 INIT_LIST_HEAD(&dcc->pend_list[i]); 2287 INIT_LIST_HEAD(&dcc->wait_list); 2288 INIT_LIST_HEAD(&dcc->fstrim_list); 2289 mutex_init(&dcc->cmd_lock); 2290 atomic_set(&dcc->issued_discard, 0); 2291 atomic_set(&dcc->queued_discard, 0); 2292 atomic_set(&dcc->discard_cmd_cnt, 0); 2293 dcc->nr_discards = 0; 2294 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2295 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2296 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2297 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2298 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2299 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2300 dcc->undiscard_blks = 0; 2301 dcc->next_pos = 0; 2302 dcc->root = RB_ROOT_CACHED; 2303 dcc->rbtree_check = false; 2304 2305 init_waitqueue_head(&dcc->discard_wait_queue); 2306 SM_I(sbi)->dcc_info = dcc; 2307 init_thread: 2308 err = f2fs_start_discard_thread(sbi); 2309 if (err) { 2310 kfree(dcc); 2311 SM_I(sbi)->dcc_info = NULL; 2312 } 2313 2314 return err; 2315 } 2316 2317 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2318 { 2319 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2320 2321 if (!dcc) 2322 return; 2323 2324 f2fs_stop_discard_thread(sbi); 2325 2326 /* 2327 * Recovery can cache discard commands, so in error path of 2328 * fill_super(), it needs to give a chance to handle them. 2329 */ 2330 f2fs_issue_discard_timeout(sbi); 2331 2332 kfree(dcc); 2333 SM_I(sbi)->dcc_info = NULL; 2334 } 2335 2336 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2337 { 2338 struct sit_info *sit_i = SIT_I(sbi); 2339 2340 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2341 sit_i->dirty_sentries++; 2342 return false; 2343 } 2344 2345 return true; 2346 } 2347 2348 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2349 unsigned int segno, int modified) 2350 { 2351 struct seg_entry *se = get_seg_entry(sbi, segno); 2352 2353 se->type = type; 2354 if (modified) 2355 __mark_sit_entry_dirty(sbi, segno); 2356 } 2357 2358 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2359 block_t blkaddr) 2360 { 2361 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2362 2363 if (segno == NULL_SEGNO) 2364 return 0; 2365 return get_seg_entry(sbi, segno)->mtime; 2366 } 2367 2368 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2369 unsigned long long old_mtime) 2370 { 2371 struct seg_entry *se; 2372 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2373 unsigned long long ctime = get_mtime(sbi, false); 2374 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2375 2376 if (segno == NULL_SEGNO) 2377 return; 2378 2379 se = get_seg_entry(sbi, segno); 2380 2381 if (!se->mtime) 2382 se->mtime = mtime; 2383 else 2384 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2385 se->valid_blocks + 1); 2386 2387 if (ctime > SIT_I(sbi)->max_mtime) 2388 SIT_I(sbi)->max_mtime = ctime; 2389 } 2390 2391 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2392 { 2393 struct seg_entry *se; 2394 unsigned int segno, offset; 2395 long int new_vblocks; 2396 bool exist; 2397 #ifdef CONFIG_F2FS_CHECK_FS 2398 bool mir_exist; 2399 #endif 2400 2401 segno = GET_SEGNO(sbi, blkaddr); 2402 2403 se = get_seg_entry(sbi, segno); 2404 new_vblocks = se->valid_blocks + del; 2405 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2406 2407 f2fs_bug_on(sbi, (new_vblocks < 0 || 2408 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2409 2410 se->valid_blocks = new_vblocks; 2411 2412 /* Update valid block bitmap */ 2413 if (del > 0) { 2414 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2415 #ifdef CONFIG_F2FS_CHECK_FS 2416 mir_exist = f2fs_test_and_set_bit(offset, 2417 se->cur_valid_map_mir); 2418 if (unlikely(exist != mir_exist)) { 2419 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2420 blkaddr, exist); 2421 f2fs_bug_on(sbi, 1); 2422 } 2423 #endif 2424 if (unlikely(exist)) { 2425 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2426 blkaddr); 2427 f2fs_bug_on(sbi, 1); 2428 se->valid_blocks--; 2429 del = 0; 2430 } 2431 2432 if (f2fs_block_unit_discard(sbi) && 2433 !f2fs_test_and_set_bit(offset, se->discard_map)) 2434 sbi->discard_blks--; 2435 2436 /* 2437 * SSR should never reuse block which is checkpointed 2438 * or newly invalidated. 2439 */ 2440 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2441 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2442 se->ckpt_valid_blocks++; 2443 } 2444 } else { 2445 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2446 #ifdef CONFIG_F2FS_CHECK_FS 2447 mir_exist = f2fs_test_and_clear_bit(offset, 2448 se->cur_valid_map_mir); 2449 if (unlikely(exist != mir_exist)) { 2450 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2451 blkaddr, exist); 2452 f2fs_bug_on(sbi, 1); 2453 } 2454 #endif 2455 if (unlikely(!exist)) { 2456 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2457 blkaddr); 2458 f2fs_bug_on(sbi, 1); 2459 se->valid_blocks++; 2460 del = 0; 2461 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2462 /* 2463 * If checkpoints are off, we must not reuse data that 2464 * was used in the previous checkpoint. If it was used 2465 * before, we must track that to know how much space we 2466 * really have. 2467 */ 2468 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2469 spin_lock(&sbi->stat_lock); 2470 sbi->unusable_block_count++; 2471 spin_unlock(&sbi->stat_lock); 2472 } 2473 } 2474 2475 if (f2fs_block_unit_discard(sbi) && 2476 f2fs_test_and_clear_bit(offset, se->discard_map)) 2477 sbi->discard_blks++; 2478 } 2479 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2480 se->ckpt_valid_blocks += del; 2481 2482 __mark_sit_entry_dirty(sbi, segno); 2483 2484 /* update total number of valid blocks to be written in ckpt area */ 2485 SIT_I(sbi)->written_valid_blocks += del; 2486 2487 if (__is_large_section(sbi)) 2488 get_sec_entry(sbi, segno)->valid_blocks += del; 2489 } 2490 2491 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2492 { 2493 unsigned int segno = GET_SEGNO(sbi, addr); 2494 struct sit_info *sit_i = SIT_I(sbi); 2495 2496 f2fs_bug_on(sbi, addr == NULL_ADDR); 2497 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2498 return; 2499 2500 f2fs_invalidate_internal_cache(sbi, addr); 2501 2502 /* add it into sit main buffer */ 2503 down_write(&sit_i->sentry_lock); 2504 2505 update_segment_mtime(sbi, addr, 0); 2506 update_sit_entry(sbi, addr, -1); 2507 2508 /* add it into dirty seglist */ 2509 locate_dirty_segment(sbi, segno); 2510 2511 up_write(&sit_i->sentry_lock); 2512 } 2513 2514 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2515 { 2516 struct sit_info *sit_i = SIT_I(sbi); 2517 unsigned int segno, offset; 2518 struct seg_entry *se; 2519 bool is_cp = false; 2520 2521 if (!__is_valid_data_blkaddr(blkaddr)) 2522 return true; 2523 2524 down_read(&sit_i->sentry_lock); 2525 2526 segno = GET_SEGNO(sbi, blkaddr); 2527 se = get_seg_entry(sbi, segno); 2528 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2529 2530 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2531 is_cp = true; 2532 2533 up_read(&sit_i->sentry_lock); 2534 2535 return is_cp; 2536 } 2537 2538 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type) 2539 { 2540 struct curseg_info *curseg = CURSEG_I(sbi, type); 2541 2542 if (sbi->ckpt->alloc_type[type] == SSR) 2543 return sbi->blocks_per_seg; 2544 return curseg->next_blkoff; 2545 } 2546 2547 /* 2548 * Calculate the number of current summary pages for writing 2549 */ 2550 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2551 { 2552 int valid_sum_count = 0; 2553 int i, sum_in_page; 2554 2555 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2556 if (sbi->ckpt->alloc_type[i] != SSR && for_ra) 2557 valid_sum_count += 2558 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2559 else 2560 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i); 2561 } 2562 2563 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2564 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2565 if (valid_sum_count <= sum_in_page) 2566 return 1; 2567 else if ((valid_sum_count - sum_in_page) <= 2568 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2569 return 2; 2570 return 3; 2571 } 2572 2573 /* 2574 * Caller should put this summary page 2575 */ 2576 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2577 { 2578 if (unlikely(f2fs_cp_error(sbi))) 2579 return ERR_PTR(-EIO); 2580 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2581 } 2582 2583 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2584 void *src, block_t blk_addr) 2585 { 2586 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2587 2588 memcpy(page_address(page), src, PAGE_SIZE); 2589 set_page_dirty(page); 2590 f2fs_put_page(page, 1); 2591 } 2592 2593 static void write_sum_page(struct f2fs_sb_info *sbi, 2594 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2595 { 2596 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2597 } 2598 2599 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2600 int type, block_t blk_addr) 2601 { 2602 struct curseg_info *curseg = CURSEG_I(sbi, type); 2603 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2604 struct f2fs_summary_block *src = curseg->sum_blk; 2605 struct f2fs_summary_block *dst; 2606 2607 dst = (struct f2fs_summary_block *)page_address(page); 2608 memset(dst, 0, PAGE_SIZE); 2609 2610 mutex_lock(&curseg->curseg_mutex); 2611 2612 down_read(&curseg->journal_rwsem); 2613 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2614 up_read(&curseg->journal_rwsem); 2615 2616 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2617 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2618 2619 mutex_unlock(&curseg->curseg_mutex); 2620 2621 set_page_dirty(page); 2622 f2fs_put_page(page, 1); 2623 } 2624 2625 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2626 struct curseg_info *curseg, int type) 2627 { 2628 unsigned int segno = curseg->segno + 1; 2629 struct free_segmap_info *free_i = FREE_I(sbi); 2630 2631 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2632 return !test_bit(segno, free_i->free_segmap); 2633 return 0; 2634 } 2635 2636 /* 2637 * Find a new segment from the free segments bitmap to right order 2638 * This function should be returned with success, otherwise BUG 2639 */ 2640 static void get_new_segment(struct f2fs_sb_info *sbi, 2641 unsigned int *newseg, bool new_sec, int dir) 2642 { 2643 struct free_segmap_info *free_i = FREE_I(sbi); 2644 unsigned int segno, secno, zoneno; 2645 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2646 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2647 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2648 unsigned int left_start = hint; 2649 bool init = true; 2650 int go_left = 0; 2651 int i; 2652 2653 spin_lock(&free_i->segmap_lock); 2654 2655 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2656 segno = find_next_zero_bit(free_i->free_segmap, 2657 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2658 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2659 goto got_it; 2660 } 2661 find_other_zone: 2662 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2663 if (secno >= MAIN_SECS(sbi)) { 2664 if (dir == ALLOC_RIGHT) { 2665 secno = find_first_zero_bit(free_i->free_secmap, 2666 MAIN_SECS(sbi)); 2667 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2668 } else { 2669 go_left = 1; 2670 left_start = hint - 1; 2671 } 2672 } 2673 if (go_left == 0) 2674 goto skip_left; 2675 2676 while (test_bit(left_start, free_i->free_secmap)) { 2677 if (left_start > 0) { 2678 left_start--; 2679 continue; 2680 } 2681 left_start = find_first_zero_bit(free_i->free_secmap, 2682 MAIN_SECS(sbi)); 2683 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2684 break; 2685 } 2686 secno = left_start; 2687 skip_left: 2688 segno = GET_SEG_FROM_SEC(sbi, secno); 2689 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2690 2691 /* give up on finding another zone */ 2692 if (!init) 2693 goto got_it; 2694 if (sbi->secs_per_zone == 1) 2695 goto got_it; 2696 if (zoneno == old_zoneno) 2697 goto got_it; 2698 if (dir == ALLOC_LEFT) { 2699 if (!go_left && zoneno + 1 >= total_zones) 2700 goto got_it; 2701 if (go_left && zoneno == 0) 2702 goto got_it; 2703 } 2704 for (i = 0; i < NR_CURSEG_TYPE; i++) 2705 if (CURSEG_I(sbi, i)->zone == zoneno) 2706 break; 2707 2708 if (i < NR_CURSEG_TYPE) { 2709 /* zone is in user, try another */ 2710 if (go_left) 2711 hint = zoneno * sbi->secs_per_zone - 1; 2712 else if (zoneno + 1 >= total_zones) 2713 hint = 0; 2714 else 2715 hint = (zoneno + 1) * sbi->secs_per_zone; 2716 init = false; 2717 goto find_other_zone; 2718 } 2719 got_it: 2720 /* set it as dirty segment in free segmap */ 2721 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2722 __set_inuse(sbi, segno); 2723 *newseg = segno; 2724 spin_unlock(&free_i->segmap_lock); 2725 } 2726 2727 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2728 { 2729 struct curseg_info *curseg = CURSEG_I(sbi, type); 2730 struct summary_footer *sum_footer; 2731 unsigned short seg_type = curseg->seg_type; 2732 2733 curseg->inited = true; 2734 curseg->segno = curseg->next_segno; 2735 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2736 curseg->next_blkoff = 0; 2737 curseg->next_segno = NULL_SEGNO; 2738 2739 sum_footer = &(curseg->sum_blk->footer); 2740 memset(sum_footer, 0, sizeof(struct summary_footer)); 2741 2742 sanity_check_seg_type(sbi, seg_type); 2743 2744 if (IS_DATASEG(seg_type)) 2745 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2746 if (IS_NODESEG(seg_type)) 2747 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2748 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2749 } 2750 2751 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2752 { 2753 struct curseg_info *curseg = CURSEG_I(sbi, type); 2754 unsigned short seg_type = curseg->seg_type; 2755 2756 sanity_check_seg_type(sbi, seg_type); 2757 if (f2fs_need_rand_seg(sbi)) 2758 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec); 2759 2760 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2761 if (__is_large_section(sbi)) 2762 return curseg->segno; 2763 2764 /* inmem log may not locate on any segment after mount */ 2765 if (!curseg->inited) 2766 return 0; 2767 2768 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2769 return 0; 2770 2771 if (test_opt(sbi, NOHEAP) && 2772 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2773 return 0; 2774 2775 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2776 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2777 2778 /* find segments from 0 to reuse freed segments */ 2779 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2780 return 0; 2781 2782 return curseg->segno; 2783 } 2784 2785 /* 2786 * Allocate a current working segment. 2787 * This function always allocates a free segment in LFS manner. 2788 */ 2789 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2790 { 2791 struct curseg_info *curseg = CURSEG_I(sbi, type); 2792 unsigned short seg_type = curseg->seg_type; 2793 unsigned int segno = curseg->segno; 2794 int dir = ALLOC_LEFT; 2795 2796 if (curseg->inited) 2797 write_sum_page(sbi, curseg->sum_blk, 2798 GET_SUM_BLOCK(sbi, segno)); 2799 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2800 dir = ALLOC_RIGHT; 2801 2802 if (test_opt(sbi, NOHEAP)) 2803 dir = ALLOC_RIGHT; 2804 2805 segno = __get_next_segno(sbi, type); 2806 get_new_segment(sbi, &segno, new_sec, dir); 2807 curseg->next_segno = segno; 2808 reset_curseg(sbi, type, 1); 2809 curseg->alloc_type = LFS; 2810 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2811 curseg->fragment_remained_chunk = 2812 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2813 } 2814 2815 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2816 int segno, block_t start) 2817 { 2818 struct seg_entry *se = get_seg_entry(sbi, segno); 2819 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2820 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2821 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2822 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2823 int i; 2824 2825 for (i = 0; i < entries; i++) 2826 target_map[i] = ckpt_map[i] | cur_map[i]; 2827 2828 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2829 } 2830 2831 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi, 2832 struct curseg_info *seg) 2833 { 2834 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); 2835 } 2836 2837 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2838 { 2839 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2840 } 2841 2842 /* 2843 * This function always allocates a used segment(from dirty seglist) by SSR 2844 * manner, so it should recover the existing segment information of valid blocks 2845 */ 2846 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2847 { 2848 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2849 struct curseg_info *curseg = CURSEG_I(sbi, type); 2850 unsigned int new_segno = curseg->next_segno; 2851 struct f2fs_summary_block *sum_node; 2852 struct page *sum_page; 2853 2854 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2855 2856 __set_test_and_inuse(sbi, new_segno); 2857 2858 mutex_lock(&dirty_i->seglist_lock); 2859 __remove_dirty_segment(sbi, new_segno, PRE); 2860 __remove_dirty_segment(sbi, new_segno, DIRTY); 2861 mutex_unlock(&dirty_i->seglist_lock); 2862 2863 reset_curseg(sbi, type, 1); 2864 curseg->alloc_type = SSR; 2865 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2866 2867 sum_page = f2fs_get_sum_page(sbi, new_segno); 2868 if (IS_ERR(sum_page)) { 2869 /* GC won't be able to use stale summary pages by cp_error */ 2870 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2871 return; 2872 } 2873 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2874 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2875 f2fs_put_page(sum_page, 1); 2876 } 2877 2878 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2879 int alloc_mode, unsigned long long age); 2880 2881 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2882 int target_type, int alloc_mode, 2883 unsigned long long age) 2884 { 2885 struct curseg_info *curseg = CURSEG_I(sbi, type); 2886 2887 curseg->seg_type = target_type; 2888 2889 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2890 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2891 2892 curseg->seg_type = se->type; 2893 change_curseg(sbi, type); 2894 } else { 2895 /* allocate cold segment by default */ 2896 curseg->seg_type = CURSEG_COLD_DATA; 2897 new_curseg(sbi, type, true); 2898 } 2899 stat_inc_seg_type(sbi, curseg); 2900 } 2901 2902 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2903 { 2904 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2905 2906 if (!sbi->am.atgc_enabled) 2907 return; 2908 2909 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2910 2911 mutex_lock(&curseg->curseg_mutex); 2912 down_write(&SIT_I(sbi)->sentry_lock); 2913 2914 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2915 2916 up_write(&SIT_I(sbi)->sentry_lock); 2917 mutex_unlock(&curseg->curseg_mutex); 2918 2919 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2920 2921 } 2922 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2923 { 2924 __f2fs_init_atgc_curseg(sbi); 2925 } 2926 2927 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2928 { 2929 struct curseg_info *curseg = CURSEG_I(sbi, type); 2930 2931 mutex_lock(&curseg->curseg_mutex); 2932 if (!curseg->inited) 2933 goto out; 2934 2935 if (get_valid_blocks(sbi, curseg->segno, false)) { 2936 write_sum_page(sbi, curseg->sum_blk, 2937 GET_SUM_BLOCK(sbi, curseg->segno)); 2938 } else { 2939 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2940 __set_test_and_free(sbi, curseg->segno, true); 2941 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2942 } 2943 out: 2944 mutex_unlock(&curseg->curseg_mutex); 2945 } 2946 2947 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2948 { 2949 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2950 2951 if (sbi->am.atgc_enabled) 2952 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2953 } 2954 2955 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2956 { 2957 struct curseg_info *curseg = CURSEG_I(sbi, type); 2958 2959 mutex_lock(&curseg->curseg_mutex); 2960 if (!curseg->inited) 2961 goto out; 2962 if (get_valid_blocks(sbi, curseg->segno, false)) 2963 goto out; 2964 2965 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2966 __set_test_and_inuse(sbi, curseg->segno); 2967 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2968 out: 2969 mutex_unlock(&curseg->curseg_mutex); 2970 } 2971 2972 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2973 { 2974 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2975 2976 if (sbi->am.atgc_enabled) 2977 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2978 } 2979 2980 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2981 int alloc_mode, unsigned long long age) 2982 { 2983 struct curseg_info *curseg = CURSEG_I(sbi, type); 2984 unsigned segno = NULL_SEGNO; 2985 unsigned short seg_type = curseg->seg_type; 2986 int i, cnt; 2987 bool reversed = false; 2988 2989 sanity_check_seg_type(sbi, seg_type); 2990 2991 /* f2fs_need_SSR() already forces to do this */ 2992 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2993 curseg->next_segno = segno; 2994 return 1; 2995 } 2996 2997 /* For node segments, let's do SSR more intensively */ 2998 if (IS_NODESEG(seg_type)) { 2999 if (seg_type >= CURSEG_WARM_NODE) { 3000 reversed = true; 3001 i = CURSEG_COLD_NODE; 3002 } else { 3003 i = CURSEG_HOT_NODE; 3004 } 3005 cnt = NR_CURSEG_NODE_TYPE; 3006 } else { 3007 if (seg_type >= CURSEG_WARM_DATA) { 3008 reversed = true; 3009 i = CURSEG_COLD_DATA; 3010 } else { 3011 i = CURSEG_HOT_DATA; 3012 } 3013 cnt = NR_CURSEG_DATA_TYPE; 3014 } 3015 3016 for (; cnt-- > 0; reversed ? i-- : i++) { 3017 if (i == seg_type) 3018 continue; 3019 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 3020 curseg->next_segno = segno; 3021 return 1; 3022 } 3023 } 3024 3025 /* find valid_blocks=0 in dirty list */ 3026 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 3027 segno = get_free_segment(sbi); 3028 if (segno != NULL_SEGNO) { 3029 curseg->next_segno = segno; 3030 return 1; 3031 } 3032 } 3033 return 0; 3034 } 3035 3036 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 3037 { 3038 struct curseg_info *curseg = CURSEG_I(sbi, type); 3039 3040 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 3041 curseg->seg_type == CURSEG_WARM_NODE) 3042 return true; 3043 if (curseg->alloc_type == LFS && 3044 is_next_segment_free(sbi, curseg, type) && 3045 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3046 return true; 3047 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 3048 return true; 3049 return false; 3050 } 3051 3052 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3053 unsigned int start, unsigned int end) 3054 { 3055 struct curseg_info *curseg = CURSEG_I(sbi, type); 3056 unsigned int segno; 3057 3058 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3059 mutex_lock(&curseg->curseg_mutex); 3060 down_write(&SIT_I(sbi)->sentry_lock); 3061 3062 segno = CURSEG_I(sbi, type)->segno; 3063 if (segno < start || segno > end) 3064 goto unlock; 3065 3066 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 3067 change_curseg(sbi, type); 3068 else 3069 new_curseg(sbi, type, true); 3070 3071 stat_inc_seg_type(sbi, curseg); 3072 3073 locate_dirty_segment(sbi, segno); 3074 unlock: 3075 up_write(&SIT_I(sbi)->sentry_lock); 3076 3077 if (segno != curseg->segno) 3078 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 3079 type, segno, curseg->segno); 3080 3081 mutex_unlock(&curseg->curseg_mutex); 3082 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3083 } 3084 3085 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 3086 bool new_sec, bool force) 3087 { 3088 struct curseg_info *curseg = CURSEG_I(sbi, type); 3089 unsigned int old_segno; 3090 3091 if (!force && curseg->inited && 3092 !curseg->next_blkoff && 3093 !get_valid_blocks(sbi, curseg->segno, new_sec) && 3094 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 3095 return; 3096 3097 old_segno = curseg->segno; 3098 new_curseg(sbi, type, true); 3099 stat_inc_seg_type(sbi, curseg); 3100 locate_dirty_segment(sbi, old_segno); 3101 } 3102 3103 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3104 { 3105 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3106 down_write(&SIT_I(sbi)->sentry_lock); 3107 __allocate_new_segment(sbi, type, true, force); 3108 up_write(&SIT_I(sbi)->sentry_lock); 3109 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3110 } 3111 3112 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3113 { 3114 int i; 3115 3116 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3117 down_write(&SIT_I(sbi)->sentry_lock); 3118 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3119 __allocate_new_segment(sbi, i, false, false); 3120 up_write(&SIT_I(sbi)->sentry_lock); 3121 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3122 } 3123 3124 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3125 struct cp_control *cpc) 3126 { 3127 __u64 trim_start = cpc->trim_start; 3128 bool has_candidate = false; 3129 3130 down_write(&SIT_I(sbi)->sentry_lock); 3131 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3132 if (add_discard_addrs(sbi, cpc, true)) { 3133 has_candidate = true; 3134 break; 3135 } 3136 } 3137 up_write(&SIT_I(sbi)->sentry_lock); 3138 3139 cpc->trim_start = trim_start; 3140 return has_candidate; 3141 } 3142 3143 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3144 struct discard_policy *dpolicy, 3145 unsigned int start, unsigned int end) 3146 { 3147 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3148 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3149 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3150 struct discard_cmd *dc; 3151 struct blk_plug plug; 3152 int issued; 3153 unsigned int trimmed = 0; 3154 3155 next: 3156 issued = 0; 3157 3158 mutex_lock(&dcc->cmd_lock); 3159 if (unlikely(dcc->rbtree_check)) 3160 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 3161 3162 dc = __lookup_discard_cmd_ret(&dcc->root, start, 3163 &prev_dc, &next_dc, &insert_p, &insert_parent); 3164 if (!dc) 3165 dc = next_dc; 3166 3167 blk_start_plug(&plug); 3168 3169 while (dc && dc->di.lstart <= end) { 3170 struct rb_node *node; 3171 int err = 0; 3172 3173 if (dc->di.len < dpolicy->granularity) 3174 goto skip; 3175 3176 if (dc->state != D_PREP) { 3177 list_move_tail(&dc->list, &dcc->fstrim_list); 3178 goto skip; 3179 } 3180 3181 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3182 3183 if (issued >= dpolicy->max_requests) { 3184 start = dc->di.lstart + dc->di.len; 3185 3186 if (err) 3187 __remove_discard_cmd(sbi, dc); 3188 3189 blk_finish_plug(&plug); 3190 mutex_unlock(&dcc->cmd_lock); 3191 trimmed += __wait_all_discard_cmd(sbi, NULL); 3192 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3193 goto next; 3194 } 3195 skip: 3196 node = rb_next(&dc->rb_node); 3197 if (err) 3198 __remove_discard_cmd(sbi, dc); 3199 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3200 3201 if (fatal_signal_pending(current)) 3202 break; 3203 } 3204 3205 blk_finish_plug(&plug); 3206 mutex_unlock(&dcc->cmd_lock); 3207 3208 return trimmed; 3209 } 3210 3211 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3212 { 3213 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3214 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3215 unsigned int start_segno, end_segno; 3216 block_t start_block, end_block; 3217 struct cp_control cpc; 3218 struct discard_policy dpolicy; 3219 unsigned long long trimmed = 0; 3220 int err = 0; 3221 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3222 3223 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3224 return -EINVAL; 3225 3226 if (end < MAIN_BLKADDR(sbi)) 3227 goto out; 3228 3229 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3230 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3231 return -EFSCORRUPTED; 3232 } 3233 3234 /* start/end segment number in main_area */ 3235 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3236 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3237 GET_SEGNO(sbi, end); 3238 if (need_align) { 3239 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3240 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3241 } 3242 3243 cpc.reason = CP_DISCARD; 3244 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3245 cpc.trim_start = start_segno; 3246 cpc.trim_end = end_segno; 3247 3248 if (sbi->discard_blks == 0) 3249 goto out; 3250 3251 f2fs_down_write(&sbi->gc_lock); 3252 stat_inc_cp_call_count(sbi, TOTAL_CALL); 3253 err = f2fs_write_checkpoint(sbi, &cpc); 3254 f2fs_up_write(&sbi->gc_lock); 3255 if (err) 3256 goto out; 3257 3258 /* 3259 * We filed discard candidates, but actually we don't need to wait for 3260 * all of them, since they'll be issued in idle time along with runtime 3261 * discard option. User configuration looks like using runtime discard 3262 * or periodic fstrim instead of it. 3263 */ 3264 if (f2fs_realtime_discard_enable(sbi)) 3265 goto out; 3266 3267 start_block = START_BLOCK(sbi, start_segno); 3268 end_block = START_BLOCK(sbi, end_segno + 1); 3269 3270 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3271 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3272 start_block, end_block); 3273 3274 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3275 start_block, end_block); 3276 out: 3277 if (!err) 3278 range->len = F2FS_BLK_TO_BYTES(trimmed); 3279 return err; 3280 } 3281 3282 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3283 { 3284 switch (hint) { 3285 case WRITE_LIFE_SHORT: 3286 return CURSEG_HOT_DATA; 3287 case WRITE_LIFE_EXTREME: 3288 return CURSEG_COLD_DATA; 3289 default: 3290 return CURSEG_WARM_DATA; 3291 } 3292 } 3293 3294 static int __get_segment_type_2(struct f2fs_io_info *fio) 3295 { 3296 if (fio->type == DATA) 3297 return CURSEG_HOT_DATA; 3298 else 3299 return CURSEG_HOT_NODE; 3300 } 3301 3302 static int __get_segment_type_4(struct f2fs_io_info *fio) 3303 { 3304 if (fio->type == DATA) { 3305 struct inode *inode = fio->page->mapping->host; 3306 3307 if (S_ISDIR(inode->i_mode)) 3308 return CURSEG_HOT_DATA; 3309 else 3310 return CURSEG_COLD_DATA; 3311 } else { 3312 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3313 return CURSEG_WARM_NODE; 3314 else 3315 return CURSEG_COLD_NODE; 3316 } 3317 } 3318 3319 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3320 { 3321 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3322 struct extent_info ei = {}; 3323 3324 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3325 if (!ei.age) 3326 return NO_CHECK_TYPE; 3327 if (ei.age <= sbi->hot_data_age_threshold) 3328 return CURSEG_HOT_DATA; 3329 if (ei.age <= sbi->warm_data_age_threshold) 3330 return CURSEG_WARM_DATA; 3331 return CURSEG_COLD_DATA; 3332 } 3333 return NO_CHECK_TYPE; 3334 } 3335 3336 static int __get_segment_type_6(struct f2fs_io_info *fio) 3337 { 3338 if (fio->type == DATA) { 3339 struct inode *inode = fio->page->mapping->host; 3340 int type; 3341 3342 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3343 return CURSEG_COLD_DATA_PINNED; 3344 3345 if (page_private_gcing(fio->page)) { 3346 if (fio->sbi->am.atgc_enabled && 3347 (fio->io_type == FS_DATA_IO) && 3348 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3349 return CURSEG_ALL_DATA_ATGC; 3350 else 3351 return CURSEG_COLD_DATA; 3352 } 3353 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3354 return CURSEG_COLD_DATA; 3355 3356 type = __get_age_segment_type(inode, fio->page->index); 3357 if (type != NO_CHECK_TYPE) 3358 return type; 3359 3360 if (file_is_hot(inode) || 3361 is_inode_flag_set(inode, FI_HOT_DATA) || 3362 f2fs_is_cow_file(inode)) 3363 return CURSEG_HOT_DATA; 3364 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3365 } else { 3366 if (IS_DNODE(fio->page)) 3367 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3368 CURSEG_HOT_NODE; 3369 return CURSEG_COLD_NODE; 3370 } 3371 } 3372 3373 static int __get_segment_type(struct f2fs_io_info *fio) 3374 { 3375 int type = 0; 3376 3377 switch (F2FS_OPTION(fio->sbi).active_logs) { 3378 case 2: 3379 type = __get_segment_type_2(fio); 3380 break; 3381 case 4: 3382 type = __get_segment_type_4(fio); 3383 break; 3384 case 6: 3385 type = __get_segment_type_6(fio); 3386 break; 3387 default: 3388 f2fs_bug_on(fio->sbi, true); 3389 } 3390 3391 if (IS_HOT(type)) 3392 fio->temp = HOT; 3393 else if (IS_WARM(type)) 3394 fio->temp = WARM; 3395 else 3396 fio->temp = COLD; 3397 return type; 3398 } 3399 3400 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi, 3401 struct curseg_info *seg) 3402 { 3403 /* To allocate block chunks in different sizes, use random number */ 3404 if (--seg->fragment_remained_chunk > 0) 3405 return; 3406 3407 seg->fragment_remained_chunk = 3408 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 3409 seg->next_blkoff += 3410 get_random_u32_inclusive(1, sbi->max_fragment_hole); 3411 } 3412 3413 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3414 block_t old_blkaddr, block_t *new_blkaddr, 3415 struct f2fs_summary *sum, int type, 3416 struct f2fs_io_info *fio) 3417 { 3418 struct sit_info *sit_i = SIT_I(sbi); 3419 struct curseg_info *curseg = CURSEG_I(sbi, type); 3420 unsigned long long old_mtime; 3421 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3422 struct seg_entry *se = NULL; 3423 bool segment_full = false; 3424 3425 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3426 3427 mutex_lock(&curseg->curseg_mutex); 3428 down_write(&sit_i->sentry_lock); 3429 3430 if (from_gc) { 3431 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3432 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3433 sanity_check_seg_type(sbi, se->type); 3434 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3435 } 3436 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3437 3438 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3439 3440 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3441 3442 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3443 if (curseg->alloc_type == SSR) { 3444 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg); 3445 } else { 3446 curseg->next_blkoff++; 3447 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 3448 f2fs_randomize_chunk(sbi, curseg); 3449 } 3450 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno)) 3451 segment_full = true; 3452 stat_inc_block_count(sbi, curseg); 3453 3454 if (from_gc) { 3455 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3456 } else { 3457 update_segment_mtime(sbi, old_blkaddr, 0); 3458 old_mtime = 0; 3459 } 3460 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3461 3462 /* 3463 * SIT information should be updated before segment allocation, 3464 * since SSR needs latest valid block information. 3465 */ 3466 update_sit_entry(sbi, *new_blkaddr, 1); 3467 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3468 update_sit_entry(sbi, old_blkaddr, -1); 3469 3470 /* 3471 * If the current segment is full, flush it out and replace it with a 3472 * new segment. 3473 */ 3474 if (segment_full) { 3475 if (from_gc) { 3476 get_atssr_segment(sbi, type, se->type, 3477 AT_SSR, se->mtime); 3478 } else { 3479 if (need_new_seg(sbi, type)) 3480 new_curseg(sbi, type, false); 3481 else 3482 change_curseg(sbi, type); 3483 stat_inc_seg_type(sbi, curseg); 3484 } 3485 } 3486 /* 3487 * segment dirty status should be updated after segment allocation, 3488 * so we just need to update status only one time after previous 3489 * segment being closed. 3490 */ 3491 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3492 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3493 3494 if (IS_DATASEG(type)) 3495 atomic64_inc(&sbi->allocated_data_blocks); 3496 3497 up_write(&sit_i->sentry_lock); 3498 3499 if (page && IS_NODESEG(type)) { 3500 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3501 3502 f2fs_inode_chksum_set(sbi, page); 3503 } 3504 3505 if (fio) { 3506 struct f2fs_bio_info *io; 3507 3508 if (F2FS_IO_ALIGNED(sbi)) 3509 fio->retry = 0; 3510 3511 INIT_LIST_HEAD(&fio->list); 3512 fio->in_list = 1; 3513 io = sbi->write_io[fio->type] + fio->temp; 3514 spin_lock(&io->io_lock); 3515 list_add_tail(&fio->list, &io->io_list); 3516 spin_unlock(&io->io_lock); 3517 } 3518 3519 mutex_unlock(&curseg->curseg_mutex); 3520 3521 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3522 } 3523 3524 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3525 block_t blkaddr, unsigned int blkcnt) 3526 { 3527 if (!f2fs_is_multi_device(sbi)) 3528 return; 3529 3530 while (1) { 3531 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3532 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3533 3534 /* update device state for fsync */ 3535 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3536 3537 /* update device state for checkpoint */ 3538 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3539 spin_lock(&sbi->dev_lock); 3540 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3541 spin_unlock(&sbi->dev_lock); 3542 } 3543 3544 if (blkcnt <= blks) 3545 break; 3546 blkcnt -= blks; 3547 blkaddr += blks; 3548 } 3549 } 3550 3551 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3552 { 3553 int type = __get_segment_type(fio); 3554 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3555 3556 if (keep_order) 3557 f2fs_down_read(&fio->sbi->io_order_lock); 3558 reallocate: 3559 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3560 &fio->new_blkaddr, sum, type, fio); 3561 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3562 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr); 3563 3564 /* writeout dirty page into bdev */ 3565 f2fs_submit_page_write(fio); 3566 if (fio->retry) { 3567 fio->old_blkaddr = fio->new_blkaddr; 3568 goto reallocate; 3569 } 3570 3571 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3572 3573 if (keep_order) 3574 f2fs_up_read(&fio->sbi->io_order_lock); 3575 } 3576 3577 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3578 enum iostat_type io_type) 3579 { 3580 struct f2fs_io_info fio = { 3581 .sbi = sbi, 3582 .type = META, 3583 .temp = HOT, 3584 .op = REQ_OP_WRITE, 3585 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3586 .old_blkaddr = page->index, 3587 .new_blkaddr = page->index, 3588 .page = page, 3589 .encrypted_page = NULL, 3590 .in_list = 0, 3591 }; 3592 3593 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3594 fio.op_flags &= ~REQ_META; 3595 3596 set_page_writeback(page); 3597 f2fs_submit_page_write(&fio); 3598 3599 stat_inc_meta_count(sbi, page->index); 3600 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3601 } 3602 3603 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3604 { 3605 struct f2fs_summary sum; 3606 3607 set_summary(&sum, nid, 0, 0); 3608 do_write_page(&sum, fio); 3609 3610 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3611 } 3612 3613 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3614 struct f2fs_io_info *fio) 3615 { 3616 struct f2fs_sb_info *sbi = fio->sbi; 3617 struct f2fs_summary sum; 3618 3619 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3620 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3621 f2fs_update_age_extent_cache(dn); 3622 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3623 do_write_page(&sum, fio); 3624 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3625 3626 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3627 } 3628 3629 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3630 { 3631 int err; 3632 struct f2fs_sb_info *sbi = fio->sbi; 3633 unsigned int segno; 3634 3635 fio->new_blkaddr = fio->old_blkaddr; 3636 /* i/o temperature is needed for passing down write hints */ 3637 __get_segment_type(fio); 3638 3639 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3640 3641 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3642 set_sbi_flag(sbi, SBI_NEED_FSCK); 3643 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3644 __func__, segno); 3645 err = -EFSCORRUPTED; 3646 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 3647 goto drop_bio; 3648 } 3649 3650 if (f2fs_cp_error(sbi)) { 3651 err = -EIO; 3652 goto drop_bio; 3653 } 3654 3655 if (fio->post_read) 3656 invalidate_mapping_pages(META_MAPPING(sbi), 3657 fio->new_blkaddr, fio->new_blkaddr); 3658 3659 stat_inc_inplace_blocks(fio->sbi); 3660 3661 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi)) 3662 err = f2fs_merge_page_bio(fio); 3663 else 3664 err = f2fs_submit_page_bio(fio); 3665 if (!err) { 3666 f2fs_update_device_state(fio->sbi, fio->ino, 3667 fio->new_blkaddr, 1); 3668 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 3669 fio->io_type, F2FS_BLKSIZE); 3670 } 3671 3672 return err; 3673 drop_bio: 3674 if (fio->bio && *(fio->bio)) { 3675 struct bio *bio = *(fio->bio); 3676 3677 bio->bi_status = BLK_STS_IOERR; 3678 bio_endio(bio); 3679 *(fio->bio) = NULL; 3680 } 3681 return err; 3682 } 3683 3684 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3685 unsigned int segno) 3686 { 3687 int i; 3688 3689 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3690 if (CURSEG_I(sbi, i)->segno == segno) 3691 break; 3692 } 3693 return i; 3694 } 3695 3696 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3697 block_t old_blkaddr, block_t new_blkaddr, 3698 bool recover_curseg, bool recover_newaddr, 3699 bool from_gc) 3700 { 3701 struct sit_info *sit_i = SIT_I(sbi); 3702 struct curseg_info *curseg; 3703 unsigned int segno, old_cursegno; 3704 struct seg_entry *se; 3705 int type; 3706 unsigned short old_blkoff; 3707 unsigned char old_alloc_type; 3708 3709 segno = GET_SEGNO(sbi, new_blkaddr); 3710 se = get_seg_entry(sbi, segno); 3711 type = se->type; 3712 3713 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3714 3715 if (!recover_curseg) { 3716 /* for recovery flow */ 3717 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3718 if (old_blkaddr == NULL_ADDR) 3719 type = CURSEG_COLD_DATA; 3720 else 3721 type = CURSEG_WARM_DATA; 3722 } 3723 } else { 3724 if (IS_CURSEG(sbi, segno)) { 3725 /* se->type is volatile as SSR allocation */ 3726 type = __f2fs_get_curseg(sbi, segno); 3727 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3728 } else { 3729 type = CURSEG_WARM_DATA; 3730 } 3731 } 3732 3733 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3734 curseg = CURSEG_I(sbi, type); 3735 3736 mutex_lock(&curseg->curseg_mutex); 3737 down_write(&sit_i->sentry_lock); 3738 3739 old_cursegno = curseg->segno; 3740 old_blkoff = curseg->next_blkoff; 3741 old_alloc_type = curseg->alloc_type; 3742 3743 /* change the current segment */ 3744 if (segno != curseg->segno) { 3745 curseg->next_segno = segno; 3746 change_curseg(sbi, type); 3747 } 3748 3749 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3750 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3751 3752 if (!recover_curseg || recover_newaddr) { 3753 if (!from_gc) 3754 update_segment_mtime(sbi, new_blkaddr, 0); 3755 update_sit_entry(sbi, new_blkaddr, 1); 3756 } 3757 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3758 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 3759 if (!from_gc) 3760 update_segment_mtime(sbi, old_blkaddr, 0); 3761 update_sit_entry(sbi, old_blkaddr, -1); 3762 } 3763 3764 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3765 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3766 3767 locate_dirty_segment(sbi, old_cursegno); 3768 3769 if (recover_curseg) { 3770 if (old_cursegno != curseg->segno) { 3771 curseg->next_segno = old_cursegno; 3772 change_curseg(sbi, type); 3773 } 3774 curseg->next_blkoff = old_blkoff; 3775 curseg->alloc_type = old_alloc_type; 3776 } 3777 3778 up_write(&sit_i->sentry_lock); 3779 mutex_unlock(&curseg->curseg_mutex); 3780 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3781 } 3782 3783 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3784 block_t old_addr, block_t new_addr, 3785 unsigned char version, bool recover_curseg, 3786 bool recover_newaddr) 3787 { 3788 struct f2fs_summary sum; 3789 3790 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3791 3792 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3793 recover_curseg, recover_newaddr, false); 3794 3795 f2fs_update_data_blkaddr(dn, new_addr); 3796 } 3797 3798 void f2fs_wait_on_page_writeback(struct page *page, 3799 enum page_type type, bool ordered, bool locked) 3800 { 3801 if (PageWriteback(page)) { 3802 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3803 3804 /* submit cached LFS IO */ 3805 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3806 /* submit cached IPU IO */ 3807 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3808 if (ordered) { 3809 wait_on_page_writeback(page); 3810 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3811 } else { 3812 wait_for_stable_page(page); 3813 } 3814 } 3815 } 3816 3817 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3818 { 3819 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3820 struct page *cpage; 3821 3822 if (!f2fs_post_read_required(inode)) 3823 return; 3824 3825 if (!__is_valid_data_blkaddr(blkaddr)) 3826 return; 3827 3828 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3829 if (cpage) { 3830 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3831 f2fs_put_page(cpage, 1); 3832 } 3833 } 3834 3835 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3836 block_t len) 3837 { 3838 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3839 block_t i; 3840 3841 if (!f2fs_post_read_required(inode)) 3842 return; 3843 3844 for (i = 0; i < len; i++) 3845 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3846 3847 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1); 3848 } 3849 3850 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3851 { 3852 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3853 struct curseg_info *seg_i; 3854 unsigned char *kaddr; 3855 struct page *page; 3856 block_t start; 3857 int i, j, offset; 3858 3859 start = start_sum_block(sbi); 3860 3861 page = f2fs_get_meta_page(sbi, start++); 3862 if (IS_ERR(page)) 3863 return PTR_ERR(page); 3864 kaddr = (unsigned char *)page_address(page); 3865 3866 /* Step 1: restore nat cache */ 3867 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3868 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3869 3870 /* Step 2: restore sit cache */ 3871 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3872 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3873 offset = 2 * SUM_JOURNAL_SIZE; 3874 3875 /* Step 3: restore summary entries */ 3876 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3877 unsigned short blk_off; 3878 unsigned int segno; 3879 3880 seg_i = CURSEG_I(sbi, i); 3881 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3882 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3883 seg_i->next_segno = segno; 3884 reset_curseg(sbi, i, 0); 3885 seg_i->alloc_type = ckpt->alloc_type[i]; 3886 seg_i->next_blkoff = blk_off; 3887 3888 if (seg_i->alloc_type == SSR) 3889 blk_off = sbi->blocks_per_seg; 3890 3891 for (j = 0; j < blk_off; j++) { 3892 struct f2fs_summary *s; 3893 3894 s = (struct f2fs_summary *)(kaddr + offset); 3895 seg_i->sum_blk->entries[j] = *s; 3896 offset += SUMMARY_SIZE; 3897 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3898 SUM_FOOTER_SIZE) 3899 continue; 3900 3901 f2fs_put_page(page, 1); 3902 page = NULL; 3903 3904 page = f2fs_get_meta_page(sbi, start++); 3905 if (IS_ERR(page)) 3906 return PTR_ERR(page); 3907 kaddr = (unsigned char *)page_address(page); 3908 offset = 0; 3909 } 3910 } 3911 f2fs_put_page(page, 1); 3912 return 0; 3913 } 3914 3915 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3916 { 3917 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3918 struct f2fs_summary_block *sum; 3919 struct curseg_info *curseg; 3920 struct page *new; 3921 unsigned short blk_off; 3922 unsigned int segno = 0; 3923 block_t blk_addr = 0; 3924 int err = 0; 3925 3926 /* get segment number and block addr */ 3927 if (IS_DATASEG(type)) { 3928 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3929 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3930 CURSEG_HOT_DATA]); 3931 if (__exist_node_summaries(sbi)) 3932 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3933 else 3934 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3935 } else { 3936 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3937 CURSEG_HOT_NODE]); 3938 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3939 CURSEG_HOT_NODE]); 3940 if (__exist_node_summaries(sbi)) 3941 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3942 type - CURSEG_HOT_NODE); 3943 else 3944 blk_addr = GET_SUM_BLOCK(sbi, segno); 3945 } 3946 3947 new = f2fs_get_meta_page(sbi, blk_addr); 3948 if (IS_ERR(new)) 3949 return PTR_ERR(new); 3950 sum = (struct f2fs_summary_block *)page_address(new); 3951 3952 if (IS_NODESEG(type)) { 3953 if (__exist_node_summaries(sbi)) { 3954 struct f2fs_summary *ns = &sum->entries[0]; 3955 int i; 3956 3957 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3958 ns->version = 0; 3959 ns->ofs_in_node = 0; 3960 } 3961 } else { 3962 err = f2fs_restore_node_summary(sbi, segno, sum); 3963 if (err) 3964 goto out; 3965 } 3966 } 3967 3968 /* set uncompleted segment to curseg */ 3969 curseg = CURSEG_I(sbi, type); 3970 mutex_lock(&curseg->curseg_mutex); 3971 3972 /* update journal info */ 3973 down_write(&curseg->journal_rwsem); 3974 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3975 up_write(&curseg->journal_rwsem); 3976 3977 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3978 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3979 curseg->next_segno = segno; 3980 reset_curseg(sbi, type, 0); 3981 curseg->alloc_type = ckpt->alloc_type[type]; 3982 curseg->next_blkoff = blk_off; 3983 mutex_unlock(&curseg->curseg_mutex); 3984 out: 3985 f2fs_put_page(new, 1); 3986 return err; 3987 } 3988 3989 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3990 { 3991 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3992 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3993 int type = CURSEG_HOT_DATA; 3994 int err; 3995 3996 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3997 int npages = f2fs_npages_for_summary_flush(sbi, true); 3998 3999 if (npages >= 2) 4000 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 4001 META_CP, true); 4002 4003 /* restore for compacted data summary */ 4004 err = read_compacted_summaries(sbi); 4005 if (err) 4006 return err; 4007 type = CURSEG_HOT_NODE; 4008 } 4009 4010 if (__exist_node_summaries(sbi)) 4011 f2fs_ra_meta_pages(sbi, 4012 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 4013 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 4014 4015 for (; type <= CURSEG_COLD_NODE; type++) { 4016 err = read_normal_summaries(sbi, type); 4017 if (err) 4018 return err; 4019 } 4020 4021 /* sanity check for summary blocks */ 4022 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 4023 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 4024 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 4025 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 4026 return -EINVAL; 4027 } 4028 4029 return 0; 4030 } 4031 4032 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 4033 { 4034 struct page *page; 4035 unsigned char *kaddr; 4036 struct f2fs_summary *summary; 4037 struct curseg_info *seg_i; 4038 int written_size = 0; 4039 int i, j; 4040 4041 page = f2fs_grab_meta_page(sbi, blkaddr++); 4042 kaddr = (unsigned char *)page_address(page); 4043 memset(kaddr, 0, PAGE_SIZE); 4044 4045 /* Step 1: write nat cache */ 4046 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4047 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 4048 written_size += SUM_JOURNAL_SIZE; 4049 4050 /* Step 2: write sit cache */ 4051 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4052 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 4053 written_size += SUM_JOURNAL_SIZE; 4054 4055 /* Step 3: write summary entries */ 4056 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4057 seg_i = CURSEG_I(sbi, i); 4058 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) { 4059 if (!page) { 4060 page = f2fs_grab_meta_page(sbi, blkaddr++); 4061 kaddr = (unsigned char *)page_address(page); 4062 memset(kaddr, 0, PAGE_SIZE); 4063 written_size = 0; 4064 } 4065 summary = (struct f2fs_summary *)(kaddr + written_size); 4066 *summary = seg_i->sum_blk->entries[j]; 4067 written_size += SUMMARY_SIZE; 4068 4069 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 4070 SUM_FOOTER_SIZE) 4071 continue; 4072 4073 set_page_dirty(page); 4074 f2fs_put_page(page, 1); 4075 page = NULL; 4076 } 4077 } 4078 if (page) { 4079 set_page_dirty(page); 4080 f2fs_put_page(page, 1); 4081 } 4082 } 4083 4084 static void write_normal_summaries(struct f2fs_sb_info *sbi, 4085 block_t blkaddr, int type) 4086 { 4087 int i, end; 4088 4089 if (IS_DATASEG(type)) 4090 end = type + NR_CURSEG_DATA_TYPE; 4091 else 4092 end = type + NR_CURSEG_NODE_TYPE; 4093 4094 for (i = type; i < end; i++) 4095 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4096 } 4097 4098 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4099 { 4100 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4101 write_compacted_summaries(sbi, start_blk); 4102 else 4103 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4104 } 4105 4106 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4107 { 4108 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4109 } 4110 4111 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4112 unsigned int val, int alloc) 4113 { 4114 int i; 4115 4116 if (type == NAT_JOURNAL) { 4117 for (i = 0; i < nats_in_cursum(journal); i++) { 4118 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4119 return i; 4120 } 4121 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4122 return update_nats_in_cursum(journal, 1); 4123 } else if (type == SIT_JOURNAL) { 4124 for (i = 0; i < sits_in_cursum(journal); i++) 4125 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4126 return i; 4127 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4128 return update_sits_in_cursum(journal, 1); 4129 } 4130 return -1; 4131 } 4132 4133 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4134 unsigned int segno) 4135 { 4136 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4137 } 4138 4139 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4140 unsigned int start) 4141 { 4142 struct sit_info *sit_i = SIT_I(sbi); 4143 struct page *page; 4144 pgoff_t src_off, dst_off; 4145 4146 src_off = current_sit_addr(sbi, start); 4147 dst_off = next_sit_addr(sbi, src_off); 4148 4149 page = f2fs_grab_meta_page(sbi, dst_off); 4150 seg_info_to_sit_page(sbi, page, start); 4151 4152 set_page_dirty(page); 4153 set_to_next_sit(sit_i, start); 4154 4155 return page; 4156 } 4157 4158 static struct sit_entry_set *grab_sit_entry_set(void) 4159 { 4160 struct sit_entry_set *ses = 4161 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4162 GFP_NOFS, true, NULL); 4163 4164 ses->entry_cnt = 0; 4165 INIT_LIST_HEAD(&ses->set_list); 4166 return ses; 4167 } 4168 4169 static void release_sit_entry_set(struct sit_entry_set *ses) 4170 { 4171 list_del(&ses->set_list); 4172 kmem_cache_free(sit_entry_set_slab, ses); 4173 } 4174 4175 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4176 struct list_head *head) 4177 { 4178 struct sit_entry_set *next = ses; 4179 4180 if (list_is_last(&ses->set_list, head)) 4181 return; 4182 4183 list_for_each_entry_continue(next, head, set_list) 4184 if (ses->entry_cnt <= next->entry_cnt) { 4185 list_move_tail(&ses->set_list, &next->set_list); 4186 return; 4187 } 4188 4189 list_move_tail(&ses->set_list, head); 4190 } 4191 4192 static void add_sit_entry(unsigned int segno, struct list_head *head) 4193 { 4194 struct sit_entry_set *ses; 4195 unsigned int start_segno = START_SEGNO(segno); 4196 4197 list_for_each_entry(ses, head, set_list) { 4198 if (ses->start_segno == start_segno) { 4199 ses->entry_cnt++; 4200 adjust_sit_entry_set(ses, head); 4201 return; 4202 } 4203 } 4204 4205 ses = grab_sit_entry_set(); 4206 4207 ses->start_segno = start_segno; 4208 ses->entry_cnt++; 4209 list_add(&ses->set_list, head); 4210 } 4211 4212 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4213 { 4214 struct f2fs_sm_info *sm_info = SM_I(sbi); 4215 struct list_head *set_list = &sm_info->sit_entry_set; 4216 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4217 unsigned int segno; 4218 4219 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4220 add_sit_entry(segno, set_list); 4221 } 4222 4223 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4224 { 4225 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4226 struct f2fs_journal *journal = curseg->journal; 4227 int i; 4228 4229 down_write(&curseg->journal_rwsem); 4230 for (i = 0; i < sits_in_cursum(journal); i++) { 4231 unsigned int segno; 4232 bool dirtied; 4233 4234 segno = le32_to_cpu(segno_in_journal(journal, i)); 4235 dirtied = __mark_sit_entry_dirty(sbi, segno); 4236 4237 if (!dirtied) 4238 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4239 } 4240 update_sits_in_cursum(journal, -i); 4241 up_write(&curseg->journal_rwsem); 4242 } 4243 4244 /* 4245 * CP calls this function, which flushes SIT entries including sit_journal, 4246 * and moves prefree segs to free segs. 4247 */ 4248 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4249 { 4250 struct sit_info *sit_i = SIT_I(sbi); 4251 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4252 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4253 struct f2fs_journal *journal = curseg->journal; 4254 struct sit_entry_set *ses, *tmp; 4255 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4256 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4257 struct seg_entry *se; 4258 4259 down_write(&sit_i->sentry_lock); 4260 4261 if (!sit_i->dirty_sentries) 4262 goto out; 4263 4264 /* 4265 * add and account sit entries of dirty bitmap in sit entry 4266 * set temporarily 4267 */ 4268 add_sits_in_set(sbi); 4269 4270 /* 4271 * if there are no enough space in journal to store dirty sit 4272 * entries, remove all entries from journal and add and account 4273 * them in sit entry set. 4274 */ 4275 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4276 !to_journal) 4277 remove_sits_in_journal(sbi); 4278 4279 /* 4280 * there are two steps to flush sit entries: 4281 * #1, flush sit entries to journal in current cold data summary block. 4282 * #2, flush sit entries to sit page. 4283 */ 4284 list_for_each_entry_safe(ses, tmp, head, set_list) { 4285 struct page *page = NULL; 4286 struct f2fs_sit_block *raw_sit = NULL; 4287 unsigned int start_segno = ses->start_segno; 4288 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4289 (unsigned long)MAIN_SEGS(sbi)); 4290 unsigned int segno = start_segno; 4291 4292 if (to_journal && 4293 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4294 to_journal = false; 4295 4296 if (to_journal) { 4297 down_write(&curseg->journal_rwsem); 4298 } else { 4299 page = get_next_sit_page(sbi, start_segno); 4300 raw_sit = page_address(page); 4301 } 4302 4303 /* flush dirty sit entries in region of current sit set */ 4304 for_each_set_bit_from(segno, bitmap, end) { 4305 int offset, sit_offset; 4306 4307 se = get_seg_entry(sbi, segno); 4308 #ifdef CONFIG_F2FS_CHECK_FS 4309 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4310 SIT_VBLOCK_MAP_SIZE)) 4311 f2fs_bug_on(sbi, 1); 4312 #endif 4313 4314 /* add discard candidates */ 4315 if (!(cpc->reason & CP_DISCARD)) { 4316 cpc->trim_start = segno; 4317 add_discard_addrs(sbi, cpc, false); 4318 } 4319 4320 if (to_journal) { 4321 offset = f2fs_lookup_journal_in_cursum(journal, 4322 SIT_JOURNAL, segno, 1); 4323 f2fs_bug_on(sbi, offset < 0); 4324 segno_in_journal(journal, offset) = 4325 cpu_to_le32(segno); 4326 seg_info_to_raw_sit(se, 4327 &sit_in_journal(journal, offset)); 4328 check_block_count(sbi, segno, 4329 &sit_in_journal(journal, offset)); 4330 } else { 4331 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4332 seg_info_to_raw_sit(se, 4333 &raw_sit->entries[sit_offset]); 4334 check_block_count(sbi, segno, 4335 &raw_sit->entries[sit_offset]); 4336 } 4337 4338 __clear_bit(segno, bitmap); 4339 sit_i->dirty_sentries--; 4340 ses->entry_cnt--; 4341 } 4342 4343 if (to_journal) 4344 up_write(&curseg->journal_rwsem); 4345 else 4346 f2fs_put_page(page, 1); 4347 4348 f2fs_bug_on(sbi, ses->entry_cnt); 4349 release_sit_entry_set(ses); 4350 } 4351 4352 f2fs_bug_on(sbi, !list_empty(head)); 4353 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4354 out: 4355 if (cpc->reason & CP_DISCARD) { 4356 __u64 trim_start = cpc->trim_start; 4357 4358 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4359 add_discard_addrs(sbi, cpc, false); 4360 4361 cpc->trim_start = trim_start; 4362 } 4363 up_write(&sit_i->sentry_lock); 4364 4365 set_prefree_as_free_segments(sbi); 4366 } 4367 4368 static int build_sit_info(struct f2fs_sb_info *sbi) 4369 { 4370 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4371 struct sit_info *sit_i; 4372 unsigned int sit_segs, start; 4373 char *src_bitmap, *bitmap; 4374 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4375 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4376 4377 /* allocate memory for SIT information */ 4378 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4379 if (!sit_i) 4380 return -ENOMEM; 4381 4382 SM_I(sbi)->sit_info = sit_i; 4383 4384 sit_i->sentries = 4385 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4386 MAIN_SEGS(sbi)), 4387 GFP_KERNEL); 4388 if (!sit_i->sentries) 4389 return -ENOMEM; 4390 4391 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4392 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4393 GFP_KERNEL); 4394 if (!sit_i->dirty_sentries_bitmap) 4395 return -ENOMEM; 4396 4397 #ifdef CONFIG_F2FS_CHECK_FS 4398 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4399 #else 4400 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4401 #endif 4402 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4403 if (!sit_i->bitmap) 4404 return -ENOMEM; 4405 4406 bitmap = sit_i->bitmap; 4407 4408 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4409 sit_i->sentries[start].cur_valid_map = bitmap; 4410 bitmap += SIT_VBLOCK_MAP_SIZE; 4411 4412 sit_i->sentries[start].ckpt_valid_map = bitmap; 4413 bitmap += SIT_VBLOCK_MAP_SIZE; 4414 4415 #ifdef CONFIG_F2FS_CHECK_FS 4416 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4417 bitmap += SIT_VBLOCK_MAP_SIZE; 4418 #endif 4419 4420 if (discard_map) { 4421 sit_i->sentries[start].discard_map = bitmap; 4422 bitmap += SIT_VBLOCK_MAP_SIZE; 4423 } 4424 } 4425 4426 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4427 if (!sit_i->tmp_map) 4428 return -ENOMEM; 4429 4430 if (__is_large_section(sbi)) { 4431 sit_i->sec_entries = 4432 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4433 MAIN_SECS(sbi)), 4434 GFP_KERNEL); 4435 if (!sit_i->sec_entries) 4436 return -ENOMEM; 4437 } 4438 4439 /* get information related with SIT */ 4440 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4441 4442 /* setup SIT bitmap from ckeckpoint pack */ 4443 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4444 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4445 4446 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4447 if (!sit_i->sit_bitmap) 4448 return -ENOMEM; 4449 4450 #ifdef CONFIG_F2FS_CHECK_FS 4451 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4452 sit_bitmap_size, GFP_KERNEL); 4453 if (!sit_i->sit_bitmap_mir) 4454 return -ENOMEM; 4455 4456 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4457 main_bitmap_size, GFP_KERNEL); 4458 if (!sit_i->invalid_segmap) 4459 return -ENOMEM; 4460 #endif 4461 4462 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4463 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4464 sit_i->written_valid_blocks = 0; 4465 sit_i->bitmap_size = sit_bitmap_size; 4466 sit_i->dirty_sentries = 0; 4467 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4468 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4469 sit_i->mounted_time = ktime_get_boottime_seconds(); 4470 init_rwsem(&sit_i->sentry_lock); 4471 return 0; 4472 } 4473 4474 static int build_free_segmap(struct f2fs_sb_info *sbi) 4475 { 4476 struct free_segmap_info *free_i; 4477 unsigned int bitmap_size, sec_bitmap_size; 4478 4479 /* allocate memory for free segmap information */ 4480 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4481 if (!free_i) 4482 return -ENOMEM; 4483 4484 SM_I(sbi)->free_info = free_i; 4485 4486 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4487 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4488 if (!free_i->free_segmap) 4489 return -ENOMEM; 4490 4491 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4492 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4493 if (!free_i->free_secmap) 4494 return -ENOMEM; 4495 4496 /* set all segments as dirty temporarily */ 4497 memset(free_i->free_segmap, 0xff, bitmap_size); 4498 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4499 4500 /* init free segmap information */ 4501 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4502 free_i->free_segments = 0; 4503 free_i->free_sections = 0; 4504 spin_lock_init(&free_i->segmap_lock); 4505 return 0; 4506 } 4507 4508 static int build_curseg(struct f2fs_sb_info *sbi) 4509 { 4510 struct curseg_info *array; 4511 int i; 4512 4513 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4514 sizeof(*array)), GFP_KERNEL); 4515 if (!array) 4516 return -ENOMEM; 4517 4518 SM_I(sbi)->curseg_array = array; 4519 4520 for (i = 0; i < NO_CHECK_TYPE; i++) { 4521 mutex_init(&array[i].curseg_mutex); 4522 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4523 if (!array[i].sum_blk) 4524 return -ENOMEM; 4525 init_rwsem(&array[i].journal_rwsem); 4526 array[i].journal = f2fs_kzalloc(sbi, 4527 sizeof(struct f2fs_journal), GFP_KERNEL); 4528 if (!array[i].journal) 4529 return -ENOMEM; 4530 if (i < NR_PERSISTENT_LOG) 4531 array[i].seg_type = CURSEG_HOT_DATA + i; 4532 else if (i == CURSEG_COLD_DATA_PINNED) 4533 array[i].seg_type = CURSEG_COLD_DATA; 4534 else if (i == CURSEG_ALL_DATA_ATGC) 4535 array[i].seg_type = CURSEG_COLD_DATA; 4536 array[i].segno = NULL_SEGNO; 4537 array[i].next_blkoff = 0; 4538 array[i].inited = false; 4539 } 4540 return restore_curseg_summaries(sbi); 4541 } 4542 4543 static int build_sit_entries(struct f2fs_sb_info *sbi) 4544 { 4545 struct sit_info *sit_i = SIT_I(sbi); 4546 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4547 struct f2fs_journal *journal = curseg->journal; 4548 struct seg_entry *se; 4549 struct f2fs_sit_entry sit; 4550 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4551 unsigned int i, start, end; 4552 unsigned int readed, start_blk = 0; 4553 int err = 0; 4554 block_t sit_valid_blocks[2] = {0, 0}; 4555 4556 do { 4557 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4558 META_SIT, true); 4559 4560 start = start_blk * sit_i->sents_per_block; 4561 end = (start_blk + readed) * sit_i->sents_per_block; 4562 4563 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4564 struct f2fs_sit_block *sit_blk; 4565 struct page *page; 4566 4567 se = &sit_i->sentries[start]; 4568 page = get_current_sit_page(sbi, start); 4569 if (IS_ERR(page)) 4570 return PTR_ERR(page); 4571 sit_blk = (struct f2fs_sit_block *)page_address(page); 4572 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4573 f2fs_put_page(page, 1); 4574 4575 err = check_block_count(sbi, start, &sit); 4576 if (err) 4577 return err; 4578 seg_info_from_raw_sit(se, &sit); 4579 4580 if (se->type >= NR_PERSISTENT_LOG) { 4581 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4582 se->type, start); 4583 f2fs_handle_error(sbi, 4584 ERROR_INCONSISTENT_SUM_TYPE); 4585 return -EFSCORRUPTED; 4586 } 4587 4588 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4589 4590 if (f2fs_block_unit_discard(sbi)) { 4591 /* build discard map only one time */ 4592 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4593 memset(se->discard_map, 0xff, 4594 SIT_VBLOCK_MAP_SIZE); 4595 } else { 4596 memcpy(se->discard_map, 4597 se->cur_valid_map, 4598 SIT_VBLOCK_MAP_SIZE); 4599 sbi->discard_blks += 4600 sbi->blocks_per_seg - 4601 se->valid_blocks; 4602 } 4603 } 4604 4605 if (__is_large_section(sbi)) 4606 get_sec_entry(sbi, start)->valid_blocks += 4607 se->valid_blocks; 4608 } 4609 start_blk += readed; 4610 } while (start_blk < sit_blk_cnt); 4611 4612 down_read(&curseg->journal_rwsem); 4613 for (i = 0; i < sits_in_cursum(journal); i++) { 4614 unsigned int old_valid_blocks; 4615 4616 start = le32_to_cpu(segno_in_journal(journal, i)); 4617 if (start >= MAIN_SEGS(sbi)) { 4618 f2fs_err(sbi, "Wrong journal entry on segno %u", 4619 start); 4620 err = -EFSCORRUPTED; 4621 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4622 break; 4623 } 4624 4625 se = &sit_i->sentries[start]; 4626 sit = sit_in_journal(journal, i); 4627 4628 old_valid_blocks = se->valid_blocks; 4629 4630 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4631 4632 err = check_block_count(sbi, start, &sit); 4633 if (err) 4634 break; 4635 seg_info_from_raw_sit(se, &sit); 4636 4637 if (se->type >= NR_PERSISTENT_LOG) { 4638 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4639 se->type, start); 4640 err = -EFSCORRUPTED; 4641 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4642 break; 4643 } 4644 4645 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4646 4647 if (f2fs_block_unit_discard(sbi)) { 4648 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4649 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4650 } else { 4651 memcpy(se->discard_map, se->cur_valid_map, 4652 SIT_VBLOCK_MAP_SIZE); 4653 sbi->discard_blks += old_valid_blocks; 4654 sbi->discard_blks -= se->valid_blocks; 4655 } 4656 } 4657 4658 if (__is_large_section(sbi)) { 4659 get_sec_entry(sbi, start)->valid_blocks += 4660 se->valid_blocks; 4661 get_sec_entry(sbi, start)->valid_blocks -= 4662 old_valid_blocks; 4663 } 4664 } 4665 up_read(&curseg->journal_rwsem); 4666 4667 if (err) 4668 return err; 4669 4670 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4671 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4672 sit_valid_blocks[NODE], valid_node_count(sbi)); 4673 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 4674 return -EFSCORRUPTED; 4675 } 4676 4677 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4678 valid_user_blocks(sbi)) { 4679 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4680 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4681 valid_user_blocks(sbi)); 4682 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 4683 return -EFSCORRUPTED; 4684 } 4685 4686 return 0; 4687 } 4688 4689 static void init_free_segmap(struct f2fs_sb_info *sbi) 4690 { 4691 unsigned int start; 4692 int type; 4693 struct seg_entry *sentry; 4694 4695 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4696 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4697 continue; 4698 sentry = get_seg_entry(sbi, start); 4699 if (!sentry->valid_blocks) 4700 __set_free(sbi, start); 4701 else 4702 SIT_I(sbi)->written_valid_blocks += 4703 sentry->valid_blocks; 4704 } 4705 4706 /* set use the current segments */ 4707 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4708 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4709 4710 __set_test_and_inuse(sbi, curseg_t->segno); 4711 } 4712 } 4713 4714 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4715 { 4716 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4717 struct free_segmap_info *free_i = FREE_I(sbi); 4718 unsigned int segno = 0, offset = 0, secno; 4719 block_t valid_blocks, usable_blks_in_seg; 4720 4721 while (1) { 4722 /* find dirty segment based on free segmap */ 4723 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4724 if (segno >= MAIN_SEGS(sbi)) 4725 break; 4726 offset = segno + 1; 4727 valid_blocks = get_valid_blocks(sbi, segno, false); 4728 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4729 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4730 continue; 4731 if (valid_blocks > usable_blks_in_seg) { 4732 f2fs_bug_on(sbi, 1); 4733 continue; 4734 } 4735 mutex_lock(&dirty_i->seglist_lock); 4736 __locate_dirty_segment(sbi, segno, DIRTY); 4737 mutex_unlock(&dirty_i->seglist_lock); 4738 } 4739 4740 if (!__is_large_section(sbi)) 4741 return; 4742 4743 mutex_lock(&dirty_i->seglist_lock); 4744 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4745 valid_blocks = get_valid_blocks(sbi, segno, true); 4746 secno = GET_SEC_FROM_SEG(sbi, segno); 4747 4748 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 4749 continue; 4750 if (IS_CURSEC(sbi, secno)) 4751 continue; 4752 set_bit(secno, dirty_i->dirty_secmap); 4753 } 4754 mutex_unlock(&dirty_i->seglist_lock); 4755 } 4756 4757 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4758 { 4759 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4760 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4761 4762 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4763 if (!dirty_i->victim_secmap) 4764 return -ENOMEM; 4765 4766 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4767 if (!dirty_i->pinned_secmap) 4768 return -ENOMEM; 4769 4770 dirty_i->pinned_secmap_cnt = 0; 4771 dirty_i->enable_pin_section = true; 4772 return 0; 4773 } 4774 4775 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4776 { 4777 struct dirty_seglist_info *dirty_i; 4778 unsigned int bitmap_size, i; 4779 4780 /* allocate memory for dirty segments list information */ 4781 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4782 GFP_KERNEL); 4783 if (!dirty_i) 4784 return -ENOMEM; 4785 4786 SM_I(sbi)->dirty_info = dirty_i; 4787 mutex_init(&dirty_i->seglist_lock); 4788 4789 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4790 4791 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4792 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4793 GFP_KERNEL); 4794 if (!dirty_i->dirty_segmap[i]) 4795 return -ENOMEM; 4796 } 4797 4798 if (__is_large_section(sbi)) { 4799 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4800 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4801 bitmap_size, GFP_KERNEL); 4802 if (!dirty_i->dirty_secmap) 4803 return -ENOMEM; 4804 } 4805 4806 init_dirty_segmap(sbi); 4807 return init_victim_secmap(sbi); 4808 } 4809 4810 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4811 { 4812 int i; 4813 4814 /* 4815 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4816 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4817 */ 4818 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4819 struct curseg_info *curseg = CURSEG_I(sbi, i); 4820 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4821 unsigned int blkofs = curseg->next_blkoff; 4822 4823 if (f2fs_sb_has_readonly(sbi) && 4824 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4825 continue; 4826 4827 sanity_check_seg_type(sbi, curseg->seg_type); 4828 4829 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 4830 f2fs_err(sbi, 4831 "Current segment has invalid alloc_type:%d", 4832 curseg->alloc_type); 4833 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4834 return -EFSCORRUPTED; 4835 } 4836 4837 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4838 goto out; 4839 4840 if (curseg->alloc_type == SSR) 4841 continue; 4842 4843 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4844 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4845 continue; 4846 out: 4847 f2fs_err(sbi, 4848 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4849 i, curseg->segno, curseg->alloc_type, 4850 curseg->next_blkoff, blkofs); 4851 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4852 return -EFSCORRUPTED; 4853 } 4854 } 4855 return 0; 4856 } 4857 4858 #ifdef CONFIG_BLK_DEV_ZONED 4859 4860 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4861 struct f2fs_dev_info *fdev, 4862 struct blk_zone *zone) 4863 { 4864 unsigned int zone_segno; 4865 block_t zone_block, valid_block_cnt; 4866 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4867 int ret; 4868 4869 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4870 return 0; 4871 4872 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4873 zone_segno = GET_SEGNO(sbi, zone_block); 4874 4875 /* 4876 * Skip check of zones cursegs point to, since 4877 * fix_curseg_write_pointer() checks them. 4878 */ 4879 if (zone_segno >= MAIN_SEGS(sbi) || 4880 IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) 4881 return 0; 4882 4883 /* 4884 * Get # of valid block of the zone. 4885 */ 4886 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true); 4887 4888 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) || 4889 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL)) 4890 return 0; 4891 4892 if (!valid_block_cnt) { 4893 f2fs_notice(sbi, "Zone without valid block has non-zero write " 4894 "pointer. Reset the write pointer: cond[0x%x]", 4895 zone->cond); 4896 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4897 zone->len >> log_sectors_per_block); 4898 if (ret) 4899 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4900 fdev->path, ret); 4901 return ret; 4902 } 4903 4904 /* 4905 * If there are valid blocks and the write pointer doesn't match 4906 * with them, we need to report the inconsistency and fill 4907 * the zone till the end to close the zone. This inconsistency 4908 * does not cause write error because the zone will not be 4909 * selected for write operation until it get discarded. 4910 */ 4911 f2fs_notice(sbi, "Valid blocks are not aligned with write " 4912 "pointer: valid block[0x%x,0x%x] cond[0x%x]", 4913 zone_segno, valid_block_cnt, zone->cond); 4914 4915 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH, 4916 zone->start, zone->len, GFP_NOFS); 4917 if (ret == -EOPNOTSUPP) { 4918 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp, 4919 zone->len - (zone->wp - zone->start), 4920 GFP_NOFS, 0); 4921 if (ret) 4922 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)", 4923 fdev->path, ret); 4924 } else if (ret) { 4925 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)", 4926 fdev->path, ret); 4927 } 4928 4929 return ret; 4930 } 4931 4932 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4933 block_t zone_blkaddr) 4934 { 4935 int i; 4936 4937 for (i = 0; i < sbi->s_ndevs; i++) { 4938 if (!bdev_is_zoned(FDEV(i).bdev)) 4939 continue; 4940 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4941 zone_blkaddr <= FDEV(i).end_blk)) 4942 return &FDEV(i); 4943 } 4944 4945 return NULL; 4946 } 4947 4948 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4949 void *data) 4950 { 4951 memcpy(data, zone, sizeof(struct blk_zone)); 4952 return 0; 4953 } 4954 4955 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4956 { 4957 struct curseg_info *cs = CURSEG_I(sbi, type); 4958 struct f2fs_dev_info *zbd; 4959 struct blk_zone zone; 4960 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4961 block_t cs_zone_block, wp_block; 4962 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4963 sector_t zone_sector; 4964 int err; 4965 4966 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4967 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4968 4969 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4970 if (!zbd) 4971 return 0; 4972 4973 /* report zone for the sector the curseg points to */ 4974 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4975 << log_sectors_per_block; 4976 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4977 report_one_zone_cb, &zone); 4978 if (err != 1) { 4979 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4980 zbd->path, err); 4981 return err; 4982 } 4983 4984 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4985 return 0; 4986 4987 /* 4988 * When safely unmounted in the previous mount, we could use current 4989 * segments. Otherwise, allocate new sections. 4990 */ 4991 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4992 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4993 wp_segno = GET_SEGNO(sbi, wp_block); 4994 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4995 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4996 4997 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4998 wp_sector_off == 0) 4999 return 0; 5000 5001 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 5002 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno, 5003 cs->next_blkoff, wp_segno, wp_blkoff); 5004 } 5005 5006 /* Allocate a new section if it's not new. */ 5007 if (cs->next_blkoff) { 5008 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff; 5009 5010 f2fs_allocate_new_section(sbi, type, true); 5011 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 5012 "[0x%x,0x%x] -> [0x%x,0x%x]", 5013 type, old_segno, old_blkoff, 5014 cs->segno, cs->next_blkoff); 5015 } 5016 5017 /* check consistency of the zone curseg pointed to */ 5018 if (check_zone_write_pointer(sbi, zbd, &zone)) 5019 return -EIO; 5020 5021 /* check newly assigned zone */ 5022 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5023 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5024 5025 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5026 if (!zbd) 5027 return 0; 5028 5029 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5030 << log_sectors_per_block; 5031 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5032 report_one_zone_cb, &zone); 5033 if (err != 1) { 5034 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5035 zbd->path, err); 5036 return err; 5037 } 5038 5039 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5040 return 0; 5041 5042 if (zone.wp != zone.start) { 5043 f2fs_notice(sbi, 5044 "New zone for curseg[%d] is not yet discarded. " 5045 "Reset the zone: curseg[0x%x,0x%x]", 5046 type, cs->segno, cs->next_blkoff); 5047 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block, 5048 zone.len >> log_sectors_per_block); 5049 if (err) { 5050 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5051 zbd->path, err); 5052 return err; 5053 } 5054 } 5055 5056 return 0; 5057 } 5058 5059 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5060 { 5061 int i, ret; 5062 5063 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5064 ret = fix_curseg_write_pointer(sbi, i); 5065 if (ret) 5066 return ret; 5067 } 5068 5069 return 0; 5070 } 5071 5072 struct check_zone_write_pointer_args { 5073 struct f2fs_sb_info *sbi; 5074 struct f2fs_dev_info *fdev; 5075 }; 5076 5077 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 5078 void *data) 5079 { 5080 struct check_zone_write_pointer_args *args; 5081 5082 args = (struct check_zone_write_pointer_args *)data; 5083 5084 return check_zone_write_pointer(args->sbi, args->fdev, zone); 5085 } 5086 5087 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5088 { 5089 int i, ret; 5090 struct check_zone_write_pointer_args args; 5091 5092 for (i = 0; i < sbi->s_ndevs; i++) { 5093 if (!bdev_is_zoned(FDEV(i).bdev)) 5094 continue; 5095 5096 args.sbi = sbi; 5097 args.fdev = &FDEV(i); 5098 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5099 check_zone_write_pointer_cb, &args); 5100 if (ret < 0) 5101 return ret; 5102 } 5103 5104 return 0; 5105 } 5106 5107 /* 5108 * Return the number of usable blocks in a segment. The number of blocks 5109 * returned is always equal to the number of blocks in a segment for 5110 * segments fully contained within a sequential zone capacity or a 5111 * conventional zone. For segments partially contained in a sequential 5112 * zone capacity, the number of usable blocks up to the zone capacity 5113 * is returned. 0 is returned in all other cases. 5114 */ 5115 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5116 struct f2fs_sb_info *sbi, unsigned int segno) 5117 { 5118 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5119 unsigned int secno; 5120 5121 if (!sbi->unusable_blocks_per_sec) 5122 return sbi->blocks_per_seg; 5123 5124 secno = GET_SEC_FROM_SEG(sbi, segno); 5125 seg_start = START_BLOCK(sbi, segno); 5126 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5127 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5128 5129 /* 5130 * If segment starts before zone capacity and spans beyond 5131 * zone capacity, then usable blocks are from seg start to 5132 * zone capacity. If the segment starts after the zone capacity, 5133 * then there are no usable blocks. 5134 */ 5135 if (seg_start >= sec_cap_blkaddr) 5136 return 0; 5137 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 5138 return sec_cap_blkaddr - seg_start; 5139 5140 return sbi->blocks_per_seg; 5141 } 5142 #else 5143 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5144 { 5145 return 0; 5146 } 5147 5148 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5149 { 5150 return 0; 5151 } 5152 5153 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5154 unsigned int segno) 5155 { 5156 return 0; 5157 } 5158 5159 #endif 5160 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5161 unsigned int segno) 5162 { 5163 if (f2fs_sb_has_blkzoned(sbi)) 5164 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5165 5166 return sbi->blocks_per_seg; 5167 } 5168 5169 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5170 unsigned int segno) 5171 { 5172 if (f2fs_sb_has_blkzoned(sbi)) 5173 return CAP_SEGS_PER_SEC(sbi); 5174 5175 return sbi->segs_per_sec; 5176 } 5177 5178 /* 5179 * Update min, max modified time for cost-benefit GC algorithm 5180 */ 5181 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5182 { 5183 struct sit_info *sit_i = SIT_I(sbi); 5184 unsigned int segno; 5185 5186 down_write(&sit_i->sentry_lock); 5187 5188 sit_i->min_mtime = ULLONG_MAX; 5189 5190 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5191 unsigned int i; 5192 unsigned long long mtime = 0; 5193 5194 for (i = 0; i < sbi->segs_per_sec; i++) 5195 mtime += get_seg_entry(sbi, segno + i)->mtime; 5196 5197 mtime = div_u64(mtime, sbi->segs_per_sec); 5198 5199 if (sit_i->min_mtime > mtime) 5200 sit_i->min_mtime = mtime; 5201 } 5202 sit_i->max_mtime = get_mtime(sbi, false); 5203 sit_i->dirty_max_mtime = 0; 5204 up_write(&sit_i->sentry_lock); 5205 } 5206 5207 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5208 { 5209 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5210 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5211 struct f2fs_sm_info *sm_info; 5212 int err; 5213 5214 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5215 if (!sm_info) 5216 return -ENOMEM; 5217 5218 /* init sm info */ 5219 sbi->sm_info = sm_info; 5220 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5221 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5222 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5223 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5224 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5225 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5226 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5227 sm_info->rec_prefree_segments = sm_info->main_segments * 5228 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5229 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5230 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5231 5232 if (!f2fs_lfs_mode(sbi)) 5233 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC); 5234 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5235 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5236 sm_info->min_seq_blocks = sbi->blocks_per_seg; 5237 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5238 sm_info->min_ssr_sections = reserved_sections(sbi); 5239 5240 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5241 5242 init_f2fs_rwsem(&sm_info->curseg_lock); 5243 5244 err = f2fs_create_flush_cmd_control(sbi); 5245 if (err) 5246 return err; 5247 5248 err = create_discard_cmd_control(sbi); 5249 if (err) 5250 return err; 5251 5252 err = build_sit_info(sbi); 5253 if (err) 5254 return err; 5255 err = build_free_segmap(sbi); 5256 if (err) 5257 return err; 5258 err = build_curseg(sbi); 5259 if (err) 5260 return err; 5261 5262 /* reinit free segmap based on SIT */ 5263 err = build_sit_entries(sbi); 5264 if (err) 5265 return err; 5266 5267 init_free_segmap(sbi); 5268 err = build_dirty_segmap(sbi); 5269 if (err) 5270 return err; 5271 5272 err = sanity_check_curseg(sbi); 5273 if (err) 5274 return err; 5275 5276 init_min_max_mtime(sbi); 5277 return 0; 5278 } 5279 5280 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5281 enum dirty_type dirty_type) 5282 { 5283 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5284 5285 mutex_lock(&dirty_i->seglist_lock); 5286 kvfree(dirty_i->dirty_segmap[dirty_type]); 5287 dirty_i->nr_dirty[dirty_type] = 0; 5288 mutex_unlock(&dirty_i->seglist_lock); 5289 } 5290 5291 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5292 { 5293 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5294 5295 kvfree(dirty_i->pinned_secmap); 5296 kvfree(dirty_i->victim_secmap); 5297 } 5298 5299 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5300 { 5301 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5302 int i; 5303 5304 if (!dirty_i) 5305 return; 5306 5307 /* discard pre-free/dirty segments list */ 5308 for (i = 0; i < NR_DIRTY_TYPE; i++) 5309 discard_dirty_segmap(sbi, i); 5310 5311 if (__is_large_section(sbi)) { 5312 mutex_lock(&dirty_i->seglist_lock); 5313 kvfree(dirty_i->dirty_secmap); 5314 mutex_unlock(&dirty_i->seglist_lock); 5315 } 5316 5317 destroy_victim_secmap(sbi); 5318 SM_I(sbi)->dirty_info = NULL; 5319 kfree(dirty_i); 5320 } 5321 5322 static void destroy_curseg(struct f2fs_sb_info *sbi) 5323 { 5324 struct curseg_info *array = SM_I(sbi)->curseg_array; 5325 int i; 5326 5327 if (!array) 5328 return; 5329 SM_I(sbi)->curseg_array = NULL; 5330 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5331 kfree(array[i].sum_blk); 5332 kfree(array[i].journal); 5333 } 5334 kfree(array); 5335 } 5336 5337 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5338 { 5339 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5340 5341 if (!free_i) 5342 return; 5343 SM_I(sbi)->free_info = NULL; 5344 kvfree(free_i->free_segmap); 5345 kvfree(free_i->free_secmap); 5346 kfree(free_i); 5347 } 5348 5349 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5350 { 5351 struct sit_info *sit_i = SIT_I(sbi); 5352 5353 if (!sit_i) 5354 return; 5355 5356 if (sit_i->sentries) 5357 kvfree(sit_i->bitmap); 5358 kfree(sit_i->tmp_map); 5359 5360 kvfree(sit_i->sentries); 5361 kvfree(sit_i->sec_entries); 5362 kvfree(sit_i->dirty_sentries_bitmap); 5363 5364 SM_I(sbi)->sit_info = NULL; 5365 kvfree(sit_i->sit_bitmap); 5366 #ifdef CONFIG_F2FS_CHECK_FS 5367 kvfree(sit_i->sit_bitmap_mir); 5368 kvfree(sit_i->invalid_segmap); 5369 #endif 5370 kfree(sit_i); 5371 } 5372 5373 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5374 { 5375 struct f2fs_sm_info *sm_info = SM_I(sbi); 5376 5377 if (!sm_info) 5378 return; 5379 f2fs_destroy_flush_cmd_control(sbi, true); 5380 destroy_discard_cmd_control(sbi); 5381 destroy_dirty_segmap(sbi); 5382 destroy_curseg(sbi); 5383 destroy_free_segmap(sbi); 5384 destroy_sit_info(sbi); 5385 sbi->sm_info = NULL; 5386 kfree(sm_info); 5387 } 5388 5389 int __init f2fs_create_segment_manager_caches(void) 5390 { 5391 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5392 sizeof(struct discard_entry)); 5393 if (!discard_entry_slab) 5394 goto fail; 5395 5396 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5397 sizeof(struct discard_cmd)); 5398 if (!discard_cmd_slab) 5399 goto destroy_discard_entry; 5400 5401 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5402 sizeof(struct sit_entry_set)); 5403 if (!sit_entry_set_slab) 5404 goto destroy_discard_cmd; 5405 5406 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5407 sizeof(struct revoke_entry)); 5408 if (!revoke_entry_slab) 5409 goto destroy_sit_entry_set; 5410 return 0; 5411 5412 destroy_sit_entry_set: 5413 kmem_cache_destroy(sit_entry_set_slab); 5414 destroy_discard_cmd: 5415 kmem_cache_destroy(discard_cmd_slab); 5416 destroy_discard_entry: 5417 kmem_cache_destroy(discard_entry_slab); 5418 fail: 5419 return -ENOMEM; 5420 } 5421 5422 void f2fs_destroy_segment_manager_caches(void) 5423 { 5424 kmem_cache_destroy(sit_entry_set_slab); 5425 kmem_cache_destroy(discard_cmd_slab); 5426 kmem_cache_destroy(discard_entry_slab); 5427 kmem_cache_destroy(revoke_entry_slab); 5428 } 5429